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Chapter 4 - Frequency Analysis

The Fourier Series



What is in this Chapter?

..&.Eigenfunctions and LTI systems

..&.Complex and trigonometric Fourier Series

..&. Line spectrum: distribution of power over frequency

..&. Laplace and Fourier Series

..&.Properties of Fourier Series

..&. Response of LTI systems to periodic signals



Eigenfunctions revisited

x(t) = 7!, —00 < t < oo, input to causal, stable LTI system with impulse response h(t),
output in steady state is

y(t) = ] h(T)x(t — 7)dT = ejQ"‘/ h(T)e 707 dr = eI (500)
0 0

>

"

H (j%0)

= o
frequency response of the system at Qo : H(j) = / h(t)e %7 dr
0

x(t) = e/t is eigenfunction of the LTI system as it appears at both input and output.

Generalization

e Periodic

;L‘(t):Z:Xk(’,j“kt = y(t) = ZXk(jjszkl’H(ij)
k k

e Aperiodic

2(t) = f T X(Q)E%d0 = y(t) = [ X Q) H ()
—00 -0



Eigenfunction property of a stable LTI system:

For a stable LTI with transfer function H(s):
Input x(t) = Acos(Q2ot + 0)
steady state output y(t) = A|H(jQ0)|cos(Q2t + 60 + LH(j€2))
H(j) = H(s)|s=j0,

Example Find steady-state voltage across capacitor in RC circuit

10 _‘% 1 _,%
+ +
200 e

+
IF 7K vc(t) —j 7R V.
vs(t) = 4cos(t + w/4) - -

Phasor Approach: Vi = 447 /4 phasor for vs(t), V. phasor for v.(t)

i il
voltage division: %‘ = 1—Jj _ J(2+ Jj) _ ?4—17/4

V. =2V2/0 = steady state response v.(t) = 2v/2cos(t)




Eigenfunction Approach.

V.(s) /s 1

Vi(s)  14+1/s s+1

H(s) =
V2

frequency response at Qy =1 H(j1) = ?Z—ﬂ/ 4

eigenfunction property: in steady-state

ve(t) = 4|H(j1)| cos(t + w/4 + ZH(j1)) = 2v2cos(t)

Example Ideal communication system y(t) = x(t —7)

z(t) y(t)
Transmitter | Channel e Receiver —>

Impulse response: h(t) = §(t — 7), 7 delay of the transmission

o0
output: y(t) = / Mp—T1)a(t—p)dp = z(t —7)
0 N=——

h(p)
Frequency response of the ideal communication system

input z(t) = /%' = outputy(t) = ** H(jQp)

but also |
y(t) = .”E(t - T) — eJQn(L—r)

so frequency response at 2:

H(j<p) = le /7%



Complex Exponential Fourier Series

e Complex functions {¢y(t)}, t € [a,b], are orthonormal (orthogonal and
normalized) if for ¢y (t), 1, (1), £ # m, inner product

b
. 0 £#m
Oe(D* () dt =
/; e (), (t)dt { |l =m.
e Finite energy z(t), t € [a,b] approximated by
x(t) = Zaklf"fk(t)
k
by minimizing energy of the error function

b ‘ b
/ |€(t)|2dt=/

with respect to coefficients {ay }.

2
dt

x(t) — Z apy(t)

k

e Fourier proposed sinusoids as the functions {¢(t)} to represent periodic
signals

e A periodic signal x(t)

— is defined for —oo < t < o0,
— for integer k, z(t+kTy) = x(t), where T is the fundamental period
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The Fourier Series representation of a periodic signal x(t), of period Ty, is given by

" . 5
z(t) = Z X e7k8t Qy = %{: fundamental frequency: €y = 2w /Ty (rad/sec)

k=—00
where Fourier coefficients X are

1 to+To _
Xg = T f :z:(t)e_J"'Q”‘dt k=0,£1,£2,---, anyty
0

lo

Information needed for the Fourier series obtained from any period of x(t)

Line Spectra

e Fourier Series determines frequency components of periodic signal and how
power is distributed over the different frequencies present in the signal

e Power spectrum computed and displayed by spectrum analyzer

Parseval’s Theorem —Power Distribution over Frequency
Power P, of periodic x(t), of period Ty, is

