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Abstract—The nearest neighbor (NN) is one of the most
well known classifiers in pattern recognition. Despite the high
classification accuracy, the NN has several drawbacks: high
storage requirements, bad time of response, and high noise sensi-
tivity. Prototype Generation (PG) is one of the most well-known
solutions to tackle these shortcomings. In supervised classification,
many real world datasets do not have an equitable distribution
among the different classes, these are called imbalanced datasets.
Many PG techniques that have a high classification accuracy
in regular datasets, have a poor performance when dealing with
imbalanced datasets. The Self-Generating Prototypes (SGP) is one
of these techniques. The Adaptive Self-Generating Prototypes was
proposed to tackle the SGP problem with imbalanced datasets,
but, in doing so, the reduction rate is compromised. This paper
proposes the Evolutionary Adaptive Self-Generating Prototypes
(EASGP), a SGP based technique with iterative merging and
evolutionary pruning to help find the optimal solution. An
experimental analysis is performed with datasets of different
levels of imbalance ratio and statistical tests are used to evaluate
the proposed technique. The results obtained show that EASGP
outperforms previous SGP based algorithms in classification
accuracy and reduction.

Keywords—Prototype Generation (PG), Self-Generating Proto-
types (SGP), Adaptive Self-Generating Prototypes (ASGP), Imbal-
aced Datasets

I. INTRODUCTION

The nearest neighbor (NN) rule [1] is one of the most well
known supervised learning techniques. The general idea is to
classify a new instance as being of the same class as its nearest
instance from the training set. The K-nearest neighbor rule
(KNN) [2] is a generalization of the NN rule that considers
the label of the K nearest instances of an instance to make it’s
classification. This technique is very simple, yet is one of the
most interesting and useful algorithms in Pattern Recognition
[3].

Despite the high classification accuracy, the KNN has
several drawbacks [4] [5] [6], the three most relevant are:

1) high storage requirements: it needs to store all
training set, because the decision rule is defined by
all training instances.

2) bad response time: for every new classification, the
KNN needs to visit all instances from the training set
(O(n) complexity, where n is the size of the traning
set).

3) low tolerance to noise: it considers all data from the
training set to be relevant to the classification task.

Because of that, noisy data might compromise the
classification accuracy.

In the literature, many approaches have been proposed to
solve these issues [7]. One of these approaches is the use
of instance reduction techniques [8]. Techniques of instance
reduction aim to select only relevant instances from the training
set, creating a smaller training set without compromising the
classification accuracy [8]. In doing so, the storage require-
ments and time of response are reduced, because less instances
are saved and visited in each classification, and also removes
noisy data, improving classification and solving the noise
sensitivity problem.

Prototype selection (PS) is a process of instance reduction
that removes instances that are redundant or irrelevant to the
classification, and selects the representative ones. Prototype
generation (PG) is the process of instance reduction that
generates artificial instances in order to achieve a higher
generalization and create a more suitable training set. Because
of the limitations of the search space of PS techniques, PG
techniques have the potential of achieve a higher reduction
rate than PS techniques.

Imbalanced datasets have many instances of one class,
the majority class, and only a few of the other, the minority
class. Learning from such datasets is a difficult task, being
considered an important problem in data mining and pattern
recognition [9] [10]. Despite the high performance in improv-
ing classification, instance reduction techniques do not cope
with imbalanced datasets, for they cannot discriminate noisy
instances from the minority class.

The Self-Generating Prototypes (SGP) [11] is a centroid-
based prototype generation technique, it was even being com-
bined with other techniques to improve classification [12], but
does not work well with imbalanced datasets. The same thing
happens with the Self-Generating Prototypes 2 (SGP2).

