
Exploring Memory Hierarchy with ArchC

Pablo Viana, Edna Barros
Federal University of Pernambuco

Informatics Center
Recife-PE, Brazil�

pvs, ensb � @cin.ufpe.br

Sandro Rigo, Rodolfo Azevedo, Guido Araújo
University of Campinas
Institute of Computing
Campinas-SP, Brazil�

srigo, rodolfo, guido � @ic.unicamp.br

Abstract

This paper presents the cache configuration exploration
of a programmable system, in order to find the best match-
ing between the architecture and a given application. Here,
programmable systems composed by processor and mem-
ories may be rapidly simulated making use of ArchC, an
Architecture Description Language (ADL) based on Sys-
temC. Initially designed to model processor architectures,
ArchC was extended to support a more detailed descrip-
tion of the memory subsystem, allowing the design space
exploration of the whole programmable system. As an ex-
ample, it is shown an image processing application, running
on a SPARC-V8 processor-based architecture, which had its
memory organization adjusted to minimize cache misses.

1. Introduction

In accordance with what was predicted by Moore’s law,
the chip capacity continues doubling at every 18 months.
Nowadays, System-on-chip (SoC) technology can integrate,
into a single chip, entire digital systems consisting of nu-
merous components like microprocessors, memories, co-
processors, and peripherals that used to occupy one or more
boards [17].

This progress has led the growth on the electronics mar-
ket and its applications, since lower costs and higher per-
formances attract technology consumers. However, it has
imposed a pressure over design technology communities to
cope with all this increasing potential. Although silicon pro-
cess technology continues to evolve at an accelerated pace,
design reuse and design automation technology are now
seen as the major technical barriers to progress, and this
productivity gap is increasing rapidly[11].

Making use of the available technology, advances in de-
sign methodologies have been proposed, and as a result of
this effort, the Platform-based design paradigm has been

adopted as a good way for reusing and rapid development
of digital systems.

A typical SoC architecture usually has a processor core,
one or more caches, on-chip bus hierarchy, on-chip mem-
ory, and a large number of peripheral cores that provide
application-specific functions such as multimedia and com-
munication processing (Figure 2). Following the Platform-
based design methodology, each of these SoC cores are pa-
rameterized, enabling the designer to tune a core’s settings
for a specific application.

An assignment of different values to each parameter will
impact the overall performance and power consumption of
the SoC architecture [7]. Thus, for the correct assessment
of a platform configuration, it is interesting to have a model
of the whole system, able to rapidly simulate the applica-
tion behavior as well as reflect the key features of the cus-
tomized architecture before its real implementation.

By means of an architecture description language (ADL)
like ArchC [14], the architecture of a programmable system
can be modeled. It is possible to map a software application
over this model, and the simulation of the software running
on the architectural model helps the designer to evaluate the
performance and adjust the parameters of the system.

Taking into account the importance of the memory hier-
archy on the performance of programmable systems, an ex-
tension of the storage model adopted by ArchC is proposed.
With this addition, ArchC is presented as a promising ar-
chitecture description language (ADL), able to capture the
main features of the processor description, as well as the
memory subsystem. Through this complete model, the ar-
chitecture can be explored by adjusting the platform param-
eters, in order to tune it for a specific application, and find
the platform configuration that offers the best performance.

This paper is organized as follows: Section 2 presents the
main works related to our research; Section 3 illustrates the
system’s components modeling with ArchC, by presenting
the use of the language for processor modeling and the ad-
vances obtained by extending the language to model mem-
ory hierarchies. Section 4 presents the architecture simu-

lator automatically generated by ArchC for platform tun-
ing. An example in Section 5 illustrates the exploration of
memory configurations aiming to improve the performance
of an image processing application. The results are showed
in that section, where interesting performance numbers are
analyzed. Section 6 remarks the next goals and finally, Sec-
tion 7 concludes this paper, summarizing the main ideas and
experiments that have been done.

2. Related Work

Methodologies like the Platform-Based Design
paradigm [11] have been adopted for the develop-
ment of digital systems. Supported by such a platform,
the digital system design may be started from an architec-
ture description where the application’s behavior can be
mapped on. According to the system requirements and con-
straints, the system modules are tuned towards higher
performance and lower cost (Figure 1).

