

Pós-Graduação em Ciência da Computação

“Domain-Specific Game Development”

Por

André Wilson Brotto Furtado

Tese de Doutorado

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

ii

iii

Universidade Federal de Pernambuco

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ANDRÉ WILSON BROTTO FURTADO

Domain-Specific Game Development

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIA DA
COMPUTAÇÃO.

 ORIENTADOR: André Luís de Medeiros Santos
 CO-ORIENTADOR: Geber Lisboa Ramalho

RECIFE, Fevereiro/2012

iv

 Catalogação na fonte

 Bibliotecária Jane Souto Maior, CRB4-571

 Furtado, André Wilson Brotto

 Domain-Specific game development / André Wilson
 Brotto Furtado. - Recife: O Autor, 2012.
 xxv, 233 p. : il., fig., tab.

 Orientador: André Luis de Medeiros Santos.
 Tese (doutorado) - Universidade Federal de Pernambuco.
 CIn, Ciência da Computação, 2012.
 Inclui bibliografia e apêndice.

 1. Ciência da Computação - Engenharia de Software. 2.
 Linguagem de programação. 3. Jogos digitais. I. Santos, André
 Luis de Medeiros (orientador). II. Título.

 005.12 CDD (23. ed.) MEI2012 – 034

v

“[...] a good programmer in these times

does not just write programs. [...] a

good programmer does language de-

sign, though not from scratch, but

building on the frame of a base lan-

guage.”

-- Guy Steele Jr

“Language defines the boundary to our

world: it sets what we can describe and

also what we can’t.”

-- Ludwig Wittgenstein

"Enjoyment is not a goal; it is a feeling

that accompanies important ongoing

activity."

-- Paul Goodman

vi

vii

To Juliana.

viii

ix

ACKNOWLEDGEMENTS

Among all of the few thousand pages I’ve probably written in the last years, this is the one I

was the most looking forward to. It means a very big journey is about to reach its destination.

It means it’s time to wrap up the efforts and lessons learned from a long chapter. It means it’s

time to resume.

 Since the first words of this document have been typed, a lot has changed, from my

country of residence to my civil status. Finally standing here, on the other edge, enables me

to look back and realize the amount of people who made it possible for me to cross the

bridge. For very real, folks: I’ll carry your encouragement and support forever!

 To my wife Juliana, words won’t be enough. I know this moment means as much to

you as it means to me. Sorry for all the moments that did not happen. Or could have been

better. Thanks for your patience, support and for simply being there. I love you!

 To my family overseas, thanks for the continuous incentive and support, for letting me

to share this with you, be it the good, the bad or the ugly. Your will for making this moment to

happen refueled my efforts, even when the sunrise reminded how hard things can be.

 To my friends and advisors André Santos and Geber Ramalho, thanks for opening

the door and making this possible. You started it all. Without your plan, trust, knowledge and

motivation, this would have never gotten beyond an “apparently interesting academic idea”.

 To my experiment’s subjects… wow! 14 sessions, 125 hours, 32 versions of games, a

lot of pizzas and an unlimited amount of camaraderie. Angelo Ribeiro, Carlos Rodrigues,

Gustavo Andrade, Gustavo Magalhães, Julio Lins, Livar Cunha, Renato Ferreira and Rodrigo

Silveira: this research would have a third of its confidence and validity if it wasn’t for you.

Consider your contributions a legacy to the SPL and DSL communities. Enjoy Section 5.4.

 To all of those from the research groups who contributed to this thesis, especially the

RiSE group and UFPE’s Center of Informatics, my sincere thanks. You helped me to connect

the dots when I needed the most. The network you created is very noble and invaluable to

Software Engineering researchers.

 To my new and old friends, now spread around multiple continents, as well as my

teammates: thanks for making this a lighter and happier path. You are there even when you

are not here, and you know what I mean. Being connected to you all is a gift. Thanks for

sharing so much energy and growth.

 Finally, I’d like to register a modest, humble thanks to my past self. Sorry for anything.

Thanks for pursuing the goal. Thanks for believing.

André Furtado

December 31, 2011

x

xi

ABSTRACT

This thesis introduces the concept of Domain-Specific Game Development, which is an ap-

proach that harvests the benefits of Software Product Lines (SPLs) to create digital games

belonging to a same family more effectively. The need for such an approach is justified by

the fact that introducing reuse and SPL concepts into digital games development, in fact into

any other domain, is not a straightforward task, due to the peculiarities of each domain. Spe-

cifically for games, traditional Requirements Engineering and use cases cannot be applied as

is. Business requirements are trumped by prototypes, rapid experimentation and emotion-

based requirements, such as immersion and nostalgia. The so popular concept of game gen-

res is nevertheless too vague and ambiguous to define the scope of a family of games from a

SPL perspective. The end-user’s (player’s) experience is much more based on surprises and

ruptures than the adherence to standards. And no approach aimed at improving game de-

velopment can ignore game engines, which have become the state-of-the-art development

resource for digital games by bringing to the area the benefits of Software Engineering and

object-orientation. However, the abstraction level provided by game engines could still be

made less complex to consume by means of language-based tools, the use of visual models

as first-class citizens (in the same way as source code) and a better integration with devel-

opment processes. With such a motivation, Domain-Specific Game Development bridges

SPLs to game development, culminating with domain-specific languages (DSLs) and genera-

tors streamlined for game sub-domains and aimed at automating more of the digital games

development process. It focuses on employing Domain Engineering, Model-Driven Develop-

ment and software reuse to encapsulate the common and best practices in game develop-

ment, yet supporting variable and unforeseen behavior. In order to evaluate the proposed

approach, we present exploratory and confirmatory case studies, as well as a controlled ex-

periment performed with software engineers with industry experience. With a measured de-

velopment effort improvement of more than five times in average, we suggest Domain-

Specific Game Development as a viable alternative for same-family game development sce-

narios in order to reduce the complexity of consuming game engines, to break down game

development tasks into more granular and automatable chunks, to enable the creation of ex-

pressive yet executable game specifications, to deliver incremental value for prioritized game

sub-domains, to build effective domain-specific assets tailored to the unique characteristics

of an envisioned family of games and, finally, to still provide flexibility and extensibility for

game developers and designers to focus on what makes each game unique and distinct.

Keywords: game development, software reuse, software product lines, domain engineering,

domain-specific languages, experimental study.

xii

xiii

RESUMO

Este tese apresenta o conceito de Domain-Specific Game Development, uma abordagem

que emprega os benefícios de linhas de produção de software (SPLs) para criar mais

eficientemente jogos digitais pertencentes a uma mesma família. A necessidade por essa

abordagem é justificada pelo fato de que a introdução de conceitos de reuso e SPL em

jogos digitais, na verdade em qualquer domínio, não é trivial, devido às peculiaridades de

cada domínio. Especificamente para jogos, a Engenharia de Requisitos tradicional e casos

de uso não podem ser aplicados como são. Prototipagem, rápida experimentação e

requisitos baseados em emoção são preferidos em relação a requisitos de negócio. O tão

popular conceito de motores de jogos é muito vago e ambíguo para definir o escopo de uma

linha de produção de jogos. A experiência de jogadores é mais baseada em surpresas e

rupturas do que na aderência a padrões. E nenhuma abordagem focada na melhoria do

desenvolvimento de jogos pode ignorar motores de jogos, atual estado-da-arte no

desenvolvimento de jogos digitais. Por outro lado, a abstração provida por eles poderia ser

menos complexa de ser consumida, através de ferramentas baseadas em linguagens, o uso

de modelos como cidadãos de primeiroa classe (assim como código fonte) e uma melhor

integração com o processo de desenvolvimento. Dada essa motivação, Domain-Specific

Game Development faz a ponte entre SPLs e o desenvolvimento de jogos, culminando com

linguagens de domínio específico (DSLs) e geradores alinhados para sub-domínios de jogos

e focados em automatizar mais o processo de desenvolvimento de jogos digitais. A

abordagem emprega Engenharia de Domínio, Model-Driven Development e reuso de

software para encapsular as melhores e mais comuns práticas do desenvolvimento de jogos,

ainda suportando comportamento variável e imprevisto. Para avaliar a abordagem,

apresentamos casos de estudo confirmatórios e exploratórios, assim como um experimento

controlado realizado com engenheiros de software da indústria. Com uma melhoria de

produtividade observada de mais de 5 vezes em média, sugerimos Domain-Specific Game

Development como uma abordagem viável para o desenvolvimento de jogos que pertencem

a uma mesma família, de modo a reduzir a complexidade no consumo de motores de jogos,

quebrar tarefas de desenvolvimento em blocos mais automatizáveis, habilitar a criação de

especificações expressivas porém executáveis, entregar valor incrementalmente para sub-

domínios priorizados, construir artefatos de domínio específico alinhados às características

únicas da família-alvo de jogos e, finalmente, prover flexibilidade e extensibilidade para que

desenvolvedores e designers de jogos possam focar no que torna cada jogo único distinto.

Palavras-chave: desenvolvimento de jogos, reuso de software, linhas de produção de

software, engenharia de domínio, linguagens de domínio específico, estudo experimental.

xiv

xv

CONTENTS

1. Introduction .. 1

1.1 Motivation .. 2

1.2 Goals ... 7

1.3 Challenges ... 9

1.4 Thesis Organization ... 10

2. Digital Games Development .. 11

2.1 From Assembly to Doom .. 11

2.2 Multimedia APIs ... 13

2.2.1 Discussion: Multimedia APIs Effectiveness in Game Development 14

2.3 Click-n-Play Tools .. 14

2.3.1 Discussion: Click-N-Play Tools Effectiveness in Game Development 15

2.4 Game Engines ... 18

2.4.1 Discussion: Game Engines Effectiveness in Game Development 19

2.5 Industry Alternatives to Game Engines .. 20

2.6 Game Development Processes .. 21

2.6.1 The Early Phases: Ad Hoc Game Development .. 21

2.6.2 Waterfall Processes .. 21

2.6.3 Iterative, Incremental and Agile Processes .. 22

2.6.4 Model-Driven and Componentized Processes ... 22

2.7 The Future of Game Development: Tendencies and Proposals 28

2.8 Chapter Summary .. 30

3. Building Application Families ... 31

3.1 Component-Based Development ... 31

3.2 Domain Engineering ... 32

3.3 Software Product Lines .. 33

3.4 Visual Modeling and Domain-Specific Languages .. 35

3.5 Contextual and Automated Guidance ... 38

3.6 Software Factories ... 40

3.7 The Applicability of Software Industrialization to Digital Games.................................. 42

3.8 Chapter Summary .. 45

4. Domain-Specific Game Development .. 47

4.1 Approach Overview .. 49

4.2 Envisioning the Game Domain ... 53

4.2.1 The Unreliability of Game Genres ... 54

xvi

4.2.2 Describing Game Domains through a Game Domain Vision 58

4.2.2.1 Setting Expectations for Core Game Dimensions ... 58

4.2.2.2 Establishing a Negative Scope ... 60

4.2.2.3 Identifying Target Platforms .. 61

4.2.2.4 Creating a Vision Statement ... 62

4.3 Analyzing the Game Domain .. 63

4.3.1 Building the Game Domain Vocabulary ... 63

4.3.2 Defining and Refining Game Domain Features ... 65

4.3.3 Selecting Domain Samples ... 68

4.3.4 Analyzing Game Samples and Modeling the Game Domain 69

4.3.5 Partitioning the Game Domain into Sub-Domains ... 73

4.3.6 Revisiting the Game SPL Domain Scope .. 75

4.3.7 Testing Sample Analysis against Stop Criteria .. 77

4.3.8 Validating the Game Domain ... 79

4.3.9 Assess Game Domain Automation Potential ... 79

4.3.9.1 Identify Sub-Domain Candidates for Automation .. 80

4.3.9.2 Prioritize Sub-Domain Candidates for Automation .. 81

4.4 Bridging Game Domain Analysis to Application Core Assets 82

4.4.1 Toward a Domain-Specific Game Architecture .. 83

4.4.2 Promoting Game Engines to Domain Frameworks .. 85

4.4.3 Creating Reusable Game Components ... 88

4.5 Bridging Game Domain Analysis to Development Core Assets 90

4.5.1 Characterizing Sub-domain Variability ... 91

4.5.2 Deciding upon MDD Development .. 92

4.5.3 Defining DSLs and Supporting Assets ... 93

4.5.3.1 Design the DSL Abstract Syntax ... 94

4.5.3.2 Define the DSL Concrete Syntax .. 96

4.5.3.3 Manage Cross-DSL Integration .. 97

4.5.3.4 Build Domain-specific Modeler ... 97

4.5.4 Developing Transformations and Refining DSLs ... 98

4.5.5 Designing and Implementing IDE Integration ... 101

4.6 A Note on Cross-SPL Game Assets ... 103

4.7 Application Engineering ... 103

4.8 Chapter Summary .. 105

5. Evaluation .. 107

5.1 What Makes Good Domain-Specific Development Assets? 107

xvii

5.2 Exploratory Case Studies ... 108

5.2.1 SharpLudus Adventure Revisited .. 114

5.3 Confirmatory Case Study: The ArcadEx Game SPL ... 119

5.3.1 ArcadEx Domain Envisioning .. 119

5.3.2 ArcadEx’s Domain Analysis ... 121

5.3.3 Bridging the ArcadEx Domain Analysis to Application Core Assets 127

5.3.4 Bridging the ArcadEx Doman Analysis to Development Core Assets 128

5.3.5 ArcadEx Evaluation ... 138

5.4 The Experimental Study ... 146

5.4.1 Definition ... 146

5.4.2 Planning .. 148

5.4.2.1 Training .. 148

5.4.2.2 Subject Groups and Target Games .. 148

5.4.2.3 Instrumentation .. 149

5.4.2.4 Experiment Hypotheses ... 150

5.4.2.5 Threats to the Validity of the Experiment .. 151

5.4.3 Operation .. 153

5.4.4 Analysis and Interpretation .. 155

5.4.4.1 Development Effort Improvement ... 156

5.4.4.2 Generated/Total Code Ratio ... 164

5.4.4.3 Helpfulness .. 164

5.4.4.4 Difficulty ... 173

5.4.5 Lessons Learned ... 177

5.5 Chapter Summary .. 178

6. Conclusions ... 181

6.1 Contributions .. 181

6.2 Limitations and Future Work .. 183

6.3 Final Remarks .. 186

References .. 189

Appendix A. ArcadEx Feature Model ... 205

A.1 Root ArcadEx Game Feature ... 205

A.2 Player Feature ... 205

A.3 Entity Feature .. 206

A.4 Entity Instance Feature .. 208

A.5 Graphics Feature ... 209

A.6 Physics Feature ... 210

xviii

A.7 Flow Feature .. 211

A.8 Event Feature .. 212

A.9 Input Feature ... 212

A.10 Audio Feature .. 213

A.11 AI Feature .. 214

A.12 Miscellaneous Feature ... 214

Appendix B. Domain-Specific Development Evaluation ... 215

Appendix C. Experiment Questionnaire ... 221

C.1 Personal Experience ... 221

C.2 Feedback .. 221

Appendix D. Experiment Cheat Sheet for XNA/FlatRedBall ... 223

D.1 Game .. 223

D.1.1 How to define and initialize a game class ... 223

D.1.2 How to initialize game graphics in full screen mode .. 223

D.1.3 How to initialize a game graphics in windowed mode 223

D.1.4 How to run a game cycle .. 223

D.1.5 How to start a game .. 223

D.2 Screens ... 224

D.2.1 How to define a screen class .. 224

D.2.2 How to create a static background .. 224

D.2.3 How to add walls to a screen .. 224

D.2.4 How to transition to other screens ... 224

D.3 Sprites ... 225

D.3.1 How to define a sprite class .. 225

D.3.2 How to define sprite animations .. 225

D.3.3 How to flip a sprite texture .. 225

D.3.4 How to set a sprite’s bounding circle based on its texture 225

D.3.5 How to set a sprite’s bounding box based on its texture 225

D.3.6 How to add sprites to a screen.. 226

D.3.7 How to remove sprites from a screen.. 226

D.3.8 How to bounce a sprite after a collision against a wall 226

D.3.9 How to bounce a sprite after a collision against another sprite 226

D.4 Audio ... 226

D.4.1 How to create and play a sound effect .. 226

D.4.2 How to stop a sound effect ... 227

D.5 Input .. 227

xix

D.5.1 How to verify whether a button was pushed .. 227

D.5.2 How to retrieve the position of an analog stick .. 227

D.5.3 How to apply input mapping .. 227

D.6 Text ... 227

D.6.1 How to add display texts to a screen... 227

D.6.2 How to update display texts .. 227

D.7 Miscellaneous .. 227

D.7.1 How to retrieve a random number ... 227

D.7.2 How to get the elapsed time ... 227

Appendix E. Experiment Checklist ... 229

E.1 Development tasks for the “Pong” game .. 229

E.2 Development tasks for the “2942” game .. 230

xx

xxi

LIST OF FIGURES

Figure 1 – Doom, by id Software .. 12

Figure 2 – A multimedia API provides abstraction layer to game development 13

Figure 3 – Click-n-play tools modify the top abstraction layer ... 15

Figure 4 – Game Maker ... 15

Figure 5 – Specifying flow control visually in Game Maker ... 16

Figure 6 – Creating a script with GML, the Game Maker built-in programming language 17

Figure 7 – Game engines introduced a new abstraction layer in game development 18

Figure 8 – Contextualizing the hiatus addressed by this research .. 29

Figure 9 – A new context: higher abstraction through DSLs and process integration 30

Figure 10 – Model created using a DSL for smart phones [Tolvanen, 2005] 36

Figure 11 – Microsoft Blueprints guidance workflow tool window ... 39

Figure 12 – Software Factory Overview [Lenz & Wienands, 2006] 41

Figure 13 – A high-level overview of the Domain-Specific Game Development approach 50

Figure 14 – Domain Engineering coverage from the proposed approach 53

Figure 15 – Sharky’s Air Legends: hybrid evolution from Shoot ‘em Up genre 57

Figure 16 – GeneRally, Daytona USA and EA Sports F1 ... 58

Figure 17 – Braid: time flow manipulation extends built-in feature set of platform games 68

Figure 18 – Example of feature model diagram.. 71

Figure 19 – King & Ballon (left) and other Bottom-up Shooter games 73

Figure 20 – Crash, Mrs. Pac-Man and Side Track belongs to the Maze sub-domain 74

Figure 21 – Teeter Torture ... 74

Figure 22 – Defender: hybrid game belonging to multiple sub-domains 75

Figure 23 – Promoting game engines to domain frameworks ... 86

Figure 24 – Framework completion .. 87

Figure 25 – On-screen keyboard is a reusable game component .. 89

Figure 26 – Game domain framework configured from multiple sources 90

Figure 27 – Variability spectrum: from routine configuration to creative construction 92

Figure 28 – Retrofitting feedback from developed games into the game SPL 104

Figure 29 – Main DSL of the Commander Assembler game SPL 111

Figure 30 – Sample game developed with the Commander Assembler game SPL 111

Figure 31 – Assets of the Elegy game SPL .. 112

Figure 32 – Sample game developed with the Elegy game SPL .. 112

Figure 33 – Sample code written in the Gesture Aggregation Language DSL 113

Figure 34 – Sample game re-implemented with the Gesture Aggregation Language 113

xxii

Figure 35 – SharpLudus Game Modeling Language (SLGML) ... 114

Figure 36 – Ultimate Berzerk adventure game, created with SharpLudus Adventure 115

Figure 37 – SLGML concepts, managed through lists and dialogs 117

Figure 38 – BattleZone and Star Wars, by Atari ... 123

Figure 39 – Paperboy and Pole Position: also out-of-scope ... 123

Figure 40 – Airlock and Gauntlet better belong to other game SPLs 124

Figure 41 – Moon Patrol, Donkey Kong and Joust: false positive ArcadEx game samples 124

Figure 42 – Frogger and Tapper: new movement variability ... 125

Figure 43 – Time Pilot and Bosconian: new scrolling variability ... 126

Figure 44 – Sea Quest, Asteroids and River-Raid: no new variability 126

Figure 45 – Some games implemented toward ArcadEx’s reference architecture 129

Figure 46 – ArcadEx assets overview, including ArcadEngine and FlatRedBall 130

Figure 47 – ArcadEngine architecture .. 130

Figure 48 – Diagram modeled with GameDefinitionDSL .. 131

Figure 49 – Integrated tool support for domain-specific modeling experience 132

Figure 50 – Excerpt of GameDefinitionDSL’s code generator .. 132

Figure 51 – Example of code generated by the GameDefinitionDSL’s code generator 132

Figure 52 – Further GameDefinitionDSL IDE integration .. 133

Figure 53 – InputMappingDSL modeling experience and IDE integration........................... 134

Figure 54 – EntityDSL modeling experience and IDE integration 135

Figure 55 – ScreenDSL modeling experience and IDE integration for the game “2942” 136

Figure 56 – ScreenDSL modeling experience and IDE integration for the game “Pong” 136

Figure 57 – ArcadExGame project template integrated into the Visual Studio IDE 138

Figure 58 – UI actions required for making a NPC to fire a bullet every second 139

Figure 59 – Generated code for making a NPC to fire a bullet every second 139

Figure 60 – Wall Collision Reactions editor .. 140

Figure 61 – Generated code for wall collision reactions ... 141

Figure 62 – Declaring collision interests that depend on the entities’ states 142

Figure 63 – Implementing collision interests manually for the 2942 game (1/2).................. 143

Figure 64 – Implementing collision interests manually for the 2942 game (2/2).................. 144

Figure 65 – Development efforts per subject (Pong) .. 157

Figure 66 – Distribution of development efforts (Pong) .. 157

Figure 67 – Development efforts per subject (2942) .. 158

Figure 68 – Distribution of development efforts (2942) ... 158

Figure 69 – Evolution of development efforts ratio ... 160

Figure 70 – Comparison of domain-specific development improvements per domain 161

xxiii

Figure 71 – Costs of developing single game instances vs. the use of game SPL assets .. 163

Figure 72 – Helpfulness evaluation per subject .. 165

Figure 73 – Wall initialization logic from one of the subjects’ code 166

Figure 74 – Ball’s velocity initialization code (Subject ID1) ... 171

Figure 75 – Ball’s velocity initialization code (Subject ID3) ... 172

Figure 76 – Ball’s velocity initialization code (Subject ID8) ... 172

Figure 77 – Ball’s velocity initialization code (Subject ID6) ... 172

Figure 78 – Difficulty evaluation per subject ... 174

Figure 79 – Specifying a random position for a new entity ... 175

Figure 80 – Examples of cluttered GameDefinitionDSL diagrams for the Pong game 176

Figure 81 – Root ArcadEx Game feature model ... 205

Figure 82 – Player feature model ... 206

Figure 83 – Entity feature model .. 207

Figure 84 – Evil Otto (invincible, smiley face) and 1942 airplane (the bottom one) 207

Figure 85 – Entity Instance feature model .. 208

Figure 86 – Galaga and Feeding Frenzy have “formations” of NPCs 209

Figure 87 – Graphics feature model ... 210

Figure 88 – RallyX and its different heads-up displays ... 210

Figure 89 – Physics feature model ... 211

Figure 90 – Flow feature model ... 211

Figure 91 – Event feature model .. 212

Figure 92 – Input feature model ... 213

Figure 93 – Audio feature model .. 213

Figure 94 – AI feature model .. 214

Figure 95 – Miscellaneous feature model ... 214

xxiv

xxv

LIST OF TABLES

Table 1 – Software development challenges and relevance to digital games 43

Table 2 – Software development implications and relevance to digital games 45

Table 3 – Summary of the Domain-Specific Game Development activities 54

Table 4 – Non-emotional features: tracing between problem and solution domains 67

Table 5 – Cardinality-based feature model notation ... 70

Table 6 – Evaluation against desirable properties of domain-specific development assets 109

Table 7 – Domain Vision for the ArcadEx SPL ... 120

Table 8 – Subject groups ... 149

Table 9 – Subjects’ Profiles.. 154

Table 10 – Time dispended during the experiment’s operation phase 155

xxvi

1

1. INTRODUCTION

There is a vital difference between an application’s problem domain and its code [Jackson,

1995]. These are two different worlds, each with its own language, experts and ways of think-

ing. A finished application forms the intersection between these worlds [Metacase, 2009].

However, most of the information about a software application above the level of

source code is typically captured in an informal manner or lost, in spite of the fact that this is

the information that best tells what is being built and why developers are building it a certain

way [Greenfield et al., 2004]. This means that when a new application is being developed,

mappings from the higher-level problem domain to the lower-level solution domain are per-

formed from scratch over and over again, although most software products are more similar

than different to each other. Too much time and effort is spent manually rediscovering and

reinventing solutions to common domain requirements, which has led to the situation where

software is still built more or less in isolation, and the majority of software projects are late,

over budget and defect ridden [Lenz & Wienands, 2006].

In order to tackle such a challenge, Parnas [1976] was the first to introduce the idea

of family-based production strategies. According to him, a set of programs is considered to

constitute a family whenever it is worthwhile to study the programs from the set by first

studying the common properties of the set and then determining the special properties

of the individual family members. Building on top of that, Czarnecki & Eisenecker [2000] ad-

vocated that the first step in the transition from single systems to system families is to adopt

a Domain Engineering or software product line (SPL) process.

Instantiating the concepts of reuse and application families to the digital games de-

velopment industry is the main theme of this thesis. We are interested in investigating how

the peculiarities of digital games development impact the applicability of SPLs and software

factories to such a domain, proposing an approach entitled Domain-Specific Game Devel-

opment to improve the effectiveness of creating games belonging to a same family. We also

have a profound interest in measuring the benefits and shortcomings of the approach.

This chapter contextualizes the problem domain by first investigating high-level Soft-

ware Engineering approaches for avoiding software development in isolation, then provides a

background on how the discussion is relevant to digital games development, highlighting

some of the area’s specific needs and challenges. That sets up the motivation for the re-

search. Following that, a clearer definition of this thesis’ goal is stated, along with its chal-

lenges and the structure through which the proposed solution will be presented.

2

1.1 Motivation

Stating this research’s question requires reflecting on a couple of other fundamental ques-

tions related to Software Engineering and digital games development. The first question is

“What does Software Engineering propose against software development in isolation?”. It

relates to the aforementioned problem of reinventing solutions over and over again, and

leads to the concept of software industrialization.

 The second question then brings into discussion “Why should digital games develop-

ment care about software industrialization?”. By answering such a question, it is possible to

understand the needs and specific challenges faced by digital games development upon

software industrialization.

 Finally, the third question, “What is the business relevance of the digital games indus-

try?”, contextualizes the macro-domain this thesis deals with, from a consumer and market

perspectives. Its answer makes it possible to envision the range to which the contributions of

this research can be applied.

What does Software Engineering propose against software development in isolation?

In order to avoid manually rediscovering and reinventing solutions, an increasing interest on

software reuse, known as the process of creating software systems from existing software

rather than building them from scratch [Krueger, 1992], has been observed as an approach

to improve quality, productivity and consequently reducing costs in software development.

The software reuse process is more effective when systematically planned and managed in

the context of a specific domain, in which applications belonging to the same “family” share

functionality [Almeida, 2007]. In other words, systematic software reuse is a paradigm shift in

software development from building single systems to application families of similar systems

[Frakes & Isoda, 1994].

 A major addition to existing reuse approaches since the 1990s is the concept of soft-

ware product families or Software Product Lines (SPLs) [Clements & Northrop 2001] [Bosch,

2000] [Weiss & Lai, 1999], defined as “a set of software-intensive systems that share a

common, managed set of features satisfying the specific needs of a particular market seg-

ment or mission and that are developed from a common set of core assets in a prescribed

way”. Since instances of a product family share the same problem domain and consequently

the same root problems, Software Product Lines are aligned with the concepts of Domain-

Specific Development, an approach for solving problems that can be applied when a particu-

lar problem occurs over and over again [Fowler, 2005]. Industrial experiences of SPLs, Do-

main-Specific Development and Modeling report major improvements in productivity (3 to 10

times), lower development costs and better quality [Kelly & Tolvanen, 2008] [Weiss & Lai,

3

1999]. Key contributing factors are the higher level of design activities that have to be per-

formed, in contrast to low-level implementation details.

 The concept of software factories, as introduced by Greenfield et al. [2004], builds on

several already established concepts such as Software Product Lines, reusable software as-

sets (application blocks and frameworks), Model-Driven Development (MDD) and automated

context-based guidance. It heavily relies on integration with development environments and

on a more graphical approach that, unlike Computer-Aided Software Engineering (CASE)

tools, is seriously interested in semantics and control over code generation [Fowler, 2005].

That is enabled by means of visual Domain-Specific Languages (DSLs), limited form of com-

puter languages designed for a specific class of problems that offers, through appropriate

notations and abstractions, expressive power focused on, and usually restricted to, a particu-

lar problem domain [van Deursen et al., 2000]. Software factories use visual DSLs to elevate

program specifications to compact visual domain-specific notations that are easier to write

and maintain, raising the abstraction level of system development beyond programming by

specifying the solution directly using domain concepts. Model transformation, such as code

generation, is applied to derive other work products from the designed models.

Although successful cases of software reuse can be found in the industry [SPL Hall of

Fame, 2012], Almeida [2007] reports that experiences in software reuse are often related to

individuals and small groups, who practice it in an ad hoc way, with high risks that can com-

promise future initiatives in this direction. Lenz & Wienands [2006] point out that, even

though the products are similar, reuse mostly happens at a limited scope, like copy and paste

of code snippets and reuse of class libraries. Nascimento [2008] states that apart from cer-

tain specific domains, such as mathematical libraries, in general the benefits of the traditional

software reuse approach have been limited. Reuse is still relatively low and the emphasis is

on low-level (code) reuse.

One the other hand, digital games development, despite being a prominent industry,

is a field typically characterized by ad hoc, low-level development [Reyno & Cubel, 2008].

Historically, excessive high performance constraints together with very tight schedules forced

digital games development to trade more refined Software Engineering techniques for a re-

sult-oriented but less organized development process, as well as reusability for in-house de-

velopment, in a methodology that became known as “pedal to the metal” [Rollings & Morris,

2000]. Together with other digital games development peculiarities, such as a non-traditional

requirement engineering, such factors provide an indication that additional efforts might be

required in order to leverage the aforementioned Software Engineering reuse techniques in

digital games development as a means to satisfy the increasing demands on such an indus-

try. The next subsection addresses the topic.

4

Why should digital games development care about software industrialization?

Neward [2008] points out that there are a number of challenges coming up that we cannot

solve with our current set of languages and tools, and that we stand on the threshold of a

“renaissance in programming languages”. Greenfield et al. [2004] estimate that the total

global demand for software will grow by an order of magnitude over the next decades: “de-

sign patterns and specialized tools demonstrated limited but effective knowledge reuse;

however, without deeper increases in productivity, total software development capacity

seems destined to fall far short of total demand”. Those and other authors believe that there

is evidence that the current development paradigm is near its end, and that a new paradigm

is needed to support the next leap forward in software development technology.

On the other hand, the expectations on digital games are already extremely high

[Folmer, 2007]. Innovative hardware (new input devices, more powerful graphics cards, etc.),

improved “software as a service” business models (online player community memberships

such as the Xbox Live, on-demand game titles rental without late fees, etc.), applicability to

multiple domains (entertainment, education, training, etc.) and innovative gameplay make

digital games to be perceived as one of major streams where bleeding-edge technologies

and ideas are showcased. Digital games are a cultural phenomenon, and that continuously

pushes the boundaries of what is expected from the game development ecosystem.

 As a result, it seems that the exponential growth of the total global demand for soft-

ware is a trap waiting for the game development industry, since:

 The hardest part of making a game has always been the engineering [Blow,

2004];

 Game development is a field typically characterized by ad hoc, low-level de-

velopment [Reyno & Cubel, 2008];

 Many game developers struggle with component integration and managing

the complexity of their architectures, while expanding deadlines and escalat-

ing costs have notoriously plagued the game industry [Folmer, 2007].

Almost 50 years after the development of the first computer game, Wiering [1999]

pointed out that game development teams were still spending a considerable amount of time

in solving programming problems, instead of creatively designing the game. Game develop-

ment has turned, decade after decade, into a much more complex experience, while the

game industry has a perpetual shortage of qualified people due to its increasing expertise

requirements [Blow, 2004].

Before the commoditization of digital games by app stores and marketplaces, only the

top 5% of products make a profit in the game industry [Gillin, 2006]. Numerous games may

start development but are canceled, or perhaps even completed but never published. Video

5

game companies have been accused of excessive invocation of "crunch time" [Frauenheim,

2004], point at which the team is believed to be failing to achieve the milestones required to

launch the game on time, causing disrupt in the developers’ work-life balance. Informal

sources1 also point out that experienced game developers may work for years and yet never

ship a title: “such is the nature of the business”. This volatility is likely inherent to the artistic

nature of games, and the complexity of the work flow in video game creation makes it very

difficult to manage the team’s schedules.

Digital games have always evolved toward increased technical complexity to deliver

to their users (players) features they have never experienced before. As a result, each wave

of games is attempting several technical feats that are mysterious and unproven [Blow,

2004]. Thus game developers carry a lot of technical risk (it is not possible to accurately

schedule the unknown or predict how it will interact with the rest of the system) as well as

game design risk (how will unprecedented features feel to end-users?). Rather than being

discouraging, the challenge involved in making a game is a major part of the reason why so

many people are attracted to the field. Therefore, game development teams need to focus on

such risks and new features rather than wasting time on menial and routine tasks that should

be performed repeatedly.

In contrast, game engines are the state-of-the-art game development resource. They

are an important step toward game development automation by bringing together the bene-

fits from Software Engineering and object-oriented technologies. They provide an additional

abstraction layer by encapsulating common knowledge and providing a reusable game de-

velopment foundation. Nevertheless, this abstraction level could be made less complex to

consume by means of language-based tools, the use of visual models as first-class citizens

(in the same way as source code) and a better integration with development processes. Ad-

ditionally, in many circumstances game engines and integrated environments in which

games are developed, including the recent additional of integrated graphical environments

such as Unit [Menard, 2011], are too generic to allow the benefits of application families de-

velopment to be exploited.

The SPL Hall of Fame compiled by the Software Engineering Institute [SPL Hall of

Fame, 2012] does not contain any entries related to the digital games development industry.

Nevertheless, the same problems and trends that raised solutions such as Software Product

Lines and Domain-Specific Development seem to be present in digital games. For instance,

Blow [2004] points out that one of the major roots of difficulties in digital games development

lies on complexity and problems due to high domain-specific requirements. Sometimes, for

1
 http://en.wikipedia.org/wiki/Video_game_development

6

defining game content and behavior, such as for building the geometry of the game world,

domain-specific editors are written from scratch. To write good engine code, there is a lot

of domain-specific knowledge required. Often the application program interfaces (APIs)

consumed by digital games are difficult to deal with because they embody some conceptual

model that is a poor fit for the way the game needs to work. Moreover, all-or-nothing ap-

proaches for reuse are common in game development, where an entire game engine is li-

censed instead of more granular, reusable components.

If from one side Calheiros et al. [2007] point out that tool support development is a

pre-requisite for a widespread adoption of SPL practices, on the other hand Blow [2004]

complains that “excellent development tools”, which would be able to tackle some of the

complexities faced by the game industry, are simply not there yet. For instance, prototyping

and playtesting are game development activities already recognized as fundamental pillars of

game design [Henderson, 2006] [Fullerton et al., 2004]. However, ad hoc processes and

tools, many times built from scratch, are used to perform such activities, instead of models

and reusable tools integrated into a domain-specific, context-aware process. Finally, the

need for more abstraction beyond source code in the digital games development process is

evident, since “creating a game will always expand until it exceeds our implementation abili-

ties” [Blow, 2004]. In summary, we believe that in order to satisfy the software demands of

the next decades, the game development industry needs more specialized tools, languages,

frameworks, integration and automation, developed in the context of a product line, allowing

game developers to work more productively with more abstraction and closer to their applica-

tion domain.

Now that some motivation has been set for employing reuse and SPL approaches in

game development, the next subsection discusses the actual dimension of the digital games

market and industry. Only a market that is demanding enough justifies upfront SPL invest-

ments and enables the exploitation of economies of scope.

What is the business relevance of the digital games industry?

The Entertainment Software Association (ESA) 2011 report on Essential Facts about the

Computer and Digital Games Industry [ESA, 2011] shares that digital games (both computer

and console games) were responsible in 2010 for 25.1 billion dollars in sales. Even with the

uncertain economic scenario that unfolded on the end of the first decade of the XXI century,

the growth in the video game industry has not stopped [Klotz, 2009]. The U.S. video game

industry presented a 19% growth year over year, while one out of four dollars spent on enter-

tainment in the U.S. goes to gaming.

7

According to the last data available as of the writing of this research, the size of the

game industry corresponds to 7% of the software industry [ESA, 2011] [Datamonitor, 2011].

The numbers are a match even for the colossal music and movie industries, while studies

reveal that more is spent in digital games than in musical entertainment [Slocombe, 2005]. In

short, digital games are one of the most profitable industries in the world.

Additional data from ESA reveals that:

 About 72% of American households play computer or video games;

 Differently from what it could be expected, the average game player is 37

years old, while players under 18 years old represent only 25% of the market;

 The average age of the most frequent game purchaser is 41 years;

 The average number of years adult gamers have been playing computer or

video games is 12 years;

Therefore, it is possible to conclude that the digital games development industry is

definitively consolidated as a serious business. Misconceptions related to the maturity of this

industry and its target audience vanishes when faced against the aforementioned numbers.

Data from other sources corroborate with ESA’s facts. McGonigal [2010] shares that

3 billion hours are spent every week in online games, while the average teen gamer has

played 10,000 hours when reaching 21 years old. According to her, almost 6 million years

were spent in one single game alone: World of Warcraft.

From a development effort standpoint, the growth in the digital games industry is ex-

ponential [Blow, 2004]. In the mid-80s, a game could be developed in 3 months by one pro-

grammer who also did the design and art, from conception to final implementation [Reyno &

Cubel, 2008]. Decades later, digital games development requires teams up to 100 multidisci-

plinary specialists, including programmers, game designers, artists, writers, voice actors,

musicians and other roles. The budget of an AAA game is estimated in a dozen million dol-

lars, requiring up to 4 years of development and an outsourcing network that spans through

the globe. That is also a match for many other industries.

1.2 Goals

Given the context provided by the previous section on Software Engineering reuse tech-

niques and their relevance to digital games development, this research’s question can be

stated as follows:

How to harvest and measure the benefits of software product lines

to create digital games belonging to a same family more effectively,

taking into account the peculiarities of the domain?

8

 The process employed to answer such a question leveraged multiple approaches and

processes that exploit application families and domain-specific development, culminating with

a practical approach to develop game SPLs, named Domain-Specific Game Development.

We are not aimed though at redefining a complete Domain Engineering process per se,

comprehending all of its three macro-activities (Domain Analysis, Domain Design and Do-

main Implementation). Otherwise, our focus is on the Domain Engineering tasks that have

the most impact and relevance to digital games development, and therefore need to be elab-

orated or adapted. We essentially focus on bridging the Game Domain Analysis phase to the

creation of core domain assets for game SPLs, such as domain-specific languages and gen-

erators, which are still underexplored by the game development industry. In fact, Frakes &

Kang [2005] mention that there is a need for a seamless integration between the models

output from Domain Analysis and the inputs needed for Domain Implementation such as

components, domain-specific languages and applications generators. Domain-Specific Game

Development attempts to fill such gaps, but in the specific context of digital games develop-

ment.

The topic of creating processes for Domain Engineering and reuse is not new. Such

processes have already being cataloged and new processes were defined in other research-

es [Almeida, 2007] [Nascimento, 2008] to solve traditional deficiencies of reuse processes,

such as the lack of activities, sub-activities, roles, inputs and outputs of each step in a sys-

tematic way, as well as the lack of comprehensive approaches to encompass the three clas-

sical macro-activities of Domain Engineering. Therefore, rather than reinventing the wheel,

this work leverages state-of-the art research in the area [Greenfield et al., 2004] [Kelly & Tol-

vanen, 2008]. The main distinction of the approach is that differently from generic SPL pro-

cesses, the discussion presented in this research is specific to the digital games develop-

ment macro-domain, dealing with many of the peculiarities that make such an area so differ-

ent from others in Computer Science. The need for specific guidance on game SPLs is also

evident from the fact that current SPL processes lack details for specific Domain Engineering

tasks, eventually causing SPLs to be an unviable approach [Nascimento, 2008], especially

for domains with more specific constraints.

It is worth noticing that a very important goal of this research is to actually measure

the outcomes of Domain-Specific Game Development in practice. We not only employ ex-

ploratory and confirmatory case studies [Easterbrook et al., 2007], but also evaluate the ap-

proach by means of an experimental study [Wohlin et al., 1999] performed with software en-

gineers with industry experience. Such an evaluation is aimed at measuring the development

effort improvement implied by the proposed approach, among other metrics, situating its ef-

9

fectiveness against other SPL-based approaches and providing an indication on the ap-

proach’s return of investment.

1.3 Challenges

From one side, digital games development is one of the most creative disciplines in the

Computer Science domain. Uniqueness and innovation are intrinsic attributes of successful

titles. On the other hand, by promoting automation, enforcing predictability and stimulating

reuse, software factories and SPLs are concerned with turning the current software devel-

opment paradigm, based on craftsmanship, into a manufacturing process. Hence, under-

standing how the variability support provided by SPLs and the software factories paradigm

can satisfy the creativity of digital games development is one of the challenges of this re-

search. Similarly, we are challenged to assess how much of “The Art of Computer Game De-

sign” is subject to industrialization.

 Since digital games constitute a broad universe of game genres and mechanics, the

proposed approach is more applicable to some types of games than others. For instance, the

approach’s concept of a Domain-Specific Game Architecture builds atop game engines,

promoting them to domain frameworks that can be more seamlessly consumed by domain-

specific languages and other assets. If the target game domain does not use game engines,

which could be the case for some casual games developed for the mobile market2, then the

approach’s tasks related to the Domain-Specific Game Architecture should be customized.

On the other hand, state-of-the-art toolsets in such mobile domains, such as integrated

graphical environments like Unity [Menard, 2011], are backed up by game engines and

therefore still part of the Domain-Specific Game Development’s scope.

Finally, deploying a complete, usable software factory or SPL demands substantial

resources. Therefore, considerable efforts were incurred on the confirmatory case study of

this research, as there was a commitment on not restricting it to the research environment,

but actually releasing it to the digital games development community with an acceptable

quality level, in order to collect feedback. In the same way, the controlled experiment de-

manded a considerable investment (236 man-hours and 32 versions of games developed) to

enable measurements of the effectiveness of the approach as well as understanding when

upfront investments in a game SPL break-evens with the creation of one-off3 game instanc-

2
 36.5% of game content sales in the game industry belong to mobile apps, social networking gaming,

subscriptions and other formats beyond traditional computer games and video games [ESA, 2011].

3
 Something that is done or created only once, and often quickly, simply, or improvisationally; occur-

ring once; one-time.

10

es. Detailed information on similar experiments is not easy to find in the SPL and DSL litera-

tures. More details are presented in Chapter 5 and Appendix B.

1.4 Thesis Organization

This thesis is organized in six chapters. Apart from this introductory chapter, the remaining

chapters are organized as follows:

 Chapter 2 presents a comprehensive history of game development technolo-

gies and processes, ranging from the assembly language, multimedia APIs,

click-n-play tools, game engines, waterfall game development processes, spi-

ral processes, agile processes and model-driven process to upcoming

tendencies.

 Chapter 3 discusses techniques for building application families, such as soft-

ware factories, SPLs and one of their most important foundations: Domain-

Specific Development. A discussion about how software factories are suitable

for digital games development is also provided.

 Chapter 4 details the proposed approach, building on the two background top-

ics previously presented (game development evolution and application fami-

lies).

 Chapter 5 presents an evaluation of the proposed approach, including explor-

atory and confirmatory case studies, as well as a controlled experiment to

measure its effectiveness.

 Chapter 6 is the last chapter of this thesis. It investigates future work that can

be carried out from this research and concludes about its obtained results.

This thesis also contains six appendixes, all related to the evaluation of the proposed

approach. They are organized as follows:

 Appendix A presents the detailed feature model of the ArcadEx case study.

 Appendix B provides a compilation of metrics and evaluation approaches for

Domain-Specific Development and MDD.

 Appendix C presents the questionnaire used in the controlled experiment.

 Appendix D presents the cheat sheet used by subjects during the controlled

experiment.

 Appendix E presents the game development tasks checklist used by subjects

during the controlled experiment.

11

2. DIGITAL GAMES DEVELOPMENT

A major evolution in game development technologies and processes has occurred since its

early days. This chapter presents a relatively brief but comprehensive history of digital games

development, pointing out the advantages and limitations of each era. Following that, it anal-

yses tendencies and suggests proposals built atop previous technologies and processes to

improve the future of the game development.

2.1 From Assembly to Doom

Since the early days of digital games development, game developers were faced with unique

challenges and scenarios, which turned game development into a very peculiar domain when

compared to software development in general. While the majority of software was developed

and run on big mainframes, with plenty of resources (at least for that era), computer games

development were targeted at smaller computers, with many limitations4 [Rocha, 2003].

 Computer games programming soon became an art of overcoming memory and pro-

cessing constraints. To get satisfactory results from the existing hardware was the great

boundary to be overcome. During the ‘80s, for example, games were meant to be played in

8-bit processor computers, with a speed of just 4MHz and a memory of 48KB to 64KB [Rol-

lings & Morris, 2000]. Performance and (small) size were the two most important factors in

game programming; therefore, code optimizations were heavily performed on demand5.

 Since programs generated by C compilers were too big and slow for game develop-

ment, most computer games were programmed in assembly language. Hence, their code

was not portable to other platforms. Besides that, game debugging was also a big challenge,

since the debugger and the computer game generally did not fit together into the target

memory.

Once computer games were developed based on hackers’ method to build low-level

applications, focused basically on appearance and performance, important Software Engi-

neering concepts and design goals were systematically overlooked, such as reusability and

modularity. Furthermore, assimilating Software Engineering was made even more trouble-

some since game programmers were wounded by the Not Built Here (NBH) Syndrome,

4
 Actually, some games were developed for mainframes in the early days [Bellis, 2009], but these

were a few experimental attempts before computer games became primarily designed to be played at

home, which made it possible to create games of longer duration and to better explore them commer-

cially [Juul, 2009].

5
 Years later, games targeted at mobile devices made this problem to be revisited.

12

which stated that everything should be developed in-house because components developed

by others were supposedly “slower, worse and/or would not work”. Such hardware-driven

and ad hoc approach, which traded the productivity of higher-level languages for assembly

language performance, as well as reusability for “in-house” development, became known as

“pedal to the metal” [Rollings & Morris, 2000]. Such an approach was characterized by the

lack of an organized game development process.

The growth in consumer demands, technical and esthetical complexity, as well as re-

sources invested in the development of digital games caused the awareness of how im-

portant the use of Software Engineering concepts and high-level languages is to game de-

velopment [Furtado & Santos, 2002]. An important preliminary milestone toward such a reali-

ty was the creation of the first successful game that adopted C as its native programming

language: Doom (Figure 1), in 1993. For the first time, developers suffering from the NBH

Syndrome had to recognize that a compiler generated a final code as competitive as code

written in assembly language. In fact, by using a 32-bit compiler, Doom overcame the 640KB

limitation of 16-bit programs and set a new era for game development.

Figure 1 – Doom, by id Software

 In the subsequent years, the increase of hardware capabilities as well as the creation

of more powerful compilers to produce better optimized executables made it possible for pro-

grammers to focus on more abstract game development concepts (such as Artificial Intelli-

gence and Computer Graphics). Low-level implementation details, driver peculiarities and the

NBH Syndrome were losing appeal and Software Engineering finally had a real chance in

game development.

The game industry soon realized the importance of making the development process

more productive and searched for new solutions by means of creating and consuming inno-

vative technologies and tools. The most expressive of such development assets created by

the game industry are presented in the following sections, as well as a discussion regarding

their effectiveness (advantages and especially drawbacks) in game development.

13

2.2 Multimedia APIs

Multimedia Application Program Interfaces (APIs) are programming libraries that can be used

to directly access the machine hardware (graphics devices, sound cards, input devices, etc.).

Such APIs are not only useful to provide means to create games with good performance, but

also for enabling the portability of digital games among devices manufactured by different

vendors. Therefore, by using a Multimedia API, game developers are provided with a stand-

ard device manipulation interface and do not need to worry about low-level peculiarities of

each possible target device. Furthermore, since these APIs are flexible to accommodate de-

vice enhancements and extensions, hardware support becomes a responsibility of the hard-

ware manufacturers themselves and game programmers are abstracted from such changes

[Madeira, 2003]. Another interesting feature of multimedia APIs is their capability to emulate

devices which are needed by a digital game, but are not necessarily present in a given com-

puter, like 3D graphics accelerator cards [Pessoa, 2003].

The usage of multimedia APIs provided a new abstraction layer in game develop-

ment, as illustrated in Figure 2. In fact, the majority of digital games today are developed, di-

rectly or indirectly, by means of an underlying multimedia API.

Figure 2 – A multimedia API provides abstraction layer to game development

Most multimedia APIs provide graphics, sound and input handling features. These

features are usually highly optimized to get the best results from the hardware, and parts of

the library are often rewritten for specific hardware devices to improve speed even more. The

most important graphics functions found in just about every multimedia API include setting

the display mode, drawing (and reading) pixels, drawing (transparent) bitmaps, scrolling the

screen, page flipping6, reading user input and playing background music and sound effects.

Multimedia APIs played a key role in moving the digital games industry from DOS applica-

6
 Page flipping is a technique used in most games to avoid flickering. First, all graphics are drawn on

an off-screen buffer (the virtual page), then by swapping (flipping) this virtual page with the visual page

(the screen memory) the new graphics all come together as a new frame. The flipping is synchronized

with the screen refresh [Ambrosine, 2009].

14

tions to more robust 32-bit operating systems, starting with Windows 95. For the PC, the Al-

legro API was a reference for creating DOS games, while today the most used Multimedia

APIs are Microsoft DirectX and OpenGL.

2.2.1 Discussion: Multimedia APIs Effectiveness in Game Development

Although Multimedia APIs handle almost all the desired low-level tasks of a game, the game

itself still has to be programmed. The APIs provide features that are generalized for multime-

dia applications development and therefore do not offer the best desired abstraction level for

game programmers. For example, they do not provide features to trigger the transition be-

tween game states (phases), entity behavior modeling nor artificial intelligence. In other

words, the semantic gap between game designers and the final code remains too high if mul-

timedia APIs are the only abstraction mechanism used.

Additionally, interaction with such APIs can only be done programmatically, not visu-

ally. Such a limitation prevent automation and productivity in the execution of some tasks

(such as specifying the tiles of a tiled background map), which would have to be executed by

exhaustive “copy and paste” commands and through counter-intuitive actions7.

2.3 Click-n-Play Tools

With the goal of simplifying game development and making it more broadly accessible, the

concept of click-n-play tools became very popular. They aim at creating complete games

with no programming at all, but through a “visual programming” approach (Figure 3). The end

user is aided with intuitive interfaces for creating game sprites, defining entity behavior, the

game flow and adding sound, menus, text screens and other resources to the game. Such

tools generally make use of an underlying multimedia API, by compiling the visual game

specification into a series of API calls.

 A click-n-play tool can be either generic, such as Game Maker (Figure 4) or focused

on the creation of games belonging to a specific game genre, such as first-person shooters,

role-playing games (RPGs), adventure games and so on. Either way, there have been sev-

eral attempts to make the ultimate game creation tool [Ambrosine, 2009].

7
 Common sense agrees that humans are generally much better suited to solving problems presented

“visually” (e.g., in pictures) than those presented in text or numbers [Mongan & Suojanen, 2000].

15

Figure 3 – Click-n-play tools modify the top abstraction layer

Figure 4 – Game Maker

2.3.1 Discussion: Click-N-Play Tools Effectiveness in Game Development

Click-n-play tools were certainly a great achievement in order to help beginner or amateur

game designers and programmers to accomplish their tasks. The slogan employed by

GameSalad8, a web game creation tool for Mac OS X, summarizes such an accomplishment

very well: “Game Creation for the Rest of Us”. Developer communities created around some

of the tools are very inspiring, while other tools can even transcend the game development

8
 http://gamesalad.com/landing/overview

16

domain by turning the game creation process into an educative discipline. That is the case of

Kodu9, a visual game programming environment by Microsoft Research designed for chil-

dren.

Being able to finish the creation of a complete game with a few mouse clicks is very

impressive indeed. However, the possibilities turn out to be limited. Some types of games

can certainly be made, but this approach does not seem adequate for real-world games

[Wiering, 1999]. Click-n-play tools currently do not address the complexity required by the

creation of more sophisticated games, and this is reflected by the lack of their adoption by

the game industry. For instance, Mark Overmars, the creator of Game Maker, revealed that

while the tool is downloaded more than 100.000 times per month, most people use the free

(limited) versions and “very few companies use it”10. The licensed versions are generally or-

dered by schools, not by the game development industry.

In many cases, click-n-play tools do not provide a better way to create games than

“real” programming languages. On the other hand, some of these tools provide visual aids for

programming language syntax and constructs (variable declaration, variable assignment, in-

struction blocks, if-then-else branches, loops, etc.), as shown in Figure 5. By trying to simplify

programming concepts with visual counterparts, such an approach can even be appropriate

to simple cases, but it is inflexible and a not very productive way to program in the majority of

cases, where more elaborated behaviors are desired.

Figure 5 – Specifying flow control visually in Game Maker

9
 http://research.microsoft.com/en-us/projects/kodu/

10
 Personal contact by e-mail.

17

Such a lack of programming intuitiveness made end-users and click-n-play tool manu-

facturers to realize that the creation of digital games demands “more flexibility and control

than the standard actions” [Overmars, 2004]. The solution to this problem was to combine

script languages with click-n-play tools, in order to make game behavior programming more

natural, at the price of renouncing to a full visual game development. RPG Maker XP, for ex-

ample, is equipped with the Ruby Game Scripting System (RGSS), a Ruby-based script lan-

guage. The latest versions of Game Maker, on the other hand, provide a built-in program-

ming language to end-users, named Game Maker Language (GML). Such languages enable

users to extend the designed game with code, such as building expressions that can be used

as values in game actions (move actions, draw actions, score actions, etc.).

When programming with such languages, users have some code editing support,

such as syntax highlighting and code completion (Figure 6). However, while they certainly

provide more power to click-n-play tools, some problems can be pointed out. First, they re-

quire end-users to learn a new language (perhaps their first language) and to have some

programming skills. This may diverge from the original purpose of such tools (to be “visual

programming” environments).

