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Chapter 8 - Sampling Theory



What is in this chapter?

. .&.Uniform sampling

..é.Band—limited signals and Nyquist condition

..&. Signal reconstruction

..&. Practical aspects of sampling



Uniform Sampling

If X(2) = Fla(t)] then

Xs(Q)

" Ideal Impulse Sampling
Sampling xz(t) at uniform times {nTs} gives a sampled signal

zs(t) =Y a(nTy)d(t — nTy)

or a sequence of samples {x(nTy)}
Sampling is equivalent to modulating the sampling signal

or,(t) =Y _d(t —nTy)

}-[-'L's(t)]
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periodic of period Ty (the sampling period) with x(t).




Band-limited signal
x(t) is band-limited if it has low-pass spectrum of finite support, i.e.,

X(Q) =0 |Q| > Qmax
Qe maximum frequency in x(t)
Nyquist sampling rate

Choose €2 so that the spectrum of the sampled signal consists of shifted non-
overlapping versions of (1/7's)X(€2) or Qg > 29,4,
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(a) Spectrum of band-limited signal, (b) spectrum of sampled signal when sat-
isfying the Nyquist sampling rate, (c) spectrum of sampled signal with aliasing
(superposition of spectra, shoun in dashed lines, gives a constant shown by con-

tinuous line). 5



Example Is 2(t) = 2 cos(2nt + 7/4), —o0 < t < o bandlimited? For T, = 0.4,
0.5 and 1 sec/sample is Nyquist sampling rate satisfied?

x(t) only has frequency 2w, so it is bandlimited with €2,,,,, = 27 (rad/sec)
For any T, sampled signal:
o0

z4(t) = Z z(nTs)o(t — nTy) T, sec/sample

n=—oc

x(nTs) = x(t)|i=nT,
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o T, = 0.4 sec/sample, sampling frequency (rad/sec) Qg = 27 /T, = 57 >
200 = 4w, Nyquist sampling rate condition satisfied, 3 samples per
period (no loss of information — no aliasing)

o T, = 0.5 sec/sample, sampling frequency (rad/sec) Qg = 27 /T, = 47 =
20,4z, barely satisfying the Nyquist sampling rate, 2 samples per period

o T, = 1 sec/sample, sampling frequency (rad/sec) Qg = 27/Ts = 27 <
2€,nax, Nyquist sampling rate condition is not satisfied (loss of information
— aliasing)

Example Is z,(t) = u(t + 0.5) — u(t — 0.5) band-limited? If not, determine an
approximate maximum frequency

zy(t) = u(t + 0.5) — u(t — 0.5) can be sampled with Ty << 1, e.g., Ty, = 0.01
sec/sample giving

discrete-time signal z:(n7%) =1, 0 < nT, =0.0ln <1 or 0<n <100
But, x,(%) is not band-limited

ej().SQ _ e—j().:’nQ sin(0.50
X1(2) = 0 = (5 55 ) has no maximum frequency

Parseval’s energy relation

E,, =1 the area under z7(t)
find €,; such that QQEI, in [—Qy, Q)

Qg
0.99 = _/ lsm(O 59)] 40
Qs 0.502

Using MATLAB Qs = 207 so Ts < w/Qar = 0.05 sec/sample
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Reconstruction of Original Signal

( The Nyquist-Shannon Sampling Theorem b

If a low-pass continuous-time signal xz(t) is band-limited (i.e., it has a spec-

trum X () such that X(Q2) = 0 for | > Qnaz, where Qpq. is the mazimum
frequency in x(t)) we then have:

o (t) is wuniquely determined by its samples z(nTs) = x(t)|t=n1., N =
0,+1,+£2,---, provided that the sampling frequency Qg (rad/sec) is such that

£, =220 - Nyquist sampling rate condition
or equivalently if the sampling rate f, (samples/sec) or the sampling period T
(sec/sample) are given by
]' Qma:c

= — >
2 T, - =

o When the Nyquist sampling rate condition is satisfied, the original signal x(t)
can be reconstructed by passing the sampled signal x(t) through an ideal low-pass
filter with the following frequency response:

=Q, Q
H(Q) = I, =5+<{1<33
0 elsewhere

The reconstructed signal is given by the following sinc interpolation from the

samples

N ‘ sin(w(t — nTy)/Ts)
z(t) = Zl(nTs) m(t —nT) /T,

n




Antialiasing filtering

X(Q) X.(9)

e Anti-aliasing filtering: If signal is not band-limited, pass it through an
ideal low-pass filter to get band-limited output (max frequency = cutoff
frequency of filter)

e Ouput of anti-alising filter is smoothed version of the original signal —
high frequencies of the signal have been removed

e In applications, cut-off frequency of the antialiasing filter set according to
prior knowledge, e.g.,

— sampling speech: frequency band [100, 5000] Hz provides understand-
able speech in phone conversations = cut-off frequency 5KHz, f, =
10,000 samples/sec

— sampling music: frequency band [0, 22,000] Hz provides music with
good fidelity = cut-off 22KHz, f, = 44,000 samples/sec
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Signal Reconstruction