Mapping

ApplicationArchitecture

Performance
analysis

Performance
numbers

Figure 1. Y-chart scheme for design space
exploration.

The clear distinction between application and archi-
tecture enables a systematic exploration of the architec-
ture, tuning it up to an application domain. Following
this methodology, the designer maps the behavioral de-
scription into a specific architecture and the performance
analysis helps the designer to adjust architecture parame-
ters, adapting it to the application, aiming to achieve the
desired performance.

During the performance analysis metrics including exe-
cution time, power consumption, silicon area, cache miss
rate etc, are considered. Such metrics depend on system
configuration parameters such as supply voltage, memory
size, silicon technology, cache policies, etc. By modifying
the configuration parameters of the architecture description,
the designer is faced with a huge space of possibilities to ex-
plore, composed by a lot of implementation alternatives and
their respective system performance features. In fact, accu-

rate results for performance could only be measured after
the final implementation of the system on the chip. How-
ever, good estimates can be early obtained if an executable
model of the system is available for simulation.

Modeling is the act of representing a system or a subsys-
tem formally [4]. A model might be mathematical, in which
case it can be viewed as a set of assertions about proper-
ties of the system such as its functionality or dimensions.
A model can also be constructive, which are also called e-
xecutable models. Depending on the abstraction level of a
constructive model, more accurate details can be captured,
however its execution tends to be slower.

The Dalton project [17] from the University of Califor-
nia at Riverside, has focused at the development of project
methodologies related to IP cores tuning for low power. The
power consumed by an application running on a particular
platform can be evaluated by means of an executable model.
Each IP core is modeled as a class of an Object-oriented
programming language like C++ or Java, in such a way that
the entire system is modeled as communicating objects. The
methods (functionalities or instructions) available for each
object is low-level power analyzed and back-annotated us-
ing a variety of parameter configurations and instruction
data values. By executing the complete C++ model for a
particular platform configuration, the designer obtains ac-
curate power and performance information.

Based on this fast power evaluation, methods to effi-
ciently explore the configuration space can be investigated.
Pareto-optimal configuration points are those that offers the
best performance for a given cost [7]. In this way, con-
figuration points that tends to be more expensive with no
performance improvement are discarded from the design
space exploration (DSE). The design space pruning of non-
Pareto-optimal points limits the design space, reducing the
time needed to find a suitable configuration for a given ap-
plication. As a proposal of an integrated environment for
the design space exploration guided by Pareto-optimal, the
Platune tool [8] presents some interesting results that can be
obtained from an architecture configuration. This tool en-
ables the exploration of memory or bus sizes and energy
supply by simulating an application, running over an archi-
tecture composed by a MIPS processor connected to inde-
pendent single-level instruction and data caches. The source
code in C of the application is compiled by the tool, while
candidate configurations are selected from a sort of possibil-
ities, such as varying cache block size, associativity, word
width, supply voltage, etc. The exploration of candidates
can be made through exhaustive simulation of all possible
combinations or by a Pareto-optimal pruning.

On the exploration of cache configurations based on their
hit and miss rates, Dinero [1] is largely utilized. This tool
was developed at the University of Wisconsin and had al-
ready its fourth version released. Dinero takes as input a

trace file, describing the memory accessing of data and in-
struction. Actually, Dinero is neither a timing nor a func-
tional simulator. It is only based on the address tags of the
references, and it has not any data or instructions to move in
and out of the caches. Trace-driven simulation is frequently
utilized to evaluate memory hierarchy performance. By us-
ing the same trace sequences, distinct cache configurations
can be analyzed.

A trace is usually obtained by the execution of a program
or set of programs in a simulator. Shade [3] combines effi-
cient instruction-set simulation with the trace generation ca-
pability. It consists in an assembly-based simulator of pro-
cessor instructions. Even though the software description
in such low level language favors fast and flexible mod-
eling, the powerful abstraction offered by Object-oriented
languages seems to be, of course, a more attractive way to
describe entire systems.

On this way, Architecture Description Languages
(ADLs) can help the designer to create an executable
model of the system to simulate the application run-
ning over the proposed architecture. Most of the ADLs are
based on a parser that extracts information from a brief ar-
chitecture description, translating into a source code writ-
ten in a traditional programming language. This source
code is compiled and so executed as a simulation of the ar-
chitecture. In [16], ADLs are classified as 1)Synthesis-
oriented, 2)Compiler-oriented, 3) Simulation-oriented, 4)
Validation-oriented among other approaches.

