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a b s t r a c t

Development of context-aware applications is inherently complex. These applications
adapt to changing context information: physical context, computational context, and
user context/tasks. Context information is gathered from a variety of sources that
differ in the quality of information they produce and that are often failure prone.
The pervasive computing community increasingly understands that developing context-
aware applications should be supported by adequate context information modelling
and reasoning techniques. These techniques reduce the complexity of context-aware
applications and improve their maintainability and evolvability. In this paper we discuss
the requirements that context modelling and reasoning techniques shouldmeet, including
themodelling of a variety of context information types and their relationships, of high-level
context abstractions describing real world situations using context information facts, of
histories of context information, and of uncertainty of context information. This discussion
is followed by a description and comparison of current context modelling and reasoning
techniques and a lesson learned from this comparison.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There is a growing body of research on the use of context-awareness as a technique for developing pervasive computing
applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. A large part of this research
investigates approaches tomodelling context information used by context-aware applications and reasoning techniques for
context information. The pervasive computing community increasingly understands benefits of formal context information
modelling. First of all, due to the inherent complexity of context-aware applications, the development should be supported
by adequate software engineering methods. The overall goal is to develop evolvable context-aware applications. Therefore
the design of the general functions of such applications should not be intertwined with the definition and evaluation
of context information, which is often subject to change. A good context information modelling formalism reduces the
complexity of context-aware applications and improves their maintainability and evolvability. In addition, since gathering,
evaluating and maintaining context information is expensive, re-use and sharing of context information between context-
aware applications should be considered from the beginning. The existence of well-designed context information models
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eases the development and deployment of future applications. Moreover, a formal representation of context data within a
model is necessary for consistency checking, as well as to ensure that sound reasoning is performed on context data.
Existing approaches to context information modelling—or context modelling as they are often referred to—differ in

the ease with which real world concepts can be captured by software engineers, in the expressive power of the context
information models, in the support they can provide for reasoning about context information, in the computational
performance of the reasoning, and in the scalability of the context information management. The goal of this paper is to
show the state-of-the-art in context modelling, management and reasoning in pervasive computing.We discuss the current
approaches and show the lessons learned from the context models and their context management and reasoning systems.
The paper structure is as follows. Section 2 shows the requirements that need to be taken into account when modelling

context information and provides a brief overview of the evolution of context models. The section also provides our
justification for the selection of three prominent approaches to context modelling (object-role based, spatial models,
ontology-based) for a detailed description and evaluation. Sections 3–5 describe these three approaches to context
modelling and reasoning showing how they meet the context modelling requirements. Section 6 discusses high-level
context abstractions that can model real world situations. Modelling real situations may require processing of context facts
and reasoning upon them to attain a form of context information that is appropriate for use by context-aware applications.
While themodels presented in Sections 3–5may have their ownmodelling approach to such high-level context abstractions
the variety of ways these abstractions can be modelled warrants a thorough discussion of the topic. Section 7 addresses the
issue of context information uncertainty. Adaptation decisions in context-aware applications are made based on evaluation
of context information that can be erroneous, imprecise or conflicting. Thereforemodelling of quality of context information
and reasoning on context uncertainty is a very important feature of context modelling and reasoning and also warrants a
separate thorough discussion. The three selected context modelling and reasoning approaches address many of the context
modelling requirements; however none of them fulfills all the requirements for a generic context information modelling
and reasoning approach. Section 8 presents the research on hybrid context models as a lesson learned from the context
modelling, management and reasoning approaches. Section 9 concludes the paper.

2. Evolution of context modelling and reasoning

A number of context modelling and reasoning approaches have been developed over the last decade ranging from
very simple early models to the current state-of-the-art context models. The research on the models was accompanied
by development of context management systems that were able to gather, manage, evaluate and disseminate context
information. A large number of context-aware applications based on various context models have been developed over
the years for a variety of application domains. These experiences with the variety of applications influenced the set of
the requirements defined for context modelling and reasoning, and therefore also influenced the research on context
information models that have high expressive power, can support reasoning about context, and have good computational
performance of the reasoning. In this paper we aim to describe and evaluate the state-of-the-art context models that are
generic (i.e., suitable for any kind of application) and are able tomeetmost of the requirements set for the contextmodelling,
management and reasoning. In this section we describe the requirements defined for context modelling, management and
reasoning and show various stages of evolution of context modelling.

2.1. Requirements

We start with the description of the requirements set for context models and their context management systems.
Heterogeneity and mobility: Context information models have to deal with a large variety of context information sources
that differ in their update rate and their semantic level. Some context information is sensed. Sensors can observe certain
states of the physical world and provide fast and near real-time access, while providing rather raw data (like a GPS position
or a camera stream) that has to be interpreted before being usable by applications. Information provided by the user –
like user profiles – is updated more rarely and in general does not need additional interpretation. Context data can also
be derived from existing context information. Context data obtained from databases or digital libraries – like geographic
map data – is often static. A context model should be able to express those different types of context information and
the context management system should provide management of the information depending on its type. Many context-
aware applications are also mobile (i.e., running on a mobile device) or depend on mobile context information sources (e.g.,
mobile sensors). This adds to the problem of heterogeneity, as the context information provisioning must be adaptable to
the changing environment. In addition, location and spatial layout of the context information play important roles due to
this requirement.
Relationships and dependencies: There exist various relationships between types of context information that have to be
captured to ensure correct behaviour of the applications. One such relationship is dependencywhereby context information
entities/facts may depend on other context information entities: for example, a change to the value of one property (e.g.,
network bandwidth) may affect the values of other properties (e.g., remaining battery power).
Timeliness: Context-aware applications may need access to past states and future states (prognosis). Therefore, timeliness
(context histories) is another feature of context information that needs to be captured by context models and managed by
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the context management system. The management of context histories is difficult if the number of updates is very high. It
may not be feasible to store every value for future access, and therefore summarisation techniques (e.g., the aggregation of
position updates to a movement function using interpolation techniques, or the use of historical synopses of data) need to
be applied.
Imperfection: Due to its dynamic and heterogeneous nature, context information may be of variable quality. In fact, it may
even be incorrect. Most sensors feature an inherent inaccuracy (e.g., a few metres for GPS positions), and the sensed values
age if the physical world changes, so that this inaccuracy increases over time. In addition, the context information may be
incomplete or conflicting with other context information. Thus, a good context modelling approachmust includemodelling
of context information quality to support reasoning about context.
Reasoning: Context-aware applications use context information to evaluate whether there is a change to the user and/or
computing environment context; taking a decision whether any adaptation to that change is necessary often requires
reasoning capabilities. It is therefore important that the context modelling techniques are able to support both consistency
verification of the model and context reasoning techniques. The later can be used to derive new context facts from existing
context facts and/or reason about high-level context abstractions thatmodel realworld situations. The reasoning techniques
should be computationally efficient.
Usability ofmodelling formalisms: Context informationmodels are created by designers of context-aware applications and are
also used by the contextmanagement systems and context-aware applications tomanipulate context information. Therefore
the important features of modelling formalisms are the ease with which designers can translate real world concepts to the
modelling constructs and the ease with which the applications can at runtime use and manipulate context information.
Efficient context provisioning: Efficient access to context information is needed which can be a difficult requirement to meet
in the presence of largemodels and numerous data objects. To select the relevant objects, attributes for suitable access paths
have to be represented in the context modelling. These access paths represent dimensions along which applications often
select context information, typically supported by indexes. These dimensions are often referred to as primary context, in
contrast to secondary context, which is accessed using the primary context. Commonly used primary context attributes are
the identity of context objects, location, object type, time, or activity of user. Since the choice of primary context attributes is
application-dependent, given an application domain, a certain set of primary context attributes is used to build up efficient
access paths (e.g., spatial indexes if location is a primary context).

