
Lightweight Testing for
Configurable Systems

Marcelo d’Amorim
Federal University of Pernambuco, Brazil

TAROT Summer School, Porto (PT), July 3, 2014

What is a Configurable System?

2

A system made up of several named
parts, one of which is the base. Those

parts often share functionality.

Why Configurable Systems?

3

Improve Productivity

Ability to add or remove features as
new demands emerge.

Used in practice

4

Hot topic in research

• Several papers accepted in recent editions of
ICSE, ASE, and FSE.

• Specialized venues. E.g.,

– Modularity (previously AOSD)

– Software Product Line Conference (SPLC)

– Intl. Conference on Generative Programming (GPCE)

5

Contents

• Background

• Testing Configurable Systems

– What to test and what configurations to test?

– Test adequacy

– Interpreting test results

– Debugging configurations

– GCC

• Research

6

Material of this talk is available at
http://goo.gl/ctPcqe

BACKGROUND

7

Terminology

• Feature

– Distinct system functionality

– Example

8

Notepad

Menubar

Toolbar

Word count

Terminology

• Feature Option
– Features are controlled through input options

• The value “true” indicates enable for boolean options

– Options need not to be boolean
• In eCos (embedded OS), most options are non-boolean

– ~54% of options are non-boolean (e.g., number and string)

– “A Study of Non-Boolean Constraints in Variability Models of
an Embedded Operating System”, Passos et al., FOSD, 2011

• In Apache Web Server, most options are boolean
– ~92% (=158/172) of options are boolean

– “Moving Forward with Combinatorial Interaction Testing”,
Yilmaz et al., IEEE Software, 2014

9

Terminology

• Configuration

– A selection of features

– Features may not be all independent

• Feature Model

– Description of a set of acceptable configurations

– Important for understanding and for testing

– Unfortunately, often not documented

10

Feature Model (FM)

• Encode different forms of constraints

– Mandatory (BASE) and optional (others)

– Cross-feature

– Alternative, etc.

11

NOTEPAD

TOOLBARBASE WORDCOUNTMENUBAR

M  T

SMT-LIB encoding.
Follow example.

Terminology

• Variation

– Manifestations of features in artifacts

– Scenario:

• Feature is scattered across artifacts

• Variations in artifacts collectively express feature

12

…

Artifacts

…
…

Terminology

• Variation

– Manifestations of features in artifacts

– Scenario:

• Feature is scattered across artifacts

• Variations in artifacts collectively express feature

13

…

Artifacts

…
…

Tangling of different
concerns in one artifact

Scattering of the
same concerns
across artifacts

Terminology

• Product

– Specialization of a configurable system for a
particular configuration (set of features)

14

The term “configuration” is sometimes also used to
denote the product that implements that configuration.

Terminology

• Generation of a product

– Process of generating a product

• Input: Selection of features, system

• Output: Product that implements features

15

A configurable system is
often called a family of

systems.

Product generationoptions product

product-1

product-2

product-3

…

System with
options

Terminology

• Binding time of features

– Static binding

• Annotative (e.g., #ifdefs)
– Flexible but easy to introduce errors and hard to maintain

• Compositional (e.g., AHEAD, AOP, etc.)
– Easy to maintain but requires a new methodology for coding

– Dynamic binding

• Program state determines what features are enabled

16

Often called Software Product Lines

Static (Annotative)

• Approach

– Annotate program with preprocessor directives
guarded by feature (boolean) expressions

• E.g., #ifdef FORMAT … #endif

– At build time, decide/bind value of each variable

17

See TankWar game example.

Static (Compositional)

• Partitions code w.r.t.
features

– Avoid scattering and
tangling of concerns

• Several supporting
languages. E.g., AHEAD,
HyperJ, AspectJ, etc.

18

…

Artifacts

…

…

Non compositional Compositional

…

…

…

Dynamic

• Approach

– Condition execution of code based on the
evaluation of feature expressions

19

class Notepad {

void toolBar() {

if(T) {

...

if(W)

...

}

}

...

}

Only executes this part if
expression T evaluates to true.

T and W are program variables.

TESTING

20

What to test?

• Feature Testing

– Analogous to Unit Testing

• Example: Test the feature “Sound” in TankWar or the
feature "Wordcount" in Notepad

• System Testing

– As usual, but features are treated as inputs

21

What configurations to test? (1/3)

• Default configuration

– Run test on one special (default) configuration

• For example, consider default a configuration with the
most popular set of features

• Random

– Run test on a selection of random configurations

22

What configurations to test? (2/3)

• Exhaustive

– Run test on all configurations

• Potentially very expensive

• Optimizations to address combinatorial explosion
– Use feature model

– Only consider reachable configurations from tests

• SPLat (later discussed) builds on these optimizations

23

“SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in
Testing Configurable Systems”, Kim et al., ESEC/FSE’13.

