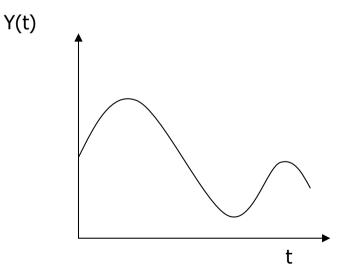
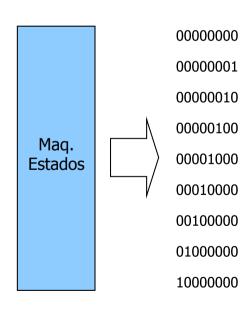


Conversão Digital Analógico e Analógico Digital

Disciplina: Eletrônica Básica


Prof. Manoel Eusebio de Lima

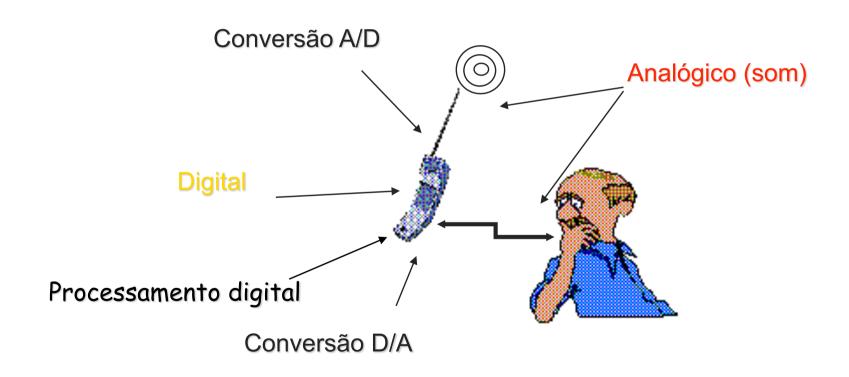
- Grandezas Digitais e Analógicas
- Por que converter?
- Diagrama básico para conversão
- Conversores D/A
 - Malha Resistiva Ponderada
 - Conversores D/A Malha Resistiva R-2R
- Conversor A/D
 - Conversor Flash
 - Conversor A/D de aproximação Sucessiva
- Características dos conversores
- Conclusões


Grandezas Analógicas e Digitais

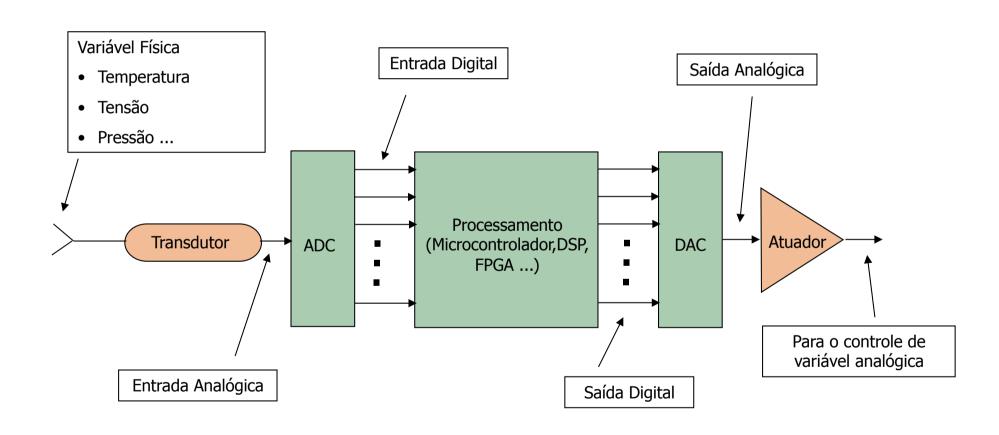
- Grandezas Analógicas
 - Operam como grandezas contínuas
 - Podem assumir diversos valores ao longo do tempo
 - Potencial elétrico
 - Volume
 - Pressão
 - Temperatura...

Grandezas Analógicas e Digitais

- Grandezas Digitais
 - Operam com códigos digitais discretos
 - Podem assumir estados ao longo do tempo
 - Estado binário
 - Código binário



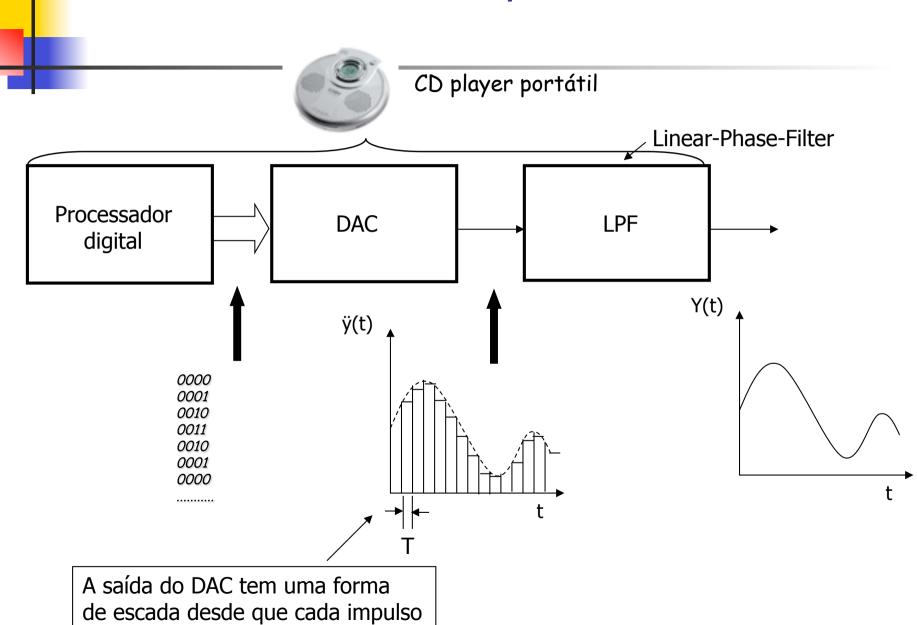
Por que Converter?