2.2. Early approaches: Key-value and markup models

Key-value models use simple key-value pairs to define the list of attributes and their values describing context
information used by context-aware applications. Markup-based context information models use a variety of markup
languages including XML. The W3C standard for description of mobile devices, Composite Capabilities/Preference Profile
(CC/PP) [1], is probably the first context modelling approach to use Resource Description Framework (RDF) and to include
elementary constraints and relationships between context types. CC/PP can be considered a representative both of the class
of key-value models and of markup models, since it is based on RDF syntax to store key-value pairs under appropriate tags.
Simple kinds of reasoning over the elementary constraints and relationships of CC/PP can be performedwith special purpose
reasoners. CC/PP aswell as other key-value andmarkup-based context informationmodels have been already described and
evaluated in literature surveys and their limitations have been shown in [2–4]. Themain critics of these approaches concern
their limited capabilities in: (i) capturing a variety of context types, (ii) capturing relationships, dependencies, timeliness,
and quality of context information, (iii) allowing consistency checking, and (iv) supporting reasoning on context, on context
uncertainty and on higher context abstractions.

2.3. Domain-focused modelling

There is a body of work in various application domains on types of context information that can significantly enhance the
functionalities of domain-specific context-aware applications. A relevant example of suchwork is theW4contextmodel, and
its supporting infrastructure developed for context-aware browsing [5]. This model supports the representation of context
as (Who, What, Where, When) Linda-like tuples and provides an interface to store and query such tuples. This and similar
approaches are important for particular application domains. However, this survey focuses on generic context modelling
techniques that address the issue of ‘‘how’’ context should be modelled but do not stipulate ‘‘which’’ context information
should be modelled.

2.4. Towards more expressive modelling tools

Early approaches to context modelling, represented by CC/PP and similar approaches, do not meet many of the
requirements listed in Section 2.1. Other approaches, characterised by more expressive context modelling tools, provide
better solutions for some of the identified requirements. The object-role based modelling approach presented in Section 3
originated from information systems modelling to provide an easy mapping from real world context concepts to modelling
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constructs. The approach also uses a novel formof predicate logic to reason about high-level context abstractions and aims, in
particular, to satisfy the heterogeneity, timeliness, reasoning and usability requirements. Themobility, timeliness, and efficiency
requirements are addressed in particular by spatial contextmodels, which are reviewed in Section 4. Ontological approaches
to context modelling, reviewed in Section 5, can be considered a natural extension of CC/PP and RDF based approaches to
satisfy the requirements of heterogeneity, relationship, and reasoning.While approaches that use full RDF to represent context
can be considered in this category, in this survey we concentrate on the use of the OWL language instead, since it better
supports automated reasoning. Hybrid context models, reviewed in Section 8, aim at integrating different approaches to
obtain more comprehensive solutions.

3. Object-role based models of context information

Fact-based context modelling approaches, including the object-role modelling approach described in this section,
originated from attempts to create sufficiently formal models of context to support query processing and reasoning, as
well as to provide modelling constructs suitable for use in software engineering tasks such as analysis and design. Early
context modelling approaches, such as attribute-value pairs, could not satisfy these requirements, particularly as the types
of context information used by applications grew more sophisticated.
This section is concerned with context modelling approaches that have their early roots in database modelling

techniques. In particular, it focuses on the Context Modelling Language (CML), which was described in a preliminary form
by Henricksen et al. in 2002 [6] and refined in later publications [7,8].

3.1. CML overview

CML is based on Object-Role Modeling (ORM) [9], which was developed for conceptual modelling of databases. CML
provides a graphical notation designed to support the software engineer in analysing and formally specifying the context
requirements of a context-aware application. It extends ORM with modelling constructs for:

• capturing the different classes and sources of context facts discussed in Section 2.1: specifically, static, sensed, derived,
and user-supplied (‘‘profiled’’) information;
• capturing imperfect information using quality metadata and the concept of ‘‘alternatives’’ for capturing conflicting
assertions (such as conflicting location reports from multiple sensors) [7];
• capturing dependencies between context fact types; and
• capturing histories for certain fact types and constraints on those histories.

The formality of ORM and the CML extensions makes it possible to support a straightforward mapping from a CML-
based context model to a runtime context management system that can be populated with context facts and queried by
context-aware applications. Halpin [10] describes the Rmap procedure for transforming a conceptual schema to a relational
schema, and Henricksen [11] has developed an extension of Rmap that can be used to map a CML-based context model
to a relational database. However, the formal semantics of ORM and CML can be leveraged to provide integration with
other implementations such as fact-based reasoners (though it should be noted that some features of CML – particularly the
constructs related to imperfect information – may not be supported).
Fig. 1 illustrates the graphical notation using an example context model. This example model is designed for use by

context-aware communication applications such as the one described in [8]. The model captures user activities in the form
of a temporal fact type that covers past, present and future activities; associations between users, communication channels,
and devices; and locations of users and devices (both absolute and relative, where the latter is represented as a derived fact
type).
Each ellipsis in the figure depicts an object type – with the value in parentheses describing the representation scheme

used for the object type – while each box denotes a role played by an object type within a fact type. The key summarises the
remainder of the notation used in the figure. A detailed discussion of both the model and the software engineering process
used in conjunction with CML can be found in [8].

3.2. Support for reasoning

CML leverages the formality of ORM to support the evaluation of simple assertions as well as SQL-like queries. One of
the novel features of CML is its ability to support querying over uncertain information (specifically, ambiguous information
represented using the ‘‘alternatives’’ construct) using a three-valued logic. This can be illustrated using the ‘‘located at’’
fact type from the model in Fig. 1 as an example. Two possible instantiations of this fact type are shown in Tables 1 and 2.
Using the three-valued logic, the assertion ‘‘Fitzwilliam Darcy located at Kitchen’’ evaluates to truewith respect to the first
instantiation and possibly truewith respect to the second.
To evaluate more complex conditions than can be captured by assertions, Henricksen et al. define a grammar for

formulating high-level abstractions of context (called ‘situations’ in this approach), that model real world situations. These
high-level context abstractions are expressed using a novel form of predicate logic that balances efficient evaluation against

Please cite this article in press as: C. Bettini, et al., A survey of context modelling and reasoning techniques, Pervasive and Mobile Computing (2009),
doi:10.1016/j.pmcj.2009.06.002



ARTICLE  IN  PRESS
C. Bettini et al. / Pervasive and Mobile Computing ( ) – 5

Fig. 1. An example CML model.

Table 1
Example instantiation of the ‘‘located at’’ fact type without alternatives.

Person Location

Fitzwilliam Darcy Kitchen
Elizabeth Bennet Study

Table 2
Example instantiation of the ‘‘located at’’ fact type with alternatives.

Person Location

Fitzwilliam Darcy Kitchen
Fitzwilliam Darcy Dining
Elizabeth Bennet Study

expressive power. They are defined as named logical expressions of the form S(v1, . . . , vn) : ϕ, where S is the name of the
high-level context abstraction, v1 to vn are variables, and ϕ is a logical expression in which the free variables correspond
to the set {v1, . . . , vn}. The logical expression combines any number of basic expressions using the logical connectives,
and, or and not, and special forms of the universal and existential quantifiers. The permitted basic expressions are either
equalities/inequalities or assertions. High-level context abstractions can be incrementally combined to formmore complex
logical expressions. Examples and further information can be found in [8].

