Signals and Systems Using MATLAB

Luis F. Chaparro

Chapter 10 - The Z-transform

What is in this chapter?

- . Two- and one-sided Z-transforms
 - . Poles and zeros and region of convergence
- Convolution sum and transfer function
- - Solution of difference and differential equations

Laplace transform of sampled signals

Laplace transform of a sampled signal

$$x(t) = \sum_{n} x(nT_s)\delta(t - nT_s)$$

$$X(s) = \sum_{n} x(nT_s)\mathcal{L}[\delta(t - nT_s)] = \sum_{n} x(nT_s)e^{-nsT_s}$$

Let $z = e^{sT_s}$,

$$\mathcal{Z}[x(nT_s)] = \mathcal{L}[x_s(t)]|_{z=e^{sT_s}} = \sum_n x(nT_s)z^{-n}$$

the Z-transform of the sampled signal

Two-sided Z-transform $x[n], -\infty < n < \infty, is$

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n} \qquad ROC$$

One-sided Z-transform of x[n] = 0 for n < 0, or signals that are made causal by multiplying them with the unit-step signal u[n]:

$$X_1(z) = \mathcal{Z}(x[n]u[n]) = \sum_{n=0}^{\infty} x[n]u[n]z^{-n}$$
 ROC₁

Two-sided Z-transform in terms of One-sided Z-transform:

$$X(z) = \mathcal{Z}(x[n]u[n]) + \mathcal{Z}(x[-n]u[n])|_{z} - x[0]$$

$$ROC \ of \ X(z): \ \mathcal{R} = \mathcal{R}_{1} \cap \mathcal{R}_{2}$$

$$\mathcal{R}_{1} \ ROC \ (causal) \ \mathcal{Z}(x[n]u[n])$$

$$\mathcal{R}_{2} \ ROC \ (anticausal) \ \mathcal{Z}(x[-n]u[n])|_{z}$$

• Z-transform: transformation of sequence $\{x[n]\}$ into polynomial X(z) so to each $x[n_0]$ we attach z^{-n_0}

$$x[n] = \sum_{k} x[k]\delta[n-k] \quad \Leftrightarrow \quad X(z) = \sum_{k} x[k]z^{-k}$$

• Two-sided Z-transform in terms of one-sides Z-transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} x[n]u[n]z^{-n} + \sum_{n=-\infty}^{0} x[n]u[-n]z^{-n} - x[0]$$

$$= \mathcal{Z}(x[n]u[n]) + \underbrace{\sum_{m=0}^{\infty} x[-m]u[m]z^{m}}_{\mathcal{Z}(x[-n]u[n])|_{z}} - x[0]$$

Example Z-transform of $c[n] = \alpha^{|n|}, \quad 0 < \alpha < 1$

Causal
$$\mathcal{Z}(c[n]u[n]) = \sum_{n=0}^{\infty} \alpha^n z^{-n} = \frac{1}{1 - \alpha z^{-1}}$$
 ROC: $|\alpha z^{-1}| < 1$ or $|z| > \alpha$

Anti-causal
$$\mathcal{Z}(c[-n]u[n])_z = \sum_{n=0}^{\infty} \alpha^n z^n = \frac{1}{1-\alpha z}$$

ROC: $|\alpha z| < 1$ or $|z| < |1/\alpha|$

Two-sided Z-transform of c[n]:

$$C(z) = \frac{1}{1 - \alpha z^{-1}} + \frac{1}{1 - \alpha z} - 1 = \frac{z}{z - \alpha} - \frac{z}{(z - 1/\alpha)} = \frac{(\alpha - 1/\alpha)z}{(z - \alpha)(z - 1/\alpha)}$$

$$ROC: |\alpha| < |z| < \left| \frac{1}{\alpha} \right|$$

For
$$\alpha = 0.5$$

$$C(z) = \frac{-1.5z}{(z-0.5)(z-2)} \qquad 0.5 < |z| < 2$$

Poles and Zeros

$$X(p_k) \to \infty$$

Poles of X(z) are complex values $\{p_k\}$ such that $X(p_k)\to\infty$ while the zeros of X(z) are complex values $\{z_k\}$ that make

$$X(z_k) = 0$$

Example Find poles and zeros of

(i)
$$X_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$$

(ii)
$$X_2(z) = \frac{(z^{-1} - 1)(z^{-1} + 2)^2}{z^{-1}(z^{-2} + \sqrt{2}z^{-1} + 1)}$$

