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2008.

xii, 120 f. : il., fig., tab.

Dissertaç~ao (mestrado) - Universidade de

Pernambuco. DSC. Engenharia da Computaç~ao, 2008.
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Abstract

The Java Modeling Language (JML) is a formal behavioral interface specification lan-
guage (BISL) designed for Java. It was developed with the aim of improving the func-
tional software correctness of Java applications. JML has a rich set of features for
specifying Java applications, including abstract specifications, method and type specifi-
cations, and multiple inheritance specifications. The current JML compiler (jmlc) does
not work properly when applied to Java dialects such as Java ME. The instrumented
object program generated by the original JML compiler uses the Java reflection mecha-
nism and data structures not supported by Java ME platform. In order to overcome this
limitation, our new JML compiler — ajmlc (AspectJ JML Compiler) — uses AspectJ
to instrument Java code with JML predicates. A set of translation rules are defined
from JML predicates into AspectJ program code. Such rules avoid AspectJ constructs
not supported by Java ME. The result is a code compliant with both Java SE and Java
ME applications. The translation rules handle a number of JML specifications, such as
pre-, postconditions, and invariants. The work includes proofs of concept to compare
the size of the final code generated by our compiler with the code size produced by
the jmlc compiler. The results indicate that the overhead in code size produced by our
compiler is very small when using the abc AspectJ weaver. Such results are essential
when Java ME applications are considered. Finally, the proofs of concept validate our
compiler when applied to Java SE as well as Java ME applications.

Keywords: design by contract, JML language, JML compiler, aspect-oriented pro-
gramming, AspectJ language, AspectJ weaving
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Resumo

Java Modeling Language (JML) é uma linguagem formal para a especificação comporta-
mental de programas Java. Ela foi desenvolvida com o objetivo de melhorar a corretude
funcional de aplicações Java. Para esta finalidade, JML possui um conjunto significativo
de caracteŕısticas para especificar aplicações Java, incluindo especificações abstratas, es-
pecificações de métodos e tipos, além de especificações para herança múltipla. O compi-
lador atual de JML (jmlc) não funciona adequadamente quando aplicado a dialetos Java
como Java ME. O programa objeto instrumentado gerado pelo compilador original de
JML faz uso de reflexão Java e estruturas de dados não compat́ıveis com a plataforma
Java ME. A fim de superar esta limitação, nosso novo compilador JML, conhecido como
ajmlc (AspectJ JML Compiler) faz uso de AspectJ para instrumentar o código Java com
predicados JML. Foi definido um conjunto de regras de tradução de predicados JML
para código (construções) em AspectJ. Tais regras evitam construções de AspectJ não
suportadas pela plataforma Java ME. O resultado é um código compat́ıvel com ambas
as plataformas, Java SE e Java ME. As regras de tradução lidam com vários tipos de
especificações JML, como pré-, pós-condições e invariantes. O trabalho inclui provas de
conceito para comparar o tamanho do código final gerado pelo nosso compilador com o
tamanho do código produzido pelo compilador JML. Os resultados indicam que o over-
head no tamanho do código produzido pelo nosso compilador é muito menor quando
utilizando o abc weaver de AspectJ. Tais resultados são essenciais quando aplicações
Java ME são consideradas. Finalmente, as provas de conceito validam a utilização do
nosso compilador para aplicações Java SE assim como aplicações em Java ME.

Palavras-chave: projeto por contrato, linguagem JML, compilador JML, programação
orientada a aspectos, linguagem AspectJ, recomposição de AspectJ
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Chapter 1

Introduction

Software engineering is the process (application) of a systematic, disciplined approach
to develop (implement) a software that works as it supposed to do [69]. Software en-
gineering seeks the production of quality software. This way the correctness is a prime
software quality — correctness is the ability of software products to perform their tasks
as defined by their specification [53]. The commitment to develop a correct software
is necessary in order to increase its reliability and reuse. However, after the software
is delivered the maintenance is usually performed to fix problems (bugs). This kind
of maintenance is known as corrective maintenance [69]. Thus, maintenance activities
usually have the highest costs [18]. According to Meyer [53], maintenance is estimated
as 70% of a software cost as a whole.

Design by Contract (DBC), originally conceived by Meyer [51], is a technique for
developing and improving functional software correctness. This technique is based on
“contracts” — a formal agreement between a client and its suppliers. To call a method,
a client class must satisfy the conditions imposed by a supplier class. If these conditions
are satisfied, the supplier class must guarantee certain properties, which constitute the
supplier class obligations. On the other hand, if conditions are not satisfied, that is,
there is a contract violation, then a runtime error occurs. Thus, the DBC technique is
a means to reduce the problems related to software engineering in developing reliable
software. As a consequence, the DBC technique helps to reduce corrective maintenance
effort.

Several specification languages have been designed to annotate source code writ-
ten in programming languages [21, 7, 39]. Most of these languages adopt the Design
by Contract (DBC) [51] technique. This is the case of the Java Modeling Language
(JML) [39].

1.1 A bird’s-eye view of JML

The Java programming language does not have built-in support for Design by Contract
(DBC). The Java Modeling Language (JML) [39] is a behavioral interface specification
language (BISL) for Java — JML adopts the practicality of DBC language to specify
the behavior of Java classes and interfaces.

JML introduces a number of constructs for declaratively specify behavior. JML
annotations specify the expected behavior implemented by Java code. In other words,

1



public class JMLExample {
//@ re qu i r e s b > 0 ;
public int div ( int a , int b) {

return a/b ;
}

}

Figure 1.1: Example of JML specification.

annotations specify what should happen at runtime. For example the behavior of a
method describes what should happen when the method is called. To this end, JML
specifications are composed of pre-, postconditions, and invariant predicates based on
Hoare-style [31, 32]. JML specifications are annotated in Java code in the form of
comments. Figure 1.1 presents code example of a JML specification with a precondition
clause, requiring b > 0. This precondition states that the input parameter b must be
grater than zero.

The benefits of adding JML specifications (annotations) to your Java source code
include the following [74]:

• more precise description of what the code should do;

• efficient discovery and correction of bugs;

• early discovery of incorrect client usage of classes;

• reduced chance of introducing bugs as the application evolves;

• precise documentation that is always in accordance with application code.

There are a number of tools that give support for JML specifications, including a
JML type checker, and a JML assertion checking compiler known as jmlc [14]. The JML
compiler is responsible for translating JML-annotated Java source code and generating
instrumented bytecode with automatic runtime checks. Code compiled with the JML
compiler will check at runtime the assertions that describe a software contract, raising
a JML exception when a condition (e.g, precondition) does not hold.

1.2 Motivation

As mentioned above, software engineering seeks the production of quality software; thus
by writing formal specifications for program modules (e.g., classes and interfaces), we
can improve the desired quality of software. In this way, Java Modeling Language (JML)
is a formal specification language that provides means to increase such desired quality
for Java applications.

1.2.1 Limitations of JML when enforcing contracts

Java ME [63] is intended for devices with limited resources such as handheld mobile
devices. Many existing Java Standard Edition (Java SE) applications can be used in

2



Java ME applications, but this code usually is not scaled down to fit limited hardware.
Additionally, the Java ME API is a subset of the Java SE API geared toward handheld
devices.

Similarly to Java SE applications, Java ME applications could be annotated with
JML. But, we have identified the following limitations of the JML compiler when applied
to Java ME applications:

• it adopts Java reflection [54] to implement specification inheritance and separate
compilation. However, Java ME does not support reflection;

• it employs data structures, such as HashSet and Map [54], both from the java.util
package, which are not supported by Java ME;

• the final bytecode size is quite bigger than a pure Java ME application.

Besides these limitations imposed to other Java dialects such as Java ME, the in-
frastructure of the JML compiler (jmlc) translates contracts into runtime checking code
in a non-modularized way. That is, the generation code of the JML compiler provides
an intermediate code completely tangled (intermixed/clutted) with the runtime checks.
This leads to problematic modifications, extensions, and optimizations in the standard
solution, for example, to adapt the JML compiler to deal with Java ME applications
and extend it to implement new constructs (features).

1.2.2 Aspect-oriented programming to implement JML con-

tracts

The implementation of runtime contract enforcement (e.g., preconditions, postcondi-
tions, and invariants), as done in JML, can be categorized as a crosscutting con-
cern [19, 35, 37, 50, 49] — Contracts are systematically spread throughout the code,
and their evaluation also crosscuts various modules and tangles (mixes) with the appli-
cation code. It is important to notice that this happens in an intermediate level of the
JML compiler (code generation). Regarding this scenario in JML, we need a strategy
to answer four questions:

1. how to implement contracts conveniently?

2. how to provide a better code instrumentation?

3. how to check contracts during runtime?

4. how to modify properly the code generation of the JML compiler to support run-
time checking of contracts in Java ME applications?

In order to answer the first three questions, this dissertation uses aspect-oriented
programming (AOP) to separate the contract enforcement concern (the generated run-
time checks provided by the JML compiler) from application code. In particular, As-
pectJ [36], a general-purpose aspect-oriented extension to Java, is used to provide an
aspect-oriented implementation of the JML contracts. The use of AspectJ aspects has
several advantages: (1) allow better modularity (clear separation of concern related to
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contract enforcement); (2) ease of modification/extension to treat other features; (3)
better understandability (since the runtime checks are separated from the source code).
Moreover, by using AspectJ, the problem of code instrumentation is automatic solved in
a standard technology (AspectJ weaving). Code instrumentation involves many issues
such as the order of execution, dynamic dispatching, object initialization, inheritance,
and so forth. In this way, we leave the responsibility of instrumentation for AspectJ
(which knows how to do it better). By using AspectJ, the code instrumentation process
occurs at bytecode level (avoid polluting the source code and facilitate modifications
and possible extensions). Finally, enforcing JML contracts with AspectJ provides all
necessary information for blame assigment and error reporting (as done in the standard
JML). This capability is very useful during testing to detect failures and help to locating
faults (debugging).

Concerning the last question, by carefully using AspectJ constructs and features, we
can generate code compliant to both Java SE as well as Java ME applications. As a
consequence, we can verify JML contracts in Java ME applications.

1.3 Objectives

The main goal of this dissertation is to implement a new JML compiler that generates
bytecode compliant with Java SE as well as Java ME applications. In this way, we can
annotate Java ME applications with JML. Our compiler uses Aspect Oriented Program-
ming to implement JML contracts. The proposed compiler produces AspectJ program
code. We carefully use AspectJ constructs that are compliant with both Java SE and
Java ME platforms. By using aspect-oriented programming (AOP) we take advantage
of the weaver technology. Since we work in the Aspect level, gains obtained through
weaver optimizations are automatically transferred to our compiler.

Our compiler deals with the following JML levels 1 [43, Section 2.9]:

Level 0 requires, ensures, signals, assignable, invariant, not specified, also, old, in-
stance, result, nothing, everything, spec public, spec protected, behavior, nor-
mal behavior, exceptional behavior;

Level 1 pure, static;

Level 2 only assigned.

Another aim is to develop a proof of concept to investigate that our proposed compiler
really generates code that is compatible with Java SE and Java ME. In addition, we
have to take into account the final bytecode size we obtain after the AspectJ weaving
process so that applications can be embedded in devices such as a handheld.

To the best of our knowledge, ajmlc is the first JML compiler with support for Java
SE and Java ME applications that adopts aspect-oriented programming to implement

1JML was designed to be used with a variety of different tools, but the evolution of the JML
language means that some features are not completely documented or implemented. In this way,
some tools that work with JML have features that are not supported by other tools. Consequently,
the research groups (http://www.eecs.ucf.edu/~leavens/JML/) working on JML decided to define
several language levels. The aiming to define these language levels is to make it easier to learn and use
it with various tools that work with JML
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JML contracts. The Jose tool [24] adopts a different specification language to write
contracts in Java. Similar to ajmlc, Jose uses AspectJ to instrument Java contracts,
but Jose is not compliant with Java ME applications. Moreover, the semantics for
contracts in Jose is different from that of JML. The language JCML [59] is a subset of
the JML language targeting Java Card applications. Differently from our compiler, the
JCML compiler does not use aspect-oriented programming.

1.4 Contributions of the Dissertation

The main contribution of this dissertation is synthesized bellow:

• novel JML compiler compliant with Java ME and Java SE applications;

• usage of aspect-oriented programming to implement JML contracts;

• proof of concept to investigate our proposed approach with Java SE and Java
ME applications and to contrast with the original JML compiler proposed by
Cheon [14].

1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides the
background related to this dissertation. In Chapter 3, we present the new JML compiler,
which we call ajmlc (AspectJ JML Compiler), including the translation rules from JML
predicates into AspectJ. In Chapter 4, we investigate the overhead in code size produced
by our compiler through a proof of concept. We compare our work with others present
in the literature in Chapter 5. Finally, in Chapter 6, we present concluding remarks and
point out future works.
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Chapter 2

Concepts

This chapter presents the main concepts used in this dissertation. We briefly present
JML, AspectJ, and Java ME platform.

2.1 An Overview of JML

This section gives an overview of the JML language (Java Modeling Language) [43, 39],
introducing its major features such as method and type specifications.

2.1.1 Behavioral Interface Specification

JML [43, 39], which stands for “Java Modeling Language”, is a behavioral interface
specification language (BISL) tailored to Java [27]. JML combines the design by contract
(DBC) technique [51, 53] of Eiffel [52] with the model-based specification approach
typified by VDM [34], Z [70], and Larch/C++ [40]. It also adds some elements from the
refinement calculus [6]. As in Eiffel, JML uses Java’s expression syntax in assertions,
which makes the language easy to learn and use when compared with other specification
languages such as Z [70].

As a BISL, JML is used to specify Java modules (classes and interfaces). It concen-
trates on two aspects of a Java module during the specification process:

• syntactic interface — consists of the names and static information (e.g., method
names, modifiers, arguments, return type) found in Java declarations;

• functional behavior — describes how the module works when used.

Thus, BISLs are languages that describe interface details for clients. For example,
Larch [29] describes how to use a module in a C++ program, just as JML specifies how
to use a module in a Java program.

2.1.2 Annotations

JML specifications are written in special annotation comments, which start with an @

sign, that is, comments in the form: //@ <JML specification> or /*@ <JML specification>

@*/. These annotations work as simple comments for a Java compiler, whereas they are
interpreted as specifications by the JML compiler [14].

6



JML Compiler
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Figure 2.1: An overview of the JML environment.

It is important to note that the at-sign (@) must be right next to the start of comment
characters. A comment starting with // @ will be ignored by JML. In other words,
such a comment is not processed as a specification by the JML compiler. This happens
because JML tools do not currently warn the programmer about comments that use
such mistaken annotation markers.

Figure 2.1 depicts an overview of the JML environment. A programmer includes
annotations in the Java source file in the form of comments. Then, the JML compiler
translates the annotated Java source file into instrumented bytecode that check whether
the Java program respects the specification.

2.1.3 Assertions and Expressions

Assertions and expressions of specifications in JML are written using Java’s expression
syntax. However, they must be pure. This means that side-effects cannot appear in JML
assertions or expressions [41]. But Java assertions and expressions do allow side-effects.
Regarding the prevention of side-effects, the following Java operators are not allowed
within JML specifications:

• assignment — assignment operators (such as =, +=, -=) are not allowed;

• increment and decrement operators — all forms of increment and decrement op-
erators (++ and --) are not allowed.

In addition, only pure methods can be used in JML expressions and assertions — a
method is pure if it does not have any side-effects on the program state. In other
words, the method does not modify the state (e.g., by assigning any fields of objects).
The pureness of expressions is specified in JML by using the assignable clause [58].
Only the fields listed in an assignable clause can be modified by a method. Two
JML keywords can be used with the assignable clause: \nothing and \everything.
We can indicate that a method does not have any side effects by writing assignable

nothing. On the other hand, we can say that a method can modify anything by writing
assignable \everything. Thus, Figure 2.2 illustrates a JML specification that the
method getWeight cannot modify any fields of objects that are visible outside the
method and that exist before the method have started its execution. However, the
method may still modify its local variables. Another way to indicate that a method has
only pure expressions is by using the JML modifier pure when declaring a method.

public /*@ pure @*/ int getWeight(){ return weight; }
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//@ a s s i g n a b l e \ nothing ;
public int getWeight ( ){

return weight ;
}

Figure 2.2: JML specification with an assignable clause.

This method declaration denotes a method with no side-effects; it is not allowed to
modify the program state. The use of the JML modifier pure is equivalent to the
assignable \nothing clause.

Besides assignable, JML provides a rich set of constructs, some of which make ex-
tensions to the Java’s expression syntax to provide more expressive power in JML spec-
ification; they can be used in JML assertions and expressions. For example, \old(E )
represents the pre-state value of expression E. An expression with a pre-state value
refers to the value before method execution. The \result construct specifies the re-
turn value of a method. Note that in JML assertions, such constructs start with a
backslash (\) in order to avoid interfering with identifiers present in a user program.
JML also provides the use of logical connectives such as conjuction (&&), disjunction
(||), negation (!), forward (==>) and reverse implications (<==), equivalence (<==>),
and inequivalence (<=!=>). Regarding quantifiers, JML supports several kinds such as
universal quantifier (\forall), existential quantifier (\exists), and generalized quan-
tifiers (\sum, \product, \min, and \max). The quantifiers \sum, \product, \min,
and \max are generalized quantifiers that return respectively the sum, product, min-
imum, maximum of the values present in JML expressions. For example, an expression
(\sum int x; 1 <= x && x <= 5; x) denotes the sum of values from 1 to 5.

Another feature provided by JML is that one can use informal descriptions when
specifying a Java module. Informal descriptions are useful for producing an informal
documentation of the Java code. JML also allows informal descriptions when specifying
a Java module.

(* some text describing a boolean-valued predicate *)

The interpretation for this informal description is entirely determined by the reader.
They have boolean type. Their meaning is either true or false. Since informal de-
scriptions are not-executable, they may be treated differently by different tools [11] in
different situations.

In-line assertions

JML provides the use of a specific kind of assertion known as in-line assertions (also
called intracondition). These assertions can be specified in the method body. In other
words, they are interwoven with Java code. Figure 2.3 shows an example of a JML
specification with in-line assertion (assert y1 != 0 && y2 != 0). Here, when the
execution of method m reaches the assertion, the expression (y1 != 0 && y2 != 0)
must be satisfied. Otherwise a JMLAssertError is raised signaling the assertion vio-
lation. JML provides several kinds of in-line assertions, such as assert statements,
assume statements, henceby statements, unreachable statements, set statements, and
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public class InL ineAsse r t i on {
public void m() {

//@ a s s e r t y1 != 0 && y2 != 0;
y1 ++;
y2 ++;

}
}

Figure 2.3: JML specification with in-line assertion.

loopinvariant and variant statements. Additional information about the kinds of
in-line assertions and their implementation can be found in Cheon’s work [14, Section
4.7].

Semantic differences between JML and Java expressions

There are a number of differences between JML and Java expressions [14, Section 3.1].
We can point out two of them:

• abnormal termination — the evaluation of an expression in Java may complete
abnormally by throwing an exception. This abnormal termination always has
an associated reason (i.e., throw). However, in JML, the semantics consists in
replacing an expression that throws an exception by a value (e.g., true or false);

• order of evaluation — differently from JML, the Java operators are order-sensitive.
For instance, consider expressions presented in Table 2.1, where x is an array type.
In Java, if the subexpression (true) comes first, the result will always be true and
the second subexpression is never evaluated because of the short-circuit evaluation;
otherwise, if the subexpression (x.length > 0) comes first, we have two possible
results: (1) if x is not null, the result is true; (2) if x turns out to be null, then
NullPointerException is throw. This means that, Java evaluates the right-hand
operand only if the left-hand operand is not conclusive. On the other hand, if
the whole expression completes normally, the order of evaluation is not relevant
for the final result. In contrast, with JML expressions, the result is always true.
This happens because JML expressions obey the standard rules of logic even in
the presence of undefinedness [14, Section 3.2] [16].

true || x.length > 0 x.length > 0 || true

Java Always true if x is not null: true
Otherwise: NullPointerException

JML Always true if x is null: true
Otherwise: true

Table 2.1: Example of semantic difference between Java and JML [68].
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Null is not the default

Null pointer exceptions are among the most common faults raised by components writ-
ten in object-oriented (OO) languages such as Java [27]. For example, if x is null then
x.f and x.m() both result in a NullPointerException [43, Section 2.8]. Such a problem
causes undefinedness [14, Section 3.2] [16] in expression evaluation. One can prevent
this problem by declaring every reference type field as nullable. However, any dec-
laration (except for local variables) of a reference type is implicitly declared non-null
(has an implicit non_null annotation), unless explicitly declared nullable. A decla-
ration can be explicitly declared nullable using the nullable annotation. Moreover, a
class or interface that implicitly contains nullable declarations is specified by using the
nullable_by_default class annotation.

public class Person { public class Person {
public Str ing name ; public Str ing name ;
public Address address ; public Address address ;

}
/∗@ invar i an t name != nu l l

@ && address != nu l l @∗/ ;

// . . .
}

Figure 2.4: Desugaring non-null annotations for field types in JML specification.

JML treats the implicitly declaration non null as an invariant (see Section 2.1.5).
In Figure 2.4 the reference type fields (name and address) on the left-hand side are
desugared by the JML compiler into explicitly non-null invariant annotations on the
right-hand side. Thus, after the constructor execution, if any reference type declaration
is null, a JMLInvariantError is raised (see Section 2.1.4).

Early versions of the JML compiler were originally implemented with implicity null
default semantics. Nevertheless, Chalin [13] stated that programmers want more than
50% of declarations of reference types to be non-null. Thus, with the old JML seman-
tics, programmers must add non_null annotations to the majority of declarations. As a
result, programmers usually forget to add the non_null annotation to some fields, lead-
ing clients to call methods with null arguments resulting in NullPointerException.
Therefore, based on this study, Chalin [13] proposed to modify the JML semantics by
allowing declarations to be non-null by default. Thus, the JML tools [11] were enhanced
with this new semantics. Like JML, other languages [52, 8] have type systems that allow
the addition of types that are not-null by default.

2.1.4 Method Specifications

In JML, method specifications contain pre-, postcondition predicates based on Hoare-
style [31, 32], but with many extensions (see Section 2.1.3). It also has a number of
improvements, including heavyweight and lightweight specifications, normal and excep-
tional postconditions, and frame conditions. In the following, these and other features
are briefly described.
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JMLHistoryConstraintErrorJMLInvariantError

JMLPreconditionError

JMLAssertionError

java.lang.Errorjava.lang.Error

JMLAssertionError

JMLPreconditionError JMLPostconditionErrorJMLIntraconditionError

JMLAssertError JMLAssumeErrorJMLHenceByError

JMLLoopVariantErrorJMLLoopInvariantErrorJMLUnreachableError

JMLPostconditionErrorJMLIntraconditionError

JMLUnreachableError JMLLoopInvariantError JMLLoopVariantError

JMLAssertError JMLHenceByError JMLAssumeError

JMLEntryPreconditionError

JMLInternalPreconditionErrorJMLInternalPreconditionError

JMLEntryPreconditionError

JMLInternalNormal

PostconditionError

JMLInternalExcepti...JMLInternalExceptional

PostconditionError

JMLInternalNormal

PostconditionError

JMLInvariantError JMLHistoryConstraintError

Figure 2.5: JML class hierarchy of assertion violation errors.

States of method specifications

JML constructs for method specifications are divided into three groups of states [14,
Section 4.1]:

• pre-state specifications — these specifications must be evaluated in the pre-state,
immediately before the execution of the method body. Example of these specifi-
cations are: requires clauses, old variables and old expressions. It is important
to note that expressions such as old appear in post-state specifications, but they
must be evaluated in the pre-state (before method execution);

• post-state specifications — these specifications must be evaluated in post-state,
immediately after the execution of the method body. Clauses such as ensures,
and signals are example of post-state specifications;

• internal-state specifications — these specifications must be evaluated in internal
states, during the evaluation of the method body. In-line assertions (see Section
2.1.3 [In-line assertions]) are examples of internal specification state.

Reporting assertion violations

When any assertion violation occurs, JML must inform the user about it. After instru-
mentation by the JML compiler (jmlc), the JML runtime assertion checker (jmlrac) [11]
is responsible for the runtime check of assertions. There are several ways to report
assertion violations, such as throwing exceptions, printing error messages, halting the
program, and logging. The JML compiler instruments its assertions to throw exceptions.
Once instrumented, the runtime assertion checker (jmlrac) is the tool that throws the
exceptions during runtime. Moreover, an assertion violation should be reported in such
a way that one can identify its cause. When any violation occurs, the JML runtime
assertion checker also exposes static information about the problem. For example, the
location of the violation, which is useful to determine its cause.
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requires preconditions
ensures normal postconditions
signals exceptional postconditions
assignable frame conditions

Table 2.2: JML clauses for method specifications.

