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Chapter 2 --- Continuous-
time
Systems



What Is In this chapter?

"&'Concept of system and system classification

*®'Linear time-invariant continuous-time systems

¥ Linearity and time-invariance
‘2" Causality and stability
"?Systems represented by differential equations
*2* Convolution iIntegral

@ System interconnection



( Continuous-time Systems )

System: mathematical transformation of an input signal (or signals) into an
output signal (or signals).

e Static or dynamic systems
e Lumped- or distributed-parameter systems

e Passive or active systems

If input(s) and the output(s) are both continuous-time, discrete-time or digital the
corresponding systems are continuous-time, discrete-time or digital, respec-
tively. It is also possible to have hybrid systems when the input(s) and the output(s)
are not of the same type.




(Linear Time-invariant (LTI) Continuous-time S_ystems)

A continuous-time system is a system in which the signals at its input and output
are continuous-time. Mathematically we represent it as a transformation S that
converts an input signal z(t) into an output signal y(t) = S[z(t)]

2(t) = y(t) = S[e(t)]

Input Qutput

INPUT oUTPUT
2(t) y(t) = S[z(t)]
@) g 4

Characteristics of system model:
e Linearity
e Time-invariance
e (Causality

e Stability



( Linearity )

System S is linear if for inputs x(t) and v(t), and any constants o and (3, super-
position holds:

Slaz(t) + pu(t)] = Slaz(t)] + S[Bu(t)]
= aS[x(t)] + BS[v(t)]

Example Biased averager: output

y(t) = %-/t—T z(t)dr + B

input z(t)
System linear?
Solution

ot
az(t) = 1 az(t)dr + B = e / z(t)dr + B
T Ji-r T Ji-r
not equal to
ot
ay(t) = 3/ x(7)dr + aB
T Ji—r

so system non-linear. System linear if B = 0
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Example Systems are linear?

(1) y(t) = |2(t)]
(it) z(t) = cos(z(t)) assuming |z(t)| <1
(iii) v(t) = z*(t)

z(t), input and y(t), 2(¢) and v(t) are the outputs

Solution
(i) Superposition not satisfied:

z1(t) = y1(t) = |z1(t)]
za(t) = ya(t) = |x2(t)|
ry(t) + z2(t) = Yi2(t) = |21 () + z2(t)| < |22 ()] + [22(8)] = 1 (2) + ya(t)

(ii) Nonlinear:

x(t) = z(t) = cos(x(t))
—x(t) = cos(—xz(t)) = cos(xz(t)) = 2(t) # —=z(t)

(iii) Nonlinear:
zi(t) = ()= (a1(t))?
z5(t) = (t) = (z2(t))?

z1(t) + z2(t) = (21(t) + 22(1)? = (21(1)* + (22(2))* + 221 (t)22(t)
# v1(t) + va(t)



Example RLC circuit and linearity
Solution
R voltage-current relation:

v(t) = Ri(t)

v-i relation is straight line through origin: linear resistor
diode (nonlinear) v-i relation is non linear
C': charge-voltage relation

Q(t) = Cvc(t)
i(t) = dg(t)/dt = i(t) = Cdv.(t)/dt

c C[ d7'+“b )

Capacitor is linear system if v.(0) = 0

’Ll(t) = 'U(_-l(t) — é/(; il(T)dT
ig(t) = 'Ucz(t) = é/(; iz(‘T)dT

aty(t) + bia(t) = é At[ail(‘r) + big(7)]dT = av (t) + bueo(t)



L: dual of capacitor, magnetic flux-current relation
o(t) = Lir(t)

_ dolt) _ pdir(t)
"O="a L a

iL(t) = %/(; v(7)dT +iL(0).

L is linear if i7,(0) = 0.

Op-Amp
Inputs voltages:
v_(t), in inverting terminal
v+ (t), in non-inverting terminal
Output voltage:
Vo(t) = Ava(t) — AV <wq(t) < A, A very large

wa(t)] > AV = |uo(t)| = Viar
va(t) = vy (t) —— (2)



Linear Op-Amp:

‘ ‘“i.'ut
—AV /
1 1
1 1
AV
_V;ul
A — o0
Ri-n — OC

virtual short
i =1y =10
va(t) =ve(t) —v_(t) =0
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( Time-invariance )

A continuous-time system S is time-invariant if whenever for an input x(t) with a cor-
responding output S|xz(t)], the output corresponding to a shifted input x(t F ) (delayed or
advanced) is the original output shifted in time S[z(t F 7)| (delayed or advanced). Thus

z(t) = y(t)=S@)]
2tF7) = yltF¥7)=S=(tL7)

That is, the system does not age — its parameters are constant
A system that satisfies both the linearity and the time-invariance is called Linear Time-
invariant or LTI.