Express $X_1(z)$ as function of positive powers of z:

$$X_1(z) = \frac{z^3(1+2z^{-1}+3z^{-2}+4z^{-3})}{z^3}$$
$$= \frac{z^3+2z^2+3z+4}{z^3} = \frac{N_1(z)}{D_1(z)}$$

poles roots of $D_1(z) = z^3 = 0$ or z = 0, triple zeros are the roots of $N_1(z) = z^3 + 2z^2 + 3z + 4 = 0$

Expressing $X_2(z)$ as function of positive powers of z,

$$X_2(z) = \frac{z^3(z^{-1} - 1)(z^{-1} + 2)^2}{z^3(z^{-1}(z^{-2} + \sqrt{2}z^{-1} + 1))}$$
$$= \frac{(1 - z)(1 + 2z)^2}{1 + \sqrt{2}z + z^2} = \frac{N_2(z)}{D_2(z)}$$

poles of $X_2(z)$ are roots of $D_2(z)=1+\sqrt{2}z+z^2=0$ zeros of $X_2(z)$ are the roots of $N_2(z)=(1-z)(1+2z)^2=0$

The ROC of the z-transform of a

- 1. finite support signal x[n] is the whole z-plane, excluding the origin z=0 and/or $z=\pm\infty$ (depending on the boundaries of the support)
- 2. causal signal x[n] is $|z| > R_1$ (outside of a circle of radius R_1), R_1 being the largest radius of the poles of X(z)
- 3. anti-causal signal x[n] is $|z| < R_2$ (inside of a circle of radius R_2), R_2 being the smallest radius of the poles of X(z),
- 4. non-causal signal x[n] is $R_1 < |z| < R_2$, or the inside of a torus of inside radius R_1 and outside radius R_2 corresponding to the maximum and minimum radii of the poles of $X_c(z)$ and $X_a(z)$, Z-transforms of the causal and anticausal components of x[n].

Example Z-transform of

$$x[n] = \begin{cases} 1 & 0 \le n \le 9 \\ 0 & \text{otherwise} \end{cases}$$

$$X(z) = \sum_{n=0}^{9} 1 \ z^{-n} = \frac{1 - z^{-10}}{1 - z^{-1}} = \frac{z^{10} - 1}{z^{9}(z - 1)}$$
$$= \frac{\prod_{k=1}^{9} (z - e^{j\pi k/5})}{z^{9}}$$

last expression is due to a pole/zero cancellation zeros are the roots of

$$z^{10} - 1 = 0 \implies z_k = e^{j2\pi k/10}, \ k = 0 \cdots 9$$

zero $z_0 = 1$, cancels the pole at 1 ROC: whole z-plane except z = 0

Example 5. Find ROCs of the Z-transforms of the following signals

$$(i) \quad x_1[n] = \left(\frac{1}{2}\right)^n u[n]$$

(ii)
$$x_2[n] = -\left(\frac{1}{2}\right)^n u[-n-1]$$

 $x_1[n]$ causal

$$X_1(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} = \frac{1}{1 - 0.5z^{-1}} = \frac{z}{z - 0.5}$$

provided $|0.5z^{-1}| < 1$ or $\mathcal{R}_1 : |z| > 0.5$ outside of circle of radius 0.5

 $x_2[n]$ anti-causal

$$X_2(z) = -\sum_{n=-\infty}^{-1} \left(\frac{1}{2}\right)^n z^{-n} = -\sum_{m=0}^{\infty} \left(\frac{1}{2}\right)^{-m} z^m + 1 = -\sum_{m=0}^{\infty} 2^m z^m + 1 = \frac{-1}{1-2z} + 1 = \frac{z}{z-0.5}$$

ROC: $\mathcal{R}_2 : |z| < 0.5$

 $X_1(z) = X_2(z)$ although $x_1[n] \neq x_2[n]$, ROCs differentiate them Z-transform of $x_1[n] + x_2[n]$ does not exist given that the intersection of \mathcal{R}_1 and \mathcal{R}_2 is empty

Effect of pole location on the inverse Z-transform: (from top to bottom) if pole is at z=1 the signal is u(n), constant for $n\geq 0$; if pole is at z=-1 the signal is a cosine of frequency π continuously changing, constant amplitude; when poles are complex, if inside the unit circle the signal is a decaying modulated exponential, and if outside the unit circle the signal is a growing modulated exponential.