- Grandezas físicas se encontram na natureza na forma analógica
 - Difícil Processamento;
 - Difícil Armazenamento;
- Processamento digital é mais eficiente
 - Maior velocidade e precisão;
- Frequentemente sinais processados na forma digital necessitam ser convertidos para a forma analógica
 - CD Players
 - Telefones celulares

Sistemas Digitais e Analógicos

(em nosso cotidiano)

Exemplo: Diagrama Básico Para Tratamento de Sinais



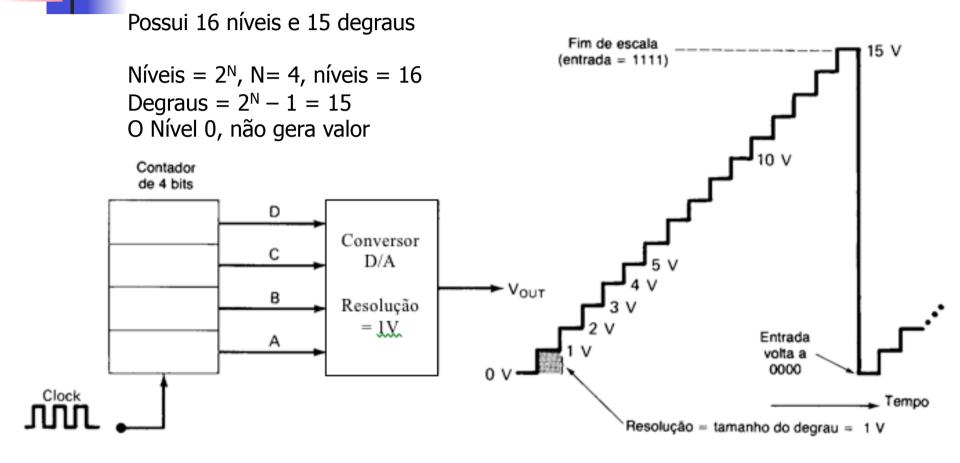
Conversão D/A

- O conversor DA (DAC) aceita como entrada dados digitais e produz uma saída analógica, a qual é relacionada com o código digital de entrada.
- Um registrador é usado para armazenar a entrada do DAC e assegurar que sua saída fique estável até que o conversor seja alimentado por uma outra entrada digital. O registrador pode ser externo ou fazer parte do DAC.
- Cada palavra digital (número de bits em paralelo) é convertida no tempo.
- Filtros podem ser usados para suavizar ou restaurar o sinal analógico em sua saída.

Conversão D/A - exemplo

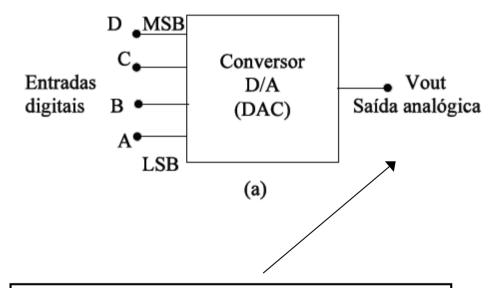
é seguro (hold) por um tempo T(s)

Conversão Digital / Analógica


- Resolução de um conversor Digital/Analógico está associado ao número de bits do conversor. É a menor quantidade (modificação) que pode ser convertida (resolvida) em sua saída analógica, resultante de uma alteração na entrada digital.
 - Exemplo:
 - Percebe-se que quanto mais bits, maior a qualidade da resolução do conversor

Resolução =
$$Vref^*[1/(2^{n}-1)]$$
, on $Vref = full scale$

- Em geral, para um conversor D/A de N bits, o número de níveis diferentes será de 2^N , e o número de degraus será de 2^N 1
- Range ou faixa de atuação
 - Distância entre o valor mais positivo e o valor mais negativo.
 - Exemplo:
 - Considerando conversor do exemplo anterior teríamos um faixa de atuação de


$$(4,875)-0 = 4,875$$
 de faixa de atuação

Resolução – conversor DA

Resolução = Vref* $[1/(2^n-1)]$, on Vref = full scale = 15 V /2⁴-1 = 1 V Resolução (%) = $(1/2^n-1)$ * 100 % = 6.67 %

Conversor DA – 4 bits

Saída analógica = K* entrada digital Onde k é o fator de proporcionalidade K é constante