AM/FM Communications Systems

e AM: to radiate“message” over airwaves with reasonably sized antenna

voice signal : 100 < f < 5K Hz
music signal : 0< f <22KHz

direct transmission requires huge antenna
Solution: modulation

AM y(t) = m(t) cos(2pt) linear, but time-varying

input m(t —=7) = output m(t — 7)cos(Qot) # y(t — 7) = cos(Qy(t — 7))m(t - 7)

11




m(t) T

|
|
y(t) : '

TRANSMITTER

e Frequency modulation (FM) system:
t
z(t) = cos(Q.t + / m(7)dr).

— o0

m(t) is message and z(t) the output
FM is non-linear:

t
scaled message ym(t) = outputcos(Q.t + v / m(7)dT) # vz(t)
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Vocal System

T, Nasal cavity

Tongue

Epiglottis

Vocal chords

Lungs
Unvoiced
eu(t)
e, (t) ?Q LTI system f— 5(t)
k1 Speech
Voiced
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Example Consider time-varying resistors, capacitors and inductors with zero
initial conditions in the capacitors and inductors.
Solution
v(t) = R(t)i(t)
dv.(t dC(t
at) = Cleclt), i(t) = da(t)/dt = i(t) = o ©et) LU,
dig(t) + dL(t)
dt dt

c(t)

ir(t)

o(t) = L(t)iL(t), v(t)=do(t)/dt = wv(t) = L(t)
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Example Constant linear capacitors and inductors

duc(t) 1.
dt Cz(t)

dig(t) 1
TR AL

initial conditions v.(0) = 0 and i7(0) = 0, under what conditions are these
time-invariant systems?

Solution

Consider capacitor (inductor is dual)

1 t 1 0 1 t—A
EA i(r — N)dr = E[Ai(P)dP + EA i(p)dp
To equal s
wlt=N =5 [ o),

i(ft)y=0fort <0

Capacitor time-invariant if i(¢) = 0 for t < 0

If the initial condition ©(0) is not zero, or if the input i(t) is not zero for t < 0,
then linearity or time-invariance, or both are not satisfied.
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RLC circuit as LTI system

e Two independent energy storing elements = second-order differential equa-
tion with constant coefficients (R, L, C constant)

N O
v(t) = Ri(t) + L o +C/(; i(7)dr

derivative of v(t) with respect to :

t
dt dt az Tt
input: v(t), output: i(t)

e No initial energy stored in either inductor or capacitor (ir(0) = 0 and
ve(0) = 0)

e voltage applied is zero for t < 0
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(Dynamic Systems)

A dynamic system represented by a linear differential equation with constant coefficients,

dx(t) dMx(t)
7 e LR oF 11 M

dy(t dNy(t
aoy(t)+a1%+~-+ dtL]S) = boz(t) + by

t=>0

N initial conditions: y(0), d*y(t)/dt*|i=0, for k =1,---, N — 1 and input x(t) = 0 fort <0, has
complete response y(t), fort > 0 has two components:

e the zero-state response, due exclusively to the input as the initial conditions are zero,
and

e the zero-input response, y.;(t), due exclusively to the initial conditions as the input is
zero. So that

y(t) = yzs(t) + yzi(t)'

Thus

1. When initial conditions are zero, then y(t) depends exclusively on the input (i.e., y(t) =
Y.s(t)), and the system is linear and time-invariant or LTI

2. If initial conditions are different from zero, when checking linearity and time invariance we
only change the input and do not change the initial conditions so that y.;(t) remains the
same, and thus the system is non-linear. The Laplace transform will provide the solution
of these systems.
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Derivative operator