Figure 6 – Creating a script with GML, the Game Maker built-in programming language

18

Some may say that these built-in languages are not intended to be employed by all

users, but only by advanced users. But once earning programming expertise, however, users

might prefer to have the benefits of true object-oriented programming languages, with the

support of robust integrated development environments with full editor and debugging sup-

port, instead of working with error-prone scripting languages inside an environment which

was not originally conceived for codification. Moreover, development productivity is much

more than just having script keywords highlighted. It is supported by a set of integrated con-

cepts and features, such as refactoring, code and modeling synchronization, test automation,

configuration management, quality assurance, real-time project monitoring, domain-specific

guidance and process integration.

2.4 Game Engines

If from one hand click-n-play tools majorly branched out to enable non-programmers in the

creation of simpler games, game engines were created by the actual game industry as the

result of applying Software Engineering concepts to the digital games development. Game

engines are focused on assisting development teams in the creation more complex games,

being considerably more flexible and powerful than click-and-play tools. Engines build on top

of multimedia APIs to hide low-level implementation details and support more abstract game

development tasks (entity rendering, world management, game events handling, etc.)

through a programmatic interface in which the game logic can be plugged in (Figure 7).

Commercial game engines can reach an acquisition cost of about half a million dollars, while

others are completely free. A comprehensive list of (3D) game engines can be found in the

DevMaster.net engine database11.

Figure 7 – Game engines introduced a new abstraction layer in game development

In order to be more effective, game engines typically narrow their focus down to a

subset of digital games. For example, a 3D game engine is different from a 2D isometric

11
 http://www.devmaster.net/engines

19

game engine. If the engine is built in a modular architecture, it can be reused to create a

great diversity of games belonging to its target domain, which consume and configure only

the required modules [Rollings & Morris, 2000].

Some game engines provide visual tools to game programmers to help them to ac-

complish a specific task, such as level editors and sprite editors. These tools, however, are

different from previously analyzed click-n-play tools. Game engine tools are focused on a

specific aspect of the game development process, not being targeted at the creation of a

complete game, and their output can be modified and consumed programmatically by devel-

opers.

2.4.1 Discussion: Game Engines Effectiveness in Game Development

Game engines became the state-of-the-art in the development of many industrial titles. By

providing more abstraction, knowledge encapsulation and a reusable game development

foundation, they allowed the game industry to reach an unparalleled productivity level. Multi-

ple successful games such as Counter-Strike and Team Fortress, for example, were only

able to satisfy time-to-market demands because they were built upon a powerful game en-

gine.

 On the other hand, due to the inherent complexity of game engines, the learning

curve for mastering such tools is somewhat high. The demands for understanding the game

engine architecture, interaction paradigm and programming peculiarities can turn their use

into an unintuitive experience at first. That is the reason why many of today’s game engines

still present complexity and lack of usability as one of their most cited deficiencies.

 Subsequently, using a game engine may involve considerable costs, such as acquisi-

tion costs, training costs, customization costs and integration costs [Albuquerque, 2005]. In

addition, one of the major difficulties in game engine development is the industrial secrecy.

Since such projects involve great investments, many organizations hide their architectures

and tools in order to have some advantage over their competitors [Rocha, 2003]. For exam-

ple, it may be difficult to find comprehensive studies about the applicability of design patterns

in game engines [Madeira, 2003]. Game engine developers are not close from having some-

thing like “game engine workbenches” to aid the creation of such tools.

 Game Development processes (see Section 2.6) have traditionally been lacking

awareness and deeper integration with game engines. Despite using visual modeling exten-

sively, such processes also do not focus on code visualization or generation. They commonly

use models as documents, not as source artifacts. Therefore, the reusability provided by

game engines is still attached to one-off development approaches. Game engines and the

20

game development processes are not benefited from deeper traceability and automation

mechanisms, such as code generation and synchronization.

Game engines may also depend upon the (generic) development environment used,

which may not provide all the desired foundation for the target game domain(s). In short, the

multidisciplinary environment in which digital games development is inserted as well as the

great diversity of tools used throughout the project life-cycle (game engines, level editors,

sound editors, 3D modelers, etc.) demands not only a richer tool integration but a closer

alignment with the development process as well, in order to enhance developer experience

and productivity.

2.5 Industry Alternatives to Game Engines

As an alternative to development approaches solely based on game engines, the game in-

dustry has been observing the rise of generic game development toolsets, such as the

Microsoft XNA [Reed, 2010], and integrated graphical environments backed up by game

engines, such as Unity [Menard, 2011]. With a strong focus on productivity, both are targeted

at lowering the entry barrier for game development, like click-n-play tools, but still enable

game developers to create industrial-level games with an acceptable quality level for the

market, as it happens with game engines.

Such approaches offer a set of tools and building blocks to handle game development

tasks with more abstraction than a game engine, such as handling the content pipeline, mul-

tiplayer networking, etc. They either integrate with development environments, turning them

into a broader framework aimed at game development, or provide their own graphical envi-

ronments. Generic toolsets are majorly based on a programmatic paradigm and therefore

underexplore code generation capabilities. Integrated graphical environments, on the other

hand, use visual editors as the primary method of development.

 From a software product line perspective, one of the main disadvantages of such ap-

proaches is that they are not domain specific, in the sense that any type of game can be cre-

ated from them (arcade, adventure, casual, etc.). While starter kits for some specific genres

are available, many opportunities are still under-explored by such platforms with regards to

reuse and abstraction in the context of a family of similar games. In summary, although more

streamlined APIs and visual editors atop game engines provide increased abstraction, we

believe other automation assets are still underexplored, such as domain-specific languages

and guidance automation. As a consequence, it is not possible to find in the literature guid-

ance for developing such toolsets and graphical environments for a specific game domain.

21

2.6 Game Development Processes

While the previous sections in this chapter discussed game development technologies and

tools, game development processes also play a key role in understanding the challenges and

state-of-the-art of digital games development. Some of such processes are described in this

section, which therefore contributes to assess more work related to this research.

2.6.1 The Early Phases: Ad Hoc Game Development

In the very beginning (1950-1960), rudimentary visual systems and the lack of complex rule

systems made game development to be characterized by ad hoc approaches: there was no

systematic approach or scientific method employed in the development of digital games

[Araujo, 2006]. However, as noticed in Section 2.1 (From Assembly to Doom), there were

many engineering challenges especially due to low-level programming, memory and perfor-

mance constraints. The lack of an industry made digital games development to be low-scale

and experimental, in which small teams of one or two people employed a code-and-fix ap-

proach, which was chaotic but presented results capable of fulfilling the demands of that time

[Flynt, 2005].

2.6.2 Waterfall Processes

With the popularization of videogames in the 70s, the demand for more powerful, complex,

immersive and multidisciplinary games made development processes in the area to evolve

from ad hoc to waterfall. The game industry was then following the typical linear sequence of

activities employed in waterfall processes: Requirements, Design, Implementation, Verifica-

tion and Maintenance [Sommerville & Flynt, 2007]. Development teams evolved from a small

team of essentially programmers to professionals with distinct skills and expertise, such as

engineers (programmers, testers, architects), designers (game designers, graphical design-

ers, level designers, usability designers, sound designers), managers (project managers,

functional managers, producers) and, depending on the game, business analysts, psycholo-

gists, anthropologists and other profiles [Chandler, 2006].

 The Game Waterfall Process (GWP) was introduced as an adaptation of the generic

waterfall model [Flood, 2003] [Flynt, 2005]. It introduced, for the first time, game-specific de-

velopment artifacts such as game specification documents and story bibles. GWP suggested

five main distinct phases: Requirements (creation of the Game Design Specification, Art,

Technology and other documents), Design (refining of specifications, creation of prototypes,

sketches and conceptual art), Implementation (development of scripts, source code, graphics

and audio assets), Validation (gameplay and usability tests) and Maintenance (deployment,

distribution and marketing activities).

22

2.6.3 Iterative, Incremental and Agile Processes

In the 90s, iterative and incremental development processes were adopted by the digital

games industry, as such processes welcomed changes in the game lifecycle much more

than waterfall processes. The “divide and conquer” approach of iterative and incremental

processes, which delivered to end-customers partial solutions by means of increments, also

contributed to incorporate early feedback into a game lifecycle.

Initially, iterative and incremental processes such as the Unified Process (UP), eX-

treme Programming (XP), Feature-Driven Development (FDD) and Scrum were adopted by

the game development industry as is. In a next step, the Game Unified Process (GUP)

[Flood, 2003] proposed a spectrum of process approaches ranging from the RUP (Rational

Unified Process) to XP, according to the game development organization. Special needs for

documentation and process formalisms would be more aligned to RUP, whereas more infor-

mal and flexible environments would lean toward XP. Nevertheless, GUP still did not address

some critical issues in game development, such as the integration between design disci-

plines (game design, graphical design, level design and usability design) and computer sci-

ence disciplines (Software Engineering and programming). GUP also does not specify a flow

of activities to create a digital game.

The eXtreme Game Development process (XGD) [Demachy, 2003] proposes an in-

terpretation of the XP methodology to digital games. However, such an interpretation is criti-

cized as being superficial [Araujo, 2006] and not providing enough structured guidance, in

part because it is an agile methodology.

 Although GUP and XGD had a considerable repercussion in game industry circles,

such as in the Game Developers Conference, there are no indications, recommendations nor

reference models for employing such processes, in part due to the secrecy nature of the

game industry. On the other hand, some related initiatives in the academy can still be found,

such as the Agile Game Process (AGP) [Araujo 2006] and the Prescriptive Methodology for

Computer Games Development [Carvalho, 2006], although they lack an evaluation process

to determine their validity. Other authors also applied agile methodologies to game develop-

ment in order to enhance change management during development and iterations in game

design [Keith, 2006] [McGuire, 2006] [Miller, 2008].

2.6.4 Model-Driven and Componentized Processes

As an attempt to improve reuse, Folmer [2007] applied Component-Based Development (see

Section 3.1) to digital games development. His proposal consists in establishing a Commer-

cial of the Shelf (COTS) culture for digital games development, in which pre-built components

such as physics or 3D engines can be assembled and customized by game developers, in-

23

stead of being developed from scratch. He refined the idea of developing games with com-

ponents, presenting a reference architecture that outlines the relevant areas of reuse, taking

game development peculiarities into account.

 Folmer’s architecture is inspired by the published architectures of two games and a

real time system, along with the layered reference architecture for component-based devel-

opment as proposed by Collins-Cope & Matthews [2000]. However, his architecture is gener-

ic: it encompasses different game genres and is targeted at digital games in general. This

may overlook automation and reuse possibilities for specific game sub-domains. For exam-

ple, the top (“game interface”) layer relies on a generic database and generic concepts such

as “game logic”, without getting into more specific details such as game entities and flow.

Moreover, his approach was built from the solution domain (actual digital games architecture

and code), not taking into account the problem domain or its related tasks such as Domain

Analysis. In fact, the approach is not contextualized in the literature of Software Product

Lines.

The author also recognizes that the validity, accuracy and complements of the refer-

ence architecture are open for discussion, since it was based on a limited number of sam-

ples. Finally, integration and adoption costs are recognized by the author as one of the main

challenges of the COTS approach. While it was found out that cost reductions and more im-

portantly reductions in development time can be achieved when developers use off-the-shelf

components rather than develop them from scratch, many game developers struggle with

component integration and managing the complexity of their architectures.

As game engines evolved from APIs to a more comprehensive toolset encompassing

tools and editors to help developers in the creation of digital games, game development pro-

cesses started to rely on a certain level of modeling as long as such engines were used. The

Unreal engine, for instance, provides UnrealScript, a game scripting language that supports

game-specific concepts (states, time, properties, networking, etc.), as well as UnrealKismet,

a visual scripting language aimed at level designers. However, scripting languages like Un-

realScript remain at a fairly low programming level, which raises concerns as to the abstrac-

tion level that can be attained for a game DSL [Dobbe, 2007]. Moreover, since engines like

Unreal have applicability in many different game sub-domains, their somewhat generic built-

in languages do not benefit from the expressiveness of languages more focused in specific

(sub-)domains.

Focusing on more domain-specific approaches, the XML Game Consortium (XGC)

created GameXML, a collection of XML specifications which describe and script computer

simulation engines. The consortium maintains XML-based game languages for specific do-

mains such as simple board games (GameXML/ABG) and role-playing strategy games

24

(GameXML/RPS). Nonetheless, although XML is a valid way of expressing a DSL syntax

[Fowler, 2005], its verboseness and lack of a more intuitive visual representation limits adop-

tion and productivity. This was promptly found out by the authors of the Video Game Lan-

guage (ViGL) [Sutman & Schementi, 2005]. The authors of such an academic project real-

ized that XML is not ideal for control-flow features and has a bloated syntax, and moved to a

mixed declarative (XML) and imperative (embedded code) approach. On the other hand,

having embedded code inserted into the declarative language syntax makes it difficult to

have a clear separation of concerns, therefore reducing the benefits of the abstraction pro-

vided by domain-specific languages.

Dobbe [2007] introduces a new domain-specific language for computer games, host-

ed in its own special environment (instead of an IDE) and integrated with a proprietary game

engine (Cannibal Game Engine). The author separates game development in three major

areas: arts, sound and design. He points out that although tooling is provided in the game

industry for the arts and sound areas, game development is still performed by generic lan-

guages and tools. An interesting finding from the author which is aligned to the guidelines of

this research is that his Cannibal Game Engine had to go through some modifications prior to

the DSL integration, such as a better extensibility support and the implementation of an

event-driven paradigm.

Although the author’s experience provides lessons learned on applying DSLs to digi-

tal games, it does not intend to define a process nor even guidelines on how to perform Do-

main-Specific Game Development. The work is not contextualized under the software reuse

and SPL literature. Through an ad hoc approach, the author determined that the following

areas need to be covered by a game DSL: objects, interaction, rules and storyline. Cross-

DSL integration is not supported in the language level, but through the underlying framework.

Finally, the details of the proposed DSL are removed from the public version of his report,

due to industry secrecy.

Reyno and Cubel [2008] propose the use of Model-Driven development, by means of

Platform-Independent Models (PIMs) and Platform-Specific Models (PSMs), to create proto-

type 2D platform games for PC. In their approach, the authors used the Unified Modeling

Language (UML) diagrams, eventually extended with stereotypes to define the structure and

behavior of a platform game. While the effectiveness of UML stereotypes as a mechanism to

raise abstraction levels in Model-Driven Development is an open discussion [Greenfield et

al., 2004] [Kelly & Tolvanen, 2008], Reyno and Cubel acknowledge that such diagrams are

closer to software engineers than to game developers, therefore the process lacks concep-

tual models targeted at game developers. Moreover, the expressiveness of such diagrams is

constrained by the visual syntax of UML elements (activities, classes, etc.), which may not be

25

suitable for cases in which other richer visual designer alternatives are desired. Finally, their

game control (input) meta-model is not scaled to support game event triggers other than

player input.

Barros et al. [2006] used models and frameworks toward the creation of simulation

games aimed at teaching project management. They propose five steps as part of a three-

layered model approach for describing the behavior, story and graphical representation of an

educative simulation game. While experiments concluded that the approach abstracts low-

level details, enables the separation of responsibility areas and enhance productivity in the

creation of educative simulation games, it does not encompass extensibility for supporting

the implementation of more complex behaviors. Likewise, the proposal does not provide

graphical designers or deeper tool integration to aid developers in the creation of the game

models. Moreover, applying such an approach beyond the educative simulation games do-

main is yet to be explored.

Maier & Volk [2008] discuss first findings of an ongoing case study, in which language

workbench concepts are applied to the creation of level editors for “classic” games, such as

Pac-Man. The case study encompasses two steps: first, a product line developer designs the

meta-model (domain concepts) and visual representation of a level-editing DSL. That gener-

ates a level editor tool used by product developers to create games. There is an additional

textual DSL used by product developers to describe game logic. Code extensions to the level

editor are also supported. The authors mention that one advantage of their toolset is its “evo-

lutionary methodology” support, in which the DSL specification can be updated at will by the

product line developer in order to re-generate an updated version of the level editor. Howev-

er, the authors do not discuss the impact of that on configuration management (more specifi-

cally artifact versioning) neither the implied costs of interactions between product line devel-

opers and product developers during the development lifecycle of the same game.

As far as evaluation goes, the authors mention that the generated level editors im-

plied in a “plain reduction of development time”, enabling prototypes to be “literally created

within hours”. They also argue for increased productivity and simplicity. Mastering meta-

modeling and fine-tuning (extending) factory functionality are mentioned as challenges faced

by developers. Finally, the authors recognize that the need for multiple levels in the same

game requires launching multiple instances of the level editor. On the other hand, the au-

thors are not concerned with defining an approach for creating game SPLs, but focus on a

specific sub-domain (level editing) in which only one DSL is created per “factory”. The work

does not take into account any integration with other game assets such as game engines.

Moreno-Ger et al. [2008] suggests a storyboard-driven approach, called e-Adventure,

as a methodology for developing educational games. They aim at moving beyond the current

26

state of edutainment products which “combine the entertainment value of a bad lecture with

the educational value of a bad game”. The authors focus on the specific sub-domain of ad-

venture game storyboards, advocating that content writers (such as instructors, in educative

games) are never placed in the center of game development processes, which typically focus

on technical roles. e-Adventure is pretty much a game SPL instance that supports dynamic

updates across iterations. It provides a collaboration model in which domain (content) ex-

perts and developers work together using documents that describe the game’s contents and

other relevant features. Developers equip domain experts with a suitable domain-specific

markup language and an application generator. Domain experts mark up documents with the

language and process them automatically with the generator, yielding the final executable

application. An end product in the e-Adventure process includes the DSL, documents with

the marked-up storyboard, art assets, the game engine and the final game.

The authors recognize that the functionality of these environments becomes a factor

that limits creativity, because the language constrains what can and cannot be done. As it

happened with Maier & Volk [2008], their process advocates for having not only the game but

also the language and the game engine to be refined at each iteration. They mention that

although this could be considered a bad practice from a Software Engineering perspective,

that’s not true in every case and they prefer such “change embracing” approach. On the oth-

er hand, we believe that the language design phase should incorporate enough prototyping,

sample analysis and validation iterations in order for a more stable language to emerge, sim-

plifying configuration management tasks such as asset versioning. Required modifications

can then be handled as game SPL extensions, whose incorporation into the game SPL can

be evaluated as part of the factory feedback cycle. The authors did not mention whether an

evaluation process was used, however they do present a complete case study in which the

toolset is used to develop an adventure game that acts as an initiation module for a course

on safety regulations in construction.

Hernandez & Ortega [2010] developed a Domain-Specific Language (Eberos Game

Modeling Language 2D, or GML2D) targeting the modeling of two-dimensional games. The

language supports sprites, animations, entities (whose logic is defined by means of state

machines), “action scripts” that can be coded to extend the language, collision detection,

background music and sound effects. The authors are not concerned with providing a sys-

tematic approach to the creation of DSLs for game domains, but focus on sharing their expe-

rience with a specific game DSL. For instance, they did not detail how the DSL and its syntax

were designed, apart from mentioning “discussions from domain experts and five years of

game development experience”. The approach was evaluated by modeling two games and

comparing the difference between the amount of work required to write the games from

27

scratch versus the amount required using the DSL. Details are provided in the Appendix B,

which also presents a compilation of Domain-Specific Development evaluation for other do-

mains.

We disagree with two main points raised by the authors of Eberos GML2D. First, it is

mentioned that they believe the 2D gaming domain is specific enough to be expressed by a

single DSL. On the other hand, one of the lessons learned from the spike solution used in

this research (SharpLudus Adventure) was that this is not always the case. A 2D game has

many sub-domains that can be more effectively expressed with specific DSLs for each of

them. Partitioning a domain into more specific sub-domains is vital to evaluate the automa-

tion potential of such a domain through a divide-and-conquer approach, enabling game SPL

designers to focus on sub-domains with the best ROI and come up with more specific and

effective languages and tools. Secondly, the authors consider that game engines should be

consumed as is by the generated code. Our experience shows on the other hand that in

many situation adapters are required not only to make the generated code more easily to be

consumed by the game engine, but also to reduce the complexity of the generation scripts,

whose development is error prone. Rather than assuming that all game engines are ready to

be efficiently consumed by generated code, our approach is concerned with promoting game

engines to genuine domain frameworks, more aligned to Model-Driven Development tech-

niques such as framework completion. This opinion is also shared by Dobbe [2007].

Some works in the literature can also be found about the application of Software

Product Lines to the development of games for mobile devices. Such approaches commonly

tackle the high variability of this sub-domain caused by the big diversity of phones and manu-

factures, bringing up variation points such as different screen sizes, different API implemen-

tations and limited application size. Nascimento [2008] defined a practical approach for im-

plementing core assets in a mobile games software product line. Encompassing component

modeling, component implementation and component testing, it defines a prescriptive ap-

proach with well-defined phases, activities, inputs, outputs and roles. Alves et al. [2005], on

the other hand, used mobile device games to evaluate the combination of reactive and ex-

tractive approaches for developing Software Product Lines [Krueger, 2001], handling varia-

tions with aspect-oriented constructs.

Finally, some game development approaches deal with modularization at a higher,

conceptual level, taking game design elements into account. One example is the description

of games according to the following attributes trio: mechanics, dynamics and interface

[Araujo, 2009]. The game mechanics refer to the game rules, challenges, incentives and

world model. The game dynamics refer to the game script, i.e., its narrative or context (e.g.,

space adventure versus medieval war). Finally, the game interface refers to its graphical rep-

28

resentation (realistic versus cartoonist, adult versus childish, 2D versus 3D, etc.). Such a

separation is relevant for game SPLs since it might lead to identifying variability points.

2.7 The Future of Game Development: Tendencies and Proposals

Trends in the abstraction of software development (in general) provide indications that game

engines could still play a bigger role in game development automation. Roberts & Johnson

[1996], for example, described a recurring pattern that reveals how software development

automation is carried out:

 Phase 1: after developing a number of systems in a given problem domain, a

set of reusable abstractions for that domain is identified, and then a set of pat-

terns for using those abstractions is documented.

 Phase 2: a runtime is then developed, such as a framework or server, to codi-

fy the abstractions and patterns. This allows the creation of systems in the

domain by instantiating, adapting, configuring, and assembling components

defined by the runtime, hence automatically applying the patterns.

 Phase 3: languages are then defined, and tools are built to support the

runtime, such as (visual) editors, compilers and debuggers, which automate

the assembly process. This helps a faster response to changing requirements,

since part of the implementation is generated, and can be easily changed.

Game engines are situated in the second of these three “pattern-runtime-language”

phases. However, as Roberts & Johnson point out, although a framework (such as a game

engine) can reduce the cost of developing an application by an order of magnitude, using

one can be difficult. Mapping the requirements of each product variant onto the framework is

a non-trivial problem that generally requires the expertise of an architect or senior developer.

Language-based tools (the third stage) automate this step by capturing variations in require-

ments using language expressions, encapsulating the abstractions defined by a framework,

helping users think in terms of the abstractions and generating framework completion code.

Language-based tools also promote agility by expressing concepts of the domain (such as

the properties or even features of digital games) in a way that customers and users better

understand, and by propagating changes to implementations more quickly.

Aligned with the creation of language-based tools, an emerging trend is to make

models as first-class citizens of game development, similar to source code. Models provide a

richer medium for describing relationships between abstractions, delivering more efficiency

and expression power than source code. By using a visual DSL, models can be used not on-

ly as documentation but as input that can be processed by tools in other stages of the devel-

opment process, promoting more automation during the project life-cycle.

29

Every new paradigm builds on the strengths of their predecessors, while addressing

some of the weaknesses that give raise to their chronic problems [Greenfield, 2004]. This

was true for the introduction of multimedia APIs, click-n-play tools and now for game engines.

As with multimedia APIs, game engines were a great contribution to game development, ris-

en from a deeper integration with Software Engineering concepts, and will also last for a long

time. However, this work believes that as with multimedia APIs, game engines can act as an

important foundation upon which more abstract layers can be built. This sounds especially

applicable considering the hiatus faced by game development today (Figure 8), in which

easy-to-use script languages and click-n-play tools are many times not flexible enough, con-

trasting to the powerful yet many times too complex world of game engines. Such a trend

(the move to Figure 8’s second quadrant) can be already observed in integrated graphical

environments, such as Unity (see section 2.5).

Figure 8 – Contextualizing the hiatus addressed by this research

The key claim of this research, therefore, is that game engines can be further ex-

plored, by means of domain-specific processes, patterns, frameworks, tools and especially

languages toward a SPL-based approach to situate game development in an industrial

stage, reuse these assets systematically and automate more of the game development.

Figure 9 presents the abstraction layers envisioned by this research for the future of

digital games development. Building atop current techniques, the vision relies on models,

created with visual languages, to provide a higher level of abstraction for development tasks

specific to a given game domain. The models generate work products such as code that

“completes” a game engine, whose complexity is abstracted by means of the models them-

selves. Developers can still provide their own custom code, directly interacting with the game

engine or its underlying multimedia API, to define more complex game behavior which is not

supported by the game SPL and its asset as built-in. The vision also encompasses non-

prescriptive guidance integrated with development assets (visual designers, semantic valida-

tors and game engine themselves) that span throughout the game development life-cycle.

30

Figure 9 – A new context: higher abstraction through DSLs and process integration

2.8 Chapter Summary

This chapter focused on the evolution of digital games development. From assembly lan-

guage to the advent of game engines, techniques were discussed along with their respective

advantages and drawbacks. Game development processes were also presented, contrib-

uting to situate this research with related work. At the end of the chapter, some trends and

proposals envisioned by this research were also presented.

In order for digital games development to accomplish such a vision and fully reach the

aforementioned third automation level designed by Roberts & Johnson [1996], it is important

to understand the applicability of Domain Engineering activities to the digital games devel-

opment, and how to instantiate them. This requires a better comprehension of both software

product lines and domain-specific languages concepts, and whether they are a viable fit for

digital games development. Such areas are the focus of the next chapter.

31

3. BUILDING APPLICATION FAMILIES

SPLs and software factories are concerned with turning the current software development

paradigm, based on craftsmanship, into a more effective manufacturing process. In order to

raise the level of abstraction toward software industrialization, an investment in reusable pro-

duction assets is required, encapsulating knowledge in languages, patterns, frameworks and

tools. However, an ad hoc approach to reuse tends to produce frustration and marginal re-

sults [Greenfield et al., 2004], reinforcing, for example, the Not Built Here Syndrome. To real-

ize the benefits of reuse, a more mature approach should be adopted. It should involve the

identification of the common sub-problems in a given domain and develop integrated collec-

tions of production assets that can be reused to solve those problems predictably, especially

in the context of a family of systems [Parnas, 1976].

 This chapter discusses some approaches in the literature for achieving such a sys-

tematic reuse and also for building on top if, culminating with one of the core foundations of

SPLs and software factories: domain-specific languages. Later on, a discussion is carried out

to investigate whether, and to what extent, software factories are a good fit for digital games

development.

3.1 Component-Based Development

Component-Based Development (CBD) explores the benefits of reusing software compo-

nents, involving the selection of components from an in-house library or the marketplace to

build products. When the term “software reuse” was coined for the first time [McIlroy, 1968],

the idea of software components was presented. Components were at that time usually com-

pared to routines, available in families arranged according to precision, robustness, generali-

ty and performance.

 Almost thirty years later, Sametinger [1997] defined components as reusable, self-

contained and clearly identifiable artifacts that describe and/or perform specific functions and

have clear interfaces, appropriate documentation and a defined reuse status. Szyperski

[2002] adds that a software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only, which can be deployed independently and

is subject to composition by third parties.

 Some CBD methods include Catalysis [D'Souza & Wills, 2001], which introduces

three CBD phases: problem domain elaboration, components specification and components

internal design. The UML Components approach [Cheesman & Daniels, 2001], on the other

hand, is based on Unified Modeling Language (UML) extensions by means of stereotypes. It

introduces and refines component-specific activities such as component identification, com-

32

ponent interaction and component specification, followed by provisioning and assembly

phases. Such CBD methods are criticized by lacking guidelines on how to apply variability

implementation techniques [Anastasopoulos & Gacek, 2001], not being detailed enough as a

process (lacking steps, inputs, outputs, roles, etc.), how to structure an extensible architec-

ture considering commonalities and variability and, finally, how to combine components in

order to derive products [Nascimento, 2008].

3.2 Domain Engineering

Instead of reusing an individual component, it is much more advantageous to reuse a whole

design or subsystem, consisting of the components and their interconnections [Gomaa,

2005]. This means reuse of the control structure of the application, including artifacts of re-

quirements architecture, code and tests. Thus, the reuse of such artifacts has much greater

potential than component reuse because it is large-grained reuse.

Domain Engineering is the activity of collecting, organizing, and storing past experi-

ence in building systems or parts of systems in a particular domain in the form of reusable

assets, as well as providing an adequate means for reusing these assets when building new

systems [Czarnecki & Eisenecker, 2000]. The first Domain Engineering approach was pro-

posed by Neighbors [1980], along with a prototype called Draco. The main ideas introduced

by Draco include Domain Analysis, domain-specific languages and components as sets of

transformations.

From there, the Domain Engineering concept and approaches evolved incrementally.

The Conceptual Framework for Reuse Processes [STARS, 1993] established a framework

for considering reuse-related Software Engineering processes, how they interrelate, and how

they can be integrated with each other and with non-reuse-related processes to form reuse-

oriented life-cycle process models that can be tailored to organizational needs. The Organi-

zation Domain Modeling method [Simos et al., 1996] established three main phases (Plan

Domain, Model Domain and Engineer Asset Base) that can be mapped to today’s Domain

Engineering phases (Domain Analysis, Design and Implementation). The reuse-driven Soft-

ware Engineering Business (RSEB) [Jacobson et al., 1997] employed a UML and use case-

driven approach for reuse, with distinct processes of Domain Engineering and Application

Engineering, and focus on modeling variability and maintaining variability traceability across

different development disciplines. FeatuRSEB [Griss et al., 1998] overcame some of the

RSEB limitations, by refining its Domain Analysis activities and by integrating Feature-

Oriented Domain Analysis (FODA) [Kang et al., 1990] into the approach.

 The Feature-Oriented Reuse Method (FORM) [Kang et al., 1998] was also based on

capturing domain commonality and variability through features. It then used the domain anal-

33

ysis results to develop domain architectures and components. The Odyssey Domain Engi-

neering [Villela, 2000] leveraged Domain Engineering approaches toward a systematic se-

quence of activities to search and recover components in software reuse environments. It

also provided a traceability mechanism between requirements and other work products using

tool support. Almeida [2007] proposed the RiSE Process for Domain Engineering (RiDE),

comprehending the three phases of the Domain Engineering but with a special focus on the

Domain Design phase, in which the product line architecture is established based on similari-

ty functions according to feature models.

 As opposed to Lucrédio [2009], who presents a Model-Driven Development approach

for software reuse, the RiDE process does not explore the use of domain-specific languages.

While RiDE claims that the essence of the idea behind DSLs (“to build reusable assets”) is

similar to Domain Engineering or Software Product Lines, it is possible to identify at least two

major peculiarities in the use of visual DSLs as part of Domain Engineering approaches:

 In contrast to domain architectures, which are described by means of code-

level concepts such as components, classes and interfaces, DSL models are

expressed in more abstract syntax and semantics, using concepts closer to

the problem domain. Therefore, there is a distinction between the creation of

application core assets (such as architectures) and development core assets

(such as DSLs) [Lenz & Wienands, 2006].

 While DSLs still benefit from the encapsulation of common behavior in reusa-

ble components, they actually play a major role as a variability mechanism

that enables developers to model the distinct behaviors of each instance of

the SPL. DSL transformations into lower level assets, such as generated

code, are then responsible for configuring the reusable components, task that

otherwise would have to be done manually at code level.

3.3 Software Product Lines

By 1999, it was concluded that Domain Engineering approaches had not proved to be as ef-

fective as expected. According to Bayer et al. [1999], there are basically three reasons for

this: misguided scoping of application area, lack of operational guidance and overstressed

focus on organizational issues.

Until that time, software reuse processes were only related to Domain Engineering.

Following that, a new trend called Software Product Lines (SPL) started to be explored and

began to be seen as one of the most promising advances for efficiency in software develop-

ment. According to Clements & Northrop [2001], a software product line is a set of software-

intensive systems sharing a common, managed set of features that satisfy the specific needs

34

of a particular market segment or mission and that are developed from a common set of core

assets in a prescribed way. In a SPL approach, the reuse is planned, enabled, and enforced

– the opposite of opportunistic. All the assets are designed to be reused and are optimized

for use in more than a single system. The reuse in SPLs is comprehensive and profitable

[Nascimento, 2008].

SPLs have proved to be a very successful approach to intra-organizational software

reuse [Bosch, 2002]. However, until the late 90’s, there were few available guidelines or

methodologies to develop and deploy product lines beyond existing Domain Engineering ap-

proaches. One of the first attempts to use component-based development in the context of

Software Product Lines is GenVoca [Batory & O’Malley, 1992], a design methodology for

building architecture-extensible software via component addition and removal. The Product

Line Software Engineering (PuLSE) methodology [Bayer at al., 1999] defined elements for

enabling a SPL infra-structure, providing the technical know-how to make the SPL operation-

al and enabling adaptation, evolution and deployment of the SPL. The Family-Oriented Ab-

straction, Specification and Translation (FAST) process [Weiss & Lai, 1999] provided a sys-

tematic approach to analyze potential families and to develop facilities and processes for

generating family members. It introduced a Domain Qualification sub-process consisting of

an economic analysis of the family, which requires estimating the number and value of family

members and the cost to produce them. The Komponentenbasierte Anwendungsentwicklung

(KobrA) approach [Atkinson et al., 2000] was created to address circumstances where no

processes or well-defined products pre-exists in an organization before it attempts to estab-

lish a SPL. The Component-Oriented Platform Architecting Method (CoPAM) [America et al.,

2000], on the other hand, enabled developers from different product families to share know-

how from their respective family engineering methods.

 Clements & Northrop [2001] compiled several concepts of software reuse and product

lines into the Framework for Product Line Practice, proposed by the Software Engineering

Institute (SEI). It introduced management activities, which act on both technical and organi-

zational levels taking into consideration budgets, schedules, team effort, and all the manage-

rial aspects. The Pervasive Component Systems (PECOS) project [Winter et al., 2002] ena-

bled component-based development for embedded systems. Kang et al. [2002] presented an

extension of their previous work, FORM [Kang et al., 1998], to support the development of

Software Product Lines. It proposes two sub-processes: Asset Development and Product

Development, but is also concerned with business aspects such as the Marketing and Prod-

uct Plan (MPP). The Product Line UML-Based Software Engineering (PLUS) [Gomaa, 2005]

extends the UML-based methods for single systems development to support Software Prod-

uct Lines, providing modeling techniques and notations for product line engineering. It pro-

35

poses three SPL macro-processes (Requirements, Analysis, and Design Modeling) followed

by Application Engineering. Finally, Pohl et al. [2005] introduced the Software Product Line

Engineering (SPLE) Framework, based on the two traditional Domain Engineering and Appli-

cation Engineering macro-processes.

3.4 Visual Modeling and Domain-Specific Languages

Model-Driven Development (MDD) supports complex domain variability and automatic im-

plementation of software artifacts by using models that can be processed by tools and are

first-class development citizens in the same way as source code. MDD is the combination of

generative programming, domain-specific languages and software transformations, which

were already being explored back in 1980 [Neighbors, 1980]. Lucrédio [2009] provides a

compilation of the main MDD approaches in the industry, such as the Object Management

Group’s Model-Driven Architecture (MDA), Sun Microsystems’ Java Metadata Interface (JMI)

and MetaData Repository (MDR), IBM’s Eclipse Modeling Framework (EMF) and others.

The purpose of models in MDD is twofold: (i) to serve as a way to capture domain

concepts, thus facilitating communication between the different stakeholders (mainly be-

tween domain and technology experts); and (ii) to serve as input to automatic processors, for

validation, optimization, transformation, code generation or interpretation. In Domain Engi-

neering, the most important artifacts used to achieve this purpose are domain-specific lan-

guages (DSLs) and transformations.

A domain-specific language (DSL) is a limited form of computer language designed

for a specific class of problems [Fowler, 2005]. It is a usually small and declarative program-

ming language or executable specification language that offers, through appropriate nota-

tions and abstractions, expressive power focused on, and usually restricted to, a particular

problem domain. The key characteristic of DSLs is their focused expressive power. In many

cases, DSL programs are translated to calls to a common subroutine library and the DSL can

be viewed as a means to hide the details of that library.

Examples of popular domain-specific languages include SQL (Structured Query Lan-

guage), HTML (Hypertext Markup Language) and BNF (Backus-Naur Form). XML configura-

tion files and graphical user interface (GUI) builders, in which the user experience is quite

different from textual programming languages, can also be pointed as examples, in spite of

not being usually perceived as DSLs. Today, DSLs span multiple domains, such as financial

products, software architectures, databases, video device driver specifications, operating

system specialization, web computing, image manipulation, 3D animation, drawing, commu-

nication protocols, telecommunication switches, simulation, mobile agents, robot control, par-

36

tial differential equations and digital hardware design, just to mention a few [van Deursen &

Klint, 1998].

Graphical or visual DSLs, as illustrated in Figure 10, use graphical notations for their

concrete syntax instead of text. Generating source code from graphical visualizations pro-

vides value above working directly with the source code only if the visualizations contain

higher-level abstractions, such as business entities constructed from multiple classes, or call

processing protocols for telecommunication systems [Greenfield et al., 2004]. In other words,

changing the representation of a construct without increasing the abstraction level does not

improve productivity. The Unified Modeling Language (UML), for example, does not provide a

higher level of abstraction by using a rectangle symbol to illustrate a class in a diagram and

later creating the equivalent code representation in a programming language [Tolvanen,

2005]. Adding resources such as stereotypes and notations to UML does not solve the prob-

lem. On the other hand, this may increase its complexity in some scenarios.

Figure 10 – Model created using a DSL for smart phones [Tolvanen, 2005]

As opposed to UML, domain-specific modeling (DSM) and visual DSLs are used by

software factories to provide real abstraction to the development process, not only “visual

syntax-sugars”. These languages follow domain abstractions and semantics, allowing devel-

opers to perceive themselves as working directly with domain concepts [Kelly & Tolvanen,

37

2008]. In many cases, the complete final product code can be automatically generated from

these high-level specifications with domain-specific code generators.

Adopting a DSL approach to Software Engineering (i. e., adopting a language orient-

ed programming12 approach) involves both risks and opportunities. Besides the aforemen-

tioned abstraction and variability expressiveness, DSLs improve reliability, maintainability

[Kieburtz et al., 2006] [van Deursen & Klint, 1998], portability [Herndon & Berzins, 1988],

testability [Sirer & Bershad, 1999] and allow validation and optimization at the domain level

[Menon & Pingali, 1999] [Bruce, 1997] [Basu et al., 1997]. On the other hand, some disad-

vantages and challenges of using DSLs can be also pointed out, such as [Krueger, 1992]

[van Deursen et al., 2000] [Spinellis, 2001] [Gray et al., 2008]:

 The high costs of designing, implementing and maintaining a DSL. For in-

stance, extending a DSL for unanticipated changes can be substantial.

 The high costs of education for DSL users. A new language implies at reluc-

tant customers. Although they are generally able to understand the return of

investment after the using the language for a while, lowering the entry barrier

is still a challenge.

 The limited availability of DSLs.

 The difficulty of understanding the domain and defining the DSL scope (DSLs

targeted at too broad domains are ineffective).

 The difficulty of balancing between domain-specificity and general-purpose

programming language constructs (conditional branches, loops, etc.) which

might be expected by the DSL users but may not make sense to the domain.

 The potential loss of efficiency, in some situations and especially without tool

support, when compared with hand-coded software.

 Cross-DSL integration.

 Difficulty to interoperate with mainstream languages.

 The common pitfall of creating DSLs based on solution domain (code), instead

of the problem domain.

 Immaturity of tools for iterative development and use of DSLs.

 Planning and assessing the return on investment (cost-benefit analysis).

 Lack of systematic approach to replicate processes related to DSLs design

and implementation.

12
 Language Oriented Programming is the general style of development which operates about the idea

of building software around a set of domain-specific languages. [Fowler, 2005]

38

 Unclear guidance on how to fit the use of a DSL into standard software devel-

opment processes.

 Backward compatibility: it is hard to evolve the language when models (specs)

created with it are already in place.

Creating DSLs comes at a cost to design the language, build the translator, and con-

sider tools to support programming. This is especially true for visual DSLs, which demand

more tooling such as graphical editors. This is where language workbenches come into play

[Fowler, 2005]. They contrast the early days of domain-specific modeling, when no tools

were available to create domain-specific languages and support modeling with them in a

cost-effective manner [Tolvanen, 2005], requiring many man-years of development and left

as an option only for large organizations that could commit to such an undertaking. Lan-

guage workbenches, on the other hand, use IDE tooling to make language oriented pro-

gramming a viable approach, making it easy to build tools that match the best of modern

IDEs. They provide a toolset that supports the creation of the DSLs’ abstract and concrete

syntax, generators, semantic validators and other assets. Examples of language workbench-

es include JetBrains’ Meta Programming System13, Intentional Software14 and Microsoft Vis-

ual Studio Team System (VSTS) [Guckenheimer & Perez, 2006].

3.5 Contextual and Automated Guidance

In general, software process guidance is about helping developers to solve a current design

or coding problem. It can take many different forms, such as help pages, developer journal

articles, code samples and patterns [Gamma et al., 2005].

 When dealing with prescriptive guidance, developers have to absorb a large amount

of documentation in advance, but are left on their own on how to apply it in practice. In con-

trast, software factories introduce the concept of contextual and automated guidance, which

suggests and/or automates process activities that developers are supposed to perform in a

particular context, such as changing the project structure to add unit tests, and displays on-

demand, context-specific help to developers [Lenz & Wienands, 2006]. This guidance can be

created by domain experts, systems engineers and software architects to convey the best

practices and semantic constraints to developers.

Such guidance can be fully or partially automated. It collects input from developers by

means of wizards, optionally applies transformations and validators to the input, mashes-up

input from different sources (such as a web service) and finally launches automated and pa-

13
 http://www.jetbrains.com/mps

14
 http://intentsoft.com

39

rameterized tasks by feeding them with the transformed input. The result can be made avail-

able to the developer, cause a change in the development environment or be chained into

other guidance tasks. Therefore, automated and contextual guidance heavily rely on integra-

tion with the development environment, commonly exploring its extensibility APIs.

The Guidance Automation Toolkit (GAT) and the Guidance Automation Extensions

(GAX)15 support the creation and execution, respectively, of contextual and automated guid-

ance. Using a XML file, the domain architect responsible for packaging and automating the

guidance can define recipes to automate activities that developers would usually perform

manually, wizards, (code) generators and type converters to manipulate the user input.

Guidance automation libraries implemented by the architects can also be linked from the

XML file and launched as part of a recipe.

The Microsoft Blueprints16 was another initiative which also supports contextual and

automated guidance. The target development environment (Visual Studio) displays the avail-

able guidance by means of tasks in a specific tool window (Figure 11). The guidance tasks

can launch commands packaged by software architects to execute a task, such as transform-

ing the development environment by adding to the current project a brand new customized

class file. Domain architects can also define the availability of guidance tasks by modeling an

activity diagram using the Windows Workflow Foundation [Shukla & Schmit, 2006].

Figure 11 – Microsoft Blueprints guidance workflow tool window

Finally, semantic validators embedded into visual DSL designers can provide contex-

tualized guidance by displaying high-level domain-specific errors and warnings related to the

diagram being modeled. For example, a visual DSL for modeling the game flow could raise

an alert pointing that no “game over” criteria was specified. This way, developers can be

guided on how to properly satisfy the domain constrains expressed by the semantics of a

15
 http://msdn.microsoft.com/en-us/library/ff687174

16
 http://msdn.microsoft.com/en-us/architecture/blueprints.aspx

40

given visual DSL. That is necessary, for instance, to ensure the code generators which re-

ceive the modeled diagrams as input can properly run.

3.6 Software Factories

Some different definitions for “software factories” have been used and realized along the

years, and they have even been compared [Aaen et al., 1997]. One of the most recent incar-

nations of the concept, by Greenfield et al. [2004], builds on several already established

software engineering concepts, many of them presented in the previous sections, such as

Software Product Lines, reusable software assets (such as application blocks and frame-

works), Model-Driven Development, automated context-based guidance, patterns, languages

and tools.

 Software factories rely on integration with development environments and a more

graphical approach based on MDD and DSLs that, unlike Computer-Aided Software Engi-

neering (CASE) tools, is seriously interested in semantics and control over code generation

[Fowler, 2005]. In summary, a software factory can be defined as a software product line that

configures extensible development environments and processes with packaged content and

guidance, carefully designed for building and maintaining variants of an archetypal product

by adapting, assembling and configuring framework-based components [Greenfield et al.,

2004]. It also reduces the time and effort required to follow that guidance by providing a par-

tial solution, such as templates to complete or components to assemble, and by automating

tasks performed to produce the finished product. Equipped with a software factory, a devel-

opment team can rapidly punch out a variety of domain-specific applications, each containing

unique features based on the unique requirements of specific customers.

A software factory is similar to a template loaded into a Microsoft Office application,

like Word or Excel, to customize it for a specific task such as writing a resume, or computing

mortgage payments. However, instead of customizing an Office application with a document

template, a factory customizes an integrated development environment (IDE) like Visual Stu-

dio or Eclipse with a template containing class libraries, projects, help files, wizards, web

pages, patterns and visual designers. Instead of information workers, its users are develop-

ers, project managers, architects, business analysts, testers and systems administrators. In-

stead of word processing or numerical modeling, it supports software life-cycle activities, like

specifying, building, testing, deploying, operating and maintaining systems.

The software factory elements as structured by [Lenz & Wienands, 2006] are pre-

sented in Figure 12. It contemplates both the factory designer perspective as well as the fac-

tory consumer (product developer) perspective. While the factory designer is described as

someone who selects and packages a collection of core assets along with a development

41

process for developing instances of the software product line, the product developer instanti-

ates and uses the factory to create members of the product line more effectively and predict-

ably. Although the general schematic is similar to a software product line, the specifics of a

software factory relies more on tool support, development environment integration, visual

domain-specific languages empowered by code generators and contextualized automated

guidance.

Figure 12 – Software Factory Overview [Lenz & Wienands, 2006]

While the software factories approach brings a number of benefits, they come at a

price. Potential issues and challenges have to be considered when employing software facto-

ries, in special for digital games development. For instance, a “more predictable and uniform

user experience” may be a disadvantage in digital games. From one hand, uniform behavior

is still desired for games in some scenarios, such as the physics of platform and racing

games, or the menu options of games deployed or hosted together such as in the Xbox Live

Arcade network. However, since surprising players with new features is a desired goal for

digital games, uniform behavior is not desired in many other game elements, such as the

game flow or narrative, for instance. It is up to the game SPL designer, therefore, to identify

where predictable and uniform experience is desired and where to provide variability and ex-

42

tension points to game developers. Others challenges related to software factories include

an overwhelming theory that spans many software development disciplines, considerable

resource demands and complexity in integrating existing assets yet remaining extensible.

3.7 The Applicability of Software Industrialization to Digital Games

A question that naturally arises in the context of this research is how applicable software in-

dustrialization concepts are to the digital games development domain. Since digital games

are targeted at players, not at enterprises (which mainly exploit economies of scope), the

tendencies are that not all of the claimed industrialization benefits can be applied to games.

For example, some concerns exploited by software factories, such as business requirements,

are more critical to enterprise software development than to digital games development.

 In order to provide a clearer picture of such a discussion, this research analyzed the

main challenges targeted by software factories as well as the expected major implications of

software factories, according to Greenfield et al. [2004], and how relevant they are to digital

games development. The results are displayed in Table 1 (digital games vs. challenges tar-

geted by software factories) and Table 2 (digital games vs. major implications of software

factories). For each challenge and expectation, our analysis provides a digital games rele-

vance score of High, Medium or Low. Comments are also provided.

The results of this informal evaluation show that 19% of the challenges have Low ap-

plicability to digital games, 33% have Medium applicability and the remaining 48% have

High applicability. Likewise, 14% of the major software factories implications were evaluated

as having Low applicability to digital games, 29% as having Medium applicability and the

remaining 57% as having High applicability.

The conclusions are that although digital games development is clearly a domain in

which software factories are less effective than domains which deeply exploit economies of

scope and customization, the number of addressed challenges and positive implications for

games seems to make it worth to employ the approach.

43

Table 1 – Software development challenges and relevance to digital games

Trigger Challenge
Relevance to

Game Development

New business
requirements

Support reengineered business processes and
an increasing focus on process-oriented

applications

Low (games are generally
not focused on business

processes)

Expose existing systems to massive user loads
created by web-based front ends

High (online games are
considerably common)

Design protocols (valid message sequences)
and enforceable service level agreements to

support processes than can span
multiple enterprises

Medium (communication
protocols are needed, but
services that span multiple

enterprises are rare in games)

Determine strategies for versioned data and
snapshots, such as price lists, that are widely

distributed yet have limited lifetimes

High (in games, such data are
represented by items such as

demos, maps, scenarios,
high-score tables, saved

games and so on)

Cope with the complexity created by transformed
business models from business leaders such as

Wal-Mart, who insist on deep integration with
their partners

High (impacts revenue shar-
ing; genres, gameplay experi-
ences and interaction para-
digms keep evolving, as well

as engines and tools)

Integrate heterogeneous application stovepipes
and avoiding lossy transformations between

them

Medium (integration is done
for components like servers
and game engines, but it is

not so heterogeneous)

Avoid reintroducing the batch era problem of
multiple file layouts and lack of data format

consistency in the rush to describe XML
schemas for every software service

High (standards are desirable
for saving games, defining

scenarios, distributed
communication and so on)

Determine strategies for wrapping older applica-
tions executing on heterogeneous platforms

Low (legacy is not a recurring
problem in the game domain)

Customize packaged software to satisfy
proprietary requirements

High (customization can arise
in the form of map/level edi-

tors, skins and MODs
17

)

Address the special need of data warehouse
and business intelligence

Medium (while games gener-
ally do not involve data ware-
housing, business intelligence

is crucial to some domains
such as the mobile)

Demonstrate return on investment in custom
software in the face of rising software

development costs

High (game engines are a
formidable example of a high

effort which can provide return
of investment by means of

customization)

17
 MOD is short for Modification. It is a package that can be applied to a game to modify its appear-

ance (graphics, sounds, texts, etc.) or even its behavior.

44

Trigger Challenge
Relevance to

Game Development

Increasing
focus on
security

Protect corporate data from hackers and
viruses, while giving customers and partners

direct access to the same resources

High (games should not at-
tempt to access unauthorized
data or execute unauthorized

operations; cheaters and
hackers are a constant an-
noyance in online versions)

Mitigate the increasing risk of legal liability
from the improper use of corporate data

Medium (although game data
are generally not corporate

and/or confident data, part of
user profiles must be private)

Increasing
deployment
complexity

Satisfy operational requirements, such as
security, reliability, performance and

supportability, in rapidly changing applications

High (some of such concerns
are critical to digital games)

Integrate new and existing systems using
a wide range of architectures and

implementation technologies

High (integration with game
engines, tools and even

servers is heavily demanded)

Understand the effects of partitioning and
distribution on aggregate qualities of service

Medium (quality of service is
impacted by distribution in
games by only a few varia-
bles, such as performance)

Design multitiered applications that deploy
correctly to server farms on segmented

networks partitioned by firewalls, with each serv-
er running a mixture of widely varying

host software configurations

Medium (may appear only in
some scenarios of online

games, such as Massively
Multiplayer Online Games)

Decentralized
software

development

Support applications developed by end users
(for example, spreadsheets to 4GLs) while
enforcing corporate policy and maintaining

the integrity of corporate data

High (this concern rises in
game development by means

of map/level editors, skins,
MODs or event behavior defi-
nition by players through script

languages)

Integrate personal productivity applications
such as word processors and spreadsheets,

with back end systems

Low (such applications are
generally not integrated with

digital games)

Work with applications or components that are
increasingly outsourced to development centers

in remote locations forcing a discipline on re-
quirements designs and acceptance tests that

was often neglected in the past

Medium (outsourcing may
appear in the form of graphics
modeling, artificial intelligence

programming, level design,
and other tasks, but that is not

common unless for AAA
games with a high budget)

Make departmental application integrate
effectively and scale to satisfy enterprise

requirements

Low (enterprise scalability
makes not much sense

to digital games)

45

Table 2 – Software development implications and relevance to digital games

Implication
Relevance to

Game Development

Development by assembly: only a small part of
each application will be developed from scratch

High (many aspects of game development,
such as map generation and entity rendering,

for example, are positively impacted by
this implication)

Software supply chains: each participant consumes
logical and/or physical products from one or more

upstream suppliers, adds value, usually by incorpo-
rating them into more complex products, and sup-

plies the results to downstream consumers

Low (despite supply chains can be applied to
some scenarios, such as graphics modeling,
they more applicable to other domains than

game development)

Standardization of specification formats,
packaging formats, architectures and patterns

High (games development deeply welcomes
such standardization, however this challenge

may be hard to overcome due to
industrial secrecy)

Relationship management: managing costumer
and relationship will become more important

Medium (a “digital game requirement” is not so
well defined as in other domains, while beta-

testers and publishers still have to be dealt with)

Domain specific assets: product line developers
will build assets used by product developers

High (game engines, language-based tools and
other frameworks/tools are genuine examples of
product line assets used by game developers)

Organizational changes: much about development
and development organizations will change

High (such an implication is relevant to virtually
all software development domains)

Mass customization of software: software may
eventually be mass customized like PCs ordered

on the web today

Medium (letting the player to completely config-
ure and customize a game genre in order to cre-
ate its own instance, and then order it, is still a

novel scenario)

3.8 Chapter Summary

This chapter presented the Software Engineering foundations this research is based on, with

focus on SPLs, software factories and one of their most valuable underlying assets: domain-

specific languages. Previous literature on reuse, Domain Engineering and visual modeling

was also presented. Finally, the applicability of software factories to digital games develop-

ment, based on the implications and challenges software factories are supposed to bring and

solve, was also discussed.

 By outlining the state-of-the-art of digital games development and software reuse tar-

geted at application families, Chapters 2 and 3 provided the necessary background that ena-

bles the description of the proposed Domain-Specific Game Development approach, aimed

at streamlining the development of games belonging to a same family. The next chapter fo-

cuses on introducing and detailing the elements of the approach.

