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a b s t r a c t

The pollution caused by particulate matter (PM) concentration has a negative impact on population
health, due to its relationship with several diseases. In this sense, several intelligent systems have been
proposed for forecasting the PM concentration. Although it is known in the literature that PM
concentration time series behave like random walk, to the authors’ knowledge there is no intelligent
systems developed to forecast the PM concentration that consider this characteristic. In this paper, we
present an architecture developed to forecast time series guided by random walk process. The
architecture, called Time-delay Added Evolutionary Forecasting (TAEF), consists of two steps: parameters
optimization and phase adjustment. In the first step, a genetic optimization procedure is employed to
adjust the parameters of a Multilayer Perceptron neural network that is used as the prediction model.
The genetic algorithm adjusts the following parameters of the prediction model: the number of input
nodes (time lags), the number of neurons in the hidden layer and the training algorithm. The second step
is performed aiming to reduce the difference between the forecasting and the actual concentration value
of the time series, that occur in the forecasting of the time series with random walk behavior. The
approach is data-driven and only uses the past values of the pollutant concentrations to predict the next
day concentration; in other words, it does not require any exogenous information. The experimental
study is performed using time series of concentration levels of particulate matter (PM2.5 and PM10) from
Helsinki and shows that the approach overcomes previous state-of-the-art methods by a large margin.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the air conditions, as well as its prediction, is an
important topic due to the relationship between high concentra-
tions of pollutants, such as particulate matter (PM), and adverse
effects on human health, that is an issue of increasing public
concern. Pollutants concentration forecasting (Niska et al., 2004;
Pisoni et al., 2009; Siwek et al., 2011) is a relevant task, since it
enables governments to warn the population regarding high levels
of pollution. Several epidemiological studies have associated the
concentration of those pollutants with cardiovascular and respira-
tory diseases (Ebelt et al., 2005; Nel, 2005; Peng et al., 2008). The

Global Monitoring Report (Bank, 2008) affirms that the major
urban air pollutant that affects the human health is PM.

Several types of Artificial Neural Networks (ANN) have been
applied for forecasting of the PM concentration. Some works have
compared the performance of different ANNs in the prediction of
one step ahead. Sharma et al. (2003) used the concentration data
of seven pollutants, among them PM2.5 and PM10, of the California
area to evaluate the performance of four ANN models: Recurrent
Network Model (RNM), Change Point Detection Model with
RNM, Sequential Network Construction Model and Self Organizing
Feature Model. Ordieres et al. (2005) addressed the PM2.5 con-
centration in the cities of El Paso (Texas) and Ciudad Juárez
(Chihuahua) to compare the performance of the Multilayer
Perceptron (MLP) model, Radial Basis Function (RBF) and Square
Multilayer Perceptron (SMLP). Other works proposed ANN based
on MLP model. Perez and Reyes (2006) developed an integrated
ANN to forecast the maximum average concentration for PM10 per
day for city of Santiago, Chile. Kukkonen et al. (2003) combined
the MLP model with homoscedastic and heteroscedastic Gaussian
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noise (ANN-HeG) to forecast the PM10 concentration in Helsinki.
Although most of the works have evaluated the prediction of one
step ahead, Kurt and Oktay (2010) used a MLP model of three
layers to forecast sulfur dioxide (SO2), carbon monoxide (CO) and
PM10 concentration levels for 3 days ahead for a Besiktas district.

Intelligent models based on artificial neural network (ANN)
also have been widely used to predict the PM concentration
aiming best results. Some works combined Principal Component
Analysis (PCA) with ANN models, as Slini et al. (2006), that
proposed a hybrid system (PCA-MLP) to forecast PM10 concentra-
tion in Thessaloniki. Voukantsis et al. (2011) proposed a metho-
dology that selects the input variables using PCA and the
prediction is performed by combining the outputs of two meth-
ods: MLP and linear regression (LR). In that work, the time series
concentration of PM2.5 and PM10 in Thessaloniki and Helsinki were
used. Other hybrid systems were also proposed. Niska et al. (2005)
integrated a MLP model with a numerical weather prediction
model HIRLAM (High Resolution Limited Area Model) to predict
sequential hourly time series of concentrations of PM2.5 in
Helsinki. In that work, an input selection method based on the
use of a multi-objective genetic algorithm (MOGA) was applied to
reduce the number of potential meteorological input variables. For
PM10 concentration management in Santiago, Chile, Perez (2012)
combined a MLP model with a nearest neighbor method. Siwek
and Osowski (2012) combined ANNs to forecast daily average
concentration of PM10 in Warsaw, Poland.