Experiments have shown that, in some datasets, SGP and
SGP2 consider all minority class instances as noise or outliers
that need to be removed in order to improve generalization
[13]. In order to solve this issue, in [13], the authors proposed
the Adaptive Self-Generating Prototypes (ASGP) a SGP based
technique that is adaptive to different levels of imbalance ratio.
This technique achieved interesting results, and the empirical
experiments have shown that ASGP is a better solution for
imbalanced datasets [13].

ASGP outperforms SGP2 in classification accuracy, but



it is outperformed in reduction rate because ASGP generates
more minority class prototypes than needed (increasing false
positives in classification).

To solve the issues of SGP, SGP2 and ASGP, in this
paper, we propose the Evolutionary Adaptive Self-Generating
Prototypes (EASGP), a PG technique composed by a main
loop and two new steps: incremental merging and evolutionary
pruning. The incremental merging expands the search space
inserting new generalized samples that might better represent
the distribution of the classes. The evolutionary pruning is a
memetic algorithm (MA) based on the Steady-State Memetic
Algorithm (SSMA) [14] used to explore the search space
and find optimal solution. The evolutionary pruning uses the
original training set as a validation set, instead of using only
the new generated samples.

The experiments showed that EASGP outperforms SGP,
SGP2 and ASGP in classification accuracy and reduction rate
for datasets with different levels of imbalance. This result was
confirmed with the One-Sided Wilcoxon Signed Rank Test
[15].

This paper is organized as follows: Section II gives a brief
review of PG techniques and presents the SGP, SGP2 and
ASGP techniques. Section III presents the EASGP technique.
Section IV presents the experiments and results. Finally, Sec-
tion V concludes the paper.

II. BACKGROUND

This section presents the main concepts of prototype selec-
tion (PS) and prototype generation (PG), including the Self-
Generating Prototypes (SGP), Self-Generating Prototypes 2
(SGP2) and Adaptive Self-Generating Prototypes (ASGP).

A. Prototype Selection and Generation

PS methods are instance selection methods that, in order
to improve the NN rule, attempt to find the smallest subset of
the training set that enable the KNN to correctly classify a test
sample [16].

The PS problem can be defined as follows: Let TR be the
training set, and S ⊆ TR be the subset of instances selected by
a PS technique, where S has less noise or redundant instances.
The classification of a test sample xi is made using the KNN
rule over S instead of TR.

Since PS problems can be reduced to a combinatorial
problem, it is possible to use Evolutionary Algorithms (EAs)
to solve them. In fact, a high number of the PS algorithms re-
cently proposed are based on EAs. Those methods were called
evolutionary prototype selection (EPS) methods [17]. The
Steady-State Memetic Algorithm (SSMA) [14] is a Memetic
Algorithm (MA) applied to PS. Studies have shown that this
is one of the most successful PS techniques [5]. The use of
stratified PS based on SSMA is an alternative to solve the
scalability issue, the problem of increasing the running time
when the number of instances increase [18].

There are over 50 PS methods proposed in the literature.
A complete study of PS, including taxonomy, can be found in
[5].

PG methods are instance reduction methods that attempt
to find the smallest set of artificial generated instances that
improves the accuracy of the NN rule based on the training
set.

A PG problem can be defined as follows: Let TR be the
training set, and TG a set of prototypes generated or selected
by a PG method based on TR, where Size(TG) < Size(TR).
The classification of a test sample xi is made using the KNN
rule over TG, instead of TR.

Most PG techniques that uses EAs are based on positioning
adjustment, that means that they move the prototypes around
the m-dimensional space, adjusting them until it finds an
optimal solution [6]. Examples of interesting positioning ad-
justment PG techniques are the Evolutionary Nearest Prototype
Classifier (ENPC) [19] and the Particle Swarm Optimization
(PSO) [20]. Other techniques such as Prototype Selection
Clonal Selection Algorithm (PSCSA) [21], and Differential
Evolution (DE) [22] have also achieved interesting results.

For imbalanced datasets, the use of selection of evolu-
tionary selection of generalized examples [23] has achieved
interesting results.