3.3. Evaluation

One of the main strengths of CML is its support for various stages of the software engineering process. Its graphical
notation supports analysis and design of the context requirements of a context-aware application; the relational
representation and grammar for high-level context abstractions support runtime representation and querying. CML also
provides more comprehensive support for capturing and evaluating imperfect and historical information than many of the
other context modelling approaches that are currently in use.
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However, CML has several weaknesses. It has a ‘‘flat’’ information model, in that all context types are uniformly
represented as atomic facts. If a hierarchical structure is needed, or one particular dimension of context is dominant
from the perspective of querying (as in spatial models, which place greater importance on location than on other types
of information), then other representations may be more appropriate. CML also emphasises the development of context
models for particular applications or application domains, and does not provide the support for interoperability that is found
in models such as Strang et al.’s ontology-based Aspect-Scale-Context model [12]. An attempt to create a hybrid model that
combines the respective advantages of CML and ontology-based approaches (including support for hierarchical structures
and interoperability) is described by Henricksen et al. in [13]. The development of hybrid models is also discussed further
in Section 8.

4. Spatial models of context information

Space is an important context in many context-aware applications. Most context definitions mention space as a vital
factor: e.g., Schilit, Adams andWant define three important aspects of context as ‘‘Where you are, who you are with and what
resources are nearby’’ [14]. Also, in the most frequently used context definition by Dey et al. [15], space can be seen as a
central aspect of context entities: ‘‘An entity is a person, place or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves’’—places are spatial entities, and interaction typically
requires some vicinity. Thus, some context modelling approaches give space and location a preferential treatment. As we
will see, space is well suited to organise and efficiently access context information. Spatial existence also serves well as an
intuitivemetaphor for non-physical context information (e.g., virtual information towers [16] for context-taggedweb pages
or Pascoe’s Stick-E-Notes [17]). How people associate certain situations with location can be also seen in the most common
question they ask on a mobile phone: ‘‘Where are you?’’ What they typically are interested in is not the exact location but
the general situation of the person they are talking to.

4.1. Context information model

Most spatial context models are fact-based models (see Section 3) that organise their context information by physical
location. This could be the location of the real world entities which is described in the context information (e.g., the
boundaries of a room), the location of the sensor that measures the context information, or, for non-physical context
information, an associated location as metaphor (e.g., Stick-E-Notes or virtual information towers).
This location information is either pre-defined (if the entities are static), or it is obtained by positioning systems which

track mobile objects and report their position to a location management system. Basically, two kinds of coordinate systems
are supported by positioning systems:

Geometric coordinates:Represent points or areas in ametric space, such as theWGS84 coordinates of GPS (latitude, longitude,
and elevation above sea level). Using geometric functions such as the Euclidian distance allows distance calculation and
allows nearest neighbour queries. Overlaps of geometric figures can be used to specify ranges by their geometric extension
and determine whether ranges are included in each other, which allows range queries.

Symbolic coordinates: Symbolic coordinates are represented by an identifier, such as a room number or the ID of a cell or
access point in wireless telephone or local area networks. In contrast to geometric coordinates there is no spatial relation
offered by symbolic coordinates. In order to allow spatial reasoning about inclusion (for ranges) and distances (for nearest
neighbours) explicit information about the spatial relations between pairs of symbolic coordinates has to be provided. Note
that this location model also is applicable if there is no explicit modelling of space but only relations between objects (as
in [18]).
The semantic level of spatial contextmodels can be discussed along the tiers of spatial ontologies proposed by Frank [19]:

• Tier 0 is the ontology of the physical reality. It is based on the assumption that there is exactly one real world; hence, for
every property in the world and for a given point in time–space there is a single value.
• Tier 1 includes observations of reality and is the first tier that can be accessed in context models. Here, a value can be
derived at a locationwith a given observation type. The type determines themeasurement scale of the value (e.g., nominal
or rational) and the measurement unit (e.g., metres or seconds). For spatial values, a coordinate system must be given.
Values normally have a limited accuracy due to observation errors. Fact-based context models are typically situated on
that tier.
• In tier 2, single observations are grouped with individual objects that are defined by uniform properties. Now, the value
of an observation is the state of a whole object, given by an identifier. Frank only considers physical objects in this tier,
i.e., ‘‘things which exist in the physical world and can be observed by observation methods’’. They have a geometric
boundary in the world, but it can change over time (like dunes or fluids). Up to tier 2, the ontology tiers cover data that
can be seen as objective reality—you can send out a team of geographers or students to model physical objects and they
will come to an agreement about their observations. Thus, this kind of information can be easily shared between different
context-aware applications.
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• In tier 3, the socially constructed reality is represented. Social reality includes all objects and relations that are created by
social interactions. Such properties are classified and named within the context of administrative, legal or institutional
rules. Object names belong to this tier since they are assigned by culture; for many important things (but not all) there
are functions to determine the name and to find the object by name in a certain environment.
• Finally, in tier 4 the rules are modelled that are used by cognitive agents (both human and software) for deduction. This
tier is normally built into database query languages, applications or reasoning engines of knowledge-based systems.
Ontology-based models of context information (see Section 5) typically cover all tiers up to this level.

Although the tiered model of Frank is just an abstract conceptualization of different (spatial) representations of the
world, it is useful to distinguish between various implementations of spatial context models (as can be seen in [20]). For
example, fact-based models like the Context Modelling Language of Henricksen et al. (Section 3 and [8]) cover tier 1–3, and
the grammar used to define situations (as higher-level context abstractions) is located at tier 4.
The spatial context model developed in the Nexus project (called AugmentedWorld Model [21]) is an object-based class

hierarchy of context information that supports multi-inheritance (a camera can be both a MobileObject and a Sensor),
multi-attributes (aMobileObject can have multiple instances of its position attribute that differ in their metadata, e.g., the
measurement time), and both a geometric coordinate system (that supportsmultiple spatial reference systems) and a simple
symbolic location system (based on spatial relationships). Most object classes inherit from the class SpatialObject, which
makes the Augmented World model inherently spatial: almost all objects (real and virtual) are modelled with a location,
either by their physical location or by a meaningful association metaphor (like the location of a virtual information tower
for web sites). The Nexus context model was designed to be sharable between different context-aware applications in a
potentially global scope and thus to be scalable to a high amount of context data [22]. In its current implementation, the
managed context information only represents information of tiers 1–3. Higher-level context information like situations is
managed by the applications.
In contrast to the Nexus model, the Equator project context model [23] is a typical contextual ontology that represents

all tiers by an OWL class model. Its location model is a hierarchical notion of inter-connected symbolic spaces, such as
Buildings, Floors and Rooms. Properties define spatial relations between these spaces. Although the ontology also offers
coordinate features (properties that represent, e.g., a GPS location), Millard et al. states that it is very hard to perform any
inference over them using a normal reasoner, as they are usually not spatially aware.

4.2. Support for reasoning

Spatial context models allow reasoning about the location and the spatial relationships of objects. Such relations cover
the inclusion in a distinct area or range and the distance to other entities. According to [24], there are three typical spatial
queries on spatial context information: (i) Position: retrieve the position of an object; (ii) Range: retrieve objects that are
located in a spatial range; and (iii) Nearest Neighbour: retrieve a list of one or more objects which are closest to the position
of an object. These queries become more challenging when the position of the object is imprecise, and given as an area.
Although these queries at first seem simple and obviously necessary for a variety of context-aware applications, their

efficient processing highly depends on the underlying context information management system, which may use spatial
database support or other specialised modules. Grossmann et al. [22] show how the characteristics of different types of
context information can be used to design efficient management systems. The two main factors are update rate (how often
a certain context information is updated—by sensors, by humans, or almost never) and usage for selection (how often a
certain context information is used to restrict the set of relevant context information). The latter is often referred to as
primary context, which is used to retrieve secondary context. Sincemany context-aware applications use space as a primary
context, it is reasonable to design context management systems to efficiently support spatial queries, e.g., by managing
spatial indexes.
In addition, if the amount of context information gets very large, it can be partitioned along the spatial dimension (e.g., by

introducing context servers with spatial service areas).