Despite many intelligent models have been applied for fore-
casting of the PM concentration, to the authors’ knowledge, no one
considered the fact that these time series consist of a randomwalk
process (Sitte and Sitte, 2002), typical of a Brownian motion
process (Grau-Bové and Strlic, 2013; Sahu and Nicolis, 2008;
Cheng et al., in press). A random walk (Sitte and Sitte, 2002) is a
stochastic process that consists of successive and connected steps
in which each step is chosen by a random mechanism unin-
fluenced by any previous step. This phenomenon also is widely
seen in the financial time series representation.

In this paper, we present an evolutionary hybrid system, called
TAEF method (Ferreira et al., 2008), for time series prediction of
particulate matter concentrations. The system was particularly
developed to forecast time series from of the phenomenon guided
by random walk (Sitte and Sitte, 2002). The approach is composed
of two main parts: parameters optimization and phase adjustment.
The parameters optimization uses a genetic algorithm to search for

the best parameters to train the predictor. A Multilayer Perceptron
neural networks is used as predictor and the following parameters
are adjusted: number of time lags to represent the series, number
of hidden units and the algorithm to perform the training of the
predictor. After, a phase adjustment procedure is performed to
improve the accuracy of the predictor by automatically correcting
time phase distortions. These distortions in the forecasting are
common when the phenomena guided by a random walk process
(Ferreira et al., 2008) are addressed, such as the PM concentration
(Grau-Bové and Strlic, 2013; Sahu and Nicolis, 2008; Cheng et al., in
press). Thus, in the case of PM concentration levels, the phase
adjustment procedure could significantly improve the accuracy of
the intelligent methods? This is a relevant aspect addressed in
this paper.

This paper is organized as follows. Section 2 describes the
method and the phase adjustment procedure. Section 3 presents a
set of six evaluation measures used to analyze the prediction
results of the architecture. Simulation results and concluding
remarks are presented in Sections 4 and 5, respectively.

2. The architecture for PM concentration forecasting

Given an univariate time series database (Γ), the output of the
architecture is a trained Artificial Neural Network (ANN) that is
ready to predict the next day value of the time series. The first step
of the architecture is the Normalization, where each time series is
normalized to lie within the interval [0,1]. After normalization, the
database (Γ) is divided into three disjoint parts: training (Ω),
validation (Υ), and test (Δ).

Fig. 1 shows that the architecture is composed of two main
modules: (i) Parameters Optimization (Section 2.1) and (ii) Phase
Adjustment (Section 2.2).

2.1. Parameters optimization

The parameters optimization module is based on a modified
Genetic Algorithm (GA) proposed by Leung et al. (2003), used also
in other works (Moris et al., 2003; Xu et al., 2007), and is the basis
for the GA used in the TAEF method. The GA searches for the best
parameters of an ANN in order to improve its performance. In the
search process, the GA combines exploration (global search) and
exploitation (local search) strategies (Yannibelli and Amandi,

Fig. 1. Architecture of the system. “Stop?” corresponds to the stopping criteria of the Genetic Algorithm and “HT?” represents the output of a hypothesis test used to evaluate
the forecasting of the Artificial Neural Network (ANN).
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2013). The exploration process uses the genetic operators to search
for new promising regions in the search space. The exploitation
process is performed by the neural network training algorithm
to fine-tune the solutions reached by the evolutionary search.
The output of this module is the best ANN chosen from a set of
candidates after the optimization procedure.

Inspired by Takens’ (1980) theorem, the approach aims to
search for the minimum dimensionality of time lags required to
reproduce the generative phenomenon of the time series. In other
words, the GA searches for the best and more optimized combina-
tion of time lags of the predictive model. On the design of a
predictive model, the number of time lags is an important aspect
because the larger the number of lags the higher the cost
associated to represent the time series.

The initial population of the GA is a set of possible solutions
randomly generated and each individual of the population is
encoded by one chromosome. The chromosome is composed of
the following parameters that defines an ANN (in our case, a
multilayer perceptron—MLP): number of input nodes, number of
units in the hidden layer, weights, training algorithm and an unit
step function to each weight. This unit step acts like a switch to
each weight of the ANN, since it enables that connections which
are not important be eliminated in the evolution process.