//@ re qu i r e s a >= 0 && b >= 0;
public int sum( int a , int b) {

return a + b ;
}

Figure 2.6: Example of JML precondition specification.

In JML, an assertion violation is a situation from which programs cannot recover.
Hence, assertion violations are defined as error classes. Figure 2.5 shows the assertion
violation errors hierarchy of JML. The abstract class JMLAssertionError is a sub-
class of class java.lang.Error [64], which is the top-level superclass of all assertion
violation errors. This hierarchy contains error classes for different kinds of assertion vio-
lations (e.g., precondition violations). For example, the class JMLIntraconditionError
is the superclass for reporting assertion violations of in-line assertions such as assert

(JMLAssertError), and assume (JMLAssumeError) statements (see Section 2.1.3 [In-line
assertions] for in-line assertions). A postcondition violation, JMLPostconditionError,
is further distinguished into two types: a normal postcondition violation (JMLInternal-
NormalPostconditionError), and an exceptional postcondition violation (JMLInternal-
ExceptionalPostconditionError). The former refers to a violation of properties
(predicates) after the method execution (normal termination). The latter refers to a
violation of properties when the method throws an exception (abnormal termination).
The classes JMLInvariantError and JMLHistoryConstraintError are responsible for
reporting assertion violations of type invariants and history constraints, respectively
(see Section 2.1.5 for type specifications).

Specification clauses

JML provides a number of specification clauses that can be used to specify the be-
havior of methods (see Table 2.2): the requires clauses specifies preconditions; the
assignable clauses [58] specifies frame conditions (see Section 2.1.3); the ensures

clauses specifies normal postconditions, whereas signals clauses specifies exceptional
postconditions.

Preconditions are predicates that must hold before method execution. Figure 2.6
shows an example of a precondition of the method sum. According to this specifica-
tion, the arguments a and b of the method sum must be non-negatives; otherwise a
JMLInternalPreconditionError is raised signaling an assertion violation error. The
jmlc translation rules for preconditions are presented in [14, Sections 3.2.4 and 4.4].

Normal postconditions are predicates that must hold after method execution without
throwing any exception. Figure 2.7 shows an example of a normal postcondition of the
the method sum. According to this specification, the result of the method (indicated by
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//@ ensures \ r e su t == a + b ;
public int sum( int a , int b) {

return a + b ;
}

Figure 2.7: Example of JML normal postcondition specification.

//@ s i g n a l s ( Except ion ) a >= 0 && b > = 0;
public int sum( int a , int b) {

// Throws a java . lang . Except ion
return a + b ;

}

Figure 2.8: Example of JML exceptional postcondition specification.

the \resut construct) must be equal to the sum of the arguments a and b; otherwise
a JMLInternalNormalPostcondition is raised, signaling the assertion violation error.
The jmlc translation rules for normal postconditions are presented in [14, Sections 3.2.4
and 4.5.1].

Exceptional postconditions are predicates that must hold when the method termi-
nates by throwing an exception. Each exceptional postcondition can consist of several
signals clauses. In this way, each signals clause must hold when the specified method
terminates abnormally by throwing an exception of a type specified in the signals

clause. Figure 2.8 shows an example of an exceptional postcondition for the method
sum. According to this specification, when the method sum throws an exception, the ar-
guments a and b must be non-negatives; otherwise the original exception is intercepted
and a JMLInternalExcetionalPostconditionError is raised signaling the assertion
violation error. The jmlc translation rules for exceptional postconditions are presented
in [14, Sections 3.2.4 and 4.5.2].

Heavyweight and Lightweight specifications

In JML, one can use two different styles on method specifications: heavyweight specifica-
tions, and lightweight specifications [43]. A heavyweight specification can start with the
keyword behavior, which indicates a “complete” specification that includes both nor-
mal and abnormal situations. Figure 2.9 shows an example of a behavior specification,
including normal (lines 2 to 4), and abnormal situations (line 5).

The normal_behavior keyword is used only to define specifications that include
only normal situations, that is, no method can terminate abnormally by throwing an
exception — the signals clause cannot appear in these specifications cases. Figure
2.10 (lines 1 to 3) shows an example of normal behavior specification. Unlike the
normal_behavior, the exceptional_behavior is employed to specify abnormal sit-
uations using the signals clause. Such specifications cannot terminate normally. This
behavior is emulated by introducing an implicit ensures false. Hence, if no excep-
tion is thrown during the method execution, then the method terminates by throwing
a JMLInternalPostconditionError.

Figure 2.11 shows an example of an exceptional_behavior specification. When an
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1 /∗@ behav iour
2 @ requ i r e s ( a >= 0 ) && ( b >= 0 ) ;
3 @ as s i g n a b l e \ nothing ;
4 @ ensures \ r e s u l t == a + b ;
5 @ s i g n a l s ( Except ion ) a > 200 && b > 100;
6 @∗/
7 public int soma ( int a , int b ){
8 return a + b ;
9 }

Figure 2.9: Example of behavior specification.

1 /∗@ normal behav iour
2 @ ensures \ r e s u l t == a + b ;
3 @∗/
4 public int soma ( int a , int b ){
5 return a + b ;
6 }

Figure 2.10: Example of normal behavior specification.

exception is thrown, both input parameters (a and b) must be grater than zero (lines 1
to 3).

A heavyweight specification has a well-defined interpretation for each clause in the
specification. When one omits a particular clause, JML assumes that it is interpreted
as true. On the other hand, a lightweight specification does not start with a behavior

keyword. Thus, only the clauses of interest are specified. In other words, it defines an
“incomplete” specification. For example, a method can specify its normal behavior (by
defining only precondition or normal postcondition clauses), or its exceptional behav-
ior (by defining only exceptional postcondition clauses). In lightweight specifications,
when a particular clause is omitted, the \not_specified interpretation is assumed.
The JML semantics states that the keyword \not_specified is used to denote that a
particular omitted clause has no condition. Regarding implementation details [14], the
JML compiler interprets omitted clauses in lightweight specifications similar to ones in
heavyweight specifications which means true.

Old expressions

In JML, the keyword old is employed to refer to pre-state expressions and variables in
post-state expressions (e.g., normal postconditions). An old expression, (\old(E)), de-
notes the value of the expression E in the pre-state, whereas an old variable, (\old(v)),
denotes the value of the variable v in the pre-state.

Static blocks

Constrained methods are checked when they are called, but if the call is made inside
a static block the properties of the methods (e.g., preconditions) are not verified. This
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1 /∗@ exc ep t i ona l b e hav i ou r
2 @ s i g n a l s ( Except ion ) a > 0 && b > 0 ;
3 @∗/
4 public int soma ( int a , int b ){
5 return a + b ;
6 }

Figure 2.11: Example of exceptional behavior specification.

happens because the current JML compiler does not generate instrumented bytecode
able to verify constrained methods into static blocks.

//@ re qu i r e s x > 0 ;
public stat ic void m( int x ) { /∗ . . . ∗/ }

stat ic {
m(−3); // t h i s c a l l l e ad s to no a s s e r t i on v i o l a t i o n

}

Figure 2.12: Example of non checked constrained method when it is called.

Figure 2.12 shows an example in which there is a method declaration, and a method
call. The constrained method m is defined with the precondition x > 0, and the call
m(-3) violates the constrained method is made inside a static block. As a result, no
assertion violation is raised. This lack of homogeneity can be problematic and might
lead to undesired behavior.

2.1.5 Type Specifications

In JML, type specifications are used to refer to both class and interface specifications. In
addition, there are other type specifications in Java member declarations that can have
JML specifications such as invariants, and history constraints. These type specifications
are briefly described in what follows.

Invariants

Invariants are predicates that must hold in all visible (reachable) states1 [57, Definition
2.1]. An invariant is annotated in a type declaration by using the keyword invariant,
also known as type invariant. Figure 2.13 shows an example of invariant. In this
example, the invariant (weight >= 0.0) must be preserved in all visible states. In
this way, if a call to the methods setWeight or getWeight violates the invariant, a
JMLInvariantError is raised.

JML uses the keyword helper to provide more flexibility for invariants. The helper
modifier [43, Section 7.1.1.4] can only be used on a private method or private constructor.
By using this modifier, such methods and constructors are also called helper methods

1Visible states are all the possible states in the program execution.
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public class Person {
public double weight ;
//@ invar i an t we ight >= 0 . 0 ;

public void setWeight (double weight ) {
this . weight = weight ;

}

public double getWeight ( ) {
return this . weight ;

}
}

Figure 2.13: JML invariant specification.

and helper constructors. In this way, helper methods and constructors are “free” from
the obligation of preserving type assertions (e.g., invariants). Suppose that the helper
method m is part of the class Person (see Figure 2.13).

private /*@ helper @*/ void m (){ this.weight = -10; }

Hence, m needs not satisfying the invariant (weight >= 0.0), since it is declared as
helper. The example presented in Figure 2.13 refers only to instance invariants. In
JML, the invariants are distinguished into static and instance invariants. The former
refers only to static fields and methods. On the other hand, the latter can refer to both
static and instance fields and methods.

The following states of the program execution must be preserved by an object in
order to keep an instance invariant integrity:

• after execution of all non-helper constructors;

• before execution of a non-helper finalizer method;

• before and after execution of all non-helper non-static non-finalizer methods.

On the other hand, instance invariants need not be preserved in the following states:
(1) after execution of constructors declared with the helper modifier; (2) before and
after execution of methods declared with the helper modifier.

The following states must be preserved by a type2 in order to keep the static invariant
integrity:

• before and after executions all non-helper constructors;

• before and after executions of all non-helper static methods;

• before and after executions of all non-helper non-static methods.

2A static invariant that refers to a static state must be preserved by a type T, whereas an instance
invariant that refers to an instance state must be preserved by an object O that has type T.
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1 public class Temporar i lyInvar iantBreak {
2 public int f ;
3 //@ invar i an t f >= 0;
4
5 public void m() {
6 this . f = −10; // temporar i l y i n va r i an t break !
7 System . out . p r i n t l n ("internal -state" ) ;
8 System . out . p r i n t l n ("f:"+f ) ;
9 this . f = 0 ; // re−e s t a b l i s hmen t o f the i n va r i an t

10 }
11 }

Figure 2.14: Example of temporary invariant violation in a JML specification.

An invariant may be explicitly declared to be a static one or an instance one by using
the modifiers static or instance during the declaration of the invariant. If an invariant
is declared in a class without the modifier, it is an instance invariant by default, whereas
if an invariant is declared in an interface without the modifier, it is an static invariant
by default.

Concerning invariant violations (for static and instance invariants), in JML, there is
only one way to temporarily break an invariant and consequently throws no assertion
violation error. This temporarily invariant break is established in an internal-state
during evaluation of a method’s body (see Section 2.1.4). However, before the method
returns to the caller, the invariant must be reestablished, that is, a method during
the execution of its body can break an invariant many times, but before the end of its
execution all invariants must be reestablished, otherwise a JMLInvariantError is raised
indicating the invariant assertion violation. The example in Figure 2.14 demonstrates
the temporarily violation of an invariant assertion even in presence of callbacks (recursive
assertion checking). In this example the class TemporarilyInvariantBreak has an
invariant condition (line 3) that refers to the field f (line 2). For the invariant break
purpose, the class TemporaryInvariantBreak has a method m (lines 5 to 10) that
temporarily breaks the invariant declared in line 3. The invariant break occurs in line
6 of the method m. Once broken, one can use the values of the internal-state (line 8 is
printed the value of field f). However, before the method terminates its execution, the
invariant is established again (line 9) in order to prevent invariant assertion violation.

Regarding invariants and method termination, methods and constructors must pre-
serve invariants in the case of normal and abnormal terminations. For example, even
if a method terminates abnormally by throwing an exception, the invariant check must
be performed.

An invariant can be declared with any Java’s access modifiers (private, protected,
and public). As in class members, if an invariant is declared in a class with no one of
the Java access modifiers, this means that it has a package visibility (default access). An
invariant declared in an interface with no modifiers has public visibility. For instance,
by writing an invariant declaration with public visibility.

//@ public invariant (/*invariant condition*/);

The jmlc compiler translation rules for invariant instrumentation are presented in [14,
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Section 5.2].

History constraints

History constraints, known as constraints for short, are used to specify the way that
objects can change their values from one state to another (i.e., pre-state to a post-state)
during the program execution. JML took constraints from Liskov and Wing’s work [46].
In JML, a constraint is written in a constraint clause with the keyword constraint.
Moreover, constraint clauses are usually written using old expressions to relate the
previous state (pre-state) with the resultant state (post-state), because they are two-
state predicate. On the other hand, invariants (discussed in a previous section) cannot
use old expressions, because they are one-state predicates. The constraints are applied
to methods, and they can be thought as an implicitly clause conjoined to method’s post-
condition and they must hold in the post-state of every (non-helper) method execution.

public class ConstraintSample {
public int index ;
//@ cons t r a i n t index == \ o ld ( index + 1) ;

public void incIndex ( ){
index++;

}

// . . . o the r methods
}

Figure 2.15: Example of constraint in JML specification.

Class ConstraintSample in Figure 2.15 includes an example of constraint in JML.
The example defines the public field index and the method incIndex. The constraint
(index == \old(index + 1)) states that after execution of the method incIndex (in a
post-state), the specified constraint must be checked. If the constraint does not hold, a
JMLHistoryConstraintError is raised indicating the constraint assertion violation. A
scope problem is observed in the constraint defined in Figure 2.15. Here, the constraint
is applied to all methods in class ConstraintSample. In this way, we can have calls to
other methods in class ConstraintSample which do not modify the field index, thus
leading to a constraint assertion violation (JMLHistoryConstraintError). To deal with
such a scope problem, JML also allows one to specify constraints that are applicable
only to a specific set of methods [43, p.55] [14, p.22].

//@ constraint index == \old(index + 1) for incIndex();

This rewritten constraint clause shows how to use a constraint to constrain only the
method incIndex. The for clause is used to define a set of methods, (m1,...,mn) where
each mi with its signature3 m(T1x1,...,Tnxn), is constrained by the constraint clause.
On the other hand, if the for clause is omitted, it becomes an universal constraint that

3The methods includes their types in order to distinguish between overloaded methods.
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constrains all methods. The constraint specification in Figure 2.15 is an example of
universal constraint.

As with invariants, JML makes a distinction between instance constraints and static
constraints. An instance constraint must hold only for instance methods, whereas a
static constraint must hold both for instance and static methods. It is important to
note that: (1) instance constraints do not apply to constructors and finalizers because
there is no well-defined pre-state for constructors and no post-state for finalizers. More-
over, helper methods, like invariants, are free from the obligation of preserving history
constraints; and (2) unlike instance constraints, static constraints must be satisfied by
all constructors (after constructor execution).

Regarding constraints and method termination, just like invariants, constrained
methods must preserve constraints in the case of normal and abnormal terminations.
In relation to access modifiers, like invariants, constraints can also be declared with
any Java’s access modifiers (private, protected, and public). The rules of visibility
posed on invariants are the same on constraints.

The jmlc compiler translation rules for history constraint instrumentation are pre-
sented in [14, Section 5.3].

Specification for interfaces

As previously mentioned, JML is used to specify Java’s modules such as classes and
interfaces. Thus, interfaces may have specifications as well. JML specifications present
into interfaces provides two semantics differences between JML and Java:

• stateful interfaces — in Java, interfaces are stateless in the sense that there are
no time-varying fields in interfaces. In JML, however, interfaces become stateful
as one can declare instance fields into interfaces by using model fields (one feature
of the model programs [43]). Accordingly to JML, locations should be allocated
somewhere for storing state information attributed to the interfaces;

• multiple inheritance — Java allows only single inheritance of code whereas JML
supports multiple inheritance of specifications. That is, an interface in JML can
have its own (model) fields and (model) methods, and this brings all of the prob-
lems associated with multiple inheritance, such as name conflicts [43 cheon refer-
ence].

Figure 2.16 shows an example of a interface that contains JML specifications, that is, the
interface ICalc declares two methods add and sub. These methods have one requires

clause and one ensures clause each one. A class that implements the interface ICalc

also inherits its specifications (see Section 2.1.6 for inheritance of specifications).
JML specifications are translated into assertion methods by the JML compiler (jmlc),

resulting in pre- and postcondition methods. However, interfaces cannot have assertion
methods inserted into it, because in Java an interface must be abstract [28]. Therefore,
for interfaces, the JML compiler generates a separate assertion class, known as surro-
gate class, that includes all assertion methods translated from the specifications of the
interface.

Figure 2.17 shows an example in a class diagram of a Surrogate class used to
contain the assertion methods generated by the JML compiler. In this example, I is
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public interface ICalc {

//@ re qu i r e s x > 0 && y > 0 ;
//@ ensures \ r e s u l t == x + y ; z
public double add (double x , double y ) ;

//@ re qu i r e s x > 0 && y > 0 ;
//@ ensures \ r e s u l t == x − y ;
public double sub (double x , double y ) ;

}

Figure 2.16: Example of interface with JML specifications.

S Surrogate

«interface» JMLSurrogate

{inner}

JMLSurrogate<<Interface>>

I

SurrogateS

Figure 2.17: Interface and its surrogate class.

an interface (that has JML specifications) with an implementing class S. The surrogate
class Surrogate is a subclass from the class JMLSurrogate, which is a JML class that
defines common properties to all surrogate classes. This way, each object of the class
S has an unique surrogate object of the interface I. The surrogate object is used by
the object of the class S to make calls to assertion methods defined in the interface’s
surrogate class. For more details about the instrumentation of interfaces by the JML
compiler, refer to [14, Section 6.5].

Discussion

There are two limitations to the current approach of checking type invariants. The
first is related to class initialization. JML semantics states that static invariants should
be established after initialization of a class, and they should be preserved by all non-
helper constructors and static methods [43]. Nevertheless, when constrained methods
are called inside a static block, no checks related to invariants are performed. Figure
2.18 shows an example where the method m is constrained with the invariant (x > 0)
and a call (m()) that violates the invariant is made inside a static block. As a result,
no assertion violation is raised. Cheon’s compiler [14] does not generate instrumented
bytecode properly to deal with this limitation. The second limitation occurs when the
invariants (static or instance) are declared in an interface. The class that implements
such an interface has the obligation to check both static and instance invariants of the
interface (accordingly to JML semantics [43]). However, the jmlc [14] compiler generates
instrumented code that ignores these invariants (implementation mistaken).
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public stat ic x ;
//@ s t a t i c i n va r i an t x > 0 ;

public stat ic void m() { x = −3; }

stat ic {
m( ) ; // t h i s c a l l l e ad s to no a s s e r t i on v i o l a t i o n

}

Figure 2.18: Example of non checked type invariant when it is called.

2.1.6 Inheritance of Specifications

In JML, there are several ways to inherit specifications: subclassing, interface extension
and implementation, and refinement [39]. A subtype inherits not only fields and meth-
ods from its supertypes, but also specifications such as pre- and postconditions, and
invariants. To provide the effect of specification inheritance, JML employs the keyword
also, which denotes a combination (join) of specification cases, which consist of clauses
including pre-, postconditions and so forth.

Regarding preconditions and postconditions, Leavens [38, Definition 1] adopts the
notation T � (pre, post) to denote an instance method specification written in type T .
According to his definition, if T � (pre, post) and T

′

� (pre′, post′) are specifications
of an instance method m, and U is a subtype of both T and T

′

, then the join of (pre,
post) and (pre′, post′) for U , written (pre, post)

⊔
U (pre′ , post′), is the specification

U � (p, q), where the precondition p and postcondition q are given by Formulas (2.1)
and (2.2), respectively [38].

pre || pre′ (2.1)

(\old(pre) ==> post) && (\old(pre′) ==> post′) (2.2)

This definition states that the preconditions are combined by a disjunction of pre and
pre′. Postconditions are combined by a conjunction of implications such that when one
of the preconditions holds in the pre-state, then the corresponding postcondition must
hold.

To define invariant, history constraint, and method specification inheritance in a
type T [38, Definition 2], Leavens introduces the notation added invT , added hcT , and
added specT

m, respectively. The inheritance of pre and post specifications of method m

declared in type T is represented as added specT
m = (added preT

m, added postTm). The
mechanism to define a specification inheritance can be explained by constructing an
extended specification. For invariants and history constraints we have the following: the
extended invariant (ext invT ) and history constraint (ext hcT ) of T is the conjunction
of all added invariants and history constraints in T and its proper supertypes (indicated
by supers(T )), see Formulas (2.3) and (2.4).

ext invT =
∧

{added invU |U ∈ supers(T )} (2.3)

ext hcT =
∧

{added hcU |U ∈ supers(T )} (2.4)
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In the case of method specifications, for all methods m introduced in the proper super-
types of T , the extended specification of m is the join of all added specifications for m

in T and all its proper supertypes (see Formula (2.5)).

ext specT
m =

⊔T

{added specU
m|U ∈ supers(T )} (2.5)

2.1.7 Privacy of Specifications

As in Java, JML provides rules of visibility for JML annotations. It imposes extra rules
to the usual Java visibility rules. One rule states that an annotation cannot refer to
names (e.g., fields) that are more hidden than the annotation visibility. Suppose x is a
name declared in package P with type T (P.T ), by applying this JML visibility rule,
we have the following restrictions:

• An expression in a public method specification can refer to x only if x is declared
as public;

• An expression in a protected method specification can refer to x only if x is declared
with public or protected visibility, and x must also respect Java’s visibility rules
— if x has protected visibility, then the reference must occur from within P or
outside P only if the reference occurs in a subclass of T ;

• An expression in a method with default (package) visibility can refer to x only if
x is declared with public, protected or default visibility, and x must also respect
Java’s visibility rules — if x has default visibility, then the reference must occur
from within P ;

• An expression in a private method specification can refer to x only if x is de-
clared with public, protected, default or private visibility, and according to Java’s
visibility rules, if x is private, the reference must occur within P.T.

Figure 2.19 shows an example with the use of various privacy level names that are
legal and illegal. In this example, the lines 8, 9, 10, 14, 15, 20 present illegal invariant
declarations in contrast to legal ones in lines 7, 12, 13, 17, 18, 19, 22, 23, 24, 25. Both
situations are according to JML visibility rules described above. We used invariants
to illustrate the privacy levels, but a similar scenario could be illustrated for method
specifications, history constraints, and so on.

Note that the visibility access modifiers used in JML only occur in heavyweight
method specifications. In a lightweight method specification, the privacy level is the
same of the method. For example, a public method with a lightweight method specifi-
cation is considered to have a public visibility annotation.

Still regarding privacy of specifications, JML also offers the keywords spec public

and spec protected. Both are used to provide means to make a declaration that has
a narrower visibility become wider (public or protected), and thus, respecting the rules
of JML visibility. For instance, the declaration

private /*@ spec_public@ */String name;
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1 public class Pr ivacyLegalAndI l l ega lUs ing {
2 public int pub ;
3 protected int prot ;
4 int def ; // d e f a u l t ( package ) v i s i b i l i t y
5 private int pr iv ;
6
7 //@ pu b l i c i n va r i an t pub > 0 ; // l e g a l
8 //@ pu b l i c i n va r i an t prot > 0 ; // i l l e g a l !
9 //@ pu b l i c i n va r i an t de f > 0 ; // i l l e g a l !

10 //@ pu b l i c i n va r i an t p r i v < 0 ; // i l l e g a l !
11
12 //@ pro t e c t e d i n va r i an t pub > 1 ; // l e g a l
13 //@ pro t e c t e d i n va r i an t prot > 1 ; // l e g a l
14 //@ pro t e c t e d i n va r i an t de f > 1 ; // i l l e g a l !
15 //@ pro t e c t e d i n va r i an t p r i v < 1 ; // i l l e g a l !
16
17 //@ invar i an t pub > 1 ; // l e g a l
18 //@ invar i an t prot > 1 ; // l e g a l
19 //@ invar i an t de f > 1 ; // l e g a l
20 //@ invar i an t p r i v < 1 ; // i l l e g a l !
21
22 //@ pr i v a t e i n va r i an t pub > 1 ; // l e g a l
23 //@ pr i v a t e i n va r i an t prot > 1 ; // l e g a l
24 //@ pr i v a t e i n va r i an t de f > 1 ; // l e g a l
25 //@ pr i v a t e i n va r i an t p r i v < 1 ; // l e g a l
26 }

Figure 2.19: Example of using legal and illegal privacy levels in JML specifications.

introduces a string field name that Java considers private but JML considers public. In
this way, this declaration can be used, for example, in a public method specification.