Drly(t)] = T

D°[y(t)] = y(t)

n > (), integer

Differential equation

(ag + a1D + -+ DV)[y(t)] = (bo + by D + - + by DM)[x(t)] £ >0
Dk[y(t)]t=(]7 I‘/ - 1”'5N_ 1
Dynamic system LTT if initial conditions and input are zero for ¢t < 0, i.e., the
system is not energized for ¢ < 0.
z(t), ICs two inputs, by superposition
complete solution of d.e. = zero-input solution (due to ICs, z(f) = 0)+
zero-state response (due to z(t), ICs=0)
Solve
(ap+arD+---+ DM)[y(t)] =0
ICs D*[y(t)]j=0, k=0,---,N -1

and

(ap+ arD +--- + DN)[y(t)] = (bo+b D+ -+ bl\;D“"f)[:c(t)] ICs Dk[y(t)]tz(, =0 k=0,---,N~—1
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Example RL circuit: series connection R = 1 and inductor L = 1 with voltage
source v(t) = Bu(t), and I initial current in L.

e Solvede. for B=1land B=2and I =1 and [ =0

e Zero-input and the zero-output responses?

o LTI?

i(t) = [Toe™" 4+ B(1 — e ")]u(t)

solution of

v(t) = i(t) + dit)

dt
i(0) = I
Indeed i(0+) = I,

\B’_’ = [I()(Z_t + B(l - e_t)] + [Be_t - I()C_t] =B t>0

~ /s - i

—

v(t) i?;) di(t)/dt
IC #0 Iy =1, B =1, the complete solution
ir(t) = e u(t) + (1 =e Hult) =ult)
S’ ————
zero-input resp. zero-state resp.
Iy =1, B = 2 (i.e., double original input)

is(t) = e tu(t) + 2(1 - e_t)u(tl = (2 — e u(t) # 2i,(t) = 2u(t)
N’

zero-input resp. zero-state resp.

System is not linear as zero-input response remains the same (IC did not change)
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Non-linear behavior of RL circuit: In =1, B = 1, v(t) = u(t), i1(t) = u(t) (top)
and In =1, B =2, v(t) = 2u(t), ia(t) = (2 — e Yu(t) (bottom), ia(t) # 2i;(t).

IC =0 Iy = 0, B = 1 complete solution

i1(t) = L e il e~ )u(t)

. I
zero-input resp.  zero-state resp.

Iy = 0, B = 2 (double the input)

ia(t) = L + 2(1 - e_t)u(t)J

N

. i
zero-mput resp.  zero-state resp.

= 2iy(t)

System is linear (response depends on v(¢) only)
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Time Invariance B = 1, v(t) = u(t — 1), Iy, complete response
?,;(t) = I[)C_t'U.(t) -+ (1 - 6_(t_l))U(t - ].)

1. I() =0
is(t) =1 —e TNt —1) =it -1)

system is time-invariant

2. Iy = 1, complete response not equal to i(t — 1) because the term with the
initial condition is not shifted like the second term
System time-varying

3. Iy = 0 system is LTL
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Application of Superposition and Time-invariance

If S is a LTI system, so that

y(t) = S[z(t)] for an input x(t)
then

S Z Apz(t — Tk)] = Z ApS[z(t — )] = Z Ary(t — )
L k k k

S / g(7T)z(t — T)d'r] - /g(‘r)S[a:(t - 7)]|dr = /g('r)y(t —7)dT

Example RL circuit with unit step source:

i(t) = (1 —e “u(t)

Response to v(t) = u(t) — u(t — 2)?

v(t) = u(t) —u(t —2) = i(t) —i(t — 2) = 2(1 — e Hu(t) — 2(1 — e )u(t — 2)
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2.
q 1f = |
< i - == -2y |

t (sec)

Convolution Integral

Impulse response of LTI system, h(t): output corresponding 4(t), and IC=0
LTI system S, represented by its impulse response h(t)

oo

2t = / z(T)o(t — 7)dr =

— 00

y(t) = /oo z(r)h(t — 7)dr = /oo z(t — 7)h(7)dT

—0oC —0o0

= [z *h](t) = [h*2](t) convolution of x(t) and h(t)
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Example Find (i) impulse response of capacitor and (ii) its unit step response.

C=1F.

