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Abstract—The human visual system is one of the most fasci-
nating and complex mechanisms of the central nervous system
that enables our capacity to see. It is through the visual system
that we are able to accomplish from the most simple task such
as object recognition to the most complex visual interpretation,
understanding and perception. Inspired by this sophisticated sys-
tem, two models based on the properties of the human visual
system are proposed. These models are designed based on the
concepts of receptive and inhibitory fields. The first model is a
pyramidal neural network with lateral inhibition, called lateral
inhibition pyramidal neural network. The second proposed model
is a supervised image segmentation system, called segmentation
and classification based on receptive fields. This work shows that
the combination of these two models is beneficial, and the results
obtained are better than that of other state-of-the-art methods.

Index Terms—Image processing, neural network, pattern recog-
nition, receptive fields.

I. INTRODUCTION

A T the beginning of the 1960s, an important region of
neurons in the human brain was discovered. This region

was called the receptive field, and it was identified in many parts
of the human brain, such as the auditory, somatosensory, and
visual systems [1]. The concept of receptive field was defined
by Levine and Shefner [2] as an area in which the presence of
an appropriate stimulus could lead to the response of a sensitive
neuron. Rizzolatti and Camarda [3] demonstrated that another
stimulus, applied simultaneously with the receptive field stim-
ulus, can also affect the neuron. This stimulus originated from
a region called the nonclassical receptive field or extraclassical
receptive field (ECRF) [4], and most of the time, this stimulus
presents a lateral inhibitory effect. Therefore, we refer to it as
an inhibitory field.

The applications of the concepts of receptive and inhibitory
fields in the area of pattern recognition range from contour
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detection [5] to texture analysis, such as the Gabor filter [6], [7].
These concepts have also been applied in the development of
neural models. Sun et al. [8] proposed a neurocomputational
model for object detection in the spatial and temporal domains.
Park et al. [9] proposed a neural network architecture based
on the radial basis function having in its topology a collection
of receptive fields. Ghosh and Pal [10] proposed a model for
the ECRFs using the receptive and inhibitory field concepts for
object detection. These results demonstrate that the receptive
fields of the primary visual cortex can be applied for image
classification tasks.

Fukushima et al. [11], [12], inspired by the concept of re-
ceptive fields, proposed the neocognitron: a multilayered neural
network for visual pattern recognition. He also proposed several
modifications in the neocognitron, such as the inhibitory sur-
round [13]. The presence of the inhibitory surround increased
the neocognitron recognition rate and simplified the network
architecture. Motivated by the neocognitron model, Perez et al.
[14] combined a feature extraction neural network and a neu-
ral classifier to also perform visual pattern recognition. The
receptive and inhibitory field concepts were embedded in the
proposed neural network. However, their model was not able
to generate the receptive fields by itself since it used a ge-
netic algorithm in order to find the most suitable receptive
field configuration: dimensions, angle of orientation, and bias.
LeCun et al. [15], [16] proposed the convolutional neural
network (CNN) using the same type of cells as the neocognitron
and taking into consideration the fact that a specific neural
network architecture based on a priori knowledge is able to
improve the generalization ability of the model. Tivive and
Bouzerdoum [17], [18] improved the CNN using an inhibitory
stimulus. They obtained good classification rates in a face
detection task using an architecture that has a less complex
structure and fewer trainable parameters.

Another important method based on the concept of receptive
field was presented by Phung and Bouzerdoum [19]. They
proposed an artificial neural network called PyraNet to perform
visual pattern recognition. The PyraNet receives as input an
image, and the network output is the image classification. In
this model, the sizes of the receptive fields do not change
during the training, but the orientation of the angle and the
bias are adjusted by tuning the neuron weights during the error
backpropagation of the neural network.

The concept of lateral inhibition [20] has already been
applied in other neural models. The analysis of the recur-
rent neural network with lateral inhibition was presented by
Mao and Massaquoi [21], based on the work developed by
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Coultrip et al. [22]. They showed that lateral suppression
by neighboring neurons in the same layer makes the network
more stable and efficient. Other interesting research works
that explore the ideas of lateral inhibition were developed by
Chen et al. [23] who proposed an unsupervised neural model
based on Hebbian rule and lateral inhibition, called neuronal
cluster, and by Fang et al. [24] who presented a study about
dynamical neural networks with lateral inhibition. Arkachar
and Wagh [25] presented a neural model to study the lateral in-
hibition influence in edge enhancement and demonstrated that,
when the ratio between the inhibitory and excitatory weights
approaches a critical rate, the edge enhancement increases, and
the neural network becomes unstable when the ratio is higher
than the critical rate.