What configurations to test? (3/3)

• Combinatorial Interaction Testing (CIT)

– Run test on a selection of configurations

– Generate covering arrays (e.g., 2-way covering
arrays) that satisfy FM constraints

24

A, B, and C are binary feature
variables while D and E are

ternary. Overall, there are 72
(=2^3*3^2) combinations.

Example* of a traditional
2-way covering arrays (no

constraints added)

*From “Moving Forward with Combinatorial Interaction Testing”, Yilmaz et al., IEEE Software, 2014.

TEST ADEQUACY

25

Coverage

• Not well studied in this context

• Problem: Lack of mapping from features to
code

– See non-compositional impl. mechanisms

– If mapping is available, it is possible to compute
feature coverage

• Related to the TAROT’14 talk of Breno Miranda on
“Relative Coverage”

26

Mutation analysis

• Not very well studied too

• What mutants to apply?

– “Feature Interaction Faults Revisited: An
Exploratory Study”, Garvin and Cohen, ISSRE’11.

• E.g., modify feature expressions in #ifdef conditionals

• Problem: Even more expensive than mutation
analysis on non-configurable systems

– Tests x Configurations x Mutants

27

INTERPRETING TEST RESULTS

28

Feature Interaction

• Scenario: Used 2-way covering arrays and found
exactly 1 failure

• Observation: Pair (C=1, D=2) is distinctly covered

• Hypothesis: Features C and D interact
29

A B C D E R

0 0 1 1 0 P

… P

0 1 1 2 0 F

… P

TEST

0
1
1
2
0

Fail

Options
Test Result

Masking Effect

• Scenario: Found multiple failing executions

• Conjecture: Failures are due to the
combinations of distinct features

30

A B C D E R

… P

0 1 1 2 0 F

1 1 0 1 0 F

1 1 0 2 1 F

… P

Distinct pairs
covered

It can happen that
this test will fail

simply because B=1

DEBUGGING CONFIGURATIONS

31

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

32

A B C D E R

0 1 1 2 0 F

TEST

0
1
1
2
0

Fail

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

33

A B C D E R

0 0 1 2 0 F Pick one variable,
alternate its value,

observe results.
Refer to the discussion

on the “Alternating
Variable Method” from

Gordon Fraser’s talk.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

34

A B C D E R

1 0 1 2 0 F Pick one variable,
alternate its value,

observe results.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

35

A B C D E R

1 0 0 2 0 P Pick one variable,
alternate its value,

observe results.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

36

A B C D E R

1 0 1 2 0 F Pick one variable,
alternate its value,

observe results.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

37

A B C D E R

1 0 1 1 0 F Pick one variable,
alternate its value,

observe results.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

38

A B C D E R

1 0 1 0 0 P Pick one variable,
alternate its value,

observe results.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

39

A B C D E R

1 0 1 2 0 F Pick one variable,
alternate its value,

observe results.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

40

A B C D E R

1 0 1 2 1 P Pick one variable,
alternate its value,

observe results.

Debugging Configurations

• Scenario

– Test fails on a particular configuration (see below),
which options are relevant and which are not?

41

A B C D E R

? ? 1 2 0 F Pick one variable,
alternate its value,

observe results.Options C, D, and E are
relevant to induce failure.

Further Reading

• Delta Debugging (DD). Zeller et al.
– https://www.st.cs.uni-saarland.de/dd/

• “Locating errors using ELAs, covering arrays,
and adaptive testing algorithms”, Martinez et
al., SIAM Journal of Discrete Mathematics,
23(4):1776–1799, 2009.

• “Spectrum-based Fault Localization in
Embedded Software”, Rui Abreu, PhD thesis,
Delft University, November 2009.

42

GCC

43

GNU Compiler Collection (GCC)

• Supports several front-ends and back-ends

• Both static (annotative) and dynamic bindings

• Uses DejaGnu for Testing

– DejaGnu is the testing framework of GNU

• Git access:
– git clone git://git.sv.gnu.org/dejagnu.git

44

DejaGnu

• Important features
– Supports testing of interactive systems

• Think of testing a shell command like “ls”

– Language independent
• Black-box interaction

• Assertions defined with string matching

• Written in Expect, which is written in Tcl
– Expect acts as a programmable shell

– See http://www.nist.gov/el/msid/expect.cfm

45

DejaGnu

46

See Calc example

This example has no code
variations. The purpose is

to illustrate DejaGnu at use.