C: v.(0) =0,
1 [
ve(t) = ¢/ i(7)dr
Impulse response:
i) =6(t) =  we(t) = h(t) = é Oté('r)cl'r = Luw

C' = 1F, unit-step response
oo oc 1
ve(t) = / h(t — 7)i(7)dr = / Eu(t — 7)u(r)dr
_too —00
= / dr = r(t)
0
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h(t) vs s(t) vs p(t)
Impulse response h(t); unit-step response s(t); the ramp response p(t) related by

[ ds(t)/dt
hle) = { d*p(t) /dt?

s(t) = /_Z u(t — 7)h(r)dr = /_too h(r)dr since u(t—71)= { (1) : :S) :

o) = [ hme=yute - yir = | " Rt —rdr =t / ; s~ [ ‘

t

) _ /_tooh('r)dr+th(t)—th(t): / h(r)dr

—0OQ

25
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Example Analog averager:

t
y(t) = %/ Ta:(‘r)d'r input (t)
t—

accumulation of values of z(t) in a segment [t — 7', t] divided by 7" == average
of (t) in [t — T\ ]
Find response to ramp

Solution:
h(t): x(t) = d(t) and y(t) = h(t) or

h(t) = % ft (s

t <0ort—T >0 integral is zero ( t = 0, where d(t) occurs, not included in
integral limits)
t—T<0andt>0,0r0<t<T,integralis 1 ( ¢t = 0 included in interval)
0<t<T
h(t) = { otherwise

S
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Ramp response p(t): input z(t) = tu(t)

p(t) = T/:Ta:(a)ckr: T[iTau(a)da

t—T <0,and t > 0,

1/ t2
t) = — do = — <t<T
p(t) Tﬁaa ST 0<t<
t—=T >0
I t2 —(t - 1T)> T
t) = — do = =t— — t>T
o(t) T/t_T‘“’ oT 2
0 t <0
p(t)y =< t2/(2T) 0<t<T
t—T/2 t>T
Notice

= h(t)

d?p(t) _ YT 0<t<T
dt? 0 otherwise
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Example Find convolution yp(t) of pulse z(t) = u(t) — u(t — 1) with

o0

p(t)= Y &(t—kT)

k=—o0

T =T, and T = 2T}, plot corresponding yr(t)

o0

yr(?) f T St — 7)dr = / TS §(r— kD)t — 7)dr
—00 -0 Lo

= Z / o7 — kT)x(t — 7)dr = Z x(t — kT)/ ot — kT)dr

k=—og ¥ —®@ k=—00 —o0
= Z z(t — kKT) for any T

k=—o00

yr, (1) Y1, (t)
A A
1 1
> — >

~To To 2T, 3Ty t ~Ty T 2T, 3T, ¢
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Interconnection of Systems — Block Diagrams

y(t)

—_—| () p—| h2(t) p—> (a)

—bO—p hy(t) » y(t) (©

T
ilz(t) -

Block diagrams for connecting two LTI systems with impulse responses hy(t)
and hy(t) in (a) cascade, (b) parallel, and (c¢) negative feedback.
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Two LTI systems with impulse responses hy(t) and ha(t) connected in
(i) Cascade

overall impulse response

h(t) = [hy * ha](t) = [ha * ha](2)

where hy(t) and ha(t) commute (i.e., they can be interchanged)

(ii) Parallel
impulse response of the overall system is

h(t) = ha(t) + ha(t)

(iii) Negative Feedback

the output is
y(t) = [h1 *€](t)

where the error signal is

e(t) = x(t) — [y * ha|(?)

The overall impulse response h(t), or the impulse response of the closed-loop system, is given by
the following implicit expression

h(t) = [h.l — hx h.l * hg](t)

If ho(t) = 0, i.e., there is no feedback, the system is called open-loop and h(t) = h(t).
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Example For block diagram with input «(¢). Determine what the system is
doing as we let the delay A — 0.
1

A
u(t) * + x(t) y(t)
— - = »| Averager f——p

Delay A
Output of averager is
1 [t 0 t <0
s(t) = T/ u(r)dr =< t/T 0<t<T
t—T 1 t>T
1
(1) = (1) — s(t - &)
IfA—0
tim y(8) = 28— h) = Lju(t) — u(t — )] impulse response of the averager
A11_1’1031( ) = T (1) = T[u( ) —u(t —T)] impulse response of the averager
1
A
u(t) s(t) ‘l' y(t)

e
—1 Averager »( < DO —>
| A —

Delay A
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Causality

Continuous-time system S is causal if
e for z(t) = 0 and no initial conditions, output y(t) = 0,

e y(t) does not depend on future inputs.