There are over 25 PG methods proposed in the literature.
A complete study of PG, including taxonomy, can be found in
[6].

B. Self-Generating Prototypes Based Algorithms

The Self-Generating Prototypes (SGP) [11] is an interesting
PG technique [12]. The SGP method generates prototypes
using a combination of centroid based and space splitting
mechanisms. The SGP creates groups of instances generates a
single prototype (the representant) for each group.

In the beginning of the process, for each class, the SGP
generates one group containing all instances of that class.
Then, the following steps are performed the until the solution
converge:

1) If, for all instances of a group, the closest prototype
is the representant of the group itself, then no modi-
fication is performed.

2) If, for all instances of a group, the closest prototype
is from a different class, then the group is divided
in two new subgroups. The separation is made by
a hyperplane that passes through the representant of
the original group and is perpendicular to the first
principal component of the instances in the original
group.

3) If, for some instances of a group, the closest prototype
is a representant of a different group of the same
class, these instances are moved from the original
group to the group of that closest prototype.

4) If, for some instances in a group, the closest prototype
is the representant of a group with different class, the
misclassified instances are removed from the original
group and form a new group.

After any of these procedures, each group representant is
updated.

In order to improve the generation capability, the SGP
implements a trade-off between training error and the model



complexity using two parameters: Rmin and Rmis. If the
number of instances in a group divided by the number of
instances of the largest group is less than a threshold Rmin,
the group is discarded. Also, along the SGP algorithm, if the
number of misclassified instances in a group divided by the
number of instances in that group is less than a threshold Rmis,
no modification is performed. This step is called generalization
step.

The SGP2 introduces two steps in order to reduce even
more the number of prototypes: A merging step and a pruning
step. In the merging step, two groups A and B are merged
if both A and B are from the same class and the second
closest prototype to all instances in A is the representant of
B, and the second closest prototype to all instances in B is
the representant of A. The pruning step removes redundant
prototypes using the following rule: if all instances of a group
is correctly classified by their second closest prototype, the
group is discarded.

In [13], the authors analyzed the SGP behavior when
trained with imbalanced datasets. Sometimes, the SGP returned
no prototypes at all of the minority class. The authors con-
cluded that one of the major issues happens in the generaliza-
tion step, so they proposed a different approach in the use of
the generalization factor Rmin.

SGP eliminates the groups that have less than Rmin times
L instances, L being the size of the largest group in the dataset.
The Adaptive Self-Generating Prototypes (ASGP) suggests that
this elimination is not fair with the minority class groups. To
solve this issue, the same Rmin is used for all groups, but L is
the size of the largest group of the same class, instead of the
size of the largest group of all classes. This step is detailed in
Algorithm 1.

Algorithm 1 Generalization Step
Require: GP : a set of groups of instances
Require: H: a hashtable
Require: CS: a list of classes of the groups

1: for all Class C ∈ CS do
2: L ← −1
3: for all Group G in GS do
4: if SizeOf(G) > L then
5: L ← SizeOf(G)
6: end if
7: end for
8: H(C)← L
9: end for

10: for all Group G in GS do
11: C ← ClassOf(G)
12: L← H(C)

13: if SizeOf(G)
L ≤ Rmin then

14: Remove G from GS
15: end if
16: end for
17: return GS

ASGP also proposes that the merge and pruning steps
should be performed as usual, but after both procedures, all
prototypes of the minority class should be included again, in
case they were lost in the generalization procedure.

The ASGP method achieved interesting results with im-
balanced datasets, but there are other drawbacks to be tackled.
When performing the merging step, the order in which the
merging occurs affects the final solution, making possible
the algorithm to find sub-optimal solutions. The same thing
happens with the pruning step. Another issue with the pruning
step is that it removes a group only if all instances in that group
are well classified without the group representant. A higher
generalization might be achieved if there was a threshold that
evaluated if a removal is an advantage or not.

