
On the Approximation Ratio of the MST-based Heuristic for the Energy-Efficient
Broadcast Problem in Static Ad-Hoc Radio Networks∗

Andrea E.F. Clementi, Gurvan Huiban,
Gianluca Rossi, Yann C. Verhoeven

Dipartimento di Matematica
Universit̀a di Roma “Tor Vergata”

Via della Ricerca Scientifica 1, I-00133 Roma - Italy
{clementi, huiban, rossig, verhoeve }@mat.uniroma2.it

Paolo Penna
Dipartimento di Informatica ed Applicazioni “Renato Capocelli”

Universit̀a di Salerno
Via S. Allende 2, 84081 Baronissi (SA) - Italy

penna@dia.unisa.it

Abstract

We present a technique to evaluate the approximation ra-
tio on random instances of the Minimum Energy Broadcast
Problem in Ad-Hoc Radio Networks which is known to be
NP-hard and approximable within 12. Our technique relies
on polynomial-time computable lower bound on the optimal
cost of any instance.

The main result of this paper is that the approximation
ratio hasneverachieved a value greater than6.4. Further-
more, the worst values of this ratio are achieved for small
network sizes. We also provide a clear geometrical motiva-
tion of such good approximation results.

1. Introduction

1.1. Motivations and preliminary definitions.

Wireless networking technology will play a key role in
future communications and the choice of the network ar-
chitecture model will strongly impact the effectiveness of
the applications proposed for the mobile networks of the
future. Broadly speaking, there are two major models for
wireless networking:single-hopandmulti-hop. The single-
hop model [32], based on the cellular network model, pro-
vides one-hop wireless connectivity between mobile hosts
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and static nodes known asbase stations. This type of net-
works relies on a fixed backbone infrastructure that inter-
connects all base stations by high-speed wired links. On
the other hand, the multi-hop model [23] requires neither
fixed, wired infrastructure nor predetermined interconnec-
tivity. Ad-hocnetworking [19] is the most popular type of
multi-hop wireless networks because of its simplicity: In-
deed, anad hocwireless network is constituted by a homo-
geneous system of stations connected by wireless links.

In ad-hoc networks, to every station is assigned a trans-
mission range: The overall range assignment determines a
transmission (directed) graph since one stations can trans-
mit to another stationt if and only if t is within the trans-
mission range ofs. The range transmission of a station
depends, in turn, on the energy power supplied to the sta-
tion: In particular, the powerp(s) required by a stations to
correctly transmit data to another stationt must satisfy the
inequality

p(s)
dist (s, t)α ≥ 1 (1)

wheredist (s, t) is the Euclidean distance betweens andt,
andα ≥ 1 is thedistance-power gradient. The most studied
case isα = 2 [37, 8, 36] since this corresponds to the empty
space and, moreover, it is a good approximation of the envi-
ronment where wireless networks are located (see [27, 31]).

Energy conservation is a critical issue in an ad-hoc wire-
less network: It is important to minimize the energy con-
sumption of the network provided that a connectivity prop-
erty on the induced transmission graph is guaranteed (for a
survey on this topic see [9]). Current transceivers and com-



munication protocols are designed for a fixed transmission
range (e.g. IEEE 802.11 standard [21]). However, a sce-
nario in which the transmission range is not fixed is compat-
ible with current technology. In particular, the transmission
range can be varied dynamically in presence of mobility or
when the physical node placement is unknown. Distributed
topology control protocols, aimed at dynamically changing
the transmission range assignment in order to guarantee a
certain connectivity property of the network and minimize
energy consumption, have recently presented in [25, 30, 33]

In this paper we address the case in which the connectiv-
ity property is the following: Given a source stations, the
transmission graph induced by the range assignment must
contain a directed spanning tree rooted ats. This is one of
the crucial problems underlying ad-hoc wireless networks
because any transmission graph satisfying the above prop-
erty allows the source station to performbroadcastoper-
ations. Broadcast is a task initiated by the source station
which transmits a message to all stations in the wireless net-
works: This task constitutes a major part of real life multi-
hop radio networks [3, 4].