After the initial population generation, each individual is
trained using one of the four candidate algorithms: Levenberg–
Marquardt (Mor, 1977), Scaled Conjugated Gradient (Moller, 1993),
RPROP (Reidmiller and Braun, 1993) and One Step Secant Con-
jugate Gradient (Battiti, 1992). The stopping criteria of this training
are the number of epochs, the increase in the validation error and
the decrease in the training error.

After the training using a gradient descent algorithm, the GA is
used to evolve the population towards a good fitness solution. So,
each chromosome in the population is evaluated by a fitness
function for the PM concentration forecasting proposed here. The
fitness function is defined in Eq. (1) and it is composed of five
well-known performance measures: Prediction Of Change In
Direction (POCID), Mean Squared Error (MSE), Mean Absolute
Percentage Error (MAPE), U of Theil Statistics (Theil) and Average
Relative Variance (ARV). These measures are defined in Section 3.

fitness¼ POCID
1þMSEþMAPEþTheilþARV

: ð1Þ

This fitness function creates a global indicator of the forecasting
performance (in the range 0–100). The higher the fitness value, the
better is the quality of the prediction model.

After the evaluation phase, two chromosomes are selected as
parents by the method of spinning the roulette wheel. The higher
the fitness value of the chromosome, the higher is the chance of it
being selected. So, it is expected that high potential parents will
produce better offspring. The parents generate the offspring using
the genetic operators proposed by Leung et al. (2003). For each
new offspring created, the individuals are trained using a neural
network training algorithm among four candidates and this algo-
rithm is selected by the evolutionary process.

The stopping criteria of the GA (“Stop?”– Fig. 1) are (i) the
number of epochs; (ii) an increase in the validation error; or (iii) a
decrease in the training error.

When any GA stop criterion is reached, the algorithm compares the
fitness of the best individual (fBest) with the minimum acceptable
fitness (MinFit) defined by the user. The best ANN (with the fitness
value of fbest) of the population is the one with the higher fitness on
the validation database (Υ). If fBest is smaller than MinFit, the variable
that defines the maximum number of lags (MaxLags) in the search
space of the GA is increased by one unit. After, the GA is reinitialized to
search for a better solution. This update aims to increase the chance of
selecting relevant lags. In contrast, if the fitness of the best individual is
greater than MinFit, the variable MaxLags is updated to the number of
lags of this individual. After, the MinFit is set as the fitness value
reached by the best individual and the GA is started again to search for
a better solution. In this case, we expect to find a solution that has a
higher fitness than MinFit. This is possible because the vicinity of the
best individual found, so far, can be a promising region for better
individuals. This process is repeated until the maximum number of
iterations of the approach be reached.

2.2. Phase adjustment

The best ANN obtained by the first module of the approach
(Section 2.1) is evaluated by a statistical test (hypothesis test, “HT?”–
Fig. 1). The t-test is used and it aims to verify if the obtained ANN has a
predictive performance better than a random walk like model (null
hypothesis) or not (alternative hypothesis). A random walk model
(Sitte and Sitte, 2002) is the simplest forecast model, where the best
prediction of one step ahead is given by the current value of the time
series. Based on the result of the statistical test, the method selects one
out of two operation modes:

� In-phase: The shapes of the actual and the predicted time series
have a time matching. In other words, the trained ANN is not a
random walk like model.

� Out-of-phase: A time delay mismatch of the predicted series is
observed when compared with the actual time series. The
trained ANN tends to behave like to a random walk like model.

When the operation In-phase mode is selected (null hypothesis
is not rejected), this means that the trained ANN is ready for
practical use. In contrast, when the operation Out-of-phase mode
is selected, a phase adjustment procedure is performed to mini-
mize the effects of the time delay mismatch. The phase adjust-
ment procedure (Ferreira et al., 2008) is composed of two
steps (Fig. 2): (1) given an input vector ½t1; t2;…; tn�AΥ , the output
(y1) of the ANN model is calculated; (2) the input vector
is rearranged to include y1: ½y1; t1; t2;…; tn�1�. This new vector is
given as input to the same ANN model used in Step 1 and its
output is the final forecasting.

