
Optimizing JML Features Compilation in
Ajmlc

Using Aspect-Oriented Refactorings
Henrique Rebêlo, Ricardo Lima, Márcio Cornélio,
Gary T. Leavens, Alexandre Mota, César Oliveira

CS-TR-09-05
April 2009

Keywords: ajmlc, runtime assertion checking, optimization, refactoring, seman-
tics preservation, laws of programming, formal methods, formal interface speci-
fication, programming by contract, aspect-oriented programming, JML language,
Java language, AspectJ language

2009 CR Categories: D.2.1 [Software Engineering] Requirements/ Specifica-
tions — languages, tools, JML; D.2.2 [Software Engineering] Design Tools and
Techniques — computer-aided software engineering (CASE); D.2.4 [Software En-
gineering] Software/Program Verification — Assertion checkers, class invariants,
formal methods, programming by contract, reliability, tools, validation, JML;
D.2.5 [Software Engineering] Testing and Debugging — Debugging aids, design,
testing tools, theory; F.3.1 [Logics and Meanings of Programs] Specifying and
Verifying and Reasoning about Programs — Assertions, invariants, pre- and post-
conditions, specification techniques.

This is a preprint of a paper that will appear in the proceedings of the XIII
Brazilian Symposium on Programming Languages (SBLP 2009), Gramado-RS,
Brazil, August 19-21.

School of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA

Optimizing JML Features Compilation in Ajmlc
Using Aspect-Oriented Refactorings

Henrique Rebêlo1, Ricardo Lima1, Márcio Cornélio2,
Gary T. Leavens3, Alexandre Mota1, César Oliveira1

1Informatics Center — Federal University of Pernambuco
Caixa Postal 7851, 50740-540 — Recife — PE — Brazil

2Department of Computing and Systems — University of Pernambuco
Rua Benfica, 455, Madalena, 50720-001 — Recife — PE — Brazil

3School of Electrical Engineering and Computer Science — University of Central Florida
4000 Central Florida Blvd. — Orlando — FL — USA

{hemr,rmfl,acm,calo}@cin.ufpe.br, marcio@dsc.upe.br, leavens@eecs.ucf.edu

Abstract. In previous work we presented a new JML compiler, ajmlc,
which generates aspects that enforce preconditions, postconditions, and
invariants. Although this compiler provides benefits of source-code mod-
ularity and small bytecode size and running time, there is still a need for
optimization of bytecode size and running time. To do this optimization
while preserving the semantics of the resulting code, we optimize us-
ing refactorings based on AspectJ programming laws. To this end we
present optimization refactorings and an empirical analysis showing the
resulting improvements.

1. Introduction
Restructuring an object-oriented program is a useful activity known as refactor-
ing [Opdyke 1992, Roberts 1999, Fowler et al. 1999]. By changing attributes and
methods between classes or splitting a complex class into several classes while
preserving observable behavior, we can improve certain code’s modularity, de-
crease its size, and so on. However, if these refactoring transformations are to
be applied automatically by a compiler, the consequences of mistakes are greatly
amplified. Hence it is important that such refactorings be very trustworthy, that is,
that they correctly preserve the program’s observable behavior.

Our approch to solving this problem is to design refactorings us-
ing programming laws [Hoare et al. 1987, Cornélio 2004, Borba et al. 2004],

and thus the refactorings are provably correct [Sampaio 1997]. Our com-
piler, ajmlc, generates aspect-oriented code [Kiczales 1996], written using As-
pectJ [Kiczales et al. 2001], which is a general purpose aspect-oriented exten-
sion to Java. To optimize this generated AspectJ code, we need program-
ming laws that apply to AspectJ. For this we use the work of Cole and
Borba [Cole and Borba 2005]. Their laws establish how to restructure AspectJ
code, by adding or removing AspectJ constructs. We use these laws and other
proposed to derive optimizing transformations, which are refactoring rules ap-
plied in a particular direction. We use Cole and Borba’s laws, which they have
already proven correct [Cole et al. 2005], to prove the correctness of some refac-
toring transformations.

