Demystifying the Combination of Dynamic Slicing and
Spectrum-based Fault Localization

Sofia Reis!, Rui Abreu' and Marcelo d’Amorim?

ST, University of Lisbon & INESC-ID, Portugal
Federal University of Pernambuco, Brazil

sofia.o.reis @tecnico.ulisboa.pt, rui @computer.org; damorim @cin.ufpe.br

Abstract

Several approaches have been proposed to reduce
debugging costs through automated software fault
diagnosis. Dynamic Slicing (DS) and Spectrum-
based Fault Localization (SFL) are popular fault
diagnosis techniques and normally seen as comple-
mentary. This paper reports on a comprehensive
study to reassess the effects of combining DS with
SFL. With this combination, components that are of-
ten involved in failing but seldom in passing test runs
could be located and their suspiciousness reduced.
Results show that the DS-SFL combination, coined
as Tandem-FL, improves the diagnostic accuracy up
to 73.7% (13.4% on average). Furthermore, results
indicate that the risk of missing faulty statements,
which is a DS’s key limitation, is not high — DS
misses faulty statements in 9% of the 260 cases. To
sum up, we found that the DS-SFL combination
was practical and effective and encourage new SFL
techniques to be evaluated against that optimization.

1 Introduction

Software debugging is important and challenging. The task
of locating the faulty code (i.e., fault localization) is particu-
larly challenging. As such, countless automated techniques
have been proposed in the past to reduce the cost of fault
localization [Wong et al., 2016]. Model-based software di-
agnosis (MBSD) [Reiter, 1987; de Kleer and Kurien, 2003]
and Spectrum-Based Fault Localization (SFL) [Harrold er al.,
2000] are two popular techniques that leverage different prin-
ciples to automate fault isolation [Abreu er al., 2008]. At a
high-level, MBSD techniques [Wotawa er al., 2002; Mayer and
Stumptner, 2008; Mayer et al., 2008; Perez and Abreu, 2018;
Ko and Myers, 2008] attempt to eliminate non-suspicious com-
ponents whereas SFL techniques attempt to rank suspicious
components with the goal of reducing fault diagnosis cost.
Dynamic Slicing (DS) [Agrawal and Horgan, 1990] is an
instance of MBSD that has attracted huge attention in research
over the last decades [Silva, 2012]. The technique traces back
the statements in the code that influence a given point of inter-
est, such as the evaluation of a failing assertion. Similarly to
DS, SFL [Harrold et al., 2000] received tremendous attention

in research over the years [Wong et al., 2016]. It computes sus-
piciousness values associated with program components (e.g.,
statements) based on coverage information gathered during
the execution of test cases. More precisely, SFL uses coverage
information of passing and failing test cases to identify likely
faulty statements and produces on output a list of program
components ranked in decreasing order of suspiciousness.

Intuitively, DS identifies irrelevant parts of the code (i.e.,
parts that do not contribute to the fault) whereas SFL ranks
the relevant parts of the code. It is conceivable, there-
fore, to combine these two techniques based on the intu-
ition that highly ranked statements (as per SFL), albeit cov-
ered by failing executions, could be in fact unrelated to
the fault (as per DS). In fact, prior work reported promis-
ing preliminary results on this combination [Wotawa, 2010;
Alves et al., 2011; Hofer and Wotawa, 2012; Lei et al., 2012;
Guo et al., 2018]. Unfortunately, they used a small set of
subjects in their evaluation or over optimistic methods to
evaluate fault localization improvement [Wu et al., 2014,
Lucia et al., 2014b; Wen et al., 2016].

Given the importance of fault localization, this paper revis-
its the problem of assessing the effectiveness of combining
DS and SFL, addressing the key issues of prior work. We
conducted a comprehensive study involving 260 faults from 5
different programs from the Defects4J benchmark [Just et al.,
20141, which is frequently used to evaluate fault localization
research. Results show that DS misses faulty statements in
9% of the 260 faults analyzed. Furthermore, we found that the
combination of the two approaches improves fault localization
up to 73.7% (13.4% on average). To sum up, results indicate
that the risk of applying the technique is relatively low for the
positive impact it may bring; and, the tool implementing the
technique works out-of-the-box, i.e., it puts no requirements
on the running environment, subject programs it can be used,
and requires no special setup.

The contributions of this work are:

1) An empirical study, using real-world applications and
bugs, on the combination of DS-SFL for bug localization
of Java faulty programs.