46

47

4. DOMAIN-SPECIFIC GAME DEVELOPMENT

Many cases of successful Software Product Lines in practice can be found for different do-

mains [SPL Hall of Fame, 2012], such as consumer electronics, printing machines and avion-

ics. However, this is not true for domains related to digital games. We believe that this hap-

pens in part due to the fact that current application-family development approaches do not

address the specific constraints and peculiarities related to digital games development. Ex-

amples of such peculiarities are:

 The concept of “genres” is extremely popular in digital games. It is commonly

used as an attempt to define taxonomies into whose branches games can be

classified. However, genres are blurry and imprecise: there is no agreement

on a universal set of genres neither on the individual meanings of specific

genres [Oxland, 2004]. Interpreting genres as sub-domains or solely taking

them as is for scoping a game SPL can imply in abnormal outcomes for the

product line.

 The development of a digital game is not a direct outcome of user require-

ments or business needs, which may not even exist for a given project in the

domain. Games are typically not focused on solving end users’ problems, but

to entertain and “seduce” them. On the other hand, emotion-based require-

ments such as immersion, surprise, delight and nostalgia are very present in

digital games. This way, traditional Requirements Engineering cannot be ap-

plied as is to game development. For example, the well-known concept of

“use cases”, with well-defined roles, flows and input/output artifacts does not

make sense to game development processes. In practice, the high interactivi-

ty, randomness and unpredictability of digital games would imply in thousands

of use cases, which are unviable to manage. Game Design documents, exper-

imentation processes and focus on functionalities, many times volatile, are

more realistic in this area. Atypically, game development emphasizes non-

functional requirements [Callele et al., 2005] and lowers the stability of func-

tional ones [Maier & Volk, 2008].

 Software is only one of the elements that constitute a digital game. Besides

deeply relying on resources of multiple kinds (graphical, audio, etc.), games

have peculiar challenges from the design standpoint, such as level-design, re-

play-value and immersive (plus interactive) storytelling. Synchronizing tech-

nical and artistic branches is an additional challenge that requires the coordi-

nation of multidisciplinary teams. Moreover, since digital games are many

48

times concerned with mimetically representing the reality, instead of abstract-

ing it, analysis and design activities are not trivial.

 High-performance constraints together with very tight schedules forced digital

games development to historically trade more refined Software Engineering

techniques for a result-oriented but less organized development process, as

well as reusability for in-house development, in a methodology that became

known as “pedal to the metal” [Rollings & Morris, 2000]. Extra optimization ef-

forts, for instance, are vital to enable digital games to render their virtual envi-

ronments in real time.

 In game development, general-purpose programming languages such as C++

and C# have to be used in combination with script languages, frameworks and

tools (DirectX, OpenGL, etc.) for specific tasks such as low-level graphics pro-

cessing [Moreno-Ger et al., 2008]. Managing multiple assets like those in-

creases the game development complexity.

 The user interaction is unique in digital games, especially when compared to

other types of software generally based on mouse, keyboard and limited

graphical interface standards (e.g., windows-based GUIs). In digital games,

adherence to standards is many times trumped by the desire to provide inno-

vative experiences. However, such experiences should still ensure usability,

making it possible for players, with no previous training, to perceive the game

controls and interaction through intuition. User interaction challenges range

from one-button gameplay in casual domains to complex controller systems in

simulators, or even controller-free experiences as in Kinect18. Game feedback

to players many times relies on bleeding-edge audio and graphical experienc-

es, which are typically not widespread to software in general. Finally, real-time

multi-user interaction (local or online) is also peculiar in digital games.

 The usage of game engines in the design and implementation phases is heav-

ily disseminated in game development. Virtually all successful titles in the in-

dustry rely on game engines in order to satisfy time-to-market constraints.

Even integrated graphical environments such as Unity make use of engines in

the back-end. Engines handle many low-level tasks and should be configured

by the development team, sometimes using a script language.

 Digital games have unique deployment challenges including the diversity of

target platforms (PC client, web, mobile, multiple consoles, etc.), media (car-

18
 http://www.xbox.com/kinect

49

tridges, CDs/DVDs, network, etc.) and distribution channels (publishers, online

platforms for community content hosting, etc.).

 An impressive diversity of game instances, even from decades ago, is still in

use today in the digital games domain. In contrary to the majority of other

software domains, nostalgia causes “retro” instances to be kept alive for gen-

erations. Many samples are also available due to other reasons peculiar to

game development, such as the diversity of platforms, prototyping culture and

user-generated content. This translates into rich, valuable and available input

for designing future software in the domain. On the other hand, it also implies

in more samples that should be analyzed or filtered out by Domain Analysis

tasks.

 Studies on the applicability of Software Product Lines in the game develop-

ment domain are still incipient. Industrial secrecy to support competitive ad-

vantage is very high in the domain, since such projects involve great invest-

ments [Rocha, 2003]. For example, it is difficult to find comprehensive studies

about the applicability of design patterns in game engines [Madeira, 2003].

 Specific game sub-domains also have additional peculiarities. For example,

the big diversity of target devices is an issue for mobile domains [Nascimento,

2008], while reaching the perfect easy-to-play/hard-to-master balance is im-

perative to casual games more than any other domain [Araujo, 2009].

 Taking the aforementioned peculiarities into account, as well as the motivations,

background and state-of-the-art from previous chapters, this chapter proposes and details a

Domain-Specific Game Development approach. Section 4.1 provides an overview of the ap-

proach. Section 4.2 introduces the concept of Game Domain Envisioning. Section 4.3 pre-

sents Game Domain Analysis. Section 4.4 discusses how to bridge Game Domain Analysis

to application core assets, while Section 4.5 discusses how to bridge it to development core

assets. Section 4.6 comments on cross-SPL game assets and Section 4.7, on Application

Engineering. Finally, Section 4.8 concludes about this chapter.

4.1 Approach Overview

Taking as evidence the fact that some SPL approaches are too generic and lack implemen-

tation details that would enable them to be more effectively employed in practice [Nascimen-

to, 2008], this research endorses that SPL approaches should be specialized and stream-

lined when the target product lines are scoped to a narrower macro-domain, such as digital

games development. In the same way that the effectiveness of a SPL depends on how it is

focused on a specific domain, this research considers that SPL approaches can be more ef-

50

fective if bound by macro-domains, instead of being designed to target software development

in general.

By instantiating such a discussion to the digital games development macro-domain,

this research describes a practical SPL-based approach for bridging the Domain Analysis of

a game family to the implementation of core domain assets, area not comprehensively ap-

proached by other SPL or Domain Engineering processes [Nascimento, 2008]. The approach

has a special focus on domain-specific languages, which are key to realize the software fac-

tories vision but are currently underexplored in the context of game development. An outline

of the proposal is presented in Figure 13.

Figure 13 – A high-level overview of the Domain-Specific Game Development approach

 The main goal of the approach is to enable the development of core domain assets

for a game SPL, such as domain-specific languages, generators and reference architectures,

starting from the Game Domain Envisioning and Analysis, which are then bridged to Domain

Design and Implementation. Most notably, the proposal builds atop strict top-down and bot-

tom-up Domain Engineering approaches, combining them toward the development of core

assets in a spiral and iterative process denominated “edge-center”. Its goal is to work incre-

mentally from each side (problem and solution domain) to avoid the risk of a big upfront in-

vestment in any of them.

51

The evidences that justify such an approach come from previous experiences in SPL

projects for digital games and the nature of digital games development itself. From one hand,

a strict top-down approach generates domain-specific languages majorly taking Domain

Analysis (typically structured by means of feature models) as input. It considers the domain

as a collection of interrelated concepts, represented in the DSLs’ domain model, and has a

number of potential advantages [Cook et al., 2007]: it gets much more quickly and directly to

a substantial DSL, it tends to produce a more self-consistent and complete result and it tends

to ensure that variations are expressed in terms of requirements rather than implementation,

so that incidental variations in implementation are factored out. Kelly & Tolvanen [2008] men-

tion that although it may be tempting to use concepts that originate from the source code as

a starting point for language definition, higher abstraction and productivity can be achieved if

the modeling concepts come from non-implementation concepts.

However, in such top-down approaches, many abstractions and details that could be

identified from experience with actual product code may not be caught by the DSL syntax,

semantics and generators, leading to missed opportunities to empower the modeling experi-

ence. For example, the top-down DSL implementation approach used in the SharpLudus Ad-

venture game SPL [Furtado, 2006], which was used as a spike solution for this research,

originally resulted in a very rigid DSL support for implementing game event triggers and reac-

tions, which developers defined by simply enumerating them in a list. If product code was

taken into account, the different scenarios and contexts where triggers and reactions can be

combined would have been made clearer, leading to a richer and more flexible DSL support

to that. In fact, after such an experience we concluded that whenever a new feature is to be

supported by the DSLs of a game SPL, it is imperative that such a feature is implemented

first in source code as an extension of the SPL’s built-in feature set, or identified and extract-

ed from an already existing implementation. This enables SPL designers to understand what

parts of the domain framework (game engine and other components) is required by the fea-

ture and hence what code needs to be generated. Such information is then used as input to

create or update the DSLs’ syntax and semantics, and therefore is valuable input for design-

ing or improving a game SPL.

Likewise, since reference implementations and architectures are trumped by feature

models in top-down approaches, “biased” DSL generators can be inadvertently created, of-

ten leading to deficient implementations. In other words, in strict top-down approaches, gen-

erated code merely becomes a direct output of the DSL constructs, many times just a refined

serialization, rather than a real mapping from higher to lower levels of abstraction which take

architectural, performance and other low-level concerns into account. Once again, event trig-

gers and reactions in the SharpLudus Adventure spike solution can be mentioned as an ex-

52

ample: since no reference implementation was taken into account in the process, the gener-

ated code created inefficient lists of event trigger objects whose launch conditions were

checked every game cycle and were quite difficult to manage. This was an alarming issue for

the generated games, since performance is commonly one of the most important concerns in

game development, perhaps more than in other domains.

On the other hand, bottom-up approaches begin with specific application code and

gradually parameterize it [Cook et al., 2007]. Existing code is turned into a set of templates,

whose pieces are gradually replaced by template expressions. The DSLs develop alongside,

as the means to express these statements’ parameters. Nonetheless, implementing a DSL

solely based on such template expressions, abstractions and refactorings identified in the

product code can compromise the experience of game designers and developers, since a

DSL is not supposed to deal with low-level implementation details [Gray et al., 2008]. In such

strict bottom-up approaches, the DSLs’ syntax and semantics can become only an alterna-

tive (many times graphical) representation of the code, leading to an awkward user experi-

ence that does not provide any abstraction at all.

Besides taking lessons learned from strict top-down and bottom-up approaches, the

proposed “edge-center” approach also exploits some of the peculiarities of the digital games

development macro-domain. For instance, game engines are considered as a vital piece in

defining the reference architecture. Likewise, the approach helps game developers and de-

signers to explore, in its both edges (problem and solution domain), the numerous game

samples widely available thanks to the diversity of platforms, prototyping culture, abundance

of user-generated content or simply nostalgia. More details on how the process leverages

such peculiarities are described in this chapter.

Although this research provides a starting foundation for conceiving a comprehensive

Game Domain Engineering process that contemplates the details of all Domain Engineering

phases (Domain Analysis, Design and Implementation), it is out of our scope to do so.

Hence, our approach should not be taken as a comprehensive Domain Engineering process.

Our focus is on activities that impact Model-Driven Development in the context of digital

games development, toward the creation of application core assets in a game SPL, such as

DSLs and generators. This is illustrated by Figure 14. The darker areas illustrate the amount

of activities covered in each phase, while the remaining ones are out of scope. It is worth no-

ticing that although the phases below are presented sequentially, they are carried out in mul-

tiple iterations responsible for refining domain artifacts such as models, architectures and

implementations [Lucrédio, 2009]. Likewise, the approach is focused on the engineering as-

pect of game development, majorly on game developers and designers. It has boundaries

with but does not address other areas in game development such as the artistic ones.

53

Figure 14 – Domain Engineering coverage from the proposed approach

Table 3 presents a summary of the proposed approach, presenting its activities and,

for each of them, inputs, outputs and the role(s) in focus. Although the activities are present-

ed sequentially, a combination of them should be executed in parallel. Moreover, the activi-

ties are revisited during each iteration. The next sections provide more detail on that.

4.2 Envisioning the Game Domain

Before analyzing domain products, we suggest that some envisioning work is carried out as

the first task of planning a digital game SPL, in order to guide and better contextualize sub-

sequent Domain Engineering activities. We define Domain Envisioning as an activity fo-

cused on establishing a high-level overview and common understanding of the domain to be

approached, creating a vision to communicate the initial expectations for domain products.

Such a vision is then refined by the activities in Domain Analysis, resulting in the game SPL

scope.

The need for domain envisioning is quite evident in digital games, where the concept

of “game genres” (blurry, ambiguous and scattered across multiple dimensions [Lindley,

2003]) can lead to a troublesome Domain Analysis unless a proper vision is established up-

front. In addition, domain envisioning provides a baseline upon which domain scoping activi-

ties can start, in special by defining a set of expectations that can be used to select prod-

ucts and features to analyze. This is only possible because the product line instances in this

context belong to a macro-domain (digital games, instead of software in general), for which

categories of expectations can be defined upfront. Section 4.2.2.1 (Setting Expectations for

Core Game Dimensions) provides more details. Envisioning also helps solving a chicken-

and-egg problem, since understanding the domain requires analyzing domain products, but

selecting domain products to analyze requires understanding the domain.

Reaching a complete domain specification is not a goal of Domain Envisioning, espe-

cially because the domain might be new or only partially understood. In fact, this is an itera-

tive process: as game samples are analyzed and catalogued (Section 4.3), the domain be-

54

comes better understood, its scope can be refined and, as a consequence, game SPL assets

can finally emerge to capture variability and commonality in the domain.

4.2.1 The Unreliability of Game Genres

As previously mentioned, the software reuse process is more effective when systematically

planned and managed in the context of a specific domain, where application families share

some functionality. America et al. [2000] state that a large population in a SPL only makes

sense if the products in the family have enough in common to make it profitable and man-

ageable by the organization.

On the other hand, the great diversity of games created so far has turned the digital

games universe into an extensive, too broad domain. Creating a SPL targeted at digital

games in general, ranging from 2D platform games to 3D flight simulators, constitutes a too

wide-ranging and ineffective endeavor. In such a scenario, the SPL process and its tools

would not be able to fully exploit SPL benefits such as component reuse and assemblage. In

other words, a game SPL should focus on a narrower game domain, better scoping the pos-

sible games that the SPL users (game designers and developers) will create and generate.

Table 3 – Summary of the Domain-Specific Game Development activities

Phase Activity Inputs Outputs Role in Focus

Game

Domain

Analysis

Envision the

game domain

Game domain,

business goals and

constraints, stake-

holder information,

market analysis,

game samples,

expert knowledge

Game domain vision

(vision statement,

expectations for core

game dimensions,

negative scope,

target platforms),

go/no-go decision

Domain analyst,

domain expert,

market specialist

Build the

game domain

vocabulary

Game samples and

other elicitation

sources, expert

knowledge

Game domain

vocabulary
Domain expert

Define and

refine game

domain features

Game domain

vocabulary, game

samples

Domain features Domain analyst

Select domain

samples

Game samples,

domain vision,

expert knowledge

Refined list of

game samples
Domain expert

55

Phase Activity Inputs Outputs Role in Focus

Game

Domain

Analysis

(cont.)

Analyze game

samples and

model game

domain

Refined list of game

samples

Evaluated

game samples,

feature model, domain

understanding churn

Domain analyst

Partition the

game domain

into sub-

domains

Domain, sub-

domains, evaluated

game samples,

feature model

Sub-domains Domain analyst

Revisit the game

SPL domain

scope

Business goals and

constraints, game

domain vision,

evaluated game

samples, feature

model, expert

knowledge

Updated game

SPL scope
Domain analyst

Test sample

analysis against

stop criteria

Feature model,

domain

understanding churn

Decision on whether to

pursue additional

sample analysis

Domain analyst

Validate the

game domain

Feature model,

game domain

vocabulary

Refined features,

validated feature model

Domain analyst,

Domain expert

Assess game

domain automa-

tion potential

Sub-domains,

domain framework,

reference

implementations

Prioritized sub-domains

Domain analyst,

domain

architect

Design &

Implement. of

Application

Core Assets

Create Domain-

Specific Game

Architecture

Simple implementa-

tions, game engines,

tools

Domain-Specific Game

Architecture, new or

updates game engines

Domain

architect

Promote game

engines to

domain

frameworks

Domain-Specific

Game Architecture,

prioritized sub-

domains

Domain framework,

reference

implementations

Domain

architect,

domain

implementer

Create

reusable game

components

Domain framework,

prioritized sub-

domains, reference

implementations

Updated domain

framework

Domain

architect,

domain

implementer

56

Phase Activity Inputs Outputs Role in Focus

Design &

Implement. of

Development

Core Assets

Characterize

sub-domain

variability

Prioritized sub-

domains, feature

model

Characterized

sub-domains

Domain expert,

domain

implementer

Decide upon

MDD

development

Characterized

sub-domains,

existing tools and

languages

Selected sub-domains

Domain expert,

domain

implementer

Define DSL and

supporting

assets

Selected sub-

domains
DSLs

Language

expert

Develop trans-

formations and

refine DSLs

Selected sub-

domains, DSLs,

existing tools and

languages

Transformations,

refined DSLs

Transformation

expert

Design and

implement IDE

integration

Selected sub-

domains, DSLs,

transformations,

existing tools and

languages

IDE Integration
Integration

expert

Application

Engineering

(All related to

creating a single

game instance)

Game SPL,

project goals,

requirements and

constraints,

experimentation

results

Game

Project

manager, archi-

tect, developers,

tester, configu-

ration manager,

producer, game

designer, sound

designer, art

designer, etc.

 One of the most often used attempts to classify digital games is the concept of game

genres, which defines a game taxonomy [Crawford, 1984]. Some of the most popular game

genres [Wolf, 2002] [Sawyer, 1995] [Crawford, 1984] include adventure games, platform

games, fighting games and strategy games.

Nevertheless, defining genres can be a quite difficult task as many people have dif-

ferent opinions on the meaning of a genre or various ways of stereotyping them [Oxland,

2004]. Likewise, it is not rare for a game to fall into more than one category. Some authors

even argue that describing different types of games requires different dimensions of distinc-

57

tions (narratology, ludology, simulation, gambling, etc.), i.e., orthogonal taxonomies which

allow design concerns to be separated [Lindley, 2003].

Classifying games into genres is a difficult task not only because a game can be hy-

brid, but also due to the fact that some genres are “horizontal”, such as casual games, edu-

cative games, serious games, adult games and advergames. The high evolution speed expe-

rienced by game genres is also an issue. Crawford [1984] pointed out that, due to the dy-

namic nature of game taxonomies, they can be expected to become obsolete or inadequate

in a short time.

Furthermore, there is a lack of consensus at the level of the classification schemas,

some being more popular than others. For instance, some schemas are largely semiotic,

while others rely more strongly on configurative patterns of interface and mechanics. In short,

due to a general lack of commonly agreed-upon genres or criteria for the definition of genres,

the classification of games under schemas are not always consistent or systematic and

sometimes outright arbitrary between sources.

 One interesting example of game genre disagreement is the “Shoot’em up” genre, in

which the player controls a single character, often a spacecraft, shooting large numbers of

enemies while dodging their attacks. Such a genre encompasses various types or subgenres

and critics differ on exactly what design elements constitute a shoot 'em up game. Some re-

strict the definition to games featuring spacecrafts and certain types of character movement;

others allow a broader definition including characters on foot and a variety of perspectives.

The game Sharky’s Air Legends (Figure 15), on the other hand, provides additional game-

play elements, such as different depth levels in which airplanes can be in a given moment.

Therefore, figuring out which genre suits best Sharky’s Air Legends, arguably Shoot’em ups,

would bring yet another polemic discussion.

Figure 15 – Sharky’s Air Legends: hybrid evolution from Shoot ‘em Up genre

58

In short and in contrast to intuition, game genres alone are not reliable enough to

comprehensively describe and envision a domain in the context of a digital game SPL. They

could lead to ambiguities and difficulties in other Domain Engineering activities, such as

when selecting domain samples to analyze during Domain Analysis. For example, a loosely

defined “Racing Games SPL” can mean different things, as presented in Figure 16. Such a

title does not really tell if the game SPL is aimed at producing perspective racing games such

as GeneRally, arcade racers such as Daytona USA or simulation-style racing games such as

EA Sports’ F1 series, not to speak about other possibilities such as street racing games, off-

road racing games and others specifically focused on motorcycles, trucks, speedboats or

even horses. On the other hand, the game SPL may still mention a game genre in order to

introduce some level of familiarity to its stakeholders, but needs to supplement it with clear

expectations as presented in subsection 4.2.2.1.

Figure 16 – GeneRally, Daytona USA and EA Sports F1

4.2.2 Describing Game Domains through a Game Domain Vision

Instead of embracing the challenge of reaching the perfect game genre taxonomy, we are

actually focused on ensuring that digital games development can benefit from systematic

planning and management in the context of a specific application family. Taking as motiva-

tion the ambiguous universe of game genres and the need to constrain the big sample set of

game instances and features to be analyzed, we propose an alternative solution: the defini-

tion of a game domain vision to describe a game family that share functionality. Such a vi-

sion intends to reach a common agreement on what ultimately defines the domain to be ap-

proached, independent of game genres. It does so by means of the following tasks, detailed

in the next subsections: setting expectations for core game dimensions, establishing a nega-

tive scope, identifying target platforms and creating a vision statement.

4.2.2.1 Setting Expectations for Core Game Dimensions

If from one hand the digital games macro-domain is broad, requiring game SPL designers to

narrow it down so that it becomes viable in the context of Domain Engineering, from the other

59

hand such a macro-domain is still more specific than the broader “software” concept, lying

somewhere in between. Hence, game SPL designers can use core game dimensions,

which are ubiquitous to digital games development yet not overly specific or generic, to drive

the envisioning phase of a digital game SPL. From a feature modeling perspective [Kang et

al., 1990], core game dimensions can be understood as very abstract, high-level mandatory

root features that each specific digital game domain should address in its own way. While we

believe core domain dimensions and domain envisioning in general can also be applied to

envision macro-domains other than digital games, such a discussion is out of the scope of

this research.

The list below presents the suggested digital games core dimensions whose expecta-

tions should be established by game SPL designers:

 Player: concepts related to the game player(s), such as number of players,

co-playing modes (e.g., in turns or simultaneously, cooperative or “death-

match”, etc.), score, high-score, lives and others. This should not be confused

with “main character” entities controlled by the players.

 Graphics: what players are supposed to see, including the world view (2D,

isometric, first-person, etc.), heads-up displays (HUDs) and eventually more

advanced techniques such as particle systems to simulate fire, dust, rain, etc.

 Flow: how the plot or storyline of the games evolve as perceived by players,

encompassing levels, phases, missions, screens, transitions, rooms, scenes,

etc.

 Entities: the underlying types and mechanics of beings and things that play-

ers are supposed to control and interact with, such as main characters, non-

playable characters, items, projectiles, etc.

 Events: triggers and reactions that drive the behavior of the world, screens

and entities of the games belonging to the domain.

 Input: how players provide input to interact with the SPL games, encompass-

ing (a combination of) devices and eventually more advanced options such as

speech recognition and controller-free systems.

 Audio: what audio feedback players are supposed to get from the generated

games, including sound effects, background music and optionally more ad-

vanced technologies such as 3D sound, speech synthesis (text-to-speech)

and special effects (echo, pitch, reverb, bullhorn, etc.).

 Physics: the physical mechanics of the produced games, including collision

detection and acting forces, such as gravity, attrition, slippery surfaces, etc.

60

 Artificial Intelligence: artificial intelligence behaviors performed by entities

and the world of the SPL games, such as path following, context awareness,

etc.

 Networking: whether the produced games are standalone applications or in-

teract with servers (to store high scores, for instance) and/or other running

game instances.

 Any other custom core dimension that applies to the specific game domain

to be explored. For instance, an important core dimension that constrains role-

playing games (RPGs) is the Battle System, which determines whether fights

against enemies happens in turns or as real action, randomly or planned, etc.

On the other hand, card games can have special constraints based on card

decks, such as the number of decks, usage of full or partial decks, etc.

The expectations for such core dimensions come from multiple informal sources,

such as expertise from domain experts, previous knowledge from domain analysts, trends

and influences from successful game titles, requirements from game developers or designers

and an overall assessment of the high-level goals of the game SPL. Once again, by no

means the resulting set of expectations should be considered final or totally accurate. On the

contrary, it will very likely be modified and refined by subsequent activities and iterations.

4.2.2.2 Establishing a Negative Scope

A negative scope is focused on stating expectations that will not belong to the specific game

domain being defined, and therefore will have no built-in support from the SPL assets, such

as DSLs and transformations. This task is especially useful regarding expectations that SPL

users (game developers and designers) would implicitly take for granted, but are out of scope

by design. For example, a SPL focused on a domain involving racing games may explicitly

state, through its negative scope, that refueling and campaign modes are out of its expecta-

tions.

Initially, negative expectations can be defined for each core game dimension. Later,

the Domain Analysis activities can refine the negative scope, explicitly stating the domain

features that should not be taken into account. Concerns belonging to different points of view

influence the negative scope, such as:

 Management concerns: risky implications to the game SPL project schedule

or lack of resources due to expectation/feature complexity;

 Manufacturing concerns: expectation/feature is hard or impossible to auto-

mate and configure, reducing the SPL effectiveness for it;

61

 Requirements concerns: expectation/feature is not critical to end-users or is

rarely used;

 Analysis concerns: expectation/feature is so vague or ambiguous that it can-

not be considered unless better refined;

 Conciseness concerns: strong mismatch between expectation/feature with the

current SPL vision, leading to a loosely related set of SPL assets.

Defining a negative scope is not only useful to help clarifying the boundaries of the

approached domain, but also to avoid wasted work during subsequent activities. For exam-

ple, during Domain Analysis, a deeper investigation of some features of a game can be dis-

carded upfront if such features are identified as falling into the game SPL negative scope.

 Negative scoping, however, does not avoid game SPL users from adding the out-of-

scope features to their game instances, as extensions to the SPL. For example, a game enti-

ty movement can be originally restricted to a built-in set or formula (e.g., 8-directions move-

ment through arrow keys), but be extensible enough to enable game developers to define

alternative possibilities (such as mouse position-based movement) to move entities around.

In fact, the SPL can still provide extensibility mechanisms (“hooks”), such as parameteriza-

tion, partial classes, events, sub-classing, polymorphism, dependency injection [Fowler,

2004] or specifically defined join points that could be useful to extensions based on Aspect-

Oriented Programming [Kiczales et al., 1997]. This discussion is detailed in Section 4.4.

4.2.2.3 Identifying Target Platforms

We suggest that the game domain vision includes the target platforms to be supported by

the SPL, such as consoles, mobile devices, PC (i.e., a client operating system), web (i.e.,

browsers), digital TV, etc. Constraints on the target platforms, such as the need for a specific

browser technology (Flash, Silverlight, etc.), operating system or runtime can also be de-

scribed if the information is available, or as a result of refining the domain envisioning in fu-

ture iterations. Product portfolios [Nascimento, 2008] can be used to describe all families

supported by the game SPL, by means of their target platforms. A product map can also be

conceived in order to map capabilities and restrictions of core game dimensions into the tar-

get platforms. For example, one of the target platforms in a mobile games domain may have

its graphics expectations restricted to some specific screen sizes.

It is worth noticing that infra-structure decisions such as the target programming lan-

guage or architectural elements to be used (such a specific version of a game engine) should

not be included at this time, since they are not really part of the vision, but are actually a con-

sequence of (and means to enable, or implement) the domain vision and requirements.

62

4.2.2.4 Creating a Vision Statement

A comprehensive yet concise vision statement summarizes the essence of a game domain

vision. Although the vision statement is established only after other game domain vision ele-

ments, it will generally be presented first when introducing the game SPL to stakeholders, as

it happens with an executive summary of a business plan.

As highlighted by agile development methodologies [Cockburn, 2001], analogies are

a powerful mechanism to facilitate understanding. In order to clarify and illustrate the expec-

tations for a core dimension, the vision can still establish analogies to game genres or well-

known titles in the industry. However, as previously mentioned, the whole vision itself should

not solely rely on genres for describing the domain.

The vision should not be too broad so that it attempts to encompass too many genres

and instances, since that would result in excessive variability and ineffective game SPLs. On

the other hand, if the vision is too narrow, it may be difficult to reuse processes, components

and tools, making it more difficult to achieve a return on the game SPL upfront investments.

Likewise, the vision should be comprehensive, but not meticulously precise. False positive

samples (games that are initially evaluated as complying with the vision but are later discard-

ed by Domain Analysis) can still exist. As the vision gets refined by Domain Analysis, the

domain boundaries are made clearer.

The vision is independent from game-world content, unlike other works of fiction such

as films or books. For example, an action game is still an action game, regardless of whether

it takes place in a fantasy world or outer space [Rollings & Adams, 2006]. If game SPL de-

signers foresee that different player profiles (or even other types of end-users) will be ad-

dressed by the game SPL, Personas [Bonnie, 2007] can be modeled and become part of the

vision. Examples of Personas include teachers and students in educative games, hardcore

and casual gamers for games with multiple levels of difficulties, different content generator

roles for customizable games, etc. The specific needs of each Persona can be used as input

when conceiving game SPL assets later on.

Game SPL designers have an additional dilemma to deal with when envisioning the

domain. If from one side each wave of games is attempting several mysterious and unproven

technical feats (and experiences) to surprise players [Blow, 2004], on the other hand there

should be a threshold on any core dimension innovation, in order to avoid it from becoming a

rupture. For example, if a game makes use of well-known mechanics, such as the use of two

directional sticks (one to move and the other to aim) in first-person shooter games, then the

learning curve for the players will be considerably lower. Some game developers even argue

63

informally19 that 95% of games should really be sticking with what players know to reduce the

barrier of entry. However, this should not rule out a completely new gameplay experience,

especially if it is solidly based on user experience research. Nintendo’s Wii controller, which

recognizes the players’ gestures, as well as Microsoft’s Kinect, which brings the player’s

body movements to the game screen, are successful examples of innovation which did not

become ruptures.

 Finally, the end product of Domain Envisioning can be customized by the game SPL

in order to more properly fit the contents and layout of a Game Design Document already in

use by the organization. In fact, they can be used as a Game Design Document template, to

be refined by game SPLs and instantiated during actual application development (Section

4.7).

4.3 Analyzing the Game Domain

For almost three decades, the area of Domain Analysis has been serving other Software En-

gineering initiatives such as Component-Based Development, Software Product Lines and

Software Reuse in general. The term was first introduced by Neighbors [1980] as “the activity

of identifying the objects and operations of a class of similar systems in a particular problem

domain.” It can also be defined [Prieto-Diaz, 1990] as a process by which information used in

developing software systems is identified, captured and organized with the purpose of mak-

ing it reusable when creating new systems.

Evolving the game domain envisioning discussion presented in the previous section,

the next subsections discuss the peculiarities of performing Domain Analysis for game SPLs.

The final purpose is to gather a set of abstractions that comprehensively represent the

games that belong to the chosen domain and, therefore, that can be used as input to design

and implement core SPL assets.

4.3.1 Building the Game Domain Vocabulary

Virtually all tasks in Domain-Specific Game Development, from analyzing domain features to

designing DSL concepts, require understanding the game domain vocabulary. Kelly & Tol-

vanen [2008] mention that most people already have a domain-specific vocabulary in use

and it exists for a good reason: it is relevant when discussing a family of systems. The au-

thors point out that there is no need to introduce a whole new language to the domain since

one is probably already in use, albeit implicitly and partially. Hence, the domain analyst

19
 Doolwind’s Game Coding Journal, http://www.doolwind.com/blog/?p=85

64

should be responsible for capturing such a domain vocabulary that will later result in other

SPL assets, such as the DSL concepts, properties and relationships.

 Nonetheless, Wiegers [1999] points out that “one problem with the software industry

is the lack of common definitions for terms we use to describe aspects of our work”. Church

[1999] enforces that game development is not an exception to the rule. He states that game

design, an activity which includes the definition and use of a common vocabulary, is the least

understood aspect of computer game creation, and that the primary inhibitor of design evolu-

tion is the lack of a common design vocabulary, despite the fact that understanding requires

that designers are able to communicate precisely and effectively with one another. In short,

Church says, “we need a shared language of game design”.

The demands for creating a game design “critical language”, a way to analyze games,

to understand them and to understand what works and what makes them interesting is not

new. In 1994, Costikyan [1994] already mentioned that such a challenge relates not only to

digital games, but to games in general (digital, tabletop RGPs, virtual reality, sports, mass-

market adult, card games and so on). However, compared to the vast body of operational

knowledge found in the world of filmmaking, for example, the game design community is just

beginning to articulate the concepts and techniques specific to its medium in order to estab-

lish methods of game design [Kreimeier, 2003]. Kreimeier [2003b] concludes that “[…] while

knowledge about computer games has grown rapidly, little progress has made to document

our individual experiences and knowledge, documentation that is mandatory if the game de-

sign profession is to advance. Game design needs a shared vocabulary to name the objects

and structures we are creating and shaping, and a set of rules to express how these building

blocks fit together”.

While game designers have called for a design language, noting that they currently

lack a unified vocabulary for describing existing games and thinking through the design of

new ones, many approaches to address such request have risen. Zagal et al. [2005] identi-

fied that many of the proposed approaches focus on offering aid to the designer, either in the

form of design patterns [Kreimeier, 2003b] [Björk & Holopainen, 2005] [Björk et al., 2003],

which name and describe design elements, or in the closely-related notion of design rules,

which offer advice and guidelines for specific design situations [Fabricatore et al., 2002] [Fal-

stein, 2006]. Other analyses draw methods and terminology from various humanistic disci-

plines. For example, games have been analyzed in terms of their use of space [Jenkins,

2003], as semiotic systems [Kücklich, 2003], as a narrative form [Church, 1999] [Murray,

1997], in terms of the temporal relationships between actions and events [Eskelinen, 2001]

or in terms of sets of features in a taxonomic space, using clusters in this space to identify

genres [Aarseth et al., 2003].

65

Such approaches present valuable contributions to the digital games development

community, but they are not committed to abstracting the commonalities and differences in

design elements across concrete examples belonging to a specific domain. They either offer

imperative advice to designers, intend to describe rules for creating good games, or try to

develop definitions to distinguish between games and non-games (or among different types

of games). Such goals do not properly address the task of creating a common vocabulary for

a game domain and, therefore, a game SPL.

Zagal et al. [2005], through the Game Ontology Project, aim at defining a broad on-

tology for digital games in general. Such an ontology cannot be used in a game SPL, since it

is not domain-specific. Other less formal attempts for building a game vocabulary (or glossa-

ry), such as the GameDev.NET Game Dictionary20 and The Game Programming Wiki21, are

also too broad in scope, including topics not directly related to game design and develop-

ment, such as the name of celebrities, companies or general network infra-structure defini-

tions.

Given that as a motivation and coping with the need to establish a common terminol-

ogy for the game domain to be approached, we suggest the creation and maintenance of

domain-specific vocabularies as part of the game SPL’s Domain Analysis. This encompasses

the domain concepts elicitation, which can come from game development tools, game sam-

ples, documentation associated with games (manuals, reviews, screenshots, etc.), game

magazines, academic articles, interviews with game players and developers, core game di-

mensions and game domain features. Special focus should be given on ambiguity and con-

tradiction elimination, as well as the identification and merging of synonymous concepts.

Game designers, developers and other domain experts should be encouraged to validate the

vocabulary.

Without agreeing on a vocabulary for the specific game domain to be approached, the

different roles involved in the creation of the game SPL (domain expert, analyst, architect,

implementer, etc.) may reach different definitions for the domain terms, which is a negative

outcome for game SPL since creating domain-specific assets is all about clearly understand-

ing and agreeing on definitions.

4.3.2 Defining and Refining Game Domain Features

At each iteration, the group of domain features to be analyzed should be defined and/or re-

fined. When the domain vision was defined (Section 4.2), the expectations of a series of core

game dimensions were established and can now be used as a starting point for this task.

20
 http://www.gamedev.net/dict/

21
 http://www.gpwiki.org

66

The iterative nature of the process and a consequent deeper understanding of the domain

add, remove, merge, split and change the features in the feature set.

 The execution of this task has some peculiar implications to digital games due to their

nature. Software factories commonly approach the modeling of domain features by making a

clear separation between the problem domain and the solution domain [Greenfield et al.,

2004]. Modeling the former is an input to modeling the latter, which is ultimately used to

bridge the Domain Analysis to subsequent phases (Domain Design and Implementation).

 In digital games, however, the problem domain is unusual since the concept of user

requirement is not clear. Raph Koster, in his acclaimed book A Theory of Fun for Game De-

sign [Koster, 2004], concludes that we play games not to get end-user requirements satis-

fied, but simply because games offer “juicy patterns for our brains to consume”. As the hu-

man brain is addicted to learning new patterns, it welcomes any activity that teaches it some-

thing new, until it loses the interest due to a mismatched difficult level, i.e., it becomes too

easy or too hard to assimilate new patterns. As a consequence, the problem domain for digi-

tal games permeates the subjective topics of pattern-matching, fun, immersion, escapism,

delight, competitiveness and others, combining areas that range from social behavior to

adrenalin/dopamine, which are better addressed by psychochemical sciences rather than

Software Engineering. If in other industries the requirements and design patterns (such as

“safety” and “comfort” in the automobilist industry) clearly map to the solution domain (air-

bags, anti-break systems, automatic transmission, hydraulic steering, etc.), in digital games

such mapping is not evident (or mature?) enough.

 Likewise, while requirements and SPLs in general evolve as a direct consequence of

identifying new user needs, in digital games such evolution is mostly based on experimenta-

tion and creativity, which typically refine an abstract theme such as “time manipulation” or

“seek and hide”. This way, although it is well known that software in general is very likely to

change during the development process, the churn seems to be higher for digital games

since interim experimentation and exploratory results can radically change and shape the

final product. For instance, in some professional game development studios, designers are

not required to come up with a detailed game specification until the first playable prototype is

approved.

 The implications of that to game SPLs are twofold. First, modeling the problem do-

main for emotion-based features does not seem to be useful to the game SPL, due to their

subjective and cross-discipline nature. Typical examples of emotion-based problem domain

features are “appealing physics” and “nostalgia”, which can only benefit from Domain Engi-

neering processes if their understanding and underlying requirements are made more con-

crete and specific to the domain. On the other hand, some non-emotional game features can

67

still exist and be traced back from the solution domain to the problem domain, as illustrated

inTable 4 (the list can increase for domains in which games have secondary goals, such as

in educative and serious games). In such a case, we suggest SPL designers to employ the

same guidelines proposed by Greenfield et al. [2004], which evolves the problem domain

along with the solution domain for the SPL.

Table 4 – Non-emotional features: tracing between problem and solution domains

Problem Domain Features Solution Domain Features

Allow breaks to avoid having players

loose progress
Save/Load, Pause/Resume, "Continues"

Register player performance High-scores table, achievements

Provide social interaction Multiplayer mode (online and local)

Establish a player identity Avatar, game elements customization

Provide availability (to play independent

from time/space)

Mobile platforms, digital convergence

(multi-device experience for a same game)

Ensure readiness to play Intuitive/one-click installers, zero-deployment games

Offer replay-value
Multiple narrative paths, multiplayer support,

achievements

Establish a low learning curve
Tutorials, scaffolding (hints and tips that stop being

offered as players acquire experience)

Advertise a specific brand

(typical for advergames)

Hooks for brand insertion, which can end up as patterns:

background of “loading” screens, mid-action fly-outs,

specific areas or canvases designated for branding, etc.

Teach or train the player on a given

real-world topic

Missions and problem-solving challenges that incorporate

the topic contents, notorious in serious end educative

games.

 The second implication of the emotion and experimentation nature of many game fea-

tures to game SPLs is that virtually every instance of the SPL will require extensions, not

supported as built-in. Later on, of course, extensions may be retrofitted to the game SPL, as

part of its feedback process.

Braid (Figure 17) is an Xbox 360 Live Arcade game that very conveniently illustrates

this discussion. While it has all typical gameplay elements of a platform game, it innovates by

adding time interaction and manipulation to the gameplay experience. For example, in one

of Braid’s phases, if the main character moves to the right, time advances for all other entities

68

of the game. On the other hand, if the main character moves left, time goes back for other

entities, i.e., they undo the actions they have previously done, such as by moving back to

their original positions. Other game features are also impacted by time flow manipulation,

such as the background music, which is played in reverse mode when time goes back.

Figure 17 – Braid: time flow manipulation extends built-in feature set of platform games

The features that realize such “time manipulation” abstract theme were very likely not

conceived as the result of a well-defined Domain or Application Engineering process focused

on user requirements. More probably, such a feature came from exploratory processes lev-

eraging previous game design experience, and was gradually validated by experimentation

through prototypes. Supposing that Braid was created in the context of a platform game SPL,

however, such time flow manipulation feature could be retrofitted into the SPL as part of its

feedback process. The feature could be refined into more detailed and well-understood fea-

tures, such as “entity actions recording”, “entity actions playback” and “entity actions roll-

back”. On the other hand, it could also impact already existing features. For example, the

“background music” feature could be parameterized in order to allow the game background

music to be played in reverse mode. As a practical consequence of that, SPL assets (lan-

guages, frameworks, etc.) would be adjusted to become compliant with and enact the updat-

ed feature set.

4.3.3 Selecting Domain Samples

Selecting domain samples refers to identifying existing, under development or anticipated

products to be analyzed. Such products were probably not created as part of a product line

approach. On the contrary, they may have been produced through one-off development pro-

cesses with little or no reuse intended at all.

69

 The number of games to be analyzed is mainly constrained by the game SPL project

resources and schedule. Therefore, a very important concern is to select games which are

the most representative. For instance, a game which was either re-released through “re-

makes”, had many sequels or received broad industry and media recognition can probably

be considered a representative sample.

 An important question that is raised during the selection of product line samples is

where to discover them. The elicitation task may benefit from the involvement of domain ex-

perts, end-users and specialized sources of information. As a rule of thumb, successful pre-

vious titles in the industry, which can be classified as belonging to the game SPL domain, are

the most reliable samples. The ArcadEx case study (Chapter 5) illustrates this discussion.

4.3.4 Analyzing Game Samples and Modeling the Game Domain

The Game Domain Analysis registers information about each one of the selected product line

samples against the currently specified feature set, in order to identify the commonality and

variability22 of the domain. The gathered information is typically organized in a catalogue and

is used as input to create feature models that abstract the features of the individual domain

samples into a feature hierarchy that represents the games that belong to the domain. As for

tool support, Lisboa et al. [2010] have compiled a systematic review on Domain Analysis

tools, including feature modeling ones.

 Feature modeling was proposed as part of the Feature-Oriented Domain Analysis

(FODA) method [Kang et al., 1990], and since then, has been applied to a number of do-

mains including telecom systems, template libraries, network protocols, and embedded sys-

tems. A feature is a system property that is relevant to some stakeholder and is used to cap-

ture commonalities or discriminate between instances. The features are organized in feature

diagrams, which are trees whose root represents a concept (e.g., a software system), and

whose descendent nodes are features.

A number of extensions and variants of the original FODA notation have been pro-

posed [Czarnecki et al., 2004b]. This research suggests the use of the cardinality-based fea-

ture model notation [Czarnecki et al., 2004], especially because it provides expressiveness

for establishing constraints between features and for telling the range of possible features

that belong to an alternative node. Elements of such feature model notation include manda-

tory features, optional features and alternative feature sets that group similar or interchange-

able features. A cardinality constraint (introduced in feature models by Riebisch et al. [2002])

can be used to avoid ambiguity in alternatives. Finally, constraints between features (such as

22
 Variability is the ability to change or customize a system [Svahnberg et al., 2001].

70

requires or excludes) can be applied as well. A summary of such a notation is presented in

Table 5.

Table 5 – Cardinality-based feature model notation

Notation Description

Mandatory feature. All instances of the domain should

have such a feature. For example, all game entities should

have a position on the screen.

Optional feature. An instance of the domain can have such

a feature. For example, a game entity may have an opacity

value.

Alternative with explicit multiplicity. Multiplicities enable

a more powerful and less ambiguous model and are similar

to those proposed by the Unified Modeling Language

(UML), such as at most one (0..1), exactly one (1), any (0..*)

and at least one (1..*). As an extension, custom ranges are

also allowed, such as 1..3.

Constraint. In this case, the requires constraint indicates

that whenever Feature A is present in a domain product,

Feature B should be present as well. Other constraints in-

troduced in other works [Kang et al., 1990] [Czarnecki &

Eisenecker, 2000] [Riebisch, 2003], such as excludes, and

refinement, can be used as well.

A feature model represents an abstract view onto properties of all instances of a do-

main [Riebisch, 2003]. Every feature covers a set of requirements. By selecting a set of op-

tional features, an instance of that domain can be defined. All mandatory features are part of

the instance by definition. Finally, hierarchical relations between a feature and its sub-

features control the inclusion of features in instances. If an optional feature is selected for an

instance, then all of its mandatory sub-features have to be included as well, and optional

sub-features can be included.

Figure 18 presents a typical feature model diagram contemplating the aforementioned

notations elements. Mandatory features have a black circle decorator in their connection to

the parent feature, while optional features have a white circle. Feature sets are denoted by

71

arcs, displaying the minimum and maximum number of options that can be selected. Decora-

tors do not apply to the root concept neither to alternative options, since occurrence seman-

tics for them are well-understood (a root concept always occurs; alternative options occur-

rence is determined by the alternative cardinality).

Figure 18 – Example of feature model diagram

It is important to point out a couple of peculiarities that stand out when analyzing

samples for game SPLs. Sometimes, a game has sequels consisting of very similar titles,

such as Pac-Man, Mrs. Pac-Man and derived variations. In such a case, SPL designers can

opt for analyzing them as a single group, considering unique sequel features as extensions

or variations of the original game. If the sequel/variation games have too expressive peculiar-

ities on their own, this may be an indication that the SPL domain can be partitioned into sub-

domains, as explained in the next subsection.

The analysis of samples includes activities majorly focused on, but not limited to play-

ing the actual games. If the hardware is not available, emulators should be considered. It is

worth noticing that the SPL designers should take into account any legal implications of using

such tools. Some examples of emulators are:

 DOSBox23, an open source x86 emulator with DOS, primarily focused on run-

ning DOS games;

 MAME24 (Multiple Arcade Machine Emulator);

 Specific video game console emulators (Stella for Atari systems, ZSNES for

Super Nintendo, etc.);

 Operating system virtualization/emulation suites such as Microsoft Virtual

PC25.

 Online ROM emulators, typically implemented in Java, Flash and Silverlight.

23
 http://dosbox.sourceforge.net

24
 http://www.mamedev.org

25
 http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx

72

As opposed to software in general, whose design if focused on enabling features to

be easily reached and explored by end-users, many functionalities in a digital game are

locked from the beginning. For instance, some levels should be cleared in order to unlock

advanced levels. Such advanced levels, on the other hand, might reveal additional behavior

(features) not originally noticed in previous levels. The web game RunMan: Race Around the

World26 is an interesting example: the concept of a world map, which links different playable

areas, is not known by the player until all levels from the first area are cleared.

That said, it might not be trivial to explore all features of a digital game, and conse-

quently perform Domain Analysis properly, without playing (and many times mastering) the

game. The lack of specifications or access to game design documents negatively impacts

such an already challenging concern. This research suggests the following techniques to en-

able game domain analysts to overcome such issues:

 Enabling “god modes” or activating “cheat codes”, if available. Those re-

sources give enhanced powers to players such as the freedom to teleport

across game levels or an unlimited number of lives, ammo, etc. However,

when using such techniques, the game domain analyst should keep track on

what a built-in game behavior is versus what was modified, so that the game

analysis is not jeopardized. It is also worth noticing that god modes and cheat

codes are, by themselves, features that can be addressed by the game SPL.

 Exploring official and “underground” literature related to the game, which is

very vast since addicted players worldwide do a very good job in documenting

the behavior, scripts, characters and many other attributes of their favorite

games. This includes strategy guides released by the publisher or others,

playbooks27, specialized magazines, reviews, recordings of previous play ses-

sions, online forum conversations and logs. For instance, McGonigal [2010]

highlights that the World of Warcraft wiki, with more than 8,000 thousand arti-

cles and 5 million contributors, is the second biggest wiki of the world, behind

only Wikipedia. There is more information about the World of Warcraft game

than any other topic covered by any other wiki in the world.

 Interviewing experienced players who master the game or the game domain.

Such players can also be interviewed for eliciting anticipated game features

that do not exist yet (Section 4.3.6).

26
 http://whatareyouwait.info

27
 An instruction book containing play scripts or diagramming various possible plays to be performed.

73

While the feature model notation tells variability by means of documenting whether a

feature is common or optional in a domain, it cannot tell to what extent an optional feature is

variable. In other words, it may be impossible to document, using a feature model, all possi-

ble flow configurations among the screens of the games belonging to a domain (e.g., only

one screen, two screens where the first screen leads to the second, two screens configured

in a loop, three screens, etc.). This is not specific to the digital games development domain,

though. Since understanding how variability behaves for the features has a huge impact on

how core domain assets such as DSLs are conceived, it is recommended that the game do-

main analyst annotates the feature model at least with textual information describing the var-

iability universe for a given feature. Section 4.5 clarifies how such information is used to

bridge the feature model and the Domain Analysis to the core assets implementation.

4.3.5 Partitioning the Game Domain into Sub-Domains

During Domain Analysis execution, SPL designers will commonly be able to partition the SPL

domain into sub-domains, which define an even more related set of features. For example, in

a game domain based on old-fashioned arcade games, a couple of sub-domains can be

identified. Games such as King & Balloon, Space Invaders, Galaga and Galaxian (Figure 19)

fall under the same sub-domain, that could be called Bottom-up Shooter. On the other hand,

a Maze sub-domain could be defined to encompass games in which entities are confined in a

field composed by a set of blocking walls (a maze) and should collect items, navigate to the

exit or solve a puzzle, while escaping from NPCs. Variations of Pac-Man, Crash and Side

Track (Figure 20) are samples that belong to such a sub-domain.

Figure 19 – King & Ballon (left) and other Bottom-up Shooter games

 The greatest contributions of sub-domains to a game SPL design is that they are

even more specific, leading to more expressive and effective assets, such as domain-specific

languages. If from one side sub-domains are important to reinforce commonalities previously

74

identified, from the other side they provide a new ground to look up for special variability

which was not yet taken into account.

Figure 20 – Crash, Mrs. Pac-Man and Side Track belongs to the Maze sub-domain

 For example, in spite of belonging to the aforementioned created Bottom-up Shooter

sub-domain, the game Teeter Torture (Figure 21) presents a unique concept: a seesaw plat-

form, which impacts both the main character movement as well as the game logic, introduc-

ing a more elaborated physics modeling. This can be considered a special variability for the

game’s sub-domain.

Figure 21 – Teeter Torture

 From the SPL design point-of-view, many paths can be taken once game sub-

domains are identified. A game sub-domain may be too complex or not strongly aligned to

the original domain, causing the domain analysts to rethink the SPL’s (negative) scope and

cut out from it the features that distinguish the sub-domain. On the other hand, the sub-

domain may stand out from others as an interesting challenge which would provide a better

return of investment, implying in its promotion as the new SPL domain, while all other sub-

domains now become part of the negative scope. Finally, domain analysts can decide that

the game sub-domains will coexist. In such a case, Domain Analysis turns into a recursive

75

task: the same process applied to the original SPL domain should be applied to each of the

sub-domains.

The analysis of game sub-domains, however, can turn into a challenge for some rea-

sons. First of all, it can be intriguing to classify a sample into game sub-domains. The game

Defender (Figure 22), for example, is a hybrid of collector and projectile-based game, and

would therefore fall into both possible sub-domain classifications. As a result, similarly to the

previous discussion on game genres, it can be concluded that there is not necessarily a 1-to-

1 correspondence between game samples and sub-domains.

Figure 22 – Defender: hybrid game belonging to multiple sub-domains

Conversely, sub-domains can also unfold into other more specific, “sub-sub-

domains”. As domains and sub-domains get nested into deeper levels, the Domain Analysis

effort inevitably grows. Another relevant challenge relates to when to consider a feature set

variation strong enough to justify the creation of sub-domains. The two extremes are:

 One single domain with high feature variability.

 Many sub-domains, each one with low feature variability.

Game domain analysts should find a balance between these extremes, using a mid-

term approach in which the need for sub-domains is justified by a more modularized creation

and usage of SPL assets, such as domain-specific languages and frameworks (game en-

gines).

4.3.6 Revisiting the Game SPL Domain Scope

The previous subsection presented how the Domain Analysis can identify sub-domains to

reinforce previously identified commonalities and discover special variability which was not

yet taken into account. On the other hand, it may be the case that the opposite happens, in

which a sample is considered to be out-of-scope since it does not belong to the game SPL

76

vision. Such cases are an opportunity to reinforce or adjust the negative scope of the SPL

with more concrete examples of out-of-scope expectations for core game dimensions, which

were still not clear due to blurry vision boundaries. Three interesting scenarios when revisit-

ing the game SPL domain scope follow below. They are illustrated in more details by the Ar-

cadEx case study (Chapter 5).

 Conflicting features: some analyzed game samples may be initially consid-

ered as compliant to the game SPL scope. However, further investigation

might reveal some not-so-obvious feature variability that actually conflicts with

the SPL vision. Creating sub-domains to encompass such games with special

features is not an interesting approach. A sub-domain is a specialization of the

main domain and respects the SPL vision and scope, while such samples ac-

tually present features that conflict with the SPL vision and scope. Moreover,

adding out-of-scope features to the game SPL may be dangerous, especially

if the SPL increases its scope in a way that it gets too generic, loses its specif-

ic focus and consequently provides a reduced effectiveness, while becoming

harder to maintain. A better approach would be to create other SPLs to ad-

dress the currently conflicting features. Some assets, however, can still be

shared across SPLs (Section 4.6), especially if properly modularized and pro-

vided with parameterization and customization capabilities.

 Incorporating features: on the other hand, adding an out-of-scope feature to

the SPL scope may be acceptable if the feature is actually a variation or builds

upon previous features to make them even more specific, instead of adding an

extra feature overload that would make the SPL generic. In such a case, the

game SPL scope is increased.