1 .
Pr=— [ |z()|?dt = Xyle
== T TDI()I Ekﬁl |
N ~ -

in time domain iy frequency domain
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Periodic x(t) is represented in the frequency by its
Magnitude line spectrum | X k| vs kS

Phase line spectrum LX) vs kY

Power line spectrum, | Xy|? vs. kS of x(t) displays distribution of the power of the
signal over frequency

Symmetry of Line Spectra
Real-valued periodic signal z(t), of period Ty, with Fourier coefficients {X) =
| X5 |e?4Xk} at harmonic frequencies {kQo = 27k [Ty}

(1) | Xk| = |X_k|, i.e., magnitude | X;| is even function of kS
(1) £ Xp =—4X_j t.e., phase £X}. is odd function of k€

For real-valued signals display k > 0
Magnitude line spectrum: plot of | X | vs k€
Phase line spectrum: plot of ZX;. vs k€




Trigonometric Fourier Series A real-valued, periodic signal x(t), of period T,
s equivalently represented by

z(t) = Xo+2 z | X 1| cos(kQpt + 61)
je==1
= 27
= ¢ 2(ep. cos(kQt) + dj. sin( kSt Qy = —
\2/4-’“2::1\[& ( 0);*- e sin( o)l 0= 7
dc kth —harmonic
1 to+To
Ck = — x(t) cos(kQot) dt k=0,1,---
T(] tU
1 to+To
dy, = — x(t) sin(kQot) dt k=1,2,---
TO to

The coefficients X = | Xi|e?? are connected with the coefficients ci. and dj, by

|XA-| = \/(ti =+ df

0 = — tan™! [d—k]

Ck

The functions {cos(kQqt), sin(kQot)} are orthonormal.
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Example Find FS of raised cosine signal (B > A),
x(t) = B+ Acos(Qot + 0)

periodic of period T and fundamental frequency Qo = 27/T,. For y(t) =
1 + sin(100t) use symbolic MATLAB.
Using Euler’s identity

B + é [cj(90t+0) + C—j($20t+0)]
2
0 o
B + A%chﬂot + Ae‘ch—ont

x(t)

which gives

Xo=B

Aed?
Xl — 9

X_, =X

If0=—m/2
y(t) = B + Asin(Qpt)

Fourier series coefficients Yy = B and Y, = Ae 7™/2/2 so that |Yi| = |Y_1| =
A/2 and £Y) = —4Y_ 1 = —7/2
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Line spectrum of Fourier series of y(t) = 1+ sin(100t). Notice the even and
the odd symmetries of the magnitude and phase spectra. The phase is —7/2 at
Q=100 (rad/sec).

function [X, w]l=fourierseries(x,TO,N)
YANAAA
% symbolic Fourier Series computation
% x: periodic signal
% TO: period
% N: number of harmonics
% X,w: Fourier series coefficients at harmonic frequencies
YANANA
syms t
% computation of N Fourier series coefficients
for k=1:N,
X1(k)=int (x*exp(-j*2*pi*(k-1)*t/T0),t,0,T0)/TO;
X(k)=subs(X1(k));
w(k)=(k-1)*2%pi/TO; % harmonic frequencies
end 12



Fourier Coefficients from Laplace
For periodic x(t), of period Ty, if

period of z(t) : x1(t) = x(t)[u(te) — u(t — to — To)) for any t
Fourier coefficients of x(t)

27

1
Xk — 7—_,0»6 [wl (t)]3=ij(, QO - T()

fundamental frequency

Example Periodic pulse train x(%), of period T; = 1. Find its Fourier series.
This signal

e has dc component of 1,

e z(t) — 1 (zero-average signal) is well represented by cosine so the Fourier
coefficients will be real

Integral expression for Fourier coefficients:

L kg [ jamke,, 2 [€0™/2—eI™R/2) sin(nk/2)
Xy = x(t)e dt = 2e dt = . =
To J 14 ~1/4 mk 2) (mk/2)

With the Laplace transform,
xy(t) =x(t), —0.5<t<0.5
a1 (t —0.25) = 2[u(t) — u(t — 0.5)]

-4 5 2
Laplace transform: X;(s) = (2/5)[e”%%% — 025 = X = - 27 sin(k€Q/4)
Jk?QoTo