When inserting all prototypes of the minority class, after
the pruning step, the ASGP method might also insert not
needed prototypes, and even, prototypes that does not fit the
new data, generating an overlap between the prototypes of the
minority and majority classes.

The next section presents the proposed technique that
handles all the mentioned issues.

III. EVOLUTIONARY ADAPTIVE SELF-GENERATING
PROTOTYPES

This section presents the Evolutionary Adaptive Self-
Generating Prototypes (EASGP), a prototype generation (PG)
that uses an iterative merge and evolutionary pruning.

A. Motivation

The Self-Generating Prototypes (SGP) has a poor perfor-
mance when trained with imbalanced datasets. The Adaptive
Self-Generating Prototypes (ASGP) is an improved SGP that
handles imbalanced datasets. Despite the fact that ASGP
achieved better results than SGP2, ASGP has a lower reduction
rate than SGP2. This behavior is acceptable, because of high
cost of misclassifying the minority class [24], but it is not
desired.

The following three flaws were found in the SGP2 and
ASGP algorithms:

1) In the merging step, the order in which the groups are
merged affects the resulting prototypes. If two groups
are merged, another important merge might not take
place, and a sub-optimal solution might be returned.

2) In the pruning step, the already reduced search space
is not fully explored. Also, when the order in which
the groups are visited is changed, the resulting pro-
totypes also change. Because of that, a sub-optimal
solution might be returned.

3) After the merging and pruning steps, when introduc-
ing back the prototypes of the minority class, the
ASGP algorithm does not consider that the new set
of majority class prototypes were generated consid-
ering another group of the minority class prototypes.
This might cause overlapping between prototypes of
different classes.

In order to solve these issues, this paper proposes the
EASGP method, an SGP based PG technique that implements
an incremental merging and evolutionary pruning steps.



B. Architecture

Figure 1 shows the architecture of EASGP. First, ASGP
is used to generate the initial prototypes. These prototypes are
used by the iterative merging algorithm, generating new proto-
types and expanding the search space. Finally, the evolutionary
pruning is applied to find the optimal subset of prototypes, and
the best subset is returned. The evolutionary pruning uses the
original training set as a validation set to find the best solution.

The EASGP steps are explained in the next subsections.

C. EASGP Initial Prototype Generation

Following the same approach of the SGP algorithm, In the
beginning of the process, a group containing all the instances
within each class is created for all class labels, and the mean
of each group is elected representant. The ASGP main loop is
executed once the initial groups are formed until no changes
in the groups occurs.

The generalization step follows the ASGP approach, re-
moving a group only if it is considerably smaller than the
larger group of the same class.

The major inovations of EASGP are the iterative merging
and evolutionary pruning, presented in the next subsections.

D. Iterative Merging

Differently than the merging step of ASGP, the iterative
merging uses only the generated prototypes to perform the
merge between two groups, instead of using all instances
within the groups. This approach has a high performance
effect on the algorithm, since the number of representants is
usually significantly smaller than the number of instances in
the training set.

In order to understand the iterative merging, the merging-
links concept must be defined. A pair of prototypes A and B is
called a merging-link if they meet the 3 following conditions:

• A and B belong to the same class.

• The closest prototype of A is B.

• The closest prototype of B is A.

The iterative merging also uses two lists: search list and
final list. The search list is the list of prototypes where the
procedure searches for merging-links. The final list is the list
of prototypes to be returned by the procedure.

First, the iterative merging insert all prototypes from the
EASGP initial prototypes procedure in the search list and then
finds all merging-links prototypes in that list. If at least one
merging-link is found, than this is not the last iteration. Each
link is merged, and a new prototype is generated (the mean
of the each link). The merging-links are now removed from
search list and saved into the final list. The process is repeated
until the last generation (no merging-link is found), when all
remaining prototypes are included in the final list. Finally, all
prototypes in final list are returned.

The iterative merging is detailed in Algorithm 2.