A trivial solution for the above problem consists in as-
signing to the sources a transmission power that suffices
to directly communicate (within one hop) with all the other
stations. However, this solution could be very expensive: In
fact, due to Equation (1), the total power (i.e. the sum of the
powers assigned to every stations) required by the network
could be very large with respect to the optimal solution.
This fact can be better explained by an example: Consider
n nodess1, s2, . . . , sn on a line such thatd(si, si+1) = 1
(i = 1, . . . , n − 1) and lets1 be the source node. Ifα = 2,
an assignment that allowss1 to directly communicate to all
the other stations requires a total energy atn2 whereas the
best assignment isp(si) = 1 (i = 1, . . . , n− 1), thus yield-
ing total powern− 1.

Let S be a set ofn nodes located on the Euclidean plane.
A range assignmentfor S is a functionr : S → R+. The
transmission (directed) graphGr = (S,E), induced byr,
is defined as

E =
⋃

v∈S

{(v, u) : u ∈ S ∧ dist (v, u) ≤ r(v)}.

The M INIMUM ENERGY CONSUMPTION BROADCAST

SUBGRAPH (in short,MECBS) problem is then defined as
follows: Given a set of stationsS on the Euclidean plane
and asource nodes ∈ S, find a range assignmentr such
thatGr contains a directed spanning tree rooted ats and the
function

cost (r) =
∑

v∈S

r(v)α (2)

is minimized.
This problem was introduced in [37] where three greedy

heuristics are proposed. Here, the performances of such

begin
T := DIR-MST (S, dist , s);
forall v ∈ S do

rmst (v) := maxu:(v,u)∈T {dist (v, u)};
end

Figure 1. The MST-ALG for computing the
MECST. The DIR-MST procedure returns the
directed MST rooted at s (according to the in-
put distance function dist ).

heuristics, for the standard caseα = 2, have been com-
pared (one to each other) on random instances, i.e., in-
stances in which points are chosen independently and uni-
formly on a square region. The best heuristic appears to
be the one based on the construction of an EuclideanMini-
mum Spanning Tree(MST) routed at the source node. This
algorithm, denoted asMST-ALG, is sketched in Figure 1.
The MST-ALG heuristic clearly runs in polynomial time
and always returns a feasible solution. It achieves the best
experimental results [37] and it is also easy to implement.
Moreover, in network with dynamic power control (where
stations are allowed to make small and/or slow movings),
the range assigned to the stations can be modified at any
time: The algorithm can thus take advantage of all known
techniques to dynamically maintainMST’s (see, for exam-
ple, [13, 14, 26]).

Finally, MST-ALG is the only heuristic for which theo-
retical results are known: In fact, simultaneously and inde-
pendently, in [8] and in [36], it is shown that theMST-ALG
heuristic achieves a constant approximation ratio. More for-
mally, given an instance〈S, s〉, define

cost (〈S, s〉, rmst ) =
∑

v∈S

rmst (v)2

andopt (〈S, s〉) as the cost of a minimum range assignment
for this instance. Then, they prove that a constantρ > 0
exists such that, for any instance〈S, s〉, theapproximation
ratio is such that

Rmst (S, s) =
cost (〈S, s〉, rmst )

opt (〈S, s〉) ≤ ρ. (3)

This constant is proved to be40 in [8], it was then reduced
to 20 by the same authors in [7], and it is shown to be12
in [36]. On the other hand, [36] provides a “bad” instance
(i.e., a star of 6 nodes, see Figure 2) in whichMST-ALG
returns a solution whose cost is almost 6 times the optimal.

We emphasize that the use of approximation algorithms
is motivated by the fact that theMECBSproblem isNP-hard
even in the Euclidean plane (see [8, 7]). More recently, a
simpler proof of theNP-hardness for a different version of
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Figure 2. A bad instance for MST-ALG.

the problem (in which the set of possible node transmission
ranges is fixed and given as input) is presented in [16, 6].
It thus follows that an important open question is to deter-
mine the “real” quality of approximation achieved by the
MST-ALGheuristic.

1.2. Our results.

We show that the large approximation ratio achieved
in [36] is not tight for random instances. Actually, our in-
tuition here is that it might be possible to almost match the
lower bound 6 also in the worst case.

