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Chapter 5 - Frequency Analysis

The Fourier Transform



What is in this Chapter?

..&.From Fourier series to Fourier transform

..&.Existence of Fourier transform
..&. Fourier and Laplace transforms
..&. Time frequency relations and Fourier transform

..&. Spectral representation of periodic and aperiodic signals

..&.Modulation and signal transmission

..&.Convolution and Filtering



From the Fourier Series to the Fourier Transform
Aperiodic signal x(t) is a periodic signal T(t) with infinite period. From Fourier

series T(t) and limiting process we obtain:
x(t) = X(£2)

where x(t) is transformed into X (Q) in the frequency-domain by

Fourier transform: X(N) = / a(t)e I dt

o0

while X (Q2) is transformed into x(t) in the time-domain by

Inverse Fourier Transform: z(t) = QL [ X (Q)e’HdQ
T J-x

Aperiodic: z(t) = Tlim x2(t) periodic of period Ty
000
> 2m
Fourier Series: z(t) = X, ednshot Qy = —
() ;x 0=
X, F(t)e It gt

To J-1,/2

Define X (€2,,) = Ty X,, where {Q,, = n{)p}, harmonic frequencies and AQ =
2w /Ty = €y be frequency interval between harmonics then

~ra\ - X(2,) it jQ,,LAQ
)= ) e = X(Q)e >

n=-=—0oo n

To/2 _
X(Q,) = f F(t)e 7 dt
~To/2
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As Ty — oo then AQ — df2, the line spectrum becomes denser, i.e. the lines
in the line spectrum get closer, the sum becomes an integral, and 2,, = n{)y =
nAQ — €2 so that in the limit we obtain

1> |
Inverse FT: x(t) = ﬂ/ X (Q)e7d
— 00

o0
FT: X(Q) = / x(t)e T dt

-0

Existence of the Fourier Transform The Fourier transform

X() = /00 x(t)e I dt

-0
of a signal x(t) exists (i.e., we can calculate its Fourier transform via this integral)
provided

e x(t) is absolutely integrable or the area under |x(t)| is finite,

e x(t) has only a finite number of discontinuities as well as maxrima and minima.

“It appears that almost nothing has a Fourier transform — nothing except practical
communication signals. No signal amplitude goes to infinity and no signal lasts
forever; therefore, no practical signal can have infinite area under it, and hence all

have Fourier Transforms.”(Prof. E.Craig)

Signals of practical interest have Fourier transforms and their spectra can be
displayed using a spectrum analyzer




Fourier Transforms from the Laplace Transform
If ROC of X(s) = L[x(t)] contains the jQ-axis, then

o0

E[:L’(t)]|5=jg=/ ‘;zr(t)e_jmdt
= X(3)[s=ja

Fla(®)

Rules of Thumb for Computing the Fourier Transform of a Signal xz(?):

o [f x(t) has a finite time support and in that support x(t) is finite, F|x(t)]
exists

e [f x(t) has a Laplace transform X (s) with ROC containing jQ2-axis, X () =
X (s)]s=j0-

e If x(t) is periodic its Fourier transform is obtained from its Fourier series
using delta functions

o Ifx(t) is none of the above, if it has discontinuities (e.g., x(t) = u(t)), or it is
has discontinuities and it is not finite energy (e.g., x(t) = cos(Qot)u(t)) or it
has possible discontinuities in the frequency domain even though it has finite
energy (e.q., x(t) = sinc(t)) use properties of the Fourier transform.