4.3. Evaluation

Obviously, spatial context models are well suited for context-aware applications that are mainly location-based, like
many mobile information systems. However, even if location is not a primary context for a context-aware application, a
spatial organisation of the context information may be beneficial: if the amount of managed context information is large,
spatial partitioning can be used to cope with the complexity. In particular, mobile systems can benefit from spatial context
models: due to their inherent (potentially global) mobility, they are likely to need large amounts of context information in
total, which can be easily preselected to relevant context information in the vicinity by using a spatial predicate. As we see
later, hybrid contextmodelling approaches separate the fact-based contextmanagement (tier 1–3 in Frank’s hierarchy) from
higher-level reasoning (tier 4) functions. Thus, a spatial pre-selection of relevant context information could be reasonable
to speed up the reasoning process by reducing the size of the knowledge base [20,25].
Amain consideration for spatial contextmodels is the choice of the underlying locationmodel. Geometric and geographic

location models offer simple mapping to map data and GPS sensor data, while symbolic and relational location models are
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easier to build up and represent a simple perception of space (with relations like part-of and located-near). This choice
also determines how the context information should be managed (e.g., by a spatial database), what reasoning methods and
queries are available and what access paths have to be built up.
A drawback of spatial context model is the effort it takes to gather the location data of the context information and to

keep it up to date. Thus, if the spatial dimension is of no importance (or only including simple spatial relationships like the
meeting of two users), this effort could be saved.

5. Ontology-based models of context information

Context, as intended in this paper, can be considered as a specific kind of knowledge. Thus, it is quite natural to investigate
if any known framework for knowledge representation and reasoningmay be appropriate for handling context. The tradeoff
between expressiveness and complexity of reasoning has drivenmost of the research in symbolic knowledge representation
in the last two decades, and description logics [26] have emerged among other logic-based formalisms, mostly because
they provide complete reasoning supported by optimised automatic tools. Since ontologies are essentially descriptions of
concepts and their relationships, it is not surprising that the subset of the OWL language admitting automatic reasoning
(i.e., OWL-DL) is indeed a description logic. Ontology-based models of context information exploit the representation
and reasoning power of these logics for multiple purposes: (a) the expressiveness of the language is used to describe
complex context data that cannot be represented, for example, by simple languages like CC/PP [1]; (b) by providing a formal
semantics to context data, it becomes possible to share and/or integrate context among different sources; (c) the available
reasoning tools can be used both to check for consistency of the set of relationships describing a context scenario, and,
more importantly, to recognise that a particular set of instances of basic context data and their relationships actually reveals
the presence of a more abstract context characterisation (e.g., the user’s activity can be automatically recognised). In this
section, we briefly illustrate the main ontology-based context models that have been proposed, we show how reasoning is
performed, and we identify current critical issues.

5.1. Context information model

The formalism of choice in ontology-based models of context information is typically OWL-DL [27] or some of its varia-
tions, since it is becoming a de facto standard in various application domains, and it is supported by a number of reasoning
services. By means of OWL-DL it is possible to model a particular domain by defining classes, individuals, characteristics
of individuals (datatype properties), and relations between individuals (object properties). Complex descriptions of classes
and properties can be built by composing elementary descriptions through specific operators provided by the language. For
instance, given two atomic classes Person and Female, the class Male can be defined as:

Male ≡ Person u ¬Female.

More complex definitions can be obtained by using operators such as property restrictions that can force all/some values of
a certain property to belong to a given class, or can force a property to have at least k values.
Hence, complex context data, intended as those data that can be inferred by means of reasoning tasks on the basis

of raw data directly acquired from sensors, and other complex context data, can be represented by structured OWL-
DL expressions. These data typically include information regarding the sociocultural environment of users, complex user
preferences regarding the adaptation of services, and activities. For example, the following definition (taken by the ontology
used within the CARE framework [28]) is used to describe BusinessMeeting as including any activity performed in a
conference room within a company building, and having at least two actors, each of which is an employee1:

BusinessMeeting v Activity u ≥ 2 hasActor u ∀ hasActor.Employee u
∃ hasLocation.(ConfRoom u CompanyBuilding).

In addition to providing an expressive formalism for representing complex context data, ontologies are well suited for
knowledge sharing since they provide a formal specification of the semantics of context data. We point out that this feature
is particularly important in mobile and pervasive environments, in which different heterogeneous and distributed entities
must interact for exchanging users’ context information. To this end, various OWL ontologies have been proposed for
representing shared descriptions of context data. Among the most prominent proposals are the SOUPA [29] ontology for
modelling context in pervasive environments, and the CONON [30] ontology for smart home environments. Those shared
ontologies can be integrated with application-specific models of context by means of extensions of the OWL language, such
as the one proposed in [31].
OWL-DL ontological models of context have been adopted in several architectures for context-awareness; among the

others, we recall the Context Broker Architecture (CoBrA) [32] and the SOCAM [33] middleware, that adopt the SOUPA
and CONON ontologies, respectively. The DAML+OIL ontology language (a predecessor of OWL) is the basis of the context

1 Here we use DL syntax, but an equivalent OWL description can be easily obtained.
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model of the GAIA [34] middleware for active spaces. In GAIA, reasoning for deriving new context data is performed by
means of rule-based inferencing and statistical learning; ontologies are used to provide a clear semantics to data derived
through different reasoning techniques. Finally, some architectures for context-awareness (e.g., the semantic eWallet [35])
have adopted more expressive ontology languages obtained by extending OWL-DL with rules.

5.2. Support for reasoning

A further benefit of ontologies with respect to simpler representation formalisms consists in the support of reasoning
tasks. Indeed, on the basis of the asserted knowledge it is possible to (i) automatically derive new knowledge about the
current context, and (ii) detect possible inconsistencies in the context information.With respect to (i), ontological reasoning
can be executed for inferring new context information based on the defined classes and properties, and on the individual
objects retrieved from sensors and other context sources. For instance, it is possible to derive the set of individual objects that
are related to a given one by a particular property (e.g., the set of activities taking place in a specific location), or to calculate
the most specific class an individual object belongs to (e.g., the fact that the activity performed by a given employee is a
business meeting). With respect to (ii), we point out that consistency checking is crucial in the definition of an ontology,
as well as in its population by new instances. Hence, automatic consistency checking can be performed to capture possible
inconsistencies in the definition of the classes and properties of the ontology (e.g., a class being a subclass of two disjoint
classes), or in its population (e.g., a person being in different rooms at the same time).

5.3. Evaluation

With respect to simpler approaches (e.g., key-value and markup models), ontological models of context provide clear
advantages both in terms of heterogeneity and interoperability. Considering usability issues, we point out that user-friendly
graphical tools exist (e.g., Protégé2) that make the design of ontological context models viable also to developers that are
not particularly familiar with description logics. However, with respect to timeliness we note that at the time of writing
there is very little support for modelling temporal aspects in ontologies. Moreover, despite the ability to express relations
and dependencies among context data makes the ontological model a satisfactory solution for a wide range of context-
aware applications, experiences with the development of context ontologies show that the operators provided by OWL-DL
are sometimes inadequate to define complex context descriptions (see, e.g., [36]). This problem is due to the fact that the
constructors included in the OWL-DL language were chosen in order to guarantee decidable reasoning procedures. For this
reason, OWL-DL does not include very expressive constructors that would be helpful for modelling complex domains, such
as users’ activities.
Consider for example the isColleagueOf property, which is very useful for modelling activities performed within an

organisation. A straightforward definition of that property can be given by composing the atomic propertiesisEmployedBy
and isEmployerOf:

isColleagueOf ≡ isEmployedBy ◦ isEmployerOf.