In order to support our intuition, we present and dis-
cuss the results of a new massive experimental analysis of
theMST-ALGperformances on random instances. Accord-
ing to most of the experimental analysis of computational
problems on static ad-hoc radio networks (see for example
the papers [37, 6, 5, 22]), we consider theuniform random
model, in which nodes are chosen uniformly and indepen-
dently at random from a square region of a given size and,
then, the (complete) distance graph is considered. Besides
having aper setheoretical interest, the use of the uniform
random model is well motivated by theoretical and exper-
imental results [18, 17, 24] showing that the topology of
efficient static ad-hoc radio networks must besparseand
well-spread[10, 11]. We refer here to topologies arising
from applications in emergencies, battlefield, monitoring
remote geographical regions, etc. [15, 20, 28, 29, 34]. As
in [37, 36, 6, 16], we address the caseα = 2.

The main novelty of our contribution consists in com-
paring the cost of theMST-ALGsolution to alower bound
of the relative optimum. Indeed, from the theoretical anal-
ysis in [7], we first derive an easy-to-compute lower bound
(which is not the direct lower bound yielded by the ap-
proximation ratio) on the optimal cost of any instance of
the problem. We then exploit this lower bound in order to
evaluate the approximation ratio over several thousands of

|S| Rmst (S, s) |S| Rmst (S, s) |S| Rmst (S, s)

5 ≤ · ≤ 9 6.4 60 2.1 375 1.4
10 4.4 65 2.0 500 1.3
15 3.3 70 2.0 1000 1.2
20 3.0 75 2.0 1500 1.2
25 2.7 80 1.9 2000 1.2
30 2.7 85 1.9 1250 1.2
35 2.5 90 1.9 1750 1.2
40 2.3 95 1.9 2250 1.1
45 2.4 100 1.8 5000 1.1
50 2.2 125 1.7 7000 1.1
55 2.2 250 1.5 9000 1.1

Table 1. The experimental results for the ap-
proximation ratio Rmst (S, s) for several dimen-
sions of the set S. We report the largest val-
ues from thousands of experiments.

random instances. The main result of this paper is that, for
all the random instances, the approximation ratio hasnever
achieved a value greater than6.4. Notice that this value
somewhat implies that the uniform random model “takes
care” of “bad” instances like the one in Figure 2.

The above lower bound on the optima establishes a direct
connection between the approximation ratio of theMST-
based solution and the ratioc(S) between the cost1 of the
MSTof a set of nodesS on the plane and the minimal-area
disk that containsS. It can in fact be proved that the ap-
proximation ratio ofMST-ALG is not larger than4 · c(S).
Thanks to this connection, we can evaluate theMST-ALG
approximation ratio by performing experimental results on
c(S). We concentrate and report only the maximal value
achieved byc(S) (and, thus, by the approximation ratio) as
function of the input parameters. Clearly, the average values
are bounded by the relative maximal values.

Two input parameters are considered: the numbern of
nodes and the side length` of the square region in which the
n nodes are independently placed according to the uniform
distribution. From these two parameters, we can define the
densityof the radio network as the ratio between the num-
ber of nodes and the size of the smallest region containing
all the nodes. Number of nodes and region size characterize
the network topology. For example, in radio networks im-
plemented in buildings of few hundreds of square meters,
the number of nodes can vary from few dozens to some
hundreds, whereas wide area networks, spread over thou-
sands of squared kilometers, may contain few thousands of
nodes [12, 2]. However, we perform our experiments over
larger ranges of the input parameters.

Our results are summarized in Table 1: the approxima-
tion ratioRmst (S, s) is shown for different sizes of the node
set S. The choice of reportingRmst (S, s) as function of

1Notice that the cost of an edge(u, v) is dist (u, v)2: see Section 2.
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the (only) parameter|S| is motivated by the fact that, from
the experimental data,Rmst (S, s) does not depends on the
region size. In particular, the values ofRmst (S, s) greater
than6 (as the value returned by the “bad” instance in Fig-
ure 2) are all obtained for|S| ≤ 9: This might implies
that this “bad” instance is one of the (absolute) worst in-
stances. More importantly, the worst-case approximation
ratioRmst (S, s) seems to be adecreasingfunction of |S|: It
seems to tend to a constant slightly greater than one. This
trend is consistent to that of theasymptotical expected value
of c(S) determined in [38] (this asymptotical average-case
analysis gives no information about the “worst-case” in-
stances of reasonable, small size - see Section 3).