2) A tool!, dubbed Tandem-FL, implementing the DS-SFL
combination.

"Tool and dataset available at/through https:/github.com/
damorim/lithium-slicer (Accessed June 22, 2019)
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2 Dynamic Slicing (DS)

Model-based diagnosis is a well-known approach that has
been proposed by the DX community, a sub-field of Al that
develops algorithms and techniques to determine the root-
cause of observed failures. [Reiter, 1987; de Kleer and Kurien,
2003]. Applications of model-based diagnosis to localize
software faults have demonstrated that it can be framed as
dynamic slicing [Mayer and Stumptner, 2008; Mayer er al.,
2008].

Dynamic slicing [Agrawal and Horgan, 1990] is an instance
of model-based software diagnosis that has been shown useful
in automated software debugging where the region of interest
is restricted to what can be reached from failing tests. Several
dynamic slicing techniques exist. This paper uses Critical Slic-
ing (CS) [DeMillo et al., 1996] for its simplicity/generality.
Critical Slicing prescribes a black-box language-semantics-
agnostic recipe to computing executable slices. Critical Slicing
simplifies the original program such that the resulting program
preserves critical observations, such as assertion violations.
More precisely, the simplification mechanism consists of delet-
ing statements on the original program and checking if the
output of the original and modified program are the same.

Our implementation of Critical Slicing is based on the
Mozilla Lithium tool?. It takes as input a file and produces
as output a simplified version of that file that satisfies a user-
defined oracle. In our case, the oracle is defined such that
the test produces the same failure manifestation as the one
observed with the test execution on the original program. The
Lithium minimization process starts by determining the initial
size—in number of lines—of chunks to delete from the input
file. For that, it chooses the highest power of two number
smaller than the file size. For example, if the file has 1, 000
lines, Lithium sets the initial chunk size to 512 lines. Then, the
tool starts a local search looking for chunks to exclude from
the file. If the chunk satisfies the oracle it is removed. When
no more chunks of that given size can be removed, Lithium
divides the chunk size by two and repeats the search. This
iterative process continues until no more lines can be removed.
If n is the size of the input file and m is the size of the 1-
minimal file found by Lithium, then Lithium usually performs
O(m -1g(n)) iterations.

Claim 1 The faulty statement may not be included in the crit-
ical slice of failing test cases.

If test oracles are too general, it is possible, conceptually,
that the critical slicing algorithm produces slices without the
faulty code. Suppose that a test fails with a Null-Pointer
Exception (NPE) and the criterion used to slice the code in
that case (i.e., the oracle) is the presence of NPE in the out-
put, regardless of the location that raises that exception. It is
therefore possible that the slice obtained at some iteration of
the aforementioned algorithm raises NPE, but it does so in a
different part of the code. If that happens, the critical slicing al-
gorithm would consider that as an acceptable simplification—as
it satisfied the criterion—and would continue. As the algorithm

?Lithium details available at https:/github.com/MozillaSecurity/
lithium (Accessed June 22, 2019)

does not backtrack, it would be impossible, to obtain a slice
containing the faulty component from that point on. ]

It is worth noting that this is not a problem that afflicts
only CS; all purely dynamic slicing techniques manifest this
problem [Lin ez al., 2018]. To mitigate the issue in CS, it is nec-
essary to make oracles more specific. For that, our approach
was to use as the slicing criterion the stack trace associated
with the test failure. That decision increases the chances that
the sliced program will follow a path to the error similar to
that followed by the original program. In addition, there are
faults whose outputs may slightly differ from one execution to
another. For example, exceptions including memory address
identifiers, which change on each execution. For these cases, it
was developed a mechanism to compare the rest of the output
ignoring the identifier of the memory address.

3 Spectrum-based Fault Localization (SFL)

Spectrum-based fault lo-

calization is a statisti- T
cal fault localization tech- tr [ A A - A | e
nique that takes as in- 2 | Az Axn Azm | ez
put a test suite includ- : : : :
ing at least one failing ity | Avt Anz Anwm | en

test and reports on out-
put a ranked list of com-
ponents likely to be in fault [Wong et al., 2016; Jones and
Harrold, 2005; Lucia et al., 2014a; Abreu et al., 2009]. The fol-
lowing are given in SFL: a finite setC = {¢1, 2, ...,cpar } of M
system components®; a finite set 7 = {t1,t2,...,tx } of N sys-
tem transactions, which correspond to records of a system exe-
cution, such as test cases; the error vector e = {ey, €2, ...,en },
where e; = 1 if transaction ¢; has failed and e; = 0 otherwise;
and an N x M coverage matrix .4, where A;; denotes the
coverage of component ¢; in transaction ¢;. The pair (A, e)
is commonly referred to as spectrum [Harrold ef al., 2000].
Figure 1 shows an example spectrum.