Wilson et al. [26] presented two different inhibitory stimulus
mechanisms in the brain circuits. The first one comes from the
somatostatin-expressing neurons performing the subtraction of
responses in their targets. The second stimulus comes from the
parvalbumin-expressing neurons implementing divisive nor-
malization. The inhibition in the somatostatin-expressing cells
is more uniform than that in the parvalbumin-expressing cells,
leading to a broader range of targets and sharpened orientation
selectivity. Such inhibition has been described in neurons in the
V1 area of the visual cortex.

In this paper, we propose two models for pattern classifica-
tion based on the concepts of receptive and inhibitory fields:
a classifier and a supervised image segmentation method. The
models are combined to perform image classification. The
proposed classifier is a pyramidal neural network with lateral
inhibition, the lateral inhibition pyramidal network (LIPNet),
which is based on the PyraNet architecture. However, while the
PyraNet only considers the excitatory stimulus of the receptive
fields, we propose a neural network that incorporates the con-
cept of lateral inhibition implementing a subtractive inhibitory
stimulus. Such approach is justified for two reasons: It gives
better stability and efficiency to the neural network [21], and it
improves the texture analysis by ignoring inner-texture contours
[5]. The image segmentation method was developed based on
the concepts of receptive fields, called the segmentation and
classification based on receptive fields (SCRF). This model
divides a given image into overlapped subimages and classifies
each of them with a supervised classifier. The output of the
classifier is the probability that a given subimage belongs to
a known class. Thus, based on such classification, the SCRF
model is able to classify each pixel of the image.

This paper is organized as follows. Section II describes the
LIPNet. Section III presents the SCRF model. In Section IV,
experiments using satellite image for segmentation and face
detection are shown. Finally, in Section V, we present the
concluding remarks.

II. LIPNET

LIPNet is an artificial neural network developed to perform
image classification. LIPNet is inspired by the PyraNet [19],
which was motivated by the CNNs [15] and by the concepts
of receptive fields. However, the PyraNet considers only the
excitatory effects of the neurons inside a receptive field.

Fig. 1. Visual effect caused by the lateral inhibition. It is easier to distinguish
the dark gray square in the black grid shown in (b) than it is in (a).

In the LIPNet, the lateral inhibition signal sent by the neurons
in the same layer is also considered. Blakemore and Tobin [27]
measured the response of a neuron to a bar inside a receptive
field surrounded by other bars in different orientations. They
observed an inhibitory stimulus caused by the bars surrounding
the receptive field. The strength of the inhibition is improved
when the bars had the same orientation as the one inside the
receptive field. Fig. 1 illustrates the visual effects caused by the
lateral inhibition. A given contour is difficult to observe when it
is in the presence of other contours in the same orientation. The
sides of the dark gray square in Fig. 1(a) are not perceptible
at first; a more careful observation is necessary in order to
determine the sides. On the other hand, in Fig. 1(b), the black
bars have a different orientation from the bars of the gray
square, and the lateral inhibition does not have an effect on the
square detection.

In the LIPNet architecture, the output of the neuron consists
of the excitatory stimulus in its receptive field and the inhibitory
stimulus caused by the neurons in its neighborhood.

A. LIPNet Architecture

The LIPNet architecture is composed of a multilayer network
with two kinds of layers:

1) Two-dimensional layers: perform feature extraction and
data reduction. They are located at the base of the net-
work. In a 2-D layer, the neurons are arranged in a matrix.

2) One-dimensional layers: perform image classification.
They are located at the top of the network.

Each 2-D layer in the LIPNet has a parameter that sets the
size of its receptive field, defined as r, and another parameter
that sets the size of the overlap between adjacent receptive
fields, defined as o. The relation between the receptive field
and the overlap region is defined as g = r − o. In addition,
the LIPNet has two other parameters: the size of the inhibitory
neighborhood, denoted by h, and the inhibition weight, denote
by δ. The neurons in the inhibitory area send a negative
response when inside an inhibitory field. Fig. 2 shows the
LIPNet architecture. The entire network is connected in cascade
(i.e., the output of one layer is considered as the input to the
next one). The input of the first 2-D layer is the image to be
classified, and the input of the first 1-D layer is the output of
the last 2-D layer rearranged in a vector. Each neuron in a 2-D
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Fig. 2. LIPNet architecture. The left side shows the general architecture, while
the right side shows the relation between the receptive field and the inhibitory
field of a neuron in the last 2-D layer.

layer is connected to a receptive field in the previous layer, and
it is surrounded by an inhibitory field in the same layer. Neurons
in the same layer might also share neurons inside their receptive
field.

