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Chapter 6, 7 - Application to

Control and Communications



What is in this chapter?

..&.Cascade, parallel and feedback connections of LTI systems

..&.Application of Laplace transform to classical control

..&.Application of Fourier transform to communications

..&. Introduction to analog filter design



Application to Control, Communications and Filter Design

e Classical control: change the dynamics of a given system to be able to
achieve a desired response by frequency domain methods
— feedback connection
— controller
— plant (e.g. motor, chemical plant or an automobile)

— Laplace analysis, transfer function, stability, transient analysis
e Communications: transmit a message over a channel to a receiver

— transmitter

— channel (e.g.,airwaves, telephone line)

— receiver

— Fourier analysis, steady state, modulation, filtering, bandwidth, spec-

trum

e Filter design: obtain a LTI system that satisfies frequency response
specifications to get rid of undesirable signal component(s)
— Filtering specifications
— Design and implementation
— Fourier and Laplace analyses, circuit implementation, stability, causal-
ity



Cascade

H(s) = Hy(s)H2(s).

two systems are isolated

Parallel

H(S) = H1 (S) + HQ(S)

System connections and block diagrams

X (s) Y(s)
—»| Hi(s) p—»| Hy(s) [—»
x(t) y(t)
> Hi(s) _l
X(s) (: )—>Y(S)
z(t) y(t)
— Hg(.‘a) J
y(t) Feedback
>
H(S) Hl(S)

e Open-loop transfer function: H,¢(s) = Hy(s).

e Closed-loop transfer function: H.¢(s) = H(s).

5

T 14 Ho(s)Hy(s)



Loading in cascading

Cascading of two voltage dividers: using a voltage follower gives Vi(s)/Vy(s)
(1/2)(1/2) (top) with no loading effect; using no voltage follower Va(s)/Vy(s)
1/5 # Vi(s)/Vu(s) due to loading.

LTI and LTV cascading

Modulator Modulator
-————1 e e iy
I ! d d | I
z(t)) V|t oy oz [ | Loy (t)
f(t) f(t)
(a) (b)

The outputs are different, yy(t) # ya(t).



Application to Classical Control

disturbance

reference ( ¢ )/ \ ] ( t )

signal controller plant i1 controller plant

l y(t)
H.(s) | G(s) D> —»| H.(s) —{ CG(s) f»OD—>

Closed-loop system Open-loop system

Open-loop Control: Make y(t) follow x(#) by minimizing error signal

e(t) = y(t) — x(t)

no disturbance, n(t) = 0,
Y(s) = H.(s)G(s)X(s) then E(s)=Y(s)— X(s)=[H.(s)G(s) — 1] X (s)

to get y(t) = x(t) requires H.(s) = 1/G(s) (inverse of the plant)

disturbance signal 7(t) # 0
Y(s) = H.(s)G(s)X(s) +1n(s) then E(s)= [H.(s)G(s)— 1]X(s) + n(s)
H.(s) = 1/G(s) still minimizes e(t) but it cannot be made zero
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Closed-loop control using negative feedback:
No disturbance (7n(f) = 0)

E(s) = X(s)—Y(s) Y(s)=Hs)G(s)E(s) = E(s)= 1+C§E;;{C(,’)

If e(t) — 0 in steady state, i.e., y(t) tracks x(t), the poles of E(s) should be in
the open left-hand s-plane

Disturbance n(t) # 0

E(s) = X(s)=Y(s) Y(s)=H.s)G(s)E(s)+n(s) = E(s)= 1+ G/’Y(S}-IC(s) + 1+ (—?(Ii()i}z’c(f’)
E‘l‘zs) an E;ES) ’

For e(t) — 0 in steady state, then poles of F(s) and Fs(s) should be in the
open left-hand s-plane

Closed-loop control offers more flexibility in achieving this by minimizing the
effects of the disturbance




Example — A Cruise Control

Pl controller Plant
x(t) e(t) ) c(t) v(t)
r H. (s)=1+ =" H,(s) —>
Reference speed  — speed of car
z(t) = Voul(t) car model