Fig. 2. Procedure to adjust the phase of the forecasting (adapted from Ferreira et al., 2008).
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3. Evaluation measures

The evaluation of the method is performed by six measures:
Mean Squared Error (MSE), Mean Absolute Percentage Error
(MAPE), U of Theil Statistics, Average Relative Variance (ARV),
Prediction of Change in Direction (POCID) and Index of Agreement
(IA). These measures are described below.

The MSE measure (Rodrigues et al., 2010; de Mattos Neto et al.,
2010) is commonly used in the literature of time series forecasting
and it is defined by the following equation:

MSE¼ 1
N

∑
N

j ¼ 1
ðtargetj�outputjÞ2; ð2Þ

where N is the size of the series, targetj is the real value at period j and
outputj is the predicted value at period j. It is worth mentioning that
MSE cannot be considered a conclusive measure for comparison of
different forecasting models (Clements and Hendry, 1993). Thus, other
evaluation measures should be considered.

The MAPE measure (Rodrigues et al., 2010; de Mattos Neto et
al., 2010) is given by the equation:

MAPE¼ 100
N

∑
N

j ¼ 1

targetj�outputj
targetj

�����
�����: ð3Þ

The U of Theil Statistics (Rodrigues et al., 2010; de Mattos Neto
et al., 2010) can be defined as

Theil¼
∑N

j ¼ 1ðtargetj�outputjÞ2

∑N
j ¼ 1ðoutputj�outputjþ1Þ2

: ð4Þ

The ARV measure (Rodrigues et al., 2010; de Mattos Neto et al.,
2010) is defined as

ARV¼
∑N

j ¼ 1ðoutputj�targetjÞ2

∑N
j ¼ 1ðoutputj�targetÞ2

ð5Þ

where target is the mean of the series.
The POCID measure (Rodrigues et al., 2010; de Mattos Neto et

al., 2010) is given by

POCID¼ 100
∑N

j ¼ 1Dj

N
; ð6Þ

where

Dj ¼
1; if ðtargetj�targetj�1Þðoutputj�outputj�1Þ40:
0; otherwise:

(
ð7Þ

The IA measure (Voukantsis et al., 2011) is given by

IA¼ 1�
∑N

j ¼ 1joutputj�targetjj2

∑N
j ¼ 1ðjoutputj�targetjþjtargetj�targetjÞ2

: ð8Þ

For MSE, MAPE, Theil and ARV, the lower the value of those
measures, the better is the forecasting of the model. Theil is a
measure used to compare the model performance with a random
walk model performance. If the value of the measure is equal to 1,
the model is equivalent to the random walk model. However, if its
value is smaller or greater than 1, the model performance is better
or worse than the performance of the random walk model,
respectively. ARV is a measure that is used to compare the model
forecasting with the forecasting of the mean of the series. If the
ARV value is equal to 1, the forecasting of the predictor is equal to
the mean of the series. However, if its value is less or greater than
1, the prediction of the model is better or worse than the mean,
respectively. In case of POCID and IA, the higher the value the
better is the performance of the model. The POCID can have values
in the range ½0;100� and IA in the range [0,1].

4. Simulation and results

The method is evaluated using four time series that correspond
to daily mean concentrations of PM2.5 and PM10 from Helsinki. The
data were measured in the time period of 2001–2003 from
stations of Kallio and Vallila (Voukantsis et al., 2011). These
stations are in locals with different characteristics of Helsinki.
Vallila is more influenced by traffic in the center of the city, while
the station of Kallio is an urban background. Generally, the
population on urban background locals is less exposed to pollu-
tion, whereas the traffic locals represent urban environments
more severely polluted. For each region, PM2.5 and PM10 concen-
tration time series are used in this work, composing a data set of
four series. All series are normalized to lie within the interval [0,1]
and divided in three sets: 80% for training, 10% for validation and
10% for test. For each time series, ten simulations were performed
by the architecture and the best model based on the validation
dataset (Υ) is selected as the predictive model. All the results
shown refer to one step ahead predictions generated using the test
set (Δ). The parameters of the method are set up to (i) Initial
acceptable fitness value (1% of error); (ii) Initial maximum number
of time lags (10); (iii) Maximum number of hidden units (20); and
(iv) Maximum number of iterations (10).

The parameters of the genetic algorithm used by the architec-
ture are set up to (i) Mutation probability (10%); (ii) Population
size (10); (iii) Maximum number of generations (1000); and (iv)
Minimum fitness progress (10�4). Three stopping conditions for
the method are used: (i) Maximum number of iterations (1000);
(ii) Generation loss (5%); and (iii) Progress training (10�6).