The JML visibility rule described above concerns only Java fields — class or in-
terface fields. This rule is described by Leavens and Müller [42, Rule 1]. Besides the
visibility rule applicable to Java fields, JML also provides visibility rules to Java method
specification cases. These rules are also described by Leavens and Müller [42, Rule 2
and Rule 3]. For example, regarding behavioral subtyping, Rule 3 states that “every
overriding method S.m inherits those specification cases of each overridden supertype
method T.m that are visible to type S. The implementation of S.m must satisfy the
specification cases for m given in S as well as all inherited specification cases”. For
instance, the method move of class ScreenPoint (right side) in Figure 2.20 [42] cannot
see the private specification case of the overridden move method defined in class Point
(left side). Therefore, the specification case of method move in class ScreenPoint has
not to obey the private specification case of the overridden move method, because it is
not visible (according to [42, Rule 3]).

The two discussed rules (Rule 1 and Rule 3) and some other covered in [42] explore
some parts of JML semantics. However, rules have been not implemented yet. For
example, the JML compiler does not enforce the visibility rules which refer to method
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public class Point { public class ScreenPoint extends Point {
protected int x , y ;
private int oldX , oldY ; /∗@ al so

@ pro t e c t e d normal behavior
/∗@ pro t e c t e d normal behavior @ re qu i r e s x + dx < 0;

@ re qu i r e s x + dx >=0 @ as s i gnab l e x , y ;
@ && y + dy >= 0; @ ensures x == 0;
@ as s i gnab l e x , y ; @ a l s o
@ ensures x == \ o ld ( x + dx ) @ pro t e c t e d normal behavior
@ && y == \ o ld ( y + dy ) ; @ re qu i r e s y + dy < 0;
@ a l s o @ as s i gnab l e x , y ;
@ pr i v a t e normal behavior @ ensures y == 0; @∗/
@ r equ i r e s x + dx > = 0 public void move ( int dx , int dy){
@ && y + dy >= 0 ; i f ( x + dx >= 0) x += dx ;
@ as s i gnab l e x , y ; else x = 0 ;
@ ensur es oldX == \ old ( x ) i f ( y + dy >= 0) y += dy ;
@ && oldY == \ old ( y ) ; else y = 0 ;
@∗/ }

public void move ( int dx , int dy ){
oldX = x ; // . . .
oldY = y ; }
x += dx ;
y += dy ;

}

// . . .
}

Figure 2.20: JML specification for Cartesian points [42].

specification cases [42, Rule 2 and Rule 3], and according to Leavens, this issue is
important future work.

2.1.8 Tool support

This section describes some tools that are currently available for JML. Most of these
tools are part of the standard distribution of JML [11] — also known as JML tools suite,
which is freely available from the sourceforge web page for JML4.

Jmldoc: The documentation generation tool

The JML documentation generation tool — also known as jmldoc — generates HTML
web pages from JML specifications. It is a modified version of the javadoc tool [26],
which recognizes JML specifications. The web pages generated by the jmldoc are similar
to the ones generated by the javadoc tool. The only difference is that the jmldoc tool
also includes JML specifications in the documentation. The documentation provided by
the jmldoc is helpful to present the obligations that programmers must follow to fulfill
the contract. The jmldoc was developed by David Cok and by Raghavan [65] as a part
of the JML tools suite [11].

An example of a jmldoc output is shown in Figure 2.21. It depicts the output for
the method add of the interface ICalc (see Figure 2.16).

4The sourceforge page for JML is: http://sourceforge.net/projects/jmlspecs
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Figure 2.21: Example of jmldoc in JML.

Jml: The type checker

The JML type checker was developed at the Iowa State University. It is responsible
for verifying the syntax and semantics of the JML annotations. After the typechecking
phase, an abstract syntax tree (AST) is generated. This AST is used by the JML
compiler to generate the assertion checking code.

Jmlrac: The runtime assertion checker

The JML runtime assertion checker — also known as jmlrac — is an extension of the
standard Java compiler (javac), including JML runtime libraries to check JML asser-
tions.

Jmlunit: The unit testing tool

The JML unit testing tool — also known as jmlunit — generates code for testing Java
classes and interfaces. It is used to automate unit testing of Java code. The JML
unit testing tool (jmlunit) uses the JML runtime assertion checker (jmlrac) to provide
checking methods for the test oracle — JML specifications can be viewed as a test
oracle [62]. The method checking code catches assertion violation errors from method
calls to report whether the test data violates any assertion (e.g., precondition) of the
method. In order to see examples and more details about jmlunit’s implementation,
please refer to [15].

Esc/Java Tool

Esc/Java2 [25] performs compile time verifications to check some common errors in Java
code, such as dereferencing null, casting to incompatible types, or indexing an array out
of its bounds. By Esc/Java2 one can check the consistency between the Java code and
the given JML annotations. It responds with a list of possible errors after the program
verification. The Esc/Java2 tool uses the theorem prover Simplify [22], which translates
a given JML annotated program into logical formulas [44].

Other tools

Similar to Esc/Java2 [25], the Loop tool [73] performs a static verification of the Java
programs annotated with JML specifications. The Loop tool translates Java classes
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Figure 2.22: The structure of the JML compiler (jmlc).

into high order logic for two theorem provers: PVS [60] and Isabelle [61]. The Jack
tool provides an environment for Java and Java Card program verification using JML
annotations. As with Loop tool, the Jack tool translates the annotated Java class
with JML into high order logic for different theorem provers such as PVS [60]. The
Krakatoa [48] tool uses JML as specification language and produces proof obligations
for the theorem prover Coq [72].

2.1.9 The JML compiler

The JML compiler (jmlc) [14] was developed at the Iowa State University. It is a runtime
assertion checking compiler, which converts JML annotations into automatic runtime
checks. The instrumented Java bytecode produced is verified during runtime and notifies
when any assertion violation occurs.

Design

The JML compiler is built on top of the MultiJava compiler [17], which is an extension
of the Java compiler. It reuses the front-end — the JML type checker tool — of the
existing JML tools [11] to verify the syntax and semantics of the JML annotations and
produces a typechecked abstract syntax tree (AST). The compiler introduces two new
compilation passes: the “runtime assertion checker (RAC) code generation”; and the
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“runtime assertion checker (RAC) code printing”. The RAC code generation creates
the assertion checker code from the AST. It modifies the abstract syntax tree to add
nodes for the generated checking code. The RAC code printing writes the new abstract
syntax tree to a temporary file.

For each Java method three assertion methods are generated into a temporary Java
source file (TJSF): one for precondition checking; and two for postcondition checking
(for normal and exceptional termination). They are invoked before method’s execu-
tion (precondition checking), after method’s execution (normal postcondition checking)
and when an exception is thrown by the called method (exceptional termination check-
ing). Concerning invariants, the JML compiler also generates (when necessary) assertion
methods for both kinds of invariants (for instance and static invariants) and writes them
likewise the other assertion methods into the TJSF. Finally, instrumented bytecode is
produced by compiling the TJSF through the MultiJava compiler (see Figure 2.22). The
instrumented bytecode produced contains assertion methods code embedded to check
JML contracts at runtime.

Wrapper approach

The wrapper approach [14, 4.1.3] is a strategy used by the JML compiler to implement
the assertion checking. Each method is redeclared as private with a new name. Then,
a method known as wrapper method is generated with the name of the original method.
Its surrounds the original method (now with a new name) with the assertion methods.
Hence, client method calls the wrapper method, which is responsible for calling the
original method with appropriate assertion checks (e.g., precondition checking). The
JML compiler is responsible for controlling the order of execution of assertion methods.

Figure 2.23 depicts the wrapper approach strategy. If a client calls the original
method, the call goes to the wrapper method. In this way, the precondition assertion
method is the first assertion method called, and then only if the precondition is satisfied,
it calls the original method. After calling the original method, if it terminates normally,
the normal postcondition assertion method is called; otherwise, the exceptional post-
condition assertion method will be called.
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2.2 An Overview of AspectJ

In this section we present AspectJ [36], a general-purpose aspect-oriented extension
to Java. It provides support for implementing in a modular way several crosscutting
concerns [37], such as persistence, distribution, and design by contract concerns. By
using AspectJ one can affect the execution of a Java program. In the following, we
present the main AspectJ features and constructs.

2.2.1 Join Points and Pointcuts

Join points are well-defined points in the execution flow of a program. Join points can
be applied to methods and constructors. A pointcut is a set of join points. An advice is
a code associated to a pointcut. Whenever the program execution reaches one of the join
points described in the pointcut, the advice associated with the pointcut is executed.
This is useful to indicate where and when intercept the execution of the program to
execute tasks not directly related with the main concerns of the original program. This
permits the addition of aspects to existing software, or the design of software with a
clear separation of concerns.

LineLine

FigureElement

+ setXY( )

+ draw( )

FigureElement

DisplayDisplay

+ needsRepaint( )

+ paint( )

PointPoint

- p2 : Point

+ getY( )

- x : int

+ getX( )

+ setP1( )

- y : int

+ setX( )

+ setY( )

- p1 : Point

+ getP1( )

+ getP2( )

+ setP2( )

Figure
Figure

<<factory>>

+ makePoint( )

+ makeLine( ) -...

Figure 2.24: Figure editor example [36].

Table 2.3 presents some examples of pointcuts to capture points in the execution
flow of the figure editor example [36] from Figure 2.24.

It is possible to use wildcards (∗) in the pointcut definitions. For example:

call(void Figure.make*(..))

This code intercept calls to any method with prefix name “make” defined in the class
Figure, such as the factory methods makePoint and makeLine.

call(public * Figure.* (..))

This code identifies calls to any public method defined in the class Figure.
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execution(void Point.setX(int)) When the setX method from class Point
with an int parameter executes

call(voidPoint.setX(int)) When the setX method is called
this(Point) Matches join points when the currently executing

object is an instance of Point
target(FigureElement) Matches join points when the target object is an

instance of FigurePoint
args(int) When the executing or called method

has an int parameter
within(Display) Matches executing code defined in the type

Display

cflow(call(voidDisplay.paint())) Matches executing code in the control flow of a
call to a Displays no-argument paint method

Table 2.3: Pointcut examples.

before Executes immediately before the join point execution
after returning Executes after the join point returns normally
after throwing Executes after the join point returns abnormally

by throwing an exception
after Executes after the execution of the join point even

its returns normally or throwing an exception
around Executes when the join point is reached;

it has total control over the execution of the join point

Table 2.4: The kinds of AspectJ advices.

2.2.2 Advice

An advice is a method-like mechanism used to define the additional code that should
be executed at join points. The kinds of AspectJ advices are presented by Table 2.4.

The Figure 2.25 illustrates an AspectJ advice definition. The advice in Figure 2.25

a f t e r ( Point p ) : ca l l (void p . setX ( int ) ) | | ca l l (void p . setY ( int ) ){
System . out . p r i n t l n ( Point p changed ! ) ;

}

Figure 2.25: Example of AspectJ advice definition.

prints a message after every call to setX or setY methods on a Point object. Note that
by using parameters we can expose part of the execution context at join points. Thus,
values exposed by an advice (parameter p) can be used in its body.

In order to change the normal execution of a join point, we use the around advice,
which has total control of the affected join point. The example in Figure 2.26 demon-
strate how to change the parameter of method setY. The around advice in Figure 2.26
exposes the int parameter, called y, which is an argument of the setY method. In this
way, we check if this argument is within the range (0− 300). If it is, the execution pro-
ceeds normally (transparently); otherwise, we change the real execution of the method
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void around ( int y ) : execution (void Point . setY ( int ) ) && args ( y ) {
i f ( y>=0 && y<=300){

proceed ( y ) ;
}
else {

proceed ( 3 0 ) ; // note t ha t we changed the r e a l input parameter
} // o f the method setY ( i n t )

}

Figure 2.26: AspectJ code for changing the parameter of method setY.

by passing the y argument with value 30. Note that the AspectJ proceed method is
responsible for calling the original affected method.

2.2.3 Static Crosscutting

All AspectJ constructs described so far use dynamic crosscutting mechanism, which
changes the way a program executes. In addition, AspectJ allows one to change the
static structure of a class. This mechanism is known as static crosscutting mechanism.

A static crosscutting mechanism, also known as inter-type declarations, we can:

• add new methods to an existing class;

• add new fields to an existing class;

• extend an existing class with another;

• implement an interface in an existing class;

• convert checked exceptions into unchecked exceptions.

An example of an inter-type member declaration is shown in what follows:

public String Point.getXY(){return "("+this.getX()+","+this.getY()+")";}

This AspectJ code declares a method into class Point (the Point. prefix tells AspectJ
where to insert the method definition). Such a method returns a String containing
both coordinates (x and y) of the class Point. Moreover, like any other method, the
inserted method getXY can be called anywhere by an object Point.

public static final int Point.MAX_Y= 300;

We can also use the inter-type declaration to declare fields. As an example, the AspectJ
code inserts a static int field MAX_Y into class Point.

Suppose now that we want to make the class Point to implement the interface
Cloneable. This is done by the following AspectJ code:

declare parents: Point implements Cloneable;

The AspectJ construct declare parents makes the class Point to implement the inter-
face Cloneable. Thus, this is another example where AspectJ changes a static structure
of a class.
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2.2.4 Aspects

The main construct of AspectJ is known as aspect. Each aspect, similar to a class, can
define fields, methods, constructors, initializers, hierarchies, and so forth. Moreover, by
using aspects we can define crosscuting members such as pointcuts, advices, and inter-
type declarations for implementing in a modular way several crosscutting concerns [37].

By default in an AspectJ program, each aspect has only one instance that affects
(crosscuts) its entire program. Nevertheless, there are situations when one desire to
associate an aspect with an individual object or control flow. In order to cover these
situations in more detail, refer to [37].

Privileged aspects

The Java visibility rules are also applied to aspects. However, there are situations where
an aspect needs to access private or protected members of types. Hence, to allow this
kind of access, the AspectJ aspects must be declared privileged. In order to illustrate
this, suppose the fields x and y of the class Point are both private. The privileged

privileged public aspect Pr ivateAccess {
after ( Point p , int x , int y ) :
execution (void setXY ( int , int ) ) && args (x , y ) && this (p){

i f ( ( p . x+ x) > 300 | | (p . y+y) > 300){
throw new PointOutOfBoundsException ( ) ;

}
}

}

Figure 2.27: Example of AspectJ aspect privileged.

aspect defined in Figure 2.27 can access the fields x and y, even though they are private
members of the Point class. The used after advice checks if such points have legal
ranges; otherwise, a PointOutOfBoundsException is thrown to signaling the violation
of the permitted range.

2.2.5 Design by Contract Concern

In an interview [35], Kiczales, one of the major mentors of AOP and AspectJ, cites
DBC (Design by Contract) as an example of a crosscutting concern: “[...] there are
many other concerns that, in a specific system, have crosscutting structure. Aspects can
be used to maintain internal consistency among several methods of a class. They are
well suited to enforcing a Design by Contract style of programming.”. Thus, by using
AspectJ aspects provide simple mechanisms for checking pre- and post-conditions, as
well as invariants for constraint enforcement. This kind of capability is very useful
when using Design by Contract [53] as a programming style. It is important to notice
that enforcing Design by Contract style with AspectJ is one important issue addressed
by this dissertation. As an example of DBC [36, Section 3.2], consider: The code in
Figure 2.28 defines two pointcuts that refers to method calls that change the fields
x and y. The Figure 2.29 defines two before advices for the precondition checking
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pointcut setXs ( int x ) : ca l l (void FigureElement . setXY (x , int ) ) | |
ca l l (void Point . setX (x ) ) ;

pointcut setYs ( int y ) : ca l l (void FigureElement . setXY (y , int ) ) | |
ca l l (void Point . setY (y ) ) ;

Figure 2.28: AspectJ code for defining two pointcuts.

(contract checking) for operations that change x and y coordinates. The AspectJ code

before ( int x ) : setXs (x ) {
i f ( x < MIN X | | x > MAX X ) {

throw new I l l ega lArgumentExcept ion ( x i s out o f bounds . ) ;
}

}
before ( int y ) : setYs (y ) {

i f ( y < MIN Y | | y > MAX Y ) {
throw new I l l ega lArgumentExcept ion ( y i s out o f bounds . ) ;

}
}

Figure 2.29: AspectJ before advices for precondition checking.

in Figure 2.29 checks if the points are inside the range (MIM or MAX). If it does not, an
IllegalArgumentException is thrown signaling the violation.

2.2.6 AspectJ compilers

This section briefly presents the two well-known AspectJ compilers used by the AspectJ
community (academic and industry).

ajc compiler

The ajc compiler is the standard (official) compiler of the AspectJ language [36]. In
fact, ajc is a pre-compiler written in Java. It compiles aspects and classes together and
produces Java source code. Such a Java code is usually referred as a “weave”, then ajc
invokes javac to actually compile the “weave” into bytecode.

The ajc compiler is also integrated in the Eclipse environment [2] through the AJDT
plugin [1] (AspectJ Development Tools, as an extension of the JDT, Java Development
tools).

Hilsdale and Hugunin [30] provide more details about the ajc compiler.

abc compiler

The AspectBench Compiler (abc) is an academic compiler [5] that implements the full
AspectJ language [36]. The compiler was conceived as a workbench to facilitate easy
experimentation with new language features and implementation techniques. In par-
ticular, new features for AspectJ have been proposed that require extensions in many
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dimensions: syntax, type checking and code generation, as well as data flow and con-
trol flow analyses. Experiments conducted in this dissertation demonstrated that abc
produce a code of better quality if compared with the ajc compiler.

For more details about the abc compiler please refer to [5].

2.3 An Overview of Java ME Platform

This section gives an overview of the Java ME (Java Micro Edition) [56, 63], introducing
its features such as configurations and profiles. However, for this dissertation purpose,
we focus on the differences between Java SE and Java ME platforms.

2.3.1 Java Editions

Because Java encompasses such a wide range of applications running on so many diverse
environments, the platform was divided into three sections in the late 1990s:

• Standard Edition (Java SE) — designed to run on desktop and workstations
computers;

• Enterprise Edition (Java EE) — designed to run at server-based applications
(With built-in support for Servlets, JSP, and XML);

• Micro Edition (Java ME) — designed for devices with limited memory, display
and processing power.

The relationship between the three can be thought of as a superset-subset one. In
this way, Java ME (J2ME) is a subset of Java SE, while itself is a subset of Java EE
(see 2.30).

Java EE

Java SE

Java ME

Figure 2.30: Java editions and their relationships.

2.3.2 Device Configurations and Device Profiles

A configuration defines the basic Java ME runtime environment such as the virtual
machine and the set classes used to run on devices applications. There are two config-
urations for Java ME: (1) Connected Limited Device Configuration (CLDC); and (2)
Connected Device Configuration (CDC). The CLDC contains a strict subset of the Java-
class libraries, and is the minimal amount needed for a Java virtual machine to operate.
CLDC is basically used to classify a number of devices into a fixed configuration. A
configuration provides the most basic set of libraries and virtual-machine features that
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must be present in each implementation of a Java ME environment. The CLDC is de-
signed for 16-bit or 32-bit small computing devices with limited memory space. It uses
the KVM virtual machine [4] implementation, which is a small version of the classic
JVM (Java Virtual Machine). A CLDC includes devices such as pagers, cell phones,
dedicated terminals, and handhelds.

On the other hand, the The Connected Device Configuration (CDC) is a subset of
Java SE, containing almost all the libraries that are not GUI related. It is richer than
CLDC. CDC devices use a 32-bit architecture and have at 2MB of memory available.
It implements a complete version of the JVM. CDC supports devices such as home
appliances, point-of-sale terminals, and smart phones.

A profile adds domain-specific classes to a particular Java ME configuration. Ex-
amples are user interface classes, persistence mechanisms, and so on. Profiles and con-
figurations work together in order to provide a complete Java runtime environment.
Currently, there are seven profiles available: Foundation Profile; Game Profile; Mobile
Information Device Profile; PDA Profile; Personal Profile; Personal Basis Profile; and
RMI Profile.

MIDP (Mobile Information Device Profile)

The Mobile Information Device Profile (MIDP) is one of the seven profiles mentioned
above. It is used with the CLDC configuration and was designed to run on mobile
devices such as palm tops. MIDP is used with wireless Java applications.

A Java ME application is usually composed of several MIDlets. A MIDlet is a unit
based on MIDP. For example, application such as calculator, agenda, etc commonly
found in mobile phones are composed of several MIDlets. Programming a MIDlet is
similar as creating a Java SE application in that you define a class and related methods.
The entry point in Java code for a MIDlet is a class that extends the class MIDlet. The
lifecycle of the MIDlet is managed through three of methods that are called by the Java
Application Management System (AMS): startApp - called on application activation;
pauseApp - called on application deactivation (suspend); and destroyApp - called on
application termination. Figure 2.31 shows an example of a simple MIDlet application.

public class MidletS imples extends MIDlet {
//The MIDlet cons t ruc tor
public MidletS imples ( ){}
// A method used to s t a r t s a MIDlet a pp l i c a t i on
public void startApp ( ){}
// A method used to pause a MIDlet a pp l i c a t i on
public void pauseApp ( ){}
// A method used to de s t roy a MIDlet a pp l i c a t i on
public void destroyApp ( boolean uncond i t i ona l ){}

}

Figure 2.31: Example of simple MIDlet application.

The method startApp is called by the device application manager when the MIDlet
is started and contains statements that are executed each time the application begins
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its execution. The method pauseApp is called before the device application manager
temporarily stops the MIDlet. The device application manager restarts the MIDlet
by recalling the method startApp. Finally, the method destroyApp is called to the
termination of the MIDlet by the device application manager.

Other profiles

For more details about the other six profiles please refer to [56, 63].

2.3.3 The K Virtual Machine

The KVM [4] has been developed as part of larger effort to provide a modular, scalable
architecture for the development and deployment of portable, dynamically download-
able, and secure applications in embedded devices. The “K” in KVM stands for kilobyte,
signifying that the KVM runs in kilobytes of memory as opposed to megabytes. It sup-
ports a subset of the features of the “classic” JVM. For instance, a KVM does not
support reflection and object finalization or serialization. The CLDC specifies use of
the KVM.

2.3.4 Compatibility between Java SE and Java ME applica-

tions

Java ME is a small subset of Java SE. Many components were removed to keep the
Java ME platform small and efficient An example is the Abstract Window Toolkit
(AWT) — many mobile devices do not have the screen capabilities to provide advanced
user interface components. However, if the Java SE application addresses only classes
available within the Java ME, the program will run on both platforms. Java ME compiler
includes a phase known as preverification [56, 63]. It is used to check if the generated
bytecode is compatible with Java ME environment.

On the other hand, the majority code written for Java ME applications requires
specific interface and event handling code, not supported by Java SE. It limits what
types of programs will be appropriate for both platforms.

2.3.5 Java SE Inherited Classes

Since the KVM is a subset of the classic JVM, only few classes of the Java SE platform
are supported by Java ME. In order to see the classes that are common for both please
refer to Appendix A.

2.4 Chapter Summary

In this chapter, we presented the main concepts addressed in this dissertation. We pro-
vided an overview about JML (Java Modeling Language), AspectJ (an aspect oriented
extension to Java), and Java ME platform.
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Regarding JML and AspectJ, we discussed their main concepts and features. We
pointed out the main JML specification clauses (e.g., requires clause used for precon-
ditions). We also described the main features of AspectJ such as dynamic and static
crosscutting mechanism used to affect the executions of Java programs as well as its
static structure.

Finally, we described some important aspects of the Java ME platform. For this
dissertation purpose, we focused on the main difference between Java SE and Java ME
platforms.
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Chapter 3

ajmlc: A JML Compiler Targeting
AspectJ code

In this chapter we present the translation rules from JML predicates into AspectJ as-
pects [36]. An informal description of the translation mechanism has already been
considered in [67, 66].

3.1 The implementation strategy

Similarly to Cheon [14], we reuse the front-end of the JML compiler, known as JML
Type Checker [11]. Then, we modify the code generation part of the original JML
compiler1 to introduce other two new compilation passes: the Aspect RAC code gen-
eration; and the Aspect RAC code printing. The former produces assertion checker
code from the typechecked AST, whereas the latter writes the assertion checker code
to a temporary Aspect source file. We traverse the typechecked AST generating Aspect
Assertion Methods (AAM) for each Java method in a temporary Aspect source file: one
for precondition checking, and another for both kinds of postconditions in JML (normal
and exceptional). Eventually (when necessary) we also generate AAM for both kinds
of invariants in JML (instance and static). These AAM are compiled through the As-
pectJ compiler (ajc or abc [5]), which weaves the AAM with the Java code (see Figure
3.1, which depicts the compilation passes of the ajmlc). The result, unlike jmlc, is an
instrumented bytecode compliant to both Java SE and Java ME applications.