Example Fourier transform using Laplace for

(@) wi(t) = ult)
(b)  o(t) = e u(t)
(¢) a3(t) =e I

(a) Llz1(t)] = Xi(s) = 1/s, ROC ={s =0+ jQ:0 > 0,—0 < Q < o},
Laplace transform cannot be used to find Flz(t)]

(b) Llza(t)] = Xa(s) =1/(s+2), ROC={s=0+jQ:0 > -2, —00 < ) < 00}
containing j{2-axis, then

1 1

Xo() = S5 ls=ja = i0+2

S SR
s+1 —s+1 1-—g2

(¢) Llzs(t)] = Xs(s) =

ROC={s=0+4+j02: -1 <0< 1,—00 < ) < oo} containing j-axis, then

2 2
1—(jQ)2 1+ Q2

X3(92) = X3(5)|s=jo =



Inverse Proportionality of Time and Frequency
The support of X (£2) is inversely proportional to the support of x(t).
If z(t) has a Fourier transform X (£2) and « # 0 is a real number, then x(at) is

e is contracted (o > 1),

e is contracted and reflected (o < —1),

e is expanded (0 < a < 1),

e is expanded and reflected (—1 < a < 0) or
o is reflected (o = —1)

z(at) & iX (9)

Frequency is inversely proportional to time:

e x(t) = 4(t), its support is only at t = 0, X,(€2) = 1,—oc < Q < o0 with
infinite support

e Opposite case: x5(t) = A, —o0 <t < oo, Xo(Q2) = 27 AH(Q2) since the
inverse Fourier transform is

—[ Xo(2)e?Md) = —f 2rAS(Q)e?MdQ) = A
27 J_ oo 27 J_ oo



o Transition z2(t) to x(t): consider x3(t) = Alu(t+7/2) —u(t — 7/2)| with
A
’ — sTf2 _ _—st/2
Xs(s) o [e e ]

so that

sin(€27/2)

X3(9) = X(s)[s=jn = ATT/z

A =1/7 as 7 — 0 the pulse x3(f) becomes §(¢) and X3(£2) becomes unity
T =00, 23(t) = A X3(Q) — ()

NOTE: z(t) < X(€) means to z(t) in time domain corresponds a FT X ()
in the frequency domain. This is NOT an equality, far from it!

Example If 2(t) = u(t) — u(t — 1), find FT of z(t) = z(2t)

X(s)= 2" ROC: whole s-plane
X(Q) = 1—;;;3'9 _ e_jn/g(e;j;:/; e 7?2 Si“{(f/zz/z)e-m/z.
T1(t) = x(2t) = uw(2t) — u(2t — 1) = u(t) — u(t — 0.5)
— e~ iR/2 —i4(pi4 _ o—I2/4
X (Q) = 1 ;Q _e (e - e )
T
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Example Apply the reflection property to find the Fourier transform of
x(t) =e %, a>0

x(t) = e *u(t) + e*u(—t) = 21 (t) + x1(—t)

1 1
X1(Q) = —— |omjn =
1(8) s+a|8—m iQ+a
1 1 1 2a
Flzi(—t)]| = —— = X(Q) = - + — = — .
2 (=0) —j+a @) N+a —jQ+a a®+0Q?
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Duality
To the Fourier transform pair
z(t) <& X(9)
corresponds the following dual Fourier transform pair
X(t) < 2rx(—)

Inverse Fourier transform
1 |
() — jpt
z(t) = o / X(p)e!™dp
— o0
replace t by —{2 and multiply by 27:
2rx(—)) = f X(p)e 7"dp =/ X(t)e 7 dt = F[X(t)]

p and t are dummy variables inside the integral

e Example: Fourier transform pair

As(t) o A
A e 21AN(-Q) = 21 AS(Q)
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Application of duality to find Fourier transform of x(t) = 10sinc(0.5t). Notice
that X(2) = 27a, () =~ 6.282, () = 63.8[u(2 + 0.5) — u(2 — 0.5)]

Example Find the Fourier transform of z(t) = A cos(€pt) using duality
Consider the following Fourier pair

8(t—po) +0(t+ po) < e TPt 4 3P = 2 cos(pe)

2cos(pot) & 2[6(~ — po) + 6(—2+ po)] = 2w[6(2 + po) + (2 — po)]
Replacing po by £y and canceling the 2 in both sides we have
xz(t) =cos(Qpt) <<  X(Q)=7[d(Q+ Q) + (2 — Q)]

indicating that it only exists at +{)
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Spectral Representation — Unification of the spectral representation of both
periodic and aperiodic signals

Signal Modulation
Frequency shift: If X(Q2) is the Fourier transform of x(t), then we have the pair

z(t)e’™ o X(Q-Q)
Modulation: The Fourier transform of the modulated signal
x(t) cos(Qpt)
is given by
0.5 [X (22— ) + X (2 + Q)]
i.e., X(Q) is shifted to frequencies o and —$)y, and multiplied by 0.5.