GCC DejaGnu test

47

/* Test for scanf formats. %a extensions. */

/* Origin: Joseph Myers <jsm28@cam.ac.uk> */

/* { dg-do compile } */

/* { dg-options “-std=gnu89 -Wformat” } */

#include “format.h”

void foo (char **sp, wchar_t **lsp) {

/* … */

scanf (“%as”, sp);

scanf (“%aS”, lsp);

scanf (“%a[bcd]”, sp);

}

This test will only compile on GCC
using the C compiler front-end.

ext-4.c

Options passed to the compiler. Many
other exist; default values used.

RESEARCH

48

Research Problems

• Testing

– High Dimensionality

– Lack of Feature Models

• Design & Implementation

– Safe Composition

– (Safe) Decomposition

49

Work led by PhD student
Sabrina Souto

(sfs@cin.ufpe.br)

50

High Dimensionality

Our Solution
-- SPLat --

Kim et al., SPLat: Lightweight Dynamic Analysis for Reducing
Combinatorics in Testing Configurable Systems. ESEC/FSE’13: 257-267

High Dimensionality

The same test needs to be run
against many configurations

E.g. The same Ruby on Rails test for
Groupon needs to be run against all
configurations

51

170+ boolean variables
2170+ configurations

www.groupon.com

Existing Techniques

• Sampling [Cohen et al. ISSTA’07, Perrouin et al.,
ICST’10, Garvin and Cohen ISSRE’11, Song et al.
ICSE’12, Shi et al. FASE’12]
– Heuristically sample the configuration space

• Fast! But can miss errors or produce redundant tests

• Exhaustive [d’Amorim et al. ISSTA’07, Rhein et al.
JPF’11, Kim et al. AOSD’11, Kastner et al.
FOSD’12, Kim et al. ISSRE’12, Apel et al. ICSE’13]
– Static/dynamic analysis for pruning redundant

configurations
• Safe! But slow and often doesn’t scale

52

Proposal: SPLat

• Observation

– Each test exercises a small portion of code

• Assumption

– Feature variables can be easily identified in code

• Proposal

– Explore all combinations of features dynamically
reachable from a test

– Can be optimized to only consider configurations
consistent with feature model

53

SPLat in a Nutshell

1. Determine reachable configurations
during execution

2. Set feature value when feature is
encountered

3. Keep a stack of encountered features

4. Repeat until explore all legal
combinations of encountered features

54

W false

SPLat on Notepad
• 1st run

Constraint: T  M

Stack

T false

• 2nd run

• 3rd run

TWM= <false, ?, true>
(M=true due to TM)

Configurations Executed

TWM=<true, false, ?>

class Notepad {

void toolBar() {

if(T) {

...

if(W)

...

}

}

...

void test() {

toolBar();

}

}

W false

T falseT true

TWM=<true, true, ?>W true

T true

• 4th run
Nothing to executeW true

T true

55

Evaluation

• Run SPLat on 10 SPLs

• Baselines

– Exhaustive (worst case)

– Static Reachability

– Ideal (best case)

• SPLat was better for almost all cases

– Overhead was high for short-running executions

56

Groupon Evaluation: Setup

• How well does SPLat scale?
• Experiment

– Ruby on Rails
implementation of SPLat

– Applied against the
Groupon code base
• 4.5 years of work from 250+

engineers
• 400K+ LOC (171K LOC of

server side, 231K lines of
tests)

• 19K tests
• 170 boolean feature

variables (up to 2170)

57

Groupon Evaluation: Results

58

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 1012141618202224262830323436384042

No. of features accessedNo. of configurations executed

Number
of tests

Summary of SPLat

• Hypothesis: most tests exercise a relatively
small number of configurations
– Confirmed with Groupon case study

• It misses no configurations

• Low overhead compared to running selected
configurations with no instrumentation

• Limitations
– SPLat is not able to find equivalent states during

executions (merging)

59

60

Lack of Feature Models

Our Solution
-- SPLif --

Lack of Feature Models

• Feature Models are important
but often are not documented

61

Why important? A test failure due
to a configuration that is not in the

(missing) model is meaningless.

Lack of Feature Models

• Feature Models are important
but often are not documented

62

Why not documented?

Existing Reverse Engineering
Techniques

• Static Analysis [She et al. ICSE’11]

• Information Retrieval [Alves et al. SPLC’08,
Davril et al., FSE’13]

• Evolutionary Search [Lopez-Herrejon et al.
SSBSE’13]

• Custom solutions [Haslinger et al. FASE’13]

63

No prior work builds on
tests and their executions

Basic Terminology

• Partial vs. Complete Configuration

• Consistent vs. Inconsistent Configuration

64

MTW=0*1 (partial)
MTW=010 (complete)

MTW=0*1 (consistent)
MTW=00* (inconsistent)

Recall Notepad Constraint:
M  T (Undocumented)

Recall Notepad Features:
Menubar, Toolbar, and
Wordcount

Proposal: SPLif

• Revise the feature model during Testing

– Ask the user to label configurations

• If configuration is consistent, inspect!