Algorithm 2 Iterative Merging
Require: PS: a set of prototypes
Require: search list: a list to search for links
Require: final list: a list to save the prototypes

1: save all PS in search list
2: merging-links ← all merging links in search list
3: while merging-links is not empty do
4: for all link ∈ merging-links do
5: P ← mean(link)
6: insert P in the search list
7: remove the link prototypes from search list
8: insert the link prototypes in final list
9: end for

10: merging-links ← all merging links in search list
11: end while
12: insert all prototypes in search list in final list
13: return the prototypes in final list

With this approach, the EASGP iterative merging expands
the region of search that was reduced by the initial prototypes
procedure. The result of the iterative merging is not affected
by the order in which the prototypes are merged (differently
than the ASGP merge step).

E. Evolutionary Pruning

The pruning step aims to remove redundant prototypes
without compromising the classification accuracy. The problem
of pruning can be considered a problem of prototype selection
(PS), which is to find the best subset of instances that better
represent a training set. As mentioned in the previous section,
the problem of PS is a combinatorial problem, and the current
best approaches to solve this problem is to use evolution-
ary prototype selection (EPS), especially memetic algorithms
(MA).

The evolutionary pruning uses the Steady-State Memetic
Algorithm (SSMA) [14] concept to find the best subset of
generated prototypes. First, a population of solutions is created
using the chromosome representation. For each interection, two
parent chromosomes are selected and the genetic operators are
applied to generate an offspring. A local search is used to op-
timize each solution with a given probability. The evolutionary
pruning uses the fitness function detailed the Equation 1.

Fitness(S) = α× AUCrate + (1− α)× reductionrate (1)

The value of the parameter α is within the interval
[0.51, 0.99]. In the evolutionary pruning, the classification
rate used in the fitness when handling imbalanced dataset
is the Area Under the ROC Curve (AUC), avoiding over
generalization and the possibility of removing of all prototypes
of the minority class.

Also, the fitness is estimated using the original training set
as a validation set, not only the prototypes from the merging
step. Using this approach, the evolutionary pruning finds better
solutions and avoids the cost of misclassification of already
removed samples in the previous steps of the algorithm.



Fig. 1. Architecture of EASGP.

Algorithm 3 Evolutionary Pruning
1: Initialize Population.
2: while not termination-condition do
3: parents ← Parent Selection (binary tournament)
4: Off 1, Off 2 ← Crossover(parents)
5: Mutation(Off1, Off2)
6: for all Off i do
7: if local search decision then
8: local-search(Offi)
9: end if

10: end for
11: Standard Replacement for Off1 and Off2
12: end while
13: return The best chromosome

The Algorithm 3 presents the evolutionary pruning algo-
rithm.

The evolutionary pruning steps are detailed as follows:

• Population Initialization: Each chromosome repre-
sents a subset of prototypes, a gene is ’1’ when the
prototype is in the subset and ’0’ when it is not. All
chromosomes reference the same set of prototypes
returned by the iterative merging. In the population
inicialization, the chromosomes are inicialized ran-
domly, and each chromosome is evaluated using the
fitness function. Differently than other approaches,
the evaluation is performed using all instances in
the training set as a validation set, and not only the
prototypes referenced by the chromosomes.

• Parent Selection: In order to select two parents, a
binary tournament selection is employed. For each
parent, two random candidates are selected from the
population of chromosomes, and the best one (the one
with the higher fitness) is elected parent.

• Crossover: The parents are combined to generate the
offspring, two new individuals with half of the genes
from each parent.

• Mutation: The mutation changes each gene of the
offspring with a probability P = 1/N , where N is
the size of the chromosome.

• Offspring Evaluation: The offspring is evaluated us-
ing the fitness function (Equation 1) and the validation
set (the original training set).

• Local Search Decision: This step decides if a local

search is applied to an individual in the offspring. The
local search is performed with a probability Pls which
is detailed in the Equation 2.