Remarks

e Amplitude modulation: consists in multiplying message x(t) by a sinusoid
of frequency higher than the maximum frequency of the incoming signal
Modulated signal z(t) cos(Qpt) = 0.5[z(t)e? ! + z(t)e 7%
Flx(t) cos(Qpt)] = 0.5[X (2 — Q) + X(2+,)]

Modulation shifts the frequencies of x(t) to frequencies around €

e Modulation using a sine, instead of a cosine, changes the phase of the
Fourier transform of the incoming signal besides performing the frequency
shift

e According to eigenfunction property of LTI systems, modulation systems
are not LTI

13



v,

Example Modulate a carrier cos(10t) with:
xq(t) is low-pass signal
see spectrum before

2. zo(t) = 0.2[r(t + 5) — 2r(t) + r(t + 5)].

1. zy3(t) = e tl, —00 < t < .

The modulated signals are

(i)  y(t) = x1(t) cos(10t) = e cos(10t), —00 <t <00
(17)  ya(t) = xa(t) cos(10t) = 0.2[r(t + 5) — 2r(t) + r(t + 5)] cos(10¢)
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Why Modulation? Modulation changes frequency content of a message from
its baseband frequencies to higher frequencies making its transmission over the
airwaves possible
Music (0 < f < 22KHz), and speech (100 < f < 5KHz) relatively low frequency
signals requiring an antenna of length
A 3x108
T
if f =30KHz = length of antenna 2.5km ~ 1.5miles

meters

thus need to increase baseband frequencies.

15




Fourier Transform of Periodic Signals
A periodic signal x(t) of period Ty:

z(t) =) Xped* ' o X(Q) =) 27Xid(Q - k)
k k

obtained by representing x(t) by its Fourier series.

Fourier series of x(t):
z(t) =Y Xpel*Wt  Qy =2m/T,
k

X(Q) =) FlXpe* ™ =" 20 X,5(Q — k)
k k

Remarks

o | X(2)] vs €2, the Fourier magnitude spectrum of periodic z(#) is analogous
to its line spectrum

e Direct computation

Fleos(Qt)] = F[0.5¢7% + 0.5¢ 77! = 78(Q — Q) + 76(Q + Q)

Flsin(Qot)) = F|22ei%t _ OJ;fSe-fQﬂ' — T5(0 - Q) — ;«5(9 + Q)
J ) J )

= 7w IT25(0 — Qp) + 7T 25(Q + Q)

16




Example Triangular pulses z(f) with a period

21(t) = r(t) — 2r(t — 0.5) + r(t — 1), Q = 2

find X (£2)
X.(s — 1 1 2—0-58 -8 _e—().:')s 0.5s 9 ~0.5s
() = 5 (1-2e70% pet) = T (090 24 00
FS coefficients X, = Tiuxl(s)|s=j2vrk=mﬂmb'(?rk)—l)e_j”k
.2
_ (k+1) COs(7k) —1 psin?(mk/2)
= OV S =) e
X(0) = 05
oo
FT: X(Q)=21Xed(Q)+ Y  2¢Xid(Q— 2kn)
k=—o0,#0
1.
Zos
0
0 1 2, 3 4 5
4
3
2
S 1
i 09— 5 59—t
- i

-50 0 50
Q (rad/sec)
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Parseval’s Energy Conservation A finite-energy signal x(t), with Fourier trans-

form X (Q), its energy is

E, = / |z(t)[2dt = 21 / X ()|2d

—00 TJ-

|X(Q)|? energy density : energy per frequency
| X ()% vs Q: energy spectrum of x(t), energy of the signal distributed over fre-
quency

Example Is §(t) a finite energy signal?
Using Parseval’s result: Fd(f) = 1 for all frequencies then its energy is infinite

