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Abstract 

In this paper we present the development and implementation of an intravenous inf~ision controller 
system based on fpga’s. The system receives irEformation of an infision drop sensor and controls 
the drop flow by giving the direction and number of steps of a stepper motor, which compress the 
drip-feed hose. The system consists of a mixed implementation of sofnvare and hardware. The 
software was implemented in C++ and the hardware was implemented by using FPGA ‘s. 

1 - Introduction 

The aim of this work is the development and implementation of a system to control the flow of an 
intravenous infusion gravity system. Such kind of infusion system is the simplest and cheapest, but 
the infusion rate can vary with the volume to be infused. In order to keep the infusion rate constant, 
the drip-feed must be adjusted. In the most cases this adjust is done manually, which implies that 
someone must take care all the time in order to keep constant the infusion flow and to prevent some 
situations like: the end of infusion is reached, the sensor does not function, the drip chamber is 
obstructed. In the case where the patient receives medicine or nutrition through the infusion (e.g. 
parenteral feed), this kind of monitoring can become critical, since the absorption, in this case, 
depends on the accuracy of the infusion rate. Additionally, the manually monitoring of a large 
numbers of patients can lead to a stressful work environment. All these facts state the need of an 
automatic monitoring system, which should keep the infusion flow rate constant and should be able 
to signal when something is wrong. An automatic monitoring would be very helpful in order to 
guarantee a safe and accurate infusion process. 

The main aim of this work is the development of a control system for a gravity infusion system. The 
system consists of a board, which can be connected to some personal computer (486 or Pentium). 
This feature makes the system very useful for home Iv infusion therapy. 

An infusion controller has been implemented by Ferraz [4] and another one has been implemented 
by Brandgo [7]. The first one was implemented in software and has used a DC motor for pressing 
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the drip-feed hose. The second one was implemented by using discrete hardwa.re and is a stepper 
motor. The proposed work has been implemented in hardware and software and has used also a 
stepper motor for pressing the drip-feed hose. As it will be seen later, the propos,ed system is faster 
than the first one and more flexible and has more scalability than the second one. Another feature of 
the proposed work is the hardware implementation by using the fpga technology, which allows the 
implementation of a first prototype in a very short design time and at low development cost. This 
paper is organized as follow: in the next section an overview of the intravenous gravity infusion 
controller system is presented. After that, some background in the FPGA technology is given. The 
implementation of the intravenous infusion controller system, proposed in this work, is detailed in 
section 4. First, the software implementation is described. After that, the developed hardware is 
described followed by the description of the implemented hardware/software interface. This section 
is finished with the presentation of some results based on experimental measurements obtained by 
using a first prototype of the proposed controller. The paper concludes with some comments and 
some ideas for future works. 

2 - The Intravenous Infusion Controller System - IVICS: An Overview 

The Intravenous Infusion Controller System - WICS- is a single patient control system , which 
controls the intravenous infusion flow (in dropdmin.) and the infused volume (ml), and sends 
messages when something wrong is happening. The IVICS system aims to keep constant the serum 
flow between values going from 4 up to 80 drophinute,  with a dynamic max;imum error of k1 
drophinute .  Using a personal computer, the operator gives the proper dosing rate , the volume to 
be infused and the used kind of drip-feed unit. After the input data has been given , the monitoring 
can be started and the desired flow is kept constant while no error event happens. 