EXPRESSION [10], classified as a compiler-oriented
ADL, is an architecture description language focused on ar-
chitectural design space exploration for SoCs and automatic
generation of a compiler/simulator toolkit. Designed to sup-
port DSE of a wide class of processor architectures, rang-
ing from RISCs, DSPs, ASIPs and VLIWs, coupled with
a variety of memory system organization and hierarchies,
EXPRESSION contains an integrated specification of both
structure and behavior of processor-memory systems, sup-
porting the specification of novel memory hierarchies.

ArchC also allows the mixed-level paradigm of behav-
ioral/structural architecture description. To the best of our
knowledge, ArchC is currently the only ADL totally based
on SystemC [9]. ArchC has many features that distinguish
it from other ADLs, such as non-proprietary SystemC com-
patibility and instruction format behavior modeling. How-
ever, its key feature is a storage-based co-verification mech-
anism that automatically checks the consistency of the re-
fined SystemC RTL model against the SystemC behavioral
model generated by ArchC. [14].

The gathering of all features offered by ArchC, enable
the entire system modeling, where the processor and mem-
ory descriptions can be correctly refined, or even to be con-
nected to others SystemC IPs cores composing a complete
system, like the one showed in the Figure 2.

I−cache

D−cache

Main Memory
(DRAM)

SRAM

Cache

I\F

I\F

IP
(HW)

IP
(HW)

ASIP
Core

DSP

µP Core

Figure 2. Example of an architecture.

3. System Modeling with ArchC

A SoC design can be started by the definition of the
application, followed by its implementation by means of
a software programming language. Usually, designers uti-
lize a C/C++ compiler to generate an initial software pro-
totype of the application’s behavior. The next step is to
choose an architecture, that will run the application to com-
pose the digital system. ArchC enables designers to describe
the processor element as well as the memory modules at
a high abstraction level, automatically generating the soft-
ware toolkit, formed by the assembler, the simulator, and
also a powerful co-verification tool that will check the de-
scription throughout the refinement steps.

Aiming to develop a system to run an image processing
algorithm, we started from an architecture composed by one
processor and some cache and memory modules. This ar-
chitecture can be seen in Figure 10. Notice that this first de-
scription of the architecture is highly dependent on the de-
signer’s experience, defining some of the main components
of the system configuration.

In order to compose our platform, we chose to model the
Leon[6] processor in ArchC. Leon is a real world SPARC
V8 implementation, first developed by Jiri Gaisler at Eu-
ropean Space Agency (ESA) to enable the development
of system-on-a-chip (SoC) devices using the LEON core.
Plenty of technical documentation about the Leon, as well
as the full VHDL source code is freely available under the
GNU LGPL license. Readers should refer to [15, 13] for
more details about the SparcV8 architecture.

3.1. Processor Description using ArchC

ArchC is an architecture description language (ADL)
specialized for processor architecture description. Its main
goal is to facilitate and accelerate processor description,
combined with enough expression power to model several
classes of architectures (RISC, CISC, DSPs, etc), allowing
users to explore a new ISA and automatically generate soft-
ware tools like assemblers and simulators.

A processor architecture description in ArchC is di-
vided in two parts: the Instruction Set Archi-
tecture (AC ISA) and the Architecture re-
sources (AC ARCH) descriptions. Into the AC ISA de-
scription, the designer provides to ArchC details about in-
struction formats, size and names combined with all infor-
mation necessary to decoding and the behavior of each in-
struction. The AC ARCH description informs ArchC about
storage devices, pipeline structure etc. Based on these two
descriptions, ArchC will generate a behavioral simula-
tor written in SystemC for the architecture.

The modeling of the processor features in ArchC starts
with a detailed architecture study, gathering knowledge
about the instruction set, pipeline, register bank system and
the special purpose registers. Figure 3 presents the architec-
ture resources description for our Leon model.

AC_ARCH(leon){

ac_mem MEM:256K;

ac_regbank RB:520;
ac_reg PSR, Y, WIN;

ac_pipe pipe = {IF, ID, EX, MEM, WB};

ARCH_CTOR(leon){
ac_isa("leon_isa.ac");

};
};

Figure 3. Leon (SparcV8) architecture decla-
ration in ArchC.