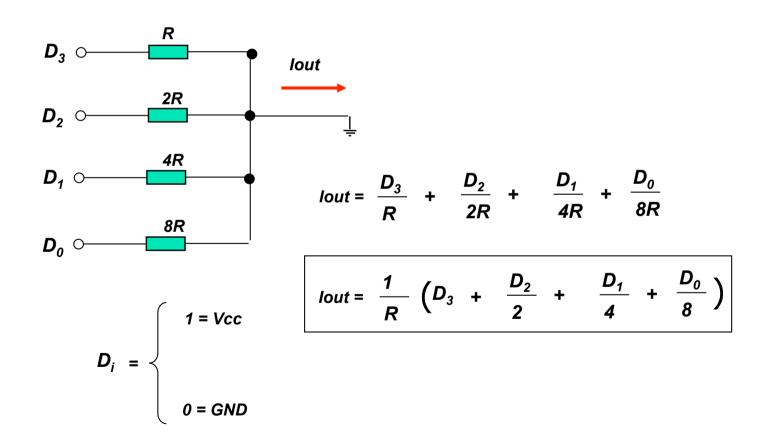
 $2^4 = 16$ números binários

D	С	В	Α	Vout (V)		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	2		
0	0	1	1	3		
0	1	0	0	4		
0	1	0	1	5		
0	1	1	0	6		
0	1	1	1	7		
1	0	0	0	8		
1	0	0	1	9		
1	0	1	0	10		
1	0	1	1	11		
1	1	0	0	12		
1	1	0	1	13		
1	1	1	0	14		
1	1	1	1	15		
(b)						

$$K = 1$$

Assim para a entrada = 1010_2
a saída analógica = $1 * 10 = 10 V$

Resolução percentual


Resolução percentual é a resolução expressa como percentagem do valor máximo possível para a saída, ou valor de fim de escala.

% Resolução = [tamanho do degrau/valor de fim de escala]*100%

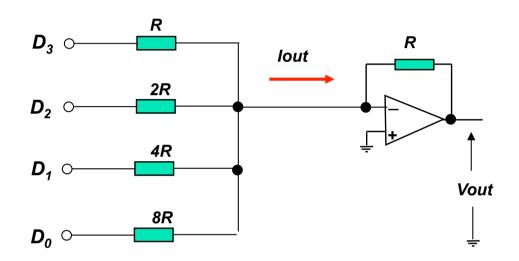
% Resolução = $[1/número de degraus]*100% = [1/(2^n-1)]*100% n = no. de bits$

Número de bits	Resolução %			
4	6.67			
6	1.75			
8	0.392			
10	0.976			
12	0.0244			
14	0.00610			
16	0.00153			

Conversores D/A Malha Resistiva Ponderada*

Conversores D/A Malha Resistiva Ponderada

- Vout =
$$R \cdot \frac{1}{R} \left(D_3 + \frac{D_2}{2} + \frac{D_1}{4} + \frac{D_0}{8} \right)$$

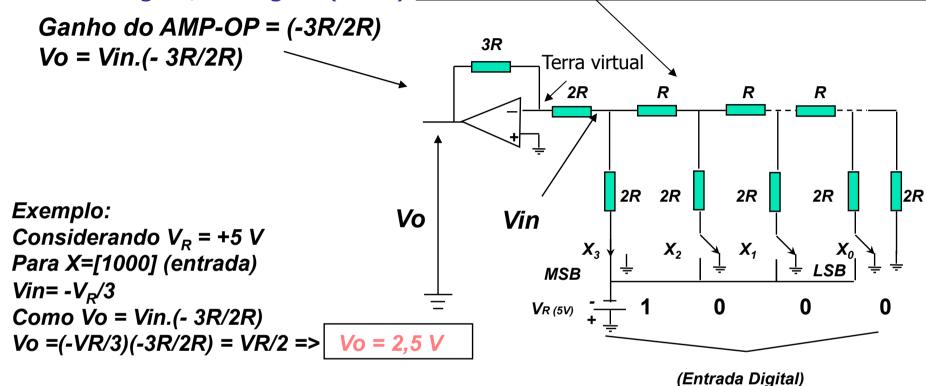

- Vout =
$$\left(D_3 + \frac{D_2}{2} + \frac{D_1}{4} + \frac{D_0}{8}\right)$$

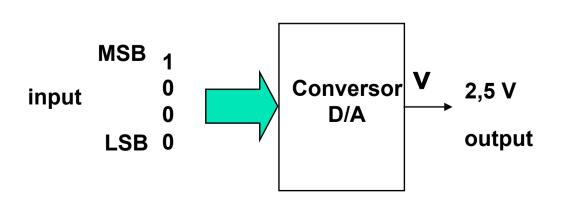
Obs: O maior problema deste tipo de conversor é a grande diferença entre valores dos resistores correspondentes aos bits mais e menos significativos do sinal digital, principalmente nos conversores de alta precisão.

