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Chapter 3 - The Laplace Transtorm



What is in this chapter?

..&.Definition of Laplace transform

..&.Properties of Laplace transform

..&. Inverse Laplace transform

..&. Convolution sum and Laplace
..&.Analysis of LTI systems using Laplace transform

..&. Convolution integral

.%. System interconnection



Signals and LTI systems

INPUT LTI OUTPUT
> System —>
z(t) = / x(7)o(t — 7)dt h(t) y(t) = / z(7)h(t — 7)dT
—00 — 00

- / xz(t — 7)h(7)dT

Impulse response:

Input: 6(¢), IC=0 = h(t)
Linearity:
xz(7)0(t) = z(7)h(t)
Time-invariance:
z(1)o(t — 1) = x(T)h(t — 1)

Linearity (superposition):

/_Z x(7)o(t — 7)dT

A >4

z(t)

z(7)h(t — 7)dT




Eigenfunctions of LTI Systems

LTT system with A(t) (impulse response), input
.’L(t) = e%ot so = og + j8 —00 <t <00

convolution integral:
y(t) = / h(m)z(t — 7)dr
— 0o
0 o0
— / h(T)eSu(t—T)dT — esut / h(T)e—Ts(,dT
o ~—

(1) — ,

—

[1(3())

Same exponential at the input appears at the output, z(t) = e**! is called an
eigenfunction

LTI System
2(t) = et y(t) = x(t) H(so)




Laplace transform

The two-sided Laplace transform of a continuous—time function f(t) is
F(s) = L[f(t)] = / f(t)e=*tdt s € ROC

where the variable s = o + jQ, with  frequency in rad/sec and o a damping factor.
ROC stands for the region of convergence, i.e., where the integral exists.

The inverse Laplace transform is given by
1 o+300
f@t) = L7 [F(s)] = %/ F(s)e**ds o € ROC




Example Wireless communications: “multi-path” effect

(817

— Delay 1y

Delay tl

| Delay tn

y(t) = apx(t — to) + arz(t —t1) + - + ayz(t — tn)
Response of multi-path system to z(t) = e* is y(t) = z(t)H(s) so
x(t)H(s) = z(t) [ape ™" 4+ -+ + ane V]
Channel system function:
H(s) = ape ™" 4 -« + aye 5t~

Notice: time shifts became exponentials in Laplace domain
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Examples of different types of signals:

(a) non-causal finite support signal x,(t),

(b) causal finite support signal x(t),

(¢) non-causal infinite support signal x3(t), and
(d) causal infinite-support x4(t).



Poles and Zeros

Rational function
F(s) = L[f(t)] = N(s)/D(s)

zeros of F(s): values of s that make F(s) =0
poles of F(s) values of s that make F(s) — oc.

Example

F(s) = 2(s°+1) _ 2(s+4)(s—4) _ 2(s +7)(s — J4)
$2+25+5 (s+1)2+4  (s+1+2j)(s+1-2))

zeros $12 = +j, roots of N(s) =0, F(+j) =0
poles 51 2 = —1 £ 27, roots of D(s) =0, F(—1%2j) — o0

Three




Poles and Region of Convergence

ROC: values of o such that

| / x(t)e™*tdt

e No poles are included in the ROC

< / 2(t) ||~V |t = f l2(8)]e="tdt < oo

—00

e The ROC is a plane parallel to the jQ-axis

i

(a) (b)

o

(d)

a

i

i
X
X

ROC for (a) causal signal with poles with 0,4, = 0; (b) causal signal with poles
with 0 ez < 0; (¢) anti-causal signal with poles with ¢, > 0; (d) two-sided
or noncausal signal where ROC is bounded by poles (poles on left-hand plane
give causal component and poles on the right-hand s-plane give the anti-causal
component of the signal) 10




e Not all rational functions have finite number of poles/ zeros

Possible pole s = 0

Zeros: let e —e™° =0, or

€2 = 1 = 27k k=0,+1,42 -

zeros: s = jmk, k= 0,%£1,+2, -
For k = 0, zero cancels pole at zero. P(z) has infinite number of zeros, no
poles.

