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What is in this chapter?

. .&.Discrete-time signals

..&.Periodicity, symmetry, energy and power

.‘&. Basic discrete-time signals

..&. Discrete-time LTI systems
..&. Recursive and non-recursive systems

..&. Difference representation of systems

..&. Convolution sum

..&.Causality and stability



Discrete-time Signals

A discrete-time signal z[n| can be thought of as a real- or complezx-valued function
of the integer sample index n.:

z[]: TR (C)

o x(nTy) depends on n once T is known and is only defined at nT

e Most discrete-time signals are obtained by sampling continuous-time sig-
nals, but there are inherently discrete signals

Examples
(a) Sampling z(t) = 3cos(2nt + 7/4) — 00 < t < oo using T satisfying
Nyquist sampling rate condition

m m™

T. < — — = (.5
S ana:r 271- 7
for largest allowed sampling period T, = 0.5
z[n] = 3cos(2nt + 7 /4)|t=0.5n = 3cos(mn + w/4) —00<n <o




(b) Fibonacci sequence {x(n]}

xzn] = zn-1]+zn-2] n>2
z[0] = 0
z[l]] = 1

it has been used to model different biological systems

z2]=140=1
23] =1+1=2
z[d]=2+4+1=3
z[5] =3+2=5

z[n] = z[n — 1] + z[n — 2

Sequence is purely discrete as it is not related to a continuous-time signal

Periodic and Aperiodic Signals

z[n] is periodic if
e it is defined for all possible values of n, —oc < n < oo, and
e there is a positive integer N, the period of x[n], such that
z[n + kN] = z[n]
for any integer k.

Aperiodic signals are non-periodic




Sum z[n| = z[n] + y[n] of periodic signals x[n] of period Ny, and y[n] of period N
is periodic if
N p . :
— = = s rational
N ¢
i.e., p and q are integers, and not divisible by each other
The period of z[n] is gN2 = pN,

Example z[n] = v[n]+w[n]+y[n], v[n], w[n] and y[n] periodic of periods N} = 2,
Ny = 3 and N3 = 4, respectively. Determine if z[n| is periodic, and if so its
period

x[n] = v[n] + w(n], so that z[n] = z[n] + y[n]

x[n] is periodic since Ny/N; = 3/2 is a rational number, and its period is
A‘Z; - 3N1 — 2]\}'2 =0

z[n] is also periodic since

Na _6_3
Ny, 4 2

is rational. Its period is N = 2Ny = 3N3 = 12, i.e.,

z[n+12] = v[n+6N1|+w[n+4Nz|+y[n+3N3] = v[n]+wn]+y[n] = zn] O




Discrete-time Periodic Sinusoids

Periodic discrete-time sinusoids, of period N, are of the form

2
m[n]zAcos( ;nn+9) —00 <N <0

where the discrete frequency is wyg = 2am/N (rad), for positive integers m and N
which are not divisible by each other, and 0 is the phase angle.

2mm 2Tm
z[n + kN] = Acos ( j::n (n+ kN) + 9) = Acos ( 1:” n + 2rmk + 6) = x[n]
When sampling
z(t) = Acos(Qpt + 0) —oo<t<oo of period Ty =2r/Q, Q>0

we obtain a periodic discrete sinusoid

z[n] = Acos(QTsn + 0) = Acos (27,}% n+ 9)

0

provided that

T = E, N.,m >0 and not divisible by each other
o, N
To avoid frequency aliasing also
m Ty
T £ — = —
"= Qo 2
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Example Is z[n] = cos(n + 7 /4) obtained by sampling () = cos(t + 7/4) with
Ts = 1 periodic?

if so, indicate its period. Otherwise, find sampling period satisfying Nyquist
and when used in sampling () results in periodic signal

z[n] = x(t)|t=nr., = cos(n + w/4), is not periodic, w = 1 (rad) cannot be ex-
pressed as 2wm/N for integers m and N (7 is irrational)

x(t) has frequency € = 1 then Nyquist requires T < g=m
for z(t)|i=n1, = cos(nTs + 7/4) periodic of period N then

cos((n+N)Ts+7w/4) = cos(nTs+m/4) is necessary that NT = 2kw, k integer

T, = 2kn /N < 7 satisfies Nyquist sampling condition and insures the periodic-
ity of x[nTY)