• The Z-transform is a linear transformation

$$\mathcal{Z}(ax[n] + by[n]) = a\mathcal{Z}(x[n]) + b\mathcal{Z}(y[n])$$

• Exponentials —For real $\alpha = |\alpha|e^{j\omega_0}$, for $\omega_0 = 0, \pi$

$$x[n] = \alpha^n u[n]$$
 \Leftrightarrow $X(z) = \frac{1}{1 - \alpha z^{-1}} = \frac{z}{z - \alpha}$ $ROC: |z| > |\alpha|$

- when $\alpha > 0$ then $\omega_0 = 0$ and the signal is less and less damped as $\alpha \to \infty$, and
- when $\alpha < 0$ then $\omega_0 = \pi$ and the signal is a modulated exponential that grows as $\alpha \to -\infty$
- Sinusoids

$$\cos(\omega_0 n)u[n] \qquad \Leftrightarrow \qquad \frac{z(z - \cos(\omega_0))}{(z - e^{j\omega_0})(z - e^{-j\omega_0})} \qquad ROC: |z| > 1$$

$$\sin(\omega_0 n)u[n] \qquad \Leftrightarrow \qquad \frac{z\sin(\omega_0)}{(z - e^{j\omega_0})(z - e^{-j\omega_0})} \qquad ROC: |z| > 1$$

• The Z-transform pair

$$r^n \cos(\omega_0 n + \theta) u[n]$$
 \Leftrightarrow
$$\frac{z(z\cos(\theta) - r\cos(\omega_0 - \theta))}{(z - re^{j\omega_0})(z - re^{-j\omega_0})}$$

damping indicated by r and frequency given by ω_0

• Double poles

$$nx[n]u[n] \Leftrightarrow -z\frac{dX(z)}{dz}.$$

The output y[n] of a causal LTI system is computed using the convolution sum

$$y[n] = [x*h][n] = \sum_{k=0}^{n} x[k]h[n-k] = \sum_{k=0}^{n} h[k]x[n-k]$$

where x[n] is a causal input and h[n] the impulse response of the system. The Z-transform of y[n] is the product

$$Y(z)=\mathcal{Z}\{[x*h][n]\}=\mathcal{Z}\{x[n]\}\mathcal{Z}\{h[n]\}=X(z)H(z)$$

and the transfer function of the system is thus defined as

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\mathcal{Z}[\ output\ y[n]]}{\mathcal{Z}[\ input\ x[n]]}$$

i.e., H(z) transfers the input X(z) into the output Y(z).

Remarks

• Whenever multiplying two polynomials $X_1(z)$ and $X_2(z)$, of finite or infinite order, the coefficients of the resulting polynomial can be obtained by means of the convolution sum. For instance,

$$X_1(z) = 1 + a_1 z^{-1} + a_2 z^{-2}$$

 $X_2(z) = 1 + b_1 z^{-1}$

$$Y(z) = X_1(z)X_2(z) = 1 + (b_1 + a_1)z^{-1} + (a_1b_1 + a_2)z^{-2} + a_2b_1z^{-3}$$

Convolution sum of $[1 \ a_1 \ a_2]$ and $[1 \ b_1]$, from coefficients of $X_1(z)$ and $X_2(z)$, is $[1 \ (a_1+b_1) \ (a_2+b_1a_1) \ a_2]$, also order Y(z)=order $X_1(z)$ +order of $X_2(z)$ -1

• FIR filters implemented by convolution sum:

$$N^{th} - \text{order FIR}$$

$$y[n] = \sum_{k=0}^{N-1} b_k x[n-k] \qquad x[n] \text{ input, } y[n] \text{ output}$$

$$\text{Impulse resp. } h[n] = \sum_{k=0}^{N-1} b_k \delta[n-k] \quad \Rightarrow \quad h[n] = b_n, \ n = 0, \cdots, N-1$$

$$\text{so that } y[n] = \sum_{k=0}^{N-1} h[k] x[n-k]$$

Example Find output of FIR filter

$$y[n] = \frac{1}{2} (x[n] + x[n-1] + x[n-2])$$

for an input x[n] = u[n] - u[n-4]