Non-causal averager

1 t+T
y(t) = ﬁ/

t+T
= sz T)dT + — z(7)dr.

t

A LTI system represented by impulse response h(t) is causal if
hit) =0 fort <0

The output of a causal LTI system with a causal input x(t), i.e., z(t) =0 fort <0,
18

HEl= /(; z(1T)h(t — 7)d7
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Graphical Computation of Convolution Integral

Graphically, the computation of the convolution integral consists in

1. multiplying z(7) (as a function of 7) by a reflected (again as function of
7) and shifted to the right ¢ sec impulse response h(t — 1)

2. Integrate above product from 0 to ¢ (the time at which we are computing
the convolution)

3. Change t and go back to (a). If ¢ final value, stop.

Example Graphically find the unit-step response of an averager y(t) with 7" = 1
sec., with impulse response

h(t) = u(t) —u(t — 1)

f h(t — 1)
1 y(t)

» T

t—1 t 0 1
* z(T) -
0 1 t

1

» T

0
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Example Graphical computation of the convolution integral of two pulses of
the same duration

? h(t — 1)
1 y(t)
> T
t—1 t 0 1
A z(7)
0 ] 5 » |
1
0 1 » T
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Bounded-input Bounded-output (BIBO) Stability

BIBO stability: for a bounded (that is what is meant by well-behaved) input x(t) the
output of a BIBO stable system y(t) is also bounded. This means that if there is a
finite bound M < oo such that |z(t)| < M (i.e., z(t) in an envelope [—M, M]) the
output is also bounded.

A LTI system with an absolutely integrable impulse response, i.e.,

f " Ih(®)ldt < oo

— 00

is BIBO stable.

For a bounded input |z(f)| < M, for the output y(¢) of a LTI system to be
bounded

y() = | [ ste-mmar

IA

[OC lz(t — 7)||h(7)|dT

-0

IA

1’\1[ \h(7)|dT

— 00

< ML <>

i.e., h(t) is absolutely integrable
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Example Causality and BIBO stability of an echo system (or a multi-path
system)
y(t) = aqyz(t — 11) + azz(t — 1)

z(t) input, and «a;, 7; > 0, ¢ = 1, 2, are attenuation factors and delays. Thus
the output is the superposition of attenuated and delayed versions of the input.

Typically, the attenuation factors are less than unity. Is this system causal and
BIBO stable? oy

Delay 7 |

Delay 7,

A

Echo system is causal
BIBO stability: |z(t)| < M < oo, for all times

(@B < laall2(t — )|+ |azlz(t — 72)| < [laa]| + |az||M

output is bounded. The system is BIBO stable.
Alternate way: impulse response, for x(t) = 4(t)

y(t) = h(t) = a1 d(t — 1) + a20(t — 12)

integral

/ h(t)|dt = |(_1-1|/ J(t—rl)dt+|02|/ 5(t — 1) dt = |aa| + |as| < o
—o0 —00 —00

h(t) absolutely integrable, system BIBO stable
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Example Positive feedback system: microphone close to a set of speakers that
are putting out an amplified acoustic signal. The microphone picks up x(¢) and
By(t), |8 = 1.

Find equation connecting z(t) and y(t), recursively obtain an expression for y(t)
in terms of past values of the input.

Determine if the system is BIBO stable or not, use z(t) = u(t), 3 =2 and 7 = 1
in doing so.

z(t) y(t)
>

| Delay 7

By(t —7)

3
y(t) = z(t) + By(t — 7).

then
y(t —7) = alt - 7) + By(t — 27)

so that
y(t) = z(t) + Bla(t — 7) + By(t — 27)] = 2(t) + Ba(t — 7) + B2y(t — 27).
Repeating

y(t) = z(t) + Bx(t — 7) + F2x(t — 27) + Bx(t — 37) + - - -
If 2(t) = u(t) and 3 = 2, the output is

y(t) = u(t) +2u(t — 1) + du(t — 2) + 8u(t — 3) + - - -

continuously growing as time increases. System is unstable.
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What have we accomplished?

‘2 Initiated study of LTI dynamic systems
e Systems represented by differential equations
*2* Convolution integral representation

‘2" Causality and BIBO stability

‘2" Cascade, parallel and feedback system
interconnections

Where do we go from here?

X2 Frequency analysis (Laplace and Fourier)

X3 Develop transfer function system representation
g2 System response to periodic and aperiodic signals

‘% Transient, steady-state, zero-input, zero-state responses
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