Register window is a typical feature in Sparc architec-
tures [13]. In order to be able to simulate this feature, our
implementation uses the ArchC keyword for register bank
declaration (ac regbank) to allocate a register bank com-
prising 520 registers. These are 8 general purpose registers,
along with 512 registers divided into 32 register windows
of 16 registers each. Taking a look at the example, notice
that special purpose registers (PSR, Y and WIN) are de-
clared through the ac reg keyword, immediately followed
by the 5 stage pipeline declaration using ac pipe.

The second part of our Leon model is the instruc-
tion set description (AC ISA), which is illustrated by
Figure 4. In ArchC, a format is declared through the key-
word ac format and initialized with a string that rep-
resents its subdivision into fields. We have used five
different formats to represent the SparcV8 instruc-
tion set. The example shows some instruction declarations
(ac instr), with their respective formats associated. In-
side the instruction-set constructor (ISA CTOR), the
designer has to provide some information about each in-
struction, which basically is their assembly syntax and de-
coding data. Based on the AC ISA description, ArchC is

capable of automatically building a decoder for the ar-
chitecture being modeled. Decoders generated by ArchC
are not restricted to a specific class of architectures, be-
ing able to work with instruction sets that are not as regular
as the Sparc’s (RISC) ISA, including multi-cycle instruc-
tions with variable length. The decoding information is
passed to ArchC using the set decoder method, which
expects as argument a list of pairs � field = value � that in-
forms which fields have to be checked in order to identify
each instruction.

AC_ISA(leon){

ac_format Type_F1 = "%op:2 %disp30:30";
ac_format Type_F2A = "%op:2 %rd:5 %op2:3 %simm22:22";
ac_format Type_F2B = "%op:2 %an:1 %cond:4 %op2:3 %disp22:22";
ac_format Type_F3A = "%op:2 %rd:5 %op3:6 %rs1:5 %is:1 %asi:8 %rs2:5";
ac_format Type_F3B = "%op:2 %rd:5 %op3:6 %rs1:5 %is:1 %simm13:13";

ac_instr<Type_F1> call;
ac_instr<Type_F2A> sethi;
ac_instr<Type_F2B> ba, bn, bne, be, bg, ble, bge, bl;
ac_instr<Type_F3A> ldsb_reg, ldsh_reg, ldub_reg, lduh_reg;
ac_instr<Type_F3B> ldsb_imm, ldsh_imm, ldub_imm, lduh_imm;
ac_instr<Type_F3B> stb_imm, sth_imm, st_imm, std_imm;

ISA_CTOR(leon){

ldsb_reg.set_asm("ldsb %rd, %rs1, %rs2");
ldsb_reg.set_decoder(op=0x03, op3=0x09, is=0x00);

ldsh_reg.set_asm("ldsh %rd, %rs1, %rs2");
ldsh_reg.set_decoder(op=0x03, op3=0x0A, is=0x00);

ldub_reg.set_asm("ldub %rd, %rs1, %rs2");
ldub_reg.set_decoder(op=0x03, op3=0x01, is=0x00);

std_imm.set_asm("std %rd, %simm13(%rs1)");
std_imm.set_decoder(op=0x03, op3=0x07, is = 0x01);

bvc.set_asm("bvc %an, label");
bvc.set_decoder(op=0x00, cond=0x0F, op2=0x02);

...
};

Figure 4. Leon (SparcV8) Instruction set dec-
laration in ArchC.

Finally, the designer has to provide to ArchC is the be-
havior of each instruction. This is done through the
ac behavior method, like showed in Figure 5. In the ex-
ample, readReg and writeReg are functions that we
have implemented, using the usual read and writemeth-
ods provided by ArchC for all storage devices, to simulate
register windows. This is an example of a cycle-accurate be-
havior description in ArchC. This is intended for more
precise performance measurements, where the designer in-
forms, for each instruction, what it exactly does at ev-
ery pipeline stage. Notice that registers are being read at the
second stage, the actual operation is executed in the third
stage and finally, the result is stored in the correct destina-
tion during the fifth stage.