Convolution sum property:

$$X(z)=1+z^{-1}+z^{-2}+z^{-3}$$

$$H(z)=\frac{1}{2}[1+z^{-1}+z^{-2}]$$

$$Y(z)=X(z)H(z)=\frac{1}{2}(1+2z^{-1}+3z^{-2}+3z^{-3}+2z^{-4}+z^{-5})$$
 so $y[0]=0.5,\ y[1]=1,\ y[2]=1.5,\ y[3]=1.5,\ y[4]=1,\ {\rm and}\ y[5]=0.5$

Example FIR filter with impulse response

$$h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

Find filter output y[n] for input $x[n] = \cos(2\pi n/3)(u[n] - u[n-14])$

Convolution property approach:

$$Y(z) = X(z)H(z) = X(z)(1+z^{-1}+z^{-2}) = X(z) + X(z)z^{-1} + X(z)z^{-2}.$$

Adding vertically these coefficients we obtain

$$Y(z) = 1 + 0.5z^{-1} + 0z^{-2} + \dots + 0z^{-13} + 0.5z^{-14} - 0.5z^{-15} = 1 + 0.5z^{-1} + 0.5z^{-14} - 0.5z^{-15}$$

Example First-order IIR system

$$y[n] = 0.5y[n-1] + x[n]$$
 input $x[n]$, output $y[n]$

Determine transfer function, impulse and the unit-step responses, if system is BIBO stable and transient and steady state responses of the system if possible

Transfer function
$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - 0.5z^{-1}}$$

impulse response $h[n] = \mathcal{Z}^{-1}[H(z)] = 0.5^n u[n]$

unit-step response
$$x[n] = u[n]$$

$$Y(z) = H(z)X(z) = \frac{1}{(1 - 0.5z^{-1})(1 - z^{-1})} = \frac{-1}{1 - 0.5z^{-1}} + \frac{2}{1 - z^{-1}}$$
$$y[n] = -0.5^{n}u[n] + 2u[n]$$

BIBO stable

$$\sum_{n=0}^{\infty} 0.5^n = \frac{1}{1 - 0.5} = 2, \quad h[n] \text{ absolutely summable, also}$$

$$H(z) = \frac{1}{1 - 0.5z^{-1}} = \frac{z}{z - 0.5}$$
, pole $z = 0.5$ inside unit circle

steady state: $n \to \infty$, y[n] = 2

transient: $-0.5^n u[n]$

Example FIR system

$$y[n] = \frac{1}{3}[x[n] + x[n-1] + x[n-2]]$$
 $x[n]$ input $y[n]$ output

Find transfer function, impulse response and determine if system is BIBO stable or not

Transfer function

$$H(z) = \frac{1}{3}[1 + z^{-1} + z^{-2}] = \frac{z^2 + z + 1}{3z^2}$$

impulse response

$$h[n] = \frac{1}{3} [\delta[n] + \delta[n-1] + \delta[n-2]]$$

h[n] absolutely summable so system is BIBO

Non-recursive or FIR Systems. The impulse response h[n] of an FIR or non-recursive system

$$y[n] = b_0x[n] + b_1x[n-1] + \dots + b_Mx[n-M]$$

has finite length and is given by

$$h[n] = b_0 \delta[n] + b_1 \delta[n-1] + \dots + b_M \delta[n-M]$$

Its transfer function is

$$H(z) = \frac{Y(z)}{X(z)} = b_0 + b_1 z^{-1} + \dots + b_M z^{-M} = \frac{b_0 z^M + b_1 z^{M-1} + \dots + b_M}{z^M}$$

with all its poles at the origin z = 0 (multiplicity M) and as such the system is BIBO stable.

