Signals and Systems Using MATLAB

Luis F. Chaparro

Chapter 4 - Frequency Analysis The Fourier Series

What is in this chapter?

- . Eigenfunctions and LTI systems
 - . Complex and trigonometric Fourier Series
 - Line spectrum: distribution of power over frequency
- . Laplace and Fourier Series
- . Properties of Fourier Series
 - . Response of LTI systems to periodic signals

Eigenfunctions revisited

 $x(t)=e^{j\Omega_0t},\ -\infty < t < \infty,\ input\ to\ causal,\ stable\ LTI\ system\ with\ impulse\ response\ h(t),$ output in steady state is $y(t)=\int_{-\infty}^{\infty}h(\tau)x(t-\tau)d\tau=e^{j\Omega_0t}\int_{-\infty}^{\infty}h(\tau)e^{-j\Omega_0\tau}d\tau=e^{j\Omega_0t}\int_{-\infty}^{\infty}h(\tau)e^{-j\Omega_0\tau}d\tau$

$$y(t) = \int_0^\infty h(\tau)x(t-\tau)d\tau = e^{j\Omega_0 t} \underbrace{\int_0^\infty h(\tau)e^{-j\Omega_0 \tau}d\tau}_{H(j\Omega_0)} = e^{j\Omega_0 t}H(j\Omega_0)$$

frequency response of the system at Ω_0 : $H(j\Omega_0) = \int_0^\infty h(\tau)e^{-j\Omega_0\tau}d\tau$

 $x(t) = e^{j\Omega_0 t}$ is eigenfunction of the LTI system as it appears at both input and output.

Generalization

Periodic

$$x(t) = \sum_{k} X_k e^{j\Omega_k t} \Rightarrow y(t) = \sum_{k} X_k e^{j\Omega_k t} H(j\Omega_k)$$

• Aperiodic

$$x(t) = \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega \quad \Rightarrow \quad y(t) = \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} H(j\Omega) d\Omega$$

Eigenfunction property of a stable LTI system:

For a stable LTI with transfer function H(s):

Input
$$x(t) = A\cos(\Omega_0 t + \theta)$$

steady state output $y(t) = A|H(j\Omega_0)|\cos(\Omega_0 t + \theta + \angle H(j\Omega_0))$
 $H(j\Omega_0) = H(s)|_{s=j\Omega_0}$

Example Find steady-state voltage across capacitor in RC circuit

Phasor Approach: $V_s = 4 \angle \pi/4$ phasor for $v_s(t)$, V_c phasor for $v_c(t)$

voltage division:
$$\frac{V_c}{V_s} = \frac{-j}{1-j} = \frac{-j(1+j)}{2} = \frac{\sqrt{2}}{2} \angle -\pi/4$$

$$V_c = 2\sqrt{2}\angle 0 \implies \text{steady state response } v_c(t) = 2\sqrt{2}\cos(t)$$

Eigenfunction Approach.

$$H(s) = \frac{V_c(s)}{V_s(s)} = \frac{1/s}{1 + 1/s} = \frac{1}{s+1}$$

frequency response at $\Omega_0 = 1$ $H(j1) = \frac{\sqrt{2}}{2} \angle -\pi/4$

eigenfunction property: in steady-state

$$v_c(t) = 4|H(j1)|\cos(t + \pi/4 + \angle H(j1)) = 2\sqrt{2}\cos(t)$$

Example Ideal communication system $y(t) = x(t - \tau)$

Impulse response: $h(t) = \delta(t - \tau)$, τ delay of the transmission

output:
$$y(t) = \int_0^\infty \underbrace{\delta(\rho - \tau)}_{h(\rho)} x(t - \rho) d\rho = x(t - \tau)$$

Frequency response of the ideal communication system

input
$$x(t) = e^{j\Omega_0 t} \Rightarrow \text{output} y(t) = e^{j\Omega_0 t} H(j\Omega_0)$$

but also

$$y(t) = x(t - \tau) = e^{j\Omega_0(t - \tau)}$$

so frequency response at Ω_0 :

$$H(j\Omega_0) = 1e^{-j\tau\Omega_0}$$

Complex Exponential Fourier Series

• Complex functions $\{\psi_k(t)\}$, $t \in [a, b]$, are orthonormal (orthogonal and normalized) if for $\psi_{\ell}(t)$, $\psi_m(t)$, $\ell \neq m$, inner product

$$\int_{a}^{b} \psi_{\ell}(t)\psi_{m}^{*}(t)dt = \begin{cases} 0 & \ell \neq m \\ 1 & \ell = m. \end{cases}$$