The Laplace transform of a

o Finite support function, i.e., f(t) =0 fort <t, andt > tg, fort, < ts,
LI = LIFO)u(t — t1) —u(t — t2)]]  whole s-plane
e Causal function, i.e., f(t) =0 fort <0, is
LIft)u(t)]  Re={(0,9):0>max{o;}, —co < < o0}
o Anticausal function, i.e., f(t) =0 fort >0, is
LIfFMu(—t)]  Rae={(0.9) : ¢ < min{o;}, —00 < Q < o0}
o Non-causdl, i.e., f(t) = fac(t) + fc(t) = f(t)u(=t) + f(t)u(t), is
LIF )] = L[fac®u®)](-s) + LI[fe@)u®t)]  Re[)Rac

11




One-sided Laplace Transform

One-sided Laplace transform:

P) = Llf (0] = [ fOue

)

f(t) either causal or made causal by multiplying it by u(t).

Example Find the Laplace transform of o(¢), u(t) and a pulse p(t) = u(t) —
u(t —1). Use MATLAB also

e §(1):

L[o(t)] =/ .5(t)e_“‘tdt =] S(t)e *0dt =[ o(t)dt ROC: whole s-plane

—00 —00

o u(t):

oo

U(s) = L[u(t)] = / u(t)e tdt = /OO e Stdt = /Ooe‘”te_jmdt

— 00 0 0

If o > 0, integral converges as e~ 7%, ¢t > (0 decays, then

c—-st -
U(s) = __S|t=u =

ROC: {(6,Q):0 >0, —00c < Q < o0}

w | =

12



e p(t) = u(t) — u(t — 1), finite support signal so its ROC: whole s-plane

1 __,—=st I
P(S) o £[’U,(t -+ ].) — ’U,(t — ]_)] e / C_Stdt - € t1=—1 — 1[69 . e—s] — ’_[1 - 6_23]
-1 S S S
P(s)= ][ (s—ink)
k=—o00,k#0

Tl I To T o T oo Te o T o

% Example 3.2

BT AIK T hTeTo o Tolh
syms t s

% Unit-step function
u=sym(’heaviside(t)’)
U=laplace(u)

% Delta function
d=sym(’dirac(t)’)
D=laplace(d)

giving
u = heaviside(t)
U=1/s
d = dirac(t)
D=1

13



Example Find and use the Laplace transform of e/(®0+%y(t) to obtain the
Laplace transform of z(t) = cos(Qot + @)u(t) for 6 = 0, § = —x /2. Find the
Laplace transform of sin(£2¢t)u(t). Consider the ROCs.

oo oo
Llei 40y ()] = [ (ot +0) st gy _ 0 / o~ (5=30)t gy
0 0
T | jo
_ 6. e ot—3(2—0)t |toi()= € : ROC: o >0
s — j8 s — 3

Euler’s identity:
ej(QOt+9) + e_j(QOt'i‘g)

cos(Qpt + 0) =

2
linearity of the integral:
. . i0(g 4 i 30 _
Lleos(Qot + O)u(t)] = 0.5L[e7 0t+0y(t)] + 0.5L]e~H 0+ y ()] = 0.5 (s 4 9‘2)2132 (s = i)
‘ 0
~ cos(0)s — sin(0)Qp _
= 202 ROC: o>0
Then
0 =0 = L[cos(Qot)u(t)] = 2 _: 02
- 0
0

0=—7/2 = L[sin(Qpt)u(t)] = JORoY)
- 0

14
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Location of the poles and zeros of cos(2t + @)u(t) for @ = 0 (top figure) and for
0 = w/4. Note that the zero is moved to the right to 2 (the value of the frequency)
because the zero of the Laplace transform is s = Qg tan(0) = 2 tan(w/4) = 2.