In the 2-D layer, the weights are associated with the neuron
itself, instead of being associated with the connection between
neurons (i.e., neurons in the same layer share not only the
output of an overlapped neuron but also the weight associated
with it). Each neuron is also connected to an inhibitory field in
the same layer. Thus, the lateral inhibition strength of a given
layer l is given by

ψl =
δl

(hl × 2 + 1)
2 − 1

(1)

where δl is the lateral inhibition weight and hl is the size of the
inhibitory field of the 2-D layer l. If δl is too high, the output
of the neurons is completely inhibited. On the other hand, if the
inhibitory field is too big, the inhibition may not take effect.

The output of the 2-D neuron consists in applying a nonlinear
activation function to the weighted summation of the neurons
inside its receptive field. The result is then subtracted by
the weighted summation of the neurons surrounding it in the
inhibitory field. We define (u, v) as the position of a neuron in
a 2-D layer l, (i, j) as the position of the neuron in the previous
layer (l − 1), and bu,v as the bias of the neuron at (u, v). For
each layer, the output y of the neuron is calculated in three
steps.

1) Receptive field: For each neuron in a layer l, the excita-
tory stimulus is calculated using the following equation:

χl
u,v =

∑
i,j∈Rl

u,v

wl
i,j × yl−1

i,j

︸ ︷︷ ︸
Receptive Field

+blu,v (2)

where wl
i,j represents the weight associated with the input

position (i, j) to the layer l and Rl
u,v and blu,v are the

receptive field and the bias of the neuron at position (u, v)
in layer l, respectively.

2) Inhibitory field: For each neuron in the layer l, the lateral
inhibition is calculated using the following equation:

ιlu,v = ψl ×

⎛
⎝
⎛
⎝ u+h∑

i=u−h

v+h∑
j=v−h

χl
i,j

⎞
⎠− χl

u,v

⎞
⎠

︸ ︷︷ ︸
Inhibitory Field

. (3)

3) Activation function: consists in applying a nonlinear ac-
tivation function to the weighted summation of the neu-
rons inside its receptive field subtracted by the weighted
summation of the neurons inside its inhibitory field. The
mathematical formulation is given by

ylu,v = f
(
χl
u,v − ιlu,v

)
. (4)

The output of a neuron in the 1-D layer is also defined
as a nonlinear activation function applied to the weighted
summation of the neurons in the previous layer. In the 1-D
layer, the weights are associated with the connection between
the neurons. Then, the output y of a neuron at the position n of
the 1-D layer l is given by

yln = f
(
sl1D,k
n

)
(5)

having

sl1D,k
n =

Nl−1∑
m=1

wm,n × yl−1
m + bln (6)

where Nl−1 is the number of neurons in the previous layer l − 1,
wm,n is the synaptic weight of the neuron m in the layer l − 1
to the neuron n in the layer l, and bln is the bias associated with
neuron n in the 1-D layer l. The output of the last 1-D layer is
the network output.

The activation functions used in this work are the logistic
sigmoid for the 2-D neurons and the hyperbolic tangent for the
1-D neurons.

B. LIPNet Training

LIPNet is first trained to be able to perform visual pattern
recognition. As a supervised neural network, its objective is
to reduce the error that is defined as the difference between
the desired and the obtained output. This is achieved by ad-
justing the weights of the neuron connections in the LIPNet.
The optimization function used to perform this task was the
cross-entropy (CE) function [28], in which the network output
estimates the a posteriori probability for each known class. The
advantages of using the CE function for training the neural
network were presented by Kline and Berardi [29].