• Finite energy $x(t), t \in [a, b]$ approximated by

$$\hat{x}(t) = \sum_{k} a_k \psi_k(t)$$

by minimizing energy of the error function

$$\int_{a}^{b} |\varepsilon(t)|^{2} dt = \int_{a}^{b} \left| x(t) - \sum_{k} a_{k} \psi_{k}(t) \right|^{2} dt$$

with respect to coefficients $\{a_k\}$.

- Fourier proposed sinusoids as the functions $\{\psi_k(t)\}\$ to represent periodic signals
- A periodic signal x(t)
 - is defined for $-\infty < t < \infty$,
 - for integer k, $x(t+kT_0) = x(t)$, where T_0 is the **fundamental period**

The Fourier Series representation of a periodic signal x(t), of period T_0 , is given by

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$
 $\Omega_0 = \frac{2\pi}{T_0}$ fundamental frequency: $\Omega_0 = 2\pi/T_0 (rad/sec)$

where Fourier coefficients X_k are

$$X_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jk\Omega_0 t} dt$$
 $k = 0, \pm 1, \pm 2, \dots, \text{ any } t_0$

Information needed for the Fourier series obtained from any period of x(t)

Line Spectra

- Fourier Series determines frequency components of periodic signal and how power is distributed over the different frequencies present in the signal
- Power spectrum computed and displayed by spectrum analyzer

Parseval's Theorem –Power Distribution over Frequency

Power P_x of periodic x(t), of period T_0 , is

$$P_x = \underbrace{\frac{1}{T_0} \int_{T_0} |x(t)|^2 dt}_{in \ time \ domain} = \underbrace{\sum_k |X_k|^2}_{in \ frequency \ domain}$$

Periodic x(t) is represented in the frequency by its

Magnitude line spectrum $|X_k| vs k\Omega_0$ Phase line spectrum $\angle X_k vs k\Omega_0$

Power line spectrum, $|X_k|^2$ vs. $k\Omega_0$ of x(t) displays distribution of the power of the signal over frequency

Symmetry of Line Spectra

Real-valued periodic signal x(t), of period T_0 , with Fourier coefficients $\{X_k = |X_k|e^{j\angle X_k}\}$ at harmonic frequencies $\{k\Omega_0 = 2\pi k/T_0\}$:

- (i) $|X_k| = |X_{-k}|$, i.e., magnitude $|X_k|$ is even function of $k\Omega_0$
- (ii) $\angle X_k = -\angle X_{-k}$ i.e., phase $\angle X_k$ is odd function of $k\Omega_0$

For real-valued signals display $k \geq 0$

Magnitude line spectrum: plot of $|X_k|$ vs $k\Omega_0$

Phase line spectrum: plot of $\angle X_k$ vs $k\Omega_0$

Trigonometric Fourier Series A real-valued, periodic signal x(t), of period T_0 , is equivalently represented by

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\Omega_0 t + \theta_k)$$

$$= \underbrace{c_0}_{dc} + \sum_{k=1}^{\infty} \underbrace{2[c_k \cos(k\Omega_0 t) + d_k \sin(k\Omega_0 t)]}_{k^{th} - harmonic} \qquad \Omega_0 = \frac{2\pi}{T_0}$$

$$c_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \cos(k\Omega_0 t) dt \qquad k = 0, 1, \cdots$$

$$d_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \sin(k\Omega_0 t) dt \qquad k = 1, 2, \cdots$$

The coefficients $X_k = |X_k|e^{j\theta_k}$ are connected with the coefficients c_k and d_k by

$$|X_k| = \sqrt{c_k^2 + d_k^2}$$
$$\theta_k = -\tan^{-1}\left[\frac{d_k}{c_k}\right]$$

The functions $\{\cos(k\Omega_0 t), \sin(k\Omega_0 t)\}\$ are orthonormal.