Example ¢(t) = e~ find its Laplace transform. Determine if it would be
possible to compute |C'(2)|?

c(t) = c(t)u(t) + c(t)u(—t)
= Cc(t) + cac(t)

c.(t): causal component, ¢,.(f) anti-causal components of ¢(t)

0(9) - E[cc(t)u(t)] + E[CaC(_t)u(t)](—s)

15



Ce(s) = ROC: o> —a
s+a
1
Llcae(—t)ult)](—s) = mparys ROC: o <a
1 1
Cls) = s+ a + —s+a
= 022_(182 ROC: —a<o<a

ROC contains jQ-axis so |C(j€2)|? can be obtained

1
1
0.8 0.5
0.6
=
T g 0
0.4
-0.5
0.2
0 1 : i :
-5 0 5 -2 0 2 -20 -10 0 10 20

o Q (rad/sec)

16



Example Laplace transform of a triangular pulse A(t) = r(t+1)—2r(t)+r(t—1).

—st

R(s) =/ te~stdt = "gz (—st— 1), = é ROC: ¢ >0

0

d U(s) - > de—st
ds - L ds dt
= / (—t)e_Stdt
0
= —R(s)
then
_dU(s) 1
R(s) = ds  s2

1
A(s) = 5[9‘ -2+ €%

Zeros of A(s):

s making e —2+4+e F=(1-e%)*=0or
double s, = j2nk k=0,+1,+£2,---

17



Basic Properties of One-sided Laplace Transforms

Causal functions and constants
Linearity

Time shifting

Frequency shifting
Multiplication by ¢

Second derivative
Integral

Expansion/contraction

Initial value

Final value

18

af(t), Bglt) <  aF(s), BG(s)
af(t)+ Bg(t) <«  aF(s)+ BG(s)
flt—a) <« e *F(s)

e f(t) & F(s—a)

LI e sE(s) - £(0-)

2
ddft‘gt) & $2F(s)—sf(0-)

/ f(t - Fis)
flat)a #0 & |Q|F(ﬂ‘)

f(0+) = lim. sF(s)
llm f(t) = lun sF(s)

s—()

- 1)




Linearity

Location of the poles (and to some degree the zeros) determines the characteristics
of the signal

Signals are characterized by their damping and frequency and as such can be de-
scribed by the poles of its Laplace transform.

A

f(t) = Ae™%u(t) & F(s) = T a

ROC: ¢ > —a

o—axis of s-plane corresponds to damping

a single pole on this axis, in the left-hand s-plane corresponds to a decaying expo-
nential

a single pole on this axis and in the right-hand s-plane corresponds to a growing
exponential.

g(t) = Acos(Qt)u(t) = 0.5[Aeu(t) + Ae™*u(t)] @ =j
A 1 A 1 As
2

G(s)=—F— + — = — ,
() : S+]Q() S‘Z+Q(2)

A sinusoid has complex conjugate pair of poles on the j€d-axis, requiring negative
as well as positive values of the frequency

Moving these poles away from the origin of the jQ-axis, the frequency increases.

19




One-sided Laplace Transforms

Function of time Function of s, ROC

d(t) <« 1, whole s-plane

u(t) <« %, Rels] >0
1
r(t) < 2 Rels] >0
e u(t), a>0 <« ! , Re[s] > —a
s+a
s
COS(Q()t)’u(t) < m, 'Re[e] >0
sin(Qot)u(t) <« _flo_ Rels] >0
s2 + Q2
—a S+ a
e " eos(Qot)u(t), a >0 & GraZ+a Re[s] > —a
—at . Q
e sin(Qot)ul(t), a >0 <« Grazio Rels] > —a
Al Al—-0
2A e cos(Qot + O)u(t o[s] > —
e " cos(Qot + Qu(t), a>0 & s+a—jQu+s+a+jQ(,’ Re[s] > —a
1 1
N tNlu(t) e N N an integer, Re[s] > 0
1 N—-1_—at 1 . .
N -1 t" e Mu(t) & Gra~ N an integer, Re[s] > —a
24 Ny AL0 AL—0
N 1) tY e " cos(Qot + Oult) < Gt a— 0N + Grat iV Re[s] > —a

20



1005( Stjexp(-0.51)u(1) 1 cos(5t)ul(t)
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Derivative

f(t) & F(s)

[df (t) _
L Tu(t)] = sF(s) — f(0-)