• Assumptions

– User is aware about many feature relationships

– User makes no mistake :-(

65

SPLif Example (1 test)

• Configurations (MTW):

66

class Notepad {

void toolBar() {

if(T) {

...

if(W)

...

}

if (M) { ... }

}

...

void test() {

toolBar();

}

}

111
011
110
010
10*
00*

SPLif Example (1 test)

• Configurations (MTW):

67

111
011
110
010
10*
00*

Execution of
some tests fails!

SPLif Example (1 test)

• Configurations (MTW):

68

011

10*
00*

Select failing
configurations

SPLif Example (1 test)

• Configurations (MTW):

69

00*
10*
011

Rank
configurations
for inspection

SPLif Example (1 test)

• Configurations (MTW):

70

00*
10*
011

Inconsistent!

SPLif Example (1 test)

• Configurations (MTW):

71

00*
10*
011

Inconsistent!

Partial Feature Model (PFM) = !(U ci),

where ci is an inconsistent configuration

In this case c1=(!M  !T) and PFM=
!(!M  !T)

!!M  !!T

M  T

SPLif Example (1 test)

• Configurations (MTW):

72

00*
10*
011

Inconsistent!

Partial Feature Model (PFM) = !(U ci),

where ci is an inconsistent configuration

In this case ci=(!M  !T) and PFM=
!(!M  !T)

!!M  !!T

M  T

Configurations that violate this
constraint will not be inspected!

SPLif Example (1 test)

• Configurations (MTW):

73

00*

10*
011

Partial Feature Model:

M  TConsistent

The test failed on a configuration
where no inconsistency has been
observed. Tester should inspect!

SPLif Example (1 test)

• Configurations (MTW):

74

00*

10*
011

Partial Feature Model:

M  TConsistent

Feature model obtained is
complete in this case. But that is

not always the case.

Evaluation Setup

• Asked students to generate tests for 5 SPLs

– 212 tests in total

• Of these 85 tests fail for some configuration (~40%)

– 7378 configurations in total

• Of these 1220 fail (~16%)

• Of these 154 are consistent (~12%)

• SPLif ranks tests likely to contain consistent
configurations and configurations on each test

75

test1
test2
…

configuration-1
configuration-2
…

Evaluation Setup

• We inspected tests and failing configurations

• Configuration inspection

– Consistent configuration found => Bug in test or code

– Inconsistent configuration found => Update in model

76

Evaluation Results

• # of configuration inspections smaller than #
failing configurations

– SPLif uses set of concrete configurations (due to ?)

• No bug in code found

• Few test repairs needed

– Most cases only one change needed in test

77

78

Design & Implementation
Safe Composition

Safe Composition

• Problem

– Are there inconsistencies in code?

– This is a well studied problem

• “Safe composition of product lines”. Thaker et al., GPCE’07

• “Safe composition of knowledge-based software product
lines”, Teixeira et al., JSS’13

• …

79

One Approach

• Assume Feature Model (FM) is available

• Infer feature constraints from code and check
those against FM using a constraint solver

80

“Safe composition of product lines”. Thaker et al., GPCE’07

Example

81

class Notepad {

void toolBar() {

if(T) {

x

if(W)

y

}

}

...

void test() {

toolBar();

}

}

FOF: Member --> Feature Expression

Consider uninterpreted function FOF as
the mapping from members to features

Example

82

class Notepad {

void toolBar() {

if(T) {

x

if(W)

y

}

}

...

void test() {

toolBar();

}

}

T => FOF(x)

(T AND W) => FOF(y)

Feature constraints extracted from code:

Use a constraint solver to find
contradictions between these

constraints and those
expressed in the FM.

83

Design & Implementation
(Safe) Decomposition

Problem

• How to decompose features into modules?

• What is the binding of features to members?

– Existing solutions are imprecise

• E.g., information retrieval

84

alternatively,

Example

• What are the possible valuations for…

– FOF(x), FOF(y), and FOF(toolBar)?

85

class Notepad {

void toolBar() {

if(T) {

x

if(W)

y

}

}

}

Thanks to…

• Paulo Barros (UFPE)

• Don Batory (UT Austin)

• Divya Gopinath (UT Austin)

• Sarfraz Khurshid (UT Austin)

• Peter Kim (now Oxford then UT Austin)

• Darko Marinov (Illinois)

• Sabrina Souto (UFPE)

8686