Model of car in motion

H,(s) = B/(s + a), mass 3 =1, friction a=1

. H.(s)Hp(s) N
Vis) T+ Ho () Hy(5) ) = 5+ 1)
BV
— .+. —
s+ 1 s

Steady-state response

lim v(t) =Vo = lim e(t) = (x(t) —v(t)) = 0

t—00 t—oc

i.e., speed of car is V)



Transient Analysis

vi(t)  e(t)

ve(t) — WW—
1
+ G(5)= Res — .
- w0
.,C(Q
=
C
First-order System: RC circuit
input v()= ((t) output wv.(t)
N Vels)

HG) =305 = 15 res
As negative feedback system

E(s) = Vi(s) = Ve(s)

Vo(s) = E(s)G(s)

Vs)  G(s) 1

Vi(s)  1+G(s) 1+1/G(s)
so that 1

G(s) = RC's
Output
1 1/RC 1 1 s

c\S) = = - - - o — 1 /H(
Ve ) = SGRC+D ~ s+ 1/RO) s stire Ul =( Ju(t)
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jo

05
RC=1
/
0 /4
/
RC=10
05758 -08 -04 02 0

Second-order system: RLC in series

N Y(s)  Gl(s)
HG) = X6 T 1560
B 02
82+ 20,5+ Q2
z(t) e(t) y(t)

> G(s) -
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Clustering of poles (left) and time responses of second-order feedback system for
V2/2 <1 <1 (top right) and 0 < < /2/2 (bottom right).
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Spectral Representation — Unification of the spectral representation of both
periodic and aperiodic signals

Signal Modulation
Frequency shift: If X(Q2) is the Fourier transform of x(t), then we have the pair

z(t)e’™ o X(Q-Q)
Modulation: The Fourier transform of the modulated signal
x(t) cos(Qpt)
is given by
0.5 [X (22— ) + X (2 + Q)]
i.e., X(Q) is shifted to frequencies o and —$)y, and multiplied by 0.5.

Remarks

e Amplitude modulation: consists in multiplying message x(t) by a sinusoid
of frequency higher than the maximum frequency of the incoming signal
Modulated signal z(t) cos(Qpt) = 0.5[z(t)e? ! + z(t)e 7%
Flx(t) cos(Qpt)] = 0.5[X (2 — Q) + X(2+,)]

Modulation shifts the frequencies of x(t) to frequencies around €

e Modulation using a sine, instead of a cosine, changes the phase of the
Fourier transform of the incoming signal besides performing the frequency
shift

e According to eigenfunction property of LTI systems, modulation systems
are not LTI
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v,

Example Modulate a carrier cos(10t) with:
xq(t) is low-pass signal
see spectrum before

2. zo(t) = 0.2[r(t + 5) — 2r(t) + r(t + 5)].

1. zy3(t) = e tl, —00 < t < .

The modulated signals are

(i)  y(t) = x1(t) cos(10t) = e cos(10t), —00 <t <00
(17)  ya(t) = xa(t) cos(10t) = 0.2[r(t + 5) — 2r(t) + r(t + 5)] cos(10¢)

05

0.5

Lo

0 5
t (sec)
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=
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Why Modulation? Modulation changes frequency content of a message from
its baseband frequencies to higher frequencies making its transmission over the
airwaves possible
Music (0 < f < 22KHz), and speech (100 < f < 5KHz) relatively low frequency
signals requiring an antenna of length
A 3x108
T
if f =30KHz = length of antenna 2.5km ~ 1.5miles

meters

thus need to increase baseband frequencies.
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Fourier Transform of Periodic Signals
A periodic signal x(t) of period Ty:

z(t) =) Xped* ' o X(Q) =) 27Xid(Q - k)
k k

obtained by representing x(t) by its Fourier series.