The ajmlc compiler was described in our previous work by Re-
belo [Rebêlo et al. 2008b]. It takes input written in the Java Modeling Language
(JML) [Burdy et al. 2005, Leavens 2006] and generates aspects to check the JML
specifications at runtime. Unlike the classical JML compiler, jmlc [Cheon 2003],
ajmlc can also be applied to constrained environments such as Java ME applica-
tions. While there are several related work that implement such dynamic contract
checking using aspects [Briand et al. 2005, Feldman et al. 2006, Wampler 2006],
none of them optimizes the generated aspects. Such optimization is what we
demonstrate, using ajmlc.

The contributions of this paper are threefold. First, it describes a collection
of aspect-oriented laws and refactorings used to restructure AspectJ constructs.
Second, the paper details results about the use and the importance of such laws
and refactorings in optimizing ajmlc aspects. To better explain the impacts of the
optimizations, we provide a case study with two systems. Third, to the best of our
knowledge, this is the first work that shows how to optimize asserting checking
code. While we present these laws and refactorings using JML, they are indepen-
dent of JML, and can be used in other AspectJ programs.

This paper is organized as follows. We give an overview of JML in Sec-
tion 2. After that, in Section 3, we present the proposed aspect-oriented laws and
refactorings. In Section 4, we quantify the use and the benefits of the proposed
laws and refactorings in a case study involving two systems. In Section 5, we
discuss related work and in Section 6, we present our conclusions.

2. An Overview of JML
The Java programming language has assertions, but otherwise has no built-
in support for Design by Contract (DbC). The Java Modeling Language

2

public class JMLExample {
//@ requires b > 0;
//@ ensures \result == a / b;
public int div(int a, int b) {

return a/b;
}

}

Figure 1. Example of JML specification.

(JML) [Leavens et al. 2006, Leavens 2006] is a behavioral interface specification
language for Java that provides DbC support for Java.

JML includes a number of constructs to declaratively specify runtime
behavior. Classes are specified by specifying their fields, invariants over those
fields, and by specifying constructors and methods. (In the following, we refer to
both constructors and methods as “methods” when there is no need to distinguish
them.) Methods specifications are composed of pre- and postconditions. All these
JML specifications are written in Java code files using special comments. Fig-
ure 1 illustrates a simple JML specification concerning the contract for a single
method div. The contract is composed of a precondition, requiring b > 0 and
a postcondition, ensuring that the methods result is a / b.

The benefits of adding JML annotations for a Java source code include
the following: (1) precise description of what the code should do; (2) efficient
discovery and correction of bugs; (3) early discovery of incorrect client usage of
classes; (4) reduced chance of introducing bugs as the application evolves, and (5)
precise documentation that is always in accordance with application code.

There are a number of tools that work with JML [Burdy et al. 2005],
including ESC/Java2 [Flanagan et al. 2002, Cok and Kiniry 2005] and the clas-
sical JML compiler (jmlc) [Cheon 2003]. Like jmlc, our ajmlc compiler
[Rebêlo et al. 2008b] translates JML-annotated Java source code into Java byte-
code with automatic runtime checks. Unlike jmlc, ajmlc generates AspectJ code.
For example, Figure 2 shows the AspectJ code generated by ajmlc to check the
precondition defined in Figure 1 (details were omitted for simplicity).

3. Laws and Refactorings

For establishing a systematic and rigorous basis for programming refactorings,
algebraic laws of programming [Hoare et al. 1987] can be used. Moreover, we
can use laws to design correct compilers and code optimizers [Sampaio 1997].

3

before (C obj, int a, int b) :
execution(int C.div(int,int))
within(C) &&
this(obj) && args(b) {

boolean rac$b = true;
rac$b = obj.checkPre$div;
if(!rac$b){

throw new
JMLPreconditionError("");

}
}

public boolean C.checkPre$div(int a, int b) {
return b > 0;

}

Figure 2. The aspect code to check div’s precondition defined in Fig-
ure 1.

Optimization is our focus in this paper. To illustrate the use of the alge-
braic approach in imperative programs, consider two laws in an imperative lan-
guage [Hoare et al. 1987]: (1) one related to the assignment command, and (2)
one related to sequential composition. The former law states that the assignment
of the value of a variable to itself has no effect. The latter law states that a com-
mand skip, preceding or following a stmt, does not change the effect of the stmt.