 Anticipating features: the identification of commonality and variability should

not be restricted to the features identified in the analyzed samples. Game do-

main experts, together with game domain analysts, may foresee innovative

features that could enhance the generated games and therefore extend the

feature model with new anticipated features, or even new anticipated sub-

domains. Therefore, besides existing applications, both future applications

(i.e., applications where the requirements are rather clear, but development

has not yet started) and potential applications (i.e., applications for which no

clear requirements exist yet, but that are seen as relevant) should be consid-

ered in the Domain Analysis. Examples include supporting additional input de-

vices in the game SPL (such as light guns, steering wheels, or even controller-

free experiences) or “warp zones” (portals through which players can “tele-

77

port” from one place or level to another). Some useful techniques can be em-

ployed for anticipating features for game domains:

o Retrospection and trend analysis [Araújo, 2009]: in such a tech-

nique, the goal is to identify the first ancestors of a given artifact (such

as a game sample or feature) and understand how they evolved along

time. From this information, it may be possible to project future trends,

new resources and functionality that can be built atop the current arti-

fact state. The high availability of game samples (for instance, due to

the “retro” branch of the game developer and player communities)

makes this technique not only valid but encouraged.

o Brainwriting: differs from brainstorming by having each participant to

think and record ideas individually, without any verbal interaction. Such

a technique is motivated by studies revealing that participants working

in isolation consistently outperformed participants working in groups,

both in quantity and quality of ideas generated [Diehl & Stroebe, 1987].

In a round table, each participant has a limited amount of time (such as

3 minutes) to write down his ideas. Then each participant passes his

sheet of paper to the participant to the left, who must come up with

three new ideas. After the idea-gathering phase is completed, the ide-

as are read, discussed and consolidated with the help of a moderator,

just like in traditional brainstorming.

o Morphologic box [Zwicky, 1948]: created by the Swiss astrophysicist

Fritz Zwicky, this technique is a systematic form of idea finding where

a solution for a problem is searched by trying out combinations from a

matrix containing solution topics (or variables) and their possible val-

ues. The matrix is called a morphologic box and the combination of its

values can result in unusual or “wild” solutions, coping with one of the

basic ingredients of creativity, essential to game development and de-

sign.

4.3.7 Testing Sample Analysis against Stop Criteria

In Domain Analysis, experience and knowledge are accumulated until it reaches a threshold.

However, understanding whether a domain is sufficiently mature to develop reusable assets

(and build a SPL upon it) is a challenge. Almeida et al. [2006] assume that such maturity “can

be initially defined by the organization; however, a better solution must be investigated”.

78

Therefore, this subsection provides some discussion and guidelines on the subject, which

are believed to span beyond game development.

As previously mentioned, the Domain Analysis process, instantiated or not to game

SPLs, should be incremental. Incremental processes, however, should count on well-defined

stop criteria, such as the completion of an artifact or the achievement of a milestone, so that

the methodology can proceed to the next phase. Of course, if the incremental process is also

iterative, the phases are also revisited, in contrast to waterfall methodologies.

 Stop criteria for a Domain Analysis iteration in SPLs can be defined beforehand, as a

consequence of the project constraints (schedule and/or resources), based either on:

 Time (“analyze as many samples as possible in timeframe X”);

 Budget (“analyze as many samples as possible within budget Y”);

 A combination of criteria;

 A pre-defined sample amount (“analyze Z samples”), which may be the result

of other project constraint function.

Independent from the project constraints above, there is an optimal number of sam-

ples which maximize the Domain Analysis results. A number of samples which is fewer than

the optimal number negatively impacts the SPL effectiveness; more samples than the optimal

number implies in wasted resources. Discovering the optimal number of samples, therefore,

is the greatest challenge to overcome.

An important indicator that can be used to empirically tell if the Domain Analysis can

stop is the domain understanding churn, i.e., how much the domain understanding chang-

es after each sample is analyzed. If, after the analysis of the latest samples, new features

and variations were identified, it means that the domain understanding is not comprehensive

enough and the analysis should continue. On the other hand, if no relevant additions to the

domain understanding happen after samples are analyzed, it can be assumed that the most

important commonalities and variability were already covered and the effort to discover new

ones, if they exist at all, may not be worth. In other words, after a certain number of itera-

tions, the analysis of new samples in the game SPL stops contributing with more information

to the domain understanding, but testifies that the already collected and classified data were

indeed accurate and comprehensive. New analyzed games just reveal patterns already reg-

istered in previous sample analysis, although the contents of each game (sprites, story, etc.)

are obviously different. At that moment, the analysis can be considered satisfactory and con-

cluded for that iteration.

79

4.3.8 Validating the Game Domain

A series of activities can be taken in parallel to ensure the analyzed domain is validated.

Such activities include discovering feature synonyms and homonyms, documenting the fea-

tures (generally taking the domain expert knowledge as input) and documenting the domain

itself. Additional details and guidance are provided by Almeida et al. [2006]. Ensuring the fea-

ture model and sub-domains are consistent with the game domain vocabulary (Section 4.3.1)

should also be included as a domain validation task.

 Nevertheless, tracing features back to requirements may be trickier to perform in the

context of game SPLs, due to the nature of digital games. As previously mentioned in Sec-

tion 4.3.2, the concept of end-users and requirements for digital games is considerably dif-

ferent from other software, since most of the language used to describe a game and its goals

is already in the solution domain, rather than approaching the problem domain, i.e., user re-

quirements. In such a case, the general guideline is to ensure that the analyzed features re-

alize and are in accordance with the game SPL vision (which can be based in Game Design

Documents, as aforementioned), while also ensuring the problem domain features which

were actually modeled (Table 4) can be traced to solution domain features.

4.3.9 Assess Game Domain Automation Potential

Domain Analysis contributes to building reusable domain assets by identifying the main con-

cepts from a domain and its scope, i.e., what will be included and what will be excluded from

the domain. From a feature model perspective, the identification of reuse opportunities

should consider the following [Almeida et al., 2006]:

 A feature model with AND-nodes at an upper level and OR-nodes at a lower

level usually indicates a high level of reuse opportunity.

 On the other hand, alternatives (i.e., OR-nodes) at the upper level usually

mean that applications in the domain do not share much commonality in terms

of services and functions provided by them. This indicates that the domain

might not have much reuse opportunity at the application level, although there

might still be opportunities for reuse at low level.

 Additionally, alternatives (OR-nodes) at a lower level indicate different ways of

designing and implementing certain reusable information.

On the other hand, Model-Driven Development (MDD) also promotes software reuse

by reducing the semantic gap between the problem domain and the solution domain, using

high-level models that shield software developers from the complexities of the underlying im-

plementation platform [France & Rumpe, 2007]. MDD also uses transformations to automati-

80

cally generate implementation assets that reflect the solution expressed in the models

[Schmidt, 2006].

MDD is a good fit to Domain Analysis as it can encapsulate the knowledge of how to

implement features, their relationships and constraints [Ledeczi et al., 2001]. However, some

parts of the domain are better candidates for MDD-based automation, when compared to

others. Identifying and prioritizing such sub-domains is a joint responsibility of the game do-

main analyst and the domain expert. Such two activities is described next.

4.3.9.1 Identify Sub-Domain Candidates for Automation

Section 4.3.5 provided some initial discussion on what to take into account when par-

titioning the game domain into sub-domains. At that time, the goal was to identify more spe-

cific sub-domains into which games could be classified more precisely. Such an activity con-

siders every game as an atomic entity that belongs, or not, to a given sub-domain.

In this activity, however, the game domain analyst should identify new sub-domains

by fragmenting the atomicity of the sub-domains previously identified in order to more deeply

explore game features and their relations. Examples of such sub-domains include the transi-

tion between game scenes or screens, the collision relationship between game entities and

the possible graphical representations of UI elements such as head-up displays and menus.

Such sub-domains alone are not comprehensive enough to define a game. On the contrary,

different features of a single game fall under such sub-domains. This will ultimately lead to

sub-domains whose automation potential, by means of MDD, can be individually and more

confidently assessed.

There is not much information in the literature regarding how MDD fits into Domain

Analysis, and not surprisingly this is as challenging for digital games development. Lucrédio

et al. [2008] present a Domain Analysis approach for model-driven Domain Engineering pro-

jects, which is generic and can be instantiated to any macro-domain. Knodel et al. [2005]

present an approach for using Model-Driven Development in Software Product Lines, called

Pulse-MDD, in which the development of transformations and modelers is tailored to the ar-

chitecture of the product line. However, in such an approach, MDD concerns arise only in

Domain Design. Deelstra et al. [2005] describe an approach for model-driven product lines

development, but do not present details on how to systematically create transformations that

lead from domain models to concrete software artifacts.

Using such related work as input, the guidelines below aim at helping in identifying

game sub-domains as automation candidates.

 Use the natural categorization of the domain [Maiden & Sutcliffe, 1996], by

means of scanning the feature model that resulted from extracting the domain

81

commonality/variability (Section 4.3.4). Lucrédio et al. [2008] mention that

closely related features are normally good candidates to pertain to a same

sub-domain, while isolated features also provide good hints.

 Rely on the knowledge of the domain expert [Lee at al., 2002] [Maiden & Sut-

cliffe, 1996] [Haddad & Tesser, 2003] in order to further break down the char-

acteristics of the game samples.

 Consider core game dimensions (Subsection 4.2.2.1) and features directly de-

rived and elicited from them as sub-domain candidates.

 Investigate how types (classes, interfaces, enumerations, etc.) are modular-

ized in sample implementations and game engines. For example, game en-

gine modules and sub-modules can provide hints on possible sub-domain

candidates.

 Investigate repetition in sample implementations [Lucrédio et al., 2008]. If

some piece of design or code repeatedly appears in a sample or across sam-

ples, even if the repetition instances are not exactly the same, it is likely that a

machine can do some parameterized copying and pasting, and it is worth to

try to find a sub-domain here. Another technique is to search for implementa-

tion or design patterns [Knodel et al., 2005].

While some of such guidelines may seem to appear too low-level and early in the

process, especially the last two, it is important to recap that the proposed “edge-center” ap-

proach is iterative, as introduced by Figure 13. As sample implementations and a reference

architecture are built from the low-level bottom layers (Domain Design and Implementation),

the current top-level discussion on identifying and prioritizing sub-domains for automation

(Domain Analysis) becomes more informed.

4.3.9.2 Prioritize Sub-Domain Candidates for Automation

Once sub-domains are identified, they can be further refined following the techniques de-

scribed in Section 4.3.4 (Analyzing Game Samples and Modeling the Game Domain) in order

to improve their accuracy and level of detail, resulting in an enriched feature model diagram.

However, the major focus of this activity is to understand the feasibility and return of invest-

ment on automating such sub-domains with Model-Driven Development. Domain analysts

should weight the following variables in order to prioritize the sub-domain candidates:

 Previous automation evidence: are there existing modeling languages and

modeling/generation tools for the sub-domain? Many times, prototyping and

click-n-play tools (Section 2.3 Click-n-Play Tools) are a good input for that, as

well as game engines and their built-in tools (Section 2.4).

82

 Integration: how easily can the modeling languages and tools (new or al-

ready existent) be plugged into the game product line? It may be necessary to

adapt languages, tools, their inputs and outputs in order for them to be com-

pliant with the envisioned target platforms (Subsection 4.2.2.3) and the prod-

uct line environment, especially game engines.

 Coverage: does the sub-domain cover a bigger amount of features when

compared to other sub-domains? If domain features were prioritized somehow

[Moon et al., 2005] [Almeida 2007], does the sub-domain cover more im-

portant features than other sub-domains?

 Development productivity: how much effort will be saved for developers if

the sub-domain is automated? This can be measured by the expected size of

the artifact (such as the number of classes and lines of code) the sub-domain

automation is supposed to generate, in average, for the developed games.

 Development abstraction: if implemented manually, how complex or error-

prone are the artifacts supposed to be generated by the sub-domain automa-

tion? Examples of artifacts with a high error-prone and complexity rates are:

o Code or configuration files that deals with too many literal values and

constants, such as using string, character or enumeration types to de-

fine a map of tiles.

o Code or configuration files that require lots of repetition but yet a few

customizations that could be missed.

o Code that requires application of design patterns.

o Code that ensures a non-functional concern (such as performance or

security) is satisfied.

This research is not aimed at providing a one-size-fits-all formula with precise weight

values for each one of the criterion above, since their relevance may vary according to the

software product line. However, we do suggest that all of such items are taken into account

in order to prioritize sub-domains for automation. A relevant point that should be emphasized

is that the prioritization is not final due to, once again, the iterative nature of the process. As

a reference architecture is evolved (next section), more is known about the low-level details

of the domain. Such a new knowledge impacts many of the criteria above, such as develop-

ment productivity and abstraction, which should be revisited.

4.4 Bridging Game Domain Analysis to Application Core Assets

Before the implementation of domain-specific languages and generators can happen,

knowledge should be gathered and compiled not only from the problem domain (top-down)

83

but also from the solution domain (bottom-up), resulting in a better understanding of the

game domain also from an implementation (source code) perspective.

 According to the Domain Engineering literature [Neighbors, 1980] [Czarnecki &

Eisenecker, 2000] [Almeida 2007], the activities presented in this section and Section 4.5 be-

long to the Domain Design and Domain Implementation phases. Their definitions follow be-

low:

 The goal of Domain Design is to produce a domain-specific architecture, de-

fining its main elements and their interconnections [Bosch, 2000]. Focused on

supporting commonality and variability to improve reuse, the designed archi-

tecture must not only predict the variation points, but also effectively provide

the required support for their implementation [Bass et al., 2003]. In the ideal

scenario, features defined in the feature model can be used to parameterize

domain architectures and components [Almeida et al., 2006], making compo-

nents to be developed almost free of design decisions by putting the features

in the components as instantiation parameters.

 Domain Implementation is aimed at providing the detailed design, implemen-

tation and documentation of reusable software assets, based on the domain-

specific software architecture [Almeida, 2007]. The Domain Implementation

provisions and packages two types of assets [Lenz & Wienands, 2006]: appli-

cation core assets (such as components, frameworks and prototypical applica-

tions) are building blocks for product line members, while development core

assets (such as domain-specific languages and automated guidance) are in-

tegrated into a highly customized development environment to provide guid-

ance, automation and abstraction to the product development.

The iterative “edge-center” nature of the proposed approach requires highlighting,

customizing or introducing new Domain Design and Domain Implementation activities that

directly relate to the Domain Analysis activities previously presented. Therefore, although this

section and Section 4.5 have no ambition to define a comprehensive and systematic process

for Game Domain Design nor Game Domain Implementation, they continue and complement

the Domain Analysis discussion carried out so far, now in the design and implementation

spaces, in order to culminate with the realization of application core assets for game product

lines.

4.4.1 Toward a Domain-Specific Game Architecture

Some Game Domain Analysis activities, focused on analyzing the game domain and espe-

cially on the identification of sub-domain candidates for automation, touch lower-level con-

84

cepts such as development productivity and abstraction. That characterizes a transition from

the top-down Domain Analysis to the bottom-up construction of a Domain-Specific Game Ar-

chitecture.

According to Tracz [1995], a Domain-Specific Software Architecture (DSSA) is de-

fined as an assemblage of software components, specialized for a particular type of task

(domain), generalized for effective use across that domain, composed in a standardized

structure effective for building successful applications. Gomaa [2005] states that developing

a product line architecture is the most promising approach for architecture reuse, since it ex-

plicitly captures the commonality and variability in the family of systems that constitutes the

product line. It is out of the scope of this research to define guidelines and processes of how

to create a DSSA, as other works already address the particularities of DSSA design [Al-

meida, 2007]. This work does have interest, however, in how a DSSA for game domains can

be conceived in order to support Model-Driven Development.

From experience in game development projects and based on the state-of-the-art de-

sign and implementation techniques of the game industry, we argue that a Domain-Specific

Game Architecture (or just “reference game architecture”) should be built from the composi-

tion and adaptation of game engine(s) chosen and/or used for the game domain. In other

words, game engines are the heart of a Domain-Specific Game Architecture. Reusable game

components (Section 4.4.3 Creating Reusable Game Components) complement game en-

gines in order to compose the final reference game architecture.

As opposed to the reference architecture proposed by Folmer [2007] for digital

games, this research believes that there is no one-size-fits-all game architecture. In other

words, reference game architectures have to be built, although not from scratch, for their tar-

get (sub)domains. If the game SPL aims at multiple platforms (e.g., console and PC), lan-

guages (e.g., C# and Objective-C), APIs (e.g., XNA and DirectX) or other variations in the

target runtime environment, then there is a good chance that different game engines will be

consumed by the generated games, therefore more than one domain-specific game architec-

ture can emerge as a result. This may add a considerable complexity to the SPL, since its

assets (especially code generators) will have to take such target platform variations into ac-

count.

The reference game architecture is also built from analyzing, refactoring and abstract-

ing sample implementations in the game domain. Ideally, the sample implementations must

cover examples of all possible common and variable aspects of the domain. Guidelines for

that are provided by Lucrédio, Fortes, Furtado et al. [2009]. Typically, organizations that in-

tend to establish game product lines have already implemented game instances in the past.

Such instances may have already been consuming game engines, or otherwise were devel-

85

oped using one-off development processes with little or no reuse at all. In the latter case, the

domain architect has to refactor the commonalities of the game instances toward creating (or

reusing) a game engine. Game engine design and implementation is already discussed in

the literature [Madeira, 2003] [Rocha, 2003] [Rollings & Morris, 2000] [Fan et al., 1996],

therefore it is also out of the scope of this research.

If no sample implementations are available, the organization should employ a reactive

approach [Krueger, 2001] for the game SPL, in which the SPL assets (including game en-

gines and the final reference game architecture) are gradually built and incremented as do-

main instances are developed. Starter kits such as the XNA ones28 are also a good resource,

especially because they already encapsulate common knowledge from previously imple-

mented instances, leaving only the customization part to game developers.

4.4.2 Promoting Game Engines to Domain Frameworks

In the first iterations, the Domain-Specific Game Architecture, which is based on game en-

gines, very likely does not provide yet a seamless interface through which sub-domains’ au-

tomation can be implemented or plugged-in. For instance, Dobbe [2007] had to add a better

extensibility support and an event-driven paradigm to his Cannibal Game Engine before he

was able to integrate it with his proprietary DSL.

In fact, the Domain-Specific Development literature [Cook et al., 2007] argues that

mandatory sub-domain features identified during Domain Analysis should be encapsulated in

a reusable component, which is called a domain framework, i.e., a framework created spe-

cifically for the domain. The domain framework is consumed by artifacts generated from dia-

grams used to model the variability of the sub-domain features. Lucrédio [2009] mention that

most Domain Engineering approaches do not give enough attention to the process of design-

ing an architecture that is well suited for MDD, but rely on the identification of variability as

described in terms of features instead. As a result, this research suggests that game domain

analysts and architects should primarily focus on promoting game engines (and their encom-

passing reference game architecture) into a reusable domain framework, instead of imple-

menting other types of components or APIs.

Nevertheless, in the context of MDD and code generation, there are no guarantees

that a game engine interface is in a suitable state to be easily consumed by generated code,

as illustrated in Figure 23. An adapter layer is typically required to complement the game en-

gine, in order to make it to be more easily consumed by generated code. As a result, this

moves complexity away from code generators, which turns out to be extremely important

28
 http://creators.xna.com/en-US/education/starterkits/

86

since code generators are typically more difficult to maintain than a framework. In summary,

the adapter layer promotes the game engine to a domain framework.

Figure 23 – Promoting game engines to domain frameworks

Turning a game engine into a SPL asset, however, may not be a straightforward task.

Independent on whether the game SPL designers decide for implementing a game engine

from scratch for the SPL or for promoting an already existing one to a domain framework, the

following high-level questions arise and should be taken into account:

 Does the domain framework support the variability space of the game do-

main? According to Bass et al. [2003], the designed architecture must allow

the construction of applications by predicting the existence of variation points

and effectively supporting its implementation.

 Is the domain framework suitable for framework completion? In other words,

the game engine should expose an interface which is expressive and concise

enough so that code that consumes (configures) it can be easily generated by

Model-Driven Development techniques (Figure 24). The goal here is to avoid

complex code generators by providing more configurable and parameterizable

domain frameworks.

 Does the domain framework support custom developer-added code, which is

then combined and compiled with the SPL-generated code? This is important

since the features of digital games typically present a high variability, which

can be hard to express in models but could still be provided by the developer

as an extension to the SPL.

 Can more specific frameworks be built atop the domain framework? This can

provide more productivity and abstraction to the generation of features belong-

ing to more specific sub-domains.

 Can the domain framework be integrated or even composed with other do-

main frameworks? This enables the common product code to have multiple

configuration points, each one approached by a distinct model (for example,

87

one model for screen transition, other for entity state machine manipulation,

other for physics modeling, etc.).

Figure 24 – Framework completion

In the lower (implementation) level, promoting game engines to domain frameworks

involves refining the design of game engines in order to decompose them into well-defined

modules [Parnas, 1972] [Almeida, 2007]. Game engines are already modular by definition,

however further module decomposition might be necessary to provide a better mapping to

sub-domain candidates for automation. Similarly, the interface of game engines might be re-

fined in order to provide “variability hooks”, which can be more easily consumed by generat-

ed code. Anastasopoulos & Gacek [2001] describe multiple variability techniques. Refactor-

ing game samples into a common yet customizable reference game architecture gives hints

on the contexts where a technique fits better than others. For example, parameterization is a

straightforward technique and can be used to configure simple properties of the domain such

as the screen resolution. Inheritance is a great mechanism to make the generated code to

specialize more abstract concepts, such as entities and screens, defined in the domain

framework. Conditional compilation whose flags’ values are generated by models can be

used to enable or disable behaviors that belong to a related context (e.g., compilation for

console vs. compilation for PC) but are scattered across the source code. Other techniques

include aggregation/delegation, overloading, properties, dynamic class loading, static librar-

ies, dynamic link libraries, frames, reflection, aspect-oriented programming and design pat-

terns.

Regardless of the approach used to promote the game engine(s) to a domain frame-

work, some domain framework validation should be performed. In such a task, the sample

88

implementations should be updated in order to make them to consume the game engine,

now promoted to a domain framework. Hence, such sample implementations now become

reference implementations. Ideally, but constrained by the available resources, a repre-

sentative set of games containing the sub-domain features should be implemented using the

promoted game engine. If the game engine as a domain framework provides a smooth

framework completion experience to implement the games, then it is suitable for the domain.

On the other hand, a possible outcome of such a validation task is to refine the adapter layer

so that more confidence is acquired on casting the game engine as a domain framework.

A game engine can also come with supporting tools or even a more complete devel-

opment kit. Hence, the Domain Design and Implementation phases should also take such

tools into account, in order to evaluate if they can also be incorporated as SPL assets and

integrated into the game SPL schema. Finally, since the whole Domain Engineering process

is iterative, the requirements for the domain framework and its Domain Design can be further

refined in subsequent iterations. On this topic, we suggest the use of the Attribute-Driven De-

sign (ADD) method [Bass et al., 2003], which promotes the successive refinement of the do-

main in two dimensions:

 From common to variable points: first, only the common points are considered

in the design. Next, at each iteration, a variation point is included in the de-

sign;

 From module to sub-module: in this dimension, the domain framework is suc-

cessively divided in modules and sub-modules, until a satisfactory level of de-

tails is obtained.

At each refinement iteration, the domain architect and domain implementer should

create new or refine previous reference implementations in order to validate the game engine

as a domain framework.

4.4.3 Creating Reusable Game Components

While game engines are the heart of a Domain-Specific Game Architecture, they are not the

only implementation mechanism to realize Domain-Specific Game Development. Some func-

tionalities of the domain may require more fine-grained implementation artifacts, which are

not built-in elements of the game engine. That can be realized by reusable game compo-

nents, which can co-exist with (and hopefully be pluggable into) game engines, toward es-

tablishing an enriched and more comprehensive domain framework.

Sametinger [1997] defines reusable software components as “self-contained, clearly

identifiable artifacts that describe and/or perform specific functions and have clear interfaces,

appropriate documentation and a defined reuse status.” The typical definition of component-

89

based development involves the selection of components from an in-house library or the

marketplace to build products [Nascimento, 2008]. Although the products in Software Product

Lines certainly are composed of components, these components are all specified by the

product line architecture. Moreover, the components are assembled in a prescribed way,

which includes exercising built-in variability mechanisms in the components to put them in

use in specific products.

A game component provides support for a well-defined (and many times simple)

game-related task or behavior. It can belong to a horizontal domain, such as an on-screen

keyboard (Figure 25), or a vertical domain, such as a bi-dimensional radar for arcade games

or a 3D camera movement behavior for first-person shooters, such as the “CNN camera

view” feature that is launched when a main character is running in a first-person shooter

game like Gears of War. Having a visual representation is not required for a game compo-

nent. For instance, a game component can be a special timer or a more refined collision de-

tection algorithm that can be applied to two entities.

Figure 25 – On-screen keyboard is a reusable game component

Conceiving reusable game components for a game product line arises from the need

of satisfying the automation of a sub-domain that otherwise cannot be mapped to a game

engine. Game components complement or provide a higher level of abstraction to functionali-

ties provided by game engines. In short, reusable game components can fill in the gaps

when game engines are not able to provide the desired automation for a sub-domain. To-

gether, both contribute to promote the Domain-Specific Game Architecture (game engine +

components + adapters) into a domain framework, therefore compliant with Model-Driven

Development.

Once a game engine and reusable game components are properly combined toward

the first version of the domain framework, the design and implementation of development

90

core assets, such as domain-specific languages, can finally start. DSLs, especially visual

ones, are key to the process of sub-domain automation since they improve the way in which

the domain framework is configured. Via the DSL’s code generator, a model (visual DSL dia-

gram) is transformed into the code (or a XML file) that consumes and configures the domain

framework. Figure 26 is an updated version of Figure 24, explicitly calling out that since the

domain framework is composed by multiple artifacts (game engines and reusable game

components), it can be configured from multiple sources.

Figure 26 – Game domain framework configured from multiple sources

Figure 26 also reveals that the final reference architecture must be prepared for the

existence of multiple sub-domains and possibly multiple DSLs. Lucrédio [2009] suggests the

definition of a single meta-model for multiple sub-domains, and then the development of dif-

ferent concrete syntaxes for each one of them, so that they can integrate well but still have

different views. We actually consider that if the sub-domains are too distinct, an alternative

consists in the creation of one meta-model per DSL, so that each sub-domain is approached

in a more modular and concise way. Such an alternative might also be more viable to enable

the reuse of a DSL across SPLs (Section 4.6). Finally, the resulting DSLs can always be em-

powered with cross-DSL integration, allowing concepts in a language to transcend to other

DSLs.

4.5 Bridging Game Domain Analysis to Development Core Assets

Application core assets, such as game engines and reusable game components, are building

blocks that become part of the final products generated by the factory. On the other hand,

development core assets, such as DSLs and generators, are those which contribute to the

91

product line pipeline in order to aid the development process, being integrated into a highly

customized development environment to provide guidance, automation and abstraction to

the product development.

DSLs are capable of extending the variability space not covered by most Domain

Analysis approaches (such as feature modeling [Kang et al., 1990]), and at the same time

serve as input to a generator or product configurator. However, DSL development is consid-

ered a science itself [Czarnecki & Eisenecker, 2000], given its complexity. Besides, it is not a

very predictable process, as it requires a high degree of creativity [Völter, 2003]. We believe

that the “edge-center” approach presented in this research contributes to tackle both chal-

lenges, complexity and creativity. At a given iteration, the sub-domain with the highest priority

is chosen and mapped against the reference architecture. The type of variability for such

domain is identified, ranging from routine configuration to creative construction. Such variabil-

ity assessment on the reference architecture and on the feature knowledge enables the do-

main and language experts to conceive DSLs and generators for the chosen sub-domain,

finalizing one iteration. Next iterations, based on other feature sets, can not only lead to new

DSLs and generators, but also modify the ones conceived by previous iterations, as well as

realize cross-subdomain relationships.

The steps described in the following subsections are suggested to realize the design

and implementation of domain-specific languages based on the proposed edge-center ap-

proach. Some of such steps were defined in a joint research partnership [Lucrédio, Fortes,

Furtado et al., 2009]. The discussion is instantiated to the digital games development domain

when applicable.

4.5.1 Characterizing Sub-domain Variability

Depending on the range of variation required by a sub-domain and supported by the imple-

mentation, the structure of a DSL can be more simple or complex. The spectrum ranges from

routine configuration (where simpler, tree-like DSLs, such as wizards or feature-based con-

figuration, are used to select a subset of features when configuring a product) to creative

construction (where complex, graph-like DSLs, such as programs and models, are created

using textual or visual languages) [Völter & Groher, 2007] [Czarnecki, 2005]. This spectrum

is illustrated by Figure 27.

For each sub-domain, a choice between routine configuration and creative construc-

tion (or somewhere in between) must be done, so that a proper DSL and its corresponding

transformations can be implemented. In order to situate each sub-domain within the variabil-

ity spectrum, the domain expert’s role is very important, but some techniques can help. One

of them is to look for feature configurations that do not change between existing appli-

92

cations. If a feature represents a variation point, its configuration must change in some way

when different applications vary in that point. For example, if a game is played in full screen

mode, and a second game is played in windowed mode, the feature configuration for these

applications will be different. This indicates that the variability can be represented as fea-

tures. However, if two applications differ at some point, but the features configurations that

describe that point are the same, this might indicate that there is some variability that cannot

be represented as features, and maybe a DSL is needed.

Figure 27 – Variability spectrum: from routine configuration to creative construction

Alternatively, SPL designers can look for state machines. Many sub-domains can be

represented as state machines, such as the screens of a game or a game entity’s behavior

(for instance, walking  running  jumping  flying). If this is the case, this sub-domain will

probably require a DSL (state machine) for its variability. Likewise, hierarchical and con-

tainment structures should also be sought after. Part-of relationships are commonly present

in a domain. Although they can be normally represented in the feature model, some part-of

relationships may require extra information. A classic example is the contents of a game

screen. Although a feature mode can associate a screen with entity instances, heads-up dis-

plays and other elements, it does not capture all the information such as the location of such

elements, their sizes, colors, and associated events. In such cases, a dedicated DSL is

probably needed.

The output of this activity is a characterization of the variability type that is inherent to

each sub-domain. Most importantly, this activity identifies which sub-domains will require a

dedicated DSL.

4.5.2 Deciding upon MDD Development

For some mature sub-domains, languages and/or tools may already exist. For example, in a

first-person shooter domain, tools for modeling tridimensional scenarios (game maps) and

93

saving their definitions in standard formats, to be consumed by game engines, can already

be available. Other sub-domains may count on already existing languages, but no tools or

code generators. In the worst case, there may not be anything at all. In this activity, the goal

is to identify which sub-domains require further development in terms of DSL and transfor-

mations, and how such a MDD support should look like.

For each sub-domain, the existing languages and tools are analyzed. The goals of

this task are twofold. First, to checking whether there are any available tools that could be

reused, even if that involves some adaptation as it was already discussed in Section 4.4.2 for

game engines. Second, to gather knowledge on the state-of-the art tools and usability for

tasks related to the sub-domain (for example, creating a game entity animation from a set of

pictures). Such a knowledge can be leveraged when creating the DSL concrete syntax (Sec-

tion 4.5.3.2) and implementing IDE integration (Section 4.5.5), toward providing a better de-

veloper experience to game developers.

Languages and tools can be analyzed using human-computer interaction techniques

such as task analysis [Preece et al., 1994]. A task analysis is formally defined as a detailed

description of the goals an end-user should reach when using a system, as well as the activi-

ties and tasks required to fulfill such goals, with the intention to create a user experience that

is the most intuitive and requires a minimum amount of assumptions and interactions. Task

analyses should be observed from a real end-user experience, preferably from experts on

the domain and on the tools under analysis.

In the sub-domains where variability is characterized as simple routine configuration,

a feature modeling tool or a product configurator, such as Pure::Consul [Beuche & Spinczyk,

2003], may be sufficient to represent the variability and to perform some code generation and

configuration. However, domain and language experts might face some technical limitations

on such tools, such as their lack of integration with a code generation engine. For such cas-

es, a new DSL for feature-based variability may be needed. For the other types of variability,

characterized as creative construction, a DSL and code generators will probably be needed.

4.5.3 Defining DSLs and Supporting Assets

Depending on the type of the variability for each sub-domain, its DSL(s) will be more or less

complex. In simpler routine configuration cases, the DSL may be composed of symbols that

represent individual features, in order to indicate their presence/absence. Czarnecki et al.

[2004] propose a method to derive a context-free grammar for a feature model. This method

can be used to create a DSL that is capable of describing all kinds of variability that fits into a

feature model. A parser generator or a DSL workbench can be used to easily create the lan-

guage support, thus providing the necessary tools.

94

 In more complex, open-ended variability cases, the DSL must define which concepts

can be used, how they can relate to each other, and possible constraints that may exist. This

can be done exclusively through a top-down approach. However, the DSL must also be able

to produce models that serve as input to transformations and generators, what requires many

details that are specific to the platform and chosen architecture. Thus, the bottom-up activi-

ties of the proposed approach is used to refine the initial DSL.

 A DSL may be textual (programs) or visual (diagrams), and is normally composed of

three elements: the abstract syntax, which defines the domain concepts, their relations and

constraints; the concrete syntax, which provides a system (such as textual or graphical sym-

bols) to represent the domain concepts in a concrete form; and the semantics, which defines

the meaning of the language elements. This activity deals with the development of the ab-

stract and concrete syntaxes, as well as a modeler that can be used to create instances

(programs or diagrams) of that DSL.

In textual DSLs, the abstract and concrete syntaxes are normally represented as

grammars and lexical rules. In visual DSLs, the abstract syntax corresponds to a meta-model

[Guizzardi et al., 2002], while the concrete syntax corresponds to the visual aspect of the el-

ements, normally using figures, icons, lines, arrows, among other notations. In order to cor-

rectly represent its variability, a sub-domain may require a system of concepts (abstract and

concrete syntaxes) that is totally different from feature modeling, possibly requiring also a

more complex modeler. But the feature model, even not being enough to identify DSL con-

cepts [Tolvanen & Kelly, 2005], can serve as a starting point [Czarnecki, 2005], being later

complemented with information from other artifacts, such as the domain architecture and ex-

perts’ knowledge. The following subsections present four sub-steps are suggested in order to

realize this activity.

4.5.3.1 Design the DSL Abstract Syntax

For visual domain-specific languages, the elements of an abstract syntax, such as concepts,

relationships (including roles, cardinality, etc.), attributes and others, are typically structured

as graph or tree, designed in a meta-modeling language. Examples of meta-modeling lan-

guages are the GOPRR (Graph Object Property Relationship and Role) language [Tolvanen,

1998] and the Microsoft DSL Tools meta-modeling language [Cook et al., 2007]. Kelly & Tol-

vanen [2008] suggests multiple sources for eliciting modeling concepts that will result in the

elements of the DSL abstract syntax. Those include the (description of the) system family

architecture, existing products and their features and manuals, available specifications, pat-

tern catalogs, target environment and interfaces (libraries, frameworks, interfaces, etc.) and

source code itself.

95

 The most representative features of the sub-domain will start shaping the DSL’s ab-

stract syntax (the meta-model). For example, in a screen flow sub-domain, it is expected that

screens and transitions (or links) are part of the initial syntax. Following that, features should

be further analyzed to determine how they relate to each other and if additional DSL con-

cepts are needed. Sub-features can be mapped to their own concepts, with additional “part-

of” relations being used to represent the containment, or to properties of the containing con-

cept, becoming meta-attributes in a meta-model. Concept attributes may require special do-

main types, rather than traditional “built-in” types such as integer and string. For example,

optional and “or” sub-features [Lee et al., 2002] may be mapped as domain enumerations.

On the other hand, a property can belong to custom types such as Point and Size. Related

features may be connected by a new concept that describes the relation, the cardinalities,

the participating concepts and their roles in the relation. Feature dependency analysis [Lee &

Kang, 2004] may be used to identify such relations initially, but new ones may appear after-

wards.

 When a concept can be specialized by child concepts, which is commonly the case

when the concept is derived from a feature with multiple OR alternatives, it is wise to include

a “custom” child concept as one of the specialization options. Such custom concept contrib-

utes to the game SPL’s flexibility by introducing an extensibility hook to the modeling lan-

guages, which enable developers to provide their own, custom implementation for the con-

cept. The custom child concept typically has a method name as a property, or other means to

associate it with a programming element that implements it. For example, the “screen transi-

tion trigger” concept can be specialized by child concepts such as a timer timeout, an entity

position that was reached, an input button that was pressed or a custom action programmed

by the game developer.

 Sensible defaults should be provided for the concept properties (e.g., in platform

games the scrolling direction property of a screen can be set to “Right” as default, while in

bottom-up shooters “Up” makes more sense for its default value). The end goal is to capture

the most common values for such properties and save time from DSL users, which will need

to change the property values only for the less common scenarios. Likewise, some pro-

gramming concepts, such as constants and variables, may be useful as DSLs concepts as

well. For example, a DSL for defining game entities may enable developers to specify a con-

stant value for the maximum amount of hit points (health) an entity can have. Once such a

constant is exposed in the models, it can be referenced by other DSLs and model elements,

such as event reactions (e.g., a health potion was collected by the main character), reducing

the amount of literal values in the models and hence the duplicated work required to update

them.

96

 Some guidelines based on experience are also useful to evaluate the meta-model.

For instance, two concepts of same DSL should not present a too similar list of properties.

Otherwise, this is an indication that the concepts can be merged or a common, base concept

can be introduced to refactor the similar properties of the specialized (child) concepts. More-

over, if too similar relationships (with the same cardinality, source or target concepts, roles,

and/or properties) can be observed across the DSL concepts, this might be an indication that

a common, base relationship can be introduced, or that once again the concepts belonging

to the similar relationships may be merged or abstracted into a parent concept. Finally, if the

abstract concepts tree of a visual DSL is too deep (i.e., it has too many levels from the root

DSL concept to a concept leaf node), this might be an indication that the sub-domains were

not properly partitioned. An abstract tree with more than three levels is not only difficult to

manage but will also present challenges related to mapping the deeper concepts to the ele-

ments in the DSL’s concrete syntax.

4.5.3.2 Define the DSL Concrete Syntax

This sub-step is not very difficult to derive. Features that are mapped to domain concepts

may be represented as blocks. Pre-defined images can be used instead if they provide a

richer representation for the feature. Vector graphics should be used when symbols need to

be scaled Kelly & Tolvanen [2008]. More complex graphical representations can be used ac-

cording to the nature of the sub-domain. For example, DSLs for sub-domains resembling ac-

tivity diagrams, with roles and steps, can use “swim lanes” in order to graphically represent

their features. Feature relationships may be represented as lines, which can vary in thick-

ness, color and style (dotted, dashed, continuous, etc.).

 Sub-features that can be mapped into boolean values may be represented as decora-

tors in graphical shapes (such as an icon in front of a geometric shape) or in lines (such as a

diamond on either end). On the other hand, sub-features that can be mapped to string values

may be represented as textual decorators, such as a text inside the block or over a line. Kelly

& Tolvanen [2008] mention that rectangular shapes are a better option when showing text is

required, when compared to shapes such as ellipses, clouds, triangles, etc. If the sub-feature

represent a lists of items, it may be mapped in the concrete syntax to compartments in blocks

(such as UML attributes and methods, for example).

 The “sensible defaults” defined for concepts and their properties should be respected

and encouraged by the DSL’s concrete syntax. Kelly & Tolvanen [2008] suggests additional

guidance on the concrete syntax of a visual DSL, such as: show only relevant data and hide

the details with techniques such as filters and property sheets, leverage scaffolding (hints

and tips that stop being offered as users acquire experience), leverage colors, do no abuse

97

from especial effects such as shading, inspect corporate documentation standards to provide

a consistent look-and-feel and consult with graphic designers if needed.

4.5.3.3 Manage Cross-DSL Integration

The need for cross-DSL integration arises when dealing with multiple, yet related sub-

domains. Cross-DSL integration must be managed so that the developer can specify models

in both languages using related concepts. For example, the concept of a game entity can be

used by a DSL that defines collision between entities as well as by another DSL that links

entity properties (such as number of lives and hit points) to elements of a heads-up display

(HUD).

Cross-DSL integration can be achieved through name-based references or model

bridges [Warmer & Kleppe, 2006], because they are simple to implement:

 Name references consist of a simple String attribute, in the referencing DSL,

which points to the name of an element in the referenced DSL. Type and con-

sistency checking has to be dealt with manually.

 Model bridges are not much more powerful, consisting of a proxy element in

the referencing DSL that is an exact copy of an element in the referenced

DSL. Type checking can be automated, but consistency checking still has to

be performed manually.

Another possibility is to use a “model bus”. Such a solution provides a client-server in-

frastructure in which DSLs (clients) can register their shared (cross-DSL) concepts in a bus

(the server), as well as consume concepts from the bus. A more powerful solution is present-

ed by Hessellund et al., who propose the use of Prolog rules to establish inter-DSL relations

[Hessellund et al., 2007], allowing higher order queries and facilitating consistency checking.

4.5.3.4 Build Domain-specific Modeler

As pointed out in Chapter 3, language workbenches contrast the early days of domain-

specific modeling, where no tools were available to create domain-specific languages and

support modeling with them in a cost effective manner [Tolvanen, 2005]. They make it easy

to build tools that match the best of modern IDEs and make language oriented programming

much easier to build and support, lowering the barriers that have made language oriented

programming so awkward for so many.

 Once the abstract and concrete syntaxes are defined, language workbenches are the

technology of choice for implementing the domain-specific modeler, because they require

little knowledge on language engineering to rapidly produce practical results. Examples in-

clude the Microsoft DSL Tools [Cook et al., 2007], MetaEdit+ [Metacase, 2009], GMF and

98

openArchitectureWare, among others. However, more complex DSLs may require a more

active participation of language experts.

Again, the “sensible defaults” defined for concepts and their properties should be re-

spected and encouraged, this time by the DSL’s modeler. For example, if the instances of a

game domain always contain a start screen and a game over screen, then whenever a new

diagram is created for modeling the game flow, it should include such screens by default as a

starting point.

4.5.4 Developing Transformations and Refining DSLs

The output of the previous activities is one or more DSLs that allow developers to represent

the different types of variability in each identified sub-domain, from simpler feature-based to

more complex, open-ended variability. But the DSLs are not finished yet, since very likely

there are still additional details that need to be included before they are suitable for being

used with automated transformations. This is where the bottom-up aspect of the approach

comes in hand again.

 Design by-example techniques [Varró, 2006], [Wimmer et al., 2007], [Robbes & Lan-

za, 2008] can be used to produce transformations and possibly refine the initial DSLs. In-

stead of defining model-to-text transformations directly, the transformation expert starts with

an example of how the generated code must look like, and then generalizes it to make it ap-

plicable in other contexts. This reduces the overhead by allowing the transformation expert to

work on concrete instances of the problem, which is easier than having to figure out the de-

tails from a higher perspective [Robbes & Lanza, 2008].

 The game sample implementations and their resulting reference architecture, which

combines game engines and reusable game components toward a domain framework (Sec-

tions 4.4.2 and 4.4.3), are vital inputs for this activity. The transformation expert should inves-

tigate mappings from elements in the domain framework code to elements in the DSLs of the

domain. During this inspection, he may discover new information that needs to be included in

the original DSLs before they can be used as inputs to the transformations (for example, a

game screen may introduce details like the start position of the main character). If this is the

case, the domain implementer has to refine the DSLs (abstract and/or concrete syntaxes and

associated tools) to include this new information. He may also realize that some modification

or refactoring is needed in the reference implementation, in order to better support the varia-

bility. This can be done in parallel, avoiding the introduction of inconsistencies with other as-

sets.

99

 To find out DSL mappings to the reference architecture and implementations, we

suggest identifying variability in the source code first. Differences in reference implementa-

tions can be a hint that variability is happening:

 Addition of new functionality: inclusion of new components, classes, func-

tions, data structures or pieces of code. For example, a class is created for

every game entity, or a new “if” branch is added to the Activity method of a

screen class whenever a transition rule to other screen is introduced.

 Removal of functionality: removal of components, classes, functions, data

structures or pieces of code. For example, code that sets the bounding box of

a game entity is removed if the entity will not be colliding with any other.

 Functionality substitution: substitution of components, classes, functions,

data structures or pieces of code. For example, code to set the size of the

game window is replaced by code that runs the game in full screen mode.

 Platform/environment: when the inclusion of a variant requires modifications

in the platform or execution environment. For example, if a game supports the

concept of high-scores, then a persistent storage such as a database, the file

system or even the cloud (web) should be enabled.

 Once the DSL is refined, then the domain implementer produces a template-based

code generator [Czarnecki et al, 2002], by migrating the code from the reference implemen-

tation to templates, annotating it with tags [Muszynski, 2005] and scriptlets that bind the code

to the DSL. Techniques for code generation, like intermediate model-to-model transfor-

mations and patterns for code generation, can be used to produce better generators [Völter,

2003] [Völter & Bettin, 2004]. The annotated templates are responsible for implementing the

variability logic, outputting the correct piece of code depending on the variants specified in

the DSL. The use of DSL workbenches can greatly help the transformation expert. The result

is a set of transformations that produce code that correctly implements the variability as

specified in one or more DSLs.

Code generators are also responsible for the good quality of generated code, output-

ting code with documentation, using good names for identifiers, generating the correct inden-

tation, and ensuring the generated code adheres to the required organizational standards,

such as rules enforced by code analysis tools like StyleCop and FxCop. If such good quali-

ties are already present in the reference implementation, then the template-based approach

presented above should be able to keep them. Special care should be taken when generat-

ing identifiers (class names, method names, etc.) from the domain concept names entered

by the game developer. For instance, the generators should filter out invalid characters (such

100

as spaces), ensure consistent casing is used across the board (lower vs. upper case), and so

on.

Similarly, the code generator should keep and comply with the best Software Engi-

neering practices (hopefully) employed in the Domain-Specific Game Architecture, such as

modularization and reuse. The generated code should by no means allow violations of the

model premises.

 Generation scripts are many times hard to maintain due to different reasons, such as

lack of tool support, scriptlet code interleaved with actual output game code and cross-

language integration. This way, it is strongly recommended that the generators are designed

to be as much light-weight and simple as possible, avoiding the generation of unnecessary

code. Whenever possible, implementation complexities that arise from sub-domain variability

should be refactored to the domain framework (game engine + reusable game components +

adapters) and exposed in an easy way to be consumed by generators. Similarly, domain

constraints are easier to implement as semantic validators targeted at the models, instead of

the generated code. This discussion is typically revisited in future iterations of the Promoting

Game Engines to Domain Frameworks step (Section 4.4.2).

Another challenge arises when the templates are ready, but changes are necessary.

In such a case, the templates and the reference implementations should be kept consistent.

This can happen either by changing the reference implementations first and propagating

changes to the templates, or changing the templates first and replacing the reference imple-

mentations by regenerating them from the templates.

Some open-ended variability may be considered to be too complex to be covered by

MDD assets. In such a case, the generated code should ensure that it supports extensibility

mechanisms, such as partial classes or event handling, to allow developers to further cus-

tomize and complement the generated code. The employment of the double-derived design

pattern [Cook et al., 2007] helps to achieve such a goal. In such a pattern, instead of a single

class, two classes are generated for a given domain concept. The base class contains all of

the generated method definitions as virtual functions; the derived class contains no method

definitions but is the one that is instantiated, which allows the user, in a partial class, to over-

ride any of the generated functions with their own version. The same techniques previously

explored for supporting variability, such as inheritance, parameterization, overloading and

others [Anastasopoulos & Gacek, 2001] can also be employed for extensibility purposes.

Most importantly, the chosen technique should enable unexpected variability to be imple-

mented in a non-intrusive way, i.e., developers are not required to modify the generated code

at all. Similarly, the code generation process should not modify, delete or otherwise lose any

work on the hand-written code or code generated by other DSLs.

101

When extending the generated code with manually added code, game developers

typically program a behavior that is not provided as built-in by the game SPL. However, de-

velopers may want sometimes to call built-in behaviors from their extensions as well. For ex-

ample, in a custom reaction for an entity timer event, developers may want to play a sound

effect that depends on the entity’s current state. Although switching on the current entity

state is not a built-in behavior and requires custom code, playing sound effects might be

supported as built-in by the game SPL. In order to call a built-in task in their manual code,

such as playing a sound effect, developers should be able to easily reproduce the generated

code approach for accomplishing the same task. In other words, the generated code should

be as simple as possible, consuming the domain framework’s interface in a concise way,

without any “plumbing” and in the same intuitive way that developers are expected to do. For

that to happen, game SPL designers may need again to move complexity away from genera-

tors to the domain framework, therefore enabling developers’ manual code to be consistent

with generated code, improving the extensibility experience.

4.5.5 Designing and Implementing IDE Integration

With the growing academic and industrial interest in Software Product Lines (SPL), one area

demanding special attention is tool support development, which is a pre-requisite for wide-

spread SPL practices adoption [Calheiros et al., 2007]. The true potential of a SPL can only

be achieved if it integrates all modeling experiences into the same environment where other

development tasks, such as coding and debugging, are performed.

Many language workbenches have the added benefit of already being hosted in an

IDE (Integrated Development Environment). For example, the Microsoft DSL Tools [Cook et

al., 2007] is integrated into the Visual Studio IDE, while other language workbenches are im-

plemented as plug-ins to the Eclipse IDE. If no IDE integration is provided by default, we rec-

ommend that this goal is pursued by the integration expert.

 The following integration areas are highlighted as being vital to provide an improved

developer experience in the context of a SPL:

 Project and build system: an IDE project template defines a preliminary set

of items for a new software project, such as starting files (classes, configura-

tion files, etc.), default references to third-party libraries (such as .NET as-

semblies or Java .jar packages) and outputs (binary libraries, executables,

etc.). They can be customizable and collect parameters from the developers

through wizards or dialogs before being “unfolded”. When using a game SPL,

game developers should count on project templates. In the context of MDD,

project templates should also include default instances of DSL diagrams,

102

which can already contain some information (concepts and relationships) as a

starting state. Game SPL designers should also ensure that tasks such as

compiling, linking, debugging and launching transformations can be done from

within the IDE. Finally, special attention should be given to IDE operations

such as renaming files and adding new resources (textures, sound assets,

etc.), which may cause the modeling experience to become out of sync, espe-

cially in a cross-language environment. Some DSL workbenches and IDE ob-

ject models provide “rules” that are triggered by such operations and to which

developers can plug event handlers.

 Custom property editors: editing the properties of a DSL concept can be as

simple as entering a string value. Many times, however, the values of a prop-

erty might belong to a more complex type, or a simple type whose values are

constrained, such as the buttons of a controller. In such cases, custom proper-

ty editors should be provided for developers in order to guide them in specify-

ing a property value. Those editors, typically linked from the IDE property grid,

range from drop-down lists (“comboboxes”) containing a set of possible values

to more complex, GUI-based dialogs or wizards that present a richer graphical

experience. An example for the latter case is a dialog presenting a tile-based

world map, allowing the developer to select a tile (or map position) in which a

game event should happen.

 Semantic validators: the developer experience can be dramatically improved

if validation rules are defined and implemented for the domain-specific lan-

guages. Semantic validators can be defined to catch semantic errors at mod-

eling-time, therefore guiding the diagram modeler (developer) on the creation

of DSL instances [Cook et al., 2007]. For instance, a semantic validator can

enforce that all game screens are reachable, or that the behavior of a game

entity, modeled through a visual DSL, has a default starting behavior (state)

always defined. Errors and warning found by the validators can be integrated

into the IDE, being presented, for instance, in the same toolbars or tool win-

dows responsible for showing compilation errors.

 Contextual automated guidance: as introduced in Section 3.5, contextual

automated guidance are IDE extensions that empower product developers

with suggestions on what activities to perform in a particular context, such as

the automatic display of context-specific help, tutorials or checklists to guide

product development and problem solving tasks. For example, when adding a

custom event trigger to a game, developers can press the F1 key to make the

103

IDE show examples of custom triggers, code templates and concerns that

they must be aware of. If developers want to, they can order the insertion of a

custom trigger code template into the code under development. In the context

of MDD and SPLs, contextual automated guidance can help with configuring

feature models and complex tasks such as when creating DSLs diagrams or

manually completing generated code. Technologies such as GMF’s dash-

board, openArchitectureWare’s recipes and Microsoft’s Guidance Automation

Toolkit (GAT) are implementation possibilities for contextual automate guid-

ance.

4.6 A Note on Cross-SPL Game Assets

Some “horizontal” game SPL assets can be re-used in other product lines. For example, the

same domain-specific language used to model screen transition may be applied to an arcade

game SPL as well as an adventure game SPL. Designing cross-factory assets, however, re-

quire the use of best practices such as making the asset flexible, extensible and configurable

across game macro-domains, whose effort may not be worth. For example, instead of going

through the complexity of making an arcade heads-up display graphical component to be

compliant with a RPG heads-up display (which is definitively more elaborated), it may be

wiser for game SPL designers to have specific components for each one of such domains.

4.7 Application Engineering

All the activities described so far belong to Domain Engineering, which is focused on analyz-

ing systems in a domain and creating reference architectures and reusable components

based on the analysis results. Application Engineering, on the other hand, is concerned on

creating applications reusing these SPL assets, defining a product development process that

guides the development of products through a software factory or product line. In the context

of a game SPL, such a process should be defined by the game SPL designers in order to

enable SPL users (game developers and designers) to fully exploit the capabilities of the

SPL in the creation of digital games. Defining an Application Engineering process is out of

the scope of this research. However, some pointers are presented below in order to provide

more context to the proposed approach

 Traditional product development processes start with requirement analysis. In the

context of game SPLs, this actually translates into configuring the feature model for a specific

game instance, besides entailing experimentation and prototyping activities that will shape

unique characteristics for the instance. Breyer [2008] synthesizes a list of heuristics used to

104

evaluate game prototypes according to different variables such as interface, gameplay, nar-

rative and game mechanic.

 Following, a Game Design document should be instantiated for the game under de-

velopment. Customizing the game domain vision (Section 4.2) for the specific game under

development is a possibility. This task also contemplates other specific game development

activities such as elaborating game characters, level design, sound concept, art concept and

planning the publishing channels for the game. Personas, scenarios and immersion tech-

niques can also be explored [Neves et al., 2008].

 The software design and implementation should leverage the Domain-Specific Game

Architecture (domain framework) and its customization by means of DSL diagrams, which will

be used as input to generators. IDE integration, such as contextual automated guidance,

play an important role in ensuring the game SPL assets are used effectively.

 It is very important to continuously improve the game SPL assets and keep them ver-

sioned [Lenz & Wienands, 2006]. The feedback cycle, which is a combination of application

development and the SPL’s review and assessment, is key to evolve the product lines as-

sets. This process of extracting knowledge from application development experience, also

called mining or harvesting, is illustrated in Figure 28. Game SPL assets that should be tar-

geted by the feedback process include the SPL scope, architecture, tooling and the applica-

tion development process itself.