If period N = 10, then 7Ty = 0.2k, for k chosen so Nyquist condition is satisfied,
i.e.,
0<Ty=knr/5<m sothat 0<k<5

Choose k = 1 and 3 so that N and £k are not divisible by each other
If £ = 2, and 4 would give 5 as the period, and k = 5 would give a period of 2
instead of 10

If £ =1 then T = 0.27 satisfies Nyquist sampling rate condition, and

2m s
z[n] = cos(0.2n7 + m/4) = cos (mn + Z)

is periodic of period 10. The same for k£ = 3
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Finite Energy and Finite Power Discrete-time Signals

For discrete-time signal x[n]:

oo
Energy: Ex = Z |z[n]|?
n=—oo
1 N
: — 1} 2
Power: P, = 1\}1110 5N +1 _Z—:N |z[n]|

e z[n| is finite energy or square summable if ¢, < oc.

e 1z[n] is absolutely summable if

oo

Z |z[n]| < oo

n=-—oo

e 1z[n] is finite power if P, < oc.

Example “Causal” sinusoid,

2c08(0.1Qmn —w/4) n>0
z[n| = 2cos(Qot — 7/4)u(t)|i=0.1n = { 0 ( 0 /4) ot herwise

Does z[n] have finite energy, finite-power as compared with z(¢) when Qy = =
and when € = 3.2 rad/sec (an upper approximation of 7)?

z(t) has infinite energy, and so does z[n], for all Q

o0

o0
r = Z ;1:[71]2 = Z 4(:052(().19011 —w/4) = o0

n=-—oo n=»(0

9
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z(t) and z[n| have finite power

(i) Qo = 7, z[n] = 2cos(wn/10 — 7 /4) = 2 cos(27mn /20 — 7 /4) for n > 0 and zero
otherwise

z[n] repeats every Ny = 20 samples for n > 0,s0

N

_ 2 : 2
B = A}l_l}réo 5 N Z |z[n]|* = lgn Zﬂ|a,[n]|
1 Np—1 Np—1
— 2| _ 2
= ;\!l—lgo T |: nz;) |z[n]| ] N ,12, |z[n]|* < oo

power of perlod n>0

= [21+Zcos 021rn—7r/2)] 0[2()+()]=1

n=0 n=I0

(ii) Q¢ = 3.2, z[n] = 2co0s(3.2n/10 — 7 /4) for n > 0 and zero otherwise; it does
not repeat periodically for n > 0
3.2/10 cannot be expressed as 2wm /N, no close form for the power

— 2
P = Jm e Z_le["“

and conjecture that because z(t) has finite power, so would z[n]
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Even and Odd Discrete-time Signals

A discrete-time signal x[n] is said to be
e delayed by N (an integer) samples if x[n — N| is xz[n] shifted to the right N
samples,

e advanced by M (an integer) samples if x[n + M| is x[n] shifted to the left M
samples,

e reflected if the variable n in x[n] is negated, i.c., x[—n].

11




x[n]

y[n]=x[n+3]+x[n-3]

FEven and odd discrete-time signals are defined as

z[n] iseven: <&  z[n] = z[-n]

-y
(4))

—
(=]

z[n] isodd: <  z[n| = —z[-n]
Any discrete-time signal x[n] can be represented as the sum of an even and an odd
components
1 1
o] = 5 (eln] +al-n)) + 5 (aln] — 2l-n])
ze(n] To(n)
= z[n] + z,[n]
12 12 12 12
10 9 10 ® 10 & 10 ®
8 — 8 _ 8 8
6 z 6 T e s
4 * 4 N 4
2 2 2 2
===l “SEEEEEED) P ) 5000
50 51015 50 510 15 2702 "% -10 0 10
n n n n
= 12
1~] 10 Q o)
T 8
£ o
c
5 L] £4 [y, o]
L)
QTTT ©—0 % -0-6-© TT?C?TT 6669
-5 0 5 10 15 -15 -10 -5 0p 5 10 15
n
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Example Find even and odd components of

(n] = 4-n 0<n<4
=9 0 otherwise

ze[n] = 0.5(z[n] + xz[-n])
2405n —-4<n<-1
B 4 n=>~_»
N 2-05n 1<n<4
0 otherwise

0.5(xz[n] — z[—n])
-2—-05n —-4<n<-1
0 n=>~10
2—0.5n 1<n<4
0 otherwise

Zo[n]
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Basic Discrete-time Signals

Discrete-time Complex Exponential

Given complex numbers A = |Ale’? and o = |a|e’*?, a discrete-time complex
exponential is a signal of the form

zln] = Aad"

IA“alnej(wnn+9)

|Al|c|™ [cos(won + 0) + j sin(won + 0)]

where wy is a discrete frequency in radians.