3.2 Translation rules

In this section we present a set of translation rules from annotated Java types into As-
pectJ aspects. The translation function,
MAPJmlToAspectJAspect: Annotated Java Type → AspectJ Aspect takes a JML anno-
tated Java type as argument and generates an AspectJ aspect. This generated aspect
contains several AspectJ constructs such as advices [36], which represents the JML anno-
tations (e.g., preconditions). JML predicates are composed of Java and JML expressions

1Part of the code of the original JML compiler that we used to implement the ajmlc was based on
the JML 5.5 version available to download at http://sourceforge.net/projects/jmlspecs.
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Figure 3.1: The structure of our JML compiler (ajmlc).

(Appendix B presents the subset of JML supported by ajmlc).
For the translation rules, the following elements will also be employed:

• The argument Annotated Java Type is a tuple composed by the following ele-
ments:

— TMod — is a sequence of type modifiers, 〈TMod1, ..., TModx〉;

— TN — is the name of the Annotated Java Type to be compiled;

— Meth — is a sequence of methods, 〈Meth1, ..., Methm〉;

— SCN — is the name of the superclass, in which the Annotated Java Type is
subtype;

— SIN — is a set of superinterface names, {SIN1,...,SINn}, of the
Annotated Java Type;

— Inst Inv — is a set of instance invariants, {Inst Inv1,...,Inst Invr}, into the
Annotated Java Type;

— Stat Invs — is a set of static invariants, {Stat Inv1,...,Stat Invs}, into the
Annotated Java Type;

• Each method in Meth is a tuple composed by the following elements:
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MAPPreconditionToAspectJCode[[TN, TMod, SCN,SIN, MN, MMod,FP, PTN, PIN, RT, SC ]] △

if SC 6= 〈ǫ〉
then if ‘static’ ∈ MMod

then 〈〈staticBeforeAdviceForPreconditionChecking〉〉
〈〈staticPreconditionChekingMethod〉〉

else if ‘interface’ ∈ TMod

then 〈〈preconditionChekingMethod〉〉
else 〈〈beforeAdviceForPreconditionChecking〉〉

〈〈preconditionChekingMethod〉〉

Figure 3.2: General structure of the code that checks preconditions of the method MN.

— MMod — is a sequence of method modifiers, 〈MMod1, ..., MMody〉;

— MN — is the method name;

— FP — is a sequence of formal parameters (pairs of types and identifiers),
〈T1, Id1, ..., Tz, Idz〉;

— PTN — is a sequence of parameter type names, 〈T1, ..., Tz〉;

— PIN — is a sequence of parameter identifier names, 〈Id1, ..., Idz〉;

— RT — is the method return type;

— Ex — is a set of exceptions, {E1,...,Es};

— SC — is a sequence of local JML specification cases, 〈SC1, ..., SCk〉. Such local
specification cases are represented as tuples, 〈Pi, Qi, Ri〉i=1,...,k, composed by
preconditions P , normal postconditions Q, and exceptional postconditions
R.

• Each sequence and each set could also be empty:

— 〈ǫ〉 — denotes an empty sequence;

— {} — denotes an empty set.

It is important to notice that, in JML, when a method has several specifications
cases that are not inherited (are local to the method), we also join these specification
cases using the JML also construct. The semantics of joining these specifications is
described in Section 2.1.6.

3.2.1 Precondition translation

Preconditions are predicates that must hold before a method execution. Otherwise an
exception must be thrown, indicating the precondition violation. According to the JML
semantics, all local preconditions of a method (specification cases) lead to a disjunction,
so that we obtain a single effective precondition predicate, P ≡ P1

∨
...

∨
Pk.

The auxiliary function MAPPreconditionToAspectJCode in Figure 3.2 (Appendix D.1.2
presents the definition of this auxiliary function) represents the general structure of the
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〈〈beforeAdviceForPreconditionChecking〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

before (TN current, T1 Id1,...,Tz Idz):

execution (RT TN.MN (T1,...,Tz)) &&

within (TN) &&

this (current) &&

args (Id1,...,Idn){

if (!current.check$MN$TN (Id1,...,Idz)){

throw new JMLInternalPreconditionError();

}

}

Figure 3.3: AspectJ before advice to check preconditions of the non-static method MN.

AspectJ code that checks a method preconditions. An AspectJ before advice (see Fig-
ure 3.3) is used to insert an extra behavior before some specified points in the Java pro-
gram. The affected points are defined by means of the AspectJ designator execution. It
specifies which method executions will be affected, in this case, executions of a method
defined by the MN. In addition we employ the AspectJ designators this and within.
The former match the current execution object or its subclasses (we do not need to
use the AspectJ wildcard + since subtypes that match are already captured without
using +) and takes the form this(Type or ObjectIdentifier); as we need to use the
context of the execution object (e.g., methods or fields), we use the form that uses
ObjectIdentifier (as in translation rules using the advice parameter identifier cur-
rent). The latter constrains the execution points of methods of a specified type TN,
which avoids executions in its subclasses (only method executions in the lexical scope in
the type TN are allowed to be advised). In short, the behavior added by the before ad-
vice is to check the effective precondition and throws JMLInternalPreconditionError
if it is violated.

AspectJ before advice used to check preconditions calls a precondition checking
method inserted (see Figure 3.4) by using AspectJ static crosscutting mechanism 2.2.3(also
known inter-type declaration). As shown in Figure 3.4, we have to analyze two scenar-
ios before inserting a precondition checking method: (1) with precondition inheritance,
and (2) with no precondition inheritance. The first scenario besides the effective pre-
condition, takes into account inherited preconditions (e.g., superclass, superinterfaces).
Thus, the first scenario evaluates each local precondition Pi and all inherited ones in a
disjunction form. Note that we have explicit calls to MN ’s supertypes. On the other
hand, the second scenario deals only with local preconditions, which checks only each
local precondition Pi in a disjunction form.

Specific scenarios

Consider a scenario that the specification case of the method MN is: 〈Qi,Ri〉, where the
precondition was omitted. The auxiliary function MAPPreconditionToAspectJCode generates
two possible default values to treat the omitted precondition: (1) if the omitted precon-
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〈〈preconditionChekingMethod〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

if (SCN 6= ‘java.lang.Object’) ∨ (SIN 6= {})
then let 〈SIN1,...SINn〉 = PTN in

public boolean TN .check$MN$TN (T1 Id1,...,Tz Idz){

return 〈〈preconditionsToCheck〉〉 ||

checkPre$MN$SCN (Id1,...,Idz) ||

checkPre$MN$SIN1(Id1,...,Idz),...,||

checkPre$MN$SINn(Id1,...,Idz);

}

else

public boolean TN .check$MN$TN (T1 Id1,...,Tz Idz){

return 〈〈preconditionsToCheck〉〉;
}

〈〈preconditionsToCheck〉〉≡
if SC = 〈ǫ〉
then

false

else let 〈P ,Q ,R 〉 = SC in

if P 6= 〈ǫ〉
then let 〈P1,...Pk〉 = P in

P 1 || ... || P k

else

true

Figure 3.4: Code for inserting a precondition method for MN (considering inheritance).

dition is part of a lightweight specification case, the default value is \not_specified;
and (2) if the omitted precondition is part of a heavyweight specification case, the de-
fault value is true. Indeed, similar to the original JML compiler (jmlc), ajmlc treats
\not_specified values as true values. Therefore, even if we have an omitted precon-
dition in the method’s specification case, our compiler generates AspectJ code (precon-
dition checking method) to check the default value of the precondition under the rules
of the default specification cases. This apparently unnecessary work, in fact is impor-
tant to check inherited specifications. Consider now that the specification case of the
method MN is 〈ǫ〉 (empty). Our translation rules generate code (precondition checking
method) only for two situations: (1) if the method MN is overridden, a default value
false and code to call inherited specifications is generated; and (2) if the method MN is
not overridden, a default value false is generated for the precondition. These scenarios
are covered in the compilation process described above. In order to see examples of
these two specific cases please, refer to Appendix D.

Static method precondition translation

The code in Figure 3.5 represents the general structure of the AspectJ before advice
used to check preconditions of the static method MN. Note the absence of the advice
parameter current and the designator this, Because static methods do not have the
this object associated with them, thus the this pointcut will not match the execution of
such a method. Another reason is that we do not want to expose the current executing
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〈〈staticBeforeAdviceForPreconditionChecking〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

before (T1 Id1,...,Tz Idz):

execution (RT TN.MN (T1,...,Tz)) &&

args (Id1,...,Idn){

if (!TN.check$MN$TN (Id1,...,Idz)){

throw new JMLInternalPreconditionError();

}

}

Figure 3.5: AspectJ before advice to check preconditions of the static method MN.

〈〈staticPreconditionChekingMethod〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

public static boolean TN .check$MN$TN (T1 Id1,...,Tz Idz){

return P 1 || ... || P k;

}

Figure 3.6: Code for inserting a static precondition method for MN.

object properties; only static information is needed. In addition, we do not used the
AspectJ designator within because since such a method is static, will match only the
lexical scope of the type that declares it. In other words, the before advice used
to check the precondition of the method MN does not apply to TN subclasses. In
this way, we only consider the local preconditions (see the static precondition checking
method structure in Figure 3.6), since static method specifications are not inherited in
JML [39, 43].

It is important to notice that if the precondition is omitted or if the specification case
is empty, no AspectJ code is generated to check the effective precondition of the static
method MN. This is for optimization purposes and because static methods cannot inherit
specifications [39, 43]. Thus, we need not a precondition checking method to check the
true value with no inherited preconditions.

3.2.2 Postcondition translation

Postconditions are properties in JML that must hold after method executions. There
are two kinds of postconditions in JML: normal and exceptional postcondition. Nor-
mal postconditions are predicates that must hold when the method terminates with
no exception thrown, otherwise an exception must be thrown to signal the violation of
the normal postcondition. Normal postconditions evaluate the predicate (\old(Pi) ⇒
Qi), where Qi is a normal postcondition that must hold after method execution, and
Pi is its corresponding precondition that must hold before the evaluation of Qi. Note
that Pi is evaluated in the pre-state, which means before method execution. In order
to represent this behavior, the JML old expression is used (\old(Pi)). According to
the JML semantics, unlike preconditions, all local normal postconditions of a method
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MAPPostconditionToAspectJCode[[TN, MN, MMod, FP, PTN,PIN, RT, Ex, SC ]] △

if SC 6= 〈ǫ〉
then let 〈P ,Q ,R 〉 = SC in

if (Q 6= 〈ǫ〉) ∨ (R 6= 〈ǫ〉)
then let 〈Q1,...Qk〉 = Q in

let 〈R1,...Rk〉 = R in

if ‘static’ ∈ MMod

then 〈〈staticAroudAdviceForPostconditionChecking〉〉
else 〈〈aroudAdviceForPostconditionChecking〉〉

Figure 3.7: General structure of the code that checks postconditions of the method MN.

are “conjoined” into a single effective normal postcondition predicate, (\old(P) ⇒ Q)
≡ (\old(P1) ⇒ Q1)

∧ ... ∧ (\old(Pk) ⇒ Qk). Exceptional postconditions, on the
other hand, are predicates that must hold when the method terminates by throwing an
exception. They evaluate the predicate (\old(Pi) ⇒ Ri), where Ri is an exceptional
postcondition that must hold when the method terminates abnormally, and Pi is its cor-
responding precondition, that must hold before the evaluation of Ri. As with a normal
postcondition, Pi is evaluated in the pre-state according to the semantics of old in JML.
Each exceptional postcondition Ri may consist of several signals clauses of the form (X11

e11) ... (Xkl ekl) Ri, where Xij is an exception type, and eij is an optional variable that
refers to the current exception thrown. Each Ri must hold when the method terminates
abnormally and the exception thrown must be a type of Xij. According to the JML
semantics, all local exceptional postconditions of a method are “conjoined” into a single
effective exceptional postcondition predicate, (\old(P) ⇒ R) ≡ (\old(P1) ⇒ R1)

∧

...
∧

(\old(Pk) ⇒ Rk).

Handling old expressions

JML old expressions can appear in postconditions (normal or exceptional postcondi-
tions). In this way, if the method MN has a set of old expressions (local or super
expressions) {v1,...,vf}, the ajmlc generates a new local variable old$vi into the around
advice generated (as shown in Figure 3.7 with the code chunk 〈〈saveAllOldValues〉〉
represented by the Figure 3.10). To represent old expressions in preconditions, nor-
mal postconditions as well as in exceptional postconditions, we adopt the notations
Pi[[vi:=old$vi]], Qi[[vi:=old$vi]], and Ri[[vi:=old$vi]]. Here, every occurrence of vi in Pi,
Qi, and Ri is replaced with old$vi.

Handling result expressions

In JML, the expression \result refers to the result of the original method — for methods
with non-void return type. Hence, each occurrence of the keyword \result in normal
postcondition clauses is replaced with the variable rac$result, which represents the
return of the around advice.

The auxiliary function MAPPostconditionToAspectJCode in Figure 3.7 (Appendix D.1.4
presents the definition of this auxiliary function) represents the general structure of the
code that checks the postconditions of the method MN. The code chunk
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〈〈aroundAdviceForPostconditionChecking〉〉≡
let 〈Ex1,...Exs〉 = Ex in

let 〈T1,Id1,...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

RT around (TN current, T1 Id1,...,Tz Idz) throws Ex1,...Exs :

execution (RT TN.MN(T1,...,Tz)) &&

this (current) &&

args (Id1,...,Idz) {

RT rac$result; // represents the return of the method

try{

〈〈saveAllOldValues〉〉
try{

// executing the original method

rac$result = proceed(current, Id1,...,Idz);

〈〈checkNormalPostcondition〉〉
} catch (Throwable rac$e){

〈〈rethrowJMLException〉〉
〈〈checkExceptionalPostcondition〉〉

}

} catch (Throwable rac$cause){

throw new JMLEvaluationError(rac$cause);

}

}

Figure 3.8: AspectJ around advice to check postcondition of the non-static method MN.

〈〈aroundAdviceForPostconditionChecking〉〉 in Figure 3.8 presents the AspectJ around

advice used to check the two kinds of JML postcondition clauses. The AspectJ proceed

method represents the call to the original method from the advice. It separates the pre-
state from the post-state. Because of that, it is suitable for handling old expressions,
since it has total control before and after the constrained methods execution — this is the
main reason for using the around advice to check postconditions. In this way, the code
chunck 〈〈saveAllOldValues〉〉 in Figure 3.10 saves all old values used in postconditions.

As previously mentioned, the code in Figure 3.10 generates a new local variable
old$vi into the around advice. However, the variable is created before the call to the
proceed method, which saves the values in a pre-state environment. Moreover, the
around advice inserts an extra behavior after the execution of method m to check its
normal and exceptional postconditions. The two kinds of postconditions are checked in
two parts inside a try/catch block within the around advice. Within the try block and
after the call to the proceed method, the code 〈〈checkNormalPostcondition〉〉 (see Figure
3.11) checks normal postconditions. The code in Figure 3.11 represents the evaluation
of each local normal postcondition (\old(Pi) ⇒ Qi) and conjoins the results. The Java
expression (!Pi || Qi) represents the translation of the JML implication (\old(Pi) ⇒
Qi) used in postconditions. Moreover, as mentioned above, the notation [[vi:=old$vi]] is
responsible for retrieving and properly using the old values that can occur in Pi and Qi.
On the other hand, within the catch block, when the called method returns abnormally
by throwing an exception, two code chunks are generated: (1) 〈〈rethrowJMLException〉〉;
and (2) 〈〈checkExceptionalPostcondition〉〉. The code in Figure 3.12 checks whether the
exception thrown is an instance of JMLInternalNormalPostconditionError. If it is,
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〈〈staticAroundAdviceForPostconditionChecking〉〉≡
let 〈Ex1,...Exs〉 = Ex in

let 〈T1,Id1,...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

RT around (T1 Id1,...,Tz Idz) throws Ex1,...Exs :

execution (static RT TN.MN(T1,...,Tz)) &&

args (Id1,...,Idz) {

RT rac$result; // represents the return of the method

try{

〈〈saveAllOldValues〉〉
try{

// executing the original method

rac$result = proceed(current, Id1,...,Idz);

〈〈checkNormalPostcondition〉〉
} catch (Throwable rac$e){

〈〈rethrowJMLException〉〉
〈〈checkExceptionalPostcondition〉〉

}

} catch (Throwable rac$cause){

throw new JMLEvaluationError(rac$cause);

}

}

Figure 3.9: AspectJ around advice to check postcondition of the static method MN.

〈〈saveAllOldValues 〉〉≡
old$v1 := v1;

...

old$vf := vf;

Figure 3.10: Code for saving JML old values.

then the JMLInternalNormalPostconditionError is rethrown (because the exception
is a part of a JML violation and must be kept).

If the exception thrown is not a JMLInternalNormalPostconditionError, then
the code chunk 〈〈checkExceptionalPostcondition〉〉 in Figure 3.13 evaluates each lo-
cal Ri and conjoins the results. Note that for each Ri, its corresponding excep-
tion type Xij must match the current exception thrown. The variable rac$v con-
tains the result of the conjunction of all exceptional postconditions. If it is false,
a JMLInternalExceptionalPost-condition must be thrown; otherwise the current ex-
ception must be rethrown.

Concerning postcondition inheritance (discussed in Section 2.1.6), the absence of the
AspectJ designator within (present in before advice to handle preconditions) makes
the advice affect executions of MN in subtypes of TN. Consequently, all inherited post-
conditions (normal and exceptional postconditions) will be automatically checked in a
conjoined way, respecting Leavens’ definition [38, Definition 1].

It is important to notice that the two kinds of postconditions use the same around

advice and our approach generates the assertion checking code only if necessary. For
example, if a method has omitted postconditions clauses (normal or exceptional) or an
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〈〈checkNormalPostcondition〉〉≡
if(!((!(P 1[[vi:=old$vi]] || Q 1[[vi:=old$vi]]) &&

... && (!(P k[[vi:=old$vi]] || Q k[[vi:=old$vi]]))){
throw new JMLInternalNormalPostconditionError();

}

Figure 3.11: Code for checking normal postconditions of method MN.

empty specification case, then no instrumentation code is generated. On the other hand,
if a method contains only normal postconditions, only a normal postcondition checking
code will be generated.

Static method postcondition translation

In a previous section we presented the translation rules for postconditions. Such rules
deal only with non-static method postconditions. Now, we will assume that the method
m is static.

The code chunk in Figure 3.9 represents the AspectJ around advice used to check
the two kinds of JML postcondition clauses in the static method MN. Similar to precon-
ditions, we have removed the advice parameter current and the designator this. They
were eliminated because we do not want to expose the current executing object prop-
erties — in particular properties of the object TN. Concerning the rest of the around

advice works as explained before.

3.2.3 Invariant translation

Invariants are predicates that must hold after constructor execution, and before and
after every method execution, even when a method throws an exception. In JML, we
can have both static and instance invariants. The auxiliary functions
MAPInstanceInvariantBMEToAspectJCode and MAPInstanceInvariantAMEToAspectJCode (Appendix D.1.4
presents the definition of these auxiliary functions) denote the translation of the instance
invariants present in TN into AspectJ program code. As a result, an AspectJ before

advice is generated to check the instance invariants before every method execution.
Moreover, the two kinds of after advice: (1) after returning; and (2) after throwing

advice are used to check all instance invariants when a method terminates: (1) normally
or (2) abnormally. In JML even when a method throws an exception, the invariant
check must be performed. The clause (!static * \textit{TN}.*(..)), defined by
the AspectJ designator execution, specifies that the advice becomes applicable to all
non-static methods.

〈〈rethrowJMLException 〉〉≡
if(rac$e instanceof JMLInternalNormalPostconditionError){

throw (JMLInternalNormalPostconditionError) rac$e;

}

Figure 3.12: Code for rethrowing the JML exceptions.
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〈〈checkExceptionalPostcondition〉〉≡
boolean rac$v = true;

boolean rac$pre1 = P 1[[vi:=old$vi]];
if(rac$v && rac$pre

1
){

if(rac$e instanceof X 11){

boolean flag1 = true;

X 11 e 11 = (X 11)rac$e;

flag1 = R 1[[vi:=old$vi]];
rac$v = rac$v && flag1;

}

...

}

...

boolean rac$prek = P k[[vi:=old$vi]];
if(rac$v && rac$prek){

if(rac$e instanceof X k1){

boolean flagk1 = true;

X k1 e k1 = (X k1)rac$e;

flagk1 = R k[[vi:=old$vi]];
rac$v = rac$v && flagk1

;

}

...

}

if(!rac$v){

throw new JMLInternalExceptionalPostconditionError();

}

else{

if(rac$e instanceof X 11){

throw (X 11) rac$e;

}

...

if(rac$e instanceof X kj){

throw (X kj) rac$e;

}

}

Figure 3.13: Code for checking exceptional postconditions of method MN.

The code in Figure 3.14 represents the general struture of the AspectJ before advice
to check all local instance invariants of the class TN. In addition, the code in Figure 3.15
checks the invariants after every method execution (with or without normal termina-
tion). The before and after returning advices check the instance invariants through
the code chunk 〈〈checkInstanceInvariant〉〉 in Figure 3.16. The code in Figure 3.16 rep-
resents the evaluation of each local instance invariant InstInvi and conjoins the results.
If the instance invariants do not hold, a JMLInvariantError is raised. Moreover, if a
method terminates by throwing an exception, the code chunk 〈〈rethrowJMLException〉〉
in Figure 3.17 is generated. If the exception thrown is an instance of any JML violation
error, this code rethrows it. Otherwise the invariant check must be performed (recall
the code defined by the chunk 〈〈checkInstanceInvariant〉〉 — see Figure 3.16). If the
invariants hold, then the exception thrown is transparently preserved.

Concerning instance invariants inheritance (discussed in Section 2.1.6), as with the
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MAPInstanceInvariantBMEToAspectJCode[[TN, Inst Inv ]] △

if Inst Inv 6= {}
then let {InstInv 1 && ... && InstInv r} = Inst Inv

before ( TN current):

execution (!static * TN.*(..)) &&

this (current) {

〈〈checkInstanceInvariant〉〉
}

Figure 3.14: General structure of the AspectJ before advice for instance invariant
check.

MAPInstanceInvariantAMEToAspectJCode[[TN, Inst Inv ]] △

if Inst Inv 6= {}
then let {Inst Inv 1 && ... && Inst Inv r} = Inst Inv

after ( TN current) returning (Object o):

execution (!static * TN.*(..)) &&

this (current) {

〈〈checkInstanceInvariant〉〉
}

after ( TN current) throwing (Throwable rac$thrown):

execution (!static * TN.*(..)) &&

this (current) {

〈〈rethrowJMLException 〉〉
else {

〈〈checkInstanceInvariant〉〉
}

}

Figure 3.15: General structure of the two AspectJ after advices for instance invariant
check.

around advice for postconditions, the absence of within(S) makes the advice affect
executions of all non-static methods in subtypes of S. In this way, all inherited in-
stance invariants will be automatically checked in a conjoined way, respecting Leavens’
definition [38, Definition 2].

Static invariant translation

The auxiliary functions MAPStaticInvariantBMEToAspectJCode and
MAPStaticInvariantAMEToAspectJCode (Appendix D.1.4 presents the definition of these aux-
iliary functions) denote the translation of the instance invariants present in TN into
AspectJ program code. As a result, the AspectJ advices before and the two kinds
of after advices are used. The before advice checks all static invariants before every
method (static and non-static) execution (see Figure 3.18). The after returning and
after throwing advices checks all static invariants when a method terminates normally
or abnormally (see Figure 3.19). In both Figures, the AspectJ designator execution

defines the clause (* TN.*(..)), which becomes applicable to all static and non-static
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〈〈checkInstanceInvariant〉〉≡
if (!(Inst Inv 1 && ... && Inst Inv r)){

throw new JMLInvariantError();

}

Figure 3.16: Code for checking instance invariants.

〈〈rethrowJMLException 〉〉≡
if (rac$thrown instanceof JMLInternalPreconditionError) {

throw (JMLInternalPreconditionError) rac$thrown;

}

...

else if (rac$thrown instanceof JMLInvariantError) {

throw (JMLInvariantError) rac$thrown;

}

Figure 3.17: Code for rethrowing the JML exceptions for instance invariants.

methods — in JML static invariants must be satisfied for both static and non-static
methods.

The before and after returning advices check the static invariants of TN. Fig-
ures 3.18 and 3.19 both present the code chunk 〈〈checkStaticInvariant〉〉 for checking
static invariants. The code in Figure 3.20 evaluates each local static invariant StatInvi

and conjoins the results. If the static invariants do not hold, a JMLInvariantError is
raised. In addition, if a method terminates by throwing an exception, the code repre-
sented by the chunk 〈〈rethrowJMLException〉〉 is generated. This code is the same as
presented in Figure 3.17 for instance invariants. Thus, if an exception is thrown and
it is an instance of any JML violation errors, then the generated code by the chunk
〈〈rethrowJMLException〉〉 rethrows it. Otherwise the static invariant check must be
performed (recall the code in Figure 3.20 — chunk 〈〈checkStaticInvariant〉〉). If the
static invariants are preserved, then the exception thrown is kept (transparently).