Figure 28 – Retrofitting feedback from developed games into the game SPL

 Backward and forward compatibility is an important concern when evolving a game

SPL. Not rarely, refined versions of the DSLs can break existing model instances. For such

scenarios, we suggest that migration tools are developed in order to assist game developers

and designers to move their models to the new versions of the DSLs.

 As a final note, Araujo [2006] defines a game application process with roles, phases,

activities, guidance and workflows. Although his focus is on casual games, much of his dis-

cussion can be scaled to digital games development in general.

105

4.8 Chapter Summary

After discussing the peculiarities of digital games when compared to the software in general,

this chapter outlined an approach for Domain-Specific Game Development. Its focus is on

activities that are relevant to Model-Driven Development in the context of digital games de-

velopment, toward the creation of application and development core assets in a game SPL,

such as domain-specific languages and generators.

 The approach’s activities were presented in four major groups. First, we discussed

how game domains can be envisioned, having as major motivations the lack of precision and

agreement on game genres, the desire to better bootstrap the domain scoping process and

the need to have an upfront baseline for ensuring that the game domain’s features and sam-

ples to be analyzed fit into the domain scope.

 Next, guidance on analyzing game domain samples was presented, aimed at making

the game SPL vision more concrete by identifying domain commonality and variability, as

well as documenting them through feature models. Special implications of Domain Analysis

due to the nature of digital games, such as experimenting and exploring game domain fea-

tures, were discussed.

 The relevance of identifying and prioritizing sub-domains for automation through

Model-Driven Development was also presented. Following that, the Domain Analysis activi-

ties were bridged to the design and implementation of development core assets, in which

game engines play a major role toward the creation of a domain framework. Then, the design

and implementation of application core assets (such as domain-specific languages and gen-

erators) from the prioritized sub-domains was discussed. Comments were also provided for

cross-SPL game assets and Application Engineering.

 With Domain-Specific Game Development approach described, we switch our focus

to evaluating its effectiveness. Chapter 5 discusses how such a task was accomplished, in-

cluding evaluation techniques such as case studies and a controlled experiment, as well as

the obtained results.

106

107

5. EVALUATION

This chapter presents the methodology employed to evaluate the suitability and effectiveness

of the proposed Domain-Specific Game Development approach in the development of digital

games, along with the obtained results. Its goal is to gather evidence on whether the ap-

proach can bridge the Game Domain Analysis to the development of core domain assets

which are more streamlined and effective to the digital games development domain.

 We employed a three-step evaluation process for our approach, detailed in the next

sections. Section 5.1 investigates what are the good properties of domain-specific develop-

ment and DSLs, the most relevant deliverables of the proposed approach. We openly evalu-

ate whether and how the approach takes such properties into account.

 Furthermore, we have been continuously developing a set of case studies with the

proposed approach, whose purposes are twofold: exploratory and confirmatory [Easterbrook

et al., 2007]. Section 5.2 presents exploratory case studies, typically used to drive the inves-

tigations that derive hypothesis and build theories. Section 5.3 presents a confirmatory case

study, typically used to test existing theories.

 Finally, taking into account that the major weakness of case studies is that the data

collection and analysis is more open to interpretation and researcher bias, Section 5.4 de-

scribes the steps executed for an experimental study, such as its definition, design, instru-

mentation, threats, operation and analysis, which gathered very relevant data and feedback

from software engineers in the industry on the proposed approach. The experiment is fo-

cused on measuring the benefits of an outcome of employing the approach (i.e., a game SPL

instance) rather than the approach itself, which would be an order of magnitude more costly

to evaluate, even empirically. Finally, Section 5.5 summarizes this chapter.

5.1 What Makes Good Domain-Specific Development Assets?

Several papers can be found on the advantages and disadvantages of domain-specific lan-

guages and related assets [van Deursen & Klint, 1998]. Section 3.4, for instance, presented

a discussion on the many of the benefits (and drawbacks) of using a DSL, compiled from

multiple sources. However, although such benefits are a consequence of properly designing

and employing domain-specific development, it is not straightforward to directly infer from

them what a “good” DSL or generator is constituted of.

 Based on the multiple sources of the domain-specific development and SPL literature

used throughout this research, interviews with some experienced domain-specific developers

who work on leading tools in the area and on our personal experience, we compiled a list of

the desirable characteristics (not necessarily metrics) of domain-specific development as-

108

sets. We then evaluated whether such good characteristics, or properties, are enforced or

encouraged by the proposed Domain-Specific Game Development approach. The possible

evaluation outcomes are High (following the process predictably results in the characteristic),

Medium (following the process likely, but not certainly, results in the characteristic) or Low

(there is no indication that following the process results in the characteristic). The result is

presented in Table 6.

Despite of being informal, such an evaluation was very useful to identify points of

strength and weakness of the proposed approach. For instance, while the promotion of game

engines to domain frameworks aids many concerns related to code generation, it is clear that

the approach lacks more details on areas such as testability and model-to-model transfor-

mation. The evaluation also establishes an important baseline upon which enhancements of

the approach can be prioritized. In fact, we recommend that such “good properties” of Do-

main-Specific Development assets are taken into account in the very beginning of the crea-

tion of Domain Engineering processes, even for specific domains other than game develop-

ment.

5.2 Exploratory Case Studies

A set of exploratory case studies was developed by Computer Science undergraduate stu-

dents, under our guidance, in order to aid the investigations that shaped the proposed Do-

main-Specific Game Development approach and provide some “early and often” evaluation

to it.

 The Commander Assembler game SPL [Marques de Almeida, 2008] employed the

approach toward the creation of Tactical Role-Playing Games (TRPGs), a domain that incor-

porates elements of traditional role-playing games and strategy games. The author of this

game SPL justified the creation of a custom game engine from scratch by the lack of broadly

available TRPG engines. The Commander Assembler game engine was then implemented

as a domain framework and is consumed by a DSL used to model maps and entities of

TRPGs (Figure 29). The screenshot of a TRPG sample generated by Command Assembler

is presented in Figure 30.

 Elegy [Azevedo et al., 2009] is a game SPL aimed at a broader set of RPG games. It

has multiple languages and assets (Figure 31) for modeling RPG entities, maps, quests and

other concepts. The domain framework consumed by the generated artifacts is the XNA’s

RPG Start Kit29. Figure 32 presents the screenshot of a sample game developed with the El-

egy SPL.

29
 http://creators.xna.com/en-US/starterkit/roleplayinggame

109

Table 6 – Evaluation against desirable properties of domain-specific development assets

Desirable property of Domain-Specific

Development assets
Approach evaluation against the property

Reuse of existing standards to avoid

reinventing the wheel.

High. This is enforced by Domain Analysis tasks that

are concerned with understanding the state-of-the-art in

the domain, as well as DSL creation tasks that explore

already existing automation evidence.

Early and often validation from end-users.

Medium. Although end-users are involved by multiple

tasks, the approach does not detail user-centered tasks

related to early validation and deeper interaction with

them, especially for user interfaces.

Model partioning capabilities, for the sake

of editing and processing scalability.

Low. Although some of the assets used in the ap-

proach handle such a concern, model partitioning ca-

pabilities are not mentioned as part of the process.

Asset evolution without breaking editors,

processors and existing models.

Medium. Some rough notes are provided for backward

and forward compatibility of the generated assets, but

the approach lacks more details on those.

Powerful yet scoped (well-defined)

expressiveness, representing a clear

separation of concerns: only one aspect of

the domain per DSL.

High. Enforced by the sub-domain breakdown and the

iterative nature of the edge-center process.

Intuitive DSL notation that matches the

domain concepts.

High. The solution domain is taken into account by

multiple tasks of the process (vocabulary definition,

feature modeling, etc.). Special concern is given to

avoid DSLs and generators from becoming just an al-

ternative representation of the source code.

Concise DSL syntax (limited concept tree

depth, no duplication of concepts and

relationships, sensible defaults)

High. Enforced by tasks related to the creation of the

DSL syntax and its domain-specific modeler.

Strictly defined cross-DSL connection

points, which are limited in number and

dependencies.

Medium. The approach suggests cross-DSL tech-

niques such as model bridges and model buses, but

lacks details. Guidelines for coming up with and limiting

connection points are not presented.

110

Desirable property of Domain-Specific

Development assets (cont.)
Approach evaluation against the property

Model-to-model transformations to

transform models into others and move

complexity away from code generators.

Low. Model-to-model transformations are superficially

mentioned, but not covered by the proposed approach.

Constraints to validate models with

different severity levels (e.g., warnings,

errors), which can be checked in the

process workflow as early as possible.

High. Covered by tasks related to creating semantic

validators.

Model library provided for reuse.
High. Covered by tasks related to promoting game en-

gines to domain frameworks.

Transfer of complexity away from code

generators.

High. Covered by tasks related to promoting game en-

gines to domain frameworks and the creation of code

generators.

Good quality of generated code (e.g.,

documentation, good names for identifiers,

correct indentation, adherence to the

required standards, best Software

Engineering practices).

High. Covered by the tasks related to the creation of

code generators and a Domain-Specific Game Archi-

tecture prior to the creation of code generators.

Code generation that does not allow

violation of the model premises.

High. Covered by the tasks related to the creation of

code generators.

No monolithic code generation: partitions

and viewpoints can be processed

separately and on-demand, one by one.

Low. Although the sub-domain breakdown avoids

monolithic code generation, individually processing par-

titions and viewpoints on-demand is not explored.

Clear separation between generated and

hand-written (extension) code.

High. Covered by tasks related to the creation of code

generators and extensibility hooks for the game SPL.

Guidance or control of the developer efforts

in complementing generated code with

hand-written code.

High. Covered by tasks related to extensibility hooks

and IDE integration.

Teamwork support such as versioning,

tagging, branching, locking, comparing,

merging and daily build.

Low. Such concerns were left out of the scope of the

proposed approach.

Testability (e.g., unit tests to validate the

generated code, test models that

consumes all features of the language).

Low. Such concerns were left out of the scope of the

proposed approach.

111

Figure 29 – Main DSL of the Commander Assembler game SPL

Figure 30 – Sample game developed with the Commander Assembler game SPL

112

Figure 31 – Assets of the Elegy game SPL

Figure 32 – Sample game developed with the Elegy game SPL

Marinho [2010] partially employed the proposed approach to the creation of a game

SPL targeted at multi-touch games. As a result, the author conceived a DSL entitled Gesture

Aggregation Language (GAL). Such a DSL generates code targeted at Apple’s Gesture Rec-

113

ognizers API30, promoted to a domain framework through the “GAL Framework” adapter lay-

er. Since GAL is a textual DSL (Figure 33), the author had to customize some of the pro-

posed Domain-Specific Game Development activities in order to design and implement the

DSL. Finally, in order to evaluate GAL, the author used an approach based on implementing

and analyzing new versions of already existing games, such as the Undead Attack! Pinball

game, presented in Figure 34.

Figure 33 – Sample code written in the Gesture Aggregation Language DSL

Figure 34 – Sample game re-implemented with the Gesture Aggregation Language

30
http://developer.apple.com/library/ios/#documentation/EventHandling/Conceptual/EventHandlingiPho

neOS/GestureRecognizers/GestureRecognizers.html

114

In a parallel yet overlapping work, Araujo [2009] used some of the concepts present-

ed in this research toward creating a casual games factory, entitled Play4Fun. His focus was

not on domain-specific languages and frameworks, but on a detailed process for casual

games development with roles, responsibilities, workflows, disciplines, phases, activities and

work products.

5.2.1 SharpLudus Adventure Revisited

The SharpLudus Adventure game SPL [Furtado, 2006], developed as a spike solution for this

research, can be considered as an early instance of the proposed Domain-Specific Game

Development approach and provided a considerable amount of exploratory and evaluation

data as well. This subsection revisits such a SPL with the goal of providing some retrospec-

tion on which of the original guidelines are still valid as proposed and which were improved to

increase their efficiency and/or applicability.

SharpLudus Adventure was targeted at creating 2D adventure games, with rooms

filled with enemies and items that had to be explored by a main character. SharpLudus’ main

deliverable was the SharpLudus Game Modeling Language (SLGML), presented in Figure

35, whose generated code consumed a custom engine developed on the top of a managed

version of Microsoft’s DirectX. A sample game developed with the SharpLudus Adventure

SPL is presented in Figure 36.

Figure 35 – SharpLudus Game Modeling Language (SLGML)

115

Figure 36 – Ultimate Berzerk adventure game, created with SharpLudus Adventure

 Thinking in retrospect, many lessons were learned in the journey from the original

SharpLudus Adventure project to the current Domain-Specific Game Development approach.

From one hand, the original assumption that DSLs are underexplored in the context of the

digital games development domain still seems to be true. In the lack of better metrics, game

samples originally developed with SharpLudus reported the generation of dozens of classes

and thousands of source lines of code after a couple of hours of modeling experience. As it

will be described in the next session, the Domain-Specific Game Development approach re-

sults are also encouraging, reporting a more than five times faster development than ap-

proaches employing only game engines.

On the other hand, the original SharpLudus project and the current approach diverge

in some relevant points. Obviously, the main difference is that while SharpLudus was an in-

stance of a game SPL, Domain-Specific Game Development defines guidelines for the crea-

tion of game SPLs, being a more comprehensive and mature approach whose foundations

were built from Domain Engineering and other software reuse concepts.

Already concerned with the problems entailed by the ambiguity of game genres,

SharpLudus suggested that the target game domain had to be described by means of a

“product line definition”. The current approach evolved the concept by requiring the game

SPL to be described by means of the expectations of core game dimensions, which are nei-

ther overly generic nor specific to a game domain (Subsection 4.2.2.1). Nonetheless, a more

important difference is how such assets are used once created. While the product line defini-

tion (together with the domain vocabulary) was used by SharpLudus as a direct input to DSL

116

design, in Domain-Specific Game Development the core game dimension expectations, to-

gether with other assets such as the identified non-emotional requirements for the domain,

end up as input for the creation of feature models. Such intermediate step makes the identifi-

cation of the commonality and variability of the domain much more evident, and is key to

identify and prioritize sub-domains, leading to more expressive and effective DSLs and gen-

erators. In fact, SharpLudus lacked a more structured Domain Analysis phase in which

guidelines are provided for the selection and analysis of game samples.

Probably one of the most notable evolutions from SharpLudus to the current ap-

proach is the sub-domain breakdown employed by the latter. Although the SharpLudus

Game Modeling Language (SLGML) is a domain-specific language, thinking in retrospect we

concluded it is not atomic enough, but a bit bloated. It encompasses too many concepts that,

despite of being related, could have been explored by SPLs in a much more effective way if

separated. In short, SharpLudus lacks more specific, atomic yet integrated languages.

For instance, SLGML encompasses the concepts of audio, entities, events and game

flow altogether. Having all of them in the same modeling canvas would provide a confusing

user experience. As a result, the core of SLGML’s concrete syntax focused on only one of

such concepts: game flow (Figure 35). In other words, the modeling experience covered only

a subset of the domain. The management of other concepts such as entities and events was

performed in normal lists and dialogs (Figure 37), launched as custom property editors as-

signed to the properties of the domain’s root concept (the “adventure game”).

 We believe this approach is not optimal. To start with, custom dialogs and lists built

from standard UI controls do not typically provide the desired level of abstraction for a specif-

ic domain. In such an approach, the concrete syntax of the domain concepts gets mixed with

concepts of the user interface API domain, such as buttons and list boxes. Likewise, in such

an approach game developers and designers are more likely to deal with instances of the

concepts in isolation, as Figure 37 shows: the entities of the game are described one by one

in the list box, but interesting relationships between them, such as whether anything happens

if they collide, are not described. The aforementioned problems can be mitigated by the crea-

tion of custom, refined UI controls. However, such a task may require a considerable amount

of effort. In fact, the excessive creation of custom UI controls for modeling purposes seems

to be a duplicated effort, considering that this is supposed to be the role of language work-

benches (toolset through which DSLs and generators can be effectively implemented)

[Fowler, 2005]. Finally, having all instances of a concept to be described in the same list may

decrease the overall cohesion of the models. This was observed at least in two opportunities

in SharpLudus. First, all animations of a game were defined together in the same list, but

each set of animations was used only by a specific game entity, i.e., the sets had no relation

117

to each other. Hence, it makes more sense to have them managed from their respective enti-

ty instead of together. Second, game events were defined in a same list, but their triggers

actually came from multiple sources (entity collision, screen timer, player input, etc.). Hence,

the modeling experience could have been improved and made more cohesive if each event

was managed from the source concept that triggers it.

Figure 37 – SLGML concepts, managed through lists and dialogs

Learning from this experience, Domain-Specific Game Development advocates that

the target game SPL domain should be broken down into atomic sub-domains. Examples of

such sub-domains are the transition between game scenes or screens, entity or screen tim-

ers responsible for triggering events, the collision relationship between game entities and the

possible graphical representations of menus and heads-up displays. Such sub-domains are

too atomic to comprehensively define a game by themselves. On the contrary, the different

features of a game fall under such atomic sub-domains, i.e., the game is the sum of the fea-

tures distributed in the sub-domains.

118

As the target game SPL domain is broken down in sub-domains, the approach’s

edge-center spiral (Figure 13) focuses on addressing one prioritized sub-domain at a time.

The sub-domain chosen for a given iteration has its feature model detailed, is mapped

against existing source code from samples, has corresponding modules implemented in the

domain-specific game architecture to support its commonality and variability, and ultimately

leads to the creation of very specific, atomic DSLs and generators.

The Domain-Specific Game Development approach also provides guidance on how

to characterize the variability of a sub-domain, which will determine the concrete syntax of its

DSL(s). As previously mentioned in Chapter 4, the variability ranges from routine configura-

tion to creative construction (Subsection 4.5.1). Similarly, techniques for developing trans-

formations are more detailed in Domain-Specific Game Development, which elaborates how

template-based code generators can be achieved by migrating source code from the refer-

ence implementation to templates, annotating it with tags and scriptlets that bind the code to

the DSL.

As a result of the sub-domain breakdown, some benefits can be observed, such as

more expressive DSLs and generators, since each is responsible for a well-defined subset

of the target SPL domain. The most important entities of the target SPL domain end up being

represented as first-class concepts in DSLs, instead of lower-level abstractions based on lists

and UI controls, as it happened in SharpLudus Adventure. Second, it allows an incremental

delivery of value: even if the first version of a game SPL automates only one sub-domain,

delivering a single DSL and generator, game designers and developers can already start

harvesting the benefits from it. Finally, each sub-domain is evaluated for its automation po-

tential, providing more confidence to ensure the sub-domains with the best return on

investment are the ones prioritized for automation.

On the other hand, the sub-domain breakdown may require cross-DSL integration,

which has a lot of challenges on its own. For instance, while it is quite straightforward to con-

sume one class from another in the source code level, it is not similarly simple to make one

DSL to access the concepts of another DSL, as well as ensuring the references are always in

sync. While cross-DSL integration is not a topic approached by SharpLudus, Domain-

Specific Game Development provides some guidance on how that can be achieved, explor-

ing the concepts of name-based references, model bridges and model buses.

Some SharpLudus contributions to the development core assets area still apply to the

current approach, such as the creation of semantic validators so that DSL users can catch

modeling errors in design time. Another contribution that remains valid is the guidance for

game SPL designers to choose a language workbench [Fowler, 2005].

119

In the application core assets area, both SharpLudus and Domain-Specific Game De-

velopment advocated for using game engines, state-of-the-art resources in game develop-

ment, as a central piece of the Domain-Specific Game Architecture. However, the current

approach brings an important improvement: promoting the game engine(s) to a domain

framework which can be seamlessly consumed by generated code and therefore is able to

move complexity away from code generators. This turns out to be extremely important since

code generators are typically more difficult to maintain than a framework.

SharpLudus already had concerns related to making the generated games flexible

and extensible enough so that the built-in SPL features could be complemented with custom,

developer-added features as a result of creative processes in the domain. It suggested the

double-derived design pattern [Cook et al., 2007] to be employed, along with more variability

techniques and extensibility channels to the domain framework [Anastasopoulos & Gacek,

2001]. Such guidelines remain applicable to Domain-Specific Game Development.

5.3 Confirmatory Case Study: The ArcadEx Game SPL

While the aforementioned exploratory case studies provided an ad hoc, yet useful evaluation

on what parts of the proposed approach were the most effective and what others had to be

improved, we also developed a confirmatory case study. Its goal was to more comprehen-

sively employ and evaluate the proposed Domain-Specific Game Development approach, as

well as to become a reference game SPL for practitioners who intend to reproduce it31. Such

a game SPL was entitled ArcadEx and the relevant details of its development are presented

in the next subsections. It was developed by one software engineer and took around 8 man-

days from inception to completion.

5.3.1 ArcadEx Domain Envisioning

The game domain vision for ArcadEx is presented in Table 7. Following the guidelines in

Section 4.2 (Envisioning the Game Domain), its vision is able to clearly communicate the ex-

pectations for its generated products (games), by means of the core game dimensions. Alt-

hough such a vision is not enough to determine how every single possible generated product

may look like, it provides a comprehensive high-level overview of what is expected from the

SPL, and it does not solely depend on a specific game genre. At the same time, it provides a

baseline for starting a more refined domain scoping.

 The motivation behind ArcadEx’s domain is twofold: it represents a popular and well-

known subset of the universe of digital games, yet not too complex, therefore being a feasi-

31
 The assets of this game SPL can be downloaded at http://sharpludus.codeplex.com

120

ble alternative for case studies and experiments with limited resources. Although some de-

sired event triggers and reactions were identified, the Event core game dimension was ex-

plicitly recognized as needing more input from the Domain Analysis process. This exemplifies

the fact that the resulting set of expectations should not necessarily be final or totally accu-

rate. Additionally, the analyzed samples will not take into account the Networking core di-

mension, since ArcadEx will not offer built-in support for adding connectivity to its generated

games, as noticed in the negative scope. Finally, custom core dimensions were not included

for this case study, but could be explored in future versions of ArcadEx. We envisioned that

End-User Customization could be a custom dimension, enabling players (not to be confused

with developers) to customize the generated games. For instance, by using a visual assis-

tant, players would be able to edit the appearance of their main characters or provide their

own sound effects and background music to the game.

Table 7 – Domain Vision for the ArcadEx SPL

ArcadEx - Domain Vision

Vision Statement: The ArcadEx SPL will be focused on generating single or multiplayer bi-

dimensional arcade games for PC, with short levels composed by screens containing entities and

surrounding walls, quick play action (in contrast to more in-depth gameplay or stronger storylines),

simple, easy to grasp controllers, iconic characters and eventually rapidly increasing difficulty. Play-

ers control main characters who, or whose projectiles, collide with other entities such as non-player

characters (NPC) or items. Victory condition is specified by the game designer as (a set of) game

events: enemies are defeated, a score is reached, etc.

Target Platforms: PC (Windows)

Core Dimensions Expectations

Dimension Expectation

Player
Single player or local multiplayer, up to four players, which can play simultaneously
or in turns. Each player has his/her own score.

Graphics
Bi-dimensional (2D) world. Background scrolling is supported. Heads-up Displays
(HUDs) based on progress bars, text, icons or radars can be used to display game,
player or entity properties, such as score, number of remaining hit points or timers.

Flow
ArcadEx games are composed by a series of screens. A screen can display infor-
mation or host actual game action. A screen can lead to one or more screens and
be reached from one or more screens. A starting screen should always be defined.

Entities

Each player controls one or more main characters. Other entity types are items and
non-player characters (NPCs). Entity attributes include position, velocity, direction
and rotation. Animations (superposition of images at a given frame rate) are sup-
ported.

Events
Events include: entities can be created or destroyed, collision detection, screen
transition and changing an entity attribute value. Other events to be defined and
refined by domain-analysis.

121

Core Dimensions Expectations (Continued)

Dimension Expectation

Input Keyboard and/or Xbox 360 gamepad controller.

Audio
Sound effects are supported as event reactions; background music can be associ-
ated with game screens and can be played in loop.

Physics
Collision detection, bouncing, velocity and acceleration. Screens contain blocking
walls.

Artificial
Intelligence

Primitive AI concepts such as chasing a main character are expected.

Networking ArcadEx games are standalone. All data and play modes are locally constrained.

Negative Scope

Dimension Negative Expectation

Player
Player scores are not stored across game sessions. No high-score concept is sup-
ported as built-in.

Physics
There will not be built-in support for elaborated physics models, such as fluids and
friction. Platforms will not be supported.

Audio
Audio in ArcadEx will be as simple as playing background music and sound effects,
without any built-in support to add special effect such as echo, 3D sound, etc.

Graphics

Some arcade games explore isometric (2D ½) or even 3D views. ArcadEx games,
however, will stick to bi-dimensional games, typically viewed from above. No built-in
support is provided for UI controls, such as menus, textboxes or drop-down lists.

Networking There is no built-in support for any kind of network connectivity.

5.3.2 ArcadEx’s Domain Analysis

About 30 games were selected for ArcadEx’s Domain Analysis, such as Pac-Man, Space

Invaders, Asteroids, Defender, Geometry Wars, 1942, Missile Command and Rally-X, among

others. Since many of the most successful arcade games were firstly (and sometimes only)

made available in arcade cabinets, also known as arcade machines or “coin-op” (coin-

operated machines), some of the consulted sources included the International Arcade Muse-

um32 (the world’s largest museum of the art, inventions, and history of the amusement and

coin-operated machine industries) and its video-game division, KLOV33 (“Killer List of Video-

games”), which has created an authoritative database on coin-operated video-games.

Other domain sources included specialized websites (such as The Dot Eaters34 and

the Arcade History database35), the Wikipedia list of arcade games36, specialized magazines,

32
 http://www.arcade-museum.com

33
 http://www.klov.com

34
 http://www.thedoteaters.com

35
 http://www.arcade-history.com/index.php?page=database

36
 http://en.wikipedia.org/wiki/List_of_video_arcade_games

122

social networking communities focused on the subject and specialized events, such as the

California Extreme37, which is USA’s largest show of classic (and playable) coin-op video-

games. The history of arcade games was also studied and brought some interesting insights

[Discovery, 2007]. Since some of the analyzed samples are as old as information technology

itself (dating from the 60s and 70s), emulator tools were employed to enable a better explora-

tion of some of the games and classifying them as belonging or not to the domain. The final

list of game samples selected to be analyzed included games which are representative,

unique and whose importance to the domain were (sometimes worldwide) recognized by the

industry. Many of them were re-released in popular remakes [Kent, 1996].

Due to the simpler nature of the ArcadEx SPL domain (encompassing arcade and

casual samples) it took less than a couple hours to analyze each domain game. However,

more complex domains might require more efforts, since they encompass more complex

products which demand more time to have its features properly understood and studied. For

instance, the aforementioned Elegy case study for role-playing games (Section 5.2), pointed

out that some RPG games required almost 30 analysis hours per game [Azevedo et al.,

2009].

 The proposed Domain-Specific Game Development approach turned out to be very

useful for discarding samples, filtering out conflicting features and refining the SPL scope.

The expectations set for ArcadEx’s core game dimensions avoided resources and effort to be

spent on the analysis of games and features that do not actually belong to the SPL scope,

hence aided the Game Domain Analysis to keep focus and stay on track. For instance, the

games BattleZone and Star Wars for the Atari system (Figure 38) are considered to be some

of the most successful coin-op arcade games ever. Game SPLs solely based on game gen-

res would be misguided to include them as samples to be analyzed. However, the Domain-

Specific Game Development approach made it evident that the popular concept of “arcade

games” is much broader than the actual scope of the ArcadEx SPL. As an outcome, the ex-

pectations set for the ArcadEx’s core game dimensions promptly identified that the first-

person gameplay and the 3D camera view of BattleZone and Star Wars are out of scope, no

matter how such games are informally classified.

The ArcadEx game SPL also initially considered the games Paperboy and Pole Posi-

tion (Figure 39) for Domain Analysis. Nevertheless, the employment of the proposed ap-

proach revealed that the isometric scrolling action of Paperboy presented challenges beyond

the ArcadEx’s scope. The same happened for Pole Position, whose camera view, differenti-

37
 http://www.caextreme.org

123

ated gameplay and collision detection mechanisms imply in unsupported built-in variability for

the ArcadEx SPL. Both games were also discarded from Game Domain Analysis.

Figure 38 – BattleZone and Star Wars, by Atari

Figure 39 – Paperboy and Pole Position: also out-of-scope

Other samples that fall into this case are Gauntlet and Airlock (Figure 40). Airlock

contains characteristics of platform games, such as surfaces on which the main character

run, elevators, and gravity. On the other hand, Gauntlet contains more refined adventure and

RPG elements, such as special characters, each one with specific skills (Warrior, Wizard, Elf

and Valkyrie), item inventory, potions, doors, keys, rooms and teleporters. Adding Airlock or

Gauntlet to the ArcadEx’s Domain Analysis process would be troublesome, since this would

result in many new features that conflict with the original scope and contribute to turn the

SPL into a more generic one. The gravity system and more elaborated physics of Moon Pa-

trol, Donkey Kong and Joust (Figure 41) made such games to be discarded from Domain

Analysis for the same reasons.

Following the proposed approach, we concluded that creating sub-domains to en-

compass such games with special features would not be an interesting approach. A sub-

124

domain is a specialization of the main domain and respects the SPL vision and scope, while

the above games present features that conflict with them. Adding conflicting features to the

SPL later on may be dangerous, especially if the game SPL increases its scope in a way that

it gets too generic, loses its specific focus and consequently provides a reduced effective-

ness, while becoming harder to maintain. A better approach would be to create other SPLs to

address the conflicting features, such as SPLs specifically for platform and racing games.

Figure 40 – Airlock and Gauntlet better belong to other game SPLs

Figure 41 – Moon Patrol, Donkey Kong and Joust: false positive ArcadEx game samples

 In the first iteration, the features identified by the Game Domain Analysis were a di-

rect outcome of the core dimensions defined in Table 7: Player, Graphics, Flow, Entities,

Events, Input, Audio, Physics and Artificial Intelligence. Features were then refined after iter-

ations and we eventually came up with a feature model with almost 150 features to describe

the domain’s commonality and variability, which is detailed in Appendix A. Such a feature

modeling work was carried out in parallel with other activities, as sub-domains were identi-

fied, refined and had their potential assessed for automation, resulting in DSLs and genera-

tors. The achieved feature model is not only an outcome of the analyzed game samples, but

also takes into account possible “future features” as suggested by the approach. It is worth

noticing that the feature model is by no means final, as it can be enhanced with the analysis

125

of new samples and the envisioning of additional future features (e.g., adding multiple scroll-

ing layers to a screen background).

 In order to assess whether enough information was minimally collected from the

samples and to determine whether Domain Analysis could stop, we employed the suggested

“domain understanding churn” approach, i.e., we continuously measured how much the do-

main understanding was changing after each sample was analyzed.

 Initially, the churn was very high, indicating that the analysis should continue. For ex-

ample, the entity movement analyzed in the first game samples was continuous, i.e., we as-

sumed an entity position was the result of a velocity function in the world space. However,

games such as Frogger and Tapper (Figure 42) revealed this is not always the case: entity

movement can be based on tiles or restricted to specific world (screen) regions. In other

words, entities in such a special case move through specific positions in the game back-

ground, never being able to stop between them. Tapper also reveals that enemies can, simi-

larly, appear from a set of pre-defined locations, albeit randomly.

Figure 42 – Frogger and Tapper: new movement variability

Another example relates to the games Time Pilot and Bosconian (Figure 43), which

broke some background scrolling assumptions of the ArcadEx SPL. In those games, even

though the game world is bigger than the game screen, the screen camera is fixed in the

player’s ship. When the player asks the ship to move left, actually all the scenario and ene-

mies move right and the ship always remains in the center of the screen.

In a given moment, however, the inclusion of new samples in the ArcadEx SPL Do-

main Analysis was not adding more information to the domain understanding, but only attest-

ing that the already collected and classified data were indeed accurate and comprehensive.

126

New analyzed games such as Sea Quest, Asteroids (including sequels) and River-Raid

(Figure 44) reveled patterns which were already registered in previous game evaluation rec-

ords, although the contents of each game (sprites, story, etc.) were obviously different. At

that moment, the Domain Analysis was considered satisfactory and concluded, but still open

to future iterations based on the need to more deeply analyze sub-domains.

Figure 43 – Time Pilot and Bosconian: new scrolling variability

Figure 44 – Sea Quest, Asteroids and River-Raid: no new variability

As the ArcadEx feature model was refined, it already revealed some reuse opportuni-

ties. Almeida et al. [2006] mentions that a feature model with AND-nodes at an upper level

and OR-nodes at a lower level usually indicates a high level of reuse opportunity. This seems

to be the case of ArcadEx: in the upper-level many AND-nodes can be observed (e.g., the

Entity feature has a role AND a shape AND collision targets AND a movement type AND

other sub-features), while OR-nodes are present in the lower levels (e.g., multiple options for

the entity movement, multiple options for an entity shape, etc.). See Appendix A for details.

127

5.3.3 Bridging the ArcadEx Domain Analysis to Application Core Assets

While the Game Domain Analysis and feature modeling were being performed from a top-

down perspective, we employed the “edge-center” nature of the Domain-Specific Game De-

velopment approach to also evaluate game samples from a bottom-up perspective, aimed at

achieving sample implementations, a reference architecture and ultimately a domain frame-

work.

 In the specific case of the ArcadEx SPL, source code was available only for a few of

the analyzed samples, while we had to implement the most representative samples from

scratch. In the pursuit of establishing a domain framework for the ArcadEx game SPL, differ-

ent game engine possibilities came out, such as the XNA Parallax Engine38 for background

scrolling, Farseer Physics Engine39 for physics modeling and the Saq 2D40 engine for tiling.

Other game engines and libraries available in the domain include the Torque Game Builder41,

BlitzMax42, PTK43 and the PopCap framework44.

Among all the game engine options considered, the FlatRedBall Game Engine45, tar-

geted at the Microsoft XNA game platform [Carter 2007], presented the most comprehensive

coverage of the features analyzed with the lowest learning curve. FlatRedBall is a 2.5D game

engine focused on ease of use and asset management. Basic 3D games can be developed

using the FlatRedBall Engine, although most of its functionality is built with the assumption

that the game is 2D. The engine provides a starting project template that can be integrated

into Visual Studio, so that users can get into programming right away. Later on, such a pos-

sibility was explored by ArcadEx in order to create a development core asset corresponding

to a new project template in the IDE. Sample games developed with the engine can also be

integrated to Visual Studio and accessed as if they were starter kits. A series of managers to

handle specific game tasks are provided, such as the input manager, sprite manager, shape

manager, text manager, file manager, time manager and screen manager. Other interesting

built-in features are keyboard-joystick mapping, entity bouncing after collision, animation and

general entity rendering support (rotation, translation, transparency, etc.), GUI elements (but-

38
 http://www.codeplex.com/xnaparalax

39
 http://www.codeplex.com/FarseerPhysics

40
 http://saqscrap.com/saq2d.aspx

41
 http://www.garagegames.com/products/torque/tgb

42
 http://www.blitzmax.com

43
 http://www.phelios.com/ptk/

44
 http://developer.popcap.com

45
 http://www.flatredball.com

128

ton, textbox, combobox, etc.) and tile-based movement. The engine makes use of cameras,

even if the game under creation is 2D.

Figure 45 presents some of the implemented games as part of creating a Domain-

Specific Game Architecture. Instead of just implementing the analyzed game samples as is,

we majorly created sample implementations for new games, containing a combination of fea-

tures present in the analyzed samples as well as features we anticipated in the feature mod-

els. Our main goal was twofold: (1) to create sample implementations covering the modeled

features, toward a reference game architecture, and (2) to validate FlatRedBall as an engine

capable of supporting the commonality and variability identified for the domain.

The sample implementations revealed that FlatRedBall required an adapter layer in

order to simplify its consumption by the generated code. Such a layer, entitled ArcadEngine,

was implemented in 2500 lines of code (1050 excluding comments and whitespaces). It pro-

motes the FlatRedBall game engine to a domain framework, by specializing its interface to

the envisioned ArcadEx domain, making it more compliant with the concept of framework

completion and enabling it to be more easily configured. In fact, common code was identified

across multiple implementation samples and then refactored into ArcadEngine. This way, as

illustrated by Figure 46, code generated from the ArcadEx models can consume ArcadEn-

gine to configure FlatRedBall, while the full power of FlatRedBall is still available to game de-

velopers who require the implementation of more complex game behaviors through comple-

mentary custom code.

 Figure 47 details ArcadEngine’s architecture. The Arcade2DGame class specializes

the XNA’s Game class for the arcade domain. Utility and helper classes such as the

AudioManager complement the other FlatRedBall manager classes (InputManager,

SpriteManager, etc.). The Arcade2DScreen class specializes FlatRedBall’s Screen class for

the arcade domain, and is complemented by classes with screen-related concepts such as

heads-up displays (HUDs) and walls. Finally, the Entity class, along with its sub-classes and

the EntityState class, specializes FlatRedBall’s Sprite class.

5.3.4 Bridging the ArcadEx Doman Analysis to Development Core Assets

Multiple iterations were used to identify and prioritize the ArcadEx’s sub-domains for

automation. Besides analyzing samples, extracting and detailing features, inspecting and im-

plementing code, and refining a domain-specific game architecture, we ultimately came up

with four DSLs and code generators, instead of a single bloated DSL that lacks conciseness

and maintainability. The ArcadEx DSLs were implemented with the Visual Studio Team Sys-

tem (VSTS) language workbench technologies, called DSL Tools [Cook et al., 2007]. It pro-

vides a framework and toolset that enable partners to build custom visual designers and do-

129

main-specific language designers using Visual Studio. A description of the approached sub-

domains and how they contributed to the creation and/or refinement of development core as-

sets, such as DSLs, is presented in this subsection. The identified sub-domains are high-

lighted in bold.

Figure 45 – Some games implemented toward ArcadEx’s reference architecture

130

Figure 46 – ArcadEx assets overview, including ArcadEngine and FlatRedBall

Figure 47 – ArcadEngine architecture

131

In the first iteration, we approached the screen transition sub-domain, including the

different triggers that make an ArcadEx game to move from one screen to the other, such as

an input action or a timer. Following the extensibility guidelines, we added support for custom

transition events, which can be programmed by game developers but still be referenced from

the models. This resulted in a first version of the ScreenTransitionDSL, which was then re-

named to GameDefinitionDSL (Figure 48) in the second iteration after we concluded that

such a DSL was the one through which developers could also specify the top-level proper-

ties of a game (such as its window mode, resolution, etc.).

Figure 48 – Diagram modeled with GameDefinitionDSL

 Since the ArcadEx DSLs were not developed in an isolated manner, but in the context

of a game SPL, they integrate seamlessly with the development environment and other as-

sets. For example, more complex domain concepts can be edited from the IDE’s Properties

Window, together with custom property editors provided by ArcadEx. This is illustrated by

Figure 49 (left hand-side), in which a custom property editor was implemented for editing

screen transition events in the GameDefinitionDSL. In addition, two other assets were im-

plemented in parallel with each DSL: (1) semantic validators that raise errors at compile time

and are displayed to game developers through the IDE Error List (Figure 49, right hand-side),

and (2) transformations such as code-generators that receive a diagram modeled with the

DSL as input, and output other artifacts such as code that will consume and configure the

ArcadEngine adapter layer. For instance, Figure 50 illustrates the GameDefinitionDSL’s code

generator. By reading the properties of the game concepts modeled in a GameDefinitionDSL

diagram, the scriptlets output a base game class that initializes the graphics mode of the

game (Figure 51). Developers launch such transformations from within the IDE.

132

Figure 49 – Integrated tool support for domain-specific modeling experience

/// <summary>

/// Base game class that actully implements the behavior of the game.

/// Having a base game class and a derived game class is an implementation

/// of the double-derived design pattern.

/// </summary>

public abstract class <#=this.Game.Name#>Base : Arcade2DGame

{

 protected override void Initialize()

 {

 base.Initialize();

 InitGraphicsMode(

 <#=this.Game.Resolution.Width#>,

 <#=this.Game.Resolution.Height#>,

 <#=(this.Game.DisplayMode == DisplayMode.FullScreen).ToString().ToLower()#>);

 DefaultInputMapping.ApplyMappings();

 }

}

Figure 50 – Excerpt of GameDefinitionDSL’s code generator

/// <summary>

/// Base game class that actully implements the behavior of the game.

/// Having a base game class and a derived game class is an implementation

/// of the double-derived design pattern.

/// </summary>

public abstract class PongBase : Arcade2DGame

{

 protected override void Initialize()

 {

 base.Initialize();

 InitGraphicsMode(

 800,

 600,

 false);

 DefaultInputMapping.ApplyMappings();

 }

}

Figure 51 – Example of code generated by the GameDefinitionDSL’s code generator

In the third iteration, we refined the GameDefinitionDSL as a result of approaching the

screen background sub-domain, allowing game developers and designers to assign static

133

background pictures to screens instead of manually programming code to render them. In the

fourth iteration, we explored the background music sub-domain. Properties such as what

music asset to play as background music were added to each screen, along with the back-

ground music behavior such as “start new music”, “keep playing the current one” or “inherit

background music behavior from the parent screen”.

Once again, refining the IDE integration as a result of iterating through such sub-

domains was key to improve the modeling experience. For example, the GameDefinitionDSL

was further integrated into the IDE by means of being aware of music, sound effect and tex-

ture assets added by game developers and designers to the current game solution. Figure

52 reveals that as soon as a new music asset is added to the Audio solution folder, the asset

becomes available through the “Music Asset Name” property of game screens.

Figure 52 – Further GameDefinitionDSL IDE integration

After these four iterations, game developers and designers had a suitable version of

the GameDefinitionDSL, which allowed them to perform various screen flow management

tasks in a higher level of abstraction, via DSLs and models. Nonetheless, other game fea-

tures still had to be programmed in the low level.

In order to improve the (manual) testability and expedite experimentations of the

game SPL, we then approached the input mapping sub-domain, i.e., the mapping of the

gamepad (controller) buttons to keyboard keys. The implementation of this sub-domain re-

sulted in a new DSL, called InputMappingDSL (Figure 53). This DSL saves game developers

effort by enabling the modeled gamepad input triggers and reactions to be reused for han-

dling keyboard input as well. In other words, once the gamepad-to-keyboard mapping is de-

fined, players can enjoy ArcadEx games even if no controller is available, by using the key-

board, although input triggers and reactions in the models are still specified only by means of

gamepad buttons. Developers can map controller buttons to keyboard keys one by one, or

134

apply “common mappings”, which are multiple button-key mappings commonly used. An ex-

ample is mapping a controller analog stick to the keyboard arrow keys (up, down, left and

right).

Figure 53 – InputMappingDSL modeling experience and IDE integration

InputMappingDSL is also a good case of domain variability whose modeling requires

creative construction, instead of routine configuration. As a result, a more powerful, custom

modeler was created for this DSL, as we concluded that the built-in visual syntax provided by

the DSL Tools, based on arrows, image shapes and geometry shapes would not suffice for

this language.

Subsequent iterations explored the entity definition sub-domain, including entity

states and animations, resulting in the EntityDSL (Figure 54) through which the “things and

beings” of ArcadEx games could be modeled, instead of programmed. Many iterations were

required to refine this DSL, approaching related sub-domains such as the declaration of

collision interest between entities, entity input handlers (single-button, thumbstick-based

entity movement, etc.), entity event reactions (create entity, destroy entity, switch state,

etc.), entity-based timer events and others.

135

Figure 54 – EntityDSL modeling experience and IDE integration

 Some modeling experience based on creative construction was required for

EntityDSL as well, especially with regard to modeling reactions (play a sound, set an entity

state, etc.) that handle events (input event, timer event, etc.). Following the suggested task

analysis process [Preece et al., 1994] (Section 4.5.2) and inspired by Kodu46, a visual game

programming environment designed by Microsoft Research for children, ArcadEx allows de-

velopers to define a list of reactions for a given event by picking each reaction at a time, from

a grid of representative icons, and configuring it by filing parameters in just a few UI interac-

tions. This shows the value of performing task analysis on already existing languages and

tools, toward designing intuitive user experiences.

46
 http://research.microsoft.com/en-us/projects/kodu/

136

Due to the sub-domain prioritization guidelines, some of the EntityDSL refinements

were actually alternated with the creation and refinement of another DSL, called ScreenDSL

(Figure 55 and Figure 56). Such a DSL is the result of prioritizing sub-domains related to

screen contents, such as heads-up displays (textual, icon or progress bar), the placement

of entity instances in a screen and screen-based timer events.

Figure 55 – ScreenDSL modeling experience and IDE integration for the game “2942”

Figure 56 – ScreenDSL modeling experience and IDE integration for the game “Pong”

Having a rich and dynamic syntax, ScreenDSL provides a good case of cross-DSL in-

tegration and related challenges. As Figure 55 and Figure 56 suggest, a ScreenDSL diagram

needs to query the GameDefinitionDSL for the background asset of the screen being mod-

137

eled, so that it can be dynamically rendered in the background. Similarly, when the developer

drags the “entity instance” concept to the screen canvas, ScreenDSL needs to query

EntityDSL for the available game entities, so that a list of entities can be displayed to the de-

veloper for him to pick one. ScreenDSL then queries EntityDSL for the graphical representa-

tion of the entity, in order to properly render it in the screen canvas. In addition, when a

heads-up display is modeled in ScreenDSL, it can be associated to a player or entity proper-

ty, such as the number of remaining hit points, which needs to be retrieved from EntityDSL.

Coordinating cross-DSL integration was not a trivial task. While it is quite straightforward to

consume one class from another in the source code level, it is not similarly simple to make

one DSL access the concepts of another, as well as to ensure their references are always in

sync. The use of model buses to publish and retrieve concepts aided the process.

 Since ArcadEx’s DSLs were not developed one after another, as it happens in water-

fall approaches, we continuously refined and revisited the DSLs as the game SPL evolved

and new sub-domains were identified and prioritized. For example, the GameDefinitionDSL

was updated after the scrolling backgrounds sub-domain was chosen for automation.

Likewise, EntityDSL was revisited to support some AI behavior, enabling developers to

switch a flag in order to make a NPC to chase main characters.

 Likewise, we improved IDE integration incrementally, such as enabling ScreenDSL

diagrams to be opened after the developer double-clicks screen concepts in the GameDefini-

tionDSL. A new Visual Studio project template (Figure 57) was also created and added to the

IDE’s “New Project” dialog, so that ArcadEx’s users could have a starting point in the creation

of ArcadEx games. Once unfolded, such a project template creates a new ArcadEx game

with a start screen, a credits screen and a couple of background music and background tex-

ture assets. Developers can compile and run such starting code straight away.

Similarly, in order to move complexity away from the multiple code generators, im-

provements to the ArcadEngine adapter layer were developed incrementally, ensuring the

FlatRedBall game engine was seamlessly consumed by new generated code as the priori-

tized sub-domains were implemented and DSLs were created and/or refined. Special atten-

tion was given to offer easy-to-consume extensibility hooks plugged into ArcadEngine and

FlatRedBall for unforeseen game behaviors. In summary, each iteration was finalized with

the high and low-level work meeting halfway, culminating with the design and implementation

(or refinement) of one or more DSLs and generators for the iteration’s sub-domain.

138

Figure 57 – ArcadExGame project template integrated into the Visual Studio IDE

5.3.5 ArcadEx Evaluation

The development of the ArcadEx case study took around 8 man-days. Since its inception, we

have been collecting data to assess its effectiveness. Some of the benefits we were able to

observe upfront include an incremental delivery of value via the prioritized sub-domains au-

tomation, a reduced complexity to consume game engines (promoted to domain frameworks)

from the generated code and domain-specific assets tailored to the unique characteristics of

the envisioned family of games.

 Three examples are given next as an illustration of the abstraction level provided by

ArcadEx assets. To start with, Figure 58 shows three UI actions required to make a non-

player character (NPC), such as a UFO, to fire in every second a bullet that chases the play-

er’s main character, such as a Fighter. First, a new timer for the UFO NPC is added. Via the

Properties tool window, the timer’s interval is set to 1 second, and finally a “Create Entity”

event reaction is added to the timer’s tick handlers. Such an event reaction enables develop-

ers to set the velocity behavior of the newly created entity (bullet) to chase a main character.

139

Figure 58 – UI actions required for making a NPC to fire a bullet every second

 In contrast to the UI actions above, Figure 59 presents the generated code responsi-

ble for implementing the modeled behavior, which would have to be programmed manually

otherwise. The code handles the initialization, checking and resetting of the timer variable, as

well the creation and initialization of the new UFO bullet instance, which is set to chase the

main character. The Chase method is provided by the ArcadEngine adapter layer – the game

engine alone does not provide built-in support for making one entity to chase another. As it

can be noticed, the three simple modeling tasks above abstract more than 15 lines of code.

public abstract partial class UfoBase : Npc {

 protected double fireBulletStartTime = TimeManager.CurrentTime;

 protected double fireBulletInterval = 1f;

 protected override void RunTimerChecks(){

 base.RunTimerChecks();

 if (TimeManager.CurrentTime - fireBulletStartTime > fireBulletInterval) {

 UfoBullet ufoBullet = new UfoBullet();

 ufoBullet.Position = this.Position;

 ufoBullet.Chase(this.Screen.GetEntity(typeof(Fighter)), 150, true);

 this.Screen.AddEntity(ufoBullet);

 this.fireBulletStartTime = TimeManager.CurrentTime;

 }

 }

}

Figure 59 – Generated code for making a NPC to fire a bullet every second

 The collision between entities and walls, and among entities themselves, is another

sub-domain in which ArcadEx assets provide a useful level of abstraction. Figure 60 presents

the Wall Collision Reactions editor, being used to define the reactions for Pong’s Ball entity.

Such an editor enables developers to specify what reactions are launched when a given enti-

ty collides with a specific wall of a screen. The amount of coding that the editor saves, in the

140

context of the Pong game, is presented in Figure 61 (the code for creating and initializing the

ball is refactored into a new method to avoid duplication). Once again, a few modeling ac-

tions save developers a good amount of coding and time.

Figure 60 – Wall Collision Reactions editor

 As a final, and perhaps most relevant example of ArcadEx’s abstraction, Figure 62

presents an EntityDSL diagram in which collision interests are declared among the entities of

the space shooter game “2942”, such as the Fighter main character, the FighterBullet item,

and the DumbUfo and SmartUfo NPCs. The amount of collision lines between such entities

show that the game has a lot of collision rules, such as:

 If a Fighter collides against an UFO and neither is exploding, both explode.

 If an exploding UFO collides against a non-exploding UFO, the latter ex-

plodes.

 If a FighterBullet collides against a non-exploding UFO, the latter explodes.

 If a non-exploding SmartUfo collides against a non-exploding DumbUfo, the

former bounces against the latter

 Although we recognize that drawing collision lines multiple times is not a very exciting

task, implementing such rules manually is a much more error-prone and tedious task, requir-

ing multiple for loops to iterate through the entity instances and if branches to check their

state. Figure 63 and Figure 64 list the code required to implement the collision rules, omitting

141

the actual code for the collision reaction handlers. If more entities and more states were part

of the game specification, the code maintainability and readability would become worse.

public override void HandleWallCollision(Wall wall)

{

 base.HandleWallCollision(wall);

 if (wall.Orientation == WallOrientation.Top)

 {

 AudioManager.Play("sfxApplause");

 this.Screen.RemoveEntity(this);

 Arcade2DGame.GetPlayer(PlayerIndex.One).Score += 1;

 Ball ball = CreateAndInitializeBall();

 this.Screen.AddEntity(ball);

 }

 if (wall.Orientation == WallOrientation.Bottom)

 {

 AudioManager.Play("sfxApplause");

 this.Screen.RemoveEntity(this);

 Arcade2DGame.GetPlayer(PlayerIndex.Two).Score += 1;

 Ball ball = CreateAndInitializeBall();

 this.Screen.AddEntity(ball);

 }

 if (wall.Orientation == WallOrientation.Left)

 {

 this.BounceAgainstWall(wall, 0f, 1f, 1f);

 }

 if (wall.Orientation == WallOrientation.Right)

 {

 this.BounceAgainstWall(wall, 0f, 1f, 1f);

 }

}

private static Ball CreateAndInitializeBall()

{

 Ball ball = new Ball();

 ball.Position = new Vector3(

 Arcade2DGame.Resolution.Width / 2,

 Arcade2DGame.Resolution.Height / 2, 0);

 int velX = FlatRedBallServices.Random.Next(200, 351);

 int velY = FlatRedBallServices.Random.Next(200, 351);

 int xModifier = FlatRedBallServices.Random.Next(0, 2) == 0 ? 1 : -1;

 int yModifier = FlatRedBallServices.Random.Next(0, 2) == 0 ? 1 : -1;

 velX *= xModifier;

 velY *= yModifier;

 ball.Velocity = new Vector3(velX, velY, 0);

 return ball;

}

Figure 61 – Generated code for wall collision reactions

142

Figure 62 – Declaring collision interests that depend on the entities’ states

Considering the ratio between the generated code and the total game code as the

evaluation metric, games developed with the first version of ArcadEx had 75% of their code

automatically generated by the SPL. We had to implement the remaining 25% as SPL exten-

sions because some sub-domains were not initially automated, such as wall collisions, score-

based events, and initialization of entity properties with random values. Once we retrofitted

such extensions into subsequent versions of the game SPL, the number approached 100%.

If new games have unanticipated variability, i.e., if they require behaviors not supported as

built-in by the game SPL, then the number will drop again.

The reduced level of flexibility in the behavior of the generated games as is (with no

extensions), due to increased abstraction levels, was observed as the approach’s major

drawback. As opposed to click-n-play tools though, extensibility hooks with full development-

environment support and integration are provided for custom behaviors. That way, unpredict-

ed behaviors can still be programmed by hand and integrated to the models as extensions.

As previously mentioned, many of these extensions were then incorporated to the game

SPL’s built-in feature set in later iterations.