1. Discrete-time vs continuous-time complex exponentials (for simplicity we
let A be real) using as sampling period 7T’

Sampling z(t) = Ae~*H7%0) = A yeal
JJ[R] — IL‘(TIT.;) - Ae(—auT,‘+jQunT‘) _ A(C_GT‘”)"Cj(Q"T")n _ A(l"ncjw"n

—aT,
a=e 7 wy = QT

2. For a > 0 the real exponential

z[n] = (—a)" = (-1)"a™ = a" cos(mn)

14




% t ®
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Real exponential x,[n] = 0.8", xz3[n] = 1.25" (top) and modulated y,[n] =
xq[n] cos(mn) and y,[n] = z4[n]cos(mn)

Example Determine a > 0, £y and T for
x(t) = e cos(Qyt)u(t)
that permit us to obtain a discrete-time signal
y[n] = a" cos(wyn) n=>0
and zero otherwise by sampling it. If o = 0.9 and wo = 7/2, find a, Qy and T

that will permit us to obtain y[n] from z(t) by sampling

15



Comparing z(nT) with y[n]

o = e—aT‘:‘

wo = Q0T

No unique solution. According to Nyquist condition

™
T, <

maxr

If Q0. = NQp for N > 2 (signal is not band-limited so maximum frequency is

not known, we are assuming it is a multiple of £2)

I T,= ’R’/NQ()

a = e—a:r/NQ(.

Wo = Q()?T/NQ() = TT/N

For a = 0.9, wp = 7 /2, we have

N=2

= — log 0.9

IfQy=2r = a=-4log0.9, T;=0.25

16
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Discrete-time Sinuoids

z[n] = Acos(won + 0) = Asin(won + 0 + 7/2) —00 < n <o

If discrete frequency wy = 2mm /N (rad), for integers m and N > 0 which are
not divisible z[n] is periodic, oherwise not

Discrete frequency w=m/257/2,97/2---=7/2
w=7m3n,0"---=T"=-—7 C\ w=0,2m4n,--- =0
w=3r/2,Tn/2,117[2, - - = —7[2

xq[n] = sin(0.17n) = sin 2—011) O.Simm jﬁﬂﬁk 1 osﬁlﬁﬁ {h ﬁ}

%[n]
g
x,[n]
LB
=
LI
B_Q‘_:‘g
O—q

xo[n] = sin(0.27n) = sin

(
&

x3[n| = sin(0.67n) = sin (2“311) ‘T
(

) ol ]
x4(n] = sin(0.77n) = sin 21711) _O_TLLﬂ»', il ﬂu "O_TM l{°igliégo




Discrete-time Unit-step and Unit—sample Signals

The unit-step u[n| and the unit-sample d[n] discrete-time signals are defined as

1 n=0
-u.[n] - 0 n<0

. 1 n=0
6ln] = { 0 otherwise

These two signals are related as follows

dn] = u[fl] —u[n —1]
uln] = Z dn— k] = Z d[m]
k=0 m=-—00

Generic representation of discrete-time signals

Any discrete-time signal x[n| is represented using unit-sample signals as

o <)

x[n] = Z z(k]d[n — k]

k=—00

18




Example A train of triangular, discrete-time pulses t[n] of period N = 11 has
a period

n 0<n<5H
Tlnj=¢ —n+10 6<n<10
0 otherwise

Find then an expression for its finite difference d[n| = t[n| — t[n — 1]

tn) =---+7n+ 11+ 7[n] +7[n-11] +--- = z T[n — 11K]
k=—-oc
The finite difference d[n| is then
dn] = tn]—tn-1]
= ) (r[n—11k] = 7[n — 1 — 11k])
k=—o00