Pls(S) =

{
1 if fitness(S) > fitness(Sworse)
0.0625 otherwise

(2)
If the offspring is better than the worst solution of the
population of chromosomes (has a higher fitness than
the solution with lower fitness in the population), the
local search is performed, otherwise, the local search
is performed with a probability Pls = 0.0625. This
value was found empirically in [14].

• Local Search: For a given chromosome, it considers
neighborhood solutions by removing an instance from
the current solution. A change is maintained if it
improves the classification accuracy of the current
solution, otherwise, the change is reverted. If a re-
moval becomes permanent, the whole neighborhood
is considered again. To avoid local optimum, the
local search also accepts solutions that decreases the
classification accuracy but increase the fitness.

• Standard Replacement: If the offspring is better than
the worst solution in the population (has a higher
fitness than the solution with lower fitness in the
population), the offspring replaces the worst solution.

• Termination Condition: The algorithm stops when a
convergence of the solutions occurs, or when a number
of evaluations NE (passed as parameter) is reached. In
other evolutionary algorithms, usually NE = 10000.
Because of the high reduction power of ASGP, NE =
100 is enough for EASGP.

The evolutionary pruning procedure works as an optimiza-
tion algorithm. Like in the SSMA algorithm, the use of a local
search makes it possible to find optimal solutions without reach
the number of evaluations that a brute-force algorithm requires.

Compared to SSMA alone, one advantage of EASGP is that
EASGP makes possible a higher generalization and requires
fewer evaluations than other evolutionary algorithms, since the
chromosomes only represent the previously generated proto-
types and not the whole original training set. In classification
accuracy, EASGP pruning also works as a fixer for the previous
steps, removing any residual noisy data generated by the initial
generation (ASGP main procedure) and the iterative merging.



IV. EXPERIMENTS

This section presents the methodology used in the exper-
iments, and the results of the Evolutionary Adaptive Self-
Generating Prototypes (EASGP).

A. Methodology

The EASGP method is evaluated using 15 imbalanced
datasets from KEEL [25]. The datasets are binary (2 classes)
and have different levels of imbalance. Table I summarises the
datasets used in this study, detailing the number of samples, the
number of attributes, the class distribution and the imbalance
ratio (IR). The datasets are partitioned using the five fold cross-
validation procedure, respecting the classes proportions.

TABLE I. DATASETS CHARACTERISTICS

Label Dataset #Attributes #Instances IR
1 pima 8 768 1.87
2 yeast1 8 1484 2.46
3 vehicle2 18 846 2.88
4 vehicle1 18 846 2.9
5 vehicle3 18 846 2.99
6 vehicle0 18 846 3.25
7 ecoli2 7 336 5.46
8 segment0 19 2308 6.02
9 ecoli3 7 336 8.6

10 yeast05679vs4 8 528 9.35
11 vowel0 13 988 9.98
12 glass016vs2 9 192 10.29
13 glass2 9 214 11.59
14 shuttlec0vsc4 9 1829 13.87
15 yeast1vs7 7 459 14.3

The evaluation metrics are: Area Under the ROC Curve
(AUC) and reduction rate. To compare the results, we use the
One Sided Wilcoxon Rank Test [15], with significance level
α = 0.05. Table II presents the techniques and parameters
used in this experiment. The 1NN was the base classifier used
for all techniques.

TABLE II. PARAMETERS USED IN THE EXPERIMENTS.

Algorithm Parameters
SGP Rmin = 0.20, Rmis = 0.20
SGP2 Rmin = 0.20, Rmis = 0.20
ASGP Rmin = 0.20, Rmis = 0.20
EASGP Rmin = 0.20, Rmis = 0.20, α = 0.97

B. Results

Table III and Table IV are grouped in columns by algo-
rithms, and the best result of each dataset is highlighted in
bold. The last lines presents the results of the Wicoxon Test,
considering αwilcoxon = 0.05, the symbol “+” is used when
EASGP outperforms the algorithm in that column (NA means
not applicable).