Invariant translation for interfaces

Interfaces are provided to be extended by another interface or implemented by a class.
Thus, the translation rules (describe previously) for instance invariants, as expected,
affects subtypes automatically. However, static invariants are only preserved by the
type that declares them (this scenario is applied for classes and the translation rules
also deals with). But, there is only one situation when static invariants should be
inherited, when they are declared by an interface and repassed to types that implement
it. To allow a static invariant to be inherited, we use the AspectJ wildcard + — by using
this, its possible to apply the static invariants declared into interfaces to be checked in
types that implement it (Figures 3.18 and 3.19 show the use of the AspectJ wildcard +

responsible to allow static invariants inheritance).
It is important to notice that our translation rules provide support for instance

and static invariants specified into interfaces. However, as mentioned in Section 2.1.5
[Discussion], the current jmlc compiler does not handle instance invariants or static
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MAPStaticInvariantBMEToAspectJCode[[TN, TMod,Stat Inv ]] △

if Stat Inv 6= {}
then let {Stat Inv 1 && ... && Stat Inv s} = Inst Inv

if ‘interface’ in TMod

then

before ():

execution (* TN +.*(..)) {

〈〈checkStaticInvariant 〉〉
}

else

before ():

execution (* TN.*(..)) {

〈〈checkStaticInvariant 〉〉
}

Figure 3.18: General structure of the AspectJ before advice for static invariant check.

invariants when declared into interfaces. Invariants and inheritance is an open issue [43,
Section 8.2.4].

3.2.4 Ordering of advice executions into an aspect

One AspectJ aspect can have several advices (e.g., before) to apply to a particular
named or anonymous pointcut. As the advices are declared into the same aspect, we
should take into account their order declaration. In this way, the advice that appears first
lexically inside the aspect executes first. “The only way to control precedence between
multiple advice in an aspect is to arrange them lexically [37].” Thus, our translation
rules generate AspectJ advices carefully in order to respect the JML semantics. The
translation function MAPJmlToAspectJAspect calls the discussed auxiliary functions in the
following order to fulfil the JML semantics to check contracts:

1. MAPStaticInvariantBMEToAspectJCode;

2. MAPInstanceInvariantBMEToAspectJCode;

3. MAPPreconditionToAspectJCode;

4. MAPPostconditionToAspectJCode;

5. MAPInstanceInvariantBMEToAspectJCode;

6. MAPStaticInvariantAMEToAspectJCode.

The above ordering to generate AspectJ code is extremely important to keep the
classical ordering of contract checking posed by JML. For example, a method to be
executed must obey some conditions in a certain order:

1. check invariants (static and instance invariants) before method execution;

2. check preconditions before method execution;
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MAPStaticInvariantAMEToAspectJCode[[TN, TMod, Stat Inv ]] △

if Stat Inv 6= {}
then let {Stat Inv 1 && ... && Stat Inv s} = Inst Inv

if ‘interface’ in TMod

then

after () returning (Object o):

execution (* TN +.*(..)) {

〈〈checkStaticInvariant〉〉
}

after () throwing (Throwable rac$thrown):

execution (* TN +.*(..)) {

〈〈rethrowJMLException〉〉
else {

〈〈checkStaticInvariant〉〉
}

}

else

after () returning (Object o):

execution (* TN.*(..)) {

〈〈checkStaticInvariant〉〉
}

after () throwing (Throwable rac$thrown):

execution (* TN.*(..)) {

〈〈rethrowJMLException〉〉
else {

〈〈checkStaticInvariant〉〉
}

}

Figure 3.19: General structure of the two AspectJ after advices for static invariant
check.

3. check postconditions after method execution (normal postconditions when the
method terminates normally and exceptional postconditions when the method
terminates abnormally);

4. check invariants (static and instance invariants) after method execution.

These ordering are respected by the translation rules that generate AspectJ code to
check JML contracts during runtime (as shown above).

〈〈checkStaticInvariant 〉〉≡
if (!(Stat Inv 1 && ... && Stat Inv s)){

throw new JMLInvariantError();

}

Figure 3.20: Code for checking all non-static invariants.
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MAPJmlToAspectJAspect[[Annotated Java Type ]] △

let TN, TMod, Meth, SCN, SIN,

Inst Inv, Stat Inv = Annotated Java Type in

let StatInvBefore = MAPStaticInvariantBMEToAspectJCode[[Stat Inv ]] in

let InstInvBefore = MAPInstanceInvariantBMEToAspectJCode[[Inst Inv ]] in

if Meth 6= 〈ǫ〉
then let 〈Meth1,...Methm〉 = Meth in

let TMod1, MN1, FP1, PTN1, PIN1, RT1, Ex1, SC1 = Meth1 in

...

let TModm, MNm, FPm, PTNm, PINm, RTm, Exm, SCm = Methm in

let Precondition1 = MAPPreconditionToAspectJCode[[TN ,TMod,SCN ,SIN ,MN1,

MMod1,FP1,PTN1,PIN1,RT1,SC1]] in

...

let Preconditionm = MAPPreconditionToAspectJCode[[TN ,TMod,SCN ,SIN ,MNm,

MModm,FPm,PTNm,PINm,RTm,SCm]] in

let Postcondition1 = MAPPostconditionToAspectJCode[[TN ,MN1,MMod1,FP1,

PTN1,PIN1,RT1,Ex1,SC1]] in

...

let Postconditionm = MAPPostconditionToAspectJCode[[TN ,MNm,MModm,FPm,

PTNm,PINm,RTm,Exm,SCm]] in

let InstInvAfter = MAPInstanceInvariantAMEToAspectJCode[[Inst Inv ]] in

let StatInvAfter = MAPStaticInvariantAMEToAspectJCode[[Stat Inv ]] in

if Meth 6= 〈ǫ〉
then let AspectJCode = StatInvBefore ∪ InstInvBefore ∪

〈Precondition1,Postcondition1〉 ... ∪ 〈Preconditionm,Postconditionm〉
∪ InstInvAfter ∪ StatInvAfter in

else let AspectJCode = StatInvBefore ∪ InstInvBefore ∪ InstInvAfter

∪ StatInvAfter in

if AspectJCode 6= ǫ

then

public privileged aspect AspectJMLRac$TN {

AspectJCode

}

Figure 3.21: Complete translation rules.

Complete translation rules

In order to see the complete translation rules of the JML specifications, we show in
Figure 3.21 that the translation function MAPJmlToAspectJAspect obey the JML semantics.

3.3 Comparing jmlc with ajmlc

This section describes some differences between the original JML compiler (jmlc) and
our compiler (ajmlc).

Compiling empty classes

The jmlc compiler assumes a standard configuration for classes. Thus, even if one defines
an empty class, basic instrumentation is generated [39, 43] for:

1. class verification
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JML clauses jmlc generates ajmlc generates
requires yes yes
ensures yes no
signals yes no
invariant yes no

Table 3.1: Difference between jmlc and ajmlc during the generation code.

• Static and non-static invariant/constraint checking;

• Static and non-static constraint pre-state expressions checking.

2. default constructor verification

• Assertion checking wrapper;

• Precondition checking;

• Normal postcondition checking;

• Exceptional postcondition checking.

3. other methods (e.g., for dynamic calls using reflection)

In this way, the jmlc compiler generates 5.98 KB even for a empty class like:

public class Empty { }

In contrast to jmlc compiler, our compiler does not generate code for empty classes.

Code instrumentation

Code size is an important issue for Java ME applications. Our compiler avoids code
generation as much as possible. Table 3.1 compares the jmlc and ajmlc compilers when
no specification is provided. The jmlc compiler generates code for every JML clause.
It does not matter if the specification is not defined. The ajmlc compiler generates
code for an empty specification only in the case of preconditions of instance methods.
To implement inheritance of specification, when the method is overridden, the local
precondition (which is empty) must be disjointed with the preconditions defined for the
method in the superclasses (see Section 3.2.1 for more details).

Limitations of the jmlc compiler solved by the ajmlc compiler

As mentioned previously (Sections 2.1.4 and 2.1.5), the jmlc compiler has two limita-
tions:

1. When constrained methods are called into static blocks during the class initializa-
tion, jmlc does not check the constrains and the method is always executed even
if the condition is false;

2. Static and non-static invariants are not checked when declared into interfaces.

Concerning the first limitation, properties (e.g., preconditions, invariants) of constrained
methods are automatically verified when called into static blocks. Regarding the second
problem, as explained in Section 3.2.3, the code generated by the ajmlc compiler checks
only instance invariants declared in interfaces.
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The predicate same

Another enhancement of our compiler is the proper translation of the JML predicate
same. The predicate same is denoted by the JML keyword \same. It is used in pre-
conditions clauses. The predicate is the same of the precondition specified in other
(non-same) specification case. Only one requires clause is allowed for each specifica-
tion case. Moreover, if a single specification case is defined, the predicate \same can be
used only if the method is overridden. As a consequece, since specifications of construc-
tors and static methods cannot be inherited, the predicate \same cannot be defined if a
single specification case is provided.

According to a bug reported to the JML mail list2, the jmlc translates the predicate
same into false. Our compiler fixed this bug, by generating AspectJ code to reflect
the semantics of the predicate same. Appendix C.2 presents an example of specification
case with the same predicate and the corresponding AspectJ code.

Implementation of JML clauses

If compared with ajmlc, the original JML compiler [14] provides support for a larger
subset of the JML language. For instance jmlc can handle abstract specifications and
quantifiers, which are not treated yet by ajmlc.

3.4 Chapter Summary

In this chapter we presented the motivation for implementing the ajmlc compiler. In
addition, we described the rules to translate JML annotations into AspectJ. The transla-
tion rules consider preconditions, postconditions (both normal and exceptional postcon-
ditions), and invariants (both static and instance invariants). We have also compared
the implementation of the ajmlc compiler against the original JML compiler (jmlc).

2The bug report of the same predicate can be seen at
http://sourceforge.net/mailarchive/forum.php?forum_name=jmlspecs-developers
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Chapter 4

Proofs of Concept

In order to evaluate the overhead in code size produced by our compiler, we conducted
some studies comparing the code produced by the original JML compiler (jmlc) with
the code generated by our compiler (ajmlc). Such analysis is specially important for
Java ME applications.

The first study compares both compilers using a Java ME application. The code
generated by jmlc is not compliant with Java ME, but this study is only interested
in the code size metrics — because the code size is the most important issue when
dealing with constrained environments such as Java ME. The second study evaluates
the compilers using three different Java SE applications. This study is relevant to
evaluate the overhead in code size of our compiler using different AspectJ weavers.

4.1 Study 1: Java ME application

To evaluate our compiler (ajmlc) in environments of resource-constrained devices, we
employed a Java ME floating point calculator(MiDlet application [56, 63]) — we choose
it because it is a simple open source Java ME application available by Sun web site1,
and because there is no Java ME applications annotated with JML; thus we used it to
annotate with JML specifications — with three different scenarios: using our compiler
ajmlc (with ajc weaver) (CalcAspSol); using the original compiler (jmlc) [14] (CalcJml-
Sol); and the pure Java compiler, with no bytecode instrumentation (CalcPureSol).
We compared the three scenarios by analyzing the metrics: MiDlet class size (bytecode
instrumentation); JAR size; library API size. Moreover, we compared the three scenar-
ios with the three mentioned metrics, before and after obfuscated. Obfuscation after
compilation is a standard practice adopted by industry (we also compared the JAR size
metric by using the open source obfuscator ProGuard [71]).

The Java ME floating point calculator application presents a calculator screen where
the operands and operations are requested and the result shown. We annotated it with
JML constructs — which are fully supported by our compiler — to ensure two properties:
it yields only positive results; and it prevents division by zero.

When we compile the CalcJmlSol version by using the JML compiler (jmlc) setting
the class path to the Java ME API [56, 63], the bytecodes we obtain do not pass the

1An open source Java ME application available at https://meapplicationdevelopers.dev.java.net
/demo_box.html
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*Denotes a obfuscated measurement

CalcAspSol x CalcJmlSol CalcAspSol x CalcPureSol

CalcAspSol CalcJmlSol Ratio CalcAspSol CalcPureSol Ratio

(KB) (KB) (%) (KB) (KB) (%)

MidLet class size 54.0 49.8 ≈ 7.8 54.0 5.5 ≈ 89.8

JAR 14.3 80.4 ≈ -82.2 14.3 3.4 ≈ 76.2

size 5.4∗ 26.2∗ ≈ -79.3∗ 5.4∗ 2.6∗ ≈ 51.8∗

Lib JAR size 6.8 46.5 ≈ -85.3 6.8 — —

Table 4.1: Java ME calculator application statistics.

Figure 4.1: A precondition error in the Java ME calculator application.

analysis of the Java ME preverifier tool, which checks bytecode compatibility to run in
the Java ME environment. The reason for this failure is that Java ME does not support
all features present in Java SE. Despite the incompatibility, we use the code in our study
only to analyze the bytecode instrumentation generated by the jmlc [14]).

Results

Table 4.1 presents the result of the analysis. Concerning JAR size, we observe that,
CalcAspSol is 76.2% bigger than CalcPureSol, but only 51.8% bigger when considering
obfuscated JAR sizes. Still considering JAR size, we can point out that, CalcAspSol is
88.2% smaller than CalcJmlSol, but 79.3% smaller when we consider obfuscated JAR
sizes. For library API size, CalcAspSol showed to be -85.3% smaller than CalcJmlSol.
This happens because CalcAspSol requires far less code than the original JML runtime
library to execute instrumented bytecode. It is important to notice that we used only a
part of the original JML runtime library, which is compatible to the subset of the JML
that ajmlc handles (this leads to a fair comparison). In the case of the MiDlet class size,
CalcAspSol is 89.8% bigger than CalcPureSol and also 7.8% bigger than CalcJmlSol.
Such results provide evidence that our approach requires less memory space than the
original JML compiler only when we take into account Jar or Lib size. Furthermore, this
indicate us that we need to improve the JML contracts instrumentation, even though
we gain during deployment (Jar application). As a proof of concept, we executed the
calculator in a real mobile phone. We performed method calls with arguments that lead
to precondition violation as specified by contracts. The application answered properly
to these calls. Figure 4.1 illustrates a precondition violation when a division by zero is
performed. Appendix E.1 contains the annotations for the Java ME calculator and the
corresponding instrumentation code generated by our compiler.
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JML Constructs
Annotated class requires ensures signals invariant old also heavyweight
Animal X X X X
Person X X X
Patient X X X X
IntMathOps X X X
StackAsArray X X X X X

Table 4.2: JML constructs contained in each class.

ajmlc
jmlc (ajc) (abc)
(KB) (KB) (KB)

Animal 16.2 19.0 4.7
Person 14.0 19.3 4.8
Patient 16.7 19.9 6.1

IntMathOps 12.7 8.1 2.2
StackAsArray 23.6 29.6 6.1

Table 4.3: Java applications bytecode size results.

4.2 Study 2: Java SE applications

In this section we evaluate ajmlc using the Java SE environment with three Java ap-
plications extracted from the JML literature. These applications were chosen because
they constitute all most the JML level 0 [43, Section 2.9] constructs (focus of this dis-
sertation).

Scenario

The Java SE applications employed in this study are: (1) the hierarchy classes Animal,
Person, and Patient [38]; (2) the class IntMathOps [39], and (3) the class StackAsArray [14].
Moreover, we have used our ajmlc with two different weaving processes: the standard
AspecJ compiler (ajc) [36]; and the abc compiler [5], which is a complete implementation
of AspectJ with some optimizations.

Table 4.2 shows the JML constructs that each annotated class addresses. For in-
stance, a heavyweight keyword indicates that the class has a heavyweight specification
(see Section 2.1.4 [Heavyweight and Lightweight specifications]). Moreover, the pres-
ence of the keyword also means that the class can have multiple specification cases or
inherits from another type. In order to understand the meaning of the remaining JML
constructs, see Sections 2.1.4 and 2.1.5.

Results

Tables 4.3 and 4.4 present the study results. We analyzed bytecode size (with in-
strumented code present) in kbytes (KB). Considering our compiler (ajmlc), we used
the same AspectJ aspect code generated for both weaving processes (ajc and abc). The
ajmlc compiler using the ajc weaver introduces a big overhead in the code size. By using
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ajmlc(ajc) x jmlc ajmlc(abc) x jmlc

ajmlc jmlc Ratio ajmlc jmlc Ratio

(KB) (KB) (%) (KB) (KB) (%)

Animal 19.0 16.2 ≈ 14.8 4.7 16.2 ≈ -70.9

Person 19.3 14.0 ≈ 27.5 4.8 14.0 ≈ -65.8

Patient 19.9 16.7 ≈ 16.0 6.1 16.7 ≈ -63.5

IntMathOps 8.1 12.7 ≈ -36.2 2.2 12.7 ≈ -82.7

StackAsArray 29.6 23.6 ≈ 20.2 6.1 23.6 ≈ -74.2

Table 4.4: Java applications statistic results.

ajc weaver, only in one case (IntMathOps instrumentation), ajmlc generated a smaller
bytecode than jmlc. This is due to JML specifications contained into a Java source file.
In this way, since the IntMathOps constitutes few JML specifications (only one method
annotated with JML), the instrumented bytecode generated by ajmlc is smaller than
jmlc. In the remaining cases, when the JML specifications increase (several methods
annotated with JML), the instrumented bytecode tends to be bigger than jmlc. On the
other hand, our approach produces a far smaller code when the abc weaver is employed
(due to optimizations present in the abc weaver). Therefore, we decided to allow users
free to choose which AspectJ weaver to instrument the JML contracts. Thus, based on
the results (see the ratios in the Table 4.4), we recommend the usage of ajmlc with the
abc weaver. This choice is particulary important for Java ME applications. However,
when dealing with Java SE applications both ajc or abc can be employed, since memory
space in this applications are not quite constrained. Moreover, as ajmlc handles only
a subset of the JML language, eventually for Java SE applications the usage of jmlc is
suitable due to coverage of more JML features, such as model programs [39]. As a future
work, optimizations in the abc compiler can provide a smaller code generation by ajmlc
compiler (improving the generated instrumented bytecode in constrained environment
required by Java ME applications).

In order to see the source code of the three annotated Java SE applications and
the corresponding instrumentation code introduced by our compiler, please refer to
Appendix E.2.

4.3 Chapter Summary

In this chapter we conducted proof of concepts used to validate our JML compiler —
the ajmlc. We described two studies: (1) applying the jmlc and ajmlc compilers to
a Java ME application to validate the ajmlc compiler in a Java ME environment, and
compare overhead in code size produced by ajmlc and jmlc; and (2) applying again both
compilers in a Java SE environment using three Java applications. These applications
already appeared in the JML literature. For the first study, we used only the AspectJ
ajc compiler, and then compared the size of the instrumented bytecode provided by the
ajc weaver. The results pointed out that the generated code can be used with Java
ME applications, but the overhead in instrumented bytecode produced is bigger than
the standard jmlc. On the other hand, in the second study, we employed two AspectJ
compilers (ajc and abc) and compare the size of the instrumented bytecode inserted by
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these AspectJ weavers. Such results provide an evidence that our approach generates
smaller code than the original JML compiler when using the abc AspectJ weaver, which
is important for Java ME applications. Despite the size of the instrumented code gen-
erated, the ajmlc with both AspectJ compilers (ajc and abc) can be used with Java SE
as well as Java ME applications.
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Chapter 5

Related Work

In this chapter, we present the main works related to this dissertation.

5.1 JML-based

In this section, we present the related works which are JML-based.

5.1.1 A Runtime Assertion Checker for the Java Modeling

Language

Cheon presents in his doctoral thesis [14] a compiler for runtime assertion checking
designed for Java Modeling Language (JML) [39, 43]. It is a runtime assertion checking
compiler, which converts JML annotations into runtime checks. It is one of the JML
tools [11] developed at Iowa State University. The JML compiler (also known as jmlc)
adopts Java’s reflection facility [54] to support specification inheritance. Moreover,
Cheon defines a set of translation rules from JML predicates into Java program code.
The translation rules handle various kinds of specifications and expressions, such as
method specifications and old expressions. As with Cheon, in this dissertation we define
a set of of translation rules from JML predicates into AspectJ program code. The main
reason to use AspectJ code is to automatic solve the problem of code instrumentation.
Instead of using the Cheon’s wrapper approach [14], we delegate this task to the AspectJ
weaver. In this way, we also gain in modularity (separation of concern related to contract
enforcement) and make the ajmlc ease of modification or extension to treat other JML
features, such as model programs [39]. Moreover, unlike jmlc compiler, ajmlc with
AspectJ generates instrumented bytecode compliant with Java SE and also Java ME
programs. In addition, ajmlc generates an instrumented code that checks constrained
methods when they are called into static blocks (class initialization). Such verification is
not performed by the instrumented code produced by jmlc. Additionally, different from
jmlc the bytecode produced by our compiler generates invariant checks when declared
into interfaces. Regarding old expressions, Cheon’s approach evaluates all pre-state
expressions and stores their results as private fields and, in addition, uses a private
stack per method in order to save and restore pre-state values to handle nested assertion
checking (recursive calls). In contrast, we only define local variables for the AspectJ
advice to handle old expressions, even in the presence of nested assertion checking. This
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approach is semantically equivalent to Cheon’s approach, but by using our approach to
handles old expressions is more intuitive and simple than Cheon’s. Every recursive call
made to any method has its context saved by using AspectJ around advice (which has
total control under the constrained method, before and after its execution). Finally,
our compiler handles a subset of the JML language, whereas the jmlc compiler handles
more JML constructs and features, such as abstract specifications.

5.1.2 JCML - Java Card Modeling Language

JMLC (Java Card Modeling Language) [59] is a subset of the JML language. The
JCML compiler (jcmlc) generates bytecode compliant with Java Card applications. The
motivation of that work is similar to ours. It tackles some limitations of the jmlc
compiler to implement Java Card applications. For instance, Java Card does not support
the Java reflection mechanism. The jcmlc does not employ AspectJ to instrument
JML contracts. It translates the JML specifications into verification functions. These
verification functions generated by the jcmlc preserve as much as possible the structure
of the JML compiler based on wrapper approach [14].

In addition, different from our strategy, the jcmlc does not reuse the front-ent of jmlc
(the JML type checker) [11]. The jcmlc was designed using the JavaCC (Java compiler
compiler) tool [3], which constitutes its front-end and back-end. As a consequence, some
verifications performed by the JML type checker (e.g., assignable clause and pureness)
are not implemented [11].

Regarding JML specifications, the jcmlc translates only some JML lightweight speci-
fications, in particular only code for instance invariants and preconditions are considered
in the first version of the jcmlc compiler. In contrast to jcmlc, our compiler handles
both lightweight and heavyweight specifications as well as the two kinds of invariants in
JML (static and instance invariants). The jcmlc does not support inheritance of spec-
ifications, which our compiler does. On the other hand, the jcmlc handles quantifiers
such as forall, which are not treated by ajmlc.

5.1.3 Pipa - A Behavioral Specification Language for AspectJ

Pipa [76] is a behavioral interface specification language (BISL) tailored to AspectJ.
It uses the same approach (based on annotations) of JML language to specify AspectJ
classes and interfaces, and extends JML with a few new constructs in order to specify
AspectJ programs. The Pipa language also supports aspect specification inheritance and
crosscutting. Pipa specifies AspectJ programs with pre-, postconditions, and invariants.
Moreover, Pipa also can specify aspect invariants and the “decision” whether or not
to call the proceed method within the around advice (using the proceed extended
annotation). The aim in designing Pipa based on JML is to reuse the existing JML-
based tools. In order to make this possible the authors developed a tool (compiler) to
automatically transform an AspectJ program with Pipa specifications into a standard
Java program with JML specifications. To this end, the authors modified the AspectJ
compiler (ajc) to retain the comments during the weaving process. After the weaving
process, all JML-based tools can be applied to AspectJ programs. Therefore, the main
goal of Pipa is to facilitate the use of JML language to verify AspectJ programs. On
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the other hand, our aim is to use AspectJ to implement JML contracts and verify Java
programs.

5.2 Non JML-based

In this section, we discuss other related works, but they are not JML-based.