IA
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For Qo = 271', T() = 1,

sin(7k/2)
X = —— k#0
wk/2
1/4
dc value or average X, = / 2dt = 1
-1/4
z(t) 5
2
-125 —0.75 -025| 025 o075 125 ¢
f— T;) =1 —sf
Period
2
1.5
£
b
0.5
0
0 0.2 04 06 0.8 1
t
- Magnitude line spectrum . Phase line spectrum
0.8 3
0.6
= 2
0.2 i
0
0 50 100 0 50 100
Q (rad/sec) Q (rad/sec)

Period of train of rectangular pulses and its magnitude and phase line spectra.
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Notice:

1. X} in terms of the sinc function sin(x)/2 which is

sin(x 9/t
e even, i.e., sin(z)/x = sin(—z)/(—x), 1
e value at x = 0 found by f L'Hopital’s rule " Al
. [
. sin(x) . dsin(z)/dx os a
lim = lim ———— =1 [
=0 I a0 dx/dx - [
[ '.
. 2 i
e is bounded, ’ P
-1 . sin(x) - L VL VAVAY
€ a €T - xr =02 \/
2. Zero-mean signal 0w & w2 o

fo’] bln("rk/z) k2t bln ﬂ"\;/2
e TRy ¢ 2 s(2rkt
x(t) k=_§k¢0 (wk/2) Z (nk/2) cos(2mkt)

3. In general, Fourier coefficients are complex and need to be represented by
their magnitudes and phases. In this case, the X} coefficients are real-
valued.

4. dc value and 5 harmonics, provide a very good approximation of the pulse

train

ko Xp=X_; X}
0 1 1

1 0.64 0.41
2 0 0

3 —0.21 0.041
4 0 0
) 0.13 0.016
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Example Effects of differentiation: Train of triangular pulses y(t), Ty = 2,
x(t) = dy(t)/dt. Compare |X| and |Y;| to determine which is smoother, i.e.,
which one has lower frequency components.

Period of y(f) in —1 < <1

p(t)=rt+1)=2rt)+r(t—-1)
Yi(s) = % [e* —2+ e

1 —cos(mk) 1—(=1)F
2k2 g2k2

1
FS coefficients: Y = FYl(s)|s=onk = k#0
0

Observing y(t) we deduce its de value is Yy = 0.5.
Periodic signal x(t) = dy(t)/dt, dc Xy = 0,
ri(t) =u(t+1) —2u(t) +u(t—1),-1 <t <1
1
Xi(s)=~-|[e*—=2+¢"*
1(s) . [0 +e ]

sin? (km/2)
kr /2

.
/

FS coefficients: X = j

e Irequency components of y(t) decrease in magnitude faster than the cor-
responding ones of z(t), thus, y(¢) is smoother than x(t)

e y(t) is even and its Fourier coefficients Y}, are real, while x(¢) is odd and
its Fourier coefficients X are purely imaginary.
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y(t) 2(t) = 2=
, @
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Example Effect of integration: compare the magnitude line spectra of a saw-
tooth signal x(t), of period T, = 2, and its integral

y(t) = /:L'(t)dt

«(t) v(0) = [ s

Porod Period
1 05
0.5 / 0.4
% 0 = 0.3
05 / iz
0.1
-1 O

t t

0.4 2 0.4 4

0.3 1 0.3 3
gy -_ x
x* 0.2 5 e 0.2n 2

0.1 TT -1 0.1 T 1

???QOOooonmnﬁ-.._ ,,,,,,,,, é -
m| L1111l 111 ITTTIYYYVYY - I IQQQOOOOW' |B—LGM
0 20 40 60 % 20 40 60 % 20 40 60 0 20 40
Q@ Q Q Q

e Integral would not exist if the d.c. is not zero

e The signal y(t) is smoother than x(¢); y(¢) is a continuous function of
time, while z(t) is discontinuous
18




Convergence of the Fourier Series
Fourier series of a piecewise smooth (continuous or discontinuous) periodic signal

x(t) converges for all values of t.
Dirichlet conditions: Fourier series converges to the periodic signal x(t), if signal
is

1. absolutely integrable,

2. has a finite number of maxima, minima and discontinuities.