The output of the neuron n in the last network layer L for an
input image k is defined as yLn . Thus, the estimated a posteriori
probability for a class associated with the neuron n is given by

pkn = exp
(
yL,k
n

)
/

NL∑
i=1

exp
(
yL,k
i

)
(7)
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where NL is the number of neurons in the layer L. Therefore,
in order to adjust the weights of the LIPNet, the error gradient
of the weights is calculated using the error sensitivity δ of each
neuron n at the 1-D output layer L1D. For an input image k, the
error sensitivity δ is defined as

δL1D,k
n = eknf

′ (sL1D,k
n

)
(8)

where ekn is the output ykn produced by the neuron n at the last
1-D layer L1D minus the desired output dkn, i.e., ekn = ykn −
dkn, and f ′ is the differential of the activation function f . Thus,
for the neurons in the other 1-D layers l1D < L1D, the error
sensitivity is given by

δl1D,k
n = f ′ (sl1D,k

n

)
×

Nl1D+1∑
m=1

δl1D+1,k
m × wn,m (9)

where Nl1D+1 represents the number of neurons in the next
layer l1D + 1, wn,m is the synaptic weight from neuron n in
layer l1D to the neuron m in layer l1D + 1, and δl1D+1,k

m is the
error sensitivity of the neuron m in layer l1D + 1.

The error sensitivities for the last 2-D layer are calculated
using the previous equation but rearranged into a 2-D grid. In
the other 2-D layers l2D, the error sensitivity for each neuron at
the position (u, v) is calculated using three steps for each layer.

1) Sensitivity of the next layer: calculated using the summa-
tion of the neurons in l2D + 1 that contains the neuron in
the (u, v)l position in the receptive fields χ

γl,χ,k
u,v =

ih∑
i=il

jh∑
j=jl

δl2D+1,k
i,j (10)

where δl2D+1,k
i,j is defined as the error sensitivity of the

neuron (i, j) in the next layer, and il, ih, jl, and jh are
defined as

il =

⌈
u− rl+1

gl+1

⌉
+ 1 (11)

ih =

⌊
u− 1

gl+1

⌋
+ 1 (12)

jl =

⌈
v − rl+1

gl+1

⌉
+ 1 (13)

jh =

⌊
v − 1

gl+1

⌋
+ 1. (14)

2) Sensitivity of the same layer: calculated using the sum-
mation of the neurons in l2D that contains the neuron in
the (u, v)l position in the inhibitory fields ι

γl,ι,k
u,v = ψl ×

⎛
⎝
⎛
⎝ u+hl∑

i=u−hl

v+hl∑
j=v−hl

δl2D,k
i,j

⎞
⎠− δl2D,k

u,v

⎞
⎠ . (15)

3) Sensitivity of the neuron

δl2D,k
u,v = f ′ (sl2D,k

u,v

)
× wl

u,v ×
(
γl,χ,k
u,v − γl,ι,k

u,v

)
. (16)

The error gradient of the weights and the biases can then be
derived using the following equations.

1) One-dimensional weights: The error gradient for the 1-D
synaptic weight wm,n of the neuron m in layer l1D − 1
to the neuron n in layer l1D for all the input images K is
given by

∂E

∂wm,n
=

K∑
k=1

δkny
l1D−1,k
m . (17)

2) Two-dimensional weights: The 2-D synaptic weight wu,v

of neuron (u, v) in layer l2D to layer l2D + 1 is calculated
by

∂E

∂wu,v
=

K∑
k=1

⎧⎨
⎩yl2D,k

u,v ×
ih∑

i=il

jh∑
j=jl

δl2D+1,k
i,j

⎫⎬
⎭ . (18)

3) Biases: The error gradients of the bias of neuron n, bn,
in the 1-D layer l1D and of neuron u, v, bu,v , in the 2-D
layer l2D are respectively given by

∂E

∂bn
=

K∑
k=1

δkn (19)

∂E

∂bu,v
=

K∑
k=1

δku,v. (20)

Finally, in order to recalculate the weights of the neural
network, a training method, such as the gradient descent [30]
or the resilient propagation [31], is applied.

C. LIPNet Remarks

PyraNet can be considered a special case of the LIPNet, in
which the lateral inhibition effect does not exist. Moreover, a
neuron inside a 2-D layer in the PyraNet produces the same
input as the neurons in the next layer. In the LIPNet, however,
the output of a neuron can also be used to inhibit another neuron
in the same layer. As pointed out by Grigorescu et al. [5], the
use of lateral inhibition is useful to suppress contours inside
a region that has the same texture. Therefore, the application
of the inhibitory field leads the neural network to consider
not only how useful a given information might be but also
how this information impairs the neural network performance.
In the LIPNet, the sizes of the receptive and inhibitory fields
are given as input to the neural network, while the bias and
angle of orientation of the receptive and inhibitory fields are
simultaneously adjusted during the training.

