
Guiding the use of AspectJ Advice: An Initial Assessment

Henrique Rebêlo
Informatics Center

Federal University of Pernambuco
Recife, Pernambuco, Brazil

hemr@cin.ufpe.br

Márcio Ribeiro
Informatics Center

Federal University of Pernambuco
Recife, Pernambuco, Brazil

mmr3@cin.ufpe.br

Abstract—When using AspectJ-like languages, a developer
may implement the same concern in different ways, e.g.,
using different kinds of advice. Despite the equivalence of
such implementations, they may be different with respect to
characteristics such as bytecode size and running time. In this
way, this paper presents an initial assessment towards guiding
developers to choose the proper advice for the proper situation.

Keywords-aspect-oriented programming; aspectj advice; em-
pirical analysis;

I. INTRODUCTION

In an aspect-oriented language such as AspectJ [1], a
general-purpose aspect-oriented extension to Java, we have
special idioms including pointcuts and advice to provide
separation of concerns at source code level.

In this context, one may obviously implement concerns
using different advice. However, it is important to understand
which kinds of impact we have when implementing a
crosscutting concern using a specific AspectJ advice. The
literature [2], [3] explains better how we can employ AspectJ
advice to add behavior to a particular concern. However,
we have different ways to implement and different weaving
processes [4] to apply in the same concern modularization.
For example, Soares et al. describe [3] how to implement a
transaction concern using before, after-returning, and after-
throwing advice. On the other hand, Laddad [2] shows a
solution using only an around advice.

While the proposed solutions are equivalent, neither as-
sessment nor guidance are discussed elsewhere to show
which solution should be more efficient when constraints
such as code size and running time are taken into account.
In this way, this paper proposes an initial assessment of
AspectJ advice using two metrics: (i) bytecode size and (ii)
running time. Guiding developers towards which AspectJ
advice should be used to implement a concern under some
constraints represents the contribution of our work.

II. ASSESSMENT APPROACH

In order to provide an assessment of AspectJ advice,
we conducted a case study involving the Heath Watcher

system1. We considered only the transaction management
concern, which was originally implemented by Sergio et al.
work [3]. As mentioned, they used before, after-returning,
and after-throwing advice. We also implemented an alter-
native solution with around advice inspired on Laddad’s
work [2]. In addition, our case study employed the ajc and
abc [5] AspectJ weavers. The abc weaver considers some
optimizations techniques for around advice during weaving
process, being important because we consider such an advice
in our study.

Our study consists of the following two scenarios: (i)
before and after-returning versus around; and (ii) before and
after-throwing versus around. Notice that the first scenario
represents the commit accomplishment, whereas the second
one represents the rollback. In order to assess the running
time, we used the Profiling2 plugin. For each scenario, we
calculated the running time of the transaction concern, which
encompass the time of execution spent by the aspect respon-
sible for implementing such concern. Aiming at avoiding
outliers, we executed both scenarios ten times using the ajc
and abc compilers and the mean was taken into consideration
for our assessment.

From the obtained data, considering a scenario with the
ajc weaver, the original implementation by Soares et al. [3]
is better than the alternative one, regarding both bytecode
size and running time. However, when using the abc, the
alternative implementation based on Laddad’s work [2] is
better than the original one, with respect to the running time.
On the one hand, the bytecode size is smaller in the original
implementation. On the other hand, we observed that when
using many other advice (not only the transaction ones), the
bytecode size of the alternative implementation tends to get
smaller when compared to the original one, leading us to
conclude that the alternative implementation is really better
for real systems, which use several advice.

Based on the results showed in the Table I, we conclude
that the Original/ajc and Alternative/abc are the best ones.
But, when considering constrained environments such as

1http://www.comp.lancs.ac.uk/computing/users/greenwop/tao/
HealthWatcherAO 01 Base.zip

2http://www.eclipse.org/projects/project summary.php?projectid=tptp.
performance

http://www.comp.lancs.ac.uk/computing/users/greenwop/tao/HealthWatcherAO_01_Base.zip
http://www.eclipse.org/projects/project_summary.php?projectid=tptp.performance


Table I
RUNNING TIME AND BYTECODE SIZE RESULTS

Running time (sec) Bytecode size (KB)
Original/ajc 0.89521445 291
Original/abc 1.26414025 264
Alternative/ajc 0.9141467 303
Alternative/abc 0.7168156 273

J2ME, we recommend the alternative implementation com-
bined with abc weaver.

ACKNOWLEDGMENT

We would like to thank FACEPE and CNPq, Brazilian
research agencies, for partially supporting this work. In
addition, we thank SPG 3 members for fruitful discussions
about this paper.

REFERENCES

[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of aspectj,” in ECOOP
’01: Proceedings of the 15th European Conference on Object-
Oriented Programming. London, UK: Springer-Verlag, 2001,
pp. 327–353.

[2] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Pro-
gramming. Greenwich, CT, USA: Manning Publications Co.,
2003.

[3] S. Soares, E. Laureano, and P. Borba, “Implementing distri-
bution and persistence aspects with aspectj,” in OOPSLA ’02:
Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications.
New York, NY, USA: ACM, 2002, pp. 174–190.

[4] E. Hilsdale and J. Hugunin, “Advice weaving in aspectj,” in
AOSD ’04: Proceedings of the 3rd international conference on
Aspect-oriented software development. New York, NY, USA:
ACM, 2004, pp. 26–35.

[5] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble, “abc: an extensible aspectj compiler,” in AOSD
’05: Proceedings of the 4th international conference on Aspect-
oriented software development. New York, NY, USA: ACM,
2005, pp. 87–98.

APPENDIX

A. Online Appendix: We invite researchers to replicate
our case study. Both implementations and our results are
available at: http://www.cin.ufpe.br/∼hemr/lawasp09.

3http://twiki.cin.ufpe.br/twiki/bin/view/SPG

http://www.cin.ufpe.br/~hemr/lawasp09
http://twiki.cin.ufpe.br/twiki/bin/view/SPG