Another valuable feature in ArchC are its format and
generic instruction behavior, which are behavior methods
that can be declared for a given instruction format or even
for all instructions. During simulation, when a instruction

void ac_behavior(add_reg){

switch(stage) {
case _IF:

break;
case _ID:

ID_EX.rs1 = readReg(RB, rs1);
ID_EX.rs2 = readReg(RB, rs2);
break;

case _EX:
EX_MEM.alures = ID_EX.rs1 + ID_EX.rs2;
EX_MEM.regwrite = ID_EX.regwrite;
EX_MEM.memread = ID_EX.memread;
EX_MEM.memwrite = ID_EX.memwrite;
EX_MEM.rdest = ID_EX.rd;
break;

case _MEM:
break;

case _WB:
writeReg(RB, EX_MEM.rdest, EX_MEM.alures);
break;

default:
break;

}
};

Figure 5. Leon (SparcV8) instruction behav-
ior description in ArchC.

is fetched the generic instruction behavior executes first,
followed by corresponding instruction format behavior, fol-
lowed by specific instruction behavior. In other words, when
an add reg instruction is fetched and decoded, the simu-
lator first executes the generic instruction behavior, then ex-
ecutes the Type F3A behavior and terminates this simula-
tion step by executing the add reg behavior. Such features
ease a lot the codification of register forwarding and hazard
detection by factorizing a large amount of operations that
must be performed, at every single clock cycle, by all in-
structions of a given format. The reader may refer to [14]
for more details on ArchC’s syntax, semantics and features.

3.2. Memory Hierarchy Modeling

Originally, storage device objects in ArchC were all in-
stances of the same base class, called ac storage. This
class provides a number of simulation features, like delayed
assignment support, update logs for simulation debugging,
statistics collection for architecture exploration, support for
various architecture wordsizes, etc. Considering how data is
stored, these objects act like containers, i.e., data is stored
into arrays and accessible through read and write meth-
ods. In order to allow a more detailed description, including
a memory subsystem composed by caches and memories,
this storage base class was inherited, extending the ArchC
Class Hierarchy, as shows the Figure 6.

An object of the ac cache Class is defined by the set-
ting of the following attributes: number of words in each
block, number of blocks in the cache, set associativity, re-
placement policy and the writing scheme. By setting these
parameters the device can be configured to be a direct-
mapped, set-associative or a fully-associative cache, and de-
fines its behavior during the read and write operations.

AC_STORAGE

AC_MEM AC_CACHEAC_REGAC_REGBANK

Figure 6. Storage device Class hierarchy.

By using the ac cache class, it is possible to describe
the architecture of the Figure 3 in a more detailed way,
defining different cache modules to compose a memory hi-
erarchy. As exemplifies the declarations of the Figure 7,
icache, dcache and ul2cache are the names given by
the designer to three different cache modules, in order to
compose a memory subsystem. According to the parameters
declared for each module in that example, a direct-mapped
cache with 128 blocks and write-through scheme named
icache will be instantiated, as well as a two-way cache,
with four words by line, replaced by LRU policy (dcache)
and a second level cache of 4096 words (ul2cache).

AC_ARCH(leon){

ac_cache icache("dm", 128, "wt")
ac_cache dcache("2w", 64, 4, "wt", "lru")
ac_cache ul2cache("dm", 4k, "wt")

ac_regbank RB:520;
ac_reg PRS, Y, WIM;

ac_pipe pipe = {IF, ID, EX, MEM, WB};

ARCH_CTOR(leon){
ac_isa("leon_isa.ac");

icache.bindTo(ul2cache); //Memory hierarchy
dcache.bindTo(ul2cache); //construction

};
};

Figure 7. Memory hierarchy declaration for
the Leon (SparcV8) architecture in ArchC.

The cache hierarchy is defined by the connection be-
tween the memory modules, establishing the cache levels
that compose the memory subsystem. In ArchC the cache
hierarchy is described by the cache’s method bindTo. This
method takes as argument the cache device which is the next
cache level in the hierarchy. In the example (Figure 7), the
icache and dcache modules are supplied by the lower
level ul2cache, as declares the two last lines of the de-
scription.

As occur with the processor description, the memory
configuration declared in the AC ARCH input file is pre-
processed and its behavior is included in the SystemC sim-
ulator that is automatically generated.