Indeed, if a person a is employed by a person b that is the employer of c , then a is colleague of c. Unfortunately, this
definition cannot be expressed in OWL-DL. In fact, the language – in order to preserve its decidability — does not include a
constructor for composing relations. Similarly, OWL-DL does not include some expressive class constructors, such as the
ones that restrict the membership to a class only to those individual objects that are fillers of two or more properties
(these constructors are called role-value-maps in the literature). Formally, a role-value-map R ⊆ S defines the class of
individuals i such that the individuals related to i by property R are related to i also by property S (R and S can be composed
properties). For example, given a property isCoactorOf that relates individuals performing an activity together, the
role-value-map (isCoactorOf ⊆ isColleagueOf) defines the class of individuals having as coactors only persons that
are their colleagues. If for the sake of simplicity one assumes than an individual cannot perform more than one activity
at a time, a more precise definition of BusinessMeeting could be given by substituting Employee in that definition with
(isCoactorOf ⊆ isColleagueOf).
Even if proposed extensions of OWL promise to overcome part of these limitations (in particular, by including a restricted

form of property composition [37]), at the time of writing the definition of some context domains with OWL-DL can be
problematic. Hence, the possibility of augmenting the expressivity of ontological languages through an extension with
rules has been recently investigated by the Semantic Web community, and brought to the definition of logic languages
such as SWRL [38], adopted for example in [39]. These rule extensions are not really hybrid approaches since rules are
fully integrated in ontological reasoning. The main problem with this approach is that reasoning in OWL-DL is already
computationally expensive, as described in the following paragraph, and the proper integration of rules makes the resulting
language undecidable. A further research issue consists in extending existing ontological languages to support fuzziness and
uncertainty while retaining decidability (see, e.g., [40,41]).

2 http://protege.stanford.edu/.
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In addition to the above mentioned expressiveness limitations, ontological reasoning with OWL-DL also poses serious
performance issues. Indeed, a natural solution for deriving complex context data through ontological reasoning is to perform
the realisationof an individual of interest (e.g., the individual representing the user’sActivity) in order to find themost specific
class the individual belongs to (e.g., a BusinessMeeting). Unfortunately, the realisation problem has NExpTime complexity.
One could argue that this is a worst-case complexity, and that current optimised reasoners can still be practical for many
applications. However, performance issues when reasoning with OWL-DL are confirmed by experimental evaluations with
different ontology-based context reasoning architectures (see, e.g., [42,28]). Hence, online execution of ontological reasoning
poses scalability issues, especially when the ontology is populated by a large number of individuals. In order to improve the
efficiency of reasoning with OWL-DL, various optimisations based on the use of relational database techniques have been
recently proposed. A well-known proposal in this sense is the InstanceStore system [43]. However, at the time of writing,
InstanceStore has some limitations that are critical for reasoningwith context data. Indeed, it does not allow the instantiation
of relations between individuals. In some cases, efficiency problems can be avoided by executing particularly onerous tasks
asynchronously with respect to the service requests. Details about these optimisations are reported in [28].

6. High-level context abstractions

Information from physical sensors, called low-level context and acquired without any further interpretation, can
be meaningless, trivial, vulnerable to small changes, or uncertain [44]. Schilit et al. [14] observed hence that context
encompasses more than just the user’s location, because other things of interest, including the user’s social situation, are
also changing. The limitation of low-level contextual cueswhenmodelling human interactions and behaviour risks reducing
the usefulness of context-aware applications. A way to alleviate this problem is the derivation of higher-level context
information from raw sensor values, called context reasoning and interpretation. The idea is to abstract from low-level
context by creating a newmodel layer that gets the sensor perceptions as input and generates or triggers system actions. In
the literature, different notions have been employed to refer to this higher-level context layer. Situational context [45]
and situation [15,46] are the most common ones. The notion of situation is used as a higher-level concept for a state
representation. Initially, the term ‘‘situation’’ was used in linguistics and natural language semantics. In 1980, Barwise and
Perry wrote in their paper The Situation Underground [47] of situations:

‘‘The world consists not just of objects, or of objects, properties and relations, but of objects having properties and
standing in relations to one another. And there are parts of the world, clearly recognised (although not precisely
individuated) in common sense and human language. These parts of the world are called situations. Events and
episodes are situations in time, scenes are visually perceived situations, changes are sequences of situations, and
facts are situations enriched (or polluted) by language’’.

In context-aware applications, situations are external semantic interpretations of low-level context [46], permitting a
higher-level specification of human behaviour in the scene and the corresponding system services. Situations injectmeaning
into the application and are more stable, and easier to define and maintain than basic contextual cues. Adaptations in
context-aware applications are then caused by the change of situations (i.e., a change of a context value triggers adaptation
if the context update changes the situation). Design and implementation of the applications become much easier with
situations because the designer/programmer can operate at a high level of abstraction (situation) not on all context cues
that create the situation. For example, [48] describes six different ways to specify the situation in_meeting_now based on
contextual cues:

• co-location of people and agenda information
• co-location of filled coffee cups in a room
• weight sensors on the floor
• devices in the room (lights, projector, PowerPoint on PC)
• sounds and noises
• cameras (‘‘watch’’ meeting room for activity)

In each case, the situation in_meeting_now remains stable and appropriate system actions can simply be associated to
this situation, while the contextual cues regarding this situation may change. Additional contextual cues relevant to this
situation can be added or obsolete ones can be removed without changing the situation itself, but by modifying only its
specification.
Fig. 2 summarises the basic ideas of this section. Sensor-based low-level context information is semantically interpreted

by the high-level context layer. Situations abstract from low-level data and are reusable in different environments and
applications. Relationships defined between situations can provide for a further abstraction and limitation of complexity.

6.1. Defining situations

As situations are semantic abstractions from low-level contextual cues, human knowledge and interpretation of the
world must be integrated into a model or situation representation. This can either be done during a specification process,
i.e., a human defines the situations and their relationship based on his knowledge, or situations are recognised and learned
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Fig. 2. Overview of the different layers of semantic context interpretation and abstraction.

automatically, i.e., sensor perceptions are aggregated and associated to a human-defined situation label using machine
learning techniques.
The latter relates to the domain of human activity recognition. Most approaches in this area focus on the classification

of basic human activities or scenarios without considering a richer contextual description (e.g., [49]). Some recent work,
however, attempts to acquire high-level contextual models involving situations. Clarkson [50] proposes a wearable system
capable of distinguishing coarse locations and user situations. Different locations and situations of an individual user like
‘‘home’’, ‘‘atwork’’, ‘‘bathroom’’ or ‘‘restaurant’’ are isolated and then recognised based on a clustering of video and audio data
recordings. McCowan et al. [51] go further by proposing a two-layered framework for modelling and recognising individual
and group actions in meetings. A first layer detects individual actions like ‘‘writing’’ or ‘‘speaking’’ from individual audio
and video recordings. The second group layer fuses the individual output of the first layer as well as group audio and
video features (coming from projector screen and white-board). The output of the second layer are group situations like
‘‘discussion’’, ‘‘monologue’’, ‘‘note-taking’’, or ‘‘presentation’’. Brdiczka [52] finally proposes a four-layered situation learning
framework. This framework acquires different parts of a situation model, namely situations and roles, with different levels
of supervision. Situations like ‘‘presentation’’, or ‘‘aperitif’’ and roles played by individuals like ‘‘lying down’’ or ‘‘sitting
and gesturing’’ are learned from individual audio and video data streams. Depending on number and kind of observations
provided for recognition and situations to be recognised, these learning-based approaches have a correct recognition rate
of situations between 85% and 100% (95% in [50], 88.8% in [51], and 100% (with presegmentation) in [52]).
However, these approaches require an important training period during which several examples of each situation