[f z(t) band-limited, X () with maximum frequency Q... if Qg > 2Q,,42,
X(€2) is superposition of shifted versions of the spectrum X (£2), multiplied by
1/T, with no overlaps = z(t) can be recovered from z(t) by low-pass filtering

T, —Q4/2 <0 <y/2

0 elsewhere

Ideal low-pass analog filter H;,(2) = {

X(Q2) —Q,/2<Q<Q,/2 where Q,/2 = Q 0z
0 elsewhere

Filter output X,.(2) = {

coincides with X (€2) so z(t) is recovered

X(Q)
A
1
>
XS(Q)QHNII Id l LPF Q
TS‘ / ea
-
Q.2 3 5 0
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Hy,(s) ideal LPF

Q./2 .
hip(t) = QT_S/ eI %4 = Bin (k) Te)
T J_Q./2 nt/Ts

reconstructed signal
= sin(w(t — nTy)/T)

z,(t) = [zs * hyp)(t) = / 2y(T)hp(t — 7)dr = ) (nT)) 7(t — nTy)/T,

— 00 n

z,(t) an interpolation in terms of time-shifted sinc signals with amplitudes the
samples {z(nT})}

Example Sample following sinusoids 7T’y = 27 /€

x1(t) = cos(Qot) —o0 <t <0

xa(t) = cos((Qo + Q)t) —o0 <t < oo
x1(nTy) = cos(QonTy) -0 <n<oo
xo(nTy) = cos((Qy + Qe )nT) —o0<n<ox

but since QT = 27 the sinusoid z9(n7y) can be written

zo(nTy) = cos((Ts + 2m)n) = cos(QTyn) = x1(nTy)
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x1(t) = cos(t) x2(t) = cos((7+ 1)t)

X,(0%,0),x,(nT)

. e =T> 20 =2
X1(9) X1(92) 0
171 i 8 -6 1 5 8 L
X2(92) X24(€2)
¢ S N |
S s 8 -6 1% 6 8 S“

Qs=7>2(9()+ﬂs)=2*8=16
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Sampling Simulation with MATLAB

Problems

e Representation of analog signals: use two sampling rates: one under study,
fs, one to simulate the analog signal, fe;m >> f

e Computation of the analog Fourier transform of z(¢): approximate it with
fast Fourier transform (FFT) multiplied by the sampling period

Sampling a sinusoid z(t) = cos(27 fot), fo = 1,000, using simulation sampling
frequency fqinm = 20,000 samples/sec

No aliasing sampling — sample z(¢) with f, = 6,000 > 2f, = 2,000, | X ()|
corresponds to z(t), while |Y(€2)| is first period of the spectrum of the sampled
signal (spectrum of the sampled signal is periodic of period € = 27 f)
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IX(2)l x(t),y(t)

IY(Q)

Sampling with aliasing — sample z(¢) with f, = 800 < 2f, = 2,000, | X ()|
same as before, |Y(€2)| which is a period of the spectrum of the sampled signal
y(t) displays a frequency of 200 Hz

——— Sampled signal
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Practical Aspects of Sampling

e Analog to digital and digital to analog conversions are done by A/D and
D/A converters

e Difference with ideal versions

— pulses rather than impulses

— quantization and coding

Sample and Hold

x(t) (1) ys(t)
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_ 1 sin(AQ/2) _on/a
Y,(Q) = X, (QH(Q) = A ZL: X (9 - kQy) —az
spectrum of ideally weight due to
sampled signal zero-order hold system

Quantization and Coding

e Quantizer: amplitude discretization of the the sampled signal z4(t)

e Coder: distinct binary code for each level of quantizer

z(nTy)
01
A = [res—
—2A -A 00 |
z(nTy)

11 A 2A

-A
10

_— - —2A
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Consider
17(71Ts) = E(t)|t=nTs

Input z(nTs), output z(nTy)
4-level quantizer: kA < xz(nTy) < (k+1)A =  z(nTy) =kA k= -2,

Quantization
—2A < z(nTy) < —A = z(nTy) = —2A
~A < z(nTy) <0 = z(nTy) = —A
0<z(nTy) <A = z(nTy) =
A < z(nTy) < 2A = z(nTy) = A
Coding
z(nTy) = —2A = 10
z(nTs) = A = 11
z(nTy) = 0A = 00
z(nTy) = A = 01

Quantization error &(nTy) = z(nTy) — &(nT)
z(nTy) < z(nTy) < (nTy) + A subtracting #(nTs) = 0<e(nTy)

To decrease £(nTy) reduce quantization step A or increase number of bits
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What have we accomplished?

..&.How to convert an analog signal into discrete-time and digital signai

..&.Frequency characteristics and sampling

..&. Reconstruction of analog signals from sampled signals

..&. Zero-order hold sampling and quantization

Where do we go from here?

..&.Theory of discrete-time signals and systems

..&. Z-transform and connection with Laplace

..&. Discrete-time Fourier analysis

..&. Application to control and communications
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