Law 〈void assignment〉

(x := x) = skip �

Law 〈unit-skip〉

(skip; stmt) = (stmt; skip) = stmt �

The sequential use of the above laws improves code quality (by making it smaller)
and consequently decreases execution time, which are our objectives. Our refac-
torings exploit such composition laws, and also exploit AspectJ programming
laws [Cole and Borba 2005].

3.1. Aspect-Oriented Refactoring
Besides object-oriented programming (OO), refactorings are also quite useful for
restructuring aspect-oriented programming (AO) elements, increasing legibility,

4

extensibility, maintainability, and performance. However, aspect-oriented refac-
torings, in contrast with traditional OO refactorings, involve AO constructs, such
as aspects and advice. Hannemann [Hannemann et al. 2005] classifies aspect-
oriented refactorings into three distinct groups:

1. aspect-aware OO refactorings;
2. refactorings for AO constructs;
3. refactorings of crosscutting concerns.

In this classification, our paper only focuses on the second group, refactorings of
AO constructs.

3.2. Deriving AspectJ refactorings using programming laws
Several works have been identified common transformations for aspect-oriented
programs [Monteiro and Fernandes 2005, Hannemann et al. 2005, Laddad 2006,
Iwamoto and Zhao 2003], mostly in AspectJ. Nevertheless, such works lack sup-
port for assuring that the transformations preserve behavior and are indeed refac-
torings. By observing that problem, Cole and Borba describe a set of AspectJ
programming laws that give us a basis for proving that the transformations pre-
serve behaviour and, therefore, are indeed refactorings [Cole and Borba 2005].
Thus, some refactorings we present are derived from, and proven correct us-
ing [Cole et al. 2005], the AspectJ programming laws proposed by Cole and
Borba. Other refactorings are derived from laws also proposed in this work.
Soundness of our laws using formal semantics will be treated in future work.

Notation

The subset of laws and refactorings we describe are written using two boxes writ-
ten side by side, along with a provided clause. This clause give conditions, also
known as provisos, all of which must be true for the the law or refactoring to
be correctly applied. The notation “(→)” introduces each proviso, and indicates
a proviso that must be satisfied when applying the rule from left-to-right. We
present all our laws and refactoring rules as one-way left-to-right rules, since we
only use them for optimization [Sampaio 1997].

Laws and refactoring rules

The first law we present (Law 1) allows us to remove an empty privileged aspect
provided that A is not referenced in ts; the set of type declarations (classes and

5

aspects). We use paspect to denote a privileged aspect declaration for simplicity.
We easily derive this law by applying Law 2 〈make aspect privileged〉 and 〈add
empty aspect〉 from Cole and Borba’s laws [Cole and Borba 2005]. Both laws
are applied from right-to-left.

Law 1. 〈remove empty privileged aspect〉

ts
paspect A {

}

= ts

provided
(→) A is not referenced from ts. �

Law 1 is useful in ajmlc optimization when no instrumentation code
is provided, resulting in an empty privileged aspect. Ajmlc only generates an
empty aspect when no JML annotations are provided or when an empty class
is being compiled. It is important to emphasize that the classical JML compiler
(jmlc) [Cheon 2003] always generates 11.0 KB (source code instrumentation)
and 5.93 KB (bytecode instrumentation) for empty classes [Rebêlo et al. 2008a].

6

Law 5. 〈remove before-execution〉

ts
class C {

fs
ms
T m(ps) {

body
}

}

paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {

body′[cthis/this.m′]
}

T ′ C.m′(ps) {

this.exp
}

}

=

ts
class C {

fs
ms
T m(ps) {

body
}

}

paspect A {

as
T ′ C.m′(ps) {

this.exp
}

}

provided
(→) before advice does not contribute to execution flow of the affected join point

σ(C.m) , or type C is declared abstract or it is declared as an interface;
(→) the designator within appears in the before advice. �

The current law (Law 5) shows a transformation which removes the
before advice when we apply it from left-to-right. We use σ(C.m) to denote
the signature of method m of class C; its return type and formal parameters are
denoted by T and ps, respectively. Moreover, we use bind(context) to denote
the list of advice parameters, including the current executing object (represented
by cthis), which bind the AspectJ advice parameters (this, args). Addition-
ally, we use the AspectJ designator within(C) to prevent the before advice
to affect executions of method m in subtypes of C. An important expression
is body′[cthis/this.member reference], which substitutes cthis for all occur-
rences of this within body′; a member reference could denote C’s fields, or

7

Table 1. Summary of Aspect-Oriented Laws and Refactorings
Laws Refactorings
1. remove empty privileged aspect 1. inline method intertype within advice
2. move advice body to other advice 2. merge distinct advice
3. replace method intertype reference 3. split around-execution into

with method intertype implementation after-execution returning and
within advice after-execution throwing

4. remove method intertype related to advice 4. extract aspect method
5. remove before-execution
6. remove after-execution returning
7. remove after-execution throwing
8. remove around-execution
9. remove this designator
10. remove within designator

methods denoted by fs and ms respectively (and also including method inter-
types, such as m′).

The first proviso states that the before advice does not add any behavior
to the affected method m. Thus, we can remove it. Moreover, we also can remove
the before advice if the declared type is abstract or if it is an interface. This
condition is always valid when the second proviso holds, because the within des-
ignator constrains the advice’s application in subtypes and we cannot instantiate
a concrete class when we have an abstract or an interface type. Therefore, we
always can remove such advice.

This is the simplest law to remove advice, thus it can be applied to
other advice as well (see Table 1). In this way, we can remove other advice
by applying in as, which refers to other advice in the left side of the law tem-
plate. The derivation of this law is also simple. We apply the Law 〈add before
execution〉 [Cole and Borba 2005, Law 3] from right-to-left. However, this law
is slightly different from ours, because it is concerned with OO code transforma-
tions into AO code. In this way, our provisos must consider different situations,
even though the main result is the same advice elimination.

In the context of JML and ajmlc, such a law is useful when we specify
abstract classes or interfaces. So, if we specify a concrete class and, for example,
a method has a default precondition true, we can remove the related advice (see
the first proviso).

8

The next rule is a refactoring (Refactoring) 1, in that, when applied from
left-to-right, inlines the method intertype implementation within before advice.
This transformation is useful because the method intertype is only referenced by
one advice so that we can remove the method intertype and migrate its imple-
mentation within the advice. The derivation of this refactoring involves two other
simple laws. Consider them step by step: (1) apply Law 3 〈replace method
intertype reference with method intertype implementation within advice〉,
replacing all references of the method intertype m′ within before advice with
its implementation, and (2) apply Law 4 〈remove method intertype related to
advice〉, removing the method intertype m′. We do not shown their equations,
because they are simple.

The template of Refactoring 1 shows the transformation concerning a
before advice, but such a refactoring can deal with other kinds of AspectJ ad-
vice [Laddad 2003]. Each of those laws and refactoring are summarized in Ta-
ble 1.

Refactoring 1 is useful to ajmlc’s optimization when, for example, a
before advice is checking a precondition, and this advice references a method
intertype with the precondition predicate which is not referenced by any other ad-
vice, aspect or class. Since the method intertype is only referenced in one place by
the advice, it is useful if ajmlc can eliminate it by using the Refactoring 1. This
scenario is illustrated in Figure 2, where we can see pieces of generated code by
ajmlc. The result provided by applying such a refactoring is shown in Figure 3.

9

before (C obj, int a, int b) :
execution(int C.div(int,int))
within(C) &&
this(obj) && args(b) {

boolean rac$b = true;
rac$b = b > 0;
if(!rac$b){

throw new
JMLPreconditionError("");

}
}

Figure 3. Result of the application of Refactoring 1 in the AspectJ code
presented in Figure 2.