Figure 2.1 - The IV Infusion Controller System - IVICS 

As i t  can be seen in the figure 2.1, the IVICS system is a closed-loop control system, which 
measures the time interval between successive drops falling through the drip-feed unit and correct 
the flow by actuating on a stepper motor, which compress or decompress the drip-feed hose. The 
flow rate, given by the operator, is converted into time value (desired time between drops) in order 
to be compared with and the measured time value. Depending on the comparison results, the system 
activates a stepper motor in order to correct the error, if  necessary. The optical sensor has a infra- 
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red LED (light emitter diode) and a photo-transistor which sends 1 (drop) or 0 ( no drop) to the 
hardware. The computer receives the drop data, calculates the error and the number of steps for 
correct it by applying distinct algorithms and sends to the hardware a 8-bits instruction informing 
the direction and number of steps. The WICS hardware receives this information and converts it in 
pulses and signals for the stepper motor. The WICS hardware communicates with the computer ( 
software ) by using a proper protocol. The hardware receives a 8-bits instruction and a start signal to 
convert the 8-bits instruction in 0 up to 127 pulses sequence and sent i t  to stepper motor. The 
patient button is a push button that sends 1 ( patient ready to be infused ) or 0 (patient not ready) to 
the FPGA Hardware. For the sake of simplicity, the communication between the hardware and the 
personal computer has been implemented by using the “Centronics” parallel port ( U 0  addresses 
378h. 379h and 37ah ). The IVICS control logic uses four distinct algorithms for error correction 
depending on the error value and on the flow range. The flow range ( from 4 up to 80 drops/min.) 
has been divided in five rate regions due to non-linear pulses response ( the system behavior for 
high rates is different than the behavior for small rate values) [4]. When the error is greater than k 1 
drop/min and smaller than some tolerance value’, the used algorithm is the called “Bang-bang” 
algorithm, which keeps the error in i 1 drop/min. The pre-control algorithm is called for negative 
error values and the post-control algorithm corrects errors greater than the tolerance value. When 
the measured flow value is in a distinct region than the desired flow, the range control algorithm is 
executed. More details about these algorithms are given in section 4.1.3. The IVICS system has 
also fault tolerance capability for the case when  the patient makes abrupt movements 
causing a pseudo changing of  the flow rate. The system waits for three subsequent drops 
and returns to the normal operation mode.  

3 - Implementing Digital Circuits by using FPGA’s 

The field-programmable gate array (FPGA) is a relatively new type of component for the 
implementation of electronics systems, particularly for digital systems. It consists of an array of 
functional blocks along with an interconnection network, and as the name implies, its configuration 
can be determined in the field, that is , at the point of application. A P G A  circuit provides, for 
many applications, an adequate number of transistors in a single chip package, which includes the 
functional blocks, switches for the routing network, and the memory to control both. In this 
implementation we are using a SRAM-based re-programmable P G A  from Xilinx. , which address 
applications in new ways [ 5 ] :  

- Instantaneous Implementation: as memory-wiring times are usually short, designs can 
effectively be implemented “instantaneously”. 
- Dynamic reconfiguration: parts of the P G A  can be reprogrammed at run-time, that is, 
in the application situation. 
- Design security: an FPGA configuration disappears when the chip is powered-down. - Field programmability: systems built by using FPGAs can be upgraded in the field in 
order to correct bugs, to recover from damage, or to add new functionality. 

The IVICS hardware was described in VHDL [6] at the RT-level and synthesis in XNF description 
was done by using the Alliance synthesis system [ I ] .  

The tolerance value depends on the region of [he desire flow rate. 
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4 - The FPGA-based Implementation of the IVICS System 

As mentioned previously, the IVICS controller system was implemented in software and in 
hardware. A n  overview of the IVICS implementation can be seen in Figure 4.1. The drop sensor 
captures the occurrence of a drop. In the case a drop is falling (a signal is activated - 0 to 1)  the time 
is captured and the current flow rate is calculated. When the signal goes from 1 to 0, it means the 
drop is leaving out and the volume is calculated. If the error flow is greater than 1 droph in .  and 
smaller than a tolerance value. the “bang-bang” algorithm is executed in order to correct this error. 
For error values greater than the tolerance value, it must be verified if the limit of region is reached 
in order to call the range-control algorithm or post-control algorithm. The range-control algorithm 
corrects whether the measured value and the desired value are in distinct regions. 

Figure 4.1 - An overview of the IVICS implementation 

When a drop is not captured, that is the sensor signal does not change and remains in 0, the time is 
captured and a new drop is waited. If a time-out value is reached, either the range-control algorithm 
or the pre-control algorithm is called. Although it  is not shown in the picture, if the range-control is 
called more than hundred times it  means that something wrong is happening, probably the infusion 
liquid is finished. All the control algorithms generate an 8-bit instruction, which is the input for the 
block Generate Pulse Sequence. This block was implemented in hardware by using FPGA‘s. In the 
following, an overview of the software implementation is given. More details of the hardware 
implementation can be found in the section 4.2. 