Considerando as entradas digitais $D_3=D_2=D_1=D_0=$ tensão = 5V

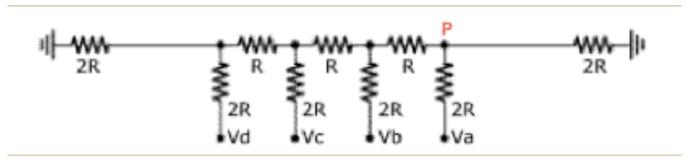
Código	Vout (Volts)			
0000	0			
0001	0.625			
0010	1.250			
0011	1.875			
0100	2.500			
0101	3.125			
0110	3.750			
0111	4.375			
1000	5.000			
1001				
1111	9.375			

Precisão na conversão

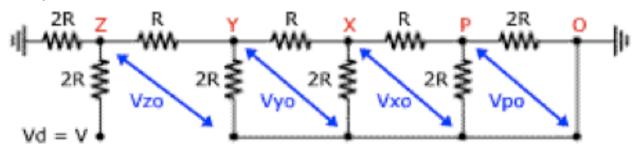



Fatores da precisão:

- Precisão dos valores dos resistores de entrada e de realimentação
- Precisão dos níveis de tensão aplicados as entradas. As entradas não podem ser advindas diretamente de portas lógicas ou Flip-Flops TTL ou CMOS, desde que não há garantias de tensões precisas para todas as entradas. Torna-se necessário a adição de um circuito especial em cada entrada.


Em qualquer nó da escada, olhando para direita, para a esquerda ou abaixo (chave), a resistência é de 2R. Portanto, a corrente se divide igualmente para esquerda, direita e para a direção das chaves.

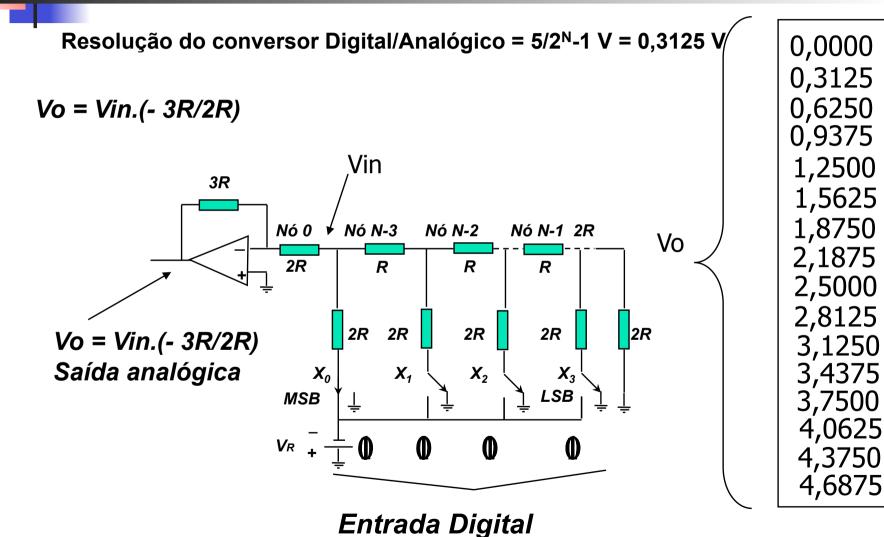
Conversão Digital/Analógica (R-2R)



De maneira geral: X₃ X₂ X₁ X₀ V_{in} V0 (V) 1 0 0 0 -VR/3 +VR/2 0 1 0 0 -VR/6 +VR/4 0 0 1 0 -VR/12 +VR/8 0 0 0 1 -VR/24 +VR/16

Exemplo:

Considerando que Vd é o bit mais significativo (MSB), e que a tensão de referência está aplicada neste bit e os demais são OV, teríamos uma malha resistiva equivalente dada abaixo:


Simplificando o circuito por associações sucessivas de resistências em paralelo e em série, dedui-se que a resistência entre o ponto Z e a massa (ponto O) é R. Assim, a tensão Vzo = V/3.

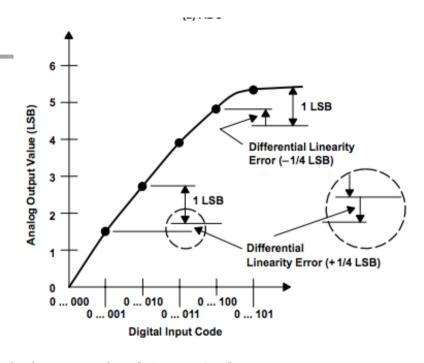
A resistência entre o ponto Y e o ponto O é R e, portanto, a tensão Vyo = Vzo/2 = V/6.

Assim de forma análoga pode-se concluir que Vxo = Vyo/2 = V/12 e Vpo = Vxo/2 = v/24.