4.1. Kallio station time series forecasting

Table 1 shows the forecasting of the PM2.5 and PM10 concen-
tration time series from the Kallio station using the architecture
under consideration. Comparing the results before (In-phase) and
after (Out-of-phase) the phase adjustment, we observe that the
forecasting is consistently better when the phase of the time series
is adjusted by the approach, independently of the time series
analyzed and the measure used.

Figs. 3 and 4 show the real concentration series for the Kallio
station (solid lines) and the forecasting generated by the method
(dashed lines) for PM2.5 and PM10, respectively. Figs. 3(a) and
4(a) show the results without phase adjustment and Figs. 3(b) and
4(b) show the results with phase adjustment. Observing these
figures, we note that the best fit happens when the phases are
adjusted.

After the optimization procedures, the method selected the
following parameters for the best ANN when the PM2.5 concentra-
tion time series was used: (i) six lags: 1, 2, 4, 8, 9 and 10; (ii) eight

Table 1
Forecasting of the Kallio station time series using the architecture.

Kallio station

PM2.5 PM10

In-phase Out-of-phase In-phase Out-of-phase

MSE 0.0047 0.0003 0.0053 0.0006
MAPE 127.32 27.41 105.93 35.93
Theil 0.7954 0.0596 0.7522 0.0969
POCID 41.66 97.19 45.28 97.16
ARV 1.8594 0.1349 2.5764 0.3077
IA 0.59 0.97 0.53 0.95

Fitness 0.32 3.40 0.41 2.60
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neurons in hidden layer; and (iii) Levenberg–Marquardt training
algorithm. For the PM10 concentration time series, the parameters
were (i) five lags: 2, 3, 4, 5 and 9; (ii) four neurons in hidden layer;
and (iii) Levenberg–Marquardt training algorithm. For both cases,
the method indicated the out-of-phase configuration for the
predictive models.

4.2. Vallila station time series forecasting

Table 2 shows the forecasting of the PM2.5 and PM10 concen-
tration time series from the Vallila station using the architecture
under consideration. Comparing the results before (In-phase) and
after (Out-of-phase) the phase adjustment, we observe again that
the forecasting is consistently better when the phase of the time
series is adjusted by the approach, independently of the time
series analyzed and the measure used.

Figs. 5 and 6 show the real concentration series for the Vallila
station (solid lines) and the forecasting generated by the method
(dashed lines) for PM2.5 and PM10, respectively. Figs. 5(a) and 6
(a) show the results without phase adjustment and Figs. 5(b) and 6
(b) show the results with phase adjustment. We can note that
again the best fit happens when the phases are adjusted.

After the optimization procedures, the architecture selected the
following parameters for the best ANN when the PM2.5 concentra-
tion time series was used: (i) six lags: 1, 2, 3, 6, 7 and 8; (ii) six
neurons in hidden layer; and (iii) Levenberg–Marquardt training
algorithm. For the PM10 concentration time series, the parameters
were (i) four lags: 1, 4, 6 and 10; (ii) eight neurons in hidden layer;
and (iii) Levenberg–Marquardt training algorithm. The method
classified the predictive ANN with an out-of-phase configuration,
for the both time series PM2.5 and PM10.

4.3. Discussion

From the results in Tables 1 and 2, it is possible to observe that
the method generated predictive models (ANNs) for PM concen-
tration with a prediction performance better than the random
walk model (based on the statistics U of Theil) and better than the
forecasting using only the mean of series (ARV). The POCID
measure shows that the prediction obtained by the predictive
models follows the direction of the series in all cases. From the
results shown in Tables 1 and 2, it is observed that the phase
adjustment procedure improved significatively the performance of
the hybrid system for all used measures and the fitness function.
This result shows that this procedure can enhance the perfor-
mance of the prediction when PM concentration time series are
addressed.
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Fig. 3. Forecasting for the PM2.5 concentration time series for Kallio station (last
100 points). (a) Forecasting without the phase adjustment. (b) Forecasting with the
phase adjustment.
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Fig. 4. Forecasting for the PM10 concentration time series for Kallio station (last
100 points). (a) Forecasting without the phase adjustment. (b) Forecasting with the
phase adjustment.

Table 2
Forecasting of the Vallila station time series using the architecture.