4.1 - The software of the IVICS system 

The hoftware of the IVICS has been implemented by using the C++ language, which was chosen 
due its versatility and the easy access to the U 0  ports of the microcomputer. The IVICS program is 
composed of three main procedures: user interface, hardwarekoftware interface and the control 
flow routines. These parts were implemented by using object orientation concepts of  classes in the 
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C c i  language. Three classes were created: the graphics class implements the user interface. the 
motor class implements the hardware/software interface and the algorithms implements the control 
flow routines. 

4.1.1 - User interface: the role of the user interface i s  to make easier the communication with the 
system by receiving the input data and by giving out the output data as well as error messages. The 
data entered by the user are the desired flow, the desired infused volume and the time interval of 
infusion. The data displayed by the computer are the measured flow, the infused volume and the 
time of infusion already gone. The error messages are displayed each time some abnormal event 
happens. These messages indicate the kind of error such as: the sensor or stepper motor is failing, 
the value of the infused volume has reached the zero and the measured flow is smaller than the 
minimum limit value. 

The user interface performs also some auxiliary tasks, which are routines performing activities not 
directly related to the control flow such as the manual adjustment of stepper motor position or the 
archive generation (for patient data and calibration purposes). 

4.1.2 - HardwareKoftware interface: the hardwareisoftware interface is responsible for the 
signals exchanging between the microcomputer and the hardware. The functions performed by the 
HW/SW are the following one: 

- the reading of the number of steps and the direction of turn, and the conversion of these 
two data in an eight bit instruction; 
- the writing of the generated instruction to specific output port of the Centronics parallel 
interface, port number 378H; 
- the writing to the specific output port (37AH) of the control signals: EN, CLR-DROP and 
RST-CONT; 
- the reading from the specific input port (379H), the signals BUTTOM-OUT, END, 
DROP-OUT and A-RD-CONT. 

4.1.3 - Control flow routines: these routines calculate the number of steps and the direction of turn 
of the stepper motor, generate the error messages and control the hardware. The implemented 
routines are described in the following. 

- Bang-Bang routine: is called when the measured error is greater than one drop per 
minute and smaller than a tolerance value. 
- Pre-control routine: is executed when the time interval since the last drop fall is greater 
than a tolerance value plus the desired time between drops in order to correct the measured 
flow to a value in the Bang-Bang range of actuation. - Post-control routine: is called when the measured time between drops is smaller than the 
desired time minus the tolerance value in the case when the measured flow and the desired 
flow are in the same region. Its goal is similar than the pre-control routine. 
- Range-control routine: is called when the desired flow and the measured flow are in 
different regions, and its function is to force the measured flow value to a value in the 
desired region. 

4.2 - The Hardware of the IVICS system 

The IVICS hardware has been implemented by using the Xilinx 3020pc68-7 F'PGA, which contains 
64 CLB's (configurable logic blocks). Each CLB has two function generators, a combinatorial logic 
section, and an internal control section. The CLB also includes five logic inputs, a common clock 
input, an asynchronous direct reset input, a clock enable, and two outputs. A data-in input is also 
provided for direct input to the flip-flops within the CLB. This EPGA circuit is a re-configurable 
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one and uses static RAM'S to store the hardware interconnections and the functions performed by 
the function generators [SI. As mentioned previously, two main tools were used to implement the 
hardware in the 3 0 2 0 ~ ~ 6 8 - 7  FPGA: the ALLIGATOR tool and the XDM(Xilinx D'zsign Manager). 
By having as input a VHDL description, the ALLIGATOR tool generates a XNF(Xi1inx Netlist 
Format) file, that is a structural description of the circuit and is the input file for the XDM software. 
The XDM software has been used to map the XNF file to the FPGA and to make: changes in the 
circuit manually after the FPGA mapping. This manual correction was necessary due to the fact 
that the circuit description generated by the ALLIANCE doesn't allow to use some of the FPGA 
characteristics such as the direct reset input 

The IVICS hardware is basically composed of three main blocks: the communic;ition block, the 
execution unit and the motor controller, as it  can be seen in Figure 4.2.a. 