1) AUC: Table III shows the average and standard de-
viation of the classification accuracy (given by the AUC).
The results show that EASGP outperformed all previous
version of SGP with statistical confidence: SGP (p-value
= 0.0003275), SGP2 (p-value = 0.0003275) and ASGP (p-
value = 0.007511).

Figure 2 shows EASGP compared with the best of the
other techniques. This figure shows that EASGP outperforms
the best of SGP, SGP2 and ASGP in classification accuracy,

TABLE III. AVERAGE, STANDARD DEVIATION AND WILCOXON
SIGNED RANK TEST P-VALUE AND RESULT OF THE SGP, SGP2, ASGP

AND EASGP AUC RATE

Label SGP SGP2 ASGP EASGP

1 0.6468(0.0372) 0.6508(0.0443) 0.6451(0.0713) 0.6718(0.0607)
2 0.6062(0.0347) 0.5950(0.0396) 0.6234(0.0168) 0.6261(0.0084)
3 0.7935(0.0456) 0.7874(0.0402) 0.8400(0.0527) 0.8146(0.0705)
4 0.5943(0.0573) 0.6070(0.0552) 0.6425(0.0326) 0.6393(0.0297)
5 0.6460(0.0299) 0.6437(0.0420) 0.6738(0.0366) 0.6934(0.0471)
6 0.7922(0.0217) 0.8020(0.0297) 0.8020(0.0255) 0.8253(0.0373)
7 0.5000(0.0000) 0.5000(0.0000) 0.8986(0.0503) 0.8986(0.0503)
8 0.6898(0.1323) 0.6850(0.1389) 0.8564(0.0657) 0.8875(0.0620)
9 0.5028(0.0063) 0.5187(0.0419) 0.8531(0.0681) 0.8866(0.0610)

10 0.5281(0.0629) 0.5281(0.0629) 0.7986(0.0485) 0.8128(0.0444)
11 0.5000(0.0000) 0.5000(0.0000) 0.8588(0.0601) 0.8588(0.0601)
12 0.5545(0.0792) 0.5069(0.0976) 0.6388(0.1886) 0.6693(0.1050)
13 0.6291(0.1284) 0.6215(0.1288) 0.6674(0.1109) 0.7240(0.0742)
14 0.5000(0.0000) 0.5000(0.0000) 0.9960(0.0089) 0.9960(0.0089)
15 0.5817(0.1328) 0.5677(0.1423) 0.6553(0.0524) 0.7615(0.0945)

Mean 0.6043(0.0512) 0.6009(0.0576) 0.7633(0.0593) 0.7844(0.0543)
p-value 0.0003275 0.0003275 0.007511 NA
Result + + + NA

Fig. 2. Best of SGP, SGP2 and ASGP × EASGP AUC rate graph, where
the squares are the datasets and the star is the average.

being losing in only 2 datasets. Clearly, EASGP achieved the
best performance in classification accuracy (AUC).

2) Reduction: Table IV shows the average and standard
deviation of the reduction rate. The results show that EASGP
outperformed all previous versions of SGP with statistical con-
fidence: SGP (p-value = 0.00143), SGP2 (p-value = 0.02341),
and ASGP (p-value = 0.001109).

The impressive result is that EASGP outperformed SGP2
in reduction rate. Based on previous studies [13], we concluded
that SGP2 have a high reduction power, but sometimes it
removes all samples of the minority class, which allows the
algorithm to leave only a prototype of the majority class.
Despite of that, EASGP was able to outperform SGP2 in
reduction, without compromising classification accuracy.

Figure 3 shows EASGP compared with the best of the
other techniques. This figure shows that EASGP outperforms
the best of SGP, SGP2 and ASGP in reduction rate, losing in
only 5 datasets. Even in the few datasets where EASGP was
outperformed, we can see that the points are very close to the
line, which means the difference is very small.