and related concepts are collected and analysed. This training phase often needs as much human intervention (e.g., for
semantic labelling) as a manual situation specification phase would require. The granularity of the learned concepts is
further influenced by the character and availability of the low-level sensor data. For example, if an application needs a finer
granularity of the situation ‘‘meeting’’, e.g., a ‘‘conference meeting’’ situation, we would need at least a recording of one or
two conferences (which may only take place once a year). Finally, machine learning methods choose a tradeoff between
generalisation and specification when acquiring concepts from sensor data recordings, which does not always meet the
correct semantics, hence resulting in wrong detections of situations.
When contextual cues and application needs of situations perception are known in advance, a human can specify the

situationsmanually. In context-aware computing, most approaches for manual situation specification refer to Dey’s context
definition [15] as ‘‘any information that can be used to characterise the situation of an entity’’. An entity can be a person,
place or object considered relevant to user and application, including the user and the application themselves. Dey defines
as situation further as the ‘‘description of the states of relevant entities’’. A situation is thus a temporal state within context.
Early approaches use formal logics to describe and represent these states. A first representative of this kind is the Situation
Theory proposed by Barwise and Perry [53]. Situation theory tries to covermodel-theoretic semantics of natural language in
a formal logic system. The situation calculus [54] further provides a logical language for reasoning about action and change.
Changing scenarios are represented as a set of second-order logic formulae.
Even though approaches based on formal logics provide a high level of abstraction and formality for specifying the

situations, they are error-prone in the domain of context-aware computing due to the incompleteness and ambiguity of
contextual cues and information. Limited reasoning performance further reduces the scalability of these approaches in real
world applications. To cope with this, some approaches try to balance efficient evaluation and expressive power (e.g., the
grammar for formulating situations described in Section 3). Assertions that are interpreted under a closed-world assumption
are used to reduce the values in quantified expressions describing situations. Crowley et al. [55] introduce the concepts
of role and relation in order to characterise a situation. Roles involve only one entity, describing its activity. An entity is
observed to ‘‘play’’ a role. Relations are defined as predicate functions on several entities, describing the relationship or
interaction between entities playing roles. This model is less formal (even though a formal definition of the concepts is
provided [56]) and highlights the application viewpoint by proposing different implementations for the situations [57].

6.2. Relationships between situations

While many approaches only focus on defining and recognising situations, some approaches also specify and model
situation relationships. One motivation is to considerably reduce the search space for potential situations to be recognised,
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Fig. 3. Temporal Situation Model of the Automatic Cameraman system [57] that proactively chooses the viewpoint for recording a lecture (left) and
compiled Petri net (right) (pictures from [57]).

once the actual situation is known and knowing possible relationships (e.g., knowing possible successor situations of the
current situation). The state aspect of situations is often emphasised by the constraint that at least one situation must be
active at a time. This can provide more stability and better performance, but requires a complete (exhaustive) situation
model for the context-aware application. All potential situations, their relationships and transitionsmust be included in this
model, which is not always possible, in particular in informal settings and scenarios. In [57], a situation model is defined in
order to provide an automatic cameraman service that proactively chooses the viewpoint for recording a lecture (Fig. 3 left).
Situations relationships are represented by Allen’s temporal logic. For execution, the temporal relations are automatically
compiled into a synchronised Petri net that takes contextual changes as input to trigger the situation transitions, while
one or more places of the Petri net represent the intrinsic situations (Fig. 3 right). Even though the temporal relations
implemented by a Petri net provide high stability and good performance of the context-aware application, only a limited
number of situations in a rather formal setting (e.g., lecture) can be covered.

7. Uncertainty of context information

Both the physical world itself, and our measurements of it are prone to uncertainty. Hence, one of the key requirements
of context-awareness is capturing andmaking sense of imprecise, and sometimes conflicting data, about the physical world.
Different types of entities (or software objects) in the environment must be able to reason about uncertainty. These

include entities that sense uncertain contexts, entities that infer other uncertain contexts from these basic, sensed contexts,
and applications that adapt how they behave on the basis of uncertain contexts. Having a common model of uncertainty
that is used by all entities in the environment makes it easier for developers to build new services and applications in such
environments and to re-use various ways of handling uncertainty.

7.1. Models for uncertainty

There has been work in addressing the problem of representing, reasoning about and overcoming uncertainty in
context information. Hui Lei et al. describe a context service that allows context information to be associated with quality
metrics, such as freshness and confidence [58]. Castro et al. use Bayesian networks for sensor fusion [59], in particular
considering location information. Schmidt et al. associate each of their context valueswith a certaintymeasure that captures
the likelihood that the value accurately reflects reality [60]. Gray and Salber include information quality as a type of
meta-information in their context model, and describe six quality attributes: coverage, resolution, accuracy, repeatability,
frequency and timeliness [61]. The model described by Henricksen et al. [6] supports quality by allowing associations
between objects to be annotated with a number of quality parameters, which capture the dimensions of quality considered
relevant to that association. Dey et al. suggest amechanism for overcoming uncertaintywhereby ambiguous information can
be resolved by amediation process involving the user [62]. This solution is particularly viable when the context information
under consideration is small in volume and does not change rapidly, so that the user is not unreasonably burdened. Rene
Mayrhofer [63] and Albrecht Schmidt [64] propose approaches for inferring and predicting context information from sensor
data in a bottom-up manner. Hightower et al. [65] proposed the Location Stack, where they argued that uncertainty must
be preserved. The Location Stack has different layers for helping manage uncertainty in location. For example, a ‘‘Fusion’’
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layer is in charge of continually merging streams of measurements into a time-stamped probabilistic representation of the
positions and orientations of objects. The ‘‘Arrangement’’ layer contains an engine for probabilistically reasoning about the
relationships (e.g. proximity, containment, geometric formations) between two or more objects.
Ranganathan et al. [66] provide a categorisation of different kinds of quality metrics that can specifically be associated

with location information obtained from different kinds of sensors. These metrics are:

(1) Resolution, which is the region that the sensor says the mobile object is in. Resolution can be expressed either as a
distance or as a symbolic location, depending on the kind of sensor. Sensors like RF badges or GPS devices give resolution
in terms of distance. For example, some GPS devices have a resolution of 50 feet, whichmeans that the object lies within
a circle of 50 feet from the location given. Other sensors such as card-readers give resolution in terms of a symbolic
location, like a room. For example, a card-reader says that a person is somewhere inside a room.

(2) Confidence, which is measured as the probability that the person is actually within a certain area returned by the sensor.
This probability is calculated based on which sensors can detect the person in the area of interest.

(3) Freshness, which is measured based on the time that has elapsed since the sensor reading. All sensor readings have an
expiry time, beyond which the reading is no longer valid.

Ranganathan et al. [67] also developed an uncertainty model based on a predicate representation of contexts, where
each context predicate is associated with a confidence value. The confidence value associated with a predicate measures
the probability (in the case of probabilistic approaches) or the membership value (in the case of fuzzy logic) of the event
corresponding to the context predicate being true. For example, prob(location(carol, in, room 3233)) = 0.5 means that the
probability that Carol is in Room 3233 is 0.5. This model forms the basis for reasoning about uncertainty using various
mechanisms such as probabilistic logic, fuzzy logic and Bayesian networks. They incorporated these reasoning mechanisms
in Gaia [68], their distributed middleware system for enabling Active Spaces.