212
£ [Euw) = 27 (5) - 57(0-) - L2 oo

If fN)(t) denotes Nth-order derivative of a function f(t)

N-1

L™ ()] = sNF(s) = 3 f®(0-)s¥ 1k

k=0

Example Impulse response, h(t), of RL circuit where i(t) is output and v(t)
the input.
Let v4(t) = 4(¢) and IC=0

di(t)

(1) = L
vs(?) dt

+ Ri(t)  i(0-)=0

Laplace transform:

Cis(t)] = E[Ldil(:)JrRi(t)]
1 = sLI(s)+ RI(s)

where I(s) is the Laplace transform of i(t).
22



vs(t)

|,..\+

» 1

Solving for I(s)

1/L
I(s) = ———
() s+ R/L
so that
i(t) = %c‘m/mtu(t).

i(0—) = 0, response has form of a decaying exponential trying to follow the
input signal, a delta function.

23



Example Duality between the time and the Laplace domains
Connection of é(t), u(t) and r(t)
Connection with multiple poles

o(t), u(t) and r(t):

s
dr(t 1 1
£1uld) = d(t) =sE Ty
[ du(t)] 1
L -O(t) el 1

In general

dV X (s > dNe st > .
dsf\g ) —A z(t) e dt:[ z(t)(—t)Ne stdt

0

If 2(t) = u(t) <« X(s) = 1/s, then —tz(t) <« dX(s)/ds = —1/s?%, or
tu(t) <« 1/s*

24



Time Shifting

If Cf(t)u(t) = F(s), then Laplace transform of the time-shifted signal f(t — 7)u(t — 7) is
L[f(t—7)u(t—7)] =e "F(s)

Example Find Laplace transform z(t) where x,(t) is first pulse, i.e., for 0 <

t < 1.
x(t) = [z1(t) + z1(t = 1) + 21 (t — 2) + - - -Ju(t)
X(s) = Xi(s) [1 +e St e + ]
1
= XI(S) |:1—-(3_""]
Notice 1 + e % +e72% 4 ... = 1/(1 — e~*%), cross-mutiplying:

l+e e+ Jl-e®)=(l+e +e >+ )—(e +e > +--)=1

x(t) x(t)
T A
t »
0 1 0 1 2 3

25




Example Find Laplace transform of causal full-wave rectified signal
First period

x1(t) = sin(2wt)u(t) + sin(27(t — 0.5))u(t — 0.5)
N 27((1 + e—().Ss)

X (4
() = = a2
Train of pulses
x(t) = Z:z:l(t — 0.5k)
k=0

1 2m(1 + e~*/2)

= =82 0 ] = -

o ||

067

x(t)

0.4

0.2

P50 1 2 3 4 5 6 7
t

26



Convolution integral

The Laplace transform of the convolution integral of a causal signal z(t), with
Laplace transforms X (s), and a causal impulse response h(t), with Laplace trans-
form H(s), is given by

Ll * h)(1)] = X(s)H(s)

The system function or transfer function H(s) = L[h(t)], the Laplace transform
of the impulse response h(t) of a LTI system, can be expressed as the ratio

_ Lly(®) _ £l output]
Llz(t)] L[ input |

H{(s)

H (s) transfers the Laplace transform of the input to the output. Just as with the
Laplace transform of signals, H(s) characterizes a LTI system by means of its poles
and zeros. Thus it becomes a very important tool in the analysis and synthesis of
systems.

LTI system

y(t) = [z = k()
> h(t) —>

X(s) = Lla(t)] Y(s) = H(s)X(s)
y(t) = L7 [Y (s)]

Y (s)

H(s) = LIh(0)] = & v

27




Inverse Laplace Transform

Inverse of One-sided Laplace Transforms — Partial Fraction Expansion

Causal function z(t), X (s) has ROC
{(6,2): 0 > 0maz, —00 < < o0}
Omaz 18 the maximum of the real parts of the poles of X (s)

e Proper rational functions: a rational Laplace transform, i.e.,

N(s)

A= sy

N(s),D(s) polynomials in s with real-valued coefficients

is proper rational if degree N(s) < degree of D(s)
If X(s) is not proper rational do long division, i.e.,