III. SCRF MODEL

The SCRF model is used to perform supervised image seg-
mentation. This model combined with a supervised classifier
defines the probability that a given subimage extracted from the
original image belongs to each one of the known classes. The
LIPNet trained with the CE function is an appropriated method
to perform the classification steps of the SCRF since it receives
as input a 2-D image extracted using the SCRF model and gives
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Fig. 3. SCRF model, where n is the number of known classes and P i
n is the probability of the subimage i belonging to the class n.

as output the probability of the image to belong to each one of
the training classes.

The aim of the SCRF model is to divide an image into
subimages. Therefore, the classification of each subimages is
used to classify each pixel in the image. This is done based
on the concepts of the receptive field applied on an image.
The basic idea is to generate subimages that share some pixels.
This leads to the following advantage: The classification of a
pixel does not depend only on itself, but it also depends on the
classification of the subimages that contain the pixel (i.e., the
pixels in its neighborhood also affect the classification). Fig. 3
presents the proposed model.

The SCRF model is described as follows.
1) First, a 2-D image is acquired (Image Acquisition).
2) The input image is divided into subimages (Subimage

Extraction). The subimages have a predefined size of
rS × rS and share a region of overlapped pixels among
adjacent subimages, which is defined as oS . The size of
the extracted subimages (h,w) is given by

h =

⌊
H − oS

gS

⌋
(21)

w =

⌊
W − oS

gS

⌋
(22)

where gS is the gap defined as gS = rS − oS and H
and W are the height and width of the original image,
respectively. A subimage SI is composed of a group of
pixels according to its spatial position

SIu,v = {xi,j |u× gS ≤ i < u× (gS + rS), v × gS

≤ j < v × (gS + rS)} . (23)

3) Next, the probability of each subimage belonging to a
known class must be calculated (Subimage Classifica-
tion). This is accomplished using a supervised classifier.

4) Finally, in order to classify each pixel in the input image,
the model defines the classification of a pixel as the class

that presents the highest probability among all the subim-
ages that contain the pixel (Pixel Classification). How-
ever, if the pixel is not in an overlapped area, meaning that
only one subimage contains the pixel, therefore, only one
probability per class is generated, and the classification of
the pixel is straightforward.

The following equation defines how the classification is
obtained for a single pixel:

Cxi,j
= argmax

class c

⎛
⎝ ∑

SI|xi,j∈SI

P (c, SI)

⎞
⎠ (24)

where xi,j is a single pixel in the (i, j) image position, Cxi,j
is

the pixel classification, c denotes one of the possible classes,
SI represents a subimage, and P (c, SI) is the a posteriori
probability of a given subimage SI belonging to a given class
c. Although the summation of the probabilities is used to
define the pixel class, any other metric that uses the obtained
probabilities can be applied. The LIPNet model is used as the
supervised classifier of the SCRF model, and it calculates the
class of a given pixel applying the following equation:

Cxi,j
= argmax

class c

⎛
⎝ ih∑

u=il

jh∑
v=jl

p
SIu,v
c

⎞
⎠ (25)

where p
SIu,v
c is defined by (7) and il, ih, jl, jh are given by

il =

⌈
u− rS
gS

⌉
+ 1 (26)

ih =

⌊
u− 1

gS

⌋
+ 1 (27)

jl =

⌈
v − rS
gS

⌉
+ 1 (28)

jh =

⌊
v − 1

gS

⌋
+ 1. (29)
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One of the advantages of the SCRF is that it can be easily
combined with other image processing techniques. The method
fits well with the LIPNet model since it requires the classifi-
cation of the generated 2-D images and such classification is
obtained using the proposed model.

Moreover, the overlap between the pixels of different subim-
ages leads to a better level of acuity in the image. The reason for
that is because the overlapped regions can have different classi-
fications from the regions to which they belong, increasing the
level of detail of the segmented image.

Finally, the use of the concepts of receptive field makes the
model more fault tolerant. If noise exists in a subimage, it can
be easily ignored based on its neighborhood.

IV. EXPERIMENTAL RESULTS

The proposed approaches were tested on three different
classification tasks: forest detection using real and synthetic
satellite images and face detection. In all the experiments,
the LIPNet architecture was composed of two 2-D layers and
one 1-D layer with two neurons (each neuron estimates the
a posteriori probability of a given image to belong or not to
a given class).

However, for the forest detection task, only the SCRF model
was applied, which generated subimages of 18 × 18 pixels with
an overlap of 6 pixels. Since all the satellite images had a size
of 900 × 450 pixels, a total of 1250 subimages for each tested
image was created. Also, different image processing algorithms
were tested in comparison with SCRF and LIPNet.