Example Find FS of raised cosine signal $(B \ge A)$,

$$x(t) = B + A\cos(\Omega_0 t + \theta)$$

periodic of period T_0 and fundamental frequency $\Omega_0 = 2\pi/T_0$. For $y(t) = 1 + \sin(100t)$ use symbolic MATLAB. Using Euler's identity

$$x(t) = B + \frac{A}{2} \left[e^{j(\Omega_0 t + \theta)} + e^{-j(\Omega_0 t + \theta)} \right]$$
$$= B + \frac{Ae^{j\theta}}{2} e^{j\Omega_0 t} + \frac{Ae^{-j\theta}}{2} e^{-j\Omega_0 t}$$

which gives

$$X_0 = B$$

$$X_1 = \frac{Ae^{j\theta}}{2}$$

$$X_{-1} = X_1^*$$

If $\theta = -\pi/2$

$$y(t) = B + A\sin(\Omega_0 t)$$

Fourier series coefficients $Y_0 = B$ and $Y_1 = Ae^{-j\pi/2}/2$ so that $|Y_1| = |Y_{-1}| = A/2$ and $\angle Y_1 = -\angle Y_{-1} = -\pi/2$

Line spectrum of Fourier series of $y(t) = 1 + \sin(100t)$. Notice the even and the odd symmetries of the magnitude and phase spectra. The phase is $-\pi/2$ at $\Omega = 100$ (rad/sec).

```
function [X, w]=fourierseries(x,T0,N)
%%%%%
% symbolic Fourier Series computation
% x: periodic signal
% TO: period
% N: number of harmonics
% X,w: Fourier series coefficients at harmonic frequencies
%%%%%
syms t
% computation of N Fourier series coefficients
for k=1:N,
    X1(k)=int(x*exp(-j*2*pi*(k-1)*t/T0),t,0,T0)/T0;
    X(k)=subs(X1(k));
    w(k)=(k-1)*2*pi/T0; % harmonic frequencies
end
                             12
```

Fourier Coefficients from Laplace

For periodic x(t), of period T_0 , if

period of
$$x(t)$$
: $x_1(t) = x(t)[u(t_0) - u(t - t_0 - T_0)]$ for any t_0

Fourier coefficients of x(t)

$$X_k = \frac{1}{T_0} \mathcal{L} \left[x_1(t) \right]_{s=jk\Omega_0}$$
 $\Omega_0 = \frac{2\pi}{T_0}$ fundamental frequency

Example Periodic pulse train x(t), of period $T_0 = 1$. Find its Fourier series. This signal

- has dc component of 1,
- x(t) 1 (zero-average signal) is well represented by cosine so the Fourier coefficients will be real

Integral expression for Fourier coefficients:

$$X_k = \frac{1}{T_0} \int_{-1/4}^{3/4} x(t) e^{-j\Omega_0 kt} dt = \int_{-1/4}^{1/4} 2e^{-j2\pi kt} dt = \frac{2}{\pi k} \left[\frac{e^{j\pi k/2} - e^{-j\pi k/2}}{2j} \right] = \frac{\sin(\pi k/2)}{(\pi k/2)}$$

With the Laplace transform,

$$x_1(t) = x(t), -0.5 \le t \le 0.5$$

 $x_1(t - 0.25) = 2[u(t) - u(t - 0.5)]$

Laplace transform:
$$X_1(s) = (2/s)[e^{0.25s} - e^{-0.25s}] \Rightarrow X_k = \frac{2}{jk\Omega_0 T_0} 2j\sin(k\Omega_0/4)$$

For
$$\Omega_0=2\pi$$
, $T_0=1$,
$$X_k=\frac{\sin(\pi k/2)}{\pi k/2} \qquad k\neq 0$$
 dc value or average $X_0=\int_{-1/4}^{1/4}2dt=1$
$$\frac{x(t)}{2} \qquad \cdots \qquad \cdots$$

$$\frac{1}{-1.25-0.75-0.25} \qquad 0.25-0.75-1.25 \qquad t$$
 Period
$$T_0=1 \rightarrow 0$$
 Magnitude line spectrum
$$X_0 = 0$$
 Phase line spectrum
$$X_0 = 0$$
 Or (rad/sec)
$$X_0 = 0$$
 Or (rad/sec)

Period of train of rectangular pulses and its magnitude and phase line spectra.