Conversão Digital/Analógica

Saída analógica

Conversão Digital/Analógica


Valor Digital	Ganho do AMP-OP igual a (-3R/2R)	Valor da tensão			
MSB LSB	Vo = Vin.(- 3R/2R)	de saída (Vo)			
0000	0.	0,000			
0001	V _R /16	0,3125			
0010	V _R /8	0,6250			
0011	V _R /16 + V _R /8	0,9375			
0100	V _R /4	1,2500			
0101	$V_R/4 + V_R/16$	1,5625			
0110	$V_R/4 + V_R/8$	1,8750			
0111	$V_R/4 + V_R/8 + V_R/16$	2,1875			
1000	V _R /2	2,5000			
1001	$V_R/2 + V_R/16$	2,8125			
1010	$V_R/2 + V_R/8$	3,1250			
1011	$V_R/2 + V_R/8 + V_R/16$	3,4375			
1100	$V_R/2 + V_R/4$	3,7500			
1101	$V_R/2 + V_R/4 V_R/16$	4,0625			
1110	$V_R/2 + V_R/4 V_R/8$	4,3750			
1111	$V_R/2 + V_R/4 V_{R+}/8 V_R/16$	4,6875			

Conversão Digital / Analógica

Erro de Linearidade

Quando mudo a tensão de ref. mudo também a saída analógica proporcionalmente, assim a linearidade se mantém a mesma.

O Erro de lineridade ou linearidade diferencial é a diferença entre o degrau (step) e o valor ideal do 1 LSB.

Exprime-se em percentagem do valor final de escala (% F.S.) ou em nº de "bits" menos significativos (LSB) ou parte deles.

Erro de Precisão

Quando mudo o valor ref., que é o valor de tensão do bit "1", isto afeta a saída analógica e assim a precisão.

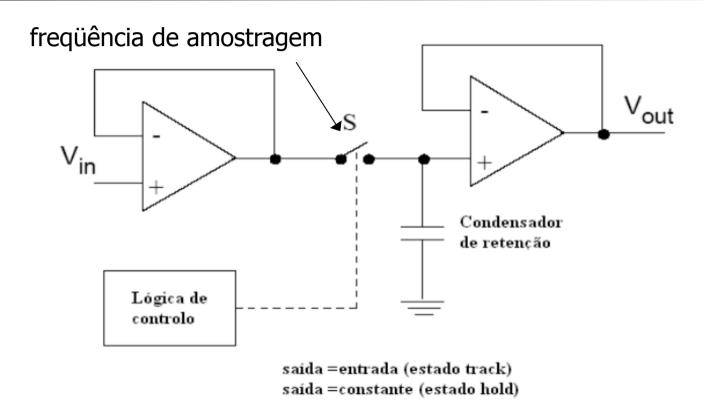
Este valor caracteriza o desvio máximo entre os valores de saída analógica reais e ideais. Uma flutuação na tensão de referência, afeta a precisão mas não afeta a linearidade.


Conversão Analógico -> Digital

- A conversão analógico-digital ocorre através de um dispositivo que utiliza símbolos constituídos por um conjunto de "bits" para representar valores contínuos de tensão.
- A representação dos valores contínuos é feita de acordo com uma característica de transferência previamente definida:
- Esta conversão ocorre em dua fases:
- 1ª Fase:
 - Amostragem nesta etapa do processo de conversão, o sinal analógico é amostrado periodicamente (intervalos de tempo fixos) e convertido em um valor discreto de tensão (numérico).
- 2a fase:
 - Quantificação nesta fase do processo de conversão, o valor discreto de tensão (amostrado) é convertido na forma de um número digital.

Processo de conversão AD

A frequência de amostragem deve ser pelo menos duas vezes a frequência do sinal


- Durante a aquisição o sinal analógico deve permanecer estático na entrada do conversor A/D.
- Enquanto a chave está fechada o sinal de entrada é amostrado e seu valor armazenado em um capacitor.
- A conversão A/D é efetuada em seguida durante o tempo em que a chave está aberta.
- A chave abre e fecha em sincronia com o conversor A/D e a cada nova aquisição.

Amostragem

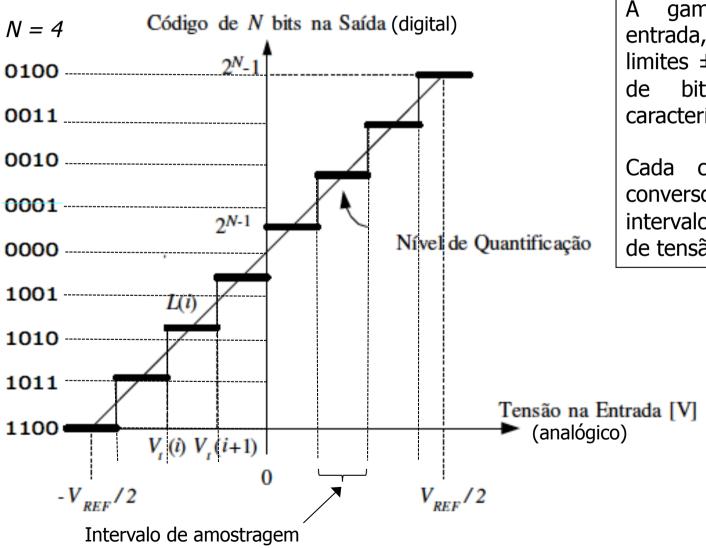

- A fase de amostragem é realizada utilizando-se circuitos de amostragem e retenção (sample and hold), utilizados para reter o valor analógico de um sinal.
- Em aplicações de conversores A/D pode ser interessante ler o valor do sinal a cada t segundos(tempo de amostragem). A saída será uma série de valores referentes a amostragem do sinal de entrada.
 - A periodicidade com que essas amostras são colhidas é denominada período de amostragem. Esta periodicidade influenciará na posterior recuperação do sinal amostrado.
- Teorema da amostragem (Nyquist):
 - a frequência de amostragem (taxa de amostragem) deve ser maior ou igual a duas vezes a maior frequência do sinal.
 - Quando esse teorema não é respeitado ocorre o efeito de aliasing (sobreposição de amostras), o que torna impossível a recuperação do sinal original.