B(:
X(s)=go+ 18+ + gms™ A 8
X . o dé(t) drn(s(t) ; B(S)
:L(t) = god(t) + o o 4+ 4 Gm pre + L (q)

28



e Remember:

— the poles of X(s) provide the basic characteristics of the signal x(t),

— if N(s) and D(s) are polynomials in s with real coefficients, then the
zeros and poles of X (s) are real and/or complex conjugate pairs, and
can be simple or multiple, and

— in the inverse, u(t) should be included since the the result of the
inverse is causal —the function u(t) is an integral part of the inverse.

e Basic idea of PFE: to decompose proper rational functions into a sum
of rational components whose inverse transform can be found directly in
tables.

Simple Real Poles
N(s) __ N(s)
Als) = =
D(s)  [Ix(s—px)
{pr} simple real poles of X (s),
Ai
X(s) = —— & (l) = ApePrtu(t
©=3;25 @ a0 =T el
A = X(s)(s = Pr) |s=px

proper rational function

29




Example Find causal inverse z(t) of

X(s) = 3s+5 3545
243542 (s+1)(s+2)
Ay A,
X(s) =
() s+1+s+2

Generic answer:

z(t) = [Are™" + Aze u(t)

354+ 5
Ay = X(s)(s+ 1)]s=—1 = — ls=—1 =2
3s+ O
Az = X(s)(s+2)|s=-2= T ls=—2=1
2 1
PFE: X(s) =
(9) s+ 1 + s+ 2

inverse: z(t) = [2¢ " + e *u(t)

Check: use the initial or the final value theorems (Table 3.2)

3s? + bs 3+5/s
initial value theorem: z(0) =3, coincides with lim |sX(s) = 2 = lim 5/ =
s—00 s2+ 35+ 2 s—oo 14+ 3/s+ 2/s?
. o : . 352 + 5s
final value theorem: lim z(t) =0, coincides with lim |sX(s) = =0
t— o0 s—0 s2+3s+2

30



Simple Complex Conjugate Poles

_ N(s) _ N(s)
- (3 + 0)2 + Qg (S + a — jQ())(S + a + jQ(])

X(s)

proper rational function

with complex conjugate poles {s12 = —a + jQ}

A A*

X(s) =
(9) S+C¥—jﬂ()+8+a+jﬂ()

where
A= X(s)(s+ a— jQ)|s=-a+j0, = |Ale?®
Inverse function

z(t) = 2|Ale™** cos(Qpt + O)u(t)

Generic response z(t) = Ke™ " cos(Qot + ®)u(t)

A= X(s)(s + a = jQ)|s=—a+jo, = |Ale’
X(S)(S + o + jQ(l)lsz—a—jQu = A"

Inverse: z(t) = [Ae_(”_jﬂ")t + A*e'(“'*iﬂu)t] u(t)

_ |A|c—at(cj(§2ut+9) + e_jm””g))u(t)
= 2|Ale”* cos(Qot + O)u(t).
31




Example Find causal signal z(¢) with

25+ 3 25+ 3

X(s) = —
)= T os+d - Gr12T3

Poles: —1+ jv3 = z(t) decaying exponential with damping —1
multiplied by a causal cosine of frequency v/3

2s+3  a+b(s+1)
s24+254+4  (s+1)2+3
1 V3 s+1
V3 (s+1)2+3+ (s+1)2+3

X(s) = sothat 342s=(a+b)+bs — b=2a=1

X(s) =

corresponding to

Initial value theorem:

sin(v/3t) + 2cos(\/§t)] e tu(t)

2
2(0) = 2corresponding to 312210 [SX(S) = g22: 2-:?:4J = glﬂgo 1 +2279i-/jl/92 =2

32



Tl el Wl T BT o oo o T o

% Example 3.15

Tl AT T AT o Te o T o

clear all; clf

syms s t w

num=[0 2 3]; den=[1 2 4]; ) coefficients of numerator and denominator
subplot (121)

splane (num,den) % plotting poles and zeros

disp(’>>>>> Inverse Laplace <<<<<’)
x=ilaplace((2*s+3)/(s"2+2*s+4)); 7 inverse Laplace transform
subplot (122)

ezplot(x, [0,12]); title(’x(t)’)

axis([0 12 -0.5 2.5]); grid

x(t)