7.2. Reasoning on uncertainty

A number of mechanisms have been proposed in the literature for reasoning on uncertainty. Broadly, there are twomain
purposes for reasoning on uncertainty: improving the quality of context information, and inferring new kinds of context
information. Reasoning to improve the quality of context information typically takes the form of multi-sensor fusion where
data fromdifferent sensors are used to increase confidence, resolution or any other context qualitymetrics. Reasoning for the
purpose of inferring new context information typically takes the form of deducing higher-level contexts or situations (like
the activity of a user) from lower-level contexts (like the location or instant messaging status of the user). Since we cannot
directly sense the higher-level contexts, these contexts may be associated with a certain level of uncertainty, depending on
both the accuracy of the sensed information and precision of the deduction process.
Different approaches have been used for reasoning on uncertain context information. In this paper, we describe some

of these approaches: fuzzy logic, probabilistic logic, Bayesian networks, Hidden Markov models, and the Dempster–Shafer
theory of evidence.
Fuzzy logic. In fuzzy logic [69], confidence values represent degrees of membership rather than probability. Fuzzy logic is
useful in capturing and representing imprecise notions such as ‘‘tall’’, ‘‘trustworthy’’, and ‘‘confidence’’ and reasoning about
them. The elements of two or more fuzzy sets can be combined (fused) to create a new fuzzy set with its own membership
function. Examples of fusion operations are intersection, union, complement, andmodification. Fuzzy logic is well suited for
describing subjective contexts, performingmulti-sensor fusion of these subjective contexts and resolving potential conflicts
between different contexts.
Probabilistic logic. Probabilistic logic allows making logical assertions that are associated with a probability. One such logic,
based on proposition logic, was proposed by Fagin et al. [70]. They specify a complete axiomatisation, and also show that
the complexity of deciding satisfiability in their logic is no worse than that of propositional logic. This logic lets us make
statements such as ‘‘the probability of E is less than 1/3’’ and ‘‘the probability of E is at least twice the probability of F,’’
where E and F are arbitrary events. Probabilistic logic lets us write rules that reason about events’ probabilities in terms
of the probabilities of other related events. These rules can be used both for improving the quality of context information
throughmulti-sensor fusion aswell as for derivinghigher-level probabilistic contexts. The rules can also beused for resolving
conflicts between context information obtained from different sources (such as when different location sensing modalities
give different locations for the same entity). Various rule engines like Prolog can then be used to reason on these rules.
Ranganathan et al. [67] have used such rules for encoding access control policies.
Bayesian networks. Bayesian networks are directed acyclic graphs, where the nodes are random variables representing
various events and the arcs between nodes represent causal relationships. The main property of a Bayesian network is that
the joint distribution of a set of variables can be written as the product of the local distributions of the corresponding nodes
and their parents. Bayesian networks are particularly efficient in representing and storing conditional probabilities, if the
dependencies in the joint distribution are sparse. Examples of use of Bayesian networks are in location sensor fusion [59]
and in diagnosing the source of faults in pervasive computing environments [67]. In general, Bayesian networks are well
suited for combining uncertain information from a large number of sources and deducing higher-level contexts.
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Fig. 4. A comparison of context modelling approaches.

Hidden Markov Models. A Hidden Markov Model (HMM) represents stochastic sequences as Markov chains; the states are
not directly observed, but are associated with observable evidences, called emissions, and their occurrence probabilities
depend on the hidden states. These models have been used for location prediction. For example, [71] use a hierarchical
Markov model that can learn and infer a user’s daily movements through an urban community. The model uses multiple
levels of abstraction in order to bridge the gap between raw GPS sensor measurements and high-level information such as
a user’s destination and mode of transportation.
Dempster–Shafer theory. The Dempster–Shafer theory is a mathematical theory of evidence [72] based on belief functions
and plausible reasoning, which is used to combine separate pieces of information (evidence) to calculate the probability
of an event. It is often used as a method of sensor fusion, by obtaining degrees of belief for one question from subjective
probabilities for a related question, and then combining such degrees of belief when they are based on independent items
of evidence. The belief in a hypothesis is constituted by the sum of the masses of all sets enclosed by it (i.e., the sum of the
masses of all subsets of the hypothesis). This reasoning approach has been used by Wu to deal with uncertainty associated
with context sensing [73]. In his implementation, an Aggregator receives video and audio features from a camera and a set
of microphone widgets to determine the likelihood of a participant’s focus of attention in a meeting.
Dargie [74] has proposed a conceptual architecture where different reasoning mechanisms can be incorporated in a

unifiedmanner for acquiring, aggregating and reasoning about context information. In this architecture, different reasoning
mechanisms are used in different scopes: fuzzy logic may be used for defining the conceptual states of a primitive context to
enable human-like reasoning; the Dempster–Shafer Theory for combining the independent observations ofmultiple sensors
each of which observes one and the same phenomenon; and Hidden Markov Models and Bayesian Networks for actually
computing a higher-level context.

8. Hybrid context models

In this section we investigate context modelling approaches that try to integrate different models and different types of
reasoning in order to obtain more flexible and general systems. We first discuss some limitations of previously presented
models, arguing that theymay benefit from the integrationwith others. Then, we illustrate some existing approaches in this
direction, and finally we provide general ideas on how a more comprehensive hybrid model may be designed.

8.1. Why hybrid models are needed

The previous sections have illustrated the main approaches for context modelling and reasoning that can be found in the
literature. As shown in Fig. 4, none of them can satisfy all the requirements described in the introduction. Partial satisfaction
of the requirements is shown as ‘∼’ in the figure.
Spatial models provide efficient procedures for the execution of typical spatial queries; however, they do not always

cope with the uncertainty of actual location readings. Moreover, interoperability among different spatial models can be
easily achieved when the location information is confined to very simple spatial data (e.g., points in the space represented
by their coordinates in the WGS 84 standard); if more complex spatial domains are to be modelled, interoperability can be
obtained only by adopting expressive languages (e.g., coupling the different models with a shared ontology of location).
With regard to fact-based models, the CML language has advantages in its support for software engineering. It captures

the heterogeneity of the context information sources, histories (timeliness) of context information and provides an easy
mapping from real world concepts into modelling constructs. It also provides a good balance between expressive power
and efficient reasoning procedures for evaluation of simple assertions about context and for reasoning about high-level
context abstractions (called ‘situations’ in that approach) expressed as a form of predicate logic. Indeed, the predicate logic
supported by CML is well suited for expressing dynamic context abstractions. However, in order to preserve efficiency, that
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language is less expressive than ontological languages like OWL-DL. A possible shortcoming of CML with respect to more
expressive languages is the lack of support for hierarchical context descriptions. Moreover, even if CML supports queries
over uncertain information through a three-valued logic, a deeper support for modelling and reasoning about uncertainty
is desirable.
Finally, ontological models have clear advantages regarding support for interoperability and heterogeneity. Moreover,

since they support the representation of complex relationships and dependencies among context data, they are particularly
well suited to the recognition of high-level context abstractions. However, ontological models alone are generally unsuited
to the recognition of simpler context data, like, e.g., basic physical activities; in order to recognise such context data,
ontological models should be at least integrated with statistical machine learning methods (see, e.g., [75]). Furthermore,
when considering the tradeoff between expressiveness and complexity the choice of ontological models may not always
be satisfactory. In particular, in addition to the expressivity and complexity issues illustrated in Section 5, we argue that
ontologies are not well suited to represent some dynamic context data such as users’ adaptation preferences; these data can
be more profitably modelled by lower-complexity, restricted logics (e.g., those proposed in [8,76]). Moreover, even if some
preliminary proposals to extend OWL-DL to represent and reason about fuzziness and uncertainty exist (see, e.g., [40,41]),
at the time of writing ontology languages and related reasoning tools do not properly support uncertainty in context data.
The above considerations seem to suggest that different models and reasoning tools need to be integrated with each

other. Though a single expressive representation language fulfilling most of the identified requirements could probably be
defined, there are strong indications that the resulting complexity of reasoningwouldmake it useless in realworld scenarios.
In the area of knowledge representation, an alternative approach to the use of a single very expressive formalism has been
identified in hybrid knowledge representation formalisms; i.e., formalisms composed by different sublanguages to represent
different kinds of knowledge, and loosely coupled reasoning procedures. One of the advantages of such formalisms is that
the complexity of hybrid reasoning is generally no worse than the complexity of reasoning with the single sublanguages. In
the next section we report two early hybrid approaches proposed for context representation and reasoning.