Distinctively from most of the cache simulators, the be-
havioral description generated by ArchC is not just based on
the address information references. Indeed, the storage de-
vices models are constructed as a data structure composed

by data blocks, valid and dirty bits, tag field and compara-
tors. In this way, it is actually possible to simulate the data
interchanging among the various levels of caches as well as
I/O memory-mapped modules.

The accesses to storage device models during the simu-
lation are performed through write and read methods.
These methods were implemented taking into account the
behavior expected for a given cache configuration. Thus, the
referenced address is decomposed in portions like Tag, In-
dex and Offset to access the respective cache position.

At each reference, the corresponding memory module
searches for the requested data, resulting in a hit or a miss
access. If a hit occurs, the data reading or writing is nor-
mally performed. However, if a miss happens, the processor
fetch unit is stalled and the next memory level is invoked,
in order to supply the reference absence. When the refer-
ence is ready, the processor returns to its normal condition.
This mechanism allows the simulation of a complete mem-
ory hierarchy, including multi-level caches, and the use of a
large amount of different performance parameters.

4. Behavioral Simulator of the Architecture

As illustrates the Figure 8, a SystemC model of the
architecture is generated when the Instruction Set
Architecture (AC ISA) and the Architecture
resources (AC ARCH) descriptions are processed by
the ArchC pre-processor.

ISA description

SystemC ModelGCC

Executable
Specification

Performance
Numbers

Running

ARCH description

Including Memory
description ArchC

Pre-processor

Figure 8. Behavioral simulator generation
flow.

When compiled by GCC, this SystemC behavioral model
produces an executable specification of the architecture.
This specification may be a cycle-accurate simulator of the
architecture and its execution generates performance met-
rics such as cache miss ratio, number of cycles to run the
application, data transferred, etc. The numbers generated by
running the simulator are used by the designer to evaluate
the performance of the architecture for a given application.

5. A Case Study

5.1. The Application

As an illustrative example it is proposed a convolution
algorithm, often used in image processing applications as
high-pass or low-pass filters. Briefly, a convolution opera-
tor takes as input a digital image, in our case a ��������� pixel
grayscale image (� kB), and replaces each pixel value with
the computing of the internal product with a small size ker-
nel operator, ����� pixel for instance. The result, depend-
ing on the numerical value of the kernel’s elements, will be
a sharpened or a blurred version of the input image [12].

Due to the nature of the operation, massive and regular
memory accesses are performed. This information can help
the designer to choose adequately a set of architecture can-
didates to run the application.

Figure 9 shows the algorithm of the convolution. It de-
scribes a median filter which replaces each pixel value by a
mean among its nine (�	�
�) neighbors, building as output
a blurred version of the input image. Note that this exam-
ple does not convolve the pixels on the image’s edge, since
they have not got a complete neighborhood. Compiled by
the LECCS [5], the ��� instruction lines from the optimized
object code are automatically loaded into the target archi-
tecture’s memory by the ArchC’s initialization resources.

#define height 32
#define width 32
#define k_size 3

int main () {
int k_range = (k_size -1)/2;
unsigned int k_elements = k_size * k_size;
unsigned char imageIn [height][width];
unsigned char imageOut [height][width];
unsigned char kernel [k_size][k_size];
int x, y, i, j;
for(y=1; y < height-1; y++) {

for(x=1; x < width-1; x++) {
imageOut[x][y] = 0;
for (i = - k_range; i <= k_range; i++) {

for(j = - k_range; j <= k_range; j++) {
imageOut [x][y] += imageIn [x+i][y+j] * kernel[i+1][j+1];

}
}
imageOut[x][y] /= k_elements;

}
}
return (0);

}

Figure 9. Application’s source code: a con-
volution with a ���
� median kernel for low-
pass image filtering.

5.2. The Architecture

Figure 10 illustrates our architecture instance to run the
application in this example. It consists of a Leon 32-bit pro-
cessor connected to a memory hierarchy composed by in-

struction cache (I$), data cache (D$) and a second level of
unified cache (L2$).

Sparc V8
Leon processor

Instr. Cache
Level 1

Data Cache
Level 1

Cache Level 2

Figure 10. Architecture instance based on a
Sparc V8.

The initial configuration is composed by direct-mapped
I$ and D$ caches, both with � � � words (� � -bit) organized
in blocks with one word per line. In addition, a second
level cache is present (4096 bytes), which is large enough
to store all application’s data references, including both in-
put and output image, and also the kernel matrix. Starting
from this configuration, the architecture’s tuning process is
performed.