Fourier series of x(t):
z(t) =Y Xpel*Wt  Qy =2m/T,
k

X(Q) =) FlXpe* ™ =" 20 X,5(Q — k)
k k

Remarks

o | X(2)] vs €2, the Fourier magnitude spectrum of periodic z(#) is analogous
to its line spectrum

e Direct computation

Fleos(Qt)] = F[0.5¢7% + 0.5¢ 77! = 78(Q — Q) + 76(Q + Q)

Flsin(Qot)) = F|22ei%t _ OJ;fSe-fQﬂ' — T5(0 - Q) — ;«5(9 + Q)
J ) J )

= 7w IT25(0 — Qp) + 7T 25(Q + Q)
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Example Triangular pulses z(f) with a period

z1(t) =r(t) —2r(t —05)+r(t—1), Qy=2xw

find X (€2)
1 ~0.5s , -8 e 0% 05 ~0.5s
Xi(s) = 9—2(1—26 +e )=T(e —2+e )
FS coefficients X, = TLOX1(3)|3=j2,rA. — WQ(COS(W;C) —1)e~Imk
.2
_ (k+1) Cos(mk) — 1 _ (_qykSin (wk/2)
(=1) 272k? (=1) n2k3
X(0) = 05

FT: X(Q)=2rXed(Q)+ Y 27Xpd(Q— 2kn)
k=-—00,#0

17
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Parseval’s Energy Conservation A finite-energy signal x(t), with Fourier trans-

form X (Q), its energy is

E, = / |z(t)[2dt = 21 / X ()|2d

—00 TJ-

|X(Q)|? energy density : energy per frequency
| X ()% vs Q: energy spectrum of x(t), energy of the signal distributed over fre-
quency

Example Is §(t) a finite energy signal?
Using Parseval’s result: Fd(f) = 1 for all frequencies then its energy is infinite

In time-domain:
1 .
pal(t) = K[U(f +A/2) —u(t—A/2)] = 6(t)as A — 0, unit area
y 1 ) NP
pA(t) = F[u(t +A/2) —u(t—AJ2)] = §(t)as A — 0, infinite area 1/A

4(t) is not finite energy

Symmetry of Spectral Representations
If X(2) is FT of real-valued signal x(t), periodic or aperiodic then

o Magnitude | X (Q)| even function of Q:
1X(Q)] = |X(-9)]

e Phase ZX () odd function of Q:
ZX(Q) = —2X(~Q)

| X ()] vs 2 Magnitude Spectrum
ZX(Q) vs Q Phase Spectrum
|X(Q))? vs Q Energy/Power Spectrum.
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Application to Communications

AM Suppressed Carrier (AM-SC)

cos(£2.t) 2 cos(§2.t)
N i ey R
m(t) . c ol |+ |Band-pass Low-pass | + "\
—( X »| Channel +——» _ i . g >
) I : : filter filter :
[ * . : !
Transmitter Receiver
Transmitter

s(t) = m(t) cos(2:t) Q. >> 27 fy, fomax frequency in m(t)
transform of s(t)
S(Q2) = % (M(Q2— Q)+ M(Q+Q.)] M() spectrum of m(t)
Receiver
r(t) = 2s(t) cos(€2.t)
R(2)=S(2—-Q)+SQ2+Q.) =M(Q)+ % [M(2 —2Q.) + M (2 + 29,)]

M(€2) and m(t) obtained passing r(t) through LPF
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Commercial AM modulation: original signal (top), part of original signal and
corresponding AM modulated signal (bottom left), spectrum of the original signal
and of the modulated signal (bottom right).



Quadrature Amplitude Modulation (QAM)

m (t)
cos(£2.t)
m ,
— shift
5 f
moy(t) —Dé
Transmitter

QAM: conserving bandwidth

s(t) = my(t) cos(2.t) + ma(t)sin(£2.) messages m(t).

Frequency-division Multiplexing

cos({;t)

cos($2at)

ma(t)
X

mq(t)
LPF —»
LPF >
mo(t)

Receiver

Optimizing use of spectrum

cos(Q23t)

ms(t)
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Angle Modulation

Phase Modulation:  spar(t) = cos(Q2.t + Kym(t))

¢
Frequency Modulation:  spas(t) = cos(€2.t + A2 / m(7)dr)

FM modulation paradox

In amplitude modulation the bandwidth depends on the frequency of
the message, while in frequency modulation the bandwidth depends
on the amplitude of the message. (E. Craig)

Example — FM Simulation
Narrow-band FM

message m(t) = 80sin(207t)u(t)
carrier cos(2w f.t), f. = 100Hz

t
FM signal z(t) = cos(2x f.t + ().11:'/ m(7)dT)