Notice:

- 1. X_k in terms of the sinc function $\sin(x)/x$ which is
 - even, i.e., $\sin(x)/x = \sin(-x)/(-x)$,
 - value at x = 0 found by f L'Hopital's rule

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{d\sin(x)/dx}{dx/dx} = 1$$

• is bounded,

$$\frac{-1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$$

2. Zero-mean signal

$$x(t) - 1 = \sum_{k = -\infty, k \neq 0}^{\infty} \frac{\sin(\pi k/2)}{(\pi k/2)} e^{jk2\pi t} = 2 \sum_{k=1}^{\infty} \frac{\sin(\pi k/2)}{(\pi k/2)} \cos(2\pi kt)$$

- 3. In general, Fourier coefficients are complex and need to be represented by their magnitudes and phases. In this case, the X_k coefficients are real-valued.
- 4. dc value and 5 harmonics, provide a very good approximation of the pulse train

$$\begin{array}{ccccc} k & X_k = X_{-k} & X_k^2 \\ 0 & 1 & 1 \\ 1 & 0.64 & 0.41 \\ 2 & 0 & 0 \\ 3 & -0.21 & 0.041 \\ 4 & 0 & 0 \\ 5 & 0.13 & 0.016 \end{array}$$

Example Effects of differentiation: Train of triangular pulses y(t), $T_0 = 2$, $\overline{x(t)} = dy(t)/dt$. Compare $|X_k|$ and $|Y_k|$ to determine which is smoother, i.e., which one has lower frequency components.

Period of y(t) in $-1 \le t \le 1$

$$y_1(t) = r(t+1) - 2r(t) + r(t-1)$$
$$Y_1(s) = \frac{1}{s^2} \left[e^s - 2 + e^{-s} \right]$$

FS coefficients:
$$Y_k = \frac{1}{T_0} Y_1(s)|_{s=j\Omega_o k} = \frac{1 - \cos(\pi k)}{\pi^2 k^2} = \frac{1 - (-1)^k}{\pi^2 k^2}$$
 $k \neq 0$

Observing y(t) we deduce its dc value is $Y_0 = 0.5$.

Periodic signal x(t) = dy(t)/dt, dc $X_0 = 0$,

$$x_1(t) = u(t+1) - 2u(t) + u(t-1), -1 \le t \le 1$$

$$X_1(s) = \frac{1}{s} \left[e^s - 2 + e^{-s} \right]$$

$$\sin^2(k\pi/2)$$

FS coefficients:
$$X_k = \frac{\sin^2(k\pi/2)}{k\pi/2}j$$

- Frequency components of y(t) decrease in magnitude faster than the corresponding ones of x(t), thus, y(t) is smoother than x(t)
- y(t) is even and its Fourier coefficients Y_k are real, while x(t) is odd and its Fourier coefficients X_k are purely imaginary.

Example Effect of integration: compare the magnitude line spectra of a saw-tooth signal x(t), of period $T_0 = 2$, and its integral

- Integral would not exist if the d.c. is not zero
- The signal y(t) is smoother than x(t); y(t) is a continuous function of time, while x(t) is discontinuous

Convergence of the Fourier Series

Fourier series of a piecewise smooth (continuous or discontinuous) periodic signal

x(t) converges for all values of t.

Dirichlet conditions: Fourier series converges to the periodic signal x(t), if signal is

- 1. absolutely integrable,
- 2. has a finite number of maxima, minima and discontinuities.

FS equals x(t) at every continuity point and equals the average

$$0.5[x(t+0+) + x(t+0-)]$$

of the right-hand limit x(t+0+) and the left-hand limit x(t+0-) at every discontinuity point. If x(t) is continuous everywhere, then the series converges absolutely and uniformly.

Example Gibb's phenomenon: approximate train of pulses x(t) with zero mean and period $T_0 = 1$ with a Fourier series $x_N(t)$ with $N = 1, \dots, 20$

- Discontinuities cause Gibb's phenomenon
- Even if N is increased, there is an overshoot around the discontinuities

Approximate Fourier series $x_N(t)$ of the pulse train x(t) (discontinuous) using the dc component and 20 harmonics. The approximate $x_N(t)$ displays the Gibb's phenomenon around the discontinuities.