It is a naive concept to believe that enlarging indefinitely
the size of the first level cache (D$) will reduce completely
the data cache miss ratio, increasing the application’s per-
formance. The point is that, as the data to be processed are
originally stored in the lower level memory, unavoidable
cache misses will occur at the first access for each refer-
ence. Also, for the application in matter, the data are reg-
ularly accessed, in such way that the next pixel to be con-
volved will utilize only six out of nine neighbors used at the
previous pixel, always loading three new pixels to compose
the operation. Finally, it is important to realize that the algo-
rithm operates on a whole line (x-loop in the Figure 9) be-
fore passing to the next. So, the following y-iteration will
make use of some previous data values, with the same hor-
izontal position (x-iteration) to compose the pixel’s neigh-
borhood of the subsequent line.

Aiming to adjust the cache parameters like size, num-
ber of blocks per line and associativity, the application is
executed on the architecture model using several different
configurations. Taking into account the remarks above, a
selective design space exploration was performed, aiming
to minimize data cache misses while also minimizing chip
area, by reducing the memory size.

5.3. Results

Table 1 presents performance results of sixteen differ-
ent memory architecture configurations with varying cache

sizes. A miss rate around ��� % was expected, since the appli-
cation basically reuses � (six) from the � (nine) input values
required to calculate each output pixel, as mentioned above.

As it can be seen for direct-mapped single-word blocks
(Group A), the read miss rate decreases while the number of
cache lines is increased. Yet, the most sensitive falling is ob-
served in the transition between ��� -blocks and ��� -blocks.
The experiments from Group B show that around � % of
miss rate reduction can be achieved when � -words blocks
are used instead of � -words. This improvement is due to the
regular triple loading at each output pixel calculation. Two-
way and four-way configurations were analyzed (Group C)
and the results suggest that small caches do not take advan-
tage of the line associativity with regard to miss rates.

The last experiment (D) shows the mixed effect of the
two-way associativity with four-word lines in a ��� -blocks
cache. Its storage capability is equivalent to the ��� � -blocks
cache from Group A, but its read miss rate is better than all
other configurations presented.

Data configuration Read miss rate Write miss rate
32-blocks 1-word 43.29% 12.23%
64-blocks 1-word 23.31% 12.23%

A 128-blocks 1-word 21.16% 12.20%
256-blocks 1-word 19.30% 12.16%
512-blocks 1-word 18.46% 12.08%
32-blocks 2-words 27.54% 12.23%
32-blocks 4-words 22.01% 12.23%

B 64-blocks 2-words 25.57% 12.23%
64-blocks 4-words 18.92% 12.23%

128-blocks 2-words 23.92% 12.23%
128-blocks 4-words 17.61% 12.23%
128-blocks 2-way 19.94% 15.30%

C 128-blocks 4-way 36.88% 23.35%
256-blocks 2-way 18.84% 15.49%
256-blocks 4-way 18.79% 18.75%

D 64-blocks 4-words, 2-way 17.54% 17.39%

Table 1. Data miss rates for different memory
configurations

To facilitate the performance analysis, the design space
explored can be graphically represented, as shows the Fig-
ure 11. The figure illustrates the relationship between read
miss rate versus data cache size for the various config-
urations proposed, showing that for the same cache size
(Bytes), it is possible to obtain different results.

6. Further Works

The next step of the our research project is to couple the
behavioral description generated by ArchC with bus speci-
fications, such as the AMBA AHB and APB [2], described
in SystemC, in order to interface peripheral components to
the processor core. This coupling will be made through the

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

45,0%

50,0%

0 256 512 768 1024 1280 1536 1792 2048 2304

Data cache size (Bytes)

R
ea

d
m

is
s

ra
te

Figure 11. Design Space Exploration.

cache sub-system, by connecting the lower level cache to
the bus.In this way, the memory hierarchy model may be ex-
panded to more complex configurations, by adding PROM
and SRAM memories, or even I/O units and storage de-
vices, connected across the bus. This extension will enable
the simulation of the entire system for performance evalua-
tion, including input and output devices, as well as IP and
others sub-systems, taking into account all the running time
spent during the data moving among the system’s modules.