Amostragem e retenção (sample and hold)

- Quando o switch está ligado, o circuito encontra-se no estado de amostragem (sample), ou seja, a saída do circuito é igual à entrada;
- Quando o switch está desligado, o circuito encontra-se no estado de retenção (hold), ou seja, a saída do circuito é igual a uma constante, correspondente ao valor amostrado no instante de tempo em que o estado hold foi acionado.

Amostragem e retenção (sample and hold)

Quantização


 A quantização do valor armazenado é feita através de um circuito quantizador (conversor AD), que executa as operações de aproximação ao valor retido.

Exemplo:

- s(t) = sen wt, onde w = 12 rad/seg
- Amostre 11 vezes no intervalo de 0 a 20 segundos.
- Período de uma amostragem será de 2 segundos, t= nt, n= 0, 1,....10.

s para
digital
racionária
teira
al
Parte frac.
27
1

Conversão A/D - Quantização

A gama de tensões na entrada, no intervalo de limites ± V_{REF} /2, e o número de bits, N, definem a característica de transferência.

Cada código na saída do conversor corresponde a um intervalo contínuo de valores de tensão na entrada.

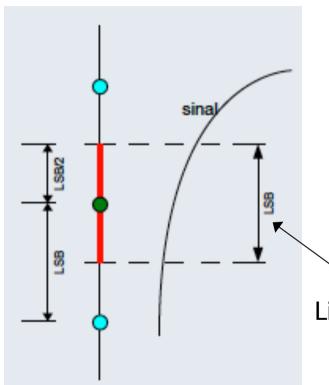
Conversão A/D - Quantização

- Para um conversor de N bits as tensões de entrada são igualmente distribuídas por 2^N níveis diferentes. As fronteiras entre esses níveis são designadas de *tensões de transição*, $V_{t(i)}$, com $i = 1,2,...,2^N-1$.
- Cada par contínuo de tensões de transição define-se um nível de quantificação. A largura desses níveis representa-se pela variável:

$$L(i) = V_t(i+1) - V_t(i)$$
, com $i = 1, 2, ..., 2^N - 2$,

■ Em um conversor ideal o nível de quantificação é igual para todos os códigos de saída, com excepção do código 0 e 2^N-1, os quais estão associados apenas a metade desse valor.

Conversão A/D - Quantização


Considere uma tensão de entrada analógica V_{in}. A mesma seria quantificada por:

$$V_{in} = V_{in} \pm V_{x},$$
 LSB – Least Significant Bit
$$-\frac{1}{2}V_{LSB} \leq V_{x} < \frac{1}{2}V_{LSB},$$

$$V_{LSB} = \frac{V_{REF}}{2^{N}-1}.$$

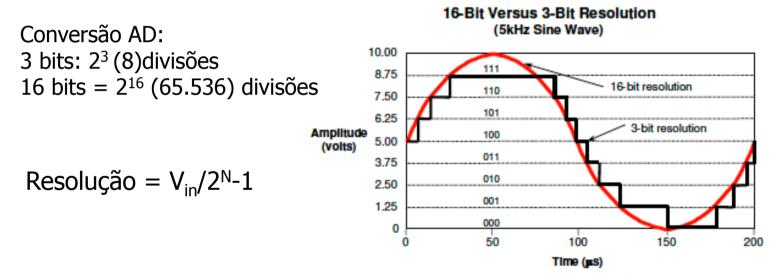
Observamos que uma mesma palavra digital de saída representa, de fato, um intervalo de valores analógicos de tensão de entrada. Essa incerteza inerente à digitalização de um valor analógico é denominada erro de quantização.

O *erro de quantização* depende do número de bits no conversor, juntamente com os seus erros, ruído e não linearidades.