Recursive or IIR Systems. The impulse response h[n] of an IIR or recursive system

$$y[n] = -\sum_{k=1}^{N} a_k y[n-k] + \sum_{m=0}^{M} b_m x[n-m]$$

has (possible) infinite length and is given by

$$h[n] = \mathcal{Z}^{-1}[H(z)] = \mathcal{Z}^{-1} \left[\frac{\sum_{m=0}^{M} b_m z^{-m}}{1 + \sum_{k=1}^{N} a_k z^{-k}} \right]$$
$$= \mathcal{Z}^{-1} \left[\frac{B(z)}{A(z)} \right] = \sum_{\ell=0}^{\infty} h[\ell] \delta[n - \ell]$$

where H(z) is the transfer function of the system. If the poles of H(z) are inside the unit circle, or $A(z) \neq 0$ for $|z| \geq 1$, the system is BIBO stable.

Interconnection of discrete-time systems

Negative feedback connection:

feed-forward path $Y(z) = H_1(z)E(z)$ error functionE(z) = X(z) - Y(z)feedback path $W(z) = \mathcal{Z}[w[n]] = H_2(z)Y(z)$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{H_1(z)}{1 + H_1(z)H_2(z)}$$

Initial and Final Value Properties

If X(z) is the Z-transform of a causal signal x[n] then

Initial value:
$$x[0] = \lim_{z \to \infty} X(z)$$

Final value: $\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1)X(z)$ (1)

Example Plant $G(z) = 1/(1 - 0.5z^{-1})$ connected with constant feedback gain \overline{K} . Reference signal x[n] = u[n], determine behavior of error signal e[n]. Effect of the feedback on an unstable plant $G(z) = 1/(1-z^{-1})$?

Error signal
$$E(z) = X(z) - W(z) = X(z) - KG(z)E(z)$$

$$X(z) = 1/(1-z^{-1}) \Rightarrow E(z) = \frac{X(z)}{1+KG(z)} = \frac{1}{(1-z^{-1})(1+KG(z))}$$
 initial value of the error $e[0] = \lim_{z \to \infty} E(z) = \frac{1}{1+K}$ since $G(\infty) = 1$

Steady-state or final error

$$\lim_{n\to\infty}e[n]=\lim_{z\to 1}\frac{(z-1)X(z)}{1+KG(z)}=\frac{1}{1+2K}\ \ \text{since}\ G(1)=2$$
 $K\ \text{large},\ e[0]=e[\infty]=0$

For unstable plant
$$G(z) = 1/(1-z^{-1})$$

 $e[0] = 1/(1+K)$, steady-state error $e[\infty] \to 0$ since $G(1) \to \infty$

One-sided Z-transform Inverse

Inspection

$$X(z) = 1 + 2z^{-10} + 3z^{-20}$$
 \Rightarrow inverse : $x[n] = \delta[n] + 2\delta[n - 10] + 3\delta[n - 20]$

Long-division

Rational function X(z) = B(z)/A(z), having as ROC the outside of a circle of radius R (i.e., x[n] is causal):

$$X(z) = x[0] + x[1]z^{-1} + x[2]z^{-2} + \cdots$$

then the inverse is the sequence $\{x[0], x[1], x[2], \dots\}$ or

$$x[n] = x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \cdots$$

Example Inverse Z-transform of

$$X(z) = \frac{1}{1 + 2z^{-2}} \qquad |z| > \sqrt{2}$$

Let
$$X(z) = x[0] + x[1]z^{-1} + x[2]z^{-2} + \cdots$$

 $1 = (1 + 2z^{-2})\underbrace{(x[0] + x[1]z^{-1} + x[2]z^{-2} + \cdots)}_{X(z)}$
 $1 = (x[0] + x[1]z^{-1} + x[2]z^{-2} + x[3]z^{-3} + \cdots) + (2x[0]z^{-2} + 2x[1]z^{-3} + \cdots)$
 $x[0] = 1; \quad x[1] = 0$
 $x[2] + 2x[0] = 0 \implies x[2] = -2; \quad x[3] + 2x[1] = 0 \implies x[3] = 0$
 $x[4] + 2x[2] = 0 \implies x[4] = (-2)^2$

÷

Partial Fraction Expansion

- PFE same as for Laplace
- Given X(z) = N(z)/D(z) must be proper rational (i.e., N(z) of lower order than D(z)), if not use long division