Instantaneous frequency (the derivative of the argument of the cosine) is
IF(t) =2nf.+ 0.17m(t) = 2007 + 87 sin(207t) ~ 2007

i.e., it remains almost constant for all time
Spectrogram: Fourier transform as the signal evolves with time
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x(t)

Narrow-band FM
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Wide-band FM

mq(t) = 80sin(207t)u(t)

t
FM signal z;(t) = cos(272500t + 507 / my (7)dT)
J =00

IF IF(t) =2mfe + 50mm, ()

0.02

0.06 0.1

'W

U
MIL. il

{H'l“f

Frequency

h
0.06 0.08 0.1

10

M)l
w

100

0 H i
-200 -150 -100 -50 0 50 150 200
0.015
0.01
g
=
0.005
0
-5000 0 5000
f

0.02 0.04 0.06 0.08 010 0.12 0.14 0.16 0.18
Time
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Convolution and Filtering If z(t) (periodic or aperiodic) is input to a stable LTI

system with a frequency response H(j2) = F[h(t)], h(t) impulse response of the
system, the output of the LTI system is the convolution integral y(t) = (x * h)(t),
with Fourier transform

Y(Q) = Fl(z  h)] = X(Q) H(jQ)

If x(t) is periodic the output is also periodic with Fourier transform

Y(Q) = Y 27 Xi H(jk Q0)5( — k)

k=-oc

where Xy are the Fourier series coefficients of x(t) and gy its fundamental fre-
quency.

Eigenfunction property of LTI systems:
Aperiodic signals

z(t) = ‘21_7.',/ X(Q)e!dQ =
Y : 1 [~ :
y(t) = e (X(Q)H(j)) c-’Q'dQ:—] Y (Q)e?HdQ
T J o 27 J_ oo

Periodic signal of perio Ty

X(Q) = > 2mXid(Q-kQ) = Y(Q) = XQH(GQ) = > 2mXeH(jkQ)( — k)

k=—00 k=—00
output y(t) is periodic

00

yit)= > Y ek
k==00 y. H(ikQ0)
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Basics of Filtering

e Filtering consists in getting rid of undesirable components of a signal, e.g.,
noise 7(t) is added to a desired signal (1)

y(t) = x(t) + n(t)

Filter design: find H(s) = B(s)/A(s) satisfying certain specifications to
get rid of noise.

e Frequency discriminating filters keep the frequency components of a signal
in a certain frequency band and attenuate the rest.

Example Obtain dc¢ source of unity amplitude using a full-wave rectifier and a
low-pass filter (it keeps only the low-frequency components)

cos(t) | Fullwave | x(t) = |cos(Qpt)| | Low-pass y(t)

ﬁ - ) X ﬁ
rectifier filter

FS coefficients:

2
/YU - —
™

__2=D° .
s 7O

Filter out all harmonics and leave average component: ideal low-pass filter

en ] A Q< Q. <Qy, where Qy=27/T) =27
H(j%) = { 0 otherwise
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Ideal Filters

e Low-pass filter (keeps low-frequency components)

1 -, <0<
0 otherwise

/Hip(jQ) = —aQ

|Hyp ()] = {

e Band-pass filter (keeps middle frequency components)

. o 1 Q]SQSQ; and _QQSQS_QI
| Hep (5| = { 0 otherwise

linear phase in the passband
e High-pass filter (keeps high-frequency components)

: B 1 2>€Q, and Q< —€)
| Hpp(582)| = { 0 otherwise

linear phase in the passband

e Band-stop filter (attenuates middle frequency components)

\Hys (GQ)| = 1 — [Hpp (592)]

e All-pass filter (keeps all frequency components, changes phase)
\Hap(70)| = |Hip (5)| + [Hip(G)] + [Hpp(72)| =1

e Multi-band filter: combination of the low-, band-, and high-pass filters
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|Hep(562)] | Hyp (762)

A
> 1 >
0 9] 0, 2 Q2
|th(jQ)l |Hbv(JQ)|
A
1 . —»-
Q3 Q 0, Q, Q

Example Gibb’s phenomenon of Fourier series: ringing around discontinuities
of periodic signals. Consider a periodic train of square pulses x(t) of period
Ty displaying discontinuities at kT, /2, for k = £1,£2,.-.. Show Gibb’s phe-
nomenon is due to ideal low-pass filtering.