A. Data Preparation

Three different image databases were used in the experi-
ments. The first data set was developed for the segmentation
of real satellite images, and they were composed of images
from regions of different Brazilian cities collected from Google
Maps. All the images have approximately the same scale and
light conditions.

The real satellite images database is composed of two train-
ing images of 900 × 450 pixels representing a forested and a
nonforested area [32], [33]. The database also contains nine
test images of 900 × 450 pixels and nine manually segmented
images for each test image, which were used as an evaluation
set. The test images received the following nomenclatures:
Jundiai-1, Jundiai-2, Jundiai-3, Manaus-1, Manaus-2, Manaus-3,
Manaus-4, Recife-1, and Recife-2.

Fig. 4 shows the images Jundiai-3 and Manaus-1 and the
manually segmented representations.

The second data set was developed for the synthetic satellite
image segmentation task. The database was generated using
the functions described in [34], which were applied in the
evaluation images of the real satellite image database. Table I
presents the used functions that are associated with urban and
forested areas, according to their gray level homogeneity. The
parameters used to generate such images for the functions Ka

and G0
a are as follows:

1) Ka(α, λ, n) where α = 2, λ = 0.00023, and n = 3;
2) G0

a(α, γ, n) where α = −5, γ = 203, 987, and n = 3.

Fig. 4. Examples of real satellite images. (a) Jundiai-3 and (b) evaluation
image of Jundiai-3. (c) Manaus-1 and (d) evaluation image of Manaus-1.

TABLE I
MULTIPLICATIVE DISTRIBUTIONS FOR DIFFERENT

SATELLITE IMAGE REGIONS

Fig. 5 shows the images generated using the evaluation im-
ages Jundiai-3 and Manaus-1. The advantage of such database
is that the evaluation images are perfectly segmented from the
test images. Thus, the error rate represents an exact number of
misclassified pixels, in opposition to the experiments performed
with the real satellite image database where the evaluation
images may contain some inaccuracy. The satellite images
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Fig. 5. Examples of synthetic image. (a) Simulation of Jundiai-3. (b) simula-
tion of Manaus-1.

Fig. 6. Example of images from the MIT CBCL Face Database. (a) Training
face image. (b) Testing face image. (c) Training nonface images. (d) Testing
nonface images.

that compose the databases are available at http://cin.ufpe.br/
~viisar/databases/SCRF.

For the face detection experiments, images from the MIT
CBCL Face Database #1 [35] were used. The database contains
2429 face images and 4548 nonface images for training and
472 face images and 23 573 nonface images for testing. Fig. 6
shows examples of images taken from this database.

B. Experiments Using Real Satellite Images

This experiment shows the capability of the SCRF model
and the LIPNet classifier used as a supervised image segmenta-
tion method. Recent works in satellite image recognition used
different image spectra [36], [37] to accomplish the desired
results. However, the task applied here detect forested areas
in satellite images displayed in gray level. For comparison
purposes, k-NN, MLP [38], and the Bayesian classifier using
the histogram technique [39] were also tested.

The classification procedure for each method was calculated
using a pixel-by-pixel comparison between the generated image
and the manually segmented version of the same image. The
error rate was then obtained by dividing the number of pixels

TABLE II
ERROR RATE IN PERCENT FOR THE FOREST DETECTION USING

LIPNET WITH DIFFERENT RECEPTIVE FIELD (R)
AND OVERLAP (O) CONFIGURATIONS

TABLE III
ERROR RATE IN PERCENT FOR FOREST DETECTION USING THE

LIPNET WITH DIFFERENT LATERAL INHIBITION DIMENSION (H)
AND WEIGHT (δ) CONFIGURATIONS

misclassified by the total of pixels in the image. Each image was
segmented ten times in each method. The results are reported
using the mean error rate and standard deviation.

The neural network employed in this experiment was trained
using the gradient descent method. Several configurations for
the 2-D layers of the LIPNet without lateral inhibition com-
bined with the SCRF model were tested. Table II presents the
mean error rate of the tested images using different receptive
field sizes and overlap regions. The best configuration presents
an error rate of 6.92%, and it was obtained by the second
configuration.

Different configurations for the lateral inhibition of the LIP-
Net model were also tested. Table III shows the error rate for
different sizes of inhibitory fields using the same configuration
of the best configuration without lateral inhibition. In this case,
the first configuration showed the lowest error rate of 6.13%.
Thus, the results of the following experiments were obtained
using this configuration for receptive fields, inhibitory fields,
and overlap factors.