¿From Table 1 and the above discussion, it thus turns out
that the worst-case instances are likely to have small sizes.
This well-motivates our massive simulation on random net-
works of relatively small sizes.

Finally, we can state that the quality of the approxima-
tion yielded by theMST-ALGheuristic is thus rather good
on random instances, much better than that arising from the
previous theoretical worst-case analysis in [8, 7, 36]. In
Section 2, we will show some specific geometrical proper-
ties of theMST-ALGsolutions that motivate the achieved
quality.

1.3. Organization of the paper.

Section 2 shows a simple and efficient method to derive
the lower bound on the optimal from the worst-case anal-
ysis in [7]. We also describe the main geometrical facts
the worst-case analysis relies on, and we then conjecture a
more likely worst-case geometrical scenario. In Section 3,
we present our experimental results. Finally, in Section 4,
we discuss the obtained results.

2. Fast-computable lower bound for the optima

Given any set of nodesS, D(S) denotes the smallest
disk containing all the nodesS and its diameter is de-
noted asdiam(S). Given the weighted complete graph
(G(S, E), dist 2), where the weight of every edge(u, v) is
defined asdist (u, v)2, the weight of a subgraphG′(S, E′)
of G is defined as

w(G′) =
∑

(u,v)∈E′
dist (u, v)2.

Now, let ropt be an optimal range assignment for the in-
stance〈S, s〉 of MECBS. For anyv ∈ S, let

K(v) = {u ∈ S : dist (v, u) ≤ ropt (v)}

and letMST(v) be a minimum spanning tree of the subgraph

of Gropt induced byK(v). For anyv ∈ S, let

c(v) =
w(MST(v))

diam(K(v))2
and cmax = max{c(v) | v ∈ S}.

Then, it holds that

opt (〈S, s〉) =
∑

v∈S

ropt (v)2 ≥ 1
4
·
∑

v∈S

w(MST(v))
c(v)

≥ 1
4cmax

·
∑

v∈S

w(MST(v))

Since the graphG′ = (S, E′) where

E′ =
⋃

v∈S

{e ∈ E : e ∈ MST(v)},

is a spanning subgraph forS, it follows that

opt (〈S, s〉) ≥ 1
4cmax

·
∑

v∈S

w(MST(v))

≥ 1
4cmax

· w(MST(S))

≥ 1
4cmax

· cost (MST-ALG(S, s)) (4)

From the above inequality, it should be clear that any upper
bound forcmax determines a lower bound on the optimum
of any instance of theM INIMUM ENERGY CONSUMPTION

BROADCAST SUBGRAPH problem.
Notice that, given any set of pointsS on the plane,

the ratiow(MST(S))/diam(S)2 can be easily computed in
O(|S|2) time (as we will see later, this is the only computa-
tion made by our experimental tests!).

In [7], the following result is proved

Theorem 1 ([7]) For any setS of points on the plane,

c(S) =
w(MST(S))
diam(S)2

≤ 5. (5)

By replacingcmax ≤ 5 in Equation 4, [8] showed that
MST-ALGis a 20-approximation algorithm forM INIMUM

ENERGY CONSUMPTIONBROADCAST SUBGRAPH. How-
ever, our opinion is that this upper bound is due to a rough
and pessimistic theoretical analysis. In what follows, we
argument this opinion.

2.1. A more realistic analysis.

In order to determine an upper bound forcmax, we need
to compare the area of the diskD(S) and the weight of
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D(S)

Figure 3. A minimum spanning tree (and the
relative edge diameter disks) of a set S of 75
points randomly generated inside a disk of
diameter 100.

MST(S) for a generic setS of nodes on the plane (where the
weight of every edge(u, v) is w((u, v)) = dist (u, v)2).

Let e = (u, v) be an edge of a EuclideanMST(S) andDe

be thediametraldisk whose center is on the midpoint ofe
and whose diameter isdist (u, v). The contribution ofe to
the cost ofMSTcan be “represented” as the area ofDe (up
to the constant factorπ/4); so, the cost ofMSTis thereabout
the sum of the areas of the diametral disks associated to all
the edge of the tree (see Figure 3). Then, roughly speaking,
Theorem 1 is proved by showing thatno more than5 of such
disks can overlap over any point ofD(S).