Ideal low-pass filter

, 1 -Q. <0<,
H($) = { 0 otherwise
Periodic signal z(t), of fundamental frequency Qo = 27 /Ty, is
X(Q) =Fla()] = Y 27Xid(Q — k)
k=—00
Output of the filter:
N
an(t) = FUXQH(GQ)| =F! z 27 X 0(S2 — kQy)
k==N

= [z *h|(t) cutoff frequency: NQy < Q. < (N + 1)

convolution around the discontinuities of x(#) causes ringing before and after
them, independent of N
28



Example Obtain different filters from an RLC circuit by choosing different
outputs. Let R=1€, L =1H, and C=1 F, and IC=0

+ vr(t)— L
—~W——-mm
R +ouL(t)—

-}

) C 7R ve(t)

vi(t)

|/\+

Low-pass Filter: Output V,.(s)

CVe(s) 1
C Vi(s)  s24s+1

Hlp(s)
e input a de source (frequency 2 = 0), inductor short circuit, capacitor open
circuit, so V.(s) = Vi(s)
e input of very high frequency, €2 — oo, inductor open circuit, capacitor
short circuit V.(s) = Vi(s) =0
High-pass Filter: Output Vi (s)

Vi(s) 2

Hip(s) = Vi(s)  s2+s+1

e dc input (frequency zero), inductor is short circuit Vi (s) = 0

e input of very high frequency, 2 — oc, inductor is open circuit Vi (s) =
Vi(s)
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Band-pass Filter: Output Vg(s)

Vr(s) s

H($) = Vi) = #5571

e For zero frequency, capacitor is open circuit so voltage across the resistor
is zero

e For very high frequency, inductor is open circuit, voltage across resistor is
Zero

e For some middle frequency, serial LC combination resonates (zero impedance)
maximum voltage across resistor

Band-stop Filter: Output voltage across inductor and the capacitor

s +1

Holo) = et

e At low and high frequencies, LC' is open-circuit, Vic(s) = Vi(s)

e At the resonance frequency €2, = 1 the impedance of the LC connection
is zero, so the output voltage is zero
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Analog Filter Design

Filtering: To get rid of undesirable frequency components of a signal

LTI system
AQJ(Q"H‘B) AlH(jQ””ej(Qot-f-B-i-lH(jQu)
—_— H(s) -
Example: denoising analog filter
Bls
z(t) —> His) = AEZ; » y(t) = x(t)
desired signal ' denoised signal

n(t)

noise

LPF Design

Magnitude squared function of analog LPF
1
1+ f(92)

low frequencies f(2?)~0 = |H(jQ)|* ~
high frequencies f(Q?%) = oc = |H(jQ)|* — 0 Design issues

[H ()| =

1. selection of f(.),

2. factorization to get H(s) from the magnitude squared function
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Example: Nth-order Butterworth LPF

_ 1 _
|Hn ()% = 5N Qpphalf-power frequency
0
1+ [Q,.,,]
Approximation
Q<< = |Hn(GQ)| =1
Q>> th = |HN(JQ)| — 0
Factorization

normalized variable S = s/Qp, = S/j=Q =Q/Q,

1 1 1
HSH(=5) = 1 =57 = b(s5) D(=9)
N N
H(S) H(-S)

Butterworth low-pass filter: H(s) = H(S)|s=s/q,,
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Filter Specifications — 1ow—pass

[H(jQ)] a(ih)
‘ ‘ .2
1 ! ®min
1 — 6, I
|
1
61 a"lﬂ:l‘ |
.’ |
Q, Q . 0| Q, . g

Passband 1—4d, < |H(jQ)| <1 0<0<Q,
Stopband 0 < |H(jQ)| < 4, Q> Q.. small 6. 62

No specifications in transition region
Phase to be linear in passband

Loss function:  a(Q) = —10log,, |H(j)|* = —20log,, |H ()| dBs

Passband: 0 < a(Q) < oy 0<02<Q,
Stopband: () > amnmin Q>0

Umaz = —2010g;(1 — d2)