In time-domain:
1 .
pal(t) = K[U(f +A/2) —u(t—A/2)] = 6(t)as A — 0, unit area
y 1 ) NP
pA(t) = F[u(t +A/2) —u(t—AJ2)] = §(t)as A — 0, infinite area 1/A

4(t) is not finite energy

Symmetry of Spectral Representations
If X(2) is FT of real-valued signal x(t), periodic or aperiodic then

o Magnitude | X (Q)| even function of Q:
1X(Q)] = |X(-9)]

e Phase ZX () odd function of Q:
ZX(Q) = —2X(~Q)

| X ()] vs 2 Magnitude Spectrum
ZX(Q) vs Q Phase Spectrum
|X(Q))? vs Q Energy/Power Spectrum.
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Remarks
e [f signal is complex, the above symmetry will not hold
e Meaning of “negative” frequencies:

— only positive frequencies exist and can be measured,

— spectrum of a real signal requires negative frequencies

Example MATLAB to compute Fourier transform of

(a) x(t) =wu(t) —u(t—1)
(b) z(t) = e tu(t)

For z(t) = e "u(t)

AN AN AN AN AN A

% Example 5.11

T T I T T T TsTotoTos oo oo T

sym t

x2=exp(-t)*heaviside(t);

X2=fourier (x2)

X2m=sqrt ((real (X2)) "2+(imag(X2))"2; ’% magnitude
X2p=imag(log(X2); % phase

Magnitude:

1 X2(Q)| = VRe[X2(2)]2 + Im[X2(2))2.
log(X2(2)) = log(| X2(2)[e?“X2 ) = log(| X2(Q)| + j£X(R)
so that

ZX>(2) = Im[log(X2(2))].

19



x,(1)

IX ()

z2(t) =z (t + 0.5) = u(t + 0.5) — u(t — 0.5)

Z(Q) = % real-valued
[0 Z@=0
£Z() ‘{ tr Z(Q) <0

2(t) = 21 (t+0.5) = Z(Q) = X,(N)ed?5%

X1(Q) = e Z(Q)
/X1(Q) = 2Z(Q) - 0.5 = {
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Convolution and Filtering If z(t) (periodic or aperiodic) is input to a stable LTI

system with a frequency response H(j2) = F[h(t)], h(t) impulse response of the
system, the output of the LTI system is the convolution integral y(t) = (x * h)(t),
with Fourier transform

Y(Q) = Fl(z  h)] = X(Q) H(jQ)

If x(t) is periodic the output is also periodic with Fourier transform

Y(Q) = Y 27 Xi H(jk Q0)5( — k)

k=-oc

where Xy are the Fourier series coefficients of x(t) and gy its fundamental fre-
quency.

Eigenfunction property of LTI systems:
Aperiodic signals

z(t) = ‘21_7.',/ X(Q)e!dQ =
Y : 1 [~ :
y(t) = e (X(Q)H(j)) c-’Q'dQ:—] Y (Q)e?HdQ
T J o 27 J_ oo

Periodic signal of perio Ty

X(Q) = > 2mXid(Q-kQ) = Y(Q) = XQH(GQ) = > 2mXeH(jkQ)( — k)

k=—00 k=—00
output y(t) is periodic

00

yit)= > Y ek
k==00 y. H(ikQ0)
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Basics of Filtering

e Filtering consists in getting rid of undesirable components of a signal, e.g.,
noise 7(t) is added to a desired signal (1)

y(t) = x(t) + n(t)

Filter design: find H(s) = B(s)/A(s) satisfying certain specifications to
get rid of noise.

e Frequency discriminating filters keep the frequency components of a signal
in a certain frequency band and attenuate the rest.