FS equals x(t) at every continuity point and equals the average
0.5(z(t + 0+) + z(t + 0—)]

of the right-hand limit x(t + 0+4) and the left-hand limit x(t + 0—) at every discon-
tinuity point. If x(t) is continuous everywhere, then the series converges absolutely
and uniformly.

Example Gibb’s phenomenon: approximate train of pulses x(#) with zero mean
and period Ty = 1 with a Fourier series xn (¢) with N =1,---,20

e Discontinuities cause Gibb’s phenomenon

e Even if N is increased, there is an overshoot around the discontinuities

19




0 0.2 0.4 0.6 0.8
t (sec)
Approximate Fourier series xn(t) of the pulse train x(t) (discontinuous) using
the dc component and 20 harmonics. The approrimate x (1) displays the Gibb’s
phenomenon around the discontinuities.
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Application in

communications

Time and Frequency Shifting

Time-shifting: A periodic signal x(t), of period Ty, remains periodic of the same period when
shifted in time. If Xy are the Fourier coefficients of x(t), the Fourier coefficients for x(t—tp)
are

{Xke—jkﬂoto - |Xk|ej(éxk —kQOtn)}

(only a change in phase is caused by the time shift) since

Z(t) = ZXkej‘mO‘
k

:c(t — to) — Z Xkejkﬂo(t—to) — Z [Xkc—jkﬂuto] IR0t
k k

Frequency-shifting: A periodic signal x(t), of period Ty, modulates a complex exponential
It

o the modulated signal x(t)e’*'! is periodic of period Ty if Q@ = MSYy, for an integer
M>1,

e the Fourier coefficients X} are shifted to frequencies k€ + £y
e the modulated signal is real-valued by multiplying x(t) by cos({t).

Example Modulate a sinusoid cos(207t) with a train of square pulses

x1(t) = 0.5[1 + sign(sin(wt)]

and with a sinusoid

xo(t) = cos(wt)

21




Use fourierseries to find FS of modulated signals and to plot their magnitude
line spectra

. o[ -1 z()<o0
sign(xz(t)) = { 1 z(t) >0

i.e., it determines the sign of the signal

% Example 4.12 --- Modulation

A

syms t

T0=2;
m=heaviside(t)-heaviside(t-T0/2);
ml=heaviside(t)-heaviside(t-TO);
x=m*cos (20*pix*t) ;
x1=mix*cos(pix*t)*cos(20*pixt) ;
[X,w]l=fourierseries(x,T0,60);
[X1,wl]=fourierseries(x1,T0,60);

2_0}% a..oé J' } 'r
x“’j’ x—O_S J\l lnill ‘ J i 7|
0 : X @ t .

X,

50 100 150




Response of LTI Systems to Periodic Signals

Eigenfunction Property of LTI Systems: Steady state response to a complex exponen-
tial (or a sinusoid) of a certain frequency is the same complex exponential (or sinusoid),

but its amplitude and phase are affected by the frequency response of the system at that
frequency.

Steady State Response

If input x(t) of a causal and stable LTI system, with impulse response h(t), is periodic of
period Ty and FS

o(t) = Xo+2 Y | Xi|cos(kQot + £Xi) Q= 1
k=1 To

steady-state response of the system is

o0
y(t) = Xo|H(j0)| cos(ZH (j0)) + 2 ) | Xy || H (k)| cos(kQot + £ Xy + ZH(jkp))
k=1

oo
H(jk8)) = / h(7)e 7*%7dr  frequency response atkS)
0

10 ]

_ " ]

i 5 W1 'y

:E, \ "l' 'l i

: T

A =B l i input sinusoid
-10L - '

0 0.5 ‘1 1. ss output sinusoid
0 of same frequency
-
¥ 0
> 05

0 05 1 15 2

t

Convolution simulation. Top figure: input x(t) (solid line) and h(t — ) (dashed
line); bottom figure: output y(t) transient and steady-state response.



e If 2(7) is a combination of sinusoids of frequencies not harmonically related,
thus not periodic, the eigenfunction property still holds

2(t) =Y Agcos(Qut +6k) = yus(t) =Y Ap[H(jQ%)| cos(Qut + O + ZH(jQ))
k k

4 )

e If LTI system is represented by a differential equation and the input is a
sinusoid, or combination of sinusoids, it is not necessary to use the Laplace
transform to obtain the complete response and then let ¢ — o¢ to find the
sinusoidal steady-state response. Laplace transform only needed to find
the transfer function of the system, which can then be used in steady state
equation

Example A zero-mean pulse train

= sin(kw/2) ...
(1) = Z sin(kw/ )ejzkrrt

k=—00,#0 kﬂ-/2

is source of an RC circuit ( a low-pass filter, i.e., a system that keeps the low-
frequency harmonics and get rid of the high-frequency harmonics of the input)

1

H(s) = ——
(%) = 1557100
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magnitude and phase at

harmonic frequency

x(1), y(t)

Ha(j)!