Example

$$X(z) = \frac{2 + z^{-2}}{1 + 2z^{-1} + z^{-2}}$$

Obtain an expansion of X(z) containing a proper rational term

Long division
$$X(z) = 1 + \underbrace{\frac{1 - 2z^{-1}}{1 + 2z^{-1} + z^{-2}}}_{\text{proper rational}}$$

Inverse Z-transform

$$x[n] = \delta[n] + \mathcal{Z}^{-1} \left[\frac{1 - 2z^{-1}}{1 + 2z^{-1} + z^{-2}} \right]$$

Example Find inverse Z-transform of

$$X(z) = \frac{1+z^{-1}}{(1+0.5z^{-1})(1-0.5z^{-1})} = \frac{z(z+1)}{(z+0.5)(z-0.5)} \qquad |z| > 0.5$$

using negative and positive powers of z expressions

Negative powers

$$X(z) = \frac{1+z^{-1}}{(1+0.5z^{-1})(1-0.5z^{-1})}$$

$$= \frac{A}{1+0.5z^{-1}} + \frac{B}{1-0.5z^{-1}}$$

$$A = X(z)(1+0.5z^{-1})|_{z^{-1}=-2} = -0.5$$

$$B = X(z)(1-0.5z^{-1})|_{z^{-1}=2} = 1.5$$

$$x[n] = [-0.5(-0.5)^n + 1.5(0.5)^n]u[n]$$

• Positive powers – X(z) not proper, let

$$\frac{X(z)}{z} = \frac{z+1}{(z+0.5)(z-0.5)}$$

$$= \frac{C}{z+0.5} + \frac{D}{z-0.5}$$

$$C = \frac{X(z)}{z}(z+0.5)|_{z=-0.5} = -0.5$$

$$D = \frac{X(z)}{z}(z-0.5)|_{z=0.5} = 1.5$$

$$X(z) = \frac{-0.5z}{z+0.5} + \frac{1.5z}{z-0.5}$$

$$x[n] = [-0.5(-0.5)^n + 1.5(0.5)^n]u[n]$$

Checks:

$$x[0] = 1 = \lim_{z \to \infty} X(z)$$
$$\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1)X(z) = 0$$

Partial Fraction Expansion with MATLAB

$$X(z) = \frac{z(z+1)}{(z-0.5)(z+0.5)} = \frac{(1+z^{-1})}{(1-0.5z^{-1})(1+0.5z^{-1})} \qquad |z| > 0.5$$
$$= \frac{1.5}{1-0.5z^{-1}} - \frac{0.5}{1+0.5z^{-1}}$$

```
\mbox{\%} Two methods for inverse Z-transform \mbox{\%}
```

p1=poly(0.5); p2=poly(-0.5); % generation of terms in denominator a=conv(p1,p2) % denominator coefficients

z1=poly(0); z2=poly(-1); % generation of terms in numerator b=conv(z1,z2) % numerator coefficients

z=roots(b) % zeros of X(z)

[r,p,k]=residuez(b,a) % partial fraction expansion, poles and gain zplane(b,a) % plot of poles and zeros

d=[1 zeros(1,99)]; % impulse delta[n]

x=filter(b,a,d); % x[n] computation from filter

n=0:99;

 $x1=r(1)*p(1).^n+r(2)*p(2).^n; % x[n] computation from residues$

Example

$$X(z) = \frac{az^{-1}}{(1 - az^{-1})^2}$$
 $|z| > a$
 $x[n] = na^n u[n]$

$$X(z) = \frac{r_1}{1 - az^{-1}} + \underbrace{\frac{r_2}{(1 - az^{-1})^2}}_{\text{not in table of Z-trans}}, \qquad r_1 = -1, r_2 = 1$$

Our method

$$X(z) = \frac{A}{1 - az^{-1}} + \frac{Bz^{-1}}{(1 - az^{-1})^2}$$

$$A = r_1 + r_2, \quad B - Aa = -r_1 a \text{ or } B = ar_2$$

$$x[n] = [(r_1 + r_2)a^n + nr_2 a^n]u[n] = na^n u[n]$$

$$X(z) = \frac{0.5z^{-1}}{1 - 0.5z^{-1} - 0.25z^{-2} + 0.125z^{-3}}$$

% Inverse Z-transform --- multiple poles
%
b=[0 0.5 0 0]; a=[1 -0.5 -0.25 0.125]