The signal d[n] is also periodic of the same period N = 11 as t[n]. If we let

1 0<n<)h
slnj=7n|—7n-1=¢ -1 6<n<10
0 otherwise

then

o0

d(n] = Z s[n — 11k]

k=—o00

19
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Example Express as function of n the sampled signal

yln] = 3r(t +3) — 6r(t + 1) + 3r(t) — 3u(t — 3)|;=0.15n

Use MATLAB to find and plot its even and odd components

(0

3r(t+3)=3t+9

t < —3
3<t<—1

y(t) =9 3t+9—-6r(t+1)=-3t+3 —-1<t<0
-3t +3+3r(t) =3 0<t<3
| 3-3=0 t>3
(0 n < -21
0.45n+9 -20<n< -6
yn]=¢ —045n+3 -T<n<0
3 1<n<19
| 0 n > 20
7
6.
@
5 Q
Q
4 oy
3t (e e e e o)
2»
| :
£
meeaeeeaeaaaee?T "
T 20 o 0 10 20 30
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Discrete-time Systems

Dynamic system
y[n| = S{z[n]} z[n] input, y[n] output

that is

e Linearity

e Time-invariance

e Stability

e Causality
A discrete-time system S is said to be

e Linear: if for inputs x[n| and v[n|, and constants a and b, it satisfies the
following

— Scaling : S{az[n]} = aS{z[n]}
— Additivity: S{z[n| + v[n]} = S{z[n|} + S{v[n]}
or equivalently if superposition applies, i.e.,
S{azln] + boln]} = aS{aln]} + bS{oln]}
e Time-invariant: if for an input x[n| with a corresponding output y[n| =

S{z([n]}, the output corresponding to a delayed or advanced version of x(n],
z[n £ M|, 1s yln £ M| = S{z[n + M|}, for an integer M.

21




Example A Square-root Computation System
Difference equation, with some initial condition y[0], can be used to find the
square root of a:

(8%

n>10
yln — 1]

yln] = 0.5 |yn—1]+
Find recursively solution of this difference equation for a = 4 and 2. Is system
linear?

Difference equation is first-order, non-linear

Recursive solutlon

y[1] =05 J[O] + =5 [0]
y[2] =05 y[]-] + -5 9[1]_
y[3] =05 9[2] + 51 [2]

If y[0] =1, and o« =4 (i.e., we wish to find the square root of 4),
y[0] =1
4
M”=&5P+I]=Z5

4
Aﬂ_05Po+2, = 2.05

converging to 2. Whenn — oc then y[n] = yln—1] =Y,soY =0.5Y +0.5(4/Y)
orY = \/Z =2

22



o l——e—

|
- p—=a—0
e

4 (o -] 4
© ————— © ———

g
_\square.docl or6 I I
6

0 1 2 3 4 5

Non-linear system: square root of 2 (top), square root of 4 compared with twice
the square root of 2, (bottom) sum of previous responses with response when
computing square root of 2 + 4. Middle figure shows scaling does not hold and
the bottom figure that additivity does not hold, either. System is non-linear.
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Recursive and Non-recursive Discrete-time Systems

Depending on the relation between the input x(n| and the output y[n| two types of discrete-
time systems of interest are:

¢ Recursive system

N-1 M-1
y[n] = — Z ary(n — k| + Z bmz[n —m)| n>0
k=1 m=0

initial conditions y|—k], k=1,--- N —1
This system is also called infinite impulse response (IIR).

e Non-recursive system
M-1

y[n] = z bmzn —m)|

m=0

This system is also called finite impulse response (FIR).

Example Moving-average Discrete Filter
Show that the third-order moving-average FIR filter (also called a smoother )

1
y[n] = i(.L[n] +z[n — 1] + z[n — 2|) with input z[n] and output y[n] is LTI

Linearity — Let input be ax[n] + bxs[n], and {y;[n], i = 1,2} are the corre-
sponding outputs to {z;[n|, i = 1,2}, then

1
g[(aarl[n] + bza[n)) + (azx1[n — 1) + bxa[n — 1]) + (ax1[n — 2] + bxa[n — 2])] = ayi[n] + by2(n]
thus linear.