0.5

0.4}

0.3

02f

0.1p

=0.1F

y

i
-

20 40 60 80 100

20 40 60 80 100
Q (rad/sec)

— input

output

i i { i " |
0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8

t(sec)
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Reflection and Even and Odd Periodic Signals
Reflection: If FS coefficients of periodic x(t) are { X} then those of x(—t), are {X_}.
Even periodic signal x(t): X} are real, its trigonometric Fourier series is

z(t) = Xo + 2 Z X cos(kS2pt)

k=1

Odd periodic signal x(t): X are imaginary, and its trigonometric Fourier series is

(s @)
z(t) =2 jXisin(kQot)

k=1

Any periodic signal x(t) = x.(t) + x,(t), where x.(t) and z,(t) are the even and odd
component of x(t) then
Xt = Xek + Xok

where { X} are the Fourier coefficients of x.(t) and { X} are the Fourier coefficients of
A 4
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Example Determine Fourier coefficients of z(¢) and y(¢) by using symmetry
conditions and even and odd decompositions.

A x(t)
2
>
. =1 0 1 9 3
5 A y(t)
>
9 -1 0 1 2 3
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z(t) is neither even nor odd, but z(t + 0.5) is even of period T, = 2

x1(t +0.5) = 2[u(t + 0.5) — u(t — 0.5)], -1<t<1
2 .
X (s J().Ss = )U.‘)s - J—().Ss
1(s)e . [0 e ]
]. 2 =1, v “1. v “1. w
Xp == [e?k7/2 — e=3km/2] = sin(0.5mk)e~7+7/2

0.5k

2 jkm
which are complex as correspond to a signal that is neither even nor odd. The

dec coefficient is Xy = 1

For y(t) its even-decomposition is

elf) 1o(t)
A
2 A
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Signal y(#) neither even nor odd, cannot be made even or odd by shifting
Even and odd components of period y,(t), —1 <t < 1:

yie(t) = [u(t +1) —u(t = 1)+ [r(t +1) = 2r(t) + r(t - 1)]

rcctanglﬁar pulse triangle
yo(t) =tu(t+1) —u(t—=1)]=[t+ Du(t+1) —u(t+ 1) = [t —Du(t=1)+u(t—1)=rt+1) —r(t-

Even component

Yoo = 15
) 171 =r(t-|il)—r(t—1)—u( +1)—u(t-1)
Yo = TOYIE(S) |s=jkee = 5 ;(es —e %)+ 3—2(93 —2+e7) e
sin(kw) 1 — cos(km) 1 —cos(km) 1—(=1)F
-_ — —_ k
e e R (o Gz K70
Odd component
Yoo = =0
1 lle?—e ™ e*+e "
Yo* = = 110\3) |s=jk = 3 : -
k TO Yl (b) I 1kQ0 2 '5_2 S oo
- sin(kw) ~ .cos(kw) . cos(km) (=1)*
- J(kTr)Q TJ ke 0 ke ) T ka k#0
Fourier series coefficients of y(1):
Vi — Yoo+ Y=15+0=15 k=0
CT Yer +Yor = (1= (=DF)/(kn)? +j(=1)}/(kx) k#0 O
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What have we accomplished?
..&. Sinusoidal representation of periodic signals
& Eigenfunction property of LTI systems
..&. Response of LTI systems to periodic signals
..&.Connection of Fourier series and Laplace transform

..&.Inverse time frequency reiation

Where dO we gO from here?
..&.Extension of Fourier representation for aperiodic signals
..&. Unification of spectral theory for periodic and aperiodic signals
..&. Convolution and frequency response of LTI systems

..é. Connection of Lapiace and Fourier transforms
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