I 

Figure 4.2 - (a) The IVICS hardware implementation, (b) The communication block, (c) The 
execution unit, (d) The motor controller 

4.2.1 - Communication block: The communication block is responsible for the signals exchange 
between the microcomputer and the circuit itself. As it can be seen in Figure 4.2.b. there are two 
kinds of signals: data and control. The input signal is a eight bit instruction to be executed by the 
hardware. This instruction is composed of one bit indicating the direction and seven bits giving the 
number of steps and is stored in the instruction register when the control signal EN has been 
activated by the microcomputer. The output signals are the DROP-OUT and the BUTTOM-OUT 
signals. The DROP-OUT signal is stored in the DROP-FF register, this one bit register is set to one 
when the drop is detected by the drop sensor and is cleared by the control signal CL,R-DROP. The 
implementation of this register must be done manually by using the XDM tool due to the reasons 
mentioned previously. The signal BUTTOM-OUT is setup when the user press the button in the 
hardware, indicating to the software that the unit is activated. By this way, the computer starts the 
reading of signals coming from the hardware and sends data and control signals to the circuit. The 
control signals are used to synchronize software and hardware and are described below. 

- EN (Input): enables to store the instruction into the Instruction Register. 
- RST-CONT (Input): resets the internal flip-flop, avoiding the re-writing of the internal 
counter with the value stored i n  the instruction register. 
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- CLR-DKOP (Input): resets the internal flip-flop in order to store the information about a 
drop fall. 
- BUTTOM-OUT (Output): indicates to the inicrocomputer that the hardware is activated, 
enabling the software for reading the rate of drop falls. 
- DROP-OUT (Output): it is turned to high when the drop is falling through the sensor’s 
beam. 
- DONE (Output): indicates that the stepper motor has completed the number of steps of 
the instruction, and enables the microcomputer to send another instruction. 
- A-RD-CONT (Output): indicates to the microcomputer that it must send the RST-CONT 
signal. 

4.2.2 - Execution Unit: The execution unit executes the instruction sent by the microcomputer and 
informs when the instruction is completely executed enabling, thus, the storing of another one in 
the internal instruction register. As it  can be seen in the figure 4.2.c, this unit is composed of a 
internal counter, the RD-CONT register and the EN-I register. The Internal Enable (EN-I) is a one 
bit register that stores the external signal EN. This strategy of two enable signals, one external and 
one internal enable, has been used to permit the hardware itself to load the internal count, releasing, 
thus, the microcomputer of this task. The data stored in the internal register is loaded, 
asynchronously, in the intemal counter at each clock falling edge when the EN-I signal is high. So 
whether the microcomputer wants the execution of one instruction by the hardware, it sends the EN 
signal. This action sets the EN-I signal to high and at the clock falling edge the data is loaded in the 
internal counter. After that, the signal A-RD-CONT is generated in the RD-CONT register, which 
causes the microcomputer to activate the signal RST-CONT in order to reset the EN-I register and 
the KD-CONT register. By this way, the data in the internal register is loaded once during the 
execution of one instruction. After the internal counter is loaded, its value is decremented until 
zero for each clock (CK) pulse. When the internal counter is zero, the execution unit sets the signal 
DONE to high, indicating the end of the instruction execution. The two one-bit registers 
RD-CONT and EN-I were implemented manually like the DROP-FF register, because they also 
need to use the internal reset signal, which is not supported by the ALLIGATOR tool. 

4.2.3 - Motor Controller: The motor controller unit generates a sequence of four bits, which is 
necessary to turn the stepper motor in  one of the two directions. As it can be seen in the figure 
4.2.d, this unit receives the external clock signal (CK) and the turn direction from the instruction 
register while the internal counter is different of zero. The two sequences are also shown in the 
figure 4.2.d. The VHDL description for this block can also be seen in figure 4.3. 