Example Obtain dc¢ source of unity amplitude using a full-wave rectifier and a
low-pass filter (it keeps only the low-frequency components)

cos(t) | Fullwave | x(t) = |cos(Qpt)| | Low-pass y(t)

ﬁ - ) X ﬁ
rectifier filter

FS coefficients:

2
/YU - —
™

__2=D° .
s 7O

Filter out all harmonics and leave average component: ideal low-pass filter

en ] A Q< Q. <Qy, where Qy=27/T) =27
H(j%) = { 0 otherwise

22



Ideal Filters

e Low-pass filter (keeps low-frequency components)

1 -, <0<
0 otherwise

/Hip(jQ) = —aQ

|Hyp ()] = {

e Band-pass filter (keeps middle frequency components)

. o 1 Q]SQSQ; and _QQSQS_QI
| Hep (5| = { 0 otherwise

linear phase in the passband
e High-pass filter (keeps high-frequency components)

: B 1 2>€Q, and Q< —€)
| Hpp(582)| = { 0 otherwise

linear phase in the passband

e Band-stop filter (attenuates middle frequency components)

\Hys (GQ)| = 1 — [Hpp (592)]

e All-pass filter (keeps all frequency components, changes phase)
\Hap(70)| = |Hip (5)| + [Hip(G)] + [Hpp(72)| =1

e Multi-band filter: combination of the low-, band-, and high-pass filters

23



| Hep (592 | Hyp (562)]

A
1 >
0, §) Q, 0, 0
|th(.7ﬂ)l |Hb¢(JQ)|
A
I
Q3 Q 0, Q, ¢

Example Gibb’s phenomenon of Fourier series: ringing around discontinuities
of periodic signals. Consider a periodic train of square pulses x(t) of period
1o displaying discontinuities at kT, /2, for k = £1,£2,.-.. Show Gibb’s phe-
nomenon is due to ideal low-pass filtering.

Ideal low-pass filter

1 -Q.<0<0Q,
0 otherwise

H() = {

Periodic signal z(t), of fundamental frequency Qo = 27 /Ty, is

X(Q)=Flz(t) = Y 27Xid(Q - k)

k=—0c

Output of the filter:

N
zn(t) = FUX(QH(GQ) =F! Z 27 X 0(02 — kQy)
k=N
= [z *h|(t) cutoff frequency: NQy < Q. < (N + 1),

convolution around the discontinuities of z(#) causes ringing before and after
them, independent of N 4



Example Obtain different filters from an RLC circuit by choosing different
outputs. Let R=1€, L =1H, and C=1 F, and IC=0

+ vr(t)— L
—~W——-mm
R +ouL(t)—

-}

) C 7R ve(t)

vi(t)

|/\+

Low-pass Filter: Output V,.(s)

CVe(s) 1
C Vi(s)  s24s+1

Hlp(s)
e input a de source (frequency 2 = 0), inductor short circuit, capacitor open
circuit, so V.(s) = Vi(s)
e input of very high frequency, €2 — oo, inductor open circuit, capacitor
short circuit V.(s) = Vi(s) =0
High-pass Filter: Output Vi (s)

Vi(s) 2

Hip(s) = Vi(s)  s2+s+1

e dc input (frequency zero), inductor is short circuit Vi (s) = 0

e input of very high frequency, 2 — oc, inductor is open circuit Vi (s) =
Vi(s)

25



Band-pass Filter: Output Vg(s)

Vr(s) s

H($) = Vi) = #5571

e For zero frequency, capacitor is open circuit so voltage across the resistor
is zero

e For very high frequency, inductor is open circuit, voltage across resistor is
Zero

e For some middle frequency, serial LC combination resonates (zero impedance)
maximum voltage across resistor

Band-stop Filter: Output voltage across inductor and the capacitor

s +1

Holo) = et

e At low and high frequencies, LC' is open-circuit, Vic(s) = Vi(s)

e At the resonance frequency €2, = 1 the impedance of the LC connection
is zero, so the output voltage is zero

26



Frequency Response from Poles and Zeros
For a filter with transfer function

H(s) = M where z;,pyx are zeros and poles of H(s)
H;.-(S — Pk)

with vectors Z,-(S 2) and ﬁk(SZ), going from each of the zeros and poles to the frequency
at which we are computing the magnitude and phase response in the jS2-axis, gives

[1, Z:(%)

[T, Pe(2)

[L1ZO) s, «z.@)-5, «Fu@)

[Tx [Pe()] o3 £H(59) ’
|H (%)

H(jQ) = H(s)|s=jo =

s-plane
jQ()

P(y) Z ()

7N\ NS

P

(3

27



Example RC circuit in series with voltage source v;(t). Choose the output to
obtain low-pass and high-pass filters and use the poles and zeros of the transfer
functions to determine their frequency responses. Let R =1 Q, C =1 F and
the initial conditions be zero.