2.5
2.5
2
2 ¢
1.5
1 | 1.5}
0.5
g o 1
-05
-1 . 0.5+
-1.5
-25
-2 0 2 o 0 5 10

o t
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Double Real Poles: Proper rational function has double real poles

o = N(s) =a+b(s+a)= a b
() (s + a)? (s + a)? (3+0)2+3+a

then its inverse is
z(t) = [ate™** + be™**Ju(t)
where a can be computed as
&= X(s)(s+ @)?|s=—a

and after replacing it, b is found by computing X(sg) for a value sy #—a

Example. Find causal z(t) with

1

X6) = mroe

a+ b(s+2)
(5+2)?

A

—+

S
A= X(S)Slsz() =1

!

S

X(s) =

—(s+4) a+b(s+2)

X(s) - (s+2)2  (s+42)2

34




Comparing numerators: b = —1 and a + 2b = —4 or a = —2, then we have

-2 - (s+2)
(s +2)2

X(s)=%+

so that
z(t) =[1 - 2te 2t — e_Zt]u(t)

Another way:

é+ B N C
s (s+2)2 s+2

X(s) =
Find A and then find B by multiplying both sides by (s + 2)*

X(s)(s +2)?|s=—2 = +B+C(s+2)

§=—2

A(s +2)?

B = X(s)(s42)%|s=_o

to find C' let s = 1 we can find the value of

35



Example. Find causal z(t) with

A, A B
s+1-jV3 s+14+jV3 s
B = 5X(s)|s=0=1

X(s) =

a 1
A=X(s)(s+1-5V3),__ ;5 =05(-1+ \/Lg) = 5150

x(t) %c“ cos(V/3t + 150°)u(t) + u(t)

= —[cos(V3t) + 0.577 sin(V/3t)]e " "u(t) + u(t)

Inverse of Functions Containing ¢ 7* Terms
When X (s) has terms e~ %, ignore them and do PFE on the rest, at the end consider exponential
terms

N{(s) _N(s) | N(s)e= | N(s)e>
D(s)(1-e=2*)  D(s)  D(s) D(s)
If f(t) = L7Y[N(s)/D(s)] then x(t) = f(t) + f(t — a) + f(t — 2a) + - -

Xls]= KT

— N(S‘) . N(S) N(s)e—as N(s)e—‘z(xs
If X(g) - D(g)(] 34 e—as) o D(S) - D(‘;) T D(G) —

f(t) = L7YN(s)/D(s)] then z(t) = f(t) — f(t —a)+ f(t —2a) —---

36




verified by cross-multiplying. So when the function is

N(S) e—2as

N(s) N (s) i

— — —ask __ N(S‘) N(S)e_as
Xl(s) - D(S)(l . e—as) o D(S) ‘ = D(S +

‘ ) " D(s)

k=0
f(t) = L7'[N(s)/D(s)] then:

() = f(t)+ f(t —a) + f(t —2a) +---

Example Find causal inverse of

l—e™*
X(s) =
&)= I
X(s) = F(s) Eﬂ(e_zs)k where F(s) = ls__f;

D(s)

f(t) = e tu(t) — e Du(t — 1)

thus

z(t) = ft)+ f(t—2)+ f(t —4) + -

37



Inverse of Two-sided Laplace Transforms
When finding the inverse of a two-sided Laplace transform

e pay close attention to ROC and location of the poles with respect to the
jQ-axis. Three regions of convergence are possible:
— a plane to the right of all the poles, corresponding to a causal signal,

— a plane to the left of all poles, corresponding to an anti-causal signal,
and

— a region that is in between poles on the right and poles on the left
(no poles included in it) which corresponds to an anti-causal signal

e If the jQ-axis is included in the ROC of

— transfer function H(s), system is BIBO stable and has frequency
response

— X(s) of a signal z(t) then its Fourier transform exists

Example Find the inverse Laplace transform of

1
(s +2)(s —2)