7. Conclusion

We summarize this paper, enhancing the contributions
achieved through the use of ArchC language to describe
complete programmable systems involving processor and
memory subsystems. It is worthy it to enhance the easy to
model and the fast simulation allowed by ArchC, showing
its suitability for architecture platform tuning, by enabling
the development of an entire system, including its software
and hardware components. As a SystemC based language,
ArchC permits the addition of elements that do not com-
pose the processor but are present on chip, like buses and
peripherals. The generated SystemC model may be com-
bined with additional descriptions, making possible the co-
validation of the whole system.

Timing features like latency combined with the avail-
able cycle accurate information is being added to the mem-
ory models, for a more detailed penalty measurement at
each memory access. Actually, beyond the results already
reached up to now, it is expected that many others research
works can arise soon, based on the ArchC skills to model
and simulate architectures for SoC designs.

8. Acknowledgements

We would like to thank Capes and FAPESP (00/14376-
2) for supporting this cooperation work, allowing the inter-

changing of scientific production. We really appreciate this
initiative and gratefully acknowledge their contribution.

References

[1] G. Ammons, T. Ball, M. Hill, B. Falsafi, S. Huss-Lederman,
J. Larus, A. Lebeck, M. Litzkow, S. Mukherjee, S. Reinhardt,
M. Talluri, and D. Wood. Wisconsin architectural research
tool set. Computer Architecture News, Vol. 21(4), 1993.

[2] ARM. AMBA - Advanced Microcontroller Bus Architecture
Specification, arm ihi 0001d edition, April 1997.

[3] R. Cmelik and D. Keppel. Shade: A fast instruction-set sim-
ulator for execution profiling. ACM SIGMETRICS Perfor-
mance Evaluation Review, 22(1):128 – 137, May 1994.

[4] J. Davis, I. C. Hylands, J. J. E. A. Lee, J. L. X. Liu, S. Neuen-
dorffer, S. Sachs, M. Stewart, K. Vissers, P. Whitaker, and
Y. Xiong. Overview of the Ptolemy Project. Technical Re-
port UCB/ERL M01/11, Department of Electrical Engineer-
ing and Computer Science, University of California, 2001.

[5] J. Gaisler. The LEON/ERC32 GNU Cross-Compiler System.
Gaisler Research, version 1.1.5 edition, July 2002.

[6] J. Gaisler. The LEON Processor User’s Manual Version
1.0.10. Gaisler Research, January 2003.

[7] T. Givardis, F. Vahid, and J. Henkel. System-level ex-
ploration for pareto-optimal configuration in parameterized
system-on-a-chip. IEEE Trans. on VLSI Systems, 2002.

[8] T. Givargis and F. Vahid. Platune: A tuning framework
for system-on-a-chip platforms. IEEE Transactions on
Computer Aided Design (TCAD), Vol. 21(11):1317 – 1327,
November 2002.

[9] T. Grotker, S. Liao, G. Martin, and S. Swan. System Desing
with SystemC. Kluwer Academic Publishers, 2002.

[10] A. Halambi, P.Grun, V.Ganesh, A.Khare, N.Dutt, and
A.Nicolau. EXPRESSION: A language for architecture
exploration through compiler/simulator retargetability. In
in Proc. European Conference on Design, Automation and
Test(DATE), March 1999.

[11] Henry Chang et al. Surviving the SOC Revolution: A Guide
to Platform-Based Design. Kluwer Academic Publishers,
USA, 1999.

[12] A. K. Jain. Fundamentals of Digital Image Processing. Pren-
tice Hall, Englewood Cliffs, 1989.

[13] Richard P. Paul. SPARC Architecture, Assembly Language
Programming, and C. Prentice Hall, 2nd edition, 2000.

[14] Sandro Rigo, Rodolfo Azevedo and Guido Araujo. The
ArchC Architecture Description Language. Technical Re-
port IC-03-15, Institute of Computing, University of Camp-
inas, June 2003.

[15] SPARC International, Inc. The SPARC Architecture Manual
- Revision SAV080SI9308.

[16] H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nico-
lau. Architecture description languages for system–on–chip
design. In Proc. APCHDL, Fukuoka, Japan, October 1999.,
October 1999.

[17] F. Vahid and T. Givargis. Platform tuning for embedded sys-
tems design. IEEE Computer, Vol. 34(3):112 – 114, March
2001.