Refactoring 1. 〈inline method intertype within before-execution〉

ts
class C {

fs
ms
T m(ps) {

body
}

}

paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {

body′[cthis/this.m′]
}

T ′ C.m′(ps) {

this.exp
}

}

=

ts
class C {

fs
ms
T m(ps) {

body
}

}

paspect A {

as
before(context) :

exec(σ(C.m)) &&
within(C) &&
bind(context) {

body′[cthis/this.exp]
}

}

provided
(→) exp does not appear in before advice or as;
(→) m is not referenced from C, ts, or as. �

10

Other laws and refactorings

Besides the presented laws and refactorings, as shown in Table 1, we derived
others with great results in the context of ajmlc optimization. For example, the
Law 2 〈move advice body to other advice〉, enables one, for instance, to move
the implementation of a before advice to the body of an around advice (before
the call to proceed). The only precondition is that both advice have to affect the
same method on a specific type. By using Law 2 and Law 5, we derive the
the Refactoring 2 〈merge distinct advice〉, which enables one, for example, to
merge a before advice into an around advice. After Law 2, we apply Law 5
to remove the empty before advice.

In the context of JML and ajmlc optimization, when we have a scenario
with a static method affect by one before advice to check preconditions and
one around advice to check postconditions. Thus, we can merge such advice
by means of Refactoring 2. This happens, because the method is static and its
advice do not affect subtypes.

Soundness

As we mentioned before, programming laws [Hoare et al. 1987] define equiva-
lence between two programs, given that some conditions are respected. How-
ever, the proof of the behaviour preserving property of programming laws
is not trivially demonstrated. So, we follow the ideas of Cole and Borba’s
laws [Cole and Borba 2005]. As some of laws we propose are composition of
their laws, we can assume that our laws are proven correct. This happens be-
cause they show how to prove that an aspect-oriented programming law preserves
behaviour using a formal semantics [Cole et al. 2005].

However, there are laws in this work that are not derived from Cole and
Borba’s work [Cole and Borba 2005]. Those soundness using a formal semantics
is a desirable property, thus, as future work we intend to use the same formal
semantics to prove that these laws are behaviour-preserving transformations. Even
though we have some laws that are not yet proved sound, we have informally
considered their correctness. This is possible because, compared to refactorings,
such laws are much simpler, involve only local changes, and each one concerns
only a specific AspectJ construct.

11

Table 2. Laws and Refactorings in the JAccounting and Bomber systems
JAccounting Bomber

Qty Qty
Law 1 28 Law 1 5
Law 2 8 Law 2 3
Law 3 2 Law 3 2
Law 4 5 Law 4 2
Law 5 33 Law 5 10
Law 6 30 Law 9 2
Law 9 34 Law 10 2
Law 10 34 Refactoring 1 2
Refactoring 1 2 Refactoring 2 3
Refactoring 2 8 Refactoring 3 20
Refactoring 3 11

4. Case Study

This section presents the results of a case study involving the JAccounting 1 and
Bomber 2 systems. We apply our proposed laws and refactorings to analyze their
benefits brought for both systems. The quantification of the applied set of laws
and refactorings are summarized in Table 2.

We have compiled these two systems, after annotating them with JML,
using both jmlc [Cheon 2003] and ajmlc [Rebêlo et al. 2008b]. For ajmlc we em-
ployed two versions: with and without the refactorings (optimizations) described
above. Moreover, we used ajmlc with two different weaving processes: the stan-
dard AspectJ compiler (ajc), and abc [Avgustinov et al. 2005]. The difference is
that abc itself includes various optimizations.

Our case study considers a Java ME application because ajmlc, unlike
jmlc, can compile and run Java ME applications [Rebêlo et al. 2008b]. This Java
ME application is the Bomber program. It is a simple software product line game
based on Java ME MIDP 2.0. Some features of Bomber include explosions, war
tanks, planes sounds, clouds, etc.

1https://jaccounting.dev.java.net.
2http://j2mebomber.sourceforge.net.

12

Code size and performance statistics

Throughout our assessment of the proposed laws and refactorings, we gathered
some measurements that demonstrated an improvement in both code size and per-
formance of the optimized ajmlc aspects code. Table 3 and Table 4 present the
results that we obtained by assessing the proposed refactorings. As observed,
we analyzed instrumented source code size (denoted by ISC in Table 3) and in-
strumented bytecode size, all in megabytes (MB). Moreover, we also analyzed
running time measured in milliseconds (msec).