Time and Frequency Shifting

Time-shifting: A periodic signal x(t), of period T_0 , remains periodic of the same period when shifted in time. If X_k are the Fourier coefficients of x(t), the Fourier coefficients for $x(t-t_0)$ are

$$\{X_k e^{-jk\Omega_0 t_0} = |X_k| e^{j(\angle X_k - k\Omega_0 t_0)}\}$$

(only a change in phase is caused by the time shift) since

$$x(t) = \sum_{k} X_k e^{jk\Omega_0 t}$$

$$x(t - t_0) = \sum_{k} X_k e^{jk\Omega_0(t - t_0)} = \sum_{k} [X_k e^{-jk\Omega_0 t_0}] e^{jk\Omega_0 t}$$

Frequency-shifting: A periodic signal x(t), of period T_0 , modulates a complex exponential $e^{j\Omega_1 t}$,

- the modulated signal $x(t)e^{j\Omega_1t}$ is periodic of period T_0 if $\Omega_1 = M\Omega_0$, for an integer $M \ge 1$,
- the Fourier coefficients X_k are shifted to frequencies $k\Omega_0 + \Omega_1$
- the modulated signal is real-valued by multiplying x(t) by $\cos(\Omega_1 t)$.

Application in communications

Example Modulate a sinusoid $\cos(20\pi t)$ with a train of square pulses

$$x_1(t) = 0.5[1 + sign(\sin(\pi t))]$$

and with a sinusoid

$$x_2(t) = \cos(\pi t)$$

Use fourierseries to find FS of modulated signals and to plot their magnitude line spectra

$$sign(x(t)) = \begin{cases} -1 & x(t) < 0\\ 1 & x(t) \ge 0 \end{cases}$$

i.e., it determines the sign of the signal

```
% Example 4.12 --- Modulation
%
syms t
T0=2;
m=heaviside(t)-heaviside(t-T0/2);
m1=heaviside(t)-heaviside(t-T0);
x=m*cos(20*pi*t);
x1=m1*cos(pi*t)*cos(20*pi*t);
[X,w]=fourierseries(x,T0,60);
[X1,w1]=fourierseries(x1,T0,60);
```


Response of LTI Systems to Periodic Signals

Eigenfunction Property of LTI Systems: Steady state response to a complex exponential (or a sinusoid) of a certain frequency is the same complex exponential (or sinusoid), but its amplitude and phase are affected by the frequency response of the system at that frequency.

Steady State Response

If input x(t) of a causal and stable LTI system, with impulse response h(t), is periodic of period T_0 and FS

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\Omega_0 t + \angle X_k) \qquad \Omega_0 = \frac{2\pi}{T_0}$$

steady-state response of the system is

$$y(t) = X_0 |H(j0)| \cos(\angle H(j0)) + 2\sum_{k=1}^{\infty} |X_k| |H(jk\Omega_0)| \cos(k\Omega_0 t + \angle X_k + \angle H(jk\Omega_0))$$

$$H(jk\Omega_0) = \int_0^\infty h(\tau)e^{-jk\Omega_0\tau}d\tau \quad frequency \ response \ atk\Omega_0$$

input sinusoid ss output sinusoid of same frequency

Convolution simulation. Top figure: input x(t) (solid line) and $h(t-\tau)$ (dashed line); bottom figure: output y(t) transient and steady-state response.

• If x(t) is a combination of sinusoids of frequencies not harmonically related, thus not periodic, the eigenfunction property still holds

$$x(t) = \sum_{k} A_k \cos(\Omega_k t + \theta_k) \implies y_{ss}(t) = \sum_{k} A_k |H(j\Omega_k)| \cos(\Omega_k t + \theta_k + \angle H(j\Omega_k))$$

• If LTI system is represented by a differential equation and the input is a sinusoid, or combination of sinusoids, it is not necessary to use the Laplace transform to obtain the complete response and then let $t \to \infty$ to find the sinusoidal steady-state response. Laplace transform only needed to find the transfer function of the system, which can then be used in steady state equation

Example A zero-mean pulse train

$$x(t) = \sum_{k=-\infty, \neq 0}^{\infty} \frac{\sin(k\pi/2)}{k\pi/2} e^{j2k\pi t}$$

is source of an RC circuit (a low-pass filter, i.e., a system that keeps the low-frequency harmonics and get rid of the high-frequency harmonics of the input)

$$H(s) = \frac{1}{1 + s/100}$$

magnitude and phase at harmonic frequency

Reflection and Even and Odd Periodic Signals

<u>Reflection:</u> If FS coefficients of periodic x(t) are $\{X_k\}$ then those of x(-t), are $\{X_{-k}\}$. <u>Even periodic signal x(t): X_k are real, its trigonometric Fourier series is</u>