The FPGA implementation of the IVICS hardware can be seen in the figure 4.4. This 
implementation was carried out by using the family 3020 of Xilinx and has occupied 37 CLB’s. The 
FPGA chip was placed in the Xilinx demonstration board. 
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The block t h a c  commands the signals sent to stepper motor 

motor. black lck-maror='O' and noc ck-motor'stable) 
begin 

a-motor <= guarded "1100' when Ia-motor="OllO" and dir='0'! else 
"1001" when (a_motor="1100" and dir='O'i else 
"0011" when (a-motor="1001" and dir='O') else 
"0110" when Ia-motor="0011" and dir='0'1 else 
"0011" ,when (a_motor:"0110" and dir='l'! else 
":001" when ia-motor="0011" and dir='l ' )  else 
"1100" when (a-motor="1001" and dir='l'l else 
"0110" 'men (a-motar="llOfl" and diri'l') e l s e  ini-motor: 

end block; 

--Bloc0 de Direcclsn 
d r r :  block Ien_i='l' and not en-l'stable) 
begin 

end block, 
dir <= guarded reg(7!; 

Figure 4.3 - Motor controller VHDL description 

Hrt. P i n  nlk nrt-rrn f l i x r  PrnriIr Apt-Cnn Prnhr T i m i n !  

Figure 4.4 - The FPGA Implementation of IVICS hardware 

4.3- Results 

A first prototype of the IVICS system has been implemented by using a 486-IBM I'C and all results 
were obtained for the system in closed-loop environment. As mentioned previously, the main goal 
of the proposed system is to keep constant the infusion flow for one patient, which could be a value 
in the typical range from 4 to 80 dropdmin, allowing a maximum transitory error of f l  
dropiminute. This goal was reached as it can be observed in the figure 4.53, which shows the 
system behavior for a 40 dropdminute flow rate in steady state. The measured transitory error of the 
system is +1 drop/minute. 
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Fig. 4.5 -System behavior in steady state (a) flow rate of 40 dropdmin. flow rate (b) flow rate of 
80 d ropsh in .  

The figure 4.5.b shows the IVICS behavior for a flow rate of 80 dropshinUte. The reader can 
observe for high rates that the system try to correct the error but the step angle is higher than the 
necessary. This feature leads to an alternation of the error between positive and negative values. 
This problem occurs due to the small precision of the used stepper motor (it has a smaller number of 
step angles than the system needs) and can be correct by using a more precise stepper motor. 

Another important feature to be measured is the setup time. The system maximum top-down setup 
time is 23.64 seconds and the maximum bottom-up setup time is 15.89 seconds. The figures 4.6.a 
and 4.6.b show some values for top-down and bottom-up setup times, respectively. 

Fig. 4.6 - (a) Top-down setup times (b) Bottom-up setup times 

Concerning the system precision and setup time, the results obtained with the IVICS system are 
better than the results obtained with others controller implementations. For example, the IVICS 
setup times are 15.89 sec.(bottom-to-up) and 23.64 sec.(top-down) while the CIIM system [Ferraz- 
931 setup time are 54 sec. (bottom-up) and 30 sec. (top-down). The transitory error to IVISC is +1 
drop/min and the CIIM system transitory error is rir 2 d r o p s h i n  [Ferraz-93]. Another application to 
be compared is the CPIAH system [7]. The CPIAH system has a setup time between 1 and 2 
minutes for the same application by using a similar stepper motor actuation mechanism. The 
transitory error of this system is also rir1 drop/min like the IVICS system. 
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5- Conclusions and future works 

This work has presented a FPGA-based implementation for a intravenous infusion controller 
system. The whole system was implemented in software and hardware, where the hardware part 
was implemented by using FPGA’s. In comparison with other systems the proposed system has 
shown a better performance and accuracy. An advantage of a mixed implementation of hardware 
and software is a better scalability of the system for more than one patient. Additionally the use of 
FPGA’s has allowed a rapid prototyping of the system. 
In order to improve the performance of the system and its capability of fault tolerance we have 

started the implementation of some software functions in hardware. Additionally, we are using this 
system as a case study in the development of a hardwarekoftware codesign methodology [2][3] 
and, for this purpose the system functionality has been described in Occam and is being used as 
input description for the partitioning tool developed in the context of the PISH project, ongoing in 
our department. 
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