Erro de quantização

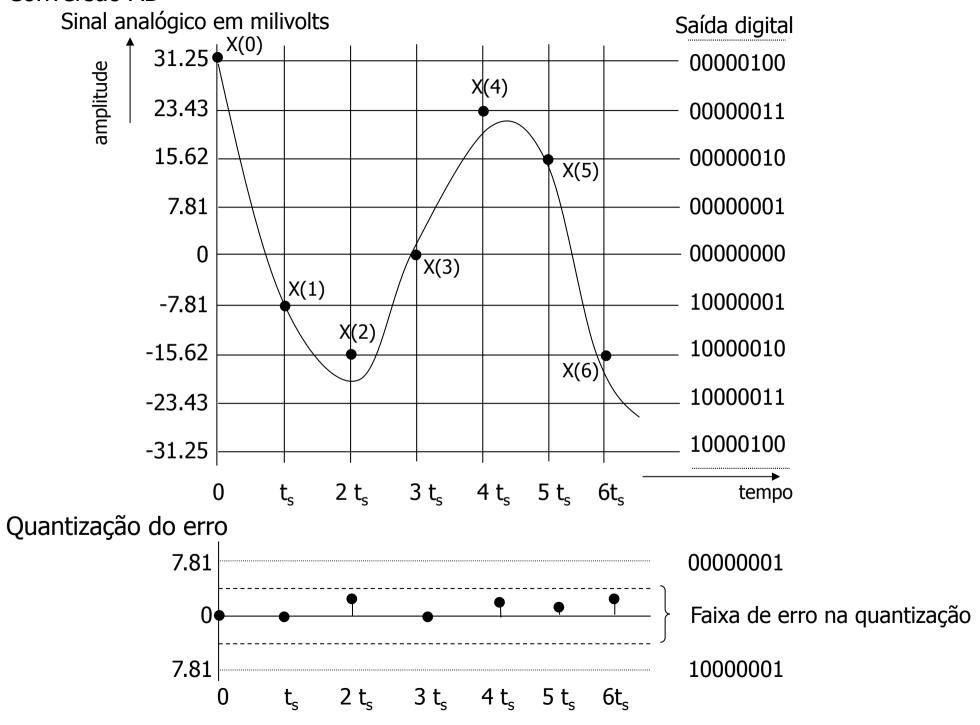
- Todos os pontos do sinal que estiverem no intervalo do segmento em vermelho serão quantizados pelo nível representado pela bola verde.
- Podemos ver que o erro de quantização máximo neste cenário será LSB/2.

Limiar de detecção


Um sinal que excursiona de 0 a 1 V, quantizado com 8 bits divide o intervalo de excusão do sinal em 256 níveis.

Desta forma, o LSB = 1 V / 256 = 1/256 V

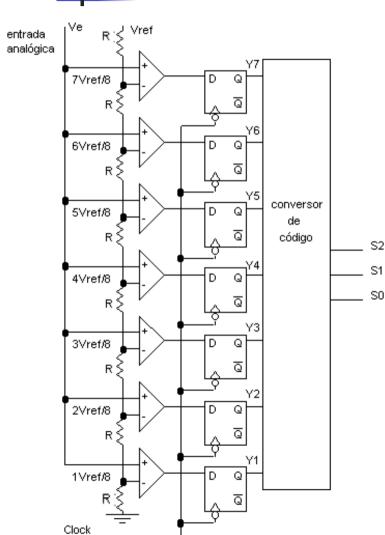
Erro de quantização = ½(LSB) = 1/512 V


Características de um conversor AD

 Resolução - A resolução de um conversor é definida como o seu número de bits. Uma resolução de N bits significa que o conversor pode distinguir entre 2^N-1 intervalos de valores analógicos diferentes.

- Tempo de Aquisição Corresponde ao tempo necessário para o S&H amostrar e reter o valor de uma tensão de entrada com uma exatidão pré-definida.
- Tempo de Conversão Corresponde ao tempo necessário para uma conversão completa do ADC.

Conversão AD

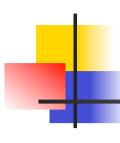

Tipos de conversores AD

- Técnicas de Conversão Analógico-Digital
 - Classificação de ADCs:
 - Integradores ou n\u00e3o integradores.
 - Integradores Boa imunidade ao ruído:
 - Rampa (Simples, Dupla e Tripla).
 - Sigma-Delta (Σ-Δ).
 - Não Integradores Maior rapidez de conversão:
 - Contador (Up, Up-Down).
 - Flash ou Paralelo.
 - Aproximações Sucessivas.
 - Redistribuição de Carga.

Tipos de conversores AD

- Com ou sem utilização de conversores digital analógico (DACs).
 - Com DAC
 - Contador (Up, Up-Down).
 - Aproximações Sucessivas.
 - Redistribuição de Carga.
 - Sigma-Delta (Σ Δ).
 - Sem DACs
 - Rampa (Simples, Dupla e Tripla).
 - Flash ou Paralelo.

Conversor A/D Flash



Consiste em criar 2^N-1 níveis distintos de tensão de referência separados entre si por 1 LSB.

Tensão de referência

				Salda						
Ve	Y7	Y6	Y5	Y4	Y3	Y2	Y1	S2	S1	S0
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	1
2	0	0	0	0	0	1	1	0	1	0
3	0	0	0	0	1	1	1	0	1	1
4	0	0	0	1	1	1	1	1	0	0
5	0	0	1	1	1	1	1	1	0	1
6	0	1	1	1	1	1	1	1	1	0
7	1	1	1	1	1	1	1	1	1	1