Vallila station

PM2.5 PM10

In-phase Out-of-phase In-phase Out-of-phase

MSE 0.0028 0.0001 0.0056 0.0003
MAPE 77.56 21.66 71.04 29.66
Theil 0.7336 0.0313 1.2167 0.0727
POCID 43.00 98.11 44.68 97.82
ARV 2.1951 0.0630 2.7216 0.1910
IA 0.57 0.98 0.32 0.96

Fitness 0.53 4.31 0.59 3.16
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Table 3 shows the results, in terms of IA, obtained by the
approach and by several techniques for different periods. The IA
was considered because it is a performance measure widely used
in the literature of the pollutant forecasting. The values used in the
comparison are shown only as a reference. However, for all cases,
the approach overcomes the results found in the literature by a
large margin. Another alternative to measure the performance of
the proposed method is to evaluate the mean IA using the k-fold
cross-validation procedure. So, each time series was divided into
three folds (k¼3), where each fold corresponds to 1 year (2001,
2002 and 2003). The proposed approach obtained the following
mean and standard deviation results in terms of the IA measure:
(i) for the Kallio Station: 0.9570.03 for PM2.5 and 0.9470.01 for
PM10; and, (ii) for the Vallila Station: 0.9670.01 and 0.9570.01
for PM2.5 and PM10. These average results are similar to the ones
shown in Table 3.

In contrast with previous models (Kukkonen et al., 2003;
Voukantsis et al., 2011; Niska et al., 2005; Siwek and Osowski,
2012; Vlachogianni et al., 2011) that use several variables of
meteorological data, the presented architecture does not require
any exogenous information to perform the prediction.

5. Conclusions

In this paper, an architecture to forecast particulate matter
concentration levels was presented. The architecture is composed
of two main parts: parameters optimization and phase adjust-
ment. In the parameters adjustment part, an optimization process
is performed to find the best parameters of the predictor. After, a
phase adjustment procedure is performed to minimize the effects
of the time delay mismatch. This phase adjustment aims to

improve the accuracy of the predictor by automatically correcting
time phase distortions that can occur in the forecasting of time
series, that has its generation process driven by Brownian motion
process (also called “random walk”) (Grau-Bové and Strlic, 2013).

The performance of the method was assessed using six well-
known performance measures and four time series. The time
series consist of concentration levels of PM2.5 and PM10 from the
stations of Kallio and Vallila. The stations are located in urban
background and urban traffic, each one containing different
characteristics. The experimental results showed a consistent
better performance of the approach when compared with other
techniques (e.g. Voukantsis et al., 2011; Vlachogianni et al., 2011)
for all investigated series. In contrast to other methods in the
literature that use several exogenous time series to predict a time
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Fig. 5. Forecasting for the PM2.5 concentration time series for Vallila station (last 95
points). (a) Forecasting without the phase adjustment. (b) Forecasting with the
phase adjustment.
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Fig. 6. Forecasting for the PM10 concentration time series for Vallila station (last 95
points). (a) Forecasting without the phase adjustment. (b) Forecasting with the
phase adjustment.

Table 3
Results of the pollutant concentration prediction from Helsinki using the measure
Index of Agreement. n.a., not available.

Reference Method Period PM2.5 PM10

Kallio station
Niska et al. (2005) MLP–HIRLAM May 2001–April 2002 0.85 n.a
Vlachogianni et al. (2011) MLR 2005 (warm period) n.a 0.90a

Voukantsis et al. (2011) PCA–MLP–LR 2001–2003 0.87 0.87
Method TAEF 2001–2003 0.97 0.95

Vallila station
Kukkonen et al. (2003) ANN-HeG 1999 n.a 0.77
Vlachogianni et al. (2011) MLR 2005 (warm period) n.a 0.88a

Voukantsis et al. (2011) PCA–MLP–LR 2001–2003 0.87 0.87
Method TAEF 2001–2003 0.98 0.96

a In cold period, Vlachogianni et al. (2011) reached 0.85 and 0.82 for Kallio
station and Vallila station, respectively.
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series of interest, the approach uses only the time series under
study to perform the prediction.

The performance of the method was reached mainly due to the
use of the phase correction procedure. Thus, these results show
that the phase adjustment procedure can be an interesting
alternative to enhance the forecasting of the intelligent methods
that are proposed to solve the forecasting problem of the PM
concentration.
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