5.2.1 Jose: Aspects for Design by Contract

Feldman [24] presents a design by contract (DBC) [51] tool for Java, know as Jose.
This tool adopts a private DBC language for expressing contracts. Similar to our, Jose
adopts AspectJ for implementing contracts. The semantics of postconditions and invari-
ants in Jose are distinct from JML. Jose states that postconditions are simply conjoined
without taking into account the corresponding preconditions. Moreover, it establishes
that private methods can modify invariant assertions. In the JML semantics, if a pri-
vate method violates an invariant, an exception must be thrown. Concerning recursive
assertion checking, Jose, like Eiffel [52], only allows one level of assertion checking. To
enforce this policy, Jose uses the control-flow based pointcut (using the AspectJ des-
ignator cflowbelow). In this way, unlike our compiler, Jose generates bytecode not
compliant with Java ME because it uses some AspectJ constructs that make references
to Java SE APIs, which are not supported by the Java ME environment. In contrast
to Jose, our compiler carefully uses AspectJ constructs that generates instrumented
bytecode compliant with both Java SE and Java ME applications.

5.2.2 Contracts as an Aspect

Briand [10] discusses how to implement contracts with Aspect-Oriented Programming
(AOP) using AspectJ. He defines how to efficiently instrument contracts and invariants
in Java. The two main objectives of this work are: (1) to work at bytecode level avoiding
polluting the source code; (2) to apply the Liskov Substitution Principle (LSP) [46]
in order to check inheritance hierarchies. Similarly to our work, it presents AspectJ
templates that map contracts and invariants into AspectJ aspects that represent them.
These aspects provide an instrumentation extremely valuable during runtime to detect
failures and during maintenance phase to help in locating faults (debugging).

Recalling JML semantics, the postcondition is valid only if the precodition holds in
pre-state (\old(pre) ⇒ pos). Unlike JML, the semantics for postconditions does not
check the precondition in pre-state. Moreover, when the intercepted method throws an
exception, the postcondition is not verified. Such verification is required to provide the
JML mechanism to treat exceptional postconditions — properties that must be true when
the method throws an exception. Thus, it only supports normal postconditions, while
our JML compiler (based on JML constructs) supports both kinds of postconditions.

5.2.3 Contract4J: A Design by Contract Tool for Java

Contract4J [75] is another AspectJ implementation of contracts. It is an open-source
tool that supports design by contract [51] for Java. Like JML, Contract4J allows pro-
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grammers to specify contracts as annotations. These annotations are based on Java 5
annotations [55] (annotation-based approach). Moreover, if any condition (contract) is
not satisfied, the program throws a runtime error and stops the program execution.

The @Contract annotation signals that a class has a contract specification defined.
Furthermore, Contract4J employs the @Pre, @Post, and @Invar annotations that in-
dicate, respectively, a precondition, postcondition, and invariant test. The Contract4J
tool also employs the use of $old annotation, which represents the evaluation of old
expressions in pre-state (before method call) — it is applied to state variables (at-
tributes) that are used in post-state (after method call) within the postcondition test.
The annotation-based approach (annotations) is interpreted and converted into AspectJ
aspects (responsible for instrumenting and verifying the contracts during runtime).

Besides the annotation-based approach, the author of the Contract4J provides a sec-
ond experimental syntax that uses a JavaBeans-style naming convention (method-based
approach), which he called “ContractBeans”. According to this style, the precondition
and postcondition tests for a method named add, for example, are respectively writ-
ten as preAdd and postAdd. (Compare with the JavaBeans convention for defining a
getResult method for the result field present in a class.) This implementation ap-
proach is also based on AspectJ and has a significant runtime overhead, because it uses
runtime reflection to discover and invoke the tests (when present). In addition, the
work mentions another two drawbacks when using the method-based approach: (1) if
the tests are not declared with public visibility, they are not visible for clients; (2) if
the tests are not written in a proper JavaBeans-like convention, the tests are ignored.
This happens because there is no mechanism in the Contract4J tool to warn the user.
With relation to contract support, the method-based approach does not yet support old
expressions when compared with the annotation-based approach.

Concerning the supported kinds of assertions and their implementation in AspectJ,
the work covers only pre-, postcondition (normal), and invariant (instance) when com-
pared with ours. Moreover, in contrast to our work, there is an important issue not
covered by Contract4J — the current version does not provide support for inherited
contracts — contravariance (used in precondition inheritance mechanism) and covari-
ance (used in postcondition and invariant inheritance) behavior. Nevertheless, the Con-
tract4J tool imposes at least the same contract conditions on derived classes. According
to the author, he is planning to work on inheritance of contracts and release a new
version1 soon.

5.2.4 Applying Design by Contract on a framework using As-

pectJ

An experience in using the suitability of AspectJ for implementing contracts is discussed
in work [45]. That work took an existing framework written in Java, the JWAM frame-
work [9], and partially restructured it using AspectJ. The work points out that, with
respect to the original implementation (of the framework) in plain Java, the use of As-
pectJ provides better support for incremental development, better reuse, and suitability
in enforcing contracts in applications that use the framework. The JWAM framework
is a Java-based object-oriented framework for interactive business applications, devel-

1The Contract4J is available on v0.8.0 version. New features will be released on version v1.0.0.
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oped at the University of Hamburg. It contains more than 600 classes and interfaces —
originally designed and implemented in Java using the design by contract technique [51]
and was partially restructured [45] by that work using AspectJ. The framework uses
contracts to ensure that callers — client programs — do not use the methods in a
wrong way, likewise the implementation of methods must ensure their functionality
as described in their specification. In order to signal any violation in the use of the
framework, there is an exceptional behavior called ContractBrokenException. Besides
broken contracts, there are other exceptional mechanism inside JWAM to signal any
problem to the applications that use it.

The authors state that, by using AspectJ to partially re-implement the framework
JWAM, they drastically reduced the code of the framework (LOC) and eliminated the
tangled code referent for contract enforcement and exception detection and handling,
thereby, providing a better reusability and high cohesion of the existing modules in the
framework.

That work proved to be an excellent example in which AOP and AspectJ are effec-
tively used to enforce the contract concern — the standard JML compiler (jmlc) and
the ajmlc compiler (proposed here) would also be used to specify, verify, and ensure the
functionalities of the framework described by that work. As with our work, it uses a
specific language that expresses its contracts as annotations in the source code (in the
framework classes), and these annotations are immediately targeted as AspectJ aspects.
However, it differs from ours because it focused on only three kinds of assertions when
it restructured the JWAM framework using AspectJ — pre-, postcondition (covering
only normal postcondition), invariants (including only instance invariants). Moreover,
it does not consider the inheritance of contracts and does not provide a mechanism
for using old values in postconditions. Another differential of that work is that it is
based on a specific framework (application), providing the reliability of the framework
usage, whereas our work is based on constructing reliable Java applications — including
applications of the Java ME platform.

5.2.5 Other non JML-based related works

Regarding contracts and aspects, Diotalevi [23] proposes an approach for adopting de-
sign by contract [51] in the development of Java application using Aspect-Oriented
Programming (AOP) with AspectJ. The work states that inserting pre- and postcon-
ditions assertions directly into the application code has serious drawbacks — in terms
of code modularity, reusability, and cohesion — that lead to a common OO limitation
called tangled code. These assertions are crosscutting concerns and mix business logic
code with the nonfunctional code that assertions require; they are inflexible because we
cannot change or remove assertions without updating the application code. Because of
that, the work provides a solution based on the following four requirements:

• transparency — the pre- and postconditions code is not mixed with business logic;

• reusability — most of the solution is reusable;

• flexibility — the assertion modules can be added to, removed, and modified;

• simplicity — assertions can be specified using a simple syntax.
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This solution has a “bridge” that is an AspectJ aspect. This aspect specifies the exact
point where the contract is to be applied. The AspectJ implementation of contracts
covers pre-, postconditions and invariant checks. As a result, this solution provides a
clean and flexible solution, because it eliminates the drawbacks previously mentioned.
The solution lets one code the contracts of the application separately (untangled) from
one’s business logic. Different from our approach, this work concentrates only on pre-,
(normal) postcondition, and (instance) invariants.

“Assertion with Aspect” [33] proposes aspects for implementing assertions. The work
aims to use AspectJ in order to inject assert statements into classes — the assert

statement is a Java function of the standard library (available since JDK 1.4). Finally,
this work enhances reusability of Java programs by eliminating tangled code with assert
statements. As a result, programmers can add and remove assertions (contracts) of a
class, thus enabling the programmers to separate (untangled) a class from its assertions.
The proposed work differs from ours in that it covers only two types of assertions
— precondition and (normal) postcondition assertions — and does not consider the
inheritance of assertions.
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Chapter 6

Conclusions

The Java Modeling Language (JML) is a formal language for specifying the behavior
of Java modules, such as pre- and postconditions. These JML constructs are included
as JML annotations within Java source code. The JML annotations are compiled into
automatic runtime checks by the JML compiler (jmlc) [14], which are used during the
program’s execution and raising a JML exception when a condition (e.g, precondition)
does not hold. However, the jmlc compiler does not work properly when applied to other
Java dialects such as Java ME. The jmlc compiler generates instrumented bytecode that
uses Java reflection mechanism, and data structures such as HashSet which are not
supported by Java ME.

In this work we present the implementation of a new JML compiler known as ajmlc
(AspectJ JML compiler). It translates programs annotated with JML into AspectJ
program code. The result is a code with aspect checking methods that verify the program
against JML specifications. This aspect code generated by our compiler is compliant
with Java SE and Java ME applications. We mitigate the limitations of the jmlc compiler
by avoiding AspectJ constructs that are not compliant with Java ME. For instance,
the usage of the cflow pointcut would make the code incompatible with Java ME
applications.

We also presented a set of translation rules (described in Chapter 3) that express how
we deal with JML features, such as normal and exceptional postconditions, invariants,
and old expressions. We compared ajmlc and jmlc, pointing out some improvements
brought by our implementation when compared with jmlc. The ajmlc compiler gener-
ates instrumented bytecode to verify constrained methods within static blocks during
the class initialization, which is not performed by the jmlc compiler; and the ajmlc gen-
erates instrumented code only when necessary, avoiding pollute the code with useless
instrumentation, which probably increases its size. It is important to emphasize that
our translation rules implemented by our compiler take into account only a subset of
the JML language.

Concerning Tool support, a JML annotated Java source code can be used with:
Esc/Java2 [25], Loop tool [73] (both perform static verification), and all tools which
are part of the standard distribution of JML [11] (known as JML tools suite). With
the approach (using aspects) discussed by this dissertation, static verification (using
Esc/Java2 [25] or Loop tool [73]) can be used without problems, since they not require
dynamic (runtime) checks. Regarding the JML tools suite [11], only the jmldoc and
the jml type checker can be used. The jmlunit [15] tool cannot be used because it uses
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the standard JML compiler (jmlc) to generate checking methods for testing Java classes
and interfaces.

We conducted proofs of concept in order to validate the implementation of our com-
piler (ajmlc) with Java SE and Java ME applications. We conducted two experiments:
(1) to validate the ajmlc compiler when dealing with Java ME applications; (2) to
validate the ajmlc compiler when dealing with Java SE applications. In these two ex-
periments we analyzed the overhead in code size produced by our compiler in contrast
to code size produced by the jmlc compiler. An another contribution was extracted
from the proof of concept carried out with the Java SE applications. In this case we
used two AspectJ weavers (ajc and abc) to generate the bytecode. We observed that
the ajc weaver produce an important overhead in code size. On the other hand, the abc
weaver produces a far smaller code when compared with jmlc. Although the user is free
to use our compiler with the preferred AspectJ weaver, but based on the results, we
recommend the combination of ajmlc and abc weaver to develop Java ME applications.

We believe that the usage of aspects to implement a JML compiler introduces a
new level of modularity. In other words, our approach is not invasive (the Java source
code is not tangled and scattered with the generated assertion methods to check JML
contracts during runtime). This gives more flexibility to extend the compiler with other
JML constructs and to optimize the current implementation. In addition, optimizations
in the weaven process are automatically inherited by our compiler.

6.1 Future Work

A comprehensive survey [12] — mainly from industry — demonstrated that JML’s
assertion semantics, based on classical logic [14], does not satisfy the programmers’
expectations. Recently, the JML community agreed to adopt new assertion semantics
proposed by Chalin [68], which is closer to Java semantics, and is modeled on three-
valued logic. The new assertion semantics was implemented in the last release of the
JML compiler 1 (jmlc version 5.5), which is part of the JML tools [11]. In this way, as a
future work, we intend to adapt the ajmlc to the new assertion semantics proposed by
Chalin.

There are several extensions to the work presented in this dissertation. Most of them
include support for more features of the JML language. Hence, we intend to augment
the translation rules of our JML compiler (ajmlc) to support more features, such as
quantifiers (JML level 0), and abstract specifications (model programs) [43]. In JML,
one can also specify the behavior of methods by writing abstract code, known as model
programs. Model programs are useful to keep away from implementation details; JML
provides different types of specification to write model programs, such as specification-
only fields (model fields from JML level 0), specification-only methods (model methods
from JML level 1). We also intend to implement more JML type specifications such as
history constraints [43] (JML Level 1). The JML language introduced several specifica-
tion constructs to specify non-functional properties (JML level 2) like time and space
requirements. Neither the current JML compiler (jmlc) nor our JML compiler (ajmlc)
support non-functional properties. This is an exciting subject we plan to investigate.

1the JML 5.5 version is already available to download at
http://sourceforge.net/projects/jmlspecs.

67

http://sourceforge.net/projects/jmlspecs


In relation to tool support, we plan to implement a new jmlunit [15] which uses the
ajmlc compiler for generating test cases (with aspects). This issue would leads to a
complete usage of the JML tools suite [11], even using our approach with AspectJ.

We also plan to address a problem suggested by Cheon [14]: to support assertion
checking in a concurrent environment (e.g., multi-threaded program).

Finally, we intend to conduct more experiments using weavers that implement opti-
mization techniques for AspectJ, including the works by Cordeiro [20] and Calheiros [47].
Such works provide some optimizations in the AspectJ abc compiler, which can improve
the instrumented code generated by the ajmlc.
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Appendix A

Java SE classes Supported by the
Java ME platform

The following is a summary of the classes from Java SE that Java ME also supports.

A.1 System Classes

java.lang.Class java.lang.Object java.lang.Runnable (interface)

java.lang.Runtime java.lang.String java.lang.StringBuffer

java.lang.System java.lang.Thread java.lang.Throwable

A.2 Data Type Classes

java.lang.Boolean java.lang.Byte java.lang.Character

java.lang.Integer java.lang.Long java.lang.Short

A.3 Collection Classes

java.util.Enumeration (interface) java.util.Hashtable

java.util.Stack java.util.Vector

A.4 Input/output Classes

java.io.ByteArrayInputStream java.io.ByteArrayOutputStream

java.io.DataInputStream java.io.DataOutput (interface)

java.io.InputStream java.io.InputStreamReader

java.io.OutputStreamWriter java.io.PrintStream

java.io.Writer java.io.DataInput (interface)

java.io.DataOutputStream java.io.OutputStream

java.io.Reader
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A.5 Calendar and Time Classes

java.util.Calendar java.util.Date java.util.TimeZone

A.6 Utility Classes

java.lang.Math java.util.Random

A.7 Exception Classes

java.io.EOFException java.io.InterruptedIOException

java.io.IOException java.io.UnsupportedEncodingException

java.io.UTFDataFormatException java.lang.ArithmeticException

java.lang.ArrayIndexOutOfBoundsException java.lang.ArrayStoreException

java.lang.ClassCastException java.lang.ClassNotFoundException

java.lang.Exception java.lang.IllegalAccessException

java.lang.IllegalArgumentException java.lang.IllegalMonitorStateException

java.lang.IllegalThreadStateException java.lang.IndexOutOfBoundsException

java.lang.InstantiationException java.lang.InterruptedException

java.lang.NegativeArraySizeException java.lang.NullPointerException

java.lang.NumberFormatException java.lang.RuntimeException

java.lang.SecurityException java.lang.StringIndexOutOfBoundsException

java.util.EmptyStackException java.util.NoSuchElementException

A.8 Error Classes

java.lang.Error java.lang.OutOfMemoryError java.lang.VirtualMachineError

A.9 Internationalization

java.io.InputStreamReader java.io.OutputStreamWriter
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Appendix B

JML Grammar Summary

The following is a summary of the grammar for JML language that ajmlc compiler
handles.

B.1 JML Reserved Words

\requires \pre \same

\ensures \post pure

\signals \exsures \old

\assignable \modifiable \modifies

\result also invariant

behavior normal_behavior exceptional_behavior

spec_public spec_protected instance

\not_specfied \everything \nothing

\only_assigned

B.2 Method Specfication

method-specification ::= specification | extending-specification

extending-specification ::= also specification

specification ::= spec-case-seq

spec-case-seq ::= spec-case [ also spec-case ] . . .

spec-case ::= lightweight-spec-case | heavyweight-spec-case

lightweight-spec-case ::= generic-spec-case

generic-spec-case ::= spec-header generic-spec-body

generic-spec-body ::= simple-spec-body | generic-spec-case-seq

generic-spec-case-seq ::= generic-spec-case

[ also generic-spec-case ] . . .

spec-header ::= requires-clause [ requires-clause ] . . .

simple-spec-body ::= simple-spec-body-clause

[ simple-spec-body-clause ] . . .

simple-spec-body-clause ::= assignable-clause | ensures-clause
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| signals-clause

heavyweight-spec-case ::= behavior-spec-case

| exceptional-behavior-spec-case

| normal-behavior-spec-case

behavior-spec-case ::= [ privacy ] behavior-keyword

generic-spec-case

behavior-keyword ::= behavior | behaviour

normal-behavior-spec-case ::= [ privacy ]

normal-behavior-keyword generic-spec-case

normal-behavior-keyword ::= normal behavior

| normal behaviour

exceptional-behavior-spec-case ::= [ privacy ]

exceptional-behavior-keyword generic-spec-case

exceptional-behavior-keyword ::= exceptional behavior

| exceptional behaviour

privacy ::= public | protected | private

requires-clause ::= requires-keyword pred-or-not

| requires-keyword \same

requires-keyword ::= \requires | \pre

ensures-clause ::= ensures-keyword pred-or-not

ensures-keyword ::= \ensures | \post

signals-clause ::= signals-keyword pred-or-not

signals-keyword ::= \signals | \exsures

assignable-clause ::= assignable-keyword store-ref-list

assignable-keyword ::= assignable | modifiable

| modifies

store-ref-list :: = ...

pred-or-not ::= predicate | \not specified

B.3 Type Specfication

jml-declaration ::= modifiers invariant

invariant ::= invariant-keyword

invariant-keyword ::= invariant

modifiers ::= [ modifier ] . . .

modifier ::= public | protected | private

| abstract | static |

| final | synchronized

| transient | volatile

| native | strictfp

| const // reserved but not used in Java

| jml-modifier

jml-modifier ::= spec public | spec protected

| pure | instance

| non null | nullable
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| nullable by default

B.4 Predicates and Specification Expressions

predicate ::= spec-expression

spec-expression ::= expression

I ∈ identifier

E ∈ expression

E ::= E1 <==> E2

| E1 <=!=> E2

| E ==> E

| E <== E2

| E1 || E2

| E1 && E2

| E2 == E2

| E1 != E2

| E.I

| !E

| ...

| jml-expressions

jml-expressions ::= result-expression

| old-expression

result-expression ::= \result

old-expression ::= \old ( spec-expression)

| \pre ( spec-expression )

73



Appendix C

Examples of Instrumented Code
Generated by ajmlc

In this Appendix, we provide translations of two JML examples by the ajmlc.

C.1 Example of omitted and empty specifications

C.1.1 Source code of the example

Considering the code below (T.java and S.java), the class T has two methods m and
n with omitted preconditions, whereas the method o has an empty specification. The
class S that extends the class T has the method n, which is overridden from class S and
also is an empty specification.

T.java

public class T {

//@ assignable \nothing;

public void m(int x){

}

//@ assignable \everything;

public void n(int y){

}

public void o(int z){

}

}

S.java

public class S extends T{

//@ also

//@ requires x > 10;

public void m(int x){
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}

public void n(int y){

}

//@ also

//@ requires z > 20;

public void o(int z){

}

}

C.1.2 Instrumented code generated of the example

By compiling the hierarchy above with the ajmlc compiler (with the translation rules
for omitted and empty specifications), we have the following code (AspectJMLRac T.aj

and AspectJMLRac S.aj):

AspectJMLRac T.aj

public privileged aspect AspectJMLRac T {

/** Generated by JML to insert a precondition

* checking method for the method m. */

public boolean T.checkPre$m$T(int x){

return (((true)));

}

/** Generated by JML to insert a precondition

* checking method for the method n. */

public boolean T.checkPre$n$T(int y){

return (((true)));

}

/** Generated by JML to insert a precondition

* checking method for the method o. */

public boolean T.checkPre$o$T(int z){

return false;

}

/** Generated by JML to insert a precondition

* checking method for the method o. */

before (T current, int z) :

execution(void T.o( int )) &&

within(T) &&

this(current) && args(z) {

if (!current.checkPre$o$T(z)) {

throw new JMLInternalPreconditionError("");
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}

}

}

AspectJMLRac S.aj

public privileged aspect AspectJMLRac S {

/** Generated by JML to insert a precondition

* checking method for the method m. */

public boolean S.checkPre$m$S(int x){

return (((x > 10))) || super.checkPre$m$T(x);

}

/** Generated by JML to check the precondition of

* method m. */

before (S current, int x) :

execution(void S.m( int )) &&

within(S) &&

this(current) && args(x) {

if (!current.checkPre$m$S(x)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method n. */

public boolean S.checkPre$n$S(int y){

return false || super.checkPre$n$T(y);

}

/** Generated by JML to insert a precondition

* checking method for the method n. */

before (S current, int y) :

execution(void S.n( int )) &&

within(S) &&

this(current) && args(y) {

if (!current.checkPre$n$S(y)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method o. */

public boolean S.checkPre$o$S(int z){

return (((z > 20))) || super.checkPre$o$T(z);

}
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/** Generated by JML to check the precondition of

* method o. */

before (S current, int z) :

execution(void S.o( int )) &&

within(S) &&

this(current) && args(z) {

if (!current.checkPre$o$S(z)) {

throw new JMLInternalPreconditionError("");

}

}

}

C.2 Example of the same predicate

C.2.1 Source code of the example

The following code (T2.java and S2.java) is an example of the usage of the same
predicate in JML. The class T2 illustrates the case when a method has more than one
specification case and one of them has the same predicate. This case is employed by
the method m. On the other hand, the class S2 illustrates the case when a method has
only one specification case with the same predicate, and it is overridden. This case is
employed by the overridden method n.

T2.java

public class T2 {

//@ requires x > 0;

//@ also

//@ requires \same;

public void m(int x){

}

//@ requires y > 0;

//@ requires y < 100;

public void n(int y){

}

}

S2.java

public class S2 extends T2{

//@ also

//@ requires \same;

public void n(int y){

}
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}

C.2.2 Instrumented code generated of the example

The AspectJ code generated by the ajmlc when compiling the code above is shown below
(AspectJMLRac T2.aj and AspectJMLRac S2.aj).

AspectJMLRac T2.aj

public privileged aspect AspectJMLRac T2 {

/** Generated by JML to insert a precondition

* checking method for the method m. */

public boolean T2.checkPre$m$T2(int x){

return (((x > 0)) || ((x > 0)));

}

/** Generated by JML to check the precondition of

* method m. */

before (T2 current, int x) :

execution(void T2.m( int )) &&

within(T2) &&

this(current) && args(x) {

if (!current.checkPre$m$T2(x)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method n. */

public boolean T2.checkPre$n$T2(int y){

return (((y > 0) && (y < 100)));

}

/** Generated by JML to check the precondition of

* method n. */

before (T2 current, int y) :

execution(void T2.n( int )) &&

within(T2) &&

this(current) && args(y) {

if (!current.checkPre$n$T2(y)) {

throw new JMLInternalPreconditionError("");

}

}

}
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AspectJMLRac S2.aj

public privileged aspect AspectJMLRac S2 {

/** Generated by JML to insert a precondition

* checking method for the method n. */

public boolean S2.checkPre$n$S(int y){

return super.checkPre$n$T2(y);

}

}
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Appendix D

Translation Rules

In this Appendix, we list all translation rules and their definition used in the compilation
process that translates a JML annotated Java type into an AspectJ aspect.

D.1 Auxiliary functions

In the following we present all auxiliary functions used in the compilation process.