TABLE IV. AVERAGE, STANDARD DEVIATION AND WILCOXON
SIGNED RANK TEST P-VALUE AND RESULT OF THE SGP, SGP2, ASGP

AND EASGP REDUCTION RATE

Dataset SGP SGP2 ASGP EASGP

1 0.7689(0.0125) 0.8333(0.0097) 0.7939(0.0108) 0.9385(0.0234)
2 0.7675(0.0073) 0.8491(0.0087) 0.8031(0.0053) 0.9528(0.0227)
3 0.9507(0.0076) 0.9663(0.0050) 0.9563(0.0085) 0.9814(0.0039)
4 0.8304(0.0042) 0.8785(0.0109) 0.8516(0.0205) 0.9601(0.0134)
5 0.8274(0.0064) 0.8738(0.0043) 0.8381(0.0055) 0.9323(0.0316)
6 0.9474(0.0053) 0.9607(0.0062) 0.9486(0.0132) 0.9843(0.0049)
7 0.9963(0.0000) 0.9963(0.0000) 0.9926(0.0000) 0.9926(0.0000)
8 0.9967(0.0009) 0.9977(0.0010) 0.9963(0.0012) 0.9979(0.0003)
9 0.9829(0.0301) 0.9866(0.0217) 0.9792(0.0301) 0.9889(0.0084)

10 0.9805(0.0381) 0.9829(0.0328) 0.9754(0.0445) 0.9901(0.0117)
11 0.9987(0.0000) 0.9987(0.0000) 0.9975(0.0000) 0.9975(0.0000)
12 0.8854(0.0193) 0.9427(0.0266) 0.8737(0.0117) 0.9349(0.0220)
13 0.8960(0.0128) 0.9311(0.0192) 0.8878(0.0097) 0.9275(0.0098)
14 0.9993(0.0000) 0.9993(0.0000) 0.9986(0.0000) 0.9986(0.0000)
15 0.8954(0.0184) 0.9466(0.0170) 0.9096(0.0136) 0.9543(0.0121)

Mean 0.9149(0.0109) 0.9429(0.0109) 0.9201(0.0116) 0.9688(0.0109)
p-value 0.00143 0.02341 0.001109 NA
Result + + + NA

Fig. 3. Best of SGP, SGP2 and ASGP × EASGP reduction rate graph, the
squares are the datasets and the star is the average.

We can conclude with confidence that EASGP achieved
the best peformance in reduction rate.

3) Reduction vs. Classification: Figure 4 shows the dis-
persion graph (Reduction vs. AUC) of SGP, SGP2, ASGP
and EASGP. This figure shows that EASGP achieved the best
classification accuracy and reduction rate.

Fig. 4. Dispersion (Reduction vs. AUC) of EASGP, ASGP, SGP and SGP2.

We can state with confidence that EASGP outperformed
all previous versions of SGP (SGP, SGP2 and ASGP) in both,
classification accuracy and reduction rate.

V. CONCLUSION

This paper presented the Evolutionary Adaptive Self-
Generating Prototypes (EASGP), a centroid based prototype
generation (PG) algorithm for imbalanced datasets. EASGP
uses an iterative merging to expand the search space, and
evolutionary pruning to find the optimal solution.

An experimental study was carried out to compare EASGP
and the previous versions of the Self-Generationg Prototupes
(SGP). The main conclusions reached were:

1) EASGP outperformed all previous versions of SGP
in classification accuracy on imbalanced datasets.

2) EASGP outperformed all previous versions of the
SGP in reduction rate on imbalanced datasets.

3) Differently than previous versions of SGP, EASGP
can be adjusted to give preference to the classification
or reduction with the α parameter.

The use of an iterative merging and evolutionary pruning
achieved excelent results. Future works include the use of these
algorithms with other PG techniques.
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