In this analysis, it is thus assumed that, in the worst case,
every point ofD(S) is covered by 5 overlapping diametral
disks! In other words, the worst-case scenario in which the
MSTsolution “pays”5 times the area ofD(S) is considered.
It is easy to convince the reader that this situation never hap-
pens. Moreover, as for random instances, the total area cov-
ered by the diametral disks appears very small with respect
to the area of the diskD(S) (see Figure 3)! We even tried
to draw 4 diametral disks of a minimum spanning tree so
that they all cover a same region of positive area with no
success. This really seems a geometrical property of mini-
mum spanning trees for points of plane: unfortunately, until
now, we were not able to prove it. We have run experi-
ments devoted to the evaluation of the number of overlap-
ping diametral disks that can occur (see the java applet in
http://mat.uniroma2.it/ ∼verhoeve/ ). From
these simulations it turns out that never more than3 disks
overlap and the size of the region covered by more than one
disk is almost negligible with respect to the area ofD(S).
Our opinion can thus be summarized into the following

10× 10 50× 50 100× 100
5% 1.448513 0.433417 0.333548
10% 0.978396 0.372507 0.30637
15% 0.807885 0.344493 0.295351
20% 0.738916 0.33153 0.293037
50% 0.543291 0.290886 0.270258
70% 0.507716 0.289506 0.268491
90% 0.457731 0.28003 0.263674

Table 2. The c(S) values for some node densi-
ties and some region sizes.

Conjecture 1 Let S be a set of points on the Euclidean
plane and letMSTbe an Euclidean minimum spanning tree
of S. Then, no more than3 diametral disks of edges ofT
can overlap on a region of positive area. Furthermore, the
area of the overall region which is covered by more than two
diametral disks is almost negligible with respect to the area
ofD(S).

3. Experimental Results

As mentioned in the previous section, our experimental
task consists in computing theworst ratio c(S) from sev-
eral thousands of random node setsS’s. In particular, the
simulation is performed by varying the side length` of the
square region containingS and by varying the size|S| = n
from 5 to some thousands. The nodes are independently
placed according to the uniform distribution. For each`
and |S| ≤ 1000, we run10, 000 experiments from which
only the maximum value ofc(S) is considered. While, due
to the high computational time and to the discovered trend
of the experiments, few hundreds of experiments have been
run for larger values ofn. The experimental tests consider
three region sizes (10×10, 50×50, 100×100). The results
are summarized in Table 2. The table shows thatc(S) is a
decreasing function of density. Observe that, fixing the den-
sity and increasing the region size corresponds to increasing
the number of nodes! This might imply that, similarly to the
theoreticalasymptotical expected value (see Theorem 2),
the maximum value ofc(S) only depends onn.

In order to support the above statement, we have per-
formed experiments by varying the number of nodes and
keeping the region size fixed. Table 3 shows the results for
everyn ∈ {5, . . . , 100} and for ` ∈ {10, 50, 100, 1000}.
The obtained data show that, for the same number of nodes,
there is no relevant difference among the four considered
regions. It seems thus confirmed our claim thatc(S) (and
henceRmst (S, s)) only depends on the number of nodes and
does not depend on the region size. Actually, this claim is
also confirmed by a simple scaling operation.
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|S|
10
×
10

50
×
50

100
×

100

1000
×

1000
max Rmst (S, s)