[r,p,k]=residuez(b,a) % partial fraction expansion, poles and gain zplane(b,a) % plot of poles and zeros

n=0:99; xx=p(1).^n; yy=xx.*n;

 $x1=(r(1)+r(2)).*xx+r(2).*yy+r(3)*p(3).^n; % inverse computation$

Solution of Difference Equations

If x[n] has a one-sided Z-transform X(z), then x[n-N] has the following one-sided Z-transform

$$\mathcal{Z}[x[n-N]] = z^{-N}X(z) + x[-1]z^{-N+1} + x[-2]z^{-N+2} + \dots + x[-N]$$

Example System represented by second-order difference equation with constant coefficients

$$y[n] - a_1y[n-1] - a_2y[n-2] = x[n] + b_1x[n-1] + b_2x[n-2]$$
 $n \ge 0$
input $x[n]$, output $y[n]$
initial conditions $y[-1]$, $y[-2]$

$$\mathcal{Z}(y[n] - a_1y[n-1] - a_2y[n-2]) = \mathcal{Z}(x[n] + b_1x[n-1] + b_2x[n-2])$$

$$Y(z) - a_1(z^{-1}Y(z) + y[-1]) - a_2(z^{-2}Y(z) + y[-1]z^{-1} + y[-2]) = X(z)(1 + b_1z^{-1} + b_2z^{-2})$$

$$Y(z)(1 - a_1z^{-1} - a_2z^{-2}) = (y[-1](a_1 + a_2z^{-1}) + a_2y[-2]) + X(z)(1 + b_1z^{-1} + b_2z^{-2})$$

solving for Y(z) we have

$$Y(z) = \underbrace{\frac{X(z)(1 + b_1 z^{-1} + b_2 z^{-2})}{1 - a_1 z^{-1} - a_2 z^{-2}}}_{\text{zero-state response}} + \underbrace{\frac{y[-1](a_1 + a_2 z^{-1}) + a_2 y[-2])}{1 - a_1 z^{-1} - a_2 z^{-2}}}_{\text{zero-input response}}$$

Example Complete response of

$$y[n] + y[n-1] - 4y[n-2] - 4y[n-3] = 3x[n]$$
 $n \ge 0$
 $y[-1] = 1$
 $y[-2] = y[-3] = 0$
 $x[n] = u[n]$

Is corresponding discrete-time system BIBO stable? steady state response?

$$Y(z)[1+z^{-1}-4z^{-2}-4z^{-3}] = 3X(z) + [-1+4z^{-1}+4z^{-2}]$$
Let $A(z) = 1+z^{-1}-4z^{-2}-4z^{-3} = (1+z^{-1})(1+2z^{-1})(1-2z^{-1})$

$$Y(z) = \underbrace{3\frac{X(z)}{A(z)}}_{\text{zero-state resp.}} + \underbrace{\frac{-1+4z^{-1}+4z^{-2}}{A(z)}}_{\text{zero-input resp.}} |z| > 2$$

Transfer funct.
$$H(z) = \frac{Y(z)}{X(z)} = \frac{3}{A(z)}$$

poles $z = -1$, $z = -2$, $z = 2 \implies h[n] = \mathbb{Z}^{-1}[H(z)]$ not absolutely summable

System is not BIBO stable

$$Y(z) = \frac{2 + 5z^{-1} - 4z^{-3}}{(1 - z^{-1})(1 + z^{-1})(1 + 2z^{-1})(1 - 2z^{-1})}$$

$$= \frac{-0.5}{1 - z^{-1}} + \frac{-1/6}{1 + z^{-1}} + \frac{0}{1 + 2z^{-1}} + \frac{8/3}{1 - 2z^{-1}}$$

$$y[n] = \left(-0.5 - \frac{1}{6}(-1)^n + \frac{8}{3}2^n\right)u[n]$$

there is no steady-state response.