In relation to code size, we observed that the optimized ajmlc aspect code
is smaller than the non-optimized code, both in instrumented source code and
bytecode. It is worth nothing that this effect on the bytecode is enhanced, pro-
ducing far smaller class files, when the abc weaver is employed (see Table 3). It
is also clear that ajmlc always produces smaller instrumented source code than
jmlc, even without any of our optimizations. Nevertheless, after compilation, we
observed that the ajmlc compiler has smaller bytecode instrumentation than jmlc,
only in a optimized way and using the abc weaver. This indicates that the com-
pilation techniques for aspect oriented programs are still in a stage of continuous
evolution.

Concerning running time, we observed that the optimized ajmlc aspects
code executes faster than the non-optimized one (see Table 4). As also shown
in Table 4, the running time is far faster when the optimized ajmlc employs abc
weaver. Additionally, as noted, the running time of the ajmlc aspects code is
always faster than the jmlc code, even in a non-optimized way. Such Bad per-
formance in jmlc is due to many reflective calls in the jmlc generated code. Its
important to note that we only measured the execution time of methods compiled
with jmlc in the JAccounting system. This is due to the lack of support for reflec-
tion and other Java SE features by Java ME applications [Rebêlo et al. 2008b].
Thus, we cannot execute jmlc generated code with Java ME API.

5. Related Work
We discuss related work in the context of refactorings for object-oriented and
aspect-oriented programs.

The classical work on the formalization of refactoring was presented by
Opdyke [Opdyke 1992]. His work focuses on object-oriented refactoring, whereas
our work focuses on aspect-oriented refactorings. As with our work, the main
importance of Opdyke’s work is not only the identification of refactorings, but

13

Table 3. Code size measurements
Application Original code Optimized Decrease

(MB) (MB) (%)
JAccounting
ajmlc/ISC 1.28 1.07 16.40
ajmlc/ajc 3.51 2.20 37.32
ajmlc/abc 2.83 0.85 69.96
jmlc/ISC 5.30 - -
jmlc 1.95 - -
Bomber
ajmlc/ISC 0.95 0.83 12.63
ajmlc/ajc 2.26 1.47 34.95
ajmlc/abc 0.86 0.61 29.06
jmlc/ISC 4.53 - -
jmlc 1.60 - -

also the definition of the preconditions that are required to apply each refactoring
without changing the program’s behavior.

Cole and Borba [Cole and Borba 2005] present aspect-oriented program-
ming laws that can be used to derive refactorings for AspectJ. Their laws help to
ensure that the transformations do not change the program’s behavior, when the
provisos (preconditions) they state hold. Our work relies on their ideas, and we
derived some refactorings for AspectJ using their laws. However, their laws are
bi-directional, whereas as use uni-directional laws that are oriented to improve
code quality.

Iwamoto and Zhao [Iwamoto and Zhao 2003], just as our work, take into
account aspect-oriented refactorings. But, their refactorings are concerned with
restructuring Java programs to AspectJ (refactoring OO to AO programs), whereas
our work is related to refactor AspectJ constructs (improving AspectJ programs).
As with our work, they present a collection of aspect-oriented refactorings, but
most of them are aspect-aware OO refactorings (also related to OO programs).

Another related work is Hannemann et al. [Hannemann et al. 2005]. Like
our work, they propose a set of aspect-oriented refactorings. Their refactorings are
grouped by three distinct categories as mentioned in Section 3. They use testing
to check that refactorings do not change the behavior of programs, whereas we
are concerned with (static) proofs of correctness for refactorings.

14

Table 4. Running time measurements
Method Original Optimized Decrease

(msec) (msec) (%)
ajmlc/ajc
JAccounting/getCreated 0.05915 0.03548 40.01
JAccounting/getCompanyKey 0.05636 0.03038 46.09
JAccounting/perform2 5.78228 4.97493 13.96
Bomber/handle 3.47174 2.96776 14.51
Bomber/getRadius 3.97096 3.14669 20.75
Bomber/getDamage 3.52824 3.32367 5.79
ajmlc/abc
JAccounting/getCreated 0.05042 0.03289 34.76
JAccounting/getCompanyKey 0.05105 0.02891 43.36
JAccounting/perform2 5.74734 4.90301 14.69
Bomber/handle 0.06690 0.03841 42.58
Bomber/getRadius 0.06348 0.03715 41.47
Bomber/getDamage 0.05259 0.03080 41.43
jmlc
JAccounting/getCreated 0.32706 - -
JAccounting/getCompanyKey 0.33461 - -
JAccounting/perform2 6.91035 - -