D.1.1 Elements used by the auxiliary functions

The following elements are used by the auxiliary functions:

• The Annotated Java Type is a tuple composed by the following elements needed
for the translation rules:

— TMod — is a sequence of type modifiers, 〈TMod1, ..., TModx〉;

— TN — is the name of the Annotated Java Type to be compiled;

— Meth — is a sequence of methods, 〈Meth1, ..., Methm〉;

— SCN — is the name of the superclass, in which the Annotated Java Type is
subtype;

— SIN — is a set of superinterface names, {SIN1,...,SINn}, of the
Annotated Java Type;

— Inst Inv — is a set of instance invariants, {Inst Inv1,...,Inst Invr}, into the
Annotated Java Type;

— Stat Invs — is a set of static invariants, {Stat Inv1,...,Stat Invs}, into the
Annotated Java Type;

• Each method in Meth is a tuple composed by the following elements:

— MMod — is a sequence of method modifiers, 〈MMod1, ..., MMody〉;

— MN — is the method name;

— FP — is a sequence of formal parameters (pairs of types and identifiers),
〈T1, Id1, ..., Tz, Idz〉;
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— PTN — is a sequence of parameter type names, 〈T1, ..., Tz〉;

— PIN — is a sequence of parameter identifier names, 〈Id1, ..., Idz〉;

— RT — is the method return type;

— Ex — is a set of exceptions, {E1,...,Es};

— SC — is a sequence of local JML specification cases, 〈SC1, ..., SCk〉. Such local
specification cases are represented as tuples, 〈Pi, Qi, Ri〉i=1,...,k, composed by
preconditions P , normal postconditions Q, and exceptional postconditions
R.

• Each sequence and each set could also be empty:

— 〈ǫ〉 — denotes an empty sequence;

— {} — denotes an empty set.

D.1.2 Precondition auxiliary function

MAPPreconditionToAspectJCode: TN x TMod x SCN x SIN x MN x MMod x FP x

PTN x PIN x RT x SC → AspectJ Code

MAPPreconditionToAspectJCode[[TN, TMod, SCN,SIN, MN, MMod,FP, PTN, PIN, RT, SC ]] △

if SC 6= 〈ǫ〉
then if ‘static’ ∈ MMod

then 〈〈staticBeforeAdviceForPreconditionChecking〉〉
〈〈staticPreconditionChekingMethod〉〉

else if ‘interface’ ∈ TMod

then 〈〈preconditionChekingMethod〉〉
else 〈〈beforeAdviceForPreconditionChecking〉〉

〈〈preconditionChekingMethod〉〉

〈〈beforeAdviceForPreconditionChecking〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

before (TN current, T1 Id1,...,Tz Idz):

execution (RT TN.MN (T1,...,Tz)) &&

within (TN) &&

this (current) &&

args (Id1,...,Idn){

if (!current.check$MN$TN (Id1,...,Idz)){

throw new JMLInternalPreconditionError();

}

}

〈〈preconditionChekingMethod〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

if (SCN 6= ‘java.lang.Object’) ∨ (SIN 6= {})
then let 〈SIN1,...SINn〉 = PTN in

public boolean TN .check$MN$TN (T1 Id1,...,Tz Idz){
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return 〈〈preconditionsToCheck 〉〉 ||

checkPre$MN$SCN (Id1,...,Idz) ||

checkPre$MN$SIN1(Id1,...,Idz),...,||

checkPre$MN$SINn(Id1,...,Idz);

}

else

public boolean TN .check$MN$TN (T1 Id1,...,Tz Idz){

return 〈〈preconditionsToCheck 〉〉;
}

〈〈preconditionsToCheck 〉〉≡
if SC = 〈ǫ〉
then

false

else let 〈P ,Q ,R 〉 = SC in

if P 6= 〈ǫ〉
then let 〈P1,...Pk〉 = P in

P 1 || ... || P k

else

true

〈〈staticBeforeAdviceForPreconditionChecking〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

before (T1 Id1,...,Tz Idz):

execution (RT TN.MN (T1,...,Tz)) &&

args (Id1,...,Idn){

if (!TN.check$MN$TN (Id1,...,Idz)){

throw new JMLInternalPreconditionError();

}

}

〈〈staticPreconditionChekingMethod〉〉≡
let 〈T1,Id1...Tz,Idz〉 = FP in

public static boolean TN .check$MN$TN (T1 Id1,...,Tz Idz){

return P 1 || ... || P k;

}

D.1.3 Postcondition auxiliary function

MAPPostconditionToAspectJCode: TN, x MN x MMod x FP x PTN x PIN x

RT x Ex x SC → AspectJ Code

MAPPostconditionToAspectJCode[[TN, MN, MMod, FP, PTN,PIN, RT, Ex, SC ]] △

if SC 6= 〈ǫ〉
then let 〈P ,Q ,R 〉 = SC in

if (Q 6= 〈ǫ〉) ∨ (R 6= 〈ǫ〉)
then let 〈Q1,...Qk〉 = Q in
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let 〈R1,...Rk〉 = R in

if ‘static’ ∈ MMod

then 〈〈staticAroudAdviceForPostconditionChecking〉〉
else 〈〈aroudAdviceForPostconditionChecking〉〉

〈〈aroundAdviceForPostconditionChecking〉〉≡
let 〈Ex1,...Exs〉 = Ex in

let 〈T1,Id1,...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

RT around (TN current, T1 Id1,...,Tz Idz) throws Ex1,...Exs :

execution (RT TN.MN(T1,...,Tz)) &&

this (current) &&

args (Id1,...,Idz) {

RT rac$result; // represents the return of the method

try{

〈〈saveAllOldValues 〉〉
try{

// executing the original method

rac$result = proceed(current, Id1,...,Idz);

〈〈checkNormalPostcondition〉〉
} catch (Throwable rac$e){

〈〈rethrowJMLException 〉〉
〈〈checkExceptionalPostcondition〉〉

}

} catch (Throwable rac$cause){

throw new JMLEvaluationError(rac$cause);

}

}

〈〈staticAroundAdviceForPostconditionChecking〉〉≡
let 〈Ex1,...Exs〉 = Ex in

let 〈T1,Id1,...Tz,Idz〉 = FP in

let 〈T1,...Tz〉 = PTN in

let 〈Id1...Idz,〉 = PIN in

RT around (T1 Id1,...,Tz Idz) throws Ex1,...Exs :

execution (static RT TN.MN(T1,...,Tz)) &&

args (Id1,...,Idz) {

RT rac$result; // represents the return of the method

try{

〈〈saveAllOldValues 〉〉
try{

// executing the original method

rac$result = proceed(current, Id1,...,Idz);

〈〈checkNormalPostcondition〉〉
} catch (Throwable rac$e){

〈〈rethrowJMLException 〉〉
〈〈checkExceptionalPostcondition〉〉

}
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} catch (Throwable rac$cause){

throw new JMLEvaluationError(rac$cause);

}

}

〈〈saveAllOldValues 〉〉≡
old$v1 := v1;

...

old$vf := vf;

〈〈checkNormalPostcondition〉〉≡
if(!((!(P 1[[vi:=old$vi]] || Q 1[[vi:=old$vi]]) &&

... && (!(P k[[vi:=old$vi]] || Q k[[vi:=old$vi]]))){
throw new JMLInternalNormalPostconditionError();

}

〈〈rethrowJMLException 〉〉≡
if(rac$e instanceof JMLInternalNormalPostconditionError){

throw (JMLInternalNormalPostconditionError) rac$e;

}

〈〈checkExceptionalPostcondition〉〉≡
boolean rac$v = true;

boolean rac$pre1 = P 1[[vi:=old$vi]];
if(rac$v && rac$pre1){

if(rac$e instanceof X 11){

boolean flag1 = true;

X 11 e 11 = (X 11)rac$e;

flag1 = R 1[[vi:=old$vi]];
rac$v = rac$v && flag1;

}

...

}

...

boolean rac$prek = P k[[vi:=old$vi]];
if(rac$v && rac$prek){

if(rac$e instanceof X k1){

boolean flagk1 = true;

X k1 e k1 = (X k1)rac$e;

flagk1 = R k[[vi:=old$vi]];
rac$v = rac$v && flagk1;

}

...

}

if(!rac$v){

throw new JMLInternalExceptionalPostconditionError();

}

else{
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if(rac$e instanceof X 11){

throw (X 11) rac$e;

}

...

if(rac$e instanceof X kj){

throw (X kj) rac$e;

}

}

D.1.4 Invariant auxiliary functions

MAPInstanceInvariantBMEToAspectJCode: TN x Inst Inv → AspectJ Code

MAPInstanceInvariantBMEToAspectJCode[[TN, Inst Inv ]] △

if Inst Inv 6= {}
then let {InstInv 1 && ... && InstInv r} = Inst Inv

before ( TN current):

execution (!static * TN.*(..)) &&

this (current) {

〈〈checkInstanceInvariant〉〉
}

MAPInstanceInvariantAMEToAspectJCode: TN x Inst Inv → AspectJ Code

MAPInstanceInvariantAMEToAspectJCode[[TN, Inst Inv ]] △

if Inst Inv 6= {}
then let {Inst Inv 1 && ... && Inst Inv r} = Inst Inv

after ( TN current) returning (Object o):

execution (!static * TN.*(..)) &&

this (current) {

〈〈checkInstanceInvariant〉〉
}

after ( TN current) throwing (Throwable rac$thrown):

execution (!static * TN.*(..)) &&

this (current) {

〈〈rethrowJMLException 〉〉
else {

〈〈checkInstanceInvariant〉〉
}

}

〈〈checkInstanceInvariant〉〉≡
if (!(Inst Inv 1 && ... && Inst Inv r)){

throw new JMLInvariantError();

}

〈〈rethrowJMLException 〉〉≡
if (rac$thrown instanceof JMLInternalPreconditionError) {

throw (JMLInternalPreconditionError) rac$thrown;
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}

...

else if (rac$thrown instanceof JMLInvariantError) {

throw (JMLInvariantError) rac$thrown;

}

MAPStaticInvariantBMEToAspectJCode: TN x TMod x Stat Inv → AspectJ Code

MAPStaticInvariantBMEToAspectJCode[[TN, TMod,Stat Inv ]] △

if Stat Inv 6= {}
then let {Stat Inv 1 && ... && Stat Inv s} = Inst Inv

if ‘interface’ in TMod

then

before ():

execution (* TN +.*(..)) {

〈〈checkStaticInvariant 〉〉
}

else

before ():

execution (* TN.*(..)) {

〈〈checkStaticInvariant 〉〉
}

MAPStaticInvariantAMEToAspectJCode: TN x TMod x Stat Inv → AspectJ Code

MAPStaticInvariantAMEToAspectJCode[[TN, TMod,Stat Inv ]] △

if Stat Inv 6= {}
then let {Stat Inv 1 && ... && Stat Inv s} = Inst Inv

if ‘interface’ in TMod

then

after () returning (Object o):

execution (* TN +.*(..)) {

〈〈checkStaticInvariant 〉〉
}

after () throwing (Throwable rac$thrown):

execution (* TN +.*(..)) {

〈〈rethrowJMLException 〉〉
else {

〈〈checkStaticInvariant 〉〉
}

}

else

after () returning (Object o):

execution (* TN.*(..)) {

〈〈checkStaticInvariant 〉〉
}

after () throwing (Throwable rac$thrown):

execution (* TN.*(..)) {

〈〈rethrowJMLException 〉〉
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else {

〈〈checkStaticInvariant 〉〉
}

}

〈〈checkStaticInvariant 〉〉≡
if (!(Stat Inv 1 && ... && Stat Inv s)){

throw new JMLInvariantError();

}

D.2 Complete translation rules

In the following we present all translation rules needed to translate a JML annotated
Java type into an aspect.

MAPJmlToAspectJAspect[[Annotated Java Type ]] △

let TN, TMod, Meth, SCN, SIN,

Inst Inv, Stat Inv = Annotated Java Type in

let StatInvBefore = MAPStaticInvariantBMEToAspectJCode[[Stat Inv ]] in

let InstInvBefore = MAPInstanceInvariantBMEToAspectJCode[[Inst Inv ]] in

if Meth 6= 〈ǫ〉
then let 〈Meth1,...Methm〉 = Meth in

let TMod1, MN1, FP1, PTN1, PIN1, RT1, Ex1, SC1 = Meth1 in

...

let TModm, MNm, FPm, PTNm, PINm, RTm, Exm, SCm = Methm in

let Precondition1 = MAPPreconditionToAspectJCode[[TN ,TMod,SCN ,SIN ,MN1,

MMod1,FP1,PTN1,PIN1,RT1,SC1]] in

...

let Preconditionm = MAPPreconditionToAspectJCode[[TN ,TMod,SCN ,SIN ,MNm,

MModm,FPm,PTNm,PINm,RTm,SCm]] in

let Postcondition1 = MAPPostconditionToAspectJCode[[TN ,MN1,MMod1,FP1,

PTN1,PIN1,RT1,Ex1,SC1]] in

...

let Postconditionm = MAPPostconditionToAspectJCode[[TN ,MNm,MModm,FPm,

PTNm,PINm,RTm,Exm,SCm]] in

let InstInvAfter = MAPInstanceInvariantAMEToAspectJCode[[Inst Inv ]] in

let StatInvAfter = MAPStaticInvariantAMEToAspectJCode[[Stat Inv ]] in

if Meth 6= 〈ǫ〉
then let AspectJCode = StatInvBefore ∪ InstInvBefore ∪

〈Precondition1,Postcondition1〉 ... ∪ 〈Preconditionm,Postconditionm〉
∪ InstInvAfter ∪ StatInvAfter in

else let AspectJCode = StatInvBefore ∪ InstInvBefore ∪ InstInvAfter

∪ StatInvAfter in

if AspectJCode 6= ǫ

then

public privileged aspect AspectJMLRac$TN {

AspectJCode

}
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Appendix E

Source code used in Proofs of
Concept

In this Appendix, we make available all source code used in the Chapter 4. The source
code listed below contains the annotated classes and their instrumentation code gener-
ated by the ajmlc compiler.

E.1 Study with Java ME platform

E.1.1 Source code of the example

The following Java source code is a MIDlet [56, 63] application annotated with JML. It
is used as a input source file for all versions (CalcAspSol, CalcJmlSol, and CalcPureSol)
of the study conducted in Section 4.1.

CalculatorMIDlet.java

public final class CalculatorMIDlet extends MIDlet implements CommandListener {

/** The number of characters in numeric text field. */

private static final int NUM_SIZE = 20;

/** Soft button for exiting the game. */

private final Command exitCmd = new Command("Exit", Command.EXIT, 2);

/** Menu item for changing game levels. */

private final Command calcCmd = new Command("Calc", Command.SCREEN, 1);

/** A text field to keep the first argument. */

private final TextField t1 = new TextField(null, "",

NUM_SIZE, TextField.DECIMAL);

/** A text field to keep the second argument. */

private final TextField t2 = new TextField(null, "",

NUM_SIZE, TextField.DECIMAL);
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/** A text field to keep the result of calculation. */

private final TextField tr = new TextField("Result", "",

NUM_SIZE, TextField.UNEDITABLE);

/** A choice group with available operations. */

private final ChoiceGroup cg =

new ChoiceGroup("", ChoiceGroup.POPUP,

new String[] { "add", "subtract", "multiply", "divide",

"invariatViolation" }, null);

/** An alert to be reused for different errors. */

private final Alert alert = new Alert("Error", "", null, AlertType.ERROR);

/** Indicates if the application is initialized. */

private boolean isInitialized = false;

/** Added for experiment. */

//@ public instance invariant result >= 0;

public double result = 0.0;

public void method(){

result = -1;

}

/**

* Creates the calculator view and action buttons.

*/

protected void startApp() {

if (isInitialized) {

return;

}

Form f = new Form("FP Calculator");

f.append(t1);

f.append(cg);

f.append(t2);

f.append(tr);

f.addCommand(exitCmd);

f.addCommand(calcCmd);

f.setCommandListener(this);

Display.getDisplay(this).setCurrent(f);

alert.addCommand(new Command("Back", Command.SCREEN, 1));

isInitialized = true;

}

/**

* Does nothing. Redefinition is required by MIDlet class.

*/

protected void destroyApp(boolean unconditional) {
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}

/**

* Does nothing. Redefinition is required by MIDlet class.

*/

protected void pauseApp() {

}

//@ ensures result ; == a + b;

public double add(double a, double b){

return a + b;

}

//@ requires b <= a;

//@ ensures result ; == a - b;

public double sub(double a, double b){

return a - b;

}

//@ ensures result ; == a * b;

public double mult(double a, double b){

return a * b;

}

//@ requires b > 0;

//@ ensures result ; == a / b;

public double div(double a, double b){

return a / b;

}

/**

* Responds to commands issued on CalculatorForm.

*

* @param c command object source of action

* @param d screen object containing the item the action was performed on.

*/

public void commandAction(Command c, Displayable d) {

if (c == exitCmd) {

destroyApp(false);

notifyDestroyed();

return;

}

try {

double n1 = getNumber(t1, "First");

double n2 = getNumber(t2, "Second");

switch (cg.getSelectedIndex()) {

case 0:
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result = add(n1, n2);

break;

case 1:

result = sub(n1, n2);

break;

case 2:

result = mult(n1, n2);

break;

case 3:

result = div(n1, n2);

break;

case 4:

method();

break;

default:

}

} catch (NumberFormatException e) {

return;

} catch (ArithmeticException e) {

alert.setString("Divide by zero.");

Display.getDisplay(this).setCurrent(alert);

return;

}

/*

* The resulted string may exceed the text max size.

* We need to correct last one then.

*/

String res_str = Double.toString(result);

if (res_str.length() > tr.getMaxSize()) {

tr.setMaxSize(res_str.length());

}

tr.setString(res_str);

}

/**
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* Extracts the double number from text field.

*

* @param t the text field to be used.

* @param type the string with argument number.

* @throws NumberFormatException is case of wrong input.

*/

private double getNumber(TextField t, String type)

throws NumberFormatException {

String s = t.getString();

if (s.length() == 0) {

alert.setString("No " + type + " Argument");

Display.getDisplay(this).setCurrent(alert);

throw new NumberFormatException();

}

double n;

try {

n = Double.parseDouble(s);

} catch (NumberFormatException e) {

alert.setString(type + " argument is out of range.");

Display.getDisplay(this).setCurrent(alert);

throw e;

}

return n;

}

}// end of class ’CalculatorMIDlet’ definition

E.1.2 Instrumented code generated of the example

By compiling the Java ME calculator application with ajmlc compiler, we obtain the
following instrumented code (represented by the CalcAspSol version of the study con-
ducted in Section 4.1.):

AspectJMLRac CalculatorMIDlet.aj

public privileged aspect AspectJMLRac T {

/** Generated by JML to insert a precondition

* checking method for the method m. */

public boolean T.checkPre$m$T(int x){

return (((true)));

}

/** Generated by JML to check non-static invariants of

* class CalculatorMIDlet. */

before (calculator.CalculatorMIDlet current) :
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execution(!static * calculator.CalculatorMIDlet.*(..)) &&

this(current) {

if (!(((current.result >= +0.0D)))) {

throw new JMLInvariantError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method method. */

public boolean calculator.CalculatorMIDlet.checkPre$method$CalculatorMIDlet(){

return true;

}

/** Generated by JML to insert a precondition

* checking method for the method startApp. */

public boolean calculator.CalculatorMIDlet.checkPre$startApp$CalculatorMIDlet(){

return true;

}

/** Generated by JML to insert a precondition

* checking method for the method destroyApp. */

public boolean calculator.CalculatorMIDlet.

checkPre$destroyApp$CalculatorMIDlet(boolean unconditional){

return true;

}

/** Generated by JML to insert a precondition

* checking method for the method pauseApp. */

public boolean calculator.CalculatorMIDlet.checkPre$pauseApp$CalculatorMIDlet(){

return true;

}

/** Generated by JML to insert a precondition

* checking method for the method add. */

public boolean calculator.CalculatorMIDlet.

checkPre$add$CalculatorMIDlet(double a, double b){

return (((true)));

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method add. */

double around (calculator.CalculatorMIDlet current, double a, double b) :

execution(double calculator.CalculatorMIDlet.add( double, double ))

&& this(current) && args(a, b) {

double rac$result = 0;

// Pre-state environment

// saving all old values
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rac$result = proceed(current,a, b);//executing the method

// Post-state environment

if (!(!((true)) || (((rac$result == (a + b)))))){

throw new JMLInternalNormalPostconditionError("");

}

return rac$result;

}

/** Generated by JML to insert a precondition

* checking method for the method sub. */

public boolean calculator.CalculatorMIDlet.

checkPre$sub$CalculatorMIDlet(double a, double b){

return (((b <= a)));

}

/** Generated by JML to check the precondition of

* method sub. */

before (calculator.CalculatorMIDlet current, double a, double b) :

execution(double calculator.CalculatorMIDlet.sub( double, double )) &&

within(calculator.CalculatorMIDlet) &&

this(current) && args(a, b) {

if (!current.checkPre$sub$CalculatorMIDlet(a, b)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method sub. */

double around (calculator.CalculatorMIDlet current, double a, double b) :

execution(double calculator.CalculatorMIDlet.sub( double, double ))

&& this(current) && args(a, b) {

double rac$result = 0;

// Pre-state environment

// saving all old values

rac$result = proceed(current,a, b);//executing the method

// Post-state environment

if (!(!(((b <= a))) || (((rac$result == (a - b)))))){

throw new JMLInternalNormalPostconditionError("");

}

return rac$result;
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}

/** Generated by JML to insert a precondition

* checking method for the method mult. */

public boolean calculator.CalculatorMIDlet.

checkPre$mult$CalculatorMIDlet(double a, double b){

return (((true))) ;

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method mult. */

double around (calculator.CalculatorMIDlet current, double a, double b) :

execution(double calculator.CalculatorMIDlet.mult( double, double ))

&& this(current) && args(a, b) {

double rac$result = 0;

// Pre-state environment

// saving all old values

rac$result = proceed(current,a, b);//executing the method

// Post-state environment

if (!(!((true)) || (((rac$result == (a * b)))))){

throw new JMLInternalNormalPostconditionError("");

}

return rac$result;

}

/** Generated by JML to insert a precondition

* checking method for the method div. */

public boolean calculator.CalculatorMIDlet.

checkPre$div$CalculatorMIDlet(double a, double b){

return (((b > +0.0D)));

}

/** Generated by JML to check the precondition of

* method div. */

before (calculator.CalculatorMIDlet current, double a, double b) :

execution(double calculator.CalculatorMIDlet.div( double, double )) &&

within(calculator.CalculatorMIDlet) &&

this(current) && args(a, b) {

if (!current.checkPre$div$CalculatorMIDlet(a, b)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)
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* exceptional postcondition of method div. */

double around (calculator.CalculatorMIDlet current, double a, double b) :

execution(double calculator.CalculatorMIDlet.div( double, double ))

&& this(current) && args(a, b) {

double rac$result = 0;

// Pre-state environment

// saving all old values

rac$result = proceed(current,a, b);//executing the method

// Post-state environment

if (!(!(((b > +0.0D))) || (((rac$result == (a / b)))))){

throw new JMLInternalNormalPostconditionError("");

}

return rac$result;

}

/** Generated by JML to insert a precondition

* checking method for the method commandAction. */

public boolean calculator.CalculatorMIDlet.

checkPre$commandAction$CalculatorMIDlet(javax.microedition.lcdui.Command c,

javax.microedition.lcdui.Displayable d){

return true;

}

/** Generated by JML to insert a precondition

* checking method for the method getNumber. */

public boolean calculator.CalculatorMIDlet.

checkPre$getNumber$CalculatorMIDlet(javax.microedition.lcdui.TextField t,

java.lang.String type){

return true;

}

/** Generated by JML to check non-static invariants of

* class CalculatorMIDlet. */

after (calculator.CalculatorMIDlet current)returning (Object o) :

execution(!static * calculator.CalculatorMIDlet.*(..)) &&

this(current) {

if (!(((current.result >= +0.0D)))) {

throw new JMLInvariantError("");

}

}

/** Generated by JML to check non-static invariants of

* class CalculatorMIDlet. */

after (calculator.CalculatorMIDlet current)throwing (Throwable rac$thrown) :
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execution(!static * calculator.CalculatorMIDlet.*(..)) &&

this(current) {

if (rac$thrown instanceof JMLInternalPreconditionError) {

throw (JMLInternalPreconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalNormalPostconditionError) {

throw (JMLInternalNormalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalExceptionalPostconditionError) {

throw (JMLInternalExceptionalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInvariantError) {

throw (JMLInvariantError) rac$thrown;

}

else {

if (!(((current.result >= +0.0D)))) {

throw new JMLInvariantError("");

}

}

}

/** Generated by JML to check static and non-static invariants of

* class CalculatorMIDlet. */

after (calculator.CalculatorMIDlet current)returning (Object o) :

execution(calculator.CalculatorMIDlet.new(..)) &&

this(current) &&

if (current.getClass() == calculator.CalculatorMIDlet.class) {

if (!(((current.result >= +0.0D)))) {

throw new JMLInvariantError("");

}

}

/** Generated by JML to check static and non-static invariants of

* class CalculatorMIDlet. */

after (calculator.CalculatorMIDlet current)throwing (Throwable rac$thrown) :

execution(calculator.CalculatorMIDlet.new(..)) &&

this(current) &&

if (current.getClass() == calculator.CalculatorMIDlet.class) {

if (rac$thrown instanceof JMLInternalPreconditionError) {

throw (JMLInternalPreconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalNormalPostconditionError) {

throw (JMLInternalNormalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalExceptionalPostconditionError) {
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throw (JMLInternalExceptionalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInvariantError) {

throw (JMLInvariantError) rac$thrown;

}

else {

if (!(((current.result >= +0.0D)))) {

throw new JMLInvariantError("");

}

}

}

}

E.2 Study with Java SE platform

E.2.1 Source code of the examples

The following five Java source codes are Java SE applications annotated with JML.
They were used in an experimentation conducted in Section 4.2.