Table IV presents the classification error rates for all the
tested methods with the best results shown in bold. The de-
terministic methods k-NN and the Bayesian classifier using
the histogram technique do not present standard deviations.
Each segmentation method follows a specific nomenclature, as
described hereinafter:

1) SCRF-LIPN: the SCRF model combined with the LIPNet
classifier;

2) SCRF-PN: the SCRF model combined with the PyraNet
classifier;

3) SCRF-NN: the SCRF model combined with the k-NN
classifier;

4) k-NN: the k-NN classifier applied pixel by pixel with
k = 100;

5) MLP: the MLP classifier applied pixel by pixel;
6) BHT: Bayesian classifier with the histogram technique

applied pixel by pixel.

The k-NN applied pixel by pixel had the highest error rate.
The MLP classifier obtained the second highest error rate,
and the BHT showed a slight improvement, reaching an error
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TABLE IV
ERROR RATE IN PERCENT FOR FOREST DETECTION USING THE SUPERVISED CLASSIFIERS (X̄(s))

rate of 14.31%. It is also important to note that the lowest
error rates for almost all the images were obtained using the
SCRF model. The SCRF-NN model showed the lowest error
rate in three images, and BHT presented the best result for
one image, while SCRF-LIPN had the best results in the other
images and achieved the lowest mean error rate of 6.13%. The
hypothesis tests performed with Student’s t-test with 5% of
significance level demonstrate that the classifiers SCRF-LIPN
and SCRF-PN perform differently in six images where “+”
and “−” mean that the null hypothesis was rejected and the
SCRF-LIPN presented a better or worse error rate than the
SCRF-PN, respectively, and “∼” means that the results are
not significantly different. An important observation is that the
SCRF-LIPN takes less than a second to perform the segmenta-
tion task, while the SCRF-NN takes more than 77 s.

The standard deviations also points to the fact that the LIPNet
classifier is more stable. Taking into consideration that the
LIPNet and the PyraNet were trained with the same number of
epochs, we can conclude that the presence of lateral inhibition
increases the convergence speed of the neural network.

C. Experiments Using Synthetic Satellite Images

Despite the low error rates, the experiments performed with
real satellite images might not be exact since the manual
segmentation of the image can contain some inaccuracy. Thus,
this experiment used synthetic images that were automatically
generated from the images in the previous experiment. The
evaluation images correspond 100% to each segmented test
images since the test image was generated using its evaluation
image. Thus, the obtained error rate for each classifier is the
exact number of misclassified pixels. The neural networks were
trained using the resilient propagation method.

Since the data of this experiment were generated by statistical
functions that represent a region with the pixel intensity fol-
lowing a given distribution, the pixel-to-pixel classifiers (k-NN,
MLP, and Bayesian classifier with the histogram technique)
were not tested. The results shown here were also derived from
a pixel-to-pixel comparison between the image generated by the
segmentation algorithm and its original segmentation.

As in the previous experiment, it was assumed that the
LIPNet and PyraNet have the same receptive fields and overlap
region. However, different configurations for the lateral inhi-
bition of the LIPNet were also tested. Table V presents the
error rate for different sizes of inhibitory fields. The last tested
configuration achieves the best classification rate.

TABLE V
ERROR RATE IN PERCENT OF THE FOREST DETECTION IN SYNTHETIC

IMAGES USING THE LIPNET WITH DIFFERENT

LATERAL INHIBITION CONFIGURATIONS

TABLE VI
ERROR RATE IN PERCENT FOR FOREST DETECTION IN

THE SYNTHETIC IMAGES(X̄(s))

Table VI presents the error rates and the respective standard
deviations obtained by each classifier for all the synthetic
images. The combination between the SCRF model and the
LIPNet classifier obtained the lowest error rates for all the
tested images, and the Student’s t-test performed demonstrates
that the proposed model performs statistically better than the
SCRF-PN in most of the cases. The same nomenclature and
significance level of the previous experiment are also used here.