X(s) = ROC: — 2 < Re(s) < 2

ROC -2 < Re(s) < 2 equivalent to {(0,Q): -2 <0 < 2,—00 < ) < o0}

1 -0.25  0.25
X « = = - 2 < R - < 2
() (s+2)(s—2) s+2 * s—2 e(s)
e term with pole s = —2 corresponds to causal signal, ROC Re(s) > —2,

e term with pole s = 2 scorresponds to anti-causal signal, ROC Re(s) < 2
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Intersection of ROCs:
Re(s) > —2]N[Re(s) < 2] = -2 < Re(s) < 2

so that
x(t) = —().25(3_2111(t) - ().25(3”11.(—1‘,)

Analysis of LTI systems — Differential Equation representation
Complete response y(t) of system represented by an N*'-order linear differential

equation

N-1 M
y M)+ ) ay®@) =) bat) N>M

k=0 £=0
x(t) input, y(t) output and initial conditions{y™ (t), 0 <k < N —1}

1s obtained by inverting the Laplace transform

V() = FoXE+ gl V() = Lo X() = La (0]
N
A(s) = Zaksk any =1
k=0
M
B(s) = Zbgs£
t;() -
I(?) — Zak (Z Sk—m—ly(m)(()))
k=1 m=0
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o

(s) _  d
(5) and Hl(s)—A(s)

y(t) = L7[Y(s)]
Y(s) = H(s)X(s) + Hi(s)I(s)

Letting H(s)

N

which gives

y(t) = ya=s(t) + y=i(t)
zero-state response Jz.,(t L7 H(s)X(s)]
zero-input response  y.i(t) = L7 [Hy(s)I(s)]

In terms of convolution integrals

y(t) = / z(T)h(t — 7)dr + / i(T)h(t — 7)dT

0 0

h(t) = L™ [H(s)], and hi(t) = L7 [Hy(s)]
i(t) = 1[I ] — Za”‘ (Z J(m) o(k—m-l)(t))
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Example. System represented by

ddy% +3d:‘(’% +2y(t) = z(t)

IC y(0) = 1, dy(t)/dt|t—o = 0, inputz(t) = u(t)

Find complete response y(t), and impulse response h(t)

2 () — s9(0) — P40 |_o] 4 3[s¥ (s) ~ y(0)] + 2Y (s) = X(s)

Y(s)(s® +3s+2) — (s+3) = X(s)

after replacing X(s) = 1/s

2 .
¥ (s) = X(s) N s+ 3 _ 14+ 3s+s =&+ By N B
\(s+1)(s+2)j !.9+1)(s+2)l s(s+1)(s+2) s  s+1 s+2
Lly-. (1) Lly=i()]

By =1/2,By =1,B3 = —1/2
Complete response:

y(t) =  0.5u(t) +(e™" —0.5e % )u(t)
S—— b - /
steady state transient
To find H(s) = L[h(t)] from

 X(s) | I(s)
= As) T A®)

Y(s)

we need I(s) = 0, then Y(s)/X(s) = H(s) = 1/A(s) and h(t) = e tu(t) —
e *u(t).



Steady-state and Transient Responses

When solving a d.e. with or without IC:

(i) Steady state response is given by the inverse Laplace transforms of terms of Y (s)
having simple poles (real or complex conjugate pairs) in the jQ-axis,

(ii) Transient response is given by the inverse transform terms of Y (s) with poles
in the left-hand s-plane, independent of whether the poles are simple or multiple,
real or complex

(iii) Multiple poles in jQ2-azis and poles in the right-hand s-plane give terms that
will increase as t increases.