Animal.java

public class Animal {

public String gender;

protected boolean gen; //@ in gender;

protected /*@ spec_public @*/ int age = 0;

//@ requires g.equals("female") || g.equals("male");

//@ assignable gender;

//@ ensures gender.equals(g);

public Animal(final String g) {

gen = g.equals("female");

}

public /*@ pure @*/ boolean isFemale() {

return gen;

}

/*@ requires 0 <= a && a <= 150;

@ assignable age;

@ ensures age == a;

@ also

@ requires a < 0;

@ assignable age;

@ ensures age == \old(age);

@*/

public void setAge(final int a) {
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if (0 <= a) { age = a; }

}

//@ requires k > 0;

public void j(int k){

}

}

Person.java

public class Person extends Animal {

public String gender;

protected boolean gen; //@ in gender;

protected /*@ spec_public @*/ int age = 0;

//@ requires g.equals("female") || g.equals("male");

//@ assignable gender;

//@ ensures gender.equals(g);

public Animal(final String g) {

gen = g.equals("female");

}

public /*@ pure @*/ boolean isFemale() {

return gen;

}

/*@ requires 0 <= a && a <= 150;

@ assignable age;

@ ensures age == a;

@ also

@ requires a < 0;

@ assignable age;

@ ensures age == \old(age);

@*/

public void setAge(final int a) {

if (0 <= a) { age = a; }

}

//@ requires k > 0;

public void j(int k){

}

}

Patient.java

public class Patient extends Person {
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//@ public invariant 0 <= age && age <= 150;

protected /*@ spec_public@*/ List history;

/*@ requires !obs.equals("");

@ assignable history;

@ ensures history.size() == \old(history.size()+1)

@ && history.get(\old(history.size()+1)).equals(obs);

@*/

public void recordVisit(String obs) {

history.add(new String(obs));

}

//@ requires g.equals("female") || g.equals("male");

//@ assignable gender, history;

//@ ensures gender.equals(g);

public Patient(String g) {

super(g); history = new ArrayList();

}

}

IntMathOps.java

public class IntMathOps {

/*@ public normal_behavior

@ requires y >= 0;

@ assignable \nothing;

@ ensures 0 <= \result

@ && \result * \result <= y

@ && ((0 <= (\result + 1) * (\result + 1))

@ ==> y < (\result + 1) * (\result + 1));

@*/

public static int isqrt(int y){

return (int) Math.sqrt(y);

}

}

StackAsArray.java

public class StackAsArray {

public Object [] array;

/*@ public normal_behavior

@ requires size >= 0;

@ assignable array;

@ ensures length() == size;

@*/
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public StackAsArray(int size) {

}

/*@ public normal_behavior

@ requires e != null;

@ assignable array;

@ ensures length() == \old(length() + 1);

@*/

public void push(Object e) {

}

/*@ public exceptional_behavior

@ signals (Exception e) isEmpty()

@ && (e instanceof IllegalStateException);

@*/

public void pop() {

}

/*@ public behavior

@ assignable \nothing;

@ ensures \result != null;

@ ensures !isEmpty();

@ signals (Exception e) isEmpty()

@ && (e instanceof IllegalStateException);

@*/

public Object top() {

return null;

}

//@ ensures length() == 0;

public /*@ pure @*/ boolean isEmpty() {

return true;

}

public /*@ pure @*/ int length() {

return 0;

}

}

E.2.2 Instrumented code generated of the examples

By compiling the five Java SE applications with ajmlc compiler, we obtain the following
instrumented codes:

AspectJMLRac Animal.aj

public privileged aspect AspectJMLRac Animal {
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/** Generated by JML to check the precondition of

* method Animal. */

before (Animal current, final java.lang.String g) :

execution(Animal.new( java.lang.String )) &&

this(current) &&

if (current.getClass() == Animal.class) && args(g) {

if (!(((g.equals(((java.lang.Object) ("female"))) ||

g.equals(((java.lang.Object) ("male"))))))) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method Animal. */

void around (Animal current, final java.lang.String g) :

execution(Animal.new( java.lang.String )) &&

if (current.getClass() == Animal.class)

&& this(current) && args(g) {

// Pre-state environment

// saving all old values

proceed(current,g);//executing the method

// Post-state environment

if (!(!(((g.equals(((java.lang.Object) ("female"))) ||

g.equals(((java.lang.Object) ("male")))))) ||

((current.gender.equals(((java.lang.Object) (g))))))){

throw new JMLInternalNormalPostconditionError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method isFemale. */

public boolean Animal.checkPre$isFemale$Animal(){

return true;

}

/** Generated by JML to insert a precondition

* checking method for the method setAge. */

public boolean Animal.checkPre$setAge$Animal(final int a){

return ((((0 <= a) && (a <= 150))) || ((a < 0)));

}

/** Generated by JML to check the precondition of

* method setAge. */

before (Animal current, final int a) :

execution(void Animal.setAge( int )) &&

within(Animal) &&
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this(current) && args(a) {

if (!current.checkPre$setAge$Animal(a)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method setAge. */

void around (Animal current, final int a) :

execution(void Animal.setAge( int ))

&& this(current) && args(a) {

// Pre-state environment

// saving all old values

int old_age = current.age;

proceed(current,a);//executing the method

// Post-state environment

if (!(!((((0 <= a) && (a <= 150))))

|| (((current.age == a)))) && (!(((a < 0)))

|| (((current.age == old_age))))){

throw new JMLInternalNormalPostconditionError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method j. */

public boolean Animal.checkPre$j$Animal(int k){

return (((k > 0)));

}

/** Generated by JML to check the precondition of

* method j. */

before (Animal current, int k) :

execution(void Animal.j( int )) &&

within(Animal) &&

this(current) && args(k) {

if (!current.checkPre$j$Animal(k)) {

throw new JMLInternalPreconditionError("");

}

}

}

AspectJMLRac Person.aj

public privileged aspect AspectJMLRac Person {
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/** Generated by JML to insert a precondition

* checking method for the method setAge. */

public boolean Person.checkPre$setAge$Person(final int a){

return super.checkPre$setAge$Animal(a);

}

/** Generated by JML to check the precondition of

* method setAge. */

before (Person current, final int a) :

execution(void Person.setAge( int )) &&

within(Person) &&

this(current) && args(a) {

if (!current.checkPre$setAge$Person(a)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method setAge. */

void around (Person current, final int a) :

execution(void Person.setAge( int ))

&& this(current) && args(a) {

// Pre-state environment

// saving all old values

proceed(current,a); //executing the method

// Post-state environment

if (!(!current.checkPre$setAge$Person(a)

|| (((!((65 <= current.age))

|| current.ageDiscount))))){

throw new JMLInternalNormalPostconditionError("");

}

}

/** Generated by JML to check the precondition of

* method Person. */

before (Person current, final java.lang.String g) :

execution(Person.new( java.lang.String )) &&

this(current) &&

if (current.getClass() == Person.class) && args(g) {

if (!(((g.equals(((java.lang.Object) ("female")))

|| g.equals(((java.lang.Object) ("male"))))))) {

throw new JMLInternalPreconditionError("");

}

}
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/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method Person. */

void around (Person current, final java.lang.String g) :

execution(Person.new( java.lang.String )) &&

if (current.getClass() == Person.class)

&& this(current) && args(g) {

// Pre-state environment

// saving all old values

proceed(current,g);//executing the method

// Post-state environment

if (!(!(((g.equals(((java.lang.Object) ("female")))

|| g.equals(((java.lang.Object) ("male"))))))

|| ((current.gender.equals(((java.lang.Object) (g))))))){

throw new JMLInternalNormalPostconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method m. */

int around (int x) :

execution(static int Person.m( int )) &&

within(Person)

&& args(x) {

int rac$result = 0;

// Pre-state environment

// saving all old values

rac$result = proceed(x); //executing the method

// Post-state environment

if (!(!((true)) || (((x > 0))))){

throw new JMLInternalNormalPostconditionError("");

}

return rac$result;

}

/** Generated by JML to insert a precondition

* checking method for the method j. */

public boolean Person.checkPre$j$Person(int k){

return super.checkPre$j$Animal(k);

}

/** Generated by JML to insert a precondition

* checking method for the method j. */

before (Person current, int k) :

execution(void Person.j( int )) &&
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within(Person) &&

this(current) && args(k) {

if (!current.checkPre$j$Person(k)) {

throw new JMLInternalPreconditionError("");

}

}

}

AspectJMLRac Patient.aj

public privileged aspect AspectJMLRac Patient {

/** Generated by JML to check non-static invariants of

* class Patient. */

before (Patient current) :

execution(!static * Patient.*(..)) &&

this(current) {

if (!((((0 <= current.age) && (current.age <= 150))))) {

throw new JMLInvariantError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method recordVisit. */

public boolean Patient.checkPre$recordVisit$Patient(java.lang.String obs){

return ((!(obs.equals(((java.lang.Object) (""))))));

}

/** Generated by JML to check the precondition of

* method recordVisit. */

before (Patient current, java.lang.String obs) :

execution(void Patient.recordVisit( java.lang.String )) &&

within(Patient) &&

this(current) && args(obs) {

if (!current.checkPre$recordVisit$Patient(obs)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method recordVisit. */

void around (Patient current, java.lang.String obs) :

execution(void Patient.recordVisit( java.lang.String ))

&& this(current) && args(obs) {

// Pre-state environment
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// saving all old values

java.util.List old_history = current.history;

proceed(current,obs); //executing the method

// Post-state environment

if (!(!((!(obs.equals(((java.lang.Object) (""))))))

|| ((((current.history.size() == (old_history.size() + 1))

&& current.history.get((old_history.size() + 1)).

equals(((java.lang.Object) (obs)))))))){

throw new JMLInternalNormalPostconditionError("");

}

}

/** Generated by JML to check the precondition of

* method Patient. */

before (Patient current, java.lang.String g) :

execution(Patient.new( java.lang.String )) &&

this(current) &&

if (current.getClass() == Patient.class) && args(g) {

if (!(((g.equals(((java.lang.Object) ("female")))

|| g.equals(((java.lang.Object) ("male"))))))) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method Patient. */

void around (Patient current, java.lang.String g) :

execution(Patient.new( java.lang.String )) &&

if (current.getClass() == Patient.class)

&& this(current) && args(g) {

// Pre-state environment

// saving all old values

proceed(current,g); //executing the method

// Post-state environment

if (!(!(((g.equals(((java.lang.Object) ("female")))

|| g.equals(((java.lang.Object) ("male"))))))

|| ((current.gender.equals(((java.lang.Object) (g))))))){

throw new JMLInternalNormalPostconditionError("");

}

}

/** Generated by JML to check non-static invariants of

* class Patient. */

after (Patient current)returning (Object o) :

execution(!static * Patient.*(..)) &&
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this(current) {

if (!((((0 <= current.age) && (current.age <= 150))))) {

throw new JMLInvariantError("");

}

}

/** Generated by JML to check non-static invariants of

* class Patient. */

after (Patient current)throwing (Throwable rac$thrown) :

execution(!static * Patient.*(..)) &&

this(current) {

if (rac$thrown instanceof JMLInternalPreconditionError) {

throw (JMLInternalPreconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalNormalPostconditionError) {

throw (JMLInternalNormalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalExceptionalPostconditionError) {

throw (JMLInternalExceptionalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInvariantError) {

throw (JMLInvariantError) rac$thrown;

}

else {

if (!((((0 <= current.age) && (current.age <= 150))))) {

throw new JMLInvariantError("");

}

}

}

/** Generated by JML to check static and non-static invariants of

* class Patient. */

after (Patient current)returning (Object o) :

execution(Patient.new(..)) &&

this(current) &&

if (current.getClass() == Patient.class) {

if (!((((0 <= current.age) && (current.age <= 150))))) {

throw new JMLInvariantError("");

}

}

/** Generated by JML to check static and non-static invariants of

* class Patient. */

after (Patient current)throwing (Throwable rac$thrown) :

execution(Patient.new(..)) &&

this(current) &&
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if (current.getClass() == Patient.class) {

if (rac$thrown instanceof JMLInternalPreconditionError) {

throw (JMLInternalPreconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalNormalPostconditionError) {

throw (JMLInternalNormalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInternalExceptionalPostconditionError) {

throw (JMLInternalExceptionalPostconditionError) rac$thrown;

}

else if (rac$thrown instanceof JMLInvariantError) {

throw (JMLInvariantError) rac$thrown;

}

else {

if (!((((0 <= current.age) && (current.age <= 150))))) {

throw new JMLInvariantError("");

}

}

}

}

AspectJMLRac IntMathOps.aj

public privileged aspect AspectJMLRac IntMathOps {

/** Generated by JML to insert a precondition

* checking method for the method isqrt. */

public static boolean IntMathOps.checkPre$isqrt$IntMathOps(int y){

return ((((y >= 0))));

}

/** Generated by JML to check the precondition of

* method isqrt. */

before (int y) :

execution(static int IntMathOps.isqrt( int )) &&

within(IntMathOps) && args(y) {

if (!IntMathOps.checkPre$isqrt$IntMathOps(y)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method isqrt. */

int around (int y) :

execution(static int IntMathOps.isqrt( int )) &&

within(IntMathOps)

&& args(y) {
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int rac$result = 0;

// Pre-state environment

// saving all old values

rac$result = proceed(y); //executing the method

// Post-state environment

if (!(!(((y >= 0))) || (((((0 <= rac$result)

&& ((rac$result * rac$result) <= y))

&& ((!(((0 <= (((rac$result + 1)) * ((rac$result + 1))))))

|| (y < (((rac$result + 1)) * ((rac$result + 1))))))))))){

throw new JMLInternalNormalPostconditionError("");

}

return rac$result;

}

}

AspectJMLRac StackAsArray.aj

public privileged aspect AspectJMLRac StackAsArray {

/** Generated by JML to check the precondition of

* method StackAsArray. */

before (StackAsArray current, int size) :

execution(StackAsArray.new( int )) &&

this(current) &&

if (current.getClass() == StackAsArray.class) && args(size) {

if (!((((size >= 0))))) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method StackAsArray. */

void around (StackAsArray current, int size) :

execution(StackAsArray.new( int )) &&

if (current.getClass() == StackAsArray.class)

&& this(current) && args(size) {

// Pre-state environment

// saving all old values

proceed(current,size); //executing the method

// Post-state environment

if (!(!(((size >= 0))) || (((current.length() == size))))){

throw new JMLInternalNormalPostconditionError("");

{
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}

/** Generated by JML to insert a precondition

* checking method for the method push. */

public boolean StackAsArray.checkPre$push$StackAsArray(java.lang.Object e){

return ((((e != null))));

}

/** Generated by JML to check the precondition of

* method push. */

before (StackAsArray current, java.lang.Object e) :

execution(void StackAsArray.push( java.lang.Object )) &&

within(StackAsArray) &&

this(current) && args(e) {

if (!current.checkPre$push$StackAsArray(e)) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method push. */

void around (StackAsArray current, java.lang.Object e) :

execution(void StackAsArray.push( java.lang.Object ))

&& this(current) && args(e) {

// Pre-state environment

// saving all old values

int old_length = current.length();

proceed(current,e); //executing the method

// Post-state environment

if (!(!(((e != null))) || (((current.length() == (old_length + 1)))))){

throw new JMLInternalNormalPostconditionError("");

}

}

/** Generated by JML to insert a precondition

* checking method for the method pop. */

public boolean StackAsArray.checkPre$pop$StackAsArray(){

return (((true))) ;

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method pop. */

void around (StackAsArray current) :

execution(void StackAsArray.pop( )) &&

this(current) {
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// Pre-state environment

// saving all old values

try {

proceed(current); //executing the method

// Post-state environment

if (!(!((true)) || ((false)))){

throw new JMLInternalNormalPostconditionError("");

}

} catch (Throwable rac$e) {

if(rac$e instanceof JMLInternalNormalPostconditionError){

throw (JMLInternalNormalPostconditionError) rac$e;

}

boolean rac$v = true;

boolean rac$pre0 = (true);

if(rac$v && rac$pre0){

if(rac$e instanceof java.lang.Exception){

boolean flag1 = true;

java.lang.Exception e = (java.lang.Exception)rac$e;

flag1 = ((current.isEmpty() &&

(e instanceof java.lang.IllegalStateException)));

rac$v = rac$v && flag1;

}

}

if(!rac$v){

throw new JMLInternalExceptionalPostconditionError("");

}

}

}

/** Generated by JML to insert a precondition

* checking method for the method top. */

public boolean StackAsArray.checkPre$top$StackAsArray(){

return (((true)));

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method top. */

java.lang.Object around (StackAsArray current) :

execution(java.lang.Object StackAsArray.top( ))

&& this(current) {

java.lang.Object rac$result = null;
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// Pre-state environment

// saving all old values

try {

rac$result = proceed(current); //executing the method

// Post-state environment

if (!(!((true)) || (((rac$result != null)) && (!(current.isEmpty()))))){

throw new JMLInternalNormalPostconditionError("");

}

} catch (Throwable rac$e) {

if(rac$e instanceof JMLInternalNormalPostconditionError){

throw (JMLInternalNormalPostconditionError) rac$e;

}

boolean rac$v = true;

boolean rac$pre0 = (true);

if(rac$v && rac$pre0){

if(rac$e instanceof java.lang.Exception){

boolean flag1 = true;

java.lang.Exception e = (java.lang.Exception)rac$e;

flag1 = ((current.isEmpty() &&

(e instanceof java.lang.IllegalStateException)));

rac$v = rac$v && flag1;

}

}

if(!rac$v){

throw new JMLInternalExceptionalPostconditionError("");

}

}

return rac$result;

}

/** Generated by JML to insert a precondition

* checking method for the method isEmpty. */

public boolean StackAsArray.checkPre$isEmpty$StackAsArray(){

return (((true))) ;

}

/** Generated by JML to insert a precondition

* checking method for the method isEmpty. */

before (StackAsArray current) :

execution(boolean StackAsArray.isEmpty( )) &&

within(StackAsArray) &&
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this(current) {

if (!current.checkPre$isEmpty$StackAsArray()) {

throw new JMLInternalPreconditionError("");

}

}

/** Generated by JML to check the normal (and/or)

* exceptional postcondition of method isEmpty. */

boolean around (StackAsArray current) :

execution(boolean StackAsArray.isEmpty())

&& this(current) {

boolean rac$result = false;

// Pre-state environment

// saving all old values

rac$result = proceed(current); //executing the method

// Post-state environment

if (!(!((true)) || (((current.length() == 0))))){

throw new JMLInternalNormalPostconditionError("");

}

return rac$result;

}

/** Generated by JML to insert a precondition

* checking method for the method length. */

public boolean StackAsArray.checkPre$length$StackAsArray(){

return true;

}

}
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Maciel, Raimundo Barreto, Meuse Oliveira Jr., and Eduardo Tavares. CML: C
Modeling Language. Journal of Universal Computer Science, 13(6):682–700, 2007.

116



[22] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[23] Filippo Diotalevi. Contract enforcement with AOP: Apply Design by Con-
tract to Java software development with AspectJ. July 2004. Avaliable at
http://www.ibm.com/developerworks/library/j-ceaop.

[24] Yishai A. Feldman, Ohad Barzilay, and Shmuel Tyszberowicz. Jose: Aspects for
Design by Contract80-89. sefm, 0:80–89, 2006.

[25] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In PLDI ’02: Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 234–245, New York, NY, USA, 2002. ACM.

[26] Lisa Friendly. The Design of Distributed Hyperlinked Programming Documenta-
tion. In IWHD, pages 151–173, 1995.

[27] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-
fication Second Edition. Addison-Wesley, Boston, Mass., 2000.

[28] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Speci-
fication, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional,
2005.

[29] John V. Guttag and James J. Horning, editors. Larch: Languages and Tools for
Formal Specification. Texts and Monographs in Computer Science. Springer-Verlag,
1993. With Stephen J. Garland, Kevin D. Jones, Andrés Modet, and Jeannette M.
Wing.

[30] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In AOSD ’04: Proceed-
ings of the 3rd international conference on Aspect-oriented software development,
pages 26–35, New York, NY, USA, 2004. ACM.

[31] Charles Antony R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

[32] Charles Antony R. Hoare. Proof of Correctness of Data Representations. Acta Inf.,
1:271–281, 1972.

[33] Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Assertion
with Aspect. In International Workshop on Software Engineering Properties for
Aspect Technologies (SPLAT2004), March 2004.

[34] Cliff B. Jones. Systematic software development using VDM (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[35] Gregor Kiczales. TheServerSide.COM: Interview with Gregor
Kiczales, topic: Aspect-oriented programming (AOP)., July 2003.
http://www.theserverside.com/tt/talks/videos/GregorKiczalesText/interview.tss.

117



[36] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William Griswold. Getting Started with AspectJ. Commun. ACM, 44(10):59–65,
2001.

[37] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., Greenwich, CT, USA, 2003.

[38] Gary T. Leavens. JML’s Rich, Inherited Specifications for Behavioral Subtypes.
In Zhiming Liu and He Jifeng, editors, Formal Methods and Software Engineering:
8th International Conference on Formal Engineering Methods (ICFEM), volume
4260 of Lecture Notes in Computer Science, pages 2–34, New York, NY, November
2006. Springer-Verlag.

[39] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a
behavioral interface specification language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

[40] Gary T. Leavens and Yoonsik Cheon. Preliminary design of larch/c++. In Proceed-
ings of the first First International Workshop on Larch, pages 159–184, London,
UK, 1993. Springer-Verlag.

[41] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
How the design of JML accommodates both runtime assertion checking and formal
verification. Sci. Comput. Program., 55(1-3):185–208, 2005.

[42] Gary T. Leavens and Peter Müller. Information Hiding and Visibility in Interface
Specifications. In ICSE, pages 385–395. IEEE Computer Society, 2007.

[43] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David R.
Cok, Peter Müller, Joseph Kiniry, and Patrice Chalin. JMLReference Manual.
Available from http://www.jmlspecs.org, October 2007.

[44] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java Programs
via Guarded Commands. In Proceedings of the Workshop on Object-Oriented Tech-
nology, pages 110–111, London, UK, 1999. Springer-Verlag.

[45] Martin Lippert and Cristina Videira Lopes. A study on exception detection and
handling using aspect-oriented programming. In ICSE ’00: Proceedings of the 22nd
international conference on Software engineering, pages 418–427, New York, NY,
USA, 2000. ACM.

[46] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst., 16(6):1811–1841, 1994.

[47] Fernando Henrique Calheiros Lopes. Otimizando Compiladores de AspectJ para
Java ME, 2007. The author’s B.Sc. dissertation.

[48] C. Marche, Paulin C. Mohring, and X. Urbain. The Krakatoa Tool for Certification
of Java/JavaCard Programs Annotated in JML. Journal of Logic and Algebraic
Programming, 58(1-2):89–106, 2004.

118

http://www.jmlspecs.org


[49] Marius Marin. Formalizing typical crosscutting concerns. CoRR, abs/cs/0606125,
2006.

[50] Marius Marin, Leon Moonen, and Arie van Deursen. A classification of crosscutting
concerns. In ICSM ’05: Proceedings of the 21st IEEE International Conference on
Software Maintenance, pages 673–676, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[51] Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40–51, 1992.

[52] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1992.

[53] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, PTR, 2nd
edition, 2000.

[54] Sun MicroSystems. Java 2 platform, standard edition, v 1.5.0 api specification.
Available from http://java.sun.com/j2se/1.5.0/docs/api/ (Date retrieved: August
20, 2007).

[55] Sun MicroSystems. Java Annotations. 2007. At
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

[56] John W. Muchow. Core J2ME Technology and MIDP. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

[57] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for
layered object structures. Sci. Comput. Program., 62(3):253–286, 2006.

[58] Peter Müller, Arndt Poetzsch-Heffter, and Gary T. Leavens. Modular Specification
of Frame Properties in JML. Concurrency Computation Practice and Experience,
2002.
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