5 1.448 1.378 1.448 1.462 1.462 5.846
6 1.420 1.387 1.611 1.412 1.612 6.447
7 1.283 1.254 1.261 1.332 1.332 5.330
8 1.209 1.162 1.221 1.143 1.221 4.886
9 1.082 1.155 1.096 1.103 1.155 4.619
10 0.978 1.103 0.981 0.995 1.103 4.413
15 0.808 0.795 0.822 0.797 0.822 3.288
20 0.739 0.717 0.750 0.759 0.759 3.036
25 0.668 0.679 0.664 0.662 0.679 2.716
30 0.614 0.678 0.653 0.647 0.678 2.711
35 0.594 0.625 0.613 0.609 0.625 2.501
40 0.576 0.568 0.569 0.566 0.576 2.304
45 0.535 0.528 0.568 0.599 0.599 2.395
50 0.543 0.553 0.526 0.554 0.554 2.215
55 0.543 0.541 0.523 0.503 0.543 2.174
60 0.506 0.528 0.511 0.498 0.528 2.111
65 0.483 0.508 0.490 0.506 0.508 2.034
70 0.508 0.502 0.490 0.480 0.508 2.031
75 0.493 0.461 0.490 0.473 0.493 1.971
80 0.468 0.471 0.468 0.469 0.471 1.885
85 0.452 0.454 0.478 0.475 0.478 1.914
90 0.458 0.473 0.481 0.456 0.481 1.924
95 0.464 0.455 0.479 0.446 0.479 1.917
100 0.441 0.450 0.440 0.446 0.450 1.801

Table 3. The values of c(S) and Rmst (S, s) for
several sizes of S and several network sizes.
For each region size, we have reported the
worst value of c(S) obtained from 10 thou-
sands trials. The fourth column reports the
worst value between the first three columns
whereas the last column is the corresponding
approximation ratio.

We emphasize that the maximal values ofc(S) returned
by our experimental results seem to yield a decreasing func-
tion of n (see also Figure 4). This is fully compatible with
the asymptotical behavior of the expected value ofc(S). In-
deed, [38] proved the following theoretical result.

Theorem 2 ([38]) LetS be a set of points chosen indepen-
dently and uniformly at random from a square region of
area A. Then, two positive constantsk and 0 exist such
that, for anyn > 0, it holds that

|w(MST(S))− k ·A| ≤ p√
n

.

For this reason, in order to find “bad” instances, we have
considered instancesS of size not too large (|S| ≤ 100):
The relative data are reported in Table 3.

We finally remark that determining the exact value of
the constantk in Theorem 2 is still an open problem [35, 1].
However, on the ground of our experimental data, we may
conjecture that this constant is widely smaller than 1.

Figure 4. Trend for the worst values for c(S)
obtained by the fourth column of Table 3.

3.1. Notes on the Implementation

Our claim is that the performance ratio of theMST-ALG
algorithm is6 but the worst value found by our experiments
is a little greater than this value. This discrepancy is due
to our implementation choices. Since our experiments run
over thousands of big instances, we have adopted the choice
of computing the ratio

C ′(S) =
w(MST(S))

maxu,v∈S{dist (u, v)α} (6)

that can be computed faster than the real value ofc(S)

C(S) =
w(MST(S))

diamα .

Observe thatmaxu,v∈S{dist (u, v)} ≤ diam. Then, an
upper bound forC ′(S) is also an upper bound forC(S).
However, this approximation can be too “rough” for small
values of|S|. Indeed, let us consider three stations form-
ing an equilateral triangle: by using Equation (6), we get
C(S) ≤ 2 and a performance ratio of8. On the contrary,
the real value ofC(S) is 3/2 (see Figure 5) that implies a
performance ratio of6. We also observe that the worst in-
stance leading the6.4 approximation factor found by our
experiments yield a shape similar to Figure 5. This instance
is represented in Figure 6.

4. Conclusion and open questions

We have presented the first experimental results on the
approximation ratio achieved by theMST-ALG heuris-
tic for the M INIMUM ENERGY CONSUMPTION BROAD-
CAST SUBGRAPH problem on 2-dimensional radio net-
works. Such experiments show that the achieved quality is
good, much better than that derived from the best-known
theoretical worst-case analysis. We strongly believe that
this quality is due to a set of geometrical properties of
the MST-ALGsolutions which are not considered by such
worst-case analysis: these properties seem to hold forany
2-dimensional instance of reasonable large size.

6
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Figure 5. The discrepancy between the “real”
performance ratio of the MST-ALG algorithm
and the performance ratio computed in our
experiments.

The main theoretical open question is proving Conjec-
ture 1, thus achieving a better theoretical worst-case approx-
imation ratio for theMST-ALG.

Moreover, another important open problem is whether
other algorithmic techniques can achieve better worst-case
approximation for theM INIMUM ENERGY CONSUMPTION

BROADCAST SUBGRAPH problem.
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