Computation of the Convolution Integral

Y(s) = LIy(t) = [z * k()] = X (s)H(s)
X(s) = Llz(t)], H(s) = LIh(t)]

Transfer function of the system

Y(s)

H(s) = £IR(O)] = %03

H (s) transfers the Laplace transform X (s) of the input into the Laplace transform
of the output, Y (s)
Once Y (s) is found, y(t) is computed by means of the inverse Laplace transform
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Example Find convolution y(t) = [z = h](t) when
(i) z(t) = u(t), h(t) = u(t) — u(t 1),
(ii) z(t) = h(t) = u(t) — u(t — 1).

e Laplace transforms: X (s) = L[u(t)] = 1/s and
H(s) = L[h(t)] = (1 —e77)/s, s0

Y (s) = H(s)X(s) = ~ _Sf_s

y(t) =r(t) —r(t—1)

e Laplace transforms: X (s) = H(s) = Llu(t) —u(t —1)] = (1 —e™%)/s so

(1—e%)2% 1—-2e%+4e 2%
Y(s)= H(s)X(s) = = = =2

y(t) = () — 20(t — 1) + r(t — 2)

Example RLC circuit: input a voltage source x(t), output the voltage y(t)
across the capacitor. Find its impulse response h(t), and its unit-step response
s(t). Let LC =1 and R/L = 2.

Kirchhoff’s voltage law

di(t
z(t) = Ri(t) + L ;(t) +y(t)
voltage across the capacitor
1 t
o) = & [ i@)o +u0) 10+ 0)
0
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To obtain d.e. find first and second derivative of y(t):

dy(t) _ 1. i) = o)
T o' = =0y
d*y(t) 1 di(t) di(t) d?y(t)
w —ca - La T
dy(t) d*y(t)

then .'L(t) = RCT + LCT -+ y(t)

a second order differential equation with IC: y(0), initial voltage in the capacitor,
and (0) = Cdy(t)/dt|;~¢ initial current in the inductor.
Impulse response: z(t) = 4(f) and IC=0

X(s) = [LCs® + RCs + 1]Y (s)

= - Y(g) B I/LC o 1
)= X(s) = 2+ ®/L)s + 1/LC ~ (s + 12

h(t) = te tu(t).
Unit-step response: z(t) = u(t), IC=0

Y(s) = H(s)X(s)
1 l 1 -1 -1
(s+1)? s .9-I-.‘;-i-l-|-(.9+1)2
y(t) = s(t) =u(t) — e ult) — te tu(t)

sY (s) (derivative of y(t)) gives impulse response
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Example Positive feedback system: Let 5 = 1, 7 = 1 and 2(t) = u(t), find
transfer function, check stability

(t) y(t)

| Delay 7
By(t —7)

3

[nput /output equatiom y(t) = x(t) + By(t — 1)
if z(t) = d(t), the output y(t) = h(t) or

h(t) = 6(t)+ Bh(t—7)

if H(s) = L[h(t)] then
1 1
: = 3 s)e 57 s) = _
e L) > His) 1—Be3" 1—e*
- ZC_Sk=1+(3_s+e—2""+(3_3"'+...
k=0
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Impulse response h(t):
h(t) = 8(t) + 6(t — 1) + 6(t — z S(t —

If 2(t) is the input,

y(t) = / z(t — 7)h(r)dr = f Z ot — k)x(t — 7)dr
—00 0 k=0
= Z/ o1 —k t—r)d'r—Z:r(t—k)
k=0 k=0
replacing x(t) =u(t) = y(t)= Z u(t — k) — oo as t increases
k=0

BIBO stability: 2(#) must be absolutely integrable,

]m |h(t)|dt = /mié(t—k)dt

e T k=0
= Zf 5(t — k)dt = Z 1 —
k=0 k=0

Poles of H(s): roots of 1 — e™* = () or s, = £+j27k, infinite number of poles on
the jQ-axis, so system is not BIBO stable
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What have we accomplished?

..&. Complex frequency analysis of signals

..&. Significance of location of poles and zeros

..&. Convolution integral computation and transfer function
..&. BIBO stability and pole location

..&. Solution of differential equations, transient and steady state responses, zero-

input and zero-state responses

Where dO we gO fI'OIl’l here?

..&. Steady-state analysis using Fourier for periodic and aperiodic signals

..&. Significance of complex exponentials as inputs of LTI systems
..&. Sinusoidal representation of periodic signals
..&. Connection of Laplace and Fourier transforms
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