8.2. Existing hybrid approaches to context modelling

Hybrid fact-based/ontological model. Henricksen et al. [13] propose a hybrid approach to context modelling, combining
ontologies with the fact-based approach provided by the CML language. The goal is to combine the particular advantages
of CML models (especially the handling of ambiguous and imperfect context information) with interoperability support
and various types of reasoning provided by ontological models. The hybrid approach is based on a mapping from CML
modelling constructs to OWL-DL classes and relationships. It is worth noting that, because of some expressivity limitations
of OWL-DL, a complete mapping between CML and OWL-DL cannot be obtained. With respect to interoperability issues, the
advantages gained by an ontological representation of the context model are clearly recognisable. However, with respect to
the derivation of new context data, experiences with the proposed hybrid model showed that ontological reasoning with
OWL-DL and its SWRL extension did not bring any advantage with respect to reasoning with the CML fact-based model. For
this reason, ontological reasoning is performed only for automatically checking the consistency of the context model, and
for semantic mapping of different context models.
Loosely coupledmarkup-based/ontologicalmodel. TheCARE [28] framework for context-awareness adopts a contextmodelling
approach that is based on a loose integration between amarkupmodel – extendedwith policy rules expressed in a restricted
logic programming language – and an ontological model. The integration between these models is realised through the
representation of context data by means of CC/PP profiles which contain a reference to OWL-DL classes and relations. In
order to preserve efficiency, ontological reasoning is mainly performed in advance with respect to the service provision.
Whenever relevant new context data is acquired, ontological reasoning is started, and derived information is used, if still
valid, at the time of service provisioning togetherwith efficient rule evaluation. Complex context data (e.g., the user’s current
activity) derived through ontological reasoning can be used in rule preconditions in order to derive new context data such
as user preferences. As an example, consider the following rule:

hasCurrActivity∗(x, BusinessMeeting)→ hasAvailState(x, Busy).

The rule precondition involves complex context data – identified by a star symbol – that represents the current activity
of an individual instance x (in this case, the current user). As in [13], ontological reasoning is also performed to check the
consistency of the context model.

8.3. Towards a hierarchical hybrid model: Gains and open issues

Wenow illustrate howexisting hybrid approachesmay be further extended to design a hierarchical hybrid contextmodel
that may satisfactorily address a larger number of the identified prerequisites.
A preliminary proposal for a hierarchicalmodel has beenpresented in [20] focusing on the spatial/ontological component.

The model presented here is intended to provide a more comprehensive solution, both in terms of integration of different
forms of reasoning, and in terms of expressiveness. The proposed model includes a representation formalism to represent
data directly acquired from sensors (or retrieved from a module executing some sensor data fusion technique). In order to
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Fig. 5. Multilayer framework.

support the scalability requirements of pervasive computing services, this representation formalism should make possible
the execution of efficient reasoning techniques to derive high-level context data on the basis of raw ones (e.g., by executing
rule-based reasoning in a restricted logic programming language, or statistical inferencing). Since such a representation
formalism inevitably does not support a formal definition of the semantics of context descriptions, a more expressive,
ontology-based contextmodel is desirable on top of it. In addition to providing a formal semantics of the data, an ontological
context model also supports the execution of reasoning tasks such as consistency checking and derivation of new context
information. Clearly, there must be a mapping between terms used in context descriptions for efficient reasoning and
ontological classes and relations. The corresponding framework is shown in Fig. 5; it is composed of the following layers:

• Layer 1: Techniques for sensor data fusion (like, e.g., in [77]). This layer can also be organised as a peer-to-peer network of
software entities devoted to acquire, process and propagate raw context data in the pervasive space in order to support
cooperation and adaptation of services (see, e.g., [78]).
• Layer 2: This layer is devoted to shallow context data representation, integration with external sources, and efficient
context reasoning. In particular, it includes the following modules:
– module for efficient markup-based, RDF-based, or DB-based representation and management of context data. This
includes the definition of shared vocabularies (CC/PP vocabularies are an example for RDF-based representation, and
annotated DB schemas are an example for DB-based management);

– modules for efficient shallow reasoning (logics- and/or statistics-based, uncertainty reasoning may be supported);
– data integration techniques for acquiring data fromexternal sources (e.g., GIS, location servers, usermodelling systems)
and for conflict resolution (even due to conflicting rules).

• Layer 3: Realisation/abstraction process to apply ontological representation and reasoning. This layer has the following
main goals:
– to specify the semantics of context terms (important for sharing and integration);
– to check consistency;
– to provide an automatic procedure to classify sets of context data as more abstract context abstractions.

The interface exposed to applications is provided at Layer 2. This is mainly due to efficiency concerns and to the fact
that ontological reasoning is mainly based on relationships between concepts and not instances. Results of reasoning are
reflected on instances at Layer 2 (this implies that markup/DB schemas include, at least as strings, all the terms in the
ontology). Application developers have access to the ontology, that also provides the context semantics. The specific context
terms required by an application will be found at Layer 2, and their values will be returned when required.
Even though the proposed hierarchical hybridmodel determines clear advantages in terms of the requirements reported

in the introduction, we point out that the integration of diverse reasoning techniques still poses open issues, e.g., how
to integrate the open-world semantics of ontologies with the closed-world semantics of DB-based models and logic
programming (see [79] for a thorough discussion of this aspect), and how to reconcile probabilistic reasoningwith reasoning
with languages not supporting uncertainty (e.g., OWL-DL).

Please cite this article in press as: C. Bettini, et al., A survey of context modelling and reasoning techniques, Pervasive and Mobile Computing (2009),
doi:10.1016/j.pmcj.2009.06.002



ARTICLE  IN  PRESS
C. Bettini et al. / Pervasive and Mobile Computing ( ) – 17

9. Conclusions

In this paper we described the state-of-the-art in context modelling and reasoning that supports gathering, evaluation
and dissemination of context information in pervasive computing. Existing approaches to context information modelling
differ in the expressive power of the context informationmodels, in the support they can provide for reasoning about context
information, and in the computational performance of reasoning. In the paper we presented a set of requirements that
contextmodelling and reasoning techniques shouldmeet. The discussion of the requirements was followed by a description
of the three, currently most prominent, approaches to context modelling and reasoning. These approaches are rooted in
database modelling techniques and in ontology-based frameworks for knowledge representation.
The paper also presented state-of-the-art techniques to deal with two particularly relevant issues that should be

addressed in any framework for context representation and reasoning: high-level context abstractions and uncertainty of
context information.
We concluded our survey by introducing hybrid approaches as an attempt to combine different formalisms and

techniques to better fulfill the identified requirements. Sincewe believe this is a promising direction,we discussed a possible
architecture, as well as some research issues to be investigated.
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