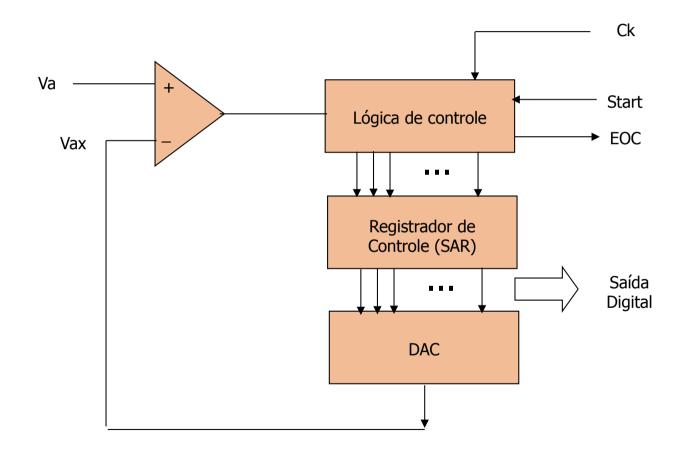
Saída

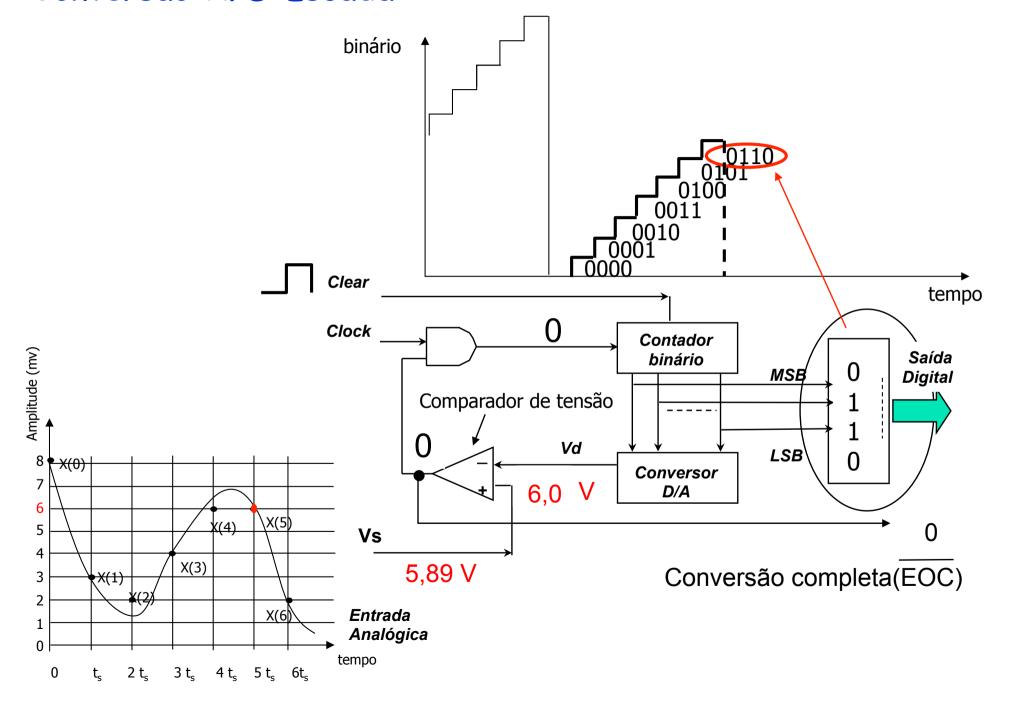
Conversor Flash

Características:

- É o tipo de conversor AD mais rápido, constituído essencialmente por divisores resistivos e comparadores.
- A rapidez de conversão do Flash permite sua utilização em frequência da ordem de 100GHz.

Conversor A/D


Conversor Analógico baseado em um contador



Conversor A/D

Conversão A/D Escada

Conversor baseado em um contador

- Característcas principais:
 - Circuito simples.
 - Precisão elevada.
 - O tempo de conversão é lento quando comparado a outros métodos de conversão.
 - O tempo de conversão não é constante para todos os sinais analógicos. Depende da intensidade do sinal.

Conversor AD – Aproximação Sucessiva

- Esta técnica de conversão consiste numa comparação da tensão de entrada com uma tensão gerada pelo DAC resultante de um código binário do Registo de Aproximações Sucessivas – RAS (que faz parte do bloco de controle).
- Quando se inicia uma conversão o MSB do RAS é colocado a 1 (1/2 do valor fim-de-escala do DAC). A tensão então gerada pelo DAC é comparada com a tensão de entrada.
- Se a entrada apresenta um valor superior então o MSB é mantido a 1 e é também colocado a 1 o bit seguinte (1/4 do valor fim-de-escala) sendo feito um novo teste com este bit. Se a entrada é inferior então o MSB é colocado a 0 e o bit seguinte é testado.
- Este processo é repetido até terem sido encontrados todos os bits.

Conversor AD – Aproximação Sucessiva

Exemplo para um conversor de 3 bits - Saída 011:

Conversor AD – Aproximação Sucessiva

Características:

- Este método é sensível ao ruído necessitando de um sistema de filtragem.
- A precisão do conversor depende do DAC e do comparador.
- São geralmente utilizados para interface a computadores.
- Possuem uma resolução elevada (cerca dos 16 bit's).
- Possuem alta velocidade de conversão (1 MHz).
- Não depende da amplitude do sinal de entrada.

Bibliografia

- Sistemas Digitais Tocci & Widmer, Ed. Prentice Hall
 - Cap 10, Interface com o mundo analógico
- Eletrônica Digital Taub & Schiling, Ed. McGraw Hill
 - Cap. Conversores AD e DA
- Understanhdo Data Converters, Application Report. Texas Instruments, 1995. (http://www.ti.com/lit/an/slaa013/slaa013.pdf)
- www.inatel.br