6. Conclusions

In this paper, we have presented a set of programming laws for aspect-oriented
programming and used them to define behaviour-preserving transformations for
AspectJ constructs. The laws are simple and localized, which should make it easy
to prove their soundness. Moreover, we also use a comprehensive set of aspect-
oriented programming laws, already proven sound, from the literature. Those laws
help us to derive our refactoring transformations that we use in optimization.

As future work, we intend to augment our set of laws to handle more As-
pectJ constructs. Moreover, we also intend to use those set of laws to derive more
new refactorings or to derive ones proposed in the literature. Another interesting
issue is about soundness. The new laws we proposed do not yet have a formal
semantics and soundness proof. This is a limitation of these new laws, that we
intend to fix in future work.

Our main contribution is that we show how to use the proposed laws and

15

refactorings to optimize compilation of JML in our compiler, ajmlc. To better ex-
plain the impacts of such optimizations, we conducted a case study. We analyzed
two Java systems, one of which is a Java ME application. The results we obtain,
provide evidence that the ajmlc compiler produces smaller source and bytecode
instrumentation when it employs the transformations proposed by this work. We
consider the two existing AspectJ weavers (ajc and abc) that ajmlc supports. Ad-
ditionally, we also conducted a performance comparison using the case study.
We obtain results, which indicate us that the instrumented bytecode produced by
ajmlc compiler, when using the proposed transformations, is much faster than one
without optimizations. As we note, the better results involve the ajmlc compiler
using the abc weaver. Such results are essential when considering constrained
environments such as Java ME.

Although we use the laws and refactorings presented here for optimization,
they are of more general utility. As a result, besides their use in optimizing JML
compilers, one can apply these transformations to other AspectJ programs.

Acknowledgements

This work was partially supported by Brazilian research agency FACEPE and
by grants from the US National Science Foundation numbered CNS 08-08913.
Special thanks to Paulo Borba for discussions about issues of this paper.

References
Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták,

O., de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. (2005). abc: an
extensible aspectj compiler. In AOSD ’05: Proceedings of the 4th international
conference on Aspect-oriented software development, pages 87–98, New York,
NY, USA. ACM.

Borba, P., Sampaio, A., Cavalcanti, A., and Cornélio, M. (2004). Algebraic rea-
soning for object-oriented programming. Sci. Comput. Program., 52(1-3):53–
100.

Briand, L. C., Dzidek, W. J., and Labiche, Y. (2005). Instrumenting Contracts
with Aspect-Oriented Programming to Increase Observability and Support De-
bugging. In ICSM ’05: Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 687–690, Washington, DC, USA.
IEEE Computer Society.

16

Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J. R., Leavens, G. T.,
Leino, K. R. M., and Poll, E. (2005). An overview of JML tools and applica-
tions. International Journal on Software Tools for Technology Transfer (STTT),
7(3):212–232.

Cheon, Y. (2003). A runtime assertion checker for the Java Modeling Language.
Technical report 03-09, Iowa State University, Department of Computer Sci-
ence, Ames, IA. The author’s Ph.D. dissertation.

Cok, D. R. and Kiniry, J. R. (2005). ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2, including a case study
involving the use of the tool to verify portions of an Internet voting tally system.
In Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., and Muntean, T., editors,
Construction and Analysis of Safe, Secure, and Interoperable Smart devices
(CASSIS 2004), volume 3362 of Lecture Notes in Computer Science, pages
108–128. Springer-Verlag.

Cole, L. and Borba, P. (2005). Deriving refactorings for aspectj. In AOSD ’05:
Proceedings of the 4th international conference on Aspect-oriented software
development, pages 123–134, New York, NY, USA. ACM.

Cole, L., Borba, P., and Mota, A. (2005). Proving aspect-oriented programming
laws. In Leavens, G. T., Clifton, C., and Lämmel, R., editors, Foundations of
Aspect-Oriented Languages.