Qmin = —2010g;((d1)
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Butterworth low-pass filter design

Magnitude squared function
1 , Q

= —
1+ (/)" Qnyp
,, half-power or — 3dB frequency

[Hn ()| =

Design
() = —101log,o |Hn (2/p)[> = 101og,o(1 + (2/Q,)*")

Loss specifications

(8
Q, Q,

Half-power frequency (100T0mas — 1)1/2N < Qpp < (100-1amen — 1)1/2N

> loglo[(l()o'l“"““ — 1)/(100'1(]""': - 1)]
. 2log(€2:/2y)

Minimum order N

Normalized poles: for S = s/,

S = 3 (2k=1+N)7/(2N) k=1,--- 2N
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Chebyshev low-pass filter design

Magnitude squared function
1 Q
Hyx(Q))? = O =
HN () 1+ 22C%(2/9,) 0,

N  minimum order

£ ripple factor
Cn(.) Chebyshev polynomials

Chebyshev polynomials

Ox (@) = { oSN eos™H(@) || <1
N ~ | cosh(Ncosh™'(Q)) |9 >1

Recursion:  Cn41() + Cn—1(2) = 2cos(f) cos(NF) = 2Q'Cn ()
Co(QY) =1
L) = O
Design

Loss function

a(Q) = 10log,, [1 +£2C3 ()] O = Qﬂ

p

e Ripple factor z:

£ = \/100.10."““_. _ 1
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e Minimum order: N

0.5
. -1 10“-1“min_1
COSh (I:loll.lnmﬂ_—,g_l
Q

N > —
cosh (5;)

e Half-power frequency:

1 _
Qp, = Q) cosh [N cosh™! (

™| =

)

Example Compare performance of Butterworth and Chebyshev low-pass filters
in filtering
x(t) = [—2cos(5t) + cos(10t) + 4sin(20¢)|u(t)

Two filters must have same half-power frequency
Specifications

Qmaz = 0.1 dB, 2, =5 rad/sec
Qin = 15 dB, Q4 = 10 rad/sec

de loss of 0 dB
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Butterworth cos(101)-2 cos(5t)+4 sin(201)

1—=
i ' | —— Butterworth
5 0.9 ' : >
. I |~ ~ ~ Chebyshev
x l
g o 0.8 | 2o
-8 0-7 - i i ' i
1 : os 1 _
-8 -6 -4 -2 0 2 0 5 10 15 20
. @ 0.5 t
Chebyshev z
- 0.4
5 X
0.3
a0 0.2
-1 ) 0.1
= 0
-4 2 0 2 0

(8]

Frequency transformations

Lowpass-Lowpass S=—
Qo
. Qo
Lowpass-Highpass S ===
S
2
s 4+ Q
Lowpass-Bandpass S=—
Wb Eanep s BW
s BW
Lowpass-Band-eliminati S = """
owpass-Band-eliminating CRON

S normalized s final variable

Qp desired cut-off frequency and BW desired bandwidth
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Example
1. Use cheby?2 to design bandpass filter with specifications

order N =10
a(€2) =60 dB in the stopband
passband frequencies [10, 20] rad/sec

unit gain in the passband

2. Use ellip to design bandstop filter with unit gain in the passbands and the
following specifications
order N =20
a(2) = 0.1 dB in the passband
a(2) =40 dB in the stopband

passband frequencies [10, 11] rad/sec

1 1
Zos 0.8
L6 g o0s
’ =
0.4 0.4
0.2 0.2
0 0 i
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Q Q
10
5 -
[
S o
3
-5
-10 : s
0 5 10 15 20 25 30
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What have we accomplished?

..&.Illustrated application of Laplace analysis to classical control

..&. Showed application of Fourier steady-state analysis to communications

..&. Introduced the design of analog filters

Where dO we gO fI'Ol’l’l here?

..&.Discrete-time signals and systems

..&. Application of Fourier analysis to sampling
..&. Transform methods and connection with Laplace
..&. Application to control and communications

..&. Design of discrete filters
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