143

// Handling collision between entities of type Fighter and DumbUfo/SmartUfo.

for(int sourceCount = 0; sourceCount < fighters.Count; sourceCount++)

{

 Fighter fighter = fighters[sourceCount];

 for(int targetCount = 0; targetCount < dumbUfos.Count; targetCount++)

 {

 DumbUfo dumbUfo = dumbUfos[targetCount];

 if (fighter.CollideAgainst(dumbUfo))

 {

 if (fighter.CurrentState is FighterStates.Main

 && dumbUfo.CurrentState is DumbUfoStates.Main) { ... }

 }

 }

 for (int targetCount = 0; targetCount < smartUfos.Count; targetCount++)

 {

 SmartUfo smartUfo = smartUfos[targetCount];

 if (fighter.CollideAgainst(smartUfo))

 {

 if (fighter.CurrentState is FighterStates.Main

 && smartUfo.CurrentState is SmartUfoStates.Main) { ... }

 }

 }

}

// Handling collision between entities of type FighterBullet and DumbUfo/SmartUfo.

for(int sourceCount = 0; sourceCount < fighterBullets.Count; sourceCount++)

{

 FighterBullet fighterBullet = fighterBullets[sourceCount];

 for(int targetCount = 0; targetCount < dumbUfos.Count; targetCount++)

 {

 DumbUfo dumbUfo = dumbUfos[targetCount];

 if (fighterBullet.CollideAgainst(dumbUfo))

 {

 if (dumbUfo.CurrentState is DumbUfoStates.Main) { ... }

 }

 }

 for (int targetCount = 0; targetCount < smartUfos.Count; targetCount++)

 {

 SmartUfo smartUfo = smartUfos[targetCount];

 if (fighterBullet.CollideAgainst(smartUfo))

 {

 if (smartUfo.CurrentState is SmartUfoStates.Main) { ... }

 }

 }

}

// Handling collision between entities of type DumbUfo and SmartUfo.

for(int sourceCount = 0; sourceCount < dumbUfos.Count; sourceCount++)

{

 DumbUfo dumbUfo = dumbUfos[sourceCount];

 for(int targetCount = 0; targetCount < smartUfos.Count; targetCount++)

 {

 SmartUfo smartUfo = smartUfos[targetCount];

 if (dumbUfo.CollideAgainst(smartUfo))

 {

 if (dumbUfo.CurrentState is DumbUfoStates.Exploding

 && smartUfo.CurrentState is SmartUfoStates.Main) { ... }

 if (smartUfo.CurrentState is SmartUfoStates.Exploding

 && dumbUfo.CurrentState is DumbUfoStates.Main) { ... }

 if (smartUfo.CurrentState is SmartUfoStates.Main

 && dumbUfo.CurrentState is DumbUfoStates.Main) { ... }

 }

 }

}

Figure 63 – Implementing collision interests manually for the 2942 game (1/2)

144

// Handling collision between entities of type DumbUfo and SmartUfo.

for(int sourceCount = 0; sourceCount < dumbUfos.Count; sourceCount++)

{

 DumbUfo dumbUfo = dumbUfos[sourceCount];

 for(int targetCount = 0; targetCount < smartUfos.Count; targetCount++)

 {

 SmartUfo smartUfo = smartUfos[targetCount];

 if (dumbUfo.CollideAgainst(smartUfo))

 {

 if (dumbUfo.CurrentState is DumbUfoStates.Exploding

 && smartUfo.CurrentState is SmartUfoStates.Main) { ... }

 if (smartUfo.CurrentState is SmartUfoStates.Exploding

 && dumbUfo.CurrentState is DumbUfoStates.Main) { ... }

 if (smartUfo.CurrentState is SmartUfoStates.Main

 && dumbUfo.CurrentState is DumbUfoStates.Main) { ... }

 }

 }

}

// Handling collision between entities of type DumbUfo and DumbUfo.

for(int sourceCount = 0; sourceCount < dumbUfos.Count; sourceCount++)

{

 DumbUfo dumbUfo1 = dumbUfos[sourceCount];

 for(int targetCount = sourceCount + 1;

 targetCount < dumbUfos.Count; targetCount++)

 {

 DumbUfo dumbUfo2 = dumbUfos[targetCount];

 if (dumbUfo1 != dumbUfo2 && dumbUfo1.CollideAgainst(dumbUfo2))

 {

 if (dumbUfo1.CurrentState is DumbUfoStates.Exploding

 && dumbUfo2.CurrentState is DumbUfoStates.Main) { ... }

 }

 }

}

// Handling collision between entities of type SmartUfo and SmartUfo.

for(int sourceCount = 0; sourceCount < smartUfos.Count; sourceCount++)

{

 SmartUfo smartUfo1 = smartUfos[sourceCount];

 for(int targetCount = sourceCount + 1;

 targetCount < smartUfos.Count; targetCount++)

 {

 SmartUfo smartUfo2 = smartUfos[targetCount];

 if (smartUfo1 != smartUfo2 && smartUfo1.CollideAgainst(smartUfo2))

 {

 if (smartUfo1.CurrentState is SmartUfoStates.Exploding

 && smartUfo2.CurrentState is SmartUfoStates.Main) { ... }

 if (smartUfo1.CurrentState is SmartUfoStates.Main

 && smartUfo2.CurrentState is SmartUfoStates.Main) { ... }

 }

 }

}

Figure 64 – Implementing collision interests manually for the 2942 game (2/2)

Another challenge that we faced with the approach relates to backward compatibility.

More than once, new versions of the DSLs (still under the same case study) broke existing

model instances. Since we did not develop migration tools to update models to the new ver-

sions of the DSLs, we had to update them manually.

145

 Considering development effort improvement as the evaluation metric, we took time

measurements for the development of games belonging to the case study’s domain, with two

versions implemented for each game: one using the ArcadEx toolset and the other consum-

ing the game engine alone. We observed that ArcadEx games are developed in one-fourth to

one-fifth of the time required to develop them using the game engine. For example, the de-

velopment of the Money Hunt game (Figure 45, top-left) using the ArcadEx SPL took 33

minutes. We also developed the same game without the ArcadEx SPL, by using only XNA

and the FlatRedBall game engine. Although we were more used to the game rules and logic

from the first (ArcadEx) version, the second one took 4.88 times more: 2 hours and 41

minutes.

Some of the implementation tasks took an order of magnitude less when the ArcadEx

SPL was used (e.g., creating collision detection handlers and updating the state of entities),

while others did not require any effort in ArcadEx since they are already provided as built-in,

such as the creation of screen borders (walls) to contain entities. It is also worth noticing that

standard code styling and documentation were left out of the scope of Money Hunt’s manual

implementation, although they are enforced by generators. The introduction of such addition-

al requirements would lead to a bigger development time.

On the other hand, no improvement was evidently observed for tasks which are not

supported by the ArcadEx SPL, such as a custom difficulty increase logic required by Money

Hunt. In fact, our time measurements contrasting the two game versions revealed that such

special tasks actually take longer with the game SPL, since hooks from the models to the

custom code have to be established and an initial overhead is required to implement the ex-

tensibility mechanisms, such as adding partial classes and applying the double-derived de-

sign pattern (see Subsection 4.5.4).

The manual implementation of Money Hunt required a total of 596 lines of code, ig-

noring comments and whitespace. The implementation of the same game using the ArcadEx

SPL resulted in 5 diagrams (1 GameDefinitionDSL diagram, 2 InputMappingDSL diagrams, 1

ScreenDSL diagram and 1 EntityDSL diagram) which generated 760 lines of code that had to

be complemented by 25 lines of manually implemented code (developer-added extensions).

Therefore, the custom code corresponds to 3.3% of the total code when considering the

generated code, or to 4.2% when considering the code implemented in the manual-only ver-

sion. Either option leads to the conclusion that more than 95% of the code was automati-

cally generated by the game SPL.

Data obtained from implementing other game samples corroborate with the code

generation ratio and development effort (time) numbers obtained for Money Hunt. For exam-

ple, we also implemented Pong (Figure 45, top-right), which was defined as having a similar

146

screen flow when compared to Money Hunt, but less complex entities and events. The de-

velopment of Pong using the ArcadEx SPL took 16 minutes. The manual implementation of

the same game, by using only XNA and the FlatRedBall game engine, took 4.56 times more:

1 hour and 13 minutes.

Our previous experience with the manual Money Hunt implementation improved the

effort to manually accomplish some tasks in Pong, such as initializing the game, creating

screen walls and displaying texts. As opposed to Money Hunt though, Pong development

with ArcadEx did not require any custom-added code. We were able to obtain a full code

generation (100%) of Pong’s source code with the game SPL assets.

A valid concern about using SPL techniques in the digital games domain is whether

they threaten the generated games’ creativity and distinctness. So far, our results actually

indicate that automating the routine and error-prone activities in the game-development pro-

cess (the “commonality”) let us spend more time and resources on the domain’s variability

and extension points, contributing to the uniqueness of each title. In fact, game engines have

already been responsible for myriad creative, unique industrial titles. Similarly, we do not

suggest end-to-end game generators; rather, we recommend layering SPLs and DSLs on top

of game engines so that the software reuse is more structured, effective, and intuitive.

5.4 The Experimental Study

Although the exploratory and confirmatory case studies provided relevant data about the

proposed approach, the major weakness of case studies is that the data collection and anal-

ysis is open to interpretation and researcher bias [Easterbrook et al., 2007]. In order to over-

come that, we used the methodology suggested by Wohlin et al. [1999] to also run a con-

trolled experiment to evaluate the proposed Domain-Specific Game Development approach.

The methodology suggests experiments to be broken down into five main activities. The defi-

nition activity defines the experiment in terms of problem, objective and goals. Planning de-

termines the design of the experiment, considers instrumentation and evaluate its threats.

The operation collects measurements, which are then analyzed and evaluated in the analysis

and interpretation activity. Finally, the results are presented and packaged in the presenta-

tion and package activity.

5.4.1 Definition

According to Wohlin et al. [1999], there are two kinds of variables in an experiment: inde-

pendent and dependent. The variables that are objects of the study, which are necessary to

study to see the effect of the changes in the independent variables, are called dependent

variables. Often there is only one dependent variable in an experiment. All variables in a

147

process that are manipulated and controlled are called independent variables. An experi-

ment studies the effect of changing one or more independent variables. Those variables are

called factors. The other independent variables are controlled at a fixed level during the ex-

periment, or else it would not be possible to determine if the factor or another variable causes

the effect. A treatment is one particular value of a factor.

 In our experiment, the development effort (time in man-hours required to develop

games) is the dependent variable. The independent variables are the development method,

the order in which the development method treatments are used, the experience of the sub-

jects and the target games. The development method is the factor of the experiment (inde-

pendent variable that changes to measure effects on the dependent ones). We employed

two possible treatments for it: development using the FlatRedBall game engine only, and de-

velopment using the ArcadEx game SPL toolset.

 Since our experiment also involves other metrics, we also used a Goal-Question-

Metric (GQM) template [Basili et al., 1994] to more comprehensively define it. The goal of the

experiment was to analyze the Domain-Specific Game Development approach for evaluating

it with respect to the efficiency and difficulties of game SPLs created from it versus using

game engines only, from the point of view of game developers and designers in the context

of the development of digital arcade games.

 To achieve this goal, the following questions were defined:

 Q1. Does the approach enable the generation of arcade games faster than the

state-of-the-art (game engines)?

 Q2. Does the approach minimize the amount of manual code required to de-

velop arcade games?

 Q3. Do the subjects consider that the approach aids in game development and

design?

 Q4. Do the subjects have difficulties to use game SPLs created with the ap-

proach?

 Four metrics were defined to support the questions above. The first two are objective

and obtained by measurements performed during the experiment, while the last two are sub-

jective and obtained via questionnaires.

 Development effort improvement: the difference between the time required

to develop sample games without the approach (but still with the state-of-the-

art, i.e., game engines), and the time required time to develop the same

games with the approach.

 Generated/total code ratio: average % of the total game code that was able

to be generated automatically from the DSLs.

148

 Helpfulness: average score for the helpfulness of game SPL assets, created

with the approach, to the game development process, as evaluated by sub-

jects, in a scale from 1-10, in which 1 means not helpful and 10 means very

helpful.

 Difficulty: average score for the difficulty of employing game SPL assets,

create with the approach, in the game development process, as evaluated by

subjects, in a scale from 1-10, in which 1 means very easy and 10 means very

difficult.

5.4.2 Planning

The experiment will be conducted with eight experienced software developers (five or more

years in the industry), according to the plan outlined in the following subsections. Respecting

their availability for the experiment, the subjects will be selected by convenience sampling

[Wohlin et al., 1999], representing a non-random subset from the universe of software devel-

opers in the industry. Also due to availability constraints, the experiment will not require sub-

jects to be game developers, but software developers in general with some game develop-

ment experience.

 Subjects will initially be briefed about the experiment workflow, what they are sup-

posed to do in the experiment and how to consult the experiment resources (more details in

Subsection 5.4.2.3, Instrumentation). The experiment sessions will start with a 2h training

session, as described next.

5.4.2.1 Training

Subjects will be trained in two fronts:

 How to develop arcade games using the FlatRedBall game engine and Mi-

crosoft XNA, culminating with the creation of a simplified version of the Money

Hunt game (Figure 45, top-left) with no models or code generation.

 How to develop arcade games with the ArcadEx game SPL, including its

DSLs and the ArcadEngine layer that promoted FlatRedBall to ArcadEx’s do-

main framework, culminating with the creation of a simplified version of the

Money Hunt game via ArcadEx’s DSLs and generators. All four DSLs will be

explored as part of the training: GameDefinitionDSL, InputMappingDSL,

ScreenTransitionDSL and EntityDSL.

5.4.2.2 Subject Groups and Target Games

Subjects will be randomly organized in two distinct groups, responsible for implementing a

total of 32 versions of the same games, Pong and 2942 (Figure 45, top-right and bottom-right

149

respectively), which are representative samples of the domain yet not too complex, making

the experiment’s cost viable. Each subject group will use both approaches (manually and via

ArcadEx), but in different order, as described in Table 8.

Table 8 – Subject groups

Group 1 Group 2

Pong (ArcadEx)

Pong (manually)

2942 (manually)

2942 (ArcadEx)

Pong (manually)

Pong (ArcadEx)

2942 (ArcadEx)

2942 (manually)

 By randomly allocating the subjects according to the permutations planned in Table 8,

some threats related to the experiment are mitigated. For instance, the plan ensures that all

developers create the same games, using all approaches (with and without the game SPL).

This avoids the productivity delta between exceptional developers and underperformers to

influence the results. Likewise, by swapping the manual vs. ArcadEx order within each group,

we minimize the chances that the familiarity acquired with a game after its first implementa-

tion will impact the overall results. More robust approaches to measure the toolset learning

impact, such as the Latin Square [Dénes & Keedwell, 1974], were not used due to limitations

in the number of the experiment resources, such as the number of subjects vs. the number of

possible permutations.

5.4.2.3 Instrumentation

Development time will be measured for each version of the games. Subjects will receive a

questionnaire inquiring about their development experience (Appendix C), which also has

open questions as a means to collect quantitative data. During the experiment, subjects will

be able to consult a XNA/FlatRedBall Cheat Sheet (Appendix D), which is a quick reference

for common programming tasks using such an API and game engine. The cheat sheet’s goal

is to level the different familiarities of the subjects on XNA and FlatRedBall, i.e., it contributes

to attenuate the impact of previous XNA/FlatRedBall experience on the experiment.

Game assets such as textures, sound effects and background music will be provided

upfront to developers for each game, in a starter solution, in order to keep media creation

efforts at a constant level (zero). Game specifications with playable demos will also be pro-

vided prior to the experiment, to familiarize developers with their target games.

 Finally, checklists will also be provided to the subjects (Appendix E) for each game,

listing the required development tasks they will have to complete. A game’s checklist is appli-

cable to both the manual implementation scenario (XNA/FlatRedBall only) as well as the

150

modeling one (with game SPL assets). We considered giving to the subjects sketches of dia-

grams that describe the games’ requirements visually, instead of a checklist. However, such

diagrams sketches are too close to the actual DSL models the subjects are supposed to

come up with. Therefore, we discarded this option to avoid the diagrams to interfere with the

experiment and unfairly benefit the game SPL scenario. An interesting observation is that the

time spent to create checklist items for some game development requirements was virtually

the same as modeling its solution using the game SPL assets, which is an indication that the

game SPL approach is helpful as an “executable specification”.

5.4.2.4 Experiment Hypotheses

The null hypothesis is the one that the experimenter wants to reject with as high signifi-

cance as possible. In this study, the null hypothesis determines that the Domain-Specific

Game Development approach do not provide benefits that justify its use and that the subjects

have difficulties to use the game SPL assets created with it. Thus, according to the selected

criteria, the following null hypotheses were defined:

 H0a: µcoding effort – µmodeling effort ≤ 0, i.e., developing sample games with the pro-

posed approach requires the same or more time than developing sample

games without the proposed approach.

 H0b: µ generated/total code ratio < 100%, i.e., subjects are not able to fully

generate code from models.

 H0c: µ helpfulness < 7, i.e., the subjects give an average score of less than 7,

in a scale from 1 to 10, for the helpfulness of the toolset and its encompassing

process. This value is based on an experiment performed by Lisboa et al.

[2007] to evaluate a Domain Analysis tool.

 H0d: µ difficulty >= 2, i.e., the subjects give an average score equal to or

greater than 2, in a scale from 1 to 10, for the difficulty of the toolset and its

encompassing process. This value is based on an experiment performed by

Almeida [2007] to evaluate a Domain Engineering process.

For the last two (subjective) metrics, the authors recognize that there is no well-

known value for them in the literature. Therefore, they chose “arbitrary values based on prac-

tical experience and common sense”. We decided to keep such values with the purpose of

having a comparison baseline.

The alternative hypothesis is the one in favor of which the null hypothesis is reject-

ed. In this study, the alternative hypotheses determine that the use of the Domain-Specific

Game Development approach produce benefits that justify its use:

151

 H1a: µcoding effort – µmodeling effort > 0, i.e., developing sample games with the pro-

posed approach requires less time than developing sample games without the

proposed approach.

 H1b: µ generated/total code ratio = 100%, i.e., subjects are able to fully gen-

erate code from models.

 H1c: µ helpfulness >= 7, i.e., the subjects give an average score equal to or

greater than 7, in a scale from 1 to 10, for the helpfulness of the toolset and its

encompassing process.

 H1d: µ difficulty < 2, i.e., the subjects give an average score of less than 2, in

a scale from 1 to 10, for the difficulty of the toolset and its encompassing pro-

cess.

5.4.2.5 Threats to the Validity of the Experiment

To provide a set of valid results, Wohlin et al. [1999] defend the establishment of four types

of threats to the validity of the experiment, presented next. This experiment’s planning and

design aimed at mitigating as many threats as possible. On the other hand, some were not

mitigated, either due to being “by design” or due to resource constraints. Wohlin et al. [1999]

mention that sometimes some threat to validity has to be accepted, that increasing one type

of validity may decrease the other, and that it may even be impossible to carry out an exper-

iment without certain threats.

 The internal validity of the study is defined as the capacity of a new study to repeat

the behavior of the current study, with the same subjects and objects with which it was exe-

cuted. We identified the following internal validity threats to our experiment:

 History: evolution of subjects' experience with the toolset (models) and game

engine (code). In order to mitigate that, subjects were organized in two differ-

ent groups in which the order of the treatments is different (Table 8).

 Maturation: given the length of the experiment, subjects could get bored or

tired over time. We employed multiple sessions with the subjects to avoid

such a fatigue.

 Testing: bias caused by knowing the results of the first game implementation

and results from other subjects. Subjects were not given such numbers until

they completed their own tasks.

 Selection: the subjects have a natural variation in performance. Instead of

comparing subjects among themselves, we designed the experiment so that a

subject is compared with himself. This also mitigates the “compensatory rival-

ry” or its opposite “resentful demoralization” threats Wohlin et al. [1999].

152

 The external validity measures the capability of the study to be affected by generali-

zation, i.e., the capability to repeat the same study in other research groups. We identified

the following external validity threats to our experiment:

 Interaction of selection and treatment: the chosen subjects were not game de-

velopers, but software engineers in general. This was a consequence of con-

venience sampling.

 The subjects belong to a homogeneous group (all belonging to the same cul-

ture and working for the same company).

 Subjects’ motivation can change. For instance, developers in a game compa-

ny might be more motivated to be part of the experiment than subjects belong-

ing to an academic environment. Our experiment chose industry professionals

with a genuine interest in Software Engineering and reuse.

 Interaction of setting and treatment: we assumed that consuming the

FlatRedBall game engine (manual treatment) represents a typical manual de-

velopment experience. Moreover, the experiment’s domain takes into account

games of reduced complexity, whose results we may not necessarily be able

to generalize to more complex game domains. Finally, the game SPL toolset

was developed as part of an academic research, not an industrial (real world)

context.

 Since the subjects and the experimenter knew each other from past interac-

tions in the software industry and consequently built some level of relation-

ship, that could bias the experiment’s results. In order to mitigate that, the

subjects were explicitly guided on providing candid feedback and not taking at

all any actions that could bias the experiment, such as entering a higher than

actually perceived score in the evaluation form. Given the open and mixed

feedback we received from the subjects in multiple areas of the experiment,

we believe this guidance was followed properly.

 Environment configuration (machines, training rooms, etc.) can change. For

instance, our experiment had a limited number of available machines, properly

configured with the experiment environment.

 The knowledge of the instructor who is delivering the experiment training can

change.

 The conclusion validity is concerned with the relationship between the treatment

and the outcome, and determines the capability of the study to generate conclusions. The

following threats were identified for this validity:

 Limited number of subjects (eight).

153

 Limited number of implemented games: two (times two) per subject.

 Subjective nature of two of the experiment metrics (Helpfulness and Difficulty

feedback from the subjects).

 Random interruptions of a subjects’ work (e.g., required pauses during a long

coding effort).

 Ensuring the modeling and coding treatments performed by a same subject

for the same game resulted in the same end product. The experimenter per-

formed manual inspection to ensure that indeed happened.

 Ensuring the games developed by different subjects given the same specifica-

tion are the same. The experimenter performed manual inspection to ensure

that indeed happened.

 Finally, the construct validity refers to the relation between the theory that is to be

proved and the instruments and subjects of the study, for which we identified the following

threats:

 Evaluation apprehension and interaction of testing and treatment: the subjects

knew their development time was being effort, and as a result that could make

them to feel more receptive or sensitive to the treatment. We attempted to mit-

igate this threat by explicitly guiding them on working on their code and mod-

els as close as possible to what they perform as part of their daily work.

 Subject's inability to understand the game specifications. This was mitigated

by providing game checklists and playable versions upfront, and also due to

the fact that a relatively easily understandable set of game samples was cho-

sen for the experiment.

 The experiment takes into account one single developer per game, however

games are typically created by development teams.

 Convenience sampling may imply in subjects not representing a random sub-

set of the developers’ population.

5.4.3 Operation

The profiles of the 8 subjects that participated in the study are presented in Table 9. The sub-

jects present a mix of bachelors’ and masters’ degrees and 5 to 15 years of software devel-

opment experience in the industry (8.75 years in average). Half eventually use modeling as

part of their daily work, while the other half are just aware of it or have used it only to a limited

extent. All of them are proficient in C#, programming language used in the experiment. In av-

erage, each of them has developed more than 3 games in the past, and only one subject has

never developed one. It is worth noticing that since the experiment and its metrics have a

154

software engineering focus, the subjects are all software engineers. Experimenting with

game designers, artists and other profiles was not taken into account, and constitutes a fu-

ture work of this research.

Table 9 – Subjects’ Profiles

ID Degree
Software Development

Experience

Modeling

Experience

of Previous

Games

1 B. Sc. 11 years
Just aware/limited

experience
7

2 M. Sc. 7 years
Just aware/limited

experience
3

3 B. Sc. 7 years
Eventually use it as

part of daily work
0

4 M. Sc. 5 years
Eventually use it as

part of daily work
2

5 M. Sc. 7 years
Eventually use it as

part of daily work
4

6 B. Sc. 10 years
Eventually use it as

part of daily work
2

7 M. Sc. 8 years
Just aware/limited

experience
5

8 M. Sc. 15 years
Just aware/limited

experience
2

 The experiment was conducted during November and December of 2011, and had a

total of 14 experiment sessions, each with one or two subjects at a time and adjusted to fit

their availability. In the experiment briefing, subjects were trained and given the aforemen-

tioned help resources: game checklists (Appendix E) and the cheat sheet (Appendix D). Time

was set aside for introducing the requirements of the games and allowing the subjects to play

with them upfront. In the post-experiment survey (Appendix C), subjects were asked whether

they had any difficulties in understanding the target games to be implemented (or modeled)

and their requirements. None of them reported any issues in relation to such a regard.

 The sessions totalized a cost of 196 man-hours, as presented in Table 10. Of those,

24 man-hours were dispended on training, and 172 man-hours on actual modeling and cod-

ing, including buffer time for introducing and playing the target games as well as interrup-

155

tions. Such numbers also consider the time dispended by the experiment organizer who was

delivering the trainings and tracking the progress of the modeling and coding activities. Oth-

erwise, the total cost of the operations phase, considering only the subjects’ time, comes

down to 125 man-hours.

Table 10 – Time dispended during the experiment’s operation phase

Activity
Subjects’ time

(man-hours)

Experimenter’s

time (man-hours)
Total

Training 16 8 24

Modeling and

coding
109 63 172

Total 125 71 196

The experiment did not require any especial hardware beyond two machines and two

Xbox 360 gamepads. Discarding other minor costs related to the experiment’s logistics, the

essence of the experiment’s cost was basically related to the aforementioned operation costs

plus the hours required from the experimenter for other phases such as definition, planning

and analysis, including the development and preparation of resources such as training mate-

rials, sound and art assets, installers, packages and starter solutions, as well as dry runs pri-

or to the actual experiments to ensure all resources were in place. Such additional tasks re-

quired about 40 man-hours, bringing the total man-hour cost of the experiment to approxi-

mately 236 hours.

Each training session of the experiment resulted in the development of two simplified

versions of the Money Hunt game (Figure 45, top-left): one version without the game SPL

assets and hence with no models or code generation, the other with the provided DSLs and

generators. Data was not collected for Money Hunt since the development of this game was

for training purposes. Each subject then developed two versions of the Pong game (Figure

45, top-right) and the 2942 game (Figure 45, bottom-right), with and without the game SPL

assets. That resulted in 32 (implementations of) games created by the subjects. When the

experiment was concluded, each subject was requested to complete the questionnaire in

Appendix C with their feedback about the experience. The data collected from the time

measurements, source code and feedback forms are analyzed and interpreted next.

5.4.4 Analysis and Interpretation

The following subsections describe the analysis and interpretation of the experimental study,

according to each one of the metrics under evaluation.

156

5.4.4.1 Development Effort Improvement

Figure 65 presents the measured development efforts for the Pong game, per subject, in

man-minutes, for both treatments (coding and modeling), ordering the subjects by the im-

provement (highest to lowest). The graph presented in Figure 66 provides a better visualiza-

tion of the development efforts ratio: the manual implementation time is presented in the X-

axis and the modeling time is presented in the Y-axis. The numbers inside the diamonds are

the subject IDs.

 As it can be noticed, the development times for all subjects are compliant to the hy-

pothesis H1a (µcoding effort – µmodeling effort > 0) and the majority of them are at or under the 4x

development efforts ratio line. For the Pong game, the average development effort improve-

ment was 136.75 man-minutes, with a standard deviation of 42.41 man-minutes. The aver-

age modeling time with the game SPL was 39.5 minutes, while its average manual imple-

mentation time was 176.25 minutes. The average development efforts ratio was 4.59. In oth-

er words, the experiment suggests that developing games with the SPL assets is 4.59 times

faster than implementing the same games without them. It is worth noticing that the calcula-

tion of the average development efforts ratio should not be done by dividing the average

manual implementation time by the average modeling time, but by averaging the subjects’

development efforts ratios. Otherwise, the smaller times from faster subjects become out-

weighed (shadowed) by the bigger times from slower subjects, both for coding and modeling.

 Similarly, Figure 67 and Figure 68 present the development efforts required by the

subjects for the 2942 game. For such a game, the average development effort improvement

was 263.375 man-minutes, with a standard deviation of 77.41 minutes. The average devel-

opment efforts ratio was 5.57. The average modeling time with the game SPL for this game

was 55.375 minutes, while the average manual implementation time for it was 318.75

minutes.

 Despite the expressive values obtained for the averages and standard deviations, we

employed hypothesis testing in order to be able to tell whether the obtained numbers are

able to reject the null hypothesis (H0a: µcoding effort – µmodeling effort ≤ 0) in favor of its alternative

counterpart (H1a: µcoding effort – µmodeling effort > 0) with statistical significance. For example, in

the Pong game, the measured mean for the development time effort differences is 136.75

man-minutes. We want to rule out chance as an explanation for such results. In other words,

we want to know the probability of chance alone to produce a difference as large or larger

than 136.75 man-minutes. If such a probability, also called p-value, is less than a significance

level (traditionally, researchers use either the 5% or the 1% significance), we can then con-

clude that the experimental treatment (using the game SPL assets) has a real effect [Lane,

1999]. We will assume a significance value of 0.01 (1%).

157

Figure 65 – Development efforts per subject (Pong)

Figure 66 – Distribution of development efforts (Pong)

158

Figure 67 – Development efforts per subject (2942)

Figure 68 – Distribution of development efforts (2942)

159

 Since the actual population's standard deviation is unknown, an estimated standard

deviation has to be calculated from the sample size and the obtained data. Its formula gives

a 45.33 value for the Pong game (implying in an estimated standard error of 16.03) and

82.76 for the 2942 game (implying in an estimated standard error of 29.26). Given the num-

ber of degrees of freedom is 7 (the number of measurements from subjects minus one) and

applying the formula of the t distribution, which is typically used instead of the normal distri-

bution if the standard error has to be estimated from the data [Lane, 1999], a p-value of less

than the 0.01 significance level is obtained. The same result is obtained for the 2942 game.

This rejects the null hypothesis (H0a) in favor of its counterpart (H1a).

 Subjects whose ID is odd belong to Group 1 (see Table 8), i.e., when developing the

Pong game, they were applied to the modeling treatment first and the coding treatment later,

then the opposite happened for the 2942 game. Subjects whose ID is even belong to Group

2, i.e., when developing the Pong game they were applied to the coding treatment first and

the modeling treatment later, then the opposite happened for the 2942 game. No conclusions

can be drawn as for how the group allocation influenced the results, not only because each

group contained different subjects, but also due to the measured data. Receiving the model-

ing treatment before the coding treatment, or vice-versa, did not imply in a consistent better

performance when groups were compared.

 An interesting observation from the measured times is that the results are more

sparsely distributed in the manual implementation scenario (X-axis of Figure 66 and Figure

68) than the modeling scenario (Y-axis of the same figures). In other words, the delta be-

tween the biggest and smallest development times for the modeling scenario is smaller than

the delta between the biggest and smallest development times for the manual implementa-

tion scenario. Restricted to the experiment constraints, we interpret that as an indication that

Domain-Specific Game Development could improve the predictability of the game develop-

ment effort, contributing to more reliable estimations.

 Aligned with the results obtained by Hernandez & Ortega [2010] in their small experi-

ment to evaluate a modeling language for 2D games, the data obtained from our experiment

also make us believe that the approach becomes more effective as the target games become

more complex, restricted to this experiment’s constraints and assuming of course that the

game SPL assets are able to automate the complex sub-domains. Figure 69 presents the

evolution of the development efforts ratio from Pong, a simpler game, to 2942, a more com-

plex game. In 2942, subjects had to manually implement more challenging game behaviors

not present in Pong, such as a scrolling background and making one entity to chase another,

which on the other hand are provided as built-in by the game SPL assets. As a result, all sub-

160

jects reported a better development efforts ratio in the second, more complex game (a

27.29% increase, in average).

Figure 69 – Evolution of development efforts ratio

 During the experiment, we were able to notice that the development effort improve-

ment metric is quite influenced by another one: code quality. For the manual implementation

scenarios, we guided developers on creating high quality and maintainable code, as they

normally would, instead of rushing with “quick and dirty” code just to finish the experiment

faster. As a result, we noticed that many developers employed good Software Engineering

practices such as refactoring code in order to abstract, modularize and clean it up. On the

other hand, developers still acknowledged that the experiment inhibited them from spending

too much time on some quality tasks they might have performed in a real environment, such

as unit testing, commenting and studying what design patterns they could apply to implement

some aspects of the game more elegantly, such as screen transition triggers. For instance,

one of the subjects mentioned that he would have probably coded more carefully if he was

supposed to undergo a code review by his team at work. Such a trend was more evident

when subjects moved from Pong to the more complex 2942 game: while Pong’s simplicity

encouraged subjects to keep its code quality at best, 2942’s complexity required more quality

vigilance (e.g., to avoid code duplication). As a result, some subjects explicitly recognized

that as time went by, the manual implementation quality decreased: they eventually got more

concerned with getting 2942 implemented than spending too much time on its code quality.

We believe that if quality tasks were fully employed, for all games, more time would have

been spent on the manual implementation, causing the development efforts ratio to be in-

creased.

 Considering both games, the average development efforts ratio was 5.16. A question

that naturally arises then is how such a result compares with measurements of domain-

specific development effectiveness in other domains. Summarizing the Domain-Specific De-

velopment evaluations presented in Appendix B, Figure 70 compares the our measured ef-

161

fectiveness for the digital games domain with evaluations in the literature for other domains

[Kärnä et al., 2009] [Safa, 2007] [Kelly & Tolvanen, 2008] [MetaCase, 2000] [Weiss & Lai,

1999].

Figure 70 – Comparison of domain-specific development improvements per domain

 It is worth noticing that many of the numbers above were not the result of controlled

experiments, which are actually not easy to find in the SPL and DSL literatures. Hermans et

al. [2009] mention that the DSL literature primarily provides anecdotal evidence for the

claimed DSL usage benefits, often based on a handful of usage scenarios for the language

in question. Kärnä et al. [2009], on the other hand, point out that many good scientific re-

search methods are simply too expensive and time-consuming for practical use in a com-

mercial setting, while the industry does not usually have the time and resources to conduct

extensive analysis such as building the same system twice with different development ap-

proaches. In fact, one of the authors whose results are displayed in Figure 70 recognizes

that their sample size is too small to be statistically significant. Other used estimates instead

of measurements. Another inferred the development effort improvement from the percentage

of the generated code. Finally, one of the results was solely based on the informal feedback

162

from the CTO of the company in which the domain-specific solution was employed. Never-

theless, in the lack of more rigorously measured data, we consider the numbers in Figure 70

to be a valid baseline for comparison purposes. More details on each of such numbers are

presented in Appendix B.

 Based on their experience as domain-specific modeling tool vendors, Kelly & Tol-

vanen [2008] conclude that the “normal” (expected) range of improvement for the use of do-

main-specific development in the industry is 5 to 10 times. That is somewhat aligned with

previous findings from Weiss & Lai [1999], who reported productivity improvements by 3 to

10 times, depending on the product. The average improvement factor observed in the exper-

imental study performed for Domain-Specific Game Development, 5.16, falls under such an

expected range. The fact that our numbers are in the bottom half is an indication that there

might still be room for improvement. We believe that addressing the difficulties reported in

Subsection 5.4.4.4 could contribute to improve the measured numbers. In fact, one of the

greatest lessons of the experiment was that using domain experts and end-users to validate

the DSLs and to obtain early user experience feedback is as relevant as using them as input

to language design.

 A final question related to the development effort improvement and subsequent sav-

ings is what the ROI is for employing our Domain-Specific Game Development approach.

Reaching this number is not straightforward, since it depends not only on already known var-

iables, but also on some unknown ones. From one side, we already know the improvement

factor (4.59 to 5.57) and the time it took to implement the game SPL assets: about 8 days in

our case, which is in line with a similar pedagogical effort performed by Kelly & Tolvanen

[2008] for the digital wristwatches development domain and a couple of days less than some

industrial cases compiled by Kelly [2010]. On the other hand, estimating the ROI also de-

pends on how long it would take to manually implement the next domain instances (games)

chosen by the game SPL users (game developers and designers). The longer it takes to

manually implement domain instances, the higher are the absolute savings per instance, and

therefore the sooner the investment will break even.

 Using as the next domain instances hypothetical games whose complexity is similar

to the 2942 game, which is a better representative of the domain than the simpler Pong

game also used in the experiment, we can consider an improvement effort of 5.57 and an

average manual implementation time of 318.75 minutes (both measured by the experiment).

Such numbers mean that when each one of such hypothetical games is developed with the

game SPL assets, there are absolute savings of 261.52 minutes (318.75 – 318.75/5.57).

Given the game SPL assets were developed in about 8 days, or 64 hours, the investment

break-evens by the 15th instance.

163

 We ran the numbers again considering that the complexity of the domain instances

(i.e. their manual implementation effort) is actually bigger than the one measured for the ex-

periment’s games. This is not a stretch given such games could not be made too much com-

plex due to the experiment’s constraints (see Subsection 5.4.2.5, Threats to the Validity of

the Experiment). If we assume it takes a day (8 hours) for a domain instance to be imple-

mented, then the absolute savings per instance come up to 393.82 minutes, making the in-

vestment to break-even by the 10th instance. This is illustrated in Figure 71.

Figure 71 – Costs of developing single game instances vs. the use of game SPL assets

 An interpretation of such a result, restricted to the experiment’s constraints, is that

Domain-Specific Game Development is not recommended for families of games targeted at

less than 10-15 instances. On the other hand, other data indicates that the ROI numbers

might improve for (more complex) domains approached by the actual game industry. As Fig-

ure 69 presents and also based on the survey feedback from the subjects, the development

efforts ratio gets better as the complexity of the target games increase. Kelly & Tolvanen

[2008], who have experience in deploying domain-specific solutions for multiple domains in

the industry, also observed the same trend.

 Likewise, the required time for manually implementing the game samples of our cho-

sen domain is considerably small, which also contributes to bring the ROI down. While in our

domain we estimated the worst manual implementation time to take a single day, in the actu-

al game industry the development of a game can actually take several months, or even years

[Reyno & Cubel, 2008]. Although such a timeframe includes a series of tasks that are out of

the scope of our Domain-Specific Game Development approach, ranging from scripting the

164

game plot to fine-tuning the game with beta testers, actual Software Engineering tasks such

as designing and coding still play a big role in it. Increased manual implementation times per

domain instance might improve the ROI of a SPL-based approach, since such bigger efforts

mean much more costs and impact to one-off development approaches than to SPL-based

ones. On the other hand, the investment to create SPLs and DSLs for more complex do-

mains will also be considerably higher.

 Finally, organizations are not required to build their game SPL assets upfront to only

then start harvesting the benefits. Extractive SPL approaches [Krueger, 2001], which reuse

existing products toward the creation of a SPL, can be used to amortize upfront investment

costs across time.

5.4.4.2 Generated/Total Code Ratio

For both games, subjects were able to generate 100% of the source game code from mod-

els. While this rejects the null hypothesis (H0b) in favor of its counterpart (H1b), it is important

to emphasize that this metric is strongly dependent on the games chosen by the experiment.

Domain games other than Pong and 2942, with higher variability and unpredicted SPL be-

haviors, will yield to lower numbers. Hence, although this metric was useful to confirm that

the subjects were able to reach high levels of automation on their own, corroborating our own

conclusions in the case studies, we acknowledge that more confidence on this metric can still

be further achieved by broadening the scope of the experiment to more games, potentially

chosen by the subjects themselves or by an actual game development company interested in

running the experiment in loco.

5.4.4.3 Helpfulness

In a scale from 1 to 10, in which 1 means not helpful and 10 means very helpful, subjects

provided an average score of 9.125 for the helpfulness of the game SPL assets. This is

above the expected helpfulness score (7.0), therefore it also rejects the null hypothesis (H0c)

in favor of its counterpart (H1c). The helpfulness feedback score per subject is presented in

Figure 72.

 Open feedback revealed some interesting data points about the helpfulness of the

game SPL assets. Reflecting on the results obtained above for this metric, this subsection

will detail the positive feedback and outcomes of the game SPL. On the other hand, the next

subsection (which discusses the Difficulty metric) will focus on its challenges and areas of

improvement.

165

Figure 72 – Helpfulness evaluation per subject

 Some open feedback from the subjects about the helpfulness of the game SPL as-

sets, collected via the post-experiment survey, follows below:

 “More repetitive tasks like setting backgrounds of a screen can be easily mas-

tered.”

 “The tool is especially useful on repetitive operations that typically happen in

games (like creating several screens or several sprites).”

 “The diagrams are intuitive and the learning curve is really short for someone

with some modeling experience.”

 “Modeling is something that I do naturally, in order to understand what the

problem is and to design a solution. Afterwards I have to code that solution

manually, but the tool allows me to take even more advantage of a work that I

already do.”

 “The tool is very helpful to build the game without having to think a lot about

the details of the code. However we still have to think about gaming concepts

while developing the game.”

 “Using the framework enables the developer to focus on the design and inter-

action of elements, instead of on the implementation details.”

 “I didn’t have to think at all about the implementation. My effort was entirely

focused on making the game to comply with the specifications. During the

‘manual’ development using the game engine, coding specifics were often the

main concern.”

 The data collected from the implemented games and from observations during the

experiment allowed us to find out evidence that supports the subjects’ claims above. First of

all, the manually implemented versions of the games had considerably more bugs upfront,

which had to be fixed reactively, when compared to the versions created with the game SPL

assets. Examples of bugs include:

166

 The background music of a previous screen keeps playing even though the

game has transitioned to a new screen.

 A collision sound effect is played several times when a collision happens, in-

stead of only once.

 Typos in screen and asset names caused the runtime to load wrong assets

and even throw “file not found” exceptions.

 For Pong, which is a two-player game, concepts related to different players

got recurrently swapped in the implementation. Examples include player-

specific sounds, “player X wins” screens, scores, textual heads-up displays

that show the scores, etc.

 Misplaced screen walls, which are manually implemented by specifying the

coordinates of rectangles in relation to the screen dimensions, which is an er-

ror-prone activity. As an illustration, Figure 73 presents actual code imple-

mented by one of the subjects during the experiment.

 topWall = AddWall(600, 599, 0, 800);

 leftWall = AddWall(600, 0, 0, 1);

 rightWall = AddWall(600, 0, 799, 800);

bottomWall = AddWall(1, 0, 0, 800);

Figure 73 – Wall initialization logic from one of the subjects’ code

 Bad random initialization of an entity velocity. In the Pong game, for instance,

the initial vertical velocity of the ball is defined in the specs as a random value

between 200 and 350 pixels per second, upwards or downwards. More than

half of the developers introduced one of the following two bugs: (1) the ball

only goes up (i.e., the random value considers the [+200, +350] interval for the

Y speed but ignores the [-350, -200] one), or (2) the random initialization code

enables the ball’s vertical velocity to be initialized to zero or very close to zero,

making it to move only horizontally instead of toward the player’s paddles.

 An entity that was supposed to chase the main character actually runs away

from it.

 The velocity of a chasing entity was wrongly initialized to a value that depends

on the distance between the chasing entity and the target entity, instead of be-

ing constant.

 Bad sequencing of game tasks. For instance, the collision detection for enti-

ties which were already removed from the screen during that frame crashed

the game.

167

 On the top of such game logic specific bugs, more generic programming er-

rors were also observed, such as null reference exceptions and race condi-

tions due to the introduction of parallel programming.

 We believe such an increased number of bugs has at least four main source causes.

First, many manual implementation tasks require repetitive, error-prone efforts, such as copy-

ing, pasting and slightly modifying code. The tedious wall initialization code above is an ex-

ample.

 Second, implementing tasks in a lower abstraction level typically imply in higher levels

of code complexity, such as multiple conditional branches, nested loops, etc. For example,

the logic of collision handlers and input handlers commonly depend on the current state of

their target entities. Players should not be able to move an entity or fire a bullet (by using the

gamepad or keyboard) if the entity is in an “exploding” state. Likewise, decreasing the main

character’s hit points when it collides with an enemy should not happen when the main char-

acter is in an “invincible” state. All of such N:M combinations between handlers and states

can easily get out of control when low-level code is the only abstraction developers have

available. That leads to game logic misbehavior and an excessive dependency on testing, or

reactive bug fixing.

 Third, while the modeling experience enabled players to grasp the big picture of the

game more easily and anticipate or look for requirements more constantly, the manual im-

plementation implied in a lot of code churn and refactoring as the requirements were assimi-

lated. Quite commonly, such code churn introduced not only new bugs but regressions as

well. For instance, when refactoring code from a specific class into a recently created base

class, some developers forgot to replace specific, hardcoded values (that make sense only to

the specific class) by parameters. Changing models caused less churn on already existing

code and, apparently, less bugs and regressions.

 Fourth and interestingly, the subjects consulted the games’ checklists (Appendix E)

more often when using the game SPL assets, when compared to the manual implementa-

tion. Such a better and more continuous connection with the problem domain led to a better

fidelity to the requirements and hence less bugs. In fact, the subjects mentioned that when

programming against the FlatRedBall engine and XNA only, their focus was on the imple-

mentation, but when dealing with the game SPL assets, their focus was on the problem. One

of the subjects said that he focused on the implementation when creating games manually

because his first priority at that moment was to understand and overcome technical chal-

lenges. When he moved to the game SPL assets, he got a feeling that the implementation

“would be easy” and that made his first priority to be the game requirements.

168

 Positive feedback also revealed that the ArcadEx SPL brings higher levels of 168rac-

ticetions to different fronts, providing intuitive DSL syntaxes and context-aware tool integra-

tion to speed up game development tasks. Examples follow below:

 The ArcadEx toolset automatically manages common domain requirements

and some technical tasks, such as:

o Defining screen walls. In ArcadEx, this is already part of ArcadEngine’s

initialization code.

o Creating score variables for the players. In ArcadEx, the concepts of

players and scores are implicit and integrated with game events.

o Checking what bounding shape a given sprite has (box or circle), so

that the right collision methods are called. In ArcadEx, generators han-

dle all cases and the DSLs enable developers to simply tell what the

colliding entities are, independent from their collision shapes.

 As mentioned in Chapter 2, the complexity and learning curve of game en-

gines are one of their main challenges. We noticed that when developers used

only FlatRedBall and XNA, without the game SPL assets, many questions re-

lated to the inner workings of the engine and the platform were asked, such as

where to place the input mapping code (in the screens vs. in the game initiali-

zation), whether screen instances are reused or re-created by the engine,

whether the provided elapsed game time is in seconds or milliseconds,

whether screen class names should be the qualified or not when implementing

screen transitions, etc. For instance, when implementing Pong, one of the

subjects (ID7) made some assumptions about FlatRedBall and did not create

the required empty constructors for screen classes. Since the subject tested

his code too late, he had a considerable amount of code to fix when he found

out that the engine would not run his game under the implemented assump-

tions. As a result, he ended up taking 75% more time to develop Pong when

compared to his counterparts (Figure 65).

 Subjects reported that the models and their concepts are more cohesive than

source code. For example, the wall collision behavior of an entity and its input

handlers are declared as part of the entity itself, instead of belonging to a

screen’s “update” method.

 While developers had to solely rely on file names and paths to manually as-

semble animation frames, the IDE integration provided by the modeling expe-

rience displays the actual contents of such files, drawing textures in custom

property editors and playing the animations in preview controls.

169

 The solution/project explorer tool window in the IDE does not provide enough

semantics to a given game asset. For example, the IDE presents audio assets

and texture assets to developers in the same way: as an item in the project

hierarchy. ArcadEx improves that by making the IDE to distinguish between

asset types, suggesting them only in the right context. For instance, when

creating an entity animation, only texture assets are displayed. On the other

hand, if the developer is adding a background music to a game screen, the

SPL will provide a list of audio assets only. This can be contrasted with the

IDE’s project tree navigation in which all assets look alike.

 Declaring “collision interests” of entities in EntityDSL was considered a rele-

vant improvement over coding loops and inner loops (or complex Linq que-

ries) every time something should be done when two types of entities collide.

Subjects found the directionality of the collision relationship (with “source” and

“target” roles) to be helpful.

 Similar feedback was observed for the placement of entity instances in a

game screen’s canvas, which is more effective than specifying an entity’s po-

sition by using “vector” objects and coordinates in source code. In other

words, visually placing entities and HUDs in the screen canvas using

ScreenDSL provides a WYSIWYG (what you see is what you get) experience

not available in the manual implementation.

 Likewise, in the manual implementation experience, developers who consume

the FlatRedBall game engine have to specify the color of a textual heads-up

display by providing three values, from 0 to 1, representing the RGB (Red,

Green and Blue) components of the desired color. In the modeling experience,

developers can accomplish the same task more effectively by selecting colors

from a palette and receiving real-time feedback from their choice, which auto-

matically re-colors textual HUD elements in the ScreenDSL model.

 With regards to evaluating the progress of their games under development, develop-

ers in the manual implementation scenario ran partial versions of their games much more

often. Developers reported that such an increased need for progress verification happened

due to the smaller functionality increments in the manual implementation scenario, the overall

slower pace to accomplish tasks manually, an increased confidence on the game SPL assets

and unfamiliarity with the FlatRedBall game engine. Blow [2004] mentions that in real world

scenarios, the costs of continuously rebuilding and running interim versions of a game for

progress verification can become prohibitive, especially due to the large amount of game as-

sets and the steps required to reach a given game state. On the other hand, in the modeling

170

experience, developers were able to accomplish a more coarse-grained set of tasks at a

time, which resulted in a reduced need for progress verifications and more confidence on the

development progress.

Maintainability was another relevant point of feedback. Across the board, developers

agreed that maintaining and updating classes require more work than doing the same for

concepts in a model. They found that models provide a better grouping and visualization of

the game concepts than source code, since the IDE by itself does not make any distinction

among source code files representing different types of concepts. IDEs do allow developers

to group related classes in the same project folder or package, but that does not seem to be

enough. On the other hand, keeping some model concepts in sync was a challenge, as ex-

plained in the next subsection. Moreover, additional maintainability challenges are introduced

by partitioning models, which was not required by the experiment due to the simplicity of the

target games, as mentioned in the experiment’s threats (Subsection 5.4.2.5).

 Another intriguing difference between the modeling and the manual implementation

experiences relates to the order in which the game features were implemented. When mod-

els were used, developers tended to model a group of related concepts together, apparently

bringing more cohesion to the development process. For instance, all screens of the game

were typically modeled at once, enabling developers to have a concise overview of the game

flow and to promptly identify when adjustments were required to such aspect of the game.

Similarly, developers virtually implemented all of the collision detection handlers in the same

“round”. That seemed to create a “development vicinity” for concept instances of the same

type, enabling developers to immediately compare them and freshly transfer learning from

one modeled concept to the next, in a product line fashion. In contrast, in the manual imple-

mentation scenario, developers typically mixed different concept instances in the same

“round”, mimicking the findings of players along the game. For example, in some cases de-

velopers implemented the initial game screens, then some screen transition code, then the

first entities that habit such screens, then the collision detection for such entities, then anoth-

er set of entities, which resulted in a new series of collision detection logic, then the final

screens, followed new screen transition code. That introduces an undesired level of context

switching to the game development process and avoids developers to focus on a single as-

pect of the game at a time, therefore making them to miss the opportunity to deal with the

concepts of such aspect holistically.

 As introduced in Subsection 5.4.4.1 (Development Effort Improvement), the quality

and consistency of the manually implemented code is also a very interesting data point ob-

tained from the experiment. Developers reported that keeping code quality was an impacting

extra task for the manual implementation scenario. As for consistency, different developers

171

ended up with different approaches and coding styles. Some developers refactored duplicat-

ed code to base and helper classes, while others favored copying and pasting. Some were

concerned with providing documentation for their methods and classes, but some were not.

Some benefited from their previous knowledge on the target APIs, while others did not have

any. On the other hand, generated code ensures consistency and quality. Best practices and

non-functional concerns such as performance, which is quite vital for digital games, are taken

into account by generators, which play an optimization role similar to compilers. ArcadEx

generators create code that has a minimal documentation at least, and follows a common set

of standards. Most importantly, generators encapsulate the knowledge of experienced devel-

opers, which gets applied even when the generator is used by less experienced ones.

 The initialization of the ball’s velocity in the Pong game is an interesting example to

illustrate such a discussion about code consistency. The requirement was to initialize the

ball’s horizontal and vertical velocities with a random value between 200 and 350 pixels per

second, for each axis. Figure 74 to Figure 77 present different implementations from four

subjects. The implementations not only differ in style, but use different algorithms, are locat-

ed in different classes (Ball entity class vs. MainScreen class), use different random APIs

(.NET’s System.Random class vs. FlatRedBall’s FlatRedBallServices.Random class) and

have different assumptions about the random range’s upper value (inclusive or exclusive).

Public Ball()

{

 ...

 Random m = new Random(DateTime.Now.Millisecond);

 this.Velocity.X = m.Next(200, 351) * GenerateMultiplier(m);

 this.Velocity.Y = m.Next(200, 351) * GenerateMultiplier(m);

}

int GenerateMultiplier(Random m)

{

 int multiplier = 0;

 if (m.Next(1, 3) == 1)

 {

 multiplier = 1;

 }

 else

 {

 multiplier = -1;

 }

 return multiplier;

}

Figure 74 – Ball’s velocity initialization code (Subject ID1)

172

private void SetSprite()

{

 ...

 this.Velocity = new Vector3(Random(), Random(), 0);

 ...

}

private static int Random()

{

 Random random = FlatRedBall.FlatRedBallServices.Random;

 return random.Next(0, 2) == 0

 ? random.Next(200, 350)

 : -random.Next(200, 350);

}

Figure 75 – Ball’s velocity initialization code (Subject ID3)

int Xspeed = 0;

int Yspeed = 0;

while (Xspeed > -200 && Xspeed < 200)

{

 Xspeed = FlatRedBall.FlatRedBallServices.Random.Next(-350, 350);

}

while (Yspeed > -200 && Yspeed < 200)

{

 Yspeed = FlatRedBall.FlatRedBallServices.Random.Next(-350, 350);

}

ballNPC.Velocity.X = Xspeed;

ballNPC.Velocity.Y = Yspeed;

Figure 76 – Ball’s velocity initialization code (Subject ID8)

private void CreateBall()

{

 ...

 ball.Velocity.X = GetRandomSpeed();

 ball.Velocity.Y = GetRandomSpeed();

 ...

}

private int GetRandomSpeed()

{

 int abs = FlatRedBall.FlatRedBallServices.Random.Next(200, 351);

 int sign = FlatRedBall.FlatRedBallServices.Random.Next(0, 100);

 if (sign < 50)

 {

 return abs * (-1);

 }

 else

 {

 return abs;

 }

}

Figure 77 – Ball’s velocity initialization code (Subject ID6)

173

 Likewise, one of the developers used multithreading to implement some game

173ractiiors, although that was not really required and not used by any other subject. Moreo-

ver, by consuming the FlatRedBall game engine as is, some subjects identified patterns and

good implementation practices for the target domain that were missing from the engine. The

extra effort in identifying and implementing such patterns also ended up with multiple imple-

mentation approaches and brought consistency issues. For example, although a FlatRedBall

screen contains a list of its game entities, it is a good practice to group entities belonging to

the same type in their own lists, so that parts of the game logic, such as collision detection,

can be more easily implemented. Some subjects realized that, but others did not.