Low-pass filter:

Ve(s)  1/Cs 1
H(s) Vi(s) R+1/Cs 1+s
. 1 1
H(Q) = 119 PO

Geometrically

Q=0  P(0)=1"H(j0) = 1¢°
Q=1 P(1)=v27* = H(j1) = 0.707¢ 77/
Q=00 P(eo) =00 ™ = H(joco) = 0e /2

High-pass filter:

Vi(s) ~CRs s
H(s) Vis) CRs+1 s+1
R (LA (1)
HGY) = 1+jQ  P(Q)
_ B — 1640 7(0)) — (pi™/2 . =@= j7w /2
Q=0 P(0)=1é Z(0) = 0 H(j0) 50) 0e’

o=1 B=vat AW =107 HGY =T =070

Q=00 Plx)=0ce&™?  Z(x)=o0c ™2 H(joo) = Z}oo) = 1¢/°
P(o0)

28



Remarks

e Poles create “hills” at frequencies in the j2-axis in front of their imaginary

parts.

e Zeros create “valleys” at the frequencies in the jQ-axis in front of their

imaginary parts

Example Use MATLAB to find and plot the poles and zeros and the corre-

sponding magnitude and phase frequency responses of:

(a) A second-order band-pass and a high-pass filters realized using an RLC se-

ries connection (R=1, L=1, C=1)
(b) An all-pass filter with a transfer function

2 [
8¢ —25s+1
His)= ——— —
(s) s2 4+ 2.5s+1
(a) From previous example,
S
H ==
wls) = T
2
S
Hip(s) = s2+s+1

PA AN AN AN NAAA AN A AT YA

% Example 5.18 --- Frequency response
PAAANANNANANA AN AN AAA

n=[0 1 0); % numerator coefficients -- bandpass

% n=[1 0 0]; % numerator coefficients -- highpass
d=[1 1 1); % denominator coefficients

wmax=10; % maximum frequency
[w,Hm,Ha)=freqresp_s(n,d,wmax); % frequency response
splane(n,d) % plotting of poles and zeros

29

function [w,Hm,Hal=freqresp_s(b,a,wmax)
w=0:0.01:wmax;

H=freqs(b,a,w);

Hm=abs (H) ; % magnitude
Ha=angle(H)#*180/pi; % phase in degrees
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The Spectrum Analyzer— Device that measures the spectral characteristics
of a signal

e Implemented as a bank of narrow-band band-pass filters with fixed band-
widths covering the desired frequencies (used for the audio range of the
spectrum)

Input x(t). output of one of bandpass filter with very narrow bandwidth

AQ:

1 Q,+0.5A0
y(t) = / X(2)e M d
{

27 Ja,-0.540

~ ‘,l_asz X ()t

mean square of this signal

1 25, _ (A2 ’ 3
Tfr'”“" dt = (2,7) X (€0)]

proportional to the power or the energy of the signal in 2o+ Af2. A similar
computation can be done at each of the frequencies of the input signal

e Radio frequency spectrum analyzers resemble an AM demodulator

> > Power
LPF measurement ’ PI (0)

. Power
BPF measurement Py ()

x(t)

| BPEy | P | o p oy

measurement
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What have we accomplished?

..&. Unification of frequency representation of periodic and aperiodic signals

..&. Frequency response of LTI systems
..&. Duaiity in time and frequency

..&. Convolution and Fiitering

..&.Connection of Fourier series and Lapiace transform

..&.Inverse time frequency relation

Where dO we gO fI’Ol’l’l here?

.%.Application of Laplace anaiysis and transient response

..&. Application of Fourier anaiysis and steady state response

..&. Filter design

..&. Application of time-frequency relation in sampling theory
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