Cornélio, M. L. (2004). Refactoring as Formal Refinements. PhD thesis.

Feldman, Y. A., Barzilay, O., and Tyszberowicz, S. (2006). Jose: Aspects for
design by contract80-89. sefm, 0:80–89.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata,
R. (2002). Extended static checking for Java. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Language Design and Implementa-
tion (PLDI’02), volume 37(5) of SIGPLAN, pages 234–245, New York, NY.
ACM.

Fowler, M. et al. (1999). Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Hannemann, J., Murphy, G. C., and Kiczales, G. (2005). Role-based refactoring of
crosscutting concerns. In AOSD ’05: Proceedings of the 4th international con-
ference on Aspect-oriented software development, pages 135–146, New York,
NY, USA. ACM.

17

Hoare, C. A. R., Hayes, I. J., Jifeng, H., Morgan, C. C., Roscoe, A. W., Sanders,
J. W., Sorensen, I. H., Spivey, J. M., and Sufrin, B. A. (1987). Laws of pro-
gramming. Commun. ACM, 30(8):672–686.

Iwamoto, M. and Zhao, J. (2003). Refactoring aspect-oriented programs. In
Akkawi, F., Aldawud, O., Booch, G., Clarke, S., Gray, J., Harrison, B., Kandé,
M., Stein, D., Tarr, P., and Zakaria, A., editors, The 4th AOSD Modeling With
UML Workshop.

Kiczales, G. (1996). Aspect-oriented programming. ACM Comput. Surv., page
154.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G.
(2001). An Overview of AspectJ. In ECOOP ’01: Proceedings of the 15th
European Conference on Object-Oriented Programming, pages 327–353, Lon-
don, UK. Springer-Verlag.

Laddad, R. (2003). AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co., Greenwich, CT, USA.

Laddad, R. (2006). Aspect Oriented Refactoring. Addison-Wesley Professional.

Leavens, G. T. (2006). JML’s rich, inherited specifications for behavioral sub-
types. In Liu, Z. and Jifeng, H., editors, Formal Methods and Software
Engineering: 8th International Conference on Formal Engineering Methods
(ICFEM), volume 4260 of Lecture Notes in Computer Science, pages 2–34,
New York, NY. Springer-Verlag.

Leavens, G. T., Baker, A. L., and Ruby, C. (2006). Preliminary design of JML:
a behavioral interface specification language for java. SIGSOFT Softw. Eng.
Notes, 31(3):1–38.

Monteiro, M. P. and Fernandes, Jo a. M. (2005). Towards a catalog of aspect-
oriented refactorings. In AOSD ’05: Proceedings of the 4th international con-
ference on Aspect-oriented software development, pages 111–122, New York,
NY, USA. ACM.

Opdyke, W. F. (1992). Refactoring object-oriented frameworks. PhD thesis,
Champaign, IL, USA.

Rebêlo, H., Soares, S., Lima, R., Borba, P., and Cornélio, M. (2008a). JML and
aspects: The beneifts of instrumenting JML features with AspectJ. In Seventh
International Workshop on Specification and Verification of Component-Based
Systems (SAVCBS 2008), number CS-TR-08-07 in Technical Report, pages

18

11–18, 4000 Central Florida Blvd., Orlando, Florida, 32816-2362. School of
EECS, UCF.

Rebêlo, H., Soares, S., Lima, R., Ferreira, L., and Cornélio, M. (2008b). Imple-
menting java modeling language contracts with aspectj. In SAC ’08: Proceed-
ings of the 2008 ACM symposium on Applied computing, pages 228–233, New
York, NY, USA. ACM.

Roberts, D. B. (1999). Practical analysis for refactoring. PhD thesis, Champaign,
IL, USA. Adviser-Johnson, Ralph.

Sampaio, A. (1997). An Algebraic Approach to Compiler Design. World Scien-
tific.

Wampler, D. (2006). Contract4J for Design by Contract in Java: Design Pattern-
Like Protocols and Aspect Interfaces. In ACP4IS Workshop at AOSD 2006,
pages 27–30.

19