 In contrast, the ArcadEngine domain framework complemented by the modeling ex-

perience saved developers from the effort required to come up with patterns or identify the

best way to implement a given task, since such patterns and best practices are automatically

generated. When ArcadEx’s models and code generators are used, implementations will al-

ways have the same style and algorithm, comply to a consistent design, consume the same

APIs and never introduce bugs due to assumptions (e.g., inclusive vs. exclusive boundaries

for random number generators). Two comments collected from the subjects in the post-

experiment survey illustrate this discussion:

 “The toolset gives easy access to well implemented algorithms and solutions

to the average developer, who would otherwise need to figure out by himself

solutions for typical game development challenges.”

 “One thing to note was that the game generated with the tool had similar or

better performance than the game manually created. One can argue that au-

to-generated code is not as fast as a manually created one, but the reality is

that developers can also introduce performance bugs.”

5.4.4.4 Difficulty

In a scale from 1 to 10, in which 1 means very easy and 10 means very difficult, subjects

provided an average score of 2.125 for the difficulty of using the game SPL assets and its

encompassing process. This means they had slightly more difficulty than expected by the

target value for this metric (2.0). Therefore, we were not able to reject this null hypothesis

(H0d) in favor of its counterpart (H1d). The difficulty feedback score per subject is presented in

Figure 78.

174

Figure 78 – Difficulty evaluation per subject

 Open feedback was very valuable for identifying improvement areas of the game SPL

assets. The majority of the comments in this space referred to improving the user experi-

ence, especially the user interface. Although at least two subjects reported in the feedback

forms that once one gets used to the toolset, the experience flows well, one of our main les-

sons learned is that early investments on user experience and feedback might really pay off

as a means to improve acceptance and productivity. Open feedback collected in the post-

experiment survey includes:

 “Some features of the tool were not very discoverable or I don’t feel they were

placed with the best experience in mind, for whatever reason.”

 “The icons could be more meaningful; I had to hover over them many times to

understand what action they would do.”

 “The toolset still has some rough edges that would need to be addressed if it

is intended to be used in the industry.”

 “The toolset is very handy if you have previous game development experience

and have a game development mindset. For newbies, I believe a wizard

would make it easier for going through all game creation phases.”

 The last comment is really interesting as it reveals the desire for contextualized, au-

tomated guidance, for which we advocate in Section 4.5.5 but were not able to introduce as

part of the experiment’s toolset due to resource constraints.

 Similarly to the Helpfulness metric (Section 5.4.4.3), we compiled data from the sub-

jects’ code and models, as well as from observations taken during the experiment, to identify

evidence that supports the subjects’ claims above. First of all, we were able to conclude that

some aspects of the DSLs’ syntax and IDE integration, such as custom property editors,

could be made more intuitive and allow developers to enter data in a more effective way. For

175

example, when creating a new entity as part of an event reaction, developers can set a ran-

dom position for the new entity by means of specifying a screen area (rectangle) inside which

the entity will be randomly placed. Such a rectangle is determined by its top-left point (X and

Y coordinates), together with its width and height (Figure 79).

Figure 79 – Specifying a random position for a new entity

 Since such coordinates and dimensions are just entered as numbers and cannot be

visualized in the game screen, developers introduced errors in the random position initializa-

tion of new entities. We believe that this experience could be improved by letting developers

to actually draw the rectangle in the screen canvas to tell the area in which the new entity will

be randomly placed, which is then converted by the game SPL to the coordinates and di-

mensions required by the DSL meta-model.

 In the same way, ArcadEx in its current state does not seem to be robust enough to

backtrack all model changes (such as renaming entities) and keep the impacted modeling

concepts in sync. Likewise, managing concepts and relations in the ArcadEx models can

start to get cumbersome if the total number of concepts in the same diagram exceeds 5 and

the majority of them are inter-related. Relationship lines eventually cross over others and the

underlying DSL Tools engine is not able to keep the diagram clean enough. For instance,

Figure 80 shows the first versions of diagrams modeled by the subjects for Pong. As it can

be noticed, they are quite cluttered and that impacts the understanding of the overall game

flow.

We conclude that improving readability by using a clean style is something applicable

not only to source code, but to models as well. The screen inheritance relationship could be

used to make the game flow more visually digestible, but none of the subjects employed

such a relationship or asked about it, which gives some indications that more user education,

such as training, tutorials, semantic validators and scaffolding techniques might be required

176

for a better awareness, discoverability and adoption of the SPL assets. On the other hand,

while the diagram cluttering brings some indication that more robust modeling paradigms

might be required to make the solution to scale (e.g., collapsible views or semantic zooming),

it also emphasizes the relevance of enabling developers to partition models in multiple dia-

grams.

Figure 80 – Examples of cluttered GameDefinitionDSL diagrams for the Pong game

 Developers also identified the introduction of logical operators (AND, OR and NOT) to

manipulate lists of concepts as a desirable improvement. For example, GameDefinitionDSL

does not let developers to specify multiple transition triggers for the same screen transition,

such as “Go from the intro screen to the main screen if the player 1 presses the Start button

OR the player 2 presses the Start button”. In such a case, two transitions have to be created,

one for each trigger.

 Developers also reported that they would welcome more semantic validators, to avoid

them from introducing modeling errors or bugs that were only found in execution time. For

example, ArcadEx does not warn developers when the position entered for a new entity is

outside the screen boundaries. In fact, we suggest game SPL designers to document invalid

values and states for all model concepts, including their properties and relationships, so that

they can create a rich set of semantic validators that speed up the modeling experience.

 Additional broadly applicable suggestions include:

 Support copy and paste of model elements.

 Make all custom property editors to load with the current property value.

177

 When a concept is double-clicked, launch its most used property editor. For

example, double-clicking a collision link should open the Collision Triggers

property editor.

 Present specific options before the generic ones, otherwise developers may

settle for the sub-optimal, generic options. For example, consider Figure 79,

which offers the “screen center” option for a new entity position. Such an op-

tion is very specific, since it enables developers to create new entities in a

precise, specific location quite relevant to the game (the screen center). How-

ever, a more generic option unfortunately comes first in the list: the “static”

position, in which X and Y coordinates can be freely entered for the new enti-

ty’s position, enabling developers to place new entities anywhere in the

screen. As a result, even when developers wanted to create an entity in the

screen center, they commonly settled for the “static” position option just be-

cause they found it first. They then hard-coded the screen center coordinates

in the “static” position option, instead of using the more appropriate “screen

center” option, which is independent from absolute values.

 Integrate the code generation step as a post-compilation event. Some sub-

jects forgot quite often to re-generate code prior to compile their games.

 On the other hand, more precise improvement areas were collected for each DSL.

Similar to the broadly applicable suggestions above, the specific suggestions were either ex-

plicitly reported by the subjects or concluded as the result of observing the experiment.

5.4.5 Lessons Learned

The following lessons were learned from the experiment:

 One of the main challenges faced during the experiment was the limited num-

ber of available machines properly configured with the experiment environ-

ment. With only two machines available, only two subjects at most attended to

each experiment session, leading to an increased number of sessions. That

was a limitation to scale the experiment.

 Guidance should be provided upfront to the subjects as for the expectations

on the quality of their manual code. Subjects should be guided to not com-

promise quality by implementing code as fast as possible, just to complete the

experiment. On the contrary, they should be guided to write code as they

normally would, taking into account good practices such as modularization,

reuse, refactoring, etc. This increases the cost of the experiment but provide

more accurate results.

178

 When defining ranges of values for the experiment’s metrics, use a consistent

approach for all metrics (e.g., bigger numbers mean better results). In our

case, a big number for the Helpfulness metric was a good thing, while a big

number for the Difficulty metric was a bad thing. This caused some confusion

when the subjects were filling the post-experiment survey.

 The provided training and cheat sheet (Appendix D) were invaluable to the

experiment. Some developers reported that they would probably take the

double of the development time in the manual implementation scenario, look-

ing for how to implement a given set of tasks, if a cheat sheet was not availa-

ble. However, it would not be fair to run the experiment without the cheat

sheet, since it accounts for the developers’ eventual lack of experience in the

FlatRedBall game engine and XNA.

 Likewise, the game development tasks checklist (Appendix E) was considered

useful for different purposes: some developers used it as a specification,

which helped to guide the implementation, while others preferred to consult

the checklist only close to the end, for validation purposes.

 The measured experiment’s cost should by no means be taken as an indica-

tion of the actual adoption costs that an organization would face when em-

ploying Domain-Specific Game Development. Adoption costs involve tasks

which are out of the scope of this research and specific to the reality of each

organization, such as costs related to changing from and integrating with leg-

acy tools and processes, coming up with profiles for deploying the approach,

and others.

5.5 Chapter Summary

This chapter presented the different techniques employed to evaluate the proposed Domain-

Specific Game Development approach. First, an informal evaluation against desirable prop-

erties of domain-specific development assets was presented. Following, exploratory and con-

firmatory cases studies were described. Finally, an experimental study, carried out with actu-

al software developers in the industry, was detailed and discussed. Although such evaluation

techniques still represent a subset of what can be measured and analyzed from the out-

comes of the proposed approach, it provides a valid starting point for assessing and some-

how indicating its potential for improving digital games development.

 The controlled experiment was the most costly and relevant evaluation approach. It

brings a much better foundation to understand the benefits and shortcomings of Domain-

Specific Game Development, especially given that the DSL literature primarily provides an-

179

ecdotal evidence for the claimed DSL usage benefits [Hermans et al., 2009]. We were able to

measure a development efforts ratio of 4.59 to 5.57, to estimate a ROI after 10 to 15 instanc-

es, to collect positive feedback on the helpfulness of the approach and to identify opportuni-

ties to decrease the difficulties of its usage. The main lesson learned is that designing and

refining the user experience as a whole, not only the DSLs’ visual (concrete) syntax, can

make a good use of early experiments and feedback. We believe that automated guidance

(Section 4.5.5) might also play an important role to guide developers on accomplishing their

tasks more effectively. In short, we consider the obtained results to be encouraging and an

indication that the approach has potential and should be pursued.

180

181

6. CONCLUSIONS

This final chapter presents the main contributions of this research (Section 6.1), its limitations

and suggestions for future work (Section 6.2), and our final remarks (Section 6.3).

6.1 Contributions

Given the peculiarities of digital games, automating game domains should not simply employ

Software Engineering techniques as is, in special SPLs, DSLs, and Domain Engineering. On

the contrary, by using a systematic domain-specific development approach streamlined to

digital games, game developers and designers can envision and analyze target game do-

mains and bridge the Domain Analysis to core assets in a game SPL, in a more effective,

systematic and reproducible way. That constitutes the essence of the ideas presented in this

thesis.

The main contributions of the Domain-Specific Game Development approach claimed

by this research can be summarized as follows:

 Executable game specifications. By using expressive game DSLs that are

really close to the domain of game developers and designers, the approach

enables high-level game design discussions to not only be documented, but

also promptly executed for evaluation and prototyping purposes. Some game

companies in the industry have already been using click-and-play tools to cre-

ate prototypes, which are later on discarded once the actual development

phase beings, in which actual IDEs are employed for implementation. We be-

lieve the proposed approach reuses and extends the lifetime of prototypes,

encouraging them to be refined toward the definitive game models and (gen-

erated) code, instead of being discarded.

 Reduced complexity for consuming game engines. As introduced in Chap-

ters 2 and 3, one of the main challenges in consuming a game engine is its

tough learning curve. Promoting game engines to domain frameworks, via

domain-specific languages and tools streamlined for game sub-domains, as

well as adaptation layers, increases the level of abstraction to consume many

game engine functionalities. It also customizes game engines for specific

game sub-domains.

 Breakdown of game development tasks into more granular and automat-

able chunks. Game development is not a monolithic task. While this is al-

ready clear for the multiple disciplines involved in the process (art, sound, de-

sign, engineering, etc.), Domain-Specific Game Development provides a bet-

182

ter separation of concerns specifically targeted at the engineering part of

game development, using a divide-to-conquer approach in which game devel-

opers and designers can deal with specific sub-domains, one at a time, in a

higher abstraction level. This aids with managing the complexity of tangled

game architectures, a recurrent problem in the area [Blow, 2004].

 Incremental delivery of value for prioritized game sub-domains. Game

SPLs are not an all-or-nothing automation approach. Even if the first version

of a game SPL automates only one sub-domain, delivering a single language

and generator, game designers and developers can already start harvesting

the benefits from it. Future versions of such a SPL can deliver new assets or

improve already existing ones, automating more sub-domains incrementally.

Most importantly, Domain-Specific Game Development provides guidance to

ensure the sub-domains with the best return on investment are the ones priori-

tized for automation.

 Domain-specific assets tailored to the unique characteristics of the en-

visioned family of games. Domain-Specific Game Development does not

suggest a one-size-fits-all solution for automating digital games development.

In contrast, it recognizes that game sub-domains are too peculiar to be han-

dled by the same set of tools, languages and assets in general. As the result,

game SPL assets are developed by taking into account the specific features of

the target game sub-domains, as well as the specific tasks that need to be

performed by game developers and designers.

 Flexibility and extensibility for unforeseen behaviors. Perhaps more than

any other software macro-domain, digital games development is characterized

by a strong creative process targeted at causing the rupture of standards and

surprising end-users, attempting design and technical feats that may have

been never experimented before. That said, Domain-Specific Game Devel-

opment establishes that game SPL designers should have in mind, from day

one, that it is virtually impossible to predict all possible variations of game sub-

domains. As a result, the created game SPLs rely on extensibility hooks of

multiple sorts, enabling built-in SPL behaviors to be complemented by game

developers and designers. Its assets are developed with flexibility as a prima-

ry tenet. It also relies on a feedback process in which extensions and customi-

zations can be incorporated as built-in assets in subsequent versions of the

SPL. This contrasts the expressive but inflexible universe of click-and-play

tools.

183

 Increased confidence that the resulting games comply with the original

vision and requirements. As introduced in Chapter 2, mapping the require-

ments of each product variant onto a framework, such as a game engine, is a

non-trivial problem that generally requires the expertise of an architect or sen-

ior developer. Leveraging SPL techniques, Domain-Specific Game Develop-

ment encapsulates the knowledge of more experienced developers and do-

main experts to automate such mapping step.

From the problem domain point-of-view, this research contributes to integrating

more the digital games development and DSL/SPL areas, by providing a comprehensive

discussion on the motivation and needs for the former to leverage the latter, elaborating on

their intersections and points of high and low applicability.

We also provide at least three contributions to the broader Domain-Specific Devel-

opment field. First, we present a compilation of the good characteristics of domain-

specific assets, which can be used for guidance and evaluation of domain-specific process-

es. Second, we also presented a compilation of multiple approaches related to the eval-

uation of Domain-Specific Development (see Appendix B). Finally, our experimental

study follows a scientific methodology, comprehends different standpoints (development ef-

fort improvement, ROI, helpfulness, difficulties, etc.) and can be used as a baseline for as-

sessing the effectiveness of other domain-specific solutions.

6.2 Limitations and Future Work

Perhaps the main limitation of the proposed Domain-Specific Game Development approach

is that it cannot be considered a complete Domain Engineering process per se, covering in

full all areas of Domain Engineering (Domain Analysis, Design and Implementation). As in-

troduced in Chapter 4, some Domain Engineering tasks are out of the scope of the approach

or were not detailed. Examples include market analysis, evaluation functions, the domain-

specific software architecture design and representation, build processes and installation

processes. An important next step in the research is to comprehend such tasks toward a

complete game Domain Engineering process, exploring how digital games development pe-

culiarities impact or are impacted by them. An initial step to evaluate the effort of such a fu-

ture work is to identify what percentage of Domain Engineering activities are touched by the

approach versus the ones left out (Figure 14).

 Some guidance items that we suggest as part of the approach (Chapter 4) are based

on our own experience, trends identified from the SPL and DSL literatures and good sense.

As a result, more actual evidence is welcome to complement the justification of such guid-

ance items and more strongly back them up from a scientific perspective.

184

 On the other hand, we believe that at least some of the outcomes of this research can

also be employed to domains other than game development, or even be used as best prac-

tices for generic Domain Engineering processes. Examples include domain envisioning

184ractiities, the use of core dimensions prior to the features breakdown and, most notably,

the “edge center” approach for creating core domain assets. However, exploring the applica-

bility of such tasks and guidelines to other domains was not pursued by this research. Such a

new focus seems to be quite exciting as a means to investigate a more broad applicability of

the contributions to the SPL community.

 The proposed approach has a strong focus on the engineering pieces of game devel-

opment. While boundaries with other areas are touched, especially game design, there is a

lot of room to explore on how the proposed engineering practices integrate with other disci-

plines, such as art, sound, storytelling, artificial intelligence and so on. Likewise, the experi-

mental study could be extended by collecting opinions not only from software engineers, but

also from other profiles such as game designers, artists and others. Running new versions of

the experiment in which more threats are addressed (e.g., using development teams instead

of a single developer or a more heterogeneous group of subjects) would also be a valuable

contribution.

 Still in the evaluation front, one of the most natural next steps is to assess the

184ractitiveness of the approach against other digital game domains, such as adventure

games, platform games, board games, god games or a mix of them. We would also be really

interested in knowing the outcomes of applying and evaluating the approach to horizontal

domains, such as educative games (edutainment), serious games, adult games, “adver-

games” and programming games. In the latter domain, players have no direct influence on

the course of the game. Instead, a computer program or script is written in some domain-

specific programming language in order to control the actions of the game entities. Therefore,

playing a “programming game” means creating a program, using a DSL, that will determine

how entity instances behave. This adds a whole new meta-level to the proposed approach

(creating DSLs for creating games that create DSLs) which might yield interesting outcomes.

It also opens a new front of exploration related to the ability of machines to fully create (and

why not play?) games. Some robots are already able to deliver artistic contributions (by

painting and composing); creating end-to-end games would be a challenging next step. Such

very interesting discussion, of course, is out of the scope of this research.

Our evaluation methodology compiled good properties (characteristics) of domain-

specific development assets, and evaluated the proposed approach against them. A natural

evolution in that line consists on improving the approach by making it to better address some

of such characteristics, such as testability and model-to-model transformation.

185

While our evaluation methodology was focused on investigating how the proposed

approach compares to the state-of-the-art techniques in game development employed by the

industry (i.e., using game engines), we did not engage in comparing it with click-n-play tools,

as they are more applicable for simpler domains. Likewise, more refined experiments could

be performed to evaluate the approach in a more holistic way, with control groups aimed at

developing DSLs and generators for a same game domain, but one trained on the Domain-

Specific Game Development approach and another employing state-of-the-art DSL develop-

ment approaches. Experiments for evaluating other deliverables of the approach, such as

feature models and reference architectures, could also be employed in the future.

From an implementation perspective, our case study and experiment were limited to

Microsoft technologies such as the Microsoft DSL Tools (as the language workbench) and

XNA (as the target game platform), empowered by the FlatRedBall game engine. The im-

plementation of the approach through a mix of other language workbenches (such as Inten-

tional Software and JetBrains’ MPS), game engines and target platforms (e.g., mobile devic-

es such as the iPhone) would be an interesting addition to the evaluation. We also consider

as promising future work to pursue the investigation in more details of how other Software

Engineering techniques such as Aspect Oriented Programming (AOP) [Kiczales et al., 1997]

and staged configuration [Czarnecki et al., 2004b] apply to game SPLs.

As developers move the focus from source code to models, it is natural to think about

empowering the modeling experience with popular tools and concepts that are already in

place for the programming experience. For instance, although the techniques explored in this

thesis enable game developers to debug generated code, we do not touch the topic of model

debugging. Such a technique provides a higher level of abstraction to the debugging experi-

ence, enabling developers to add breakpoints to some model elements and inspect their val-

ues in run time, during a debug session. Similarly, model tracing and other programming

techniques that could be applied to models were left out of the scope of this research.

Blow [2004] points out that a way to avoid the long compile and load times when de-

veloping games is to write a significant amount of code in a higher-level extension language

that can be dynamically reloaded by the game engine without restarting. That said, another

possible future work consists in investigating whether MDD and DSLs could play a more im-

portant role in the design and use of such higher-level, dynamically loaded languages.

The ArcadEx SPL itself can still be further extended to automate more of the arcade

games domain. Not all of the variability points identified in the feature models are covered by

the ArcadEx built-in assets, so those are yet to be implemented. Examples include extending

the ScreenDSL to enable game developers and designers to draw indoor walls, adding rota-

tion support to entities and provide more cross-language integration support between the

186

heads-up displays (HUDs) of screens and entity properties. Such sub-domains and features,

of course, should be prioritized by following the tasks and guidelines of the proposed ap-

proach, and also take the controlled experiment’s feedback as input.

Finally, one of the pending items from this research is to realize the end-to-end expe-

rience of creating a new product instance by first configuring the domain’s feature model as-

sociated to the SPL, then launching rules based on the configuration to customize the IDE

and other SPL assets (such as the product architecture, frameworks, generated code and

DSL diagrams). This would provide a better starting point for developers to consume SPLs

and their assets.

6.3 Final Remarks

This research claims that there is a hiatus in game development (Figure 8), in which easy-to-

use script languages and click-n-play tools are many times not flexible enough, contrasting to

the powerful yet many times too complex world of game engines. As a confirmation of such a

claim, we have recently observed game development toolsets moving into the “high expres-

sive yet high flexible” quadrant, such as integrated graphical environments backed up by

game engines, like Unity [Menard, 2011]. Another related, recent trend is the increasing pop-

ularity of casual games, especially for the mobile and tablet markets. A natural question that

arises then is whether the proposed approach stays current in the light of such new devel-

opments.

 We believe that the new trend of casual and mobile games is a perfect case for Do-

main-Specific Game Development. These games not only have domain-specific mechanics,

but are also much simpler and require less development costs than typical AAA titles such as

the Halo, Gears of War and Fable series. That implies in a higher flow of games being devel-

oped for a same domain, which could make a good use of the ROI provided by Domain-

Specific Game Development. Such an increased amount of games in the market per year will

also require developers to focus on what makes each of them unique and distinct, and again

Domain-Specific Game Development can help by means of encapsulating commonality in

domain frameworks and supporting variability through languages, generators, IDE integration

and extensibility hooks. Domain-specific tools can be a good competitive advantage over

casual and mobile game development toolsets which are still somewhat generic, such as

Unit itself.

 Tasks related to the Domain-Specific Game Architecture might need to be revisited

and customized for such new domains. Game engines are still used by recent casual games

development approaches such as integrated graphical environments like Unit, but in contrast

to that and to AAA titles, casual and mobile games may not necessarily consume robust

187

game engines, whose complexity is one of the main motivations of Domain-Specific Game

Development. On the other hand, reuse opportunities (common code, patterns, configurable

components, etc.) are inevitable identified in any family of games belonging to a new do-

mains. Domain-Specific Game Development can still help to integrate those reuse artifacts

toward a domain framework that can be seamlessly consumed by variability assets, such as

languages. Nevertheless, we foresee that Game Domain Envisioning and Analysis activities,

such as establishing expectations for core dimensions and breaking down the target domain

in sub-domains toward more effective reuse assets, will still be applicable as is.

 For the future, we envision a game development supply chain, in which the many

different components encompassed by a digital game, from its plot to pixel shaders, could be

independently developed, customized and assembled with other components, toward com-

posing a final game. That would act as a catalyzer to unfold the “long tail” possibilities of

game development, enabling its mass customization, i.e., large-scale production of goods

tailored to individual customers’ needs [Pohl et al., 2005]. We consider the guidelines pro-

posed in this research, which enable the effective creation of game SPLs, as a down pay-

ment to realize such a vision.

 Nonetheless, all the guidelines and techniques presented as part of this research just

improve how game developers and designers are able to express their intentions. The most

important part, the what, still has to be figured out for each game. And that happens to be

the most challenging part of any software, as mentioned by Linda Northrop during the “No

Silver Bullet: Software Engineering Reloaded” panel held at the 22nd OOPSLA Conference:

“Software Engineering involves more than programming... the hardest thing about building

software is figuring out what to say, not how to say it.” [Fraser & Mancl, 2008]. No matter

how many abstraction layers, languages, tools and frameworks are provided atop the as-

sembly language instructions that run when a game is played, the most deterministic factor

for a successful game title is still a good game design, empowered by human-centric tasks

such as a creative process, rapid prototyping, early and often feedback. Engineering 187rac-

ticees are just means that enable a successful game development journey, but should not be

taken as goals by themselves. In short, Gabler et al. [2005] summarize it very well: “Design is

paramount: everything else from art to engineering exists only to serve the final design”.

188

189

REFERENCES

[Aaen et al., 1997] Aaen, I.; Bøttcher, P.; Mathiassen, L. The Software Factory: Contributions and Illu-

sion, in Proceedings of the Twentieth Information Systems Research Seminar in

Scandinavia, Oslo, 1997.

[Aarseth et al., 2003] Aarseth, E.; Smedstad, S.; Sunnana, L. A multi-dimensional typology of games, in

Copier M., Raessens J., Level Up, In Proceedings of Digital Games Research Con-

ference 2003, Utrecht, The Netherlands, 2003.

[Albuquerque, 2005] Albuquerque, M. Revolution Engine: 3D Game Engine Architecture (in Portuguese),

Computer Science BS conclusion paper, Federal University of Pernambuco, 2005.

[Almeida et al., 2006] Almeida, E. S., Mascena, J. C. C. P., Cavalcanti, A. P. C., Alvaro, A., Garcia, V. C.,

Meira, S. R. L. And Lucrédio, D. The Domain Analysis Concept Revisited: A

Practical Approach. 9
th
 International Conference on Software Reuse (ICSR), Turin,

Italy, p. 43-57, 2006.

[Almeida, 2007] Almeida, E. S. RiDE: The RiSE Process for Domain Engineering, Ph.D.

Thesis, Federal University of Pernambuco, 2007.

[Alves et al., 2005] Alves, V.; Matos, P.; Cole, L.; Borba, P.; Ramalho, G. Extracting and Evolving Mo-

bile Games Product Lines, 9
th

 International Software Product Line Conference

(SPLC’05), Rennes, France, September, 2005, pp. 70-81.

[Ambrosine, 2009] Ambrosine.com, Game Creation Resources, available at

http://www.ambrosine.com/resource.html, retrieved on April 3, 2009.

[America et al., 2000] America, P.; Obbink, H.; Ommering, R. V.; Linden, F. V. D. CoPAM: A Component-

Oriented Platform Architecting Method Family for Product Family Engineering, 1
st

Software Product Line Conference (SPLC1), Denver, Colorado, USA, August, 2000,

pp. 15.

[Anastasopoulos &

Gacek, 2001]

Anastasopoulos, M.; Gacek, C. “Implementing Product

Line Variabilities,” in Symposium on Software Reusability

(SSR), Toronto, Canada, 2001, pp. 109–117.

[Araujo, 2006] Araujo, A. AGP: Agile Game Process (in Portuguese), Computer Science BS con-

clusion paper, Federal University of Pernambuco, 2006.

[Araujo, 2009] Araujo, A. R. S. Play4Fun: A Casual Digital Games Factory. (in Portuguese) MSc

dissertation, Federal University of Pernambuco, 2009.

[Atkinson et al., 2000] Atkinson, C.; Bayer, J.; Muthig, D. Component-Based Product Line Development:

The KobrA Approach, 1
st
 Software Product Line Conference (SPLC1), Denver, Col-

orado, USA, August, 2000, pp.19.

[Azevedo et al., 2009] Azevedo, L. S. S. T.; Santos, A. L. M.; Furtado, A. W. B. Elegy: Applying the Game

Factory Process to the Role-Playing Games Domain (in Portuguese), VIII Brazilian

Symposium on Games and Digital Entertainment (SBGames2009), 2009.

190

[Baker et al. 2005] Baker, P.; Loh, S.; Weil, F. Model-driven engineering in a large industrial context –

190otorola case study. In Proceedings 8
th

 International Conference on Model Driven

Engineering Languages and Systems (MoDELS), Vol. 3713 of Lect. Notes in Comp.

Sc., pp. 476-491. Springer-Verlag, 2005.

[Barros et al., 2006] Barros, M. O.; Dantas, A. R.; Veronese, G. O.; Werner, C. M. L. Model-driven game

development: experience and model enhancements, in Software Project Manage-

ment Education. Software Process: Improvement and Practice, Vol. 11, No. 4, pp.

411-421, 2006.

[Basili et al., 1994] Basili, V. R.; Caldiera, G.; Rombach, H. D. The goal question metric approach. In

Encyclopedia of Software Engineering, pp. 528–532. John Wiley & Sons, Inc. 5.1.2,

1994.

[Bass et al., 2003] Bass, L.; Clements, P.; Kazman, R. Software Architecture in Practice, 2
nd

 Edition.

Addison-Wesley, 2003.

[Basu et al., 1997] Basu, A.; Hayden, M.; Morrisett, G.; von Eicken, T. A language-based approach to

protocol construction, in First ACM SIGPLAN Workshop on Domain-Specific Lan-

guages, pp. 1-15, 1997.

[Batory &

O’Malley, 1992]

Batory, D.; O’Malley, S. The Design and Implementation of Hierarchical Software

Systems with Reusable Components, ACM Transactions on Software Engineering

and Methodology (TOSEM), Vol. 01, No. 04, October, 1992, pp. 355-398.

[Batory et al., 2002] Batory. D.; Johnson, C.; MacDonald, B.; von Heeder, D. Achieving extensibility

through product-lines and domain-specific languages: a case study, ACM Transac-

tions on Software Engineering and Methodology (TOSEM), Vol. 11, No. 02, April,

2002, pp. 191-214.

[Bayer et al., 1999] Bayer, J.; Flege, O.; Knauber, P.; Laqua, R.; Muthig, D.; Schmid, K.; Widen, T.;

DeBaud, J. PuLSE: A Methodology to Develop Software Product Lines, In: Sympo-

sium on Software Reusability (SSR), ACM Press, Los Angeles, USA, May, 1999,

pp. 122-131.

[Bellis, 2009] Bellis, M. Computer and Video Game History, available at

http://inventors.about.com/library/inventors/blcomputer_videogames.htm, retrieved

on April 3, 2009.

[Beuche &

Spinczyk, 2003]

Beuche, D.; Spinczyk, O. Variant management for embedded Software Product

Lines with pure::consul and AspectC++, in 18
th
 Object-oriented programming, sys-

tems, languages, and applications (OOPSLA). ACM, 2003, pp. 108–109.

[Björk &

Holopainen, 2005]

Björk, S.; Holopainen, J. Patterns in Game Design, Charles River Media Inc., Hing-

ham, Massachusetts, 2005.

[Björk et al., 2003] Björk, S.; Lundgren, S.; Holopainen, J. Game Design Patterns, in Copier M.,

Raessens J., Level Up — Proceedings of Digital Games Research Conference

2003, Utrecht, The Netherlands, 2003.

[Blow, 2004] Blow, J. 2004. Game Development: Harder Than You Think. ACM Queue, Volume

1, Issue 10, 2004, pp. 28-37.

191

[Bonnie, 2007] Bonnie, R. The Power of the Persona. The Pragmatic Marketer Magazine, vol. 5,

no. 4, 2007.

[Bosch, 2000] Bosch, J. Design and Use of Software Architectures: Adopting and Evolving a

Product Line Approach, Pearson Education (Addison-Wesley & ACM Press), 2000.

[Bosch, 2002]

Bosch, J. Maturity and Evolution in Software Product Lines: Approaches, Artefacts

and Organization, 2
nd

 Software Product Line Conference (SPLC2), San Diego,

California, August, 2002, pp. 257-271.

[Breyer, 2008] Breyer, F. Heuristic Evaluation for Digital Game Prototypes (in Portuguese), MSc

dissertation, Department of Design, Federal University of Pernambuco, 2008.

[Bruce, 1997] Bruce, D. What makes a good domain-specific language? APOSTLE, and its ap-

proach to parallel discrete event simulation, in First ACM SIGPLAN Workshop on

Domain-Specific Languages, pp. 17-35, 1997.

[Calheiros at al., 2007] Calheiros, F.; Borba, P.; Soares, S.; Nepomuceno, V.; Alves, V. Product line varia-

bility refactoring tool, 1
st
 Workshop on Refactoring Tools (WRT’07), in conjunction

with the 21
st
 European Conference on Object-Oriented Programming (ECOOP’07),

Berlin, Germany, July, 2007, pp. 33-34.

[Callele et al., 2005] Callele, D., Neufeld, E., Schneider, K., 2005. Requirements Engineering and the

Creative Process in the Video Game Industry. In Proceedings of the 13
th

 IEEE In-

ternational Conference on Requirements Engineering. IEEE, 240-252, 2005.

[Carvalho, 2006] Carvalho, G. H. P. A Prescriptive Methodology for Computer Games Development

(in Portuguese), Computer Science BS conclusion paper, Federal University of Per-

nambuco, 2006.

[Chandler, 2006] Chandler, H. M. Game Production Handbook. Charles River Media. 1
st
 edition,

2006.

[Cheesman &

Daniels, 2001]

Cheesman, J.; Daniels, J. UML Components: A Simple Process for Specifying

Component-Based Software, Addison-Wesley, 2001.

[Church, 1999] Church, D. Formal Abstract Design Tools, July 1999, available at

http://www.gamasutra.com/view/feature/3357/formal_abstract_design_tools.php,

retrieved on February 28, 2010.

[Clements &

Northrop, 2001]

Clements, P.; Northrop, L.M. Software Product Lines: Practices and Patterns, Addi-

son Wesley, August, 2001.

[Cockburn, 2001] Cockburn, A. Agile Software Development, Addison-Wesley, 2001.

[Collins-Cope &

Matthews, 2000]

Collins-Cope, M.; Matthews H. A Reference Architecture for Component Based

Development. Object Oriented Information Systems (OOIS) 2000, pp. 225-237.

[Cook et al., 2007] Cook, S.; Jones, G.; Kent, S.; Wills, A. C. Domain-Specific Development with Visual

Studio DSL Tools, Addison-Wesley Professional, June 2007.

[Costikyan, 1994] Costikyan, G. I Have No Words & I Must Design, Interactive Fantasy journal, no. 2,

1994.

[Crawford, 1984] Crawford, C. The Art Of Computer Game Design: Reflections Of A Master Game

Designer, Osborne/McGraw-Hill,U.S, May 1984.

192

[Czarnecki &

Eisenecker, 2000]

Czarnecki, K.; Eisenecker, U.W. Generative Programming: Methods, Tools, and

Applications. Addison Wesley, 2000.

[Czarnecki et al, 2002] Czarnecki, K.; Bednasch, T.; Unger, P.; Eisenecker, U. Generative programming for

embedded software: An industrial experience report, in GPCE, ser. LNCS, vol.

2487. Springer, 2002, pp. 156–172.

[Czarnecki et al., 2004] Czarnecki, K.; Helsen, S.; Eisenecker, U. Formalizing Cardinality-based Feature

Models and their Staged Configuration, OOPSLA’04 Eclipse Technology eXchange

Workshop, 2004.

[Czarnecki

et al., 2004b]

Czarnecki, K.; Helsen, S.; Eisenecker, U. Staged Configuration Using Feature Mod-

els, R.L. Nord (Ed.): SPLC 2004, LNCS 3154, pp. 266–283, Springer-Verlag, 2004.

[Czarnecki, 2005] Czarnecki, K. Overview of generative software development,” in Intl Workshop on

Unconventional Programming Paradigms, France, Sep 15-17, 2004, ser. LNCS,

Vol. 3566. Springer, 2005, pp. 326–341.

[D’Souza & Wills, 2001] D’Souza, D.; Wills, A. C. Objects, Components, and Frameworks with UML – The

Catalysis Approach, Addison-Wesley, 2001, pp. 816.

[Datamonitor, 2011] Datamonitor. Software: Global Industry Guide 2010, abstract available at

http://bit.ly/zIhV0b, last accessed on March 11, 2012.

[Deelstra et al., 2005] Deelstra, M.; Sinnema, M.; Van Gurp, J.; Bosch, J. Model Driven Architecture as

Approach to Manage Variability in Software Product Families. In: Aßmann, U., Aksit,

M., Rensink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 109–114. Springer, Hei-

delberg (2005).

[Demachy, 2003] Demachy, T. Extreme Game Development: Right on Time, Every Time, 2003.

Available at www.gamasutra.com.br/resource_guide/20030714/demachy_01.shtml,

retrieved on December 12, 2008.

[Dénes &

Keedwell, 1974]

Dénes, J.; Keedwell, A. D. Latin squares and their applications. New York-London:

Academic Press. Pp. 547, 1974.

[Diehl & Stroebe, 1987] Diehl, M.; Stroebe W. Productivity Loss In Brainstorming Groups: Toward the Solu-

tion of a Riddle. Journal of Personality and Social Psychology, Vol. 53, No. 3, pp.

497-509, 1987.

[Discovery, 2007] Discovery Channel, Rise of the Videogame Documentary, released in November

2007.

[Dobbe, 2007] Dobbe, J. A Domain-Specific Language for Computer Games. MSc dissertation,

Delft University of Technology, 2007.

[Easterbrook

et al., 2007]

Easterbrook, S. M.; Singer, J.; Storey, M.; Damian, D. Selecting Empirical Methods

for Software Engineering Research, in F. Shull and J. Singer “Guide to Advanced

Empirical Software Engineering”, Springer, 2007.

[ESA, 2011] Entertainment Software Association, Essential Facts about the Computer and Video

Game Industry, 2011.

193

[Eskelinen, 2001] Eskelinen, M. Towards Computer Game Studies, Proceedings of SIGGRAPH 2001,

Art Gallery, Art and Culture Papers, pp. 83-87, 2001.

[Fabricatore

et al., 2002]

Fabricatore, C.; Nussbaum, M.; Rosas, R. Playability in Action Videogames: A

Qualitative Design Model, Human Computer Interaction, Vol. 17, No. 4, pp. 311-

368, 2002.

[Falstein, 2006] Falstein, N. The 400 Project, March 2006, available at

http://www.theinspiracy.com/400_project.htm, retrieved on February 28, 2010.

[Fan et al., 1996] Fan, J. et al. Black Art of Java Game Programming, Waite Group Press, 1996.

[Fenton &

Pfleeger, 1988]

Fenton, N. E.; Pfleeger, S. L.; Software Metrics: A Rigorous and Practical Approach,

Course Technology. 2 edition, 1998.

[Flood, 2003] Flood, K. Game Unified Process (GUP). 2003. Available at

www.gamedev.net/references/articles/article1940.asp, retrieved on December 12,

2008.

[Flynt, 2005] Flynt, J. Software Engineering for Game Developers. Course Technology, 1
st
 edi-

tion, 2005.

[Folmer, 2007] Folmer, E. Component Based Game Development: A Solution to Escalating Costs

and Expanding Deadlines? 10
th
 International ACM SIGSOFT Symposium on Com-

ponent-Based Software Engineering (CBSE), 2007, pp. 66-73.

[Fowler, 2004] Fowler, M. Inversion of Control Containers and the Dependency Injection pattern,

January 2004, available at http://martinfowler.com/articles/injection.html (May 10,

2009).

[Fowler, 2005] Fowler, M. Language Workbenches: The Killer-App for Domain Specific Lan-

guages?, available at martinfowler.com/articles/languageWorkbench.html, retrieved

on March 23, 2009.

[Frakes & Isoda, 1994] Frakes, W. B.; Isoda, S. Success Factors of Systematic Software Reuse, IEEE

Software, Vol. 12, No. 01, September, 1994, pp. 15-19.

[Frakes & Kang, 2005] Frakes, W. B.; Kang, K. C. Software Reuse Research: Status and Future, IEEE

Transactions on Software Engineering, Vol. 31, No. 07, July, 2005, pp. 529-536.

[France &

Rumpe, 2007]

France, R.; Rumpe, B., “Model-driven development of complex software: A research

roadmap,” in 29
th

 Intl Conference on Software Engineering — Future of Software

Engineering. USA: IEEE/CS, 2007, pp. 37–54.

[Fraser & Mancl, 2008] Fraser, S., Mancl, D. No Silver Bullet: Software Engineering Reloaded. IEEE Soft-

ware, vol. 25, no. 1, pp. 91-94, Jan./Feb. 2008

[Frauenheim, 2004] Frauenheim, E. No fun for game developers? CNET News,

http://news.cnet.com/8301-10784_3-5449296-7.html, retrieved on November 11,

2010.

[Fullerton et al., 2004] Fullerton, T.; Swain, C.; Hoffman, S. 2004. Game Design Workshop: Designing

Prototyping and Playtesting Games. CMP Books, pp. 157.

[Furtado &

Santos, 2002]

Furtado, A.; Santos A. FunGEn: A Game Engine for Haskell (in Portuguese), 1
st

Brazilian Workshop in Games and Digital Entertainment (Wjogos2002).

194

[Furtado, 2006] Furtado, A. SharpLudus: Improving Game Development Experience through Soft-

ware Factories and Domain-Specific Languages. MSc dissertation, Federal Univer-

sity of Pernambuco, 2006.

[Gabler et al., 2005] Gabler, K.; Gray, K.; Kucic, M.; Shodhan, S. How to Prototype a Game in Under 7

Days: Tips and Tricks from 4 Grad Students Who Made Over 50 Games in 1 Se-

mester, available at http://www.gamasutra.com/features/20051026/gabler_01.shtml,

retrieved on May 1, 2008.

[Gamma et al., 1995] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns, Elements of Re-

usable Object-Oriented Software, Addison-Wesley, 1995.

[Genero et al., 2007] Genero, M. et al. Building measure-based prediction models for uml class diagram

maintainability. Empirical Softw. Engg., Kluwer Academic Publishers, Hingham, MA,

USA, Vol. 12, No. 5, pp. 517–549, 2007.

[Genero et al., 2008] Genero, M.; Poels, G.; Piattini, M. Defining and validating metrics for assessing the

understandability of entity-relationship diagrams. Data Knowl. Eng., Elsevier Sci-

ence Publishers B. V., Amsterdam, The Netherlands, Vol. 64, No. 3, pp. 534–557,

2008.

[Gillin, 2006] Gillin, P. Getting Into Gear. BizTech Magazine, June, 2006.

[Gomaa, 2005] Gomaa, H. Designing Software Product Lines with UML: From Use Cases to Pat-

tern-Based Software Architectures, Addison-Wesley, 2005, pp. 701.

[Gray et al., 2008] Gray, J.; Fisher, K.; Consel, C.; Karsai G.; Mernik, M.; Tolvanen, J.-P. “Domain-

Specific Languages: The Good, the Bad, and the Ugly” Panel, International Confer-

ence on Object Oriented Programming, Systems, Languages and Applications

(OOPSLA) 2008.

[Greenfield et al. 2004] Greenfield, J. et al., Software Factories: Assembling Applications with Patterns,

Models, Frameworks, and Tools, Wiley & Sons, 2004.

[Greenfield, 2004] Greenfield, J. The Case for Software Factories, Microsoft Architect Journal, July

2004.

[Griss et al., 1998] Griss, M. L.; Favaro, J.; d’ Alessandro, M. Integrating Feature Modeling with the

RSEB, 5
th

 International Conference on Software Reuse (ICSR), Victoria, Canada,

June, 1998, pp. 76-85.

[Guckenheimer &

Perez, 2006]

Guckenheimer, S.; Perez, J. J. Software Engineering with Microsoft Visual Studio

Team System, Addison-Wesley Professional. 1
st
 edition, May 2006.

[Guerra et al., 2008] Guerra, E.; Lara, J. de.; Díaz, P. Visual specification of measurements and rede-

signs for domain specifi c visual languages. J. Vis. Lang. Comput., Academic Press,

Inc., Orlando, FL, USA, Vol. 19, No. 3, pp. 399–425, 2008.

[Guizzardi et al., 2002] Guizzardi, G.; Pires, L. F.; Sinderen, M. J. V. On the role of domain ontologies in the

design of domain-specific visual modeling languages,” in 2
nd

 OOPSLA Workshop on

Domain-Specific Visual Languages, 2002.

195

[Haddad &

Tesser, 2003]

Haddad, H.; Tesser, H. Reusable Subsystems: Domain-Based Approach. In: 2002

ACM Symposium on Applied Computing (SAC 2002), pp. 971–975. ACM, New York

(2003).

[Henderson, 2006] Henderson, J. The Paper Chase: Saving Money via Paper

Prototyping. Gamasutra, available at

http://www.gamasutra.com/features/20060508/henderson_01.shtml, retrieved on

March 21, 2009.

[Hermans et al., 2009] Hermans, F.; Pinzger, M.; van Deursen, A. Domain-specific languages in practice: A

user study on the success factors. In Proceedings ACM/IEEE 12
th

 International

Conference on Model Driven Engineering Languages and Systems (MODELS),

Empirical Track, vol. 5795 of Lecture Notes in Computer Science, pp. 423-437.

Springer-Verlag, 2009.

[Hernandez &

Ortega, 2010]

Hernandez, F. E.; Ortega, R. R. Eberos GML2D: A Graphical Domain-Specific Lan-

guage for Modeling 2D Video Games.In Proceedings of the 10
th

 SPLASH Workshop

on Domain-Specific Modeling (DSM’10), Aalto-Print, 2010.

[Herndon &

Berzins, 1988]

Herndon, R. M.; Berzins, V. A. The realizable benefits of a language 195rototypeing

language, IEEE Transactions on Software Engineering, Volume 14, pp. 803-809,

1988.

[Hessellund

et al., 2007]

Hessellund, A.; Czarnecki, K.; Wasowski, A. Guided development with multiple do-

main-specific languages, in MoDELS, ser. LNCS, Vol. 4735. Springer, 2007, pp.

46–60.

[Jackson, 1995] Jackson, M.A. Software Requirement & Specifications: A lexicon of practice, princi-

ples and prejudices, Addison-Wesley, 1995.

[Jacobson et al., 1999] Jacobson, I.; Booch, G.; Rumbaugh, J. The Unified Software Development Process,

Addison-Wesley Professional, 1
st
 edition, 1999.

[Jenkins, 2003] Jenkins, H. Game Design as Narrative Architecture, in Wardrip-Fruin N., Harrigan

P., First Person: New Media as Story, Performance and Game, The MIT Press,

Cambridge MA, 2003.

[Juul, 2009] Juul, J. A history of the computer game, in A Clash between Game and Narrative,

MSc dissertation, Institute or Nordic Language and Literature, University of Copen-

hagen, February 1999.

[Kang et al., 1990] Kang, K.; Cohe, S.; Hess, J.; Nowak, W.; Peterson, S. Feature-oriented domain

analysis (FODA) feasibility study. Technical Report CMU/SEI-90TR-21, Software

Engineering In-stitute, Carnegie Mellon University, 1990.

[Kang et al., 2002] Kang, K. C.; Lee, J.; Donohoe, P. Feature-Oriented Product Line Engineering,

IEEE Software, Vol. 19, No. 04, July/August, 2002, pp.58-65.

[Kärnä et al., 2009] Kärnä, J.; Tolvanen, J-P., Kelly, S. Evaluating the use of DSM in embedded UI ap-

plication development, Proceedings of DSM’09 at OOPSLA, 2009.

[Keith, 2006] Keith, C., 2006. Get in the Game: Agile Lessons From Video Game Developers.

Better Software Magazine, Nov. 2006.

196

[Kelly &

Tolvanen, 2008]

Kelly, S.; Tolvanen, J-P. Domain-Specific Modeling: Enabling full code generation.

Wiley, 2008.

[Kelly, 2010] Kelly, S. Domain-Specific Modeling: MDD that Works, blog, 17 March 2010, availa-

ble at http://bit.ly/g1KyWp, retrieved on December 28, 2011.

[Kent, 2006] Kent, L.S. Return of Arcade: Great ‘80s-style fun. Entertainment News Service,

South Coast Today newspaper, March 03, 96.

[Kiczales et al., 1997] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C. V.; Loingtier, J-M.;

Irwin, J. Aspect-Oriented Programming. In Proceedings of the European Confer-

ence on Object-Oriented Programming, ECOOP’97, LNCS 1241, pp. 220–242, Fin-

land, June 1997. Springer-Verlag.

[Kieburtz et al., 2006] Kieburtz, R. B.; McKinney, L.; Bell, M.; Hook, J.; Kotov, A.; Lewis, J.; Oliva, D. P.;

Sheard, T.; Smith, I.; Walton, L. A software engineering experiment in software

component generation, in Proceedings of the 18
th

 International Conference on

Software Engineering, pp. 542-553, 1996.

[Klotz, 2009] Klotz, M. Lunch session at the International Summit on the Law and Business of

Video Games, 2009.

[Knodel et al., 2005] Knodel, J.; Anastasopolous, M.; Forster, T.; Muthig, D. An Efficient Migration to

Model-driven Development (MDD). Electronic Notes in Theoretical Computer Sci-

ence 137(3), 17–27 (2005).

[Koster, 2004] Koster, R. A Theory of Fun for Game Design, Paraglyph, 2004.

[Kreimeier, 2003] Kreimeier, B. Game Design Methods: A 2003 Survey, March 2003, available at

http://www.gamasutra.com/features/20030303/kreimeier_01.shtml, retrieved on

February 28, 2010.

[Kreimeier, 2003b] Kreimeier, B. The Case For Game Design Patterns, March 2002, available at

http://www.gamasutra.com/features/20020313/kreimeier_01.htm, retrieved on De-

cember 14, 2007.

[Kruchten, 1995] Kruchten, P. The 4+1 view model of architecture. IEEE Softw., IEEE Computer

Society Press, Los Alamitos, CA, USA, v. 12, n. 6, p. 42–50, 1995.

[Krueger, 1992] Krueger, C. W. Software Reuse, ACM Computing Surveys, Vol. 24, No. 02, June,

1992, pp. 131-183.

[Krueger, 2001] Krueger, C. Easing the transition to software mass customization. In Proceedings of

the 4
th
 International Workshop on Software Product-Family Engineering, pp. 282-

293, 2001.

[Kücklich, 2003] Kücklich, J. Perspectives of Computer Game Philology. Games Studies: The Inter-

national Journal of Computer Games Research, Vol. 3, No. 1, 2003.

[Lane, 1999] Lane, D. Hyperstat, Atomic Dog Publishing, 2
nd

 edition, 1999.

197

[Lange &

Chaudron, 2004]

Lange, C.; Chaudron, M. An empirical assessment of completeness in uml designs.

In: Proceedings of the 8
th

 Conference on Empirical Assessment in Software Engi-

neering (EASE04), 2004. Pp. 111-121.

[Lange &

Chaudron, 2005]

Lange, C. F. J.; Chaudron, M. R. V. Managing model quality in UML-based software

development. In: STEP ’05: Proceedings of the 13
th
 IEEE International Workshop

on Software Technology and Engineering Practice. Washington, DC, USA: IEEE

Computer Society, 2005. Pp. 7-16.

[Ledeczi et al., 2001] Ledeczi, A.; Bakay, A.; Maroti, M.; Volgyesi, P.; Nordstrom, G.; Sprinkle, J.; Karsai,

G. Composing Domain-Specific Design Environments. IEEE Computer, vol. 34, no.

11, pp 44-51, 2001.

[Lee & Kang, 2004] Lee, K.; Kang, K. C. Feature dependency analysis for product line component de-

sign, in 8
th

 Intl Conference on Software Reuse (ICSR), Madrid, Spain, 2004, pp. 69–

85.

[Lee at al., 2002] Lee K.; Kang, K. C.; Lee, J. Concepts and guidelines of feature modeling for prod-

uct line software engineering, in 7
th

 Intl Conference on Software Reuse (ICSR),

Austin, Texas, 2002, pp. 62–77.

[Lennox et al., 2004] Lennox, J.; Wu, X.; Schulzrinne, H. Call Processing Language (CPL): A Language

for User Control of Internet Telephony Services, October 2004,

http://www.ietf.org/rfc/rfc3880.txt

[Lenz &

Wienands, 2006]

Lenz, G.; Wienands, C. Practical Software Factories in .NET. Apress, 2006.

[Lindley, 2003] Lindley, A. Game Taxonomies: A High Level Framework for Game Analysis and

Design, GamaSutra.com, 2003, available at

http://www.gamasutra.com/features/20031003/lindley_01.shtml, May 04, 2009.

[Lisboa et al., 2007] Lisboa, L. B.; Garcia, V. C.; Almeida, E. S.; Meira, S. R. L. ToolDAy A Process-

Centered Domain Analysis Tool , 21
st
 Brazilian Symposium on Software Engineer-

ing, Tools Session, João Pessoa, Paraíba, Brazil, 2007.

[Lisboa et al., 2010] Lisboa, L. B.; Garcia, V. C.; Lucrédio, D.; Almeida, E. S.; Meira, S. R. L.; Fortes, R.

P. M. A systematic review of domain analysis tools. Information & Software Tech-

nology, vol. 52, no. 1, pp. 1-13, 2010.

[Lucrédio et al., 2008] Lucrédio, D.; Fortes, R. P. M.; Almeida, E. S.; Meira, S. R. L. Performing domain

analysis for model-driven software reuse. In 10
th

 International Conference on Soft-

ware Reuse, Beijing, China, 2008.

[Lucrédio, 2009] Lucrédio, D. A Model-Driven Approach for Software Reuse, PhD thesis, São Paulo

University (USP), 2009 (In Portuguese: Uma Abordagem Orientada a Modelos para

Reutilização de Software)

[Lucrédio, Fortes,

Furtado et al., 2009]

Daniel, L.; Fortes, R. P. M.; Furtado, A. W. B.; Santos, L. M.; Almeida, E. S.; Meira,

S. L. Systematic Domain Implementation Using Model-Driven Development, submit-

ted to the 2009 IEEE/ACM International Conference on Automated Software Engi-

neering (ASE).

198

[Madeira, 2003] Madeira, C. FORGE V8: A Computer Games and Multimedia Applications Devel-

opment Framework (in Portuguese), MSc dissertation, Federal University of Per-

nambuco, 2003.

[Maiden &

Sutcliffe, 1996]

Maiden, N.; Sutcliffe, A. A computational mechanism for parallel problem decompo-

sition during requirements engineering. In: 8
th

 International Workshop on Software

Specification and Design, Germany, pp. 159–163 (1996).

[Maier & Volk, 2008] Maier, S.; Volk, D. Facilitating Language-Oriented Game Development by the Help

of Language Workbenches. In Proceedings. Of the 2008 Conference Future Play,

pp.224-227, ACM, 2008.

[Marinho, 2010] Marinho, L. P. GAL: A Domain-Specifc Language for Multi-Touch Games (in Portu-

guese), MSc dissertation, Federal University of Pernambuco, 2010.

[Marques

de Almeida, 2008]

Marques de Almeida, E. W. Commander Assembler: A Game Factory for Tactical

RPGs using Domain-Specific Languages (in Portuguese), Computer Science BS

conclusion paper, Federal University of Pernambuco, 2008.