Time invariance — If input is z1[n] = z[n — N| the corresponding output to it
is

I

%(1‘1[11] +z1fn—1]+ z1[n — 2)) %(.L[R —N]+z[n—N-1]+zn—-N-2|)

t

= y[n— N]

i.e., the system is time-invariant.
24




Recursive systems are represented by difference equation

N-1 M-1
y[n] = — Z aryln — k| + Z bx[n —m], n>0, ICsy|l-k], k=1,---,N—1
k=1 m=1

Difference equation characterizes dynamics of discrete systems

Difference equation could be approximation of differential equation repre-
senting continuous-time system

Complete response

yln] = y.in] + y.5[n), y.i[n] zero-input response, y.[n| zero-state response

= ye[n] + yss[n), ye[n] transient response, yss[n| steady-state response

Convolution Sum

Let h|n] be the impulse response of an LTI discrete-time system, or the output of the
system corresponding to an impulse 8[n| as input, and initial conditions (if needed)
equal to zero.

Using the generic representation of the input x[n| of the LTI system

o0
z[n] = Z z(k]d[n — k]
k=—o00
the output of the system is given by either of the following two forms of the convo-
lution sum:

yln] = i z[k]h[n — k]
= —Z_: z[n — m]h[m)

25




Remarks

e The output of an FIR systems is the convolution sum of the input and the
impulse response of the system

N-1
y[n] = Z brx[n — kl
k=0
N-1
impulse response h(n| = Z bid[n — k| = bydn] + bydn — 1)+ --- + by_18[n — (N —1)]
k=0
N-1
hin] =bp, n=0,---,N—-1 = yln|= Z h(k|z[n — k]
k=0

e Convolution sum as an operator is linear and commutative

[hxz][n] = Z z[klh[n — k] = Z x(n — k|h[k]
k k
= [z *h][n]

e Just as with analog systems, when conecting two LTI discrete-time systems
(with impulse responses hj[n] and hy[n]) in series or in parallel, their
respective impulse responses are given by [hy * hy|([n] and hy[n] + ha[n)

26



Example Moving-averaging filter

1
vin] = L(aln] + zfn - 1) + aln — 2)
input z[n|, output y[n]
Find the impulse response h{n| of this filter. Then for

1. z[n] = u(n], find y[n] using the input-output relation and the convolution
sum.

2. z[n] = Acos(2an/N)u[n], determine the values of A, and N, so that the
steady state response of the filter is zero

(1) z[n] = d[n], y[n] = hln], no initial conditions are needed
1, . . .
hin] = g(d[n] +d[n—1]+48n—2])

The convolution sum coincides with the input/output equation. This holds for
any FIR filter.

vinl = 0, n<0

0] = 3 (l0] +2{-1] +2[-2)) = 32[0

W1 = 5 Gl + (0] + 2l-1)) = 5 (2l0] +2[1)

vi2) = 3 (al2) + (1) +2l0]) = 5(al0] + 2[1] + o[2))

If z[n] = u[n] then we have that y[0] = 1/3, y[1] = 2/3 and y[n| =1 for n > 2.
(2) For n > 2, y[n| is the average of the present and past two values of the
input. If 2[n] = Acos(2rn/N), if we let N = 3, and A be any real value the
input repeats every 3 samples and the local average of 3 of its values is zero,
giving y[n| =0 for n > 2

27
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Example. Autoregressive system
yn] =05yn—1+2zn] n=0

Find the impulse response h[n] of the system and then compute the response of
the system to z(n| = u[n| — u/n — 3] using the convolution sum. Verify results

with MATLAB.

a=[1 -0.5);b=1; J coefficients of the difference equation
d=[1 zeros(1,99)]; ' approximate delta function
h=filter(b,a,d); % impulse response

x=[ones(1,3) zeros(1,10)]; 7% input

y=filter(b,a,x); 7 output from filter function
yl=conv(h,x); yl=y1(1:length(y)) ’ output from conv

28
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Linear and Non-linear Filtering
Linear filtering
yln] = z[n|+nn|, where z[n| desired signal and 7[n| noise
M-1
1 .
zln] = — Z y[n — k| averaging filter 1
M
k=0 = 05
N oo
E
> 05
-1 'y ' n e 'l o e i}
0 20 40 60 80 100 120 140 160 180
Averaging filtering with filters of order M = 3 (top figure), and of order M = 15 :
result (bottom figure) used to get rid of Gaussian noise added to a sinusoid
z[n] = cos(mn/16). Solid line corresponds to the noisy signal, while the dashed E
line is for the filtered signal. The filtered signal is very much like the noisy signal N
(see top figure) when M = 3 is the order of the filter, while the filtered signal -
looks like the sinusoid, but shifted, when M = 15.
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y,[n]

z,[n]
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Non-linear 5" -order median filtering (bottom left) versus linear 15" -order av-
erager (bottom right) corresponding to the noisy signal (dashed line) and clean

signal (solid line) on top. Clean signal (solid line) is superposed on de-noised
signal (dashed line) in the bottom figures.