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} X_k \cos(k\Omega_0 t)$$

Odd periodic signal x(t): X_k are imaginary, and its trigonometric Fourier series is

$$x(t) = 2\sum_{k=1}^{\infty} jX_k \sin(k\Omega_0 t)$$

Any periodic signal $x(t) = x_e(t) + x_o(t)$, where $x_e(t)$ and $x_o(t)$ are the even and odd component of x(t) then

$$X_k = X_{ek} + X_{ok}$$

where $\{X_{ek}\}$ are the Fourier coefficients of $x_e(t)$ and $\{X_{ok}\}$ are the Fourier coefficients of $x_o(t)$.

Example Determine Fourier coefficients of x(t) and y(t) by using symmetry conditions and even and odd decompositions.

x(t) is neither even nor odd, but x(t+0.5) is even of period $T_0=2$

$$x_1(t+0.5) = 2[u(t+0.5) - u(t-0.5)], -1 \le t \le 1$$

$$X_1(s)e^{0.5s} = \frac{2}{s} \left[e^{0.5s} - e^{-0.5s} \right]$$

$$X_k = \frac{1}{2} \frac{2}{jk\pi} \left[e^{jk\pi/2} - e^{-jk\pi/2} \right] = \frac{1}{0.5\pi k} \sin(0.5\pi k) e^{-jk\pi/2}$$

which are complex as correspond to a signal that is neither even nor odd. The dc coefficient is $X_0 = 1$

For y(t) its even-decomposition is

Signal y(t) neither even nor odd, cannot be made even or odd by shifting Even and odd components of period $y_1(t)$, $-1 \le t \le 1$:

$$y_{1e}(t) = \underbrace{[u(t+1) - u(t-1)]}_{\text{rectangular pulse}} + \underbrace{[r(t+1) - 2r(t) + r(t-1)]}_{\text{triangle}}$$

$$y_{1o}(t) = t[u(t+1) - u(t-1)] = [(t+1)u(t+1) - u(t+1)] - [(t-1)u(t-1) + u(t-1)] = r(t+1) - r(t-1)u(t-1)$$

Even component

$$Y_{e0} = 1.5$$

$$Y_{ek} = \frac{1}{T_0} Y_{1e}(s) |_{s=jk\Omega_0} = \frac{1}{2} \left[\frac{1}{s} (e^s - e^{-s}) + \frac{1}{s^2} (e^s - 2 + e^{-s}) \right]_{s=jk\pi}^{s=jk\pi}$$

$$= \frac{\sin(k\pi)}{\pi k} + \frac{1 - \cos(k\pi)}{(k\pi)^2} = 0 + \frac{1 - \cos(k\pi)}{(k\pi)^2} = \frac{1 - (-1)^k}{(k\pi)^2} \quad k \neq 0$$

Odd component

$$Y_{ob} = 0$$

$$Y_{ok} = \frac{1}{T_0} Y_{1o}(s) |_{s=jk\Omega_0} = \frac{1}{2} \left[\frac{e^s - e^{-s}}{s^2} - \frac{e^s + e^{-s}}{s} \right]_{s=jk\pi}$$

$$= -j \frac{\sin(k\pi)}{(k\pi)^2} + j \frac{\cos(k\pi)}{k\pi} = j \frac{\cos(k\pi)}{k\pi} = j \frac{(-1)^k}{k\pi} \quad k \neq 0$$

Fourier series coefficients of y(t):

$$Y_k = \begin{cases} Y_{e0} + Y_{o0} = 1.5 + 0 = 1.5 & k = 0 \\ Y_{ek} + Y_{ok} = (1 - (-1)^k)/(k\pi)^2 + j(-1)^k/(k\pi) & k \neq 0 \end{cases}$$

What have we accomplished?

- Sinusoidal representation of periodic signals
- Eigenfunction property of LTI systems
 - Response of LTI systems to periodic signals
 - Connection of Fourier series and Laplace transform

Where do we go from here?

- Extension of Fourier representation for aperiodic signals
- Unification of spectral theory for periodic and aperiodic signals
- Convolution and frequency response of LTI systems
- Connection of Laplace and Fourier transforms