Solution of Differential Equations

Example

RLC circuit:
$$\frac{d^2v_c(t)}{dt^2} + \frac{dv_c(t)}{dt} + v_c(t) = v_s(t)$$
$$v_c(t) \text{ output, } v_s(t) = u(t), \text{ input, ICs} = 0$$

$$V_c(s) = \frac{V_s(s)}{1+s+s^2} = \frac{1}{s(s^2+s+1)} = \frac{1}{s((s+0.5)^2+3/4)}$$
$$v_c(t) = [A + Be^{-0.5t}\cos(\sqrt{3}/2t + \theta)]u(t)$$

Let
$$\frac{dv_c(t)}{dt} \approx \frac{v_c(t) - v_c(t - T_s)}{T_s}$$

$$\frac{d^2v_c(t)}{dt^2} = \frac{d\frac{dv_c(t)}{dt}}{dt} \approx \frac{d(v_c(t) - v_c(t - T_s))/T_s)}{dt} \approx \frac{v_c(t) - 2v_c(t - T_s) + v_c(t - 2T_s)}{T_s^2}$$
difference equation
$$\left(\frac{1}{T^2} + \frac{1}{T_s} + 1\right)v_c(nT_s) - \left(\frac{2}{T^2} + \frac{1}{T_s}\right)v_c((n-1)T_s) + \left(\frac{1}{T^2}\right)v_c((n-2)T_s) = v_s(nT_s)$$

$$T_s = 1$$
, $3v_c[n] - 3v_c[n-1] + v_c[n-2] = v_s[n]$ $n \ge 0$, ICs: zero
$$[3 - 3z^{-1} + z^{-2}]V_c(z) = \frac{1}{1 - z^{-1}}$$
$$V_c(z) = \frac{z^3}{(z-1)(3z^2 - 3z + 1)}$$


```
% Solution of differential equation
syms s
vc=ilaplace(1/(s^3+s^2+s)); % exact solution
ezplot(vc,[0,10]);grid; hold on % plotting of exact solution
Ts=0.1; % sampling period
a1=1/Ts^2+1/Ts+1;a2=-2/Ts^2-1/Ts;a3=1/Ts^2; % coefficients
a=[1 a2/a1 a3/a1];b=1;
t=0:Ts:10; N=length(t);
vs=ones(1,N); % input
vca=filter(b,a,vs);vca=vca/vca(N); % solution
```

Inverse of Two-sided Z-transforms

- Relate poles to causal and anti-causal components
- The region of convergence plays a very important role in making this determination
- Inverse is found by looking for the causal and the anti-causal partial fraction expansion components in a Z-transform table

Example Inverse Z-transform of

$$X(z) = \frac{2z^{-1}}{(1-z^{-1})(1-2z^{-1})^2} \qquad 1 < |z| < 2$$

X(z) zeros $z_{1,2} = 0$, poles z = 1, z = 2 (double) associate with pole z = 1, $ROC_1 = \mathcal{R}_1 : |z| > 1$ (causal signal) associate with pole z = 2, $ROC_2 = \mathcal{R}_2 : |z| < 2$ (anti-causal signal)

$$X(z) = \underbrace{\frac{A}{1-z^{-1}}}_{\mathcal{R}_1:|z|>1} + \underbrace{\left[\frac{B}{1-2z^{-1}} + \frac{Cz^{-1}}{(1-2z^{-1})^2}\right]}_{\mathcal{R}_2:|z|<2}$$
$$1 < |z| < 2 = \mathcal{R}_1 \cap \mathcal{R}_2$$

$$A = X(z)(1 - z^{-1})|_{z^{-1}=1} = 2$$

$$C = X(z)\frac{(1 - 2z^{-1})^2}{z^{-1}}|_{z^{-1}=0.5} = 4$$
for $z^{-1} = 0, X(0) = A + B = 0 \implies B = -A = -2$

$$x[n] = \underbrace{2u[n]}_{\text{causal}} + \underbrace{\left[-2^{(n+1)}u[-n-1] + 2^{(n+2)}nu[-n-1]\right]}_{\text{anti-causal}}$$

What have we accomplished?

- Connection of Laplace and Z-transforms
 - Significance of poles and zeros in z-plane and poles for ROC
- . Solution of difference and differential equations with initial conditions
- Transfer function of recursive and non-recursive filters

Where do we go from here?

- Fourier analysis of discrete-time systems
 - Frequency representation of discrete-time systems
- Application of Z-transform to control