D. Face Detection Experiment

The face detection problem can be summarized as the di-
chotomy task of determining if a given pattern is a face or
not. Makinen and Raisamo [40] presented an evaluation of
different methods for face alignment in order to improve the
face detection rates. They demonstrated that manual alignment
was the only kind of alignment that improved the detection
rate. In all of the evaluated cases, support vector machine
(SVM) [41] showed the best classification rates. Osuna et al.
[42] also showed the advantages of using an SVM approach
to perform face detection, and Waring and Liu [43] applied a
method composed of spectral histograms and SVMs to achieve
better results. Thus, the results obtained using LIPNet, PyraNet,
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TABLE VII
AREA UNDER THE ROC CURVE FOR THE FACE

DETECTION USING PYRANET

TABLE VIII
AREA UNDER THE ROC CURVE FOR THE FACE

DETECTION USING LIPNET

and SVM for the face detection problem are presented. In this
experiment, all the images had their histograms equalized.

The experimental results are presented using ROC curves
[44] that present the true positive classification rates for differ-
ent false positive error rates. The true positive rate is defined as
the number of faces correctly classified divided by the total of
faces in the database, while the false positive rates are defined as
the number of nonface images wrongly classified divided by the
total of nonface images in the database. The result of the ROC
curve is determined by the area under the curve (AUC) [45].

Many different configurations for the LIPNet were tested.
Table VII presents the results obtained for different LIPNet con-
figurations without lateral inhibition. The third configuration
presents the highest AUC. Table VIII shows the results obtained
for different lateral inhibition configurations in the LIPNet with
the same structure. The highest AUC obtained was 0.878.

Fig. 7 shows error bar graphs from the comparison between
the AUCs of the LIPNet and the PyraNet with the test images
blurred with a Gaussian filter with different radius sizes (2, 4,
6, 8, and 10). The LIPNet presents statistically better results
than the PyraNet with a Student’s t-test with 5% of signifi-
cance level, and the highest difference between the LIPNet and
PyraNet rates is obtained with the maximum radius in the Gaus-
sian filter tested. These results are consistent with the results
demonstrated by Fukushima [13] that state that the presence
of lateral inhibition improves the model in order to recognize
the patterns even after a blurring operation. The LIPNet also
presents a lower confidence interval than the PyraNet.

Fig. 8 shows a comparison among LIPNet, PyraNet, and
SVM with the best configurations. The LIPNet model showed
better results compared with the PyraNet, but SVM presented
the biggest AUC. However, the LIPNet obtained the best clas-
sification rate when the false positive rates were greater than
40%. Also, the use of the LIPNet might be justified because of
the time needed to perform the classification. While the LIPNet
takes only 0.04 ms to classify a pattern and it has 447 stored
parameters, the SVM takes 7 ms, and it has, on average, 361
support vectors or 89 066 stored parameters. This means that

Fig. 7. Comparison among the area under the ROC curves of LIPNets and
PyraNets with the test images blurred with a Gaussian filter with different radius
sizes (2, 4, 6, 8, and 10).

Fig. 8. Comparison among LIPNet, PyraNet, and SVM classifiers.

TABLE IX
COMPUTATIONAL COST OF THE LIPNET, PYRANET,

AND SVM CLASSIFIERS

LIPNet is 175 times faster than SVM and consumes only 0.5%
of the memory in comparison with SVM. Table IX presents
the computational cost of the LIPNet, PyraNet, and SVM in
the face detection task. The experiments were performed over a
Pentium Dual Core with a 1.73-GHz CPU and 2-GB RAM.

Taking into consideration that LIPNet performs much faster
than SVM, a committee [46] of 20 LIPNets was tested having as
output the average value of all neural networks. The committee
of LIPNets obtained an AUC of 0.892 against the 0.886 ob-
tained by using SVM, and it is still more than eight times faster
than the SVM model. The comparison is presented in Fig. 9.
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Fig. 9. Comparison among the committee of LIPNets and the SVM classifier.

V. CONCLUSION

This work presented two new models inspired by biological
behaviors of the brain. The first model was developed to classify
2-D patterns (images), based on a combination of the neural
network PyraNet and the concepts of inhibitory fields, called
LIPNet, and the second model was developed as a supervised
segmentation method based on the concepts of receptive fields,
called SCRF. Both models were applied in experiments involv-
ing satellite image segmentation, and LIPNet was applied in a
face detection problem. The proposed models achieved good
results, and they have the following advantages: low error rate,
fast performance, and low memory consumption. The use of
the inhibitory concepts creates a new neural network (LIPNet)
which is more stable and efficient.

Moreover, the fact that the LIPNet is much faster and con-
sumes less memory in comparison to other methods such as
SVM motivates its use in embedded systems, where processing
restrictions are important. Other training algorithms can be
used to improve the LIPNet results, such as neuroevolutionary
methods.
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