[Mascena et al., 2005] Mascena, J. C. C. P.; Almeida, E. S. de.; Meira, S. R. de L. A comparative study on

software reuse metrics and economic models from a traceability perspective. In:

IEEE International Conference on Information Reuse and Integration (IRI). Las Ve-

gas, Nevada, USA: IEEE/CS Press, 2005. Pp. 72–77.

[McGonigal, 2010] McGonigal, G. Can Gaming Save the World? TED 2010 Conference Talk, available

at www.ted.com/talks/jane_mcgonigal_gaming_can_make_a_better_world.html,

retrieved on May 02, 2010.

[McGuire, 2006] McGuire, R. 2006. Paper Burns: Game Design with Agile Methodologies. Gamasu-

tra, available at http://www.gamasutra.com/features/20060628/mcguire_01.shtml,

retrieved on March 27, 2009.

[McIlroy, 1968] McIlroy, M. D. Mass Produced Software Components, NATO Software Engineer-

ing Conference Report, Garmisch, Germany, October, 1968, pp. 79-85.

[Menard, 2011] Menard, M. Game Development with Unity. Course Technology PTR; 1 edition,

January 19, 2011.

[Menon & Pingali, 1999] Menon, V.; Pingali, K. A case for source-level transformations in MATLAB, in Pro-

ceedings of the second USENIX Conference on Domain-Specific Languages, pp.

53-66 1999.

[MetaCase, 2000] MetaCase, Nokia Case Study, available at

http://metacase.com/papers/MetaEdit_in_Nokia.pdf, retrieved on December 28,

2011.

[Metacase, 2009] Metacase, Domain-Specific Modeling With Metaedit+: 10 Times Faster Than Uml,

http://www.metacase.com/papers/Domain-

specific_modeling_10X_faster_than_UML.pdf.

[Miller, 2008] Miller, P. 2008. Top 10 Pitfalls Using Scrum Methodology for Video Game Devel-

opment. Gamasutra, available at

http://www.gamasutra.com/view/feature/3724/top_10_pitfalls_using_scrum_.php,

retrieved on March 27, 2009.

199

[Modelware, 2006] Modelware. Engineering Metrics Definition. 2006. Available at:

http://www.modelware-ist.org. Retrieved on August 15, 2010.

[Mohagheghi &

Aagedal, 2007]

Mohagheghi, P.; Dehlen, V. Where is the proof? – a review of experiences from

applying MDE in industry. In: ECMDA-FA ’08: Proceedings of the 4
th

 European con-

ference on Model Driven Architecture. Berlin, Heidelberg: Springer-Verlag, 2008. P.

432–443.

[Mongan &

Suojanen, 2000]

Mongan, J.; Suojanen N. Programming Interviews Exposed, p. 177, John Wiley &

Sons, 2000.

[Monperrus, 2008] Monperrus, M. et al. A model-driven measurement approach. In: MoDELS ’08: Pro-

ceedings of the 11
th

 international conference on Model Driven Engineering Lan-

guages and Systems. Berlin, Heidelberg: Springer-Verlag, 2008. Pp. 505–519.

[Moon et al., 2005] Moon, M.; Yeom, K.; Chae, H. S. An approach to developing domain requirements

as core assets based on commonality and variability analysis in a product line. IEEE

Transactions on Software Enginerring, vol. 31, no. 7, pp. 551-569, 2005.

[Moreno-Ger

et al., 2008]

Moreno-Ger, P.; Martínez-Ortiz, I.; Sierra, J. L.; Fernández-Manjón, B. A Content-

Centric Development Process Model, Computer, Volume 41, Number 3. IEEE, pp.

24-30, 2008

[Murray, 1997] Murray, J.H. Hamlet on the Holodeck: The Future of Narrative in Cyberspace, The

Free Press, New York, 1997.

[Muskens et al. 2004] Muskens, J.; Chaudron, M.; Lange, C. Investigations in applying metrics to multi-

view architecture models. In: EUROMICRO ’04: Proceedings of the 30
th
 EUROMI-

CRO Conference. Washington, DC, USA: IEEE Computer Society, 2004. Pp. 372–

379.

[Muszynski, 2005] Muszynski, M. Implementing a domain-specific modeling environment for a family of

thick-client GUI components, in 5
th

 OOPSLA Workshop on Domain-Specific Model-

ing, San Diego USA, 2005.

[Nascimento, 2008] Nascimento, L. M. Core Assets Development in Software Product Lines: Towards a

Practical Approach for the Mobile Game Domain. MSc dissertation, Federal Univer-

sity of Pernambuco, Recife, Pernambuco, Brazil, 2008.

[Neighbors, 1980] Neighbors, J. M. Software Construction Using Components, PhD

Thesis, University of California, 1980.

[Neves et al., 2008] Neves, A.; Campos, F.; Campello, S. B.; Castillo, L.; Barros, S.; Aragão, S. eXten-

sible Design Methods (XDM) (in Portuguese), 8
th

 Brazilian Congress of Research

and Development in Design, 2008.

[Neward, 2008] Neward, T. Why the Next Five Years Will Be About Languages, keynote at the The

ServerSide Java Symposium, March 27, 2008.

[Nobrega, 2008] Nobrega, J. An Integrated Cost Model for Product Line Engineering, MSc disserta-

tion, Federal University of Pernambuco, 2008.

[Overmars, 2004] Overmars, M. Game Maker 6 Help, release on 2004.

200

[Oxland, 2004] Oxland, K. Gameplay and Design, London: Pearson Education, 2004.

[Parnas, 1972] Parnas, D. On the Criteria to be Used in Decomposing Systems into Modules.

Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[Parnas, 1976] Parnas, D. On the Design and Development of Program Families, IEEE Transac-

tions on Software Engineering, March 1976.

[Pessoa, 2003] Pessoa, C. wGEM: A Game Development Framework for Mobile Devices (in Portu-

guese), MSc dissertation, Federal University of Pernambuco, 2003.

[Pilgrim, 2008] Pilgrim, J. Measuring the level of abstraction and detail of models in the context of

MDD. In: Models in Software Engineering: Workshops and Symposia at MoDELS

2007, Nashville, TN, USA, 2007, revised selected papers. Berlin, Heidelberg:

Springer-Verlag, 2008, pp. 105–114.

[Pohl et al., 2005] Pohl, K.; Bockle, G.; van der Linden, F. Software Product Line Engineering: Foun-

dations, Principles and Techniques, Springer, 2005, pp. 468.

[Preece et al., 1994] Preece, J.; Rogers, Y.; Sharp, H.; Benyon, D.; Holland, S.; Ca, T. Human-Computer

Interaction, Addison Wesley, Harlow, England, 1994.

[Prieto-Diaz, 1990] Prieto-Diaz, R. Domain Analysis: An Introduction. In: ACM SIGSOFT Software En-

gineering Notes, Vol. 15, No. 02, pp. 47-54, April, 1990.

[Reed, 2010] Reed, A. Learning XNA 4.0: Game Development for the PC, Xbox 360, and Win-

dows Phone 7, O’Reilly Media, Inc., December 27, 2010.

[Reyno & Cubel, 2008] Reyno, E. M.; Cubel, G. A. C. Model-Driven Game Development: 2D Platform

Game Prototyping. Game-On 2008, 9
th

 International Conference on Intelligent

Games and Simulation, 2008, pp 5-7.

[Riebisch et al. 2002] Riebisch, M.; Böllert, K.; Streitferdt, D., Philippow, I. Extending Feature Diagrams

with UML Multiplicities. 6
th

 World Conference on Integrated Design & Process

Technology (IDPT2002), Pasadena, CA, USA. June 23 – 27, 2002.

[Riebisch, 2003] Riebisch, M. Towards a More Precise Definition of Feature Models. Modelling Vari-

ability for Object-Oriented Product Lines, pp. 64-76, BooksOnDemand Publ. Co.

Norderstedt, 2003.

[Robbes & Lanza, 2008] Robbes, R.; Lanza, M. Example-based program transformation, in MoDELS, ser.

LNCS, vol. 5301. Springer, 2008, pp. 174–188.

[Roberts &

Johnson, 1996]

Roberts, D.; Johnson, R. Evolving Frameworks: A Pattern Language for Developing

Object-Oriented Frameworks, Proceedings of Pattern Languages of Programs,

1996.

[Rocha, 2003] Rocha, E. Forge 16V: An Isometric Game Development Framework (in Portu-

guese), MSc dissertation, Federal University of Pernambuco, 2003.

[Rollings &

Adams, 2006]

Rollings, A.; Adams, E. Fundamentals of Game Design. Prentice Hall, 2006.

[Rollings &

Morris, 2000]

Rollings, A.; Morris, D.; Game Architecture and Design, The Coriolis Group, 2000.

201

[Safa, 2009] Safa, L. The Making Of User-Interface Designer: A Proprietary DSM Tool, Proceed-

ings of DSM’07 at OOPSLA, 2007.

[Sametinger, 1997] Sametinger, J. Software Engineering with Reusable Components, Springer- Verlag,

1997, pp.275.

[Sawyer, 1995] Sawyer, B. The Getting Started Guide to Game Development FAQ, GameDev.net,

1995, available at http://www.gamedev.net/reference/articles/article261.asp, May

04, 2009.

[Sayre, 2007] Sayre, C., 10 Questions for Shigeru Miyamoto,

http://www.time.com/time/magazine/article/0,9171,1645158,00.html, retrieved on

October 18, 2007.

[Schmidt, 2006] Schmidt, D. C. Guest editor’s introduction: Model-driven engineering, IEEE Com-

puter, vol. 39, no. 2, pp. 25–31, 2006.

[Shukla &

Schmit, 2006]

Shukla, D.; Schmidt, B. Essential Windows Workflow Foundation, Addison-Wesley

Professional, October 13, 2006.

[Simos et al., 1996] Simos, M.; Creps, D.; Klingler, C.; Levine, L.; Allemang, D. Organization Domain

Modeling (ODM) Guideboo, Version 2.0, Technical Report, June, 1996, pp. 509.

[Sinnema et al., 2007] Sinnema, M.; Deelstra, S. Classifying Variability Modeling Techniques. Information

and Software Technology, 49, pp. 717-739, 2007.

[Sirer & Bershad, 1999] Sirer, E. G.; Bershad, B. N. Using production grammars in software testing, in Pro-

ceedings of the second USENIX Conference on Domain-Specific Languages, pp. 1-

14, 1999.

[Slocombe, 2005] Slocombe, M. Men Spend More Money on Video Games Than Music: Nielsen Re-

port.Available at http://digital-lifestyles.info/display_page.asp?section=cm&id=2091,

retrieved on March 27, 2009.

[Sommerville &

Flynt, 2007]

Sommerville, I.; Flynt, J. Software Engineering. Addison-Wesley. 7
th

 edition, 2007.

[Spinellis, 2001] Spinellis, D. Notable design patterns for domain-specific languages. Journal of Sys-

tems and Software, Issue 56, pp. 91–99, 2001.

[SPL Hall of Fame,

2012]

Software Engineering Institute (SEI). Software Product Line Hall of Fame, available

at http://www.sei.cmu.edu/productlines/plp_hof.html, retrieved on April 1
st
, 2009.

[Staron, 2006] Staron, M. Adopting model driven software development in industry: A case study at

two companies. In Proceedings 9
th

 Int. Conf. on Model-Driven Engineering Lan-

guages and Systems (MoDELS’06), volume 4199 of Lect. Notes. In Computer Sci-

ence, pp. 57-72. Springer-Verlag, 2006.

[STARS, 1993] Software Technology for Adaptable, Reliable Systems (STARS), The Reuse-

Oriented Software Evolution (ROSE) Process Model, Technical Report, July,

1993, pp. 143.

[Sutman &

Schementi, 2005]

Sutman, A. B.; Schementi, J. M. Video game language. MSc dissertation, Worces-

ter Polytechnic Institute, 2005.

202

[Svahnberg et al., 2001] Svahnberg, M.; van Gurp, J.; Bosch, J. On the Notion of Variabilities in Software

Product Lines, IEEE/IFIP WICSA, Amsterdam, Netherlands, August, 2001, pp. 45-

54.

[Szyperski, 2002] Szyperski, C. Component Software: Beyond Object-Oriented Programming, Addi-

son-Wesley, 2002, pp. 588.

[Tolvanen &

Kelly, 2005]

Tolvanen, J.-P.; Kelly, S. Defining domain-specific modeling languages to automate

product derivation: Collected experiences,” in SPLC-Europe, ser. LNCS, vol. 3714.

Springer, 2005, pp. 198–209.

[Tolvanen, 1998] Tolvanen, J.-P. Incremental method engineering with modeling tools: Theoretical

principles and empirical evidence. PhD thesis, Jyvskyl Studies in Computer Sci-

ence, 1998.

[Tolvanen, 2005] Tolvanen, J.-P. Domain-specific Modeling: Welcome to the Next Generation of

Software Modeling, October 28, 2005, available at

http://www.devx.com/enterprise/Article/29619, retrieved on April 13
th

, 2008.

[Tracz, 1995] Tracz, W. Domain-Specific Software Architecture (DSSA) Pedagogical Example,

ACM SIGSOFT Software Engineering Notes, vol. 20, no. 3, pp. 49–62, 1995.

[van Deursen &

Klint, 1998]

van Deursen, A.; Klint, P. Little languages: Little maintenance?, Journal of Software

Maintenance, Vol. 10, pp. 75-92, 1998.

[van Deursen

et al., 2000]

van Deursen, A.; Klint, P.; Visser, J. Domain-Specific Languages: An Annotated

Bibliography, SIGPLAN Notices, ACM Press, Vol. 35, No. 6, pp. 26-36, 2000.

[Varró, 2006] Varró, D. Model transformation by example, in MoDELS, ser. LNCS, vol. 4199.

Springer, 2006, pp. 410–424.

[Villela, 2000] Villela, R. M. M. B. Search and Recovery of Components in Software Reuse Envi-

ronments (in Portuguese), PhD Thesis, Federal University of Rio de Janeiro, De-

cember, 2000, pp. 264.

[Völter & Bettin, 2004] Völter, M.; Bettin, J. Patterns for model-driven software development, in 9
th

 Europe-

an Conference on Pattern Languages of Programs (EuroPLoP), Irsee, Germany,

2004.

[Völter & Groher, 2007] Völter, M.; Groher, I. Product line implementation using aspect-oriented and model-

driven software development, in Software Product Line Conference. IEEE/CS,

2007, pp. 233–242.

[Völter, 2003] Völter, M. A catalog of patterns for program generation. In Eight European Confer-

ence on Pattern Languages of Programs (EuroPLoP 2003), Irsee, Germany, 2003.

[Warmer &

Kleppe, 2006]

Warmer, J.; Kleppe, A. Building a flexible software factory using partial domain

specific models, in Proc. Of The 6
th

 OOPSLA Workshop on Domain-Specific Model-

ing, 2006.

[Weiss & Lai, 1999] Weiss, D.M.; Lai. C. T. R. Software Product-Line Engineering: A Family-Based

Software Development Process, Addison-Wesley, 1999, pp. 426.

203

[White et al., 2005] White, J.; Schmidt, D. C.; Gokhale, A. Simplifying autonomic enterprise java bean

applications via model-driven development: A case study. In Proceedings 8
th

 Inter-

national Conference on Model Driven Engineering Languages and Systems (MoD-

ELS), Vol 3713 of Lect. Notes in Comp. Sc., pp. 601-615. Springer-Verlag, 2005.

[Wiegers, 1999] Wiegers, K. E. Software Requirements, Microsoft Press, 1999, Chapter 1.

[Wiering, 1999] Wiering, M. The Clean Game Library. MSc dissertation, University of Nijmegen,

1999.

[Wijers, 1991] Wijers, G. Modeling Support in Information Systems Development, Thesis Publish-

ers Amsterdam, 1991.

[Wimmer et al., 2007] Wimmer, M.; Strommer, M.; Kargl, H.; Kramler, G. Towards Model Transformation

Generation By-Example. In: 40
th

 Hawaii International Conference on System Sci-

ences (HICSS 2007), Hawaii, 2007.

[Winter et al., 2002] Winter, M.; Zeidler, C.; Stich, C. The PECOS Software Process, Workshop on

Component-based Software Development, 7
th

 International Conference on Soft-

ware Reuse (ICSR), Austin, Texas, USA, April, 2002, pp.07.

[Wohlin et al., 1999] Wohlin, C.; Runeson, P.; Höst, M.; Experimentation in Software Engineering: An

Introduction, Springer. 1
st
 edition, 1999.

[Wolf, 2002] Wolf, M. J. P. Genre and the Video Game, in Wolf M.J.P, The Medium of the Video

Game, University of Texas Press, 2002.

[Zagal et al., 2005] Zagal, J.; Mateas, M.; Fernandez-Vara, C.; Hochhalter, B.; Lichti, N. Towards an

Ontological Language for Game Analysis, In Proceedings of the Digital Interactive

Games Research Association Conference (DiGRA 2005), Vancouver B.C., June,

2005.

[Zwicky, 1948] Zwicky, F. Morphological Astronomy. The Observatory, Vol. 68, No. 845, pp 121-

143, 1948.

204

205

APPENDIX A. ARCADEX FEATURE MODEL

This Appendix presents the feature model created for the ArcadEx case study, during its mul-

tiple Game Domain Analysis iterations.

A.1 Root ArcadEx Game Feature

The root feature of the ArcadEx game SPL is the ArcadEx Game (Figure 81), whose sub-

features are majorly a direct implication of the core game dimensions defined in Chapter 4.

An ArcadEx game contains at least one player, a set of entities, graphics configurations, a

physics modeling, a flow of screens, a set of events, input devices and other miscellaneous

features. An ArcadEx game can optionally have audio capabilities and can present some arti-

ficial intelligence as well.

Figure 81 – Root ArcadEx Game feature model

A.2 Player Feature

Every ArcadEx game Player (Figure 82) has a score, a number of lives and at least one main

character entity which is controlled by him or her. An ArcadEx game can have a single player

mode and/or a multiplayer mode, in which up to four players play simultaneously and/or in a

turn-based fashion. It is interesting to notice that a multi-player game can offer both modes to

the players (obviously not at the same time): in turns and simultaneously.

206

Figure 82 – Player feature model

A.3 Entity Feature

The Entity feature (Figure 83) is one of the most complex features of the ArcadEx domain.

Entities represent the base classes of live beings and things of an ArcadEx game, while enti-

ty instances (next subsection) are their actual instances. The logical conclusion to create two

distinct features (Entity and Entity Instance) was not straightforward and reveals the value of

the Domain Analysis. If the ArcadEx game SPL was designed with only one Entity feature in

mind, as it could be incorrectly considered the most intuitive way, automation opportunities

would be missed and extra challenges would arise for creating the SPL assets. Of course,

since this is an interactive process, it is always possible to adjust the feature model in later

iterations.

 Each entity has a set of states with rules describing when one state should change to

another. Example of such states are walking, jumping or dying. A very common (but not

mandatory) state is the invincible state, in which the entity cannot be killed or hurt by any

event. For example, in the Berzerk game (Figure 84), the Evil Otto enemy is always in an in-

vincible state. In the game 1942, on the other hand, the player’s airplane becomes invincible

for a short period of time when executing a looping move, but has other states as well.

 An entity can have a special “role” in an ArcadEx game. Every game should have an

entity belonging to the Main Character role, which has a player associated with it. Another

role is the Non-Player Character (NPC), typically an enemy or other being who interacts with

the main character. Common types of NPCs are level bosses, which must be defeated so

207

that a level can be finally completed, and “damager touch” NPCs, which may hurt or kill a

main character if a collision between them happens. Finally, a game entity can also be an

item (which generally awaits to be collected) or projectiles, which can be thrown at (and usu-

ally damage) enemies.

Figure 83 – Entity feature model

Figure 84 – Evil Otto (invincible, smiley face) and 1942 airplane (the bottom one)

 A shape defines how an entity is displayed. It can be as simple as a geometric shape

or images that can compose an animation. Regarding movement, an ArcadEx game entity

can have a continuous movement or a discrete one. If the movement is step-based, the entity

can simply teleport to the next position or smoothly move from the previous one to the next.

Moreover, an entity movement, be it discrete or continuous, may be based in a formula. One

example is a circular movement around an axis or center.

An entity may also cause something interesting to happen when it collides with other

entities, but not all of them. Therefore, we say that an entity can have an “interest” to collide

with some other entities of the game. Finally, entities may have a plethora or custom attrib-

utes, such as fuel, ammo, etc. Such attributes may have a maximum and a default value, and

208

their current value can be shown to the players via heads-up displays (HUDs), as described

in the Graphics feature (Section A.5).

A.4 Entity Instance Feature

Entity instances (Figure 85) are actual instances of “beings and things” of an ArcadEx game.

For example, while an entity called “Monster” defines how monsters look and behave, mon-

ster instances (containing a position, velocity, damage level and so on) are those actually

seen by players in the screen. An object-oriented analogy also applies here, in the sense that

entities are classes and entity instances are objects.

Figure 85 – Entity Instance feature model

 Each entity instance has a current state related to the base Entity state machine, and

a bi-dimensional position related to the game world (which should be converted into a screen

position, in order to be rendered). Velocity and acceleration features are optional (albeit very

common) and control the movement of specific instances. Rotation angle and axis can im-

pact an entity instance display and movement as well. Although ArcadEx games are 2D

games, there’s support for Z-axis rotation, which creates some interesting effects. Entity in-

stances can also be visible or not to the player, or even something in between (defined by its

opacity value). If the entity in which an instance is based has the animation feature enabled,

the instance will have a current animation (and animation frame) in a given moment.

 Entity instances may belong to a group or formation. For example, enemy space

ships in the Galaga series attack in “waves” (Figure 86, left-hand side). Only when all ene-

mies of a formation are destroyed, the player can proceed to the next level. An interesting

209

example of a behavior that relies on formations is when the instances of the formation decide

to withdraw (or change their behavior somehow) when the player kills the majority of the for-

mation instances, or the formation leader. Other example occurs in Feeding Frenzy (Figure

86, right-hand side): if the player is able to eat a complete “school of fishes” (an entity for-

mation), he or she is eligible to win some bonuses.

Figure 86 – Galaga and Feeding Frenzy have “formations” of NPCs

 Finally, for each custom attribute defined for the base entity on which an instance is

based, the instance should have a value for it. For example, if the base entity defines a “hit

points” positive integer attribute whose maximum value is 100, related entity instances will

have, in a given moment, a number of hit points ranging from 0 to 100.

A.5 Graphics Feature

The Graphics feature (Figure 87) describes the graphical aspects of an ArcadEx game. With

regard to its display, for example, the game can be windowed or presented in full screen. Ar-

cadEx games should also have a screen resolution, consisting of a width and height, and can

rely on particle systems to model visual effects such as explosions, fire, rain, etc.

 The presence of at least a score Heads-up Display (HUD) is mandatory to ArcadEx

games. HUDs can be used to show other relevant game information to the user, such as the

high score, level data (current level number, for example) or even a radar containing the po-

sition of entities in the current game screen. Some HUDs can be specific to a numerical

game or entity property, such as the number of lives, amount of ammo, fuel, etc. Finally, a

HUD can be displayed in different ways: plain text, icons, progressive bars or any other cus-

tom representation provided by the SPL designers. Figure 88 shows a screenshot of the

RallyX game, which is a good example to illustrate such different types of displays.

210

Figure 87 – Graphics feature model

Figure 88 – RallyX and its different heads-up displays

A.6 Physics Feature

The Physics feature (Figure 89) of the ArcadEx domain reveals that every game should have

a collision detection mechanism, be it based on regions (such as bounding-boxes tech-

niques) or on pixels. Both techniques can also be simultaneously used. For example, a game

can use pixel-based collision detection only on the overlapping area of two bounding boxes.

 Entities of an ArcadEx game can also bounce against the walls and other entities,

eventually reversing directions or even stopping after that. Finally, some attraction forces,

such as gravity, can be part of the game physics as well.

211

Figure 89 – Physics feature model

A.7 Flow Feature

The Flow feature (Figure 90) essentially describes how the game flows, i.e., the sequence of

game screens presented to players. The purpose of a given game screen can be either to

display information (such as an introduction screen, game over screen, instructions screen,

etc.) or “host” actual game action (where the entities in fact behave and react to events). A

special (optional) type of action screen is the “demo” screen, in which game action can be

seen but there is no player interaction.

Figure 90 – Flow feature model

 A screen can scroll in one or more directions, based on time or on the position of a

given entity. If scrolling in a given direction can lead to the same area that the screen was

when the scrolling originally started, the scroll is considered to be a “wrapping scroll”.

212

 ArcadEx game screens contain different types of contents. Entity instances can be

present in a given screen, as well as walls, tiles and UI controls, such as heads-up displays.

Every screen contains a background, which has a color and possibly an image.

 Screens leads to other screens, therefore every screen has a set of exit conditions

which trigger the transition to next screens. The transition can have an effect, such as fading

out or in, for example. A (base) screen can also be inherited by other (child) screens, which

reuse (or override) the parent screen behavior and contents. Finally, in a given game there

should always be a screen which is the active (current) screen.

 Still regarding the Flow feature, other interesting optional sub-features are level ag-

gregation and win/lose conditions. Level aggregation refers to having a set of screens com-

posing, together, a game level. Win/lose conditions are special conditions that leads the

game flow to an end (the player wins the game or the game is over).

A.8 Event Feature

The Event feature (Figure 91) tells how an ArcadEx game behaves. Events are composed by

triggers (a condition that fires the event) and reactions (game, player or entity behavior that is

performed after the event is fired). Triggers can be of different types: input-based, timer-

based or collision-based (entity-entity collision or entity-wall collision). Changes in the value

of entities and players are also event triggers. Reactions, on the other hand, can do one or

more game actions, such as setting the value of an entity/player property, playing a sound

effect, removing or creating an entity instance, etc.

Figure 91 – Event feature model

A.9 Input Feature

The Input feature (Figure 92) is very straightforward and refers to how players provide input

to the game. A combination of devices can be used, such as keyboard, joystick, mouse and

dancing pads. An ArcadEx game can also have mappings from one input device to another

213

(for example, a set of keyboard keys that matches joystick buttons). That is quite useful to

provide input alternatives to players when not all devices are present. Finally, input patterns

refer to common bindings from input actions to the change of game/player/entity attributes.

For example, joystick sticks or keyboard arrows can be bound to the velocity of an entity. In

other common input pattern, a joystick stick is bound to entity rotation while other is bound to

entity thrusting.

Figure 92 – Input feature model

A.10 Audio Feature

The Audio feature (Figure 93) is all about optionally adding sound effects and background

music to an ArcadEx game. A sound effect can be created either from a resource (such as a

.wav file which is transformed into a game “asset”) or from a string using speech synthesizer.

Background music is created from a resource and can optionally be played in loop.

Figure 93 – Audio feature model

214

A.11 AI Feature

The AI feature (Figure 94) is composed by a series of optional sub-features related to the

artificial intelligence of the game. An ArcadEx game, especially its entities, can be provided

with intelligent logic to follow a path, find a path, chase an entity, run away from an entity and

avoid a collision (evasion).

Figure 94 – AI feature model

A.12 Miscellaneous Feature

The Miscellaneous feature (Figure 95) groups together general metadata of an ArcadEx

game, such as the game description (synopsis) and suggested rating, like those defined by

the Entertainment Software Ratings Board (ESRB). It also comprises an optional runtime el-

ement of ArcadEx games: the generation of “randomness” to be consumed by other game

elements (entities, events, AI, etc.).

Figure 95 – Miscellaneous feature model

215

APPENDIX B. DOMAIN-SPECIFIC DEVELOPMENT EVALUATION

This appendix compiles the resources explored to bring more insights on how to evaluate

Domain-Specific Development and MDD. Related work on metrics and evaluation approach-

es is presented.

 Hermans et al. [2009] compiled a number of success factors for DSLs, which were

used as metrics to evaluate a DSL (called ACA.NET) for the web services domain. Such fac-

tors are:

 Learnability: developers have to learn an extra language, which takes time

and effort. Therefore a DSL should have a low learning curve (“high learnabil-

ity”). Furthermore, as the domain changes the DSL has to evolve and devel-

opers need to stay up-to-date.

 Usability: tools and methods supporting the DSL should be easy and conven-

ient to use.

 Expressiveness: using a DSL, domain-specific features should be implement-

ed compactly; however, the language is specific to that domain and may limit

the possible scenarios that can be expressed.

 Reusability: with a DSL, reuse is possible at model level, making it easier to

reuse partial or even entire solutions, rather than pieces of source code.

 Development costs: a DSL helps developers to model domain concepts that

otherwise are time-consuming to implement. The corresponding source code

is generated automatically, lowering development costs and shortening time-

to-market.

 Reliability: in addition to reducing development costs, automation of large

parts of the development process leads to fewer errors.

A questionnaire composed of 20 questions was used by the authors in order to eval-

uate ACA.NET. Examples of such questions include “Did the ACA.NET user interface help

you modeling?” and “Do you agree ACA.NET makes implementing easier?”.

While such an empirical study was useful to assess the specific language in question,

at least two drawbacks can be identified. First, data collection was done through a question-

naire only, meaning that the study’s final outcomes can be vulnerable to different interpreta-

tions from the subjects. Moreover, the answers to some questions rely on estimation from the

subjects instead of measurements, which could lead to some lack of precision.

Kärnä et al. [2009] presents the evaluation of a domain-specific modeling (DSM) solu-

tion at Polar, a company in Finland focused on sports instruments and heart rate monitoring.

Their evaluation approach combines developers’ opinions with quantitative measurements of

216

the development process, focusing on three factors: developer productivity, product quali-

ty and the general usability of the tooling. They measured the modeling time for an ap-

plication and estimated the manual implementation of the same application, resulting in a

productivity increase of a factor of 7.5 to 9.1 times better with DSM. Developers also estimat-

ed the quality of the code and the quality of the design process to be significantly better with

DSM. As for the return of investment, they estimate that the modeling investments are al-

ready worth even for one single product: while the product would take 23 days to build with

their current development method, the modeling infra-structure development took 7.5 days

and the development of a new product based on such an infra-structure takes 2.3 days.

Safa [2007] evaluates a domain-specific modeling solution for touch-screen UI appli-

cations. The evaluation was based on the generated code: since the models are able to gen-

erate 60% to 80% of the target sub-domains, the author claims a productivity increase of a

factor of 3 to 5, although it seems no actual time measurements were taken to confirm that.

The development of the modeling infra-structure is evaluated to take 3 man-days, which is 6

times more than developing a sub-domain instance from scratch. Therefore, the modeling

investment break-evens after the sixth instance is developed using the modeling toolset. The

experiments also demonstrated that a half-day training was enough to have a new hire to get

used to the modeling toolset, and it took 3 days for the new hire to perform toolset extensions

(creating a new code generator for a different target platform). However, such absolute data

is not presented in a comparative context, i.e., the “learnability” improvement was not meas-

ured.

As it can be noticed, industry metrics tend to focus on two major factors: productivity

and quality. Other metrics are also commonly applied (such as usability for Kärnä’s case and

target platform independency for Safa’s) but their presence seems to depend on their im-

portance and costs associated to their measurement. As Kärnä et al. [2009] point out, many

good scientific research methods are simply too expensive and time-consuming for practical

use in a commercial setting. Some of the characteristics of good empirical research, like a

large number of participants to support generalization of the results, are not always even

possible since there may only be a handful of developers using the particular language within

the company. The authors also recognize that the industry does not usually have the time

and resources to conduct other extensive analysis, such as building the same system twice

with different development approaches, using parallel teams, analyzing large numbers of de-

velopment tasks [Kieburtz et al., 2006] and focusing on development activities in detail with

video recording, speaking while working or observing individual developers’ actions [Wijers,

1991].

217

Kelly & Tolvanen [2008] created a DSL, generator and models to demonstrate the

principles of DSM as part of the MetaEdit+ evaluation package, for the digital wristwatches

development domain. The authors consider this as a pedagogical tool but large enough to

provide realistic insights on into the multiple aspects of DSM. They concluded that once DSM

is used, the generated code is shorter, simpler and has better quality over the “tangle of code

that is normally found when similar embedded systems are hand coded”. They ran a small

experiment to identify whether the improvement happened due to DSM or only due to the

greater attention spent on developing a good domain framework. A senior and a junior de-

veloper implemented two extensions, each, to an application in the domain. They first used

models and code generation, then implemented the same extension manually. The authors

report an improvement factor of 4 to 5.2 times when models are used. Nevertheless, the au-

thors consider the sample size to be too small to be statistically significant – the number of

subjects was limited to two developers, and the whole coding/modeling effort was only about

17 man-minutes. The authors report that the SPL investment took about 8 man-days, but the

ROI was not calculated.

Kelly & Tolvanen [2008] also report the outcomes of industrial cases in which DSM

was employed. One of them is the Call Processing Language (CPL), a DSL for IP telephone

and call processing [Lennox et al., 2004]. They report a development effort improvement fac-

tor of 6 times. It is worth noticing that such a result was not obtained from a controlled exper-

iment, but from comparing the modeling experience to earlier manual practices. They also

believe that as the specification size and complexity of the end products become bigger, the

improvement could be even better. The investment on the DSM approach was 11 man-days,

but the ROI was not calculated because the domain platform was not ready yet: the DSL was

built before any CPL servers were implemented.

Another industry case reported by Kelly & Tolvanen [2008] is a domain-specific solu-

tion for creating financial and insurance products. The CTO of the company in which the so-

lution was applied reported improvements of “up to five times”, although it is not clear wheth-

er controlled experiments were performed to measure that. The investment on the SPL ap-

proach was again 11 man-days, but since the case does not report how long it takes to cre-

ate a product instance, the ROI was not calculated.

Home automation was another industry domain in which DSM was employed and re-

ported by Kelly & Tolvanen [2008]. They mention that “applications which previously took a

day could be made in an hour or two”. That could be translated into an improvement factor of

4 to 8 times, or an average of 6 times. In fact, that is exactly the number reported by Kelly

[2010] when referring to such a project. Assuming the products of such a domain take one

day to be developed, the SPL investment break-evens by the fourth product instance.

218

A short white paper reporting a case study of the utilization of the MetaEdit+ DSM tool

by Nokia is also available [MetaCase, 2000]. It reports that after a domain-specific solution

was created, Nokia’s productivity “increased by a factor of 10”. The paper does not detail

how that was measured, though. Other claimed benefits include a better focus on functionali-

ty instead of the implementation, full code generation from models, improved documentation

and better support for learning and introducing new developers.

In the digital games development domain, Hernandez & Ortega [2010] ran a small

experiment to evaluate their Eberos Game Modeling Language 2D, targeted at two-

dimensional games. The first game, Pong, was implemented from scratch by the main author

of the paper, who then modeled and implemented it using the DSL. The implications or miti-

gations for carrying knowledge from the first implementation effort (non-DSL) to the second

one (with the DSL) were not discussed. For the second game, SpaceKatz (a Shoot’em up

game), the non-DSL implementation was performed by a group of students, while the DSL

version was implemented again by the main author of the paper. It is assumed that the final

games are functionally equivalent. The evaluations measured, for the first game, a 29% of

savings on programming effort (lines of code) and an 8.82% savings on programming time.

For the second game, the reported savings were 86.4% on programming effort and 82.3% on

programming time. According to the authors, the disparity among the results is justified by

the argument that the more complex the target game is, the more applicable is the proposed

DSL.

Kelly & Tolvanen [2008] conclude that the “normal” (expected) range of improvement

for the use of domain-specific development in the industry is 5 to 10 times. That is somewhat

aligned with the findings from Weiss & Lai [1999] at Lucent Technologies, focused on the tel-

ecommunications domain: they reported a productivity improvement factor of 3 to 10 times,

depending on the product. The improvement factor observed in the experimental study per-

formed for Domain-Specific Game Development (5.16 times, in average) falls under the ex-

pected range (see Chapter 5 for details). The fact our numbers are in the bottom half is an

indication that there might still be room for improvement.

Hermans et al. [2009] compiled other studies about DSL evaluation in the literature

but recognize that such studies are less common than model-driven engineering evaluation

in general. According to them, although several papers can be found on advantages and dis-

advantages of using domain-specific languages [van Deursen & Klint, 1998], the DSL litera-

ture primarily provides anecdotal evidence for the claimed DSL usage benefits, often based

on a handful of usage scenarios for the language in question. Therefore, more confidence

can be gained from rigorous empirical studies in the area. Some of the DSL evaluation stud-

ies identified by Hermans et al. [2009] are:

219

 Batory et al. [2002] describe a case study where a DSL is used for simula-

tions. They report improved extensibility and maintainability.

 Kieburtz et al. [2006] describe a series of experiments prototyping code gen-

eration using a DSL to generate code via templates.

 Herndon & Berzins [1988] report improvements, amongst which reduced time-

to-market and improved maintainability due to the use of DSLs. Unfortunately,

they lack to report how they come to their observations. Furthermore, their

Kodiyak language has been used in only four cases.

Lucrédio [2009] mentions that the state-of-the art in Model-Driven Development eval-

uation has evidences that modeling is still considered a craftsmanship task. Developers in

the area still depend on specialists’ opinion to determine whether a model is good or not

[France & Rumpe, 2007]. The author identified additional studies that investigate Model-

Driven Development evaluation and the usage of metrics to increase confidence in the eval-

uation results. However, as it happens in the literature compiled by Hermans et al. [2009], the

majority of the evaluation studies found by Lucrédio [2009] relate to Model-Driven Develop-

ment in general, being only a few of them specifically targeted at DSLs:

 Guerra et al. [2008] created a DSL for defining metrics, with an additional fo-

cus on redesigning and refactoring models.

 Monperrus et al. [2008] argue that it is necessary to build specific tools to

measure software each time a specific domain is implemented. They created

a meta-tool that, given a set of metrics, generates tools that are able to meas-

ure such metrics.

 With regards to Model-Driven Development in general, the following studies were

identified as defining or discussing empirical work in MDD, including metrics and evaluation

approaches [Lucrédio, 2009] [Hermans et al., 2009]. As it can be noticed, some aspects of

the studies are still applicable to DSLs.

 Mohagheghi & Aagedal [2007] present aspects related to evaluating Model-

Driven Development processes, such as complexity, tools and suitability for a

particular domain.

 Pilgrim [2008] presents some metrics to determine the abstraction level of a

model, based on properties such as number of attributes and the diagram

size.

 The Modelware initiative [Modelware, 2006] also investigates metrics for do-

main-driven development, encompassing multiple engineering aspects such

as the quality of models and generators.

220

 Genero et al. [2008] defined twelve metrics for the structural evaluation of enti-

ty-relationship (ER) models. According to them, the more attributes and rela-

tionships (1:1 and 1:N) a diagram has, the less comprehensive it is.

 Genero et al. [2007] concluded that the same structural properties of ER dia-

grams are also applicable to the maintainability of UML class diagrams.

 Muskens et al. [2004] and Kruchten [1995] defined UML metrics based on the

“4 + 1” architectural view.

 Lange & Chaudron [2004] investigated the completeness and consistency of

UML diagrams, pointing out issues such as nameless objects, classes without

methods, interfaces without methods, abstract classes in sequence diagrams,

classes that are not called in sequence diagrams, and messages between un-

related classes.

 Lange & Chaudron [2005] defined metrics to evaluate UML quality attributes,

such as complexity, traceability, modularity, communication and esthetics.

 Baker et al. [2005] describe a large case study in which code and test cases

were generated from models. They present numbers on increased productivi-

ty, quality and maintainability.

 White et al. [2005] also describe a case study in which code is generated.

Their paper reports reduced effort on development and improved quality, but

they only describe the results of one case.

 Staron [2006] used questionnaires to study the ideal situations for Model-

Driven Development in an industry case study.

221

APPENDIX C. EXPERIMENT QUESTIONNAIRE

ID: ___

Date: ___/___/___

C.1 Personal Experience

What is your degree?

() B. Sc.

() M.Sc.

() Ph.D.

What is your software development experience in the industry (years)?

How do you evaluate your software modeling experience (MDD, UML, DSLs, etc.)?

() I don’t know about it.

() I’m just aware of them and/or just had a couple of limited experiences.

() I eventually use it as part of my daily work.

() I constantly use it as part of my daily work.

How many games have you worked on previously?

C.2 Feedback

Did you have difficulties in understanding the specification of the game samples?

From a scale from 1-10, in which 1 means not helpful and 10 means very helpful, how

do you evaluate the helpfulness of the toolset and its encompassing process for the

development of games?

Please justify your answer for the helpfulness metric above.

222

From a scale from 1-10, in which 1 means very easy and 10 means very difficult, how

do you evaluate the difficulty of using the toolset and its encompassing process for

the development of games?

Please justify your answer for the difficulty metric above.

Please provide any additional comments.

223

APPENDIX D. EXPERIMENT CHEAT SHEET FOR XNA/FLATREDBALL

D.1 Game

D.1.1 How to define and initialize a game class

public class MyGame : Microsoft.Xna.Framework.Game

{

 public static GraphicsDeviceManager graphics;

 public MyGame()

 {

 graphics = new GraphicsDeviceManager(this);

 ...

 }

 protected override void Initialize()

 {

 base.Initialize();

 FlatRedBallServices.InitializeFlatRedBall(this, graphics);

 FlatRedBallServices.GraphicsOptions.TextureFilter = TextureFilter.None;

 SpriteManager.Camera.UsePixelCoordinates(true);

 Window.Title = “Game Title”;

 ScreenManager.Start(“QualifiedNameOfFirstScreen”);

 ...

}

D.1.2 How to initialize game graphics in full screen mode

FlatRedBall.FlatRedBallServices.GraphicsOptions.SetFullScreen(width, height);

D.1.3 How to initialize a game graphics in windowed mode

FlatRedBall.FlatRedBallServices.GraphicsOptions.SetResolution(width, height);

D.1.4 How to run a game cycle

protected override void Update(GameTime gameTime)

{

 base.Update(gameTime);

 FlatRedBallServices.Update(gameTime);

 ScreenManager.Activity();

}

protected override void Draw(GameTime gameTime)

{

 base.Draw(gameTime);

 FlatRedBallServices.Draw();

}

D.1.5 How to start a game

static void Main(string[] args)

{

 using (MyGame game = new MyGame())

 {

 game.Run();

 }

}

224

D.2 Screens

D.2.1 How to define a screen class

using FlatRedBall.Math;

using FlatRedBall.Math.Geometry;

using FlatRedBall.Graphics;

public partial class IntroScreen : Screen

{

 // The base screen class already contains a list of sprites, but not walls.

 Protected PositionedObjectList<AxisAlignedRectangle> walls =

 new PositionedObjectList<AxisAlignedRectangle>();

 // An empty scene file (EmptyScreen.scnx) is provided.

 Public IntroScreen () : base(“EmptyScreen.scnx”, “IntroScreen”) {...}

}

D.2.2 How to create a static background

using FlatRedBall;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework;

protected void CreateStaticBackground(string textureAssetName)

{

Sprite backgroundSprite = new Sprite();

backgroundSprite.Texture =

FlatRedBallServices.Load<Texture2D>(textureAssetName);

backgroundSprite.PixelSize = 0.5f;

backgroundSprite.Position = new Vector3(

 game.Window.ClientBounds.Width / 2,

 game.Window.ClientBounds.Height / 2,

 -100);

SpriteManager.AddSprite(backgroundSprite);

mSprites.Add(backgroundSprite);

}

D.2.3 How to add walls to a screen

using FlatRedBall.Math.Geometry;

AxisAlignedRectangle wall = new AxisAlignedRectangle();

wall.SetFromAbsoluteEdges(top, bottom, left, right);

mAxisAlignedRectangles.Add(wall);

ShapeManager.AddAxisAlignedRectangle(wall).Visible = false;

D.2.4 How to transition to other screens

public override void Activity(bool firstTimeCalled)

{

 base.Activity(firstTimeCalled);

 ...

 if (TransitionConditionIsMet())

 {

 NextScreen = “NextScreenQualifiedName”;

 IsActivityFinished = true;

 }

}

225

D.3 Sprites

D.3.1 How to define a sprite class

public class MySprite : Sprite

{

 public MySprite()

 {

 SpriteManager.AddSprite(this);

 this.PixelSize = 0.5f;

 this.Position = new Vector3(posX, posY, 0);

 this.IgnoreAnimationChainTextureFlip = true;

 ...

 }

}

D.3.2 How to define sprite animations

AnimationChain animationChain = new AnimationChain();

animationChain.Name = “AnimationChainName”;

// animation 1, frame 1

Texture2D texture2D = FlatRedBallServices.Load<Texture2D>(“texture1AssetPath”);

AnimationFrame frame = new AnimationFrame(texture2D, frame1Length);

animationChain.Add(frame);

// animation 1, frame 2

texture2D = FlatRedBallServices.Load<Texture2D>(“texture2AssetPath”);

frame = new AnimationFrame(texture2D, frame2Length);

animationChain.Add(frame);

// optionally set more animations

this.AnimationChains.Add(animationChain);

this.SetAnimationChain(animationChain);

this.Animate = true;

D.3.3 How to flip a sprite texture

sprite.FlipHorizontal = true;
sprite.FlipVertical = true;

D.3.4 How to set a sprite’s bounding circle based on its texture

using FlatRedBall.Math.Geometry;

Circle c = new Circle();

this.SetCollisionI;

this.CollisionCircle.Radius = texture.Width / 2;

D.3.5 How to set a sprite’s bounding box based on its texture

using FlatRedBall.Math.Geometry;

float width = texture.Width;

float height = texture.Height;

AxisAlignedRectangle rect = new AxisAlignedRectangle();

rect.SetFromAbsoluteEdges(height / 2, -height/2, -width/2, width/2);

this.SetCollision(rect);

226

D.3.6 How to add sprites to a screen

MySprite sprite = new MySprite();

// optionally set the sprite’s position, velocity, etc.

this.mSprites.Add(sprite); // “this” is the current screen

D.3.7 How to remove sprites from a screen

this.mSprites.Remove(sprite); // “this” is the current screen

SpriteManager.RemoveSprite(sprite);

D.3.8 How to bounce a sprite after a collision against a wall

foreach (AxisAlignedRectangle wall in mAxisAlignedRectangles)

{

 foreach (Sprite sprite in this.mSprites)

 {

 // sprite collision is based on a bounding circle

 if (sprite.CollisionCircle != null)

 {

 sprite.CollisionCircle.CollideAgainstBounce(wall, 0, 1, 1);

 }

 // sprite collision is based on a bounding box

 else if (sprite.CollisionAxisAlignedRectangle != null)

 {

 sprite.CollisionAxisAlignedRectangle.CollideAgainstBounce(wall, 0, 1, 1);

 }

 }

}

D.3.9 How to bounce a sprite after a collision against another sprite

// bounding circle case

if (sprite1.CollisionCircle.CollideAgainstBounce(

 sprite2.CollisionCircle, sprite1mass, sprite2mass, elasticity))

{

 ...

}

// bounding box case

if (sprite1.CollisionAxisAlignedRectangle.CollideAgainstBounce(

 sprite2.CollisionAxisAlignedRectangle, sprite1mass, sprite2mass, elasticity))

{

 ...

}

D.4 Audio

D.4.1 How to create and play a sound effect

using Microsoft.Xna.Framework.Audio;

using Microsoft.Xna.Framework.Content;

// the contentManager can be obtained from the “Content” property of a game

SoundEffect soundEffect = contentManager.Load<SoundEffect>(assetPath);

SoundEffectInstance soundEffectInstance = soundEffect.CreateInstance();

soundEffectInstance.IsLooped = isLoop;

soundEffectInstance.Play();

227

D.4.2 How to stop a sound effect

soundEffectInstance.Stop();

D.5 Input

D.5.1 How to verify whether a button was pushed

if (InputManager.Xbox360GamePads[playerIndex].ButtonPushed(

 Xbox360GamePad.Button.Start)) {...}

D.5.2 How to retrieve the position of an analog stick

Vector2 stickPosition =

 InputManager.Xbox360GamePads[playerIndex].LeftStick.Position;

D.5.3 How to apply input mapping

using Microsoft.Xna.Framework.Input;

using FlatRedBall.Input;

KeyboardButtonMap map = new KeyboardButtonMap();

map.LeftAnalogLeft = Keys.A;

map.LeftAnalogRight = Keys.D;

map.LeftAnalogUp = Keys.W;

map.LeftAnalogDown = Keys.S;

if (!InputManager.Xbox360GamePads[playerIndex].IsConnected)

{

 InputManager.Xbox360GamePads[playerIndex].ButtonMap = map;

}

D.6 Text

D.6.1 How to add display texts to a screen

using FlatRedBall.Graphics;

using Microsoft.Xna.Framework;

Text text = TextManager.AddText(“hello”);

text.Position = new Vector3(posX, posY, 0);

text.SetColor(red, green, blue);

text.AdjustPositionForPixelPerfectDrawing = true;

this.mTexts.Add(text); // “this” is the current screen

D.6.2 How to update display texts

text.DisplayText = “New Text”;

D.7 Miscellaneous

D.7.1 How to retrieve a random number

int n = FlatRedBall.FlatRedBallServices.Random.Next(min, max);

D.7.2 How to get the elapsed time

double elapsedTime = FlatRedBall.TimeManager.CurrentTime;

228

229

APPENDIX E. EXPERIMENT CHECKLIST

E.1 Development tasks for the “Pong” game

 Intro screen (initial screen), with its own music and texture background

 Credits screen, with its own music and texture background

 Transition from Intro to Credits screen (and vice-versa) after 5 seconds

 Main screen, with its own music and texture background

 Transition from Intro screen to Main screen when player1 presses the Start button

 Player1 Wins and Player2 Wins screens, each with its own music and backgrounds

 Transition from Main to Player1 Wins screen when player1 score is 5 or more

 Transition from Main to Player2 Wins screen when player2 score is 5 or more

 Transition from any “Wins” screen to Intro screen, when player1 presses the Start button

 Input mapping of player1’s Start button to the keyboard’s Enter key.

 Input mapping of player1’s left analog stick, left position, to the keyboard’s left arrow key

 Input mapping of player1’s left analog stick, right position, to the keyboard’s right arrow key

 Input mapping of player2’s left analog stick, left position, to the keyboard’s A key

 Input mapping of player2’s left analog stick, right position, to the keyboard’s D key

 BluePaddle main character, representing the player1, bounding box collision shape, single texture

 BluePaddle’s wall collision behavior: bounce

 BluePaddle’s left/right movement controlled by the player1’s left analog

 RedPaddle main character, representing the player2, bounding box collision shape, single texture

 RedPaddle’s wall collision behavior: bounce

 RedPaddle’s left/right movement controlled by the player2’s left analog

 Ball NPC, bounding circle collision shape, animation composed by a sequence of ball textures

 Ball’s default velocity is random: X = +/-[200,350], Y = +/-[200,350]

 Ball’s wall collision behavior: if against left and right screen walls, bounce

Ball’s wall collision behavior: if against top and bottom screen walls, play goal sound, destroy the

ball instance and create another in the middle of the screen

 Ball’s wall collision behavior: if against top screen wall, also increment player1 score in 1

 Ball’s wall collision behavior: if against bottom screen wall, also increment player2 score in 1

 If ball collide with BluePaddle, bounce the Ball and play the BluePaddle collision sound effect

 If ball collide with RedPaddle, bounce the Ball and play the RedPaddle collision sound effect

 Main screen contents: BluePaddle, RedPaddle, Ball and two textual HUDs with players’ score

230

E.2 Development tasks for the “2942” game

 Intro screen (initial screen), with its own music and texture background

 Action screen, with its own music and vertically scrolling texture background

 Transition from Intro screen to Action screen when player1 presses the Start button

 Game Over screen, with its own music, texture background and player score in the bottom

 Transition from Action screen to Game Over screen when the main character dies

 Transition from Game Over screen to Intro screen when player1 presses the Start button

 Input mapping of player1’s Start button to the keyboard’s Enter key.

 Input mapping of player1’s left analog thumb stick to the keyboard’s arrow keys

 Input mapping of player1’s right trigger to the keyboard’s X key

 Input mapping of player1’s left trigger to the keyboard’s Z key

 Fighter main character, representation the player1, bounding box collision shape

 Fighter’s animations: main and exploding

 When the Fighter’s exploding animation ends, it is considered dead

 Fighter’s wall collision behavior: bounce

 Fighter’s movement controlled by the player1’s left analog thumb stick, not applicable to exploding

state

 FighterBullet item, bounding circle collision shape, simple texture

 FighterBullet’s wall collision behavior: disappear

 Fighter fires a vertical FighterBullet when the right gamepad trigger is pressed, followed by a

sound effect, not applicable to exploding state

 Fighter fires horizontal FighterBullets, one to each side, when the left gamepad trigger is pressed,

followed by a sound effect, not applicable to exploding state

 DumbUfo NPC, bounding box collision shape

 DumbUfo’s animations: main and exploding

 When the DumbUfo’s exploding animation ends, it is considered dead

 DumbUfo’s wall collision behavior: disappear

 SmartUfo NPC, bounding box collision shape

 SmartUfo’s animations: main and exploding

 When the SmartUfo’s exploding animation ends, it is considered dead

 SmartUfo’s wall collision behavior: bounce against left and right walls, disappear against bottom

 UfoBullet item, bounding circle collision shape, animation composed by two textures

 UfoBullet’s wall collision behavior: disappear

 SmartUfos fire a UfoBullet every second; the bullet is targeted at the Fighter’s position

 When the Fighter collides against a UfoBullet, the Fighter explodes, the UfoBullet disappears and

an explosion sound effect is played; not applicable if the fighter is already exploding

 When the Fighter collides against a UFO, both explode and an explosion sound effect is played;

only applicable if the UFO and Fighter are not already exploding

231

 When a FighterBullet collides against a UFO, the bullet disappears, the UFO explodes, a sound

effect is played and the player1 score increases in 50 points (DumbUfos) or 100 (SmartUfos)

 When an exploding UFO collides against a non-exploding UFO, the latter also explodes, and the

explosion sound effect is played

 When a SmartUfo collides against another UFO and neither are exploding, the first one bounces

 Action screen initial contents: Fighter and yellow textual HUD with the player1 score

 In the Action screen, a DumbUfo is created every 2 seconds in the top of the screen, in a random

horizontal position, with no horizontal speed a random negative vertical speed ([-400,-100]), fol-

lowed by a sound effect

 In the Action screen, a SmartUfo is created every 5 seconds in the top of the screen, in a random

horizontal position, with a random horizontal speed (+/- [300,400]), a random negative vertical

speed ([-300,-100]), followed by a sound effect

232

233

“If life doesn't offer a game worth playing,

then invent a new one.”

(Anthony J. D'Angelo)