Causality of Discrete-time Systems

e Real-time processing requires causality

e If data is stored no causality is needed

A discrete-time system S is causal if:

o whenever the input z[n| = 0, and there are no initial conditions, the output is
yln] =0,

o the output y[n| does not depend on future inputs.
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o An LTI discrete-time system is causal if the impulse response of the system is such that
hin] =0 n <0

e A signal z[n| is said to be causal if
zln]=0 n<0

e For a causal LTI discrete-time system with a causal input x(n] its output y[n] is given by

n

y[n| = Z z(klh[n — k| n>0

k=0

where the lower limit of the sum depends on the input causality, x[k] = 0 for k < 0, and the
upper limit on the causality of the system, hin — k| =0 forn—k <0 ork>n .

BIBO Stability of LTI Discrete-time Systems

LTI system represented by convolution sum

oo

Z z(n — k|h[k]

k=—onc

< > lazln—KJ[hk]| <M Y |h[k]| < ML < oc

k=—o00 k=—oc

ly[n]| <

An LTI discrete-time system is said to be BIBO stable if its impulse response h{n)
is absolutely summable

> " |h[k]| < oo

k
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Example Deconvolution: assume the input z[n| and the output y[n] of a
causal LTI system are given, find equations to compute recursively the impulse
response h(n| of the system. Consider finding the impulse response h[n| of a
causal LTI system with input z[n] = u[n| and output y[n] = §[n]. Use the
MATLAB deconv to find h[n].

System is causal and LTI

y[n] = Z hln — m|z[m] = h[n]z[0] + Z h{n — m|z[m]

n

hln] = ﬁ y[n] — Z hln — m]z[m)|

o] = (0
hl1) = ﬁ (y[1) — h[0Jz[1)

(2] = 7 (v(2) = h(OJa[2) ~ k{1Ja{1)

When y[n| = §[n| and z[n| = u[n]

h[0] = ﬁy[O] ~1

1) = S5 011) = k) =0~ 1 = 1

h[2] = ﬁ (y(2] = h{0]2[2] — h1]e[1]) = 0—1+1=0

h[3) = ﬁ (y13] — h{0)2[3] — h[1)[2) — h2Jz[3)) =0 —1+1-0=0

and in general hn| = d[n| — d[n — 1.
When using deconv make sure that the length of y[n] is always larger than that
of z[n]
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% Deconvolution

clear all

x=ones(1,100);

y=[1 zeros(1,100)]; % (a) correct h

% y=[1 zeros(1,99)]; % (b) incorrect h
[h,r]=deconv(y,x)

Remarks

1. Non-recursive or FIR systems are BIBO stable, as their impulse responses
are of finite length and absolutely summable.

2. For a recursive or IIR system represented by a difference equation, to
established stability we need to find the system impulse response h[n| and
determine whether it is absolutely summable or not.

3. A much simpler way to test the stability of an IIR system will be based
on the location of the poles of the Z-transform of h[n|, as we will see in
the next chapter.

Example Consider an autoregressive system
y[n] = 0.5y[n — 1] + z[n]

Determine if the system is BIBO stable.
The impulse response of the system is hln] = 0.5"u[n|, checking the BIBO
stability condition

o0

- 1
Z |h[n]| = ZO.S" =T 05 " 2

n=-—oc n=0

thus the system is BIBO stable.
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What have we accomplished?

..&.Obtained similar theory for discrete- and continuous-time signals and systems with distinct differences

..&.Sampling period determines radian frequency of discrete signals

..&. Discrete frequency is finite but circular

.%. Discrete sinusoids not necessarily periodic

Where do we go from here?

. & .Z-transform analysis

..&. Z-transform relation to Laplace transform

..&. Discrete-time Fourier transform and relation with Z-transform
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