Several types of spectra exist. The most commonly used
is called hit-spectrum, where the coverage matrix is encoded
in terms of binary Ait (1) and not hit (0) flags, ie., A;; = 1
if t; covers ¢; and A;; = 0 otherwise. SFL takes as input
the pair (A, e) and produces on output a list of components
ranked by their faulty suspiciousness. To that end, the first
step of the technique consists of determining what columns of
the matrix A resemble the error vector e the most. For that,
an intermediate component frequency aggregator n,q(j) is
computed ny,(j) = [{i | Aij = pAei = q}|. npg(j) denotes
the number of runs in which the component j has been active
during execution (p = 1) or not (p = 0), and in which the runs
failed (¢ = 1) or passed (¢ = 0). For instance, n1(j) counts
the number of times component j has been involved (p = 1) in
failing executions (¢ = 1), whereas n1o(j) counts the number
of times component j has been involved in passing executions.
We then calculate similarity to the error vector by means of
applying fault predictors to each component to produce a
score quantifying how likely it is to be faulty. Components are
then ranked according to such likelihood scores and reported

Figure 1: An example spectrum.

3A component can be any code artifact of arbitrary granularity
such as a class, a method, or a statement [Harrold et al., 2000].
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to the user. Ochiai is one of those fault predictors that has
shown to perform well [Wong et al., 2016; Pearson et al.,
2017]. The Ochiai formula is given by the following equation

ochiai=n11(5)/v/(n11(3) + n01(4)) * (n11(5) + n10(4))-

4 The Tandem-FL Approach

This section describes Tandem-FL, a technique where DS and
SFL work in tandem to solve the fault localization problem.
To illustrate the idea behind Tandem-FL, consider a debugging
scenario with five components c; 5 and five transactions ¢ 5,
two of which are failing. Consider, additionally, that the
component cs is faulty. Figure 2 shows, at the left-hand side of
the arrow (=), an hypothetical spectra and its corresponding
ranking, produced with the Ochiai predictor. Each line in the
ranking shows, respectively, the rank/position, the component
label, and the Ochiai score (in parentheses).

We illustrate the workflow of the Tandem-FL approach for
this scenario in the following. Let us analyze components
at the granularity of statements. First, Tandem-FL picks the
first two statements at the top of the ranking, c4 and cs, for
further analysis. (The cutoff point is user-defined.) Second,
the technique picks a failing test to slice the code, say to.
A slice is a set of statements. Let us assume that the slice
obtained for the transaction ¢ is {co,c5}, i.e., it excludes
statements c4 and cg3 that were previously covered by the test.
Finally, the spectra and ranking are updated. The right-side of
Figure 2 shows the modified spectra and ranking after slicing
the code against to. It is worth noting that the technique slices
the code for every failing tests. Intuitively, slicing enables the
identification of statements in the spectra whose values can be
set to zero, i.e., the components marked with O are irrelevant
to determine the test output.

Let us now observe the effect of this spectra modification
on the ranking. Analyzing the Ochiai formula, one observes
that, for the components j, which are not part of the slice of a
failing test, the combination reduces the value of n11(j) and
increases the value of ng; (j). Therefore, suspiciousness of
those components decrease. Similar argument applies to other
fault predictors. In the running example from Figure 2, the
components cs and ¢4, which are not in the slice of o, have
their suspiciousness reduced, enabling the faulty component
co to rise from the third to the first position in the ranking.

Briefly, the workflow of Tandem-FL consists of four steps:

1. Compute spectra S and ranking R for the input test suite;
2. Select top k£ most suspicious classes, according to R;

3. Compute slicer for every suspicious file, obtained in
Step 2, and every failing test;

4. Assemble all the resulting slicers of each failing test;
5. Adjust spectra S, from step 1, with the slices of each

failing test, from step 4, and then recompute the ranking.

Claim 2 The rank of faulty statements cannot decrease if the
slice includes the faulty statements.

The proof is based on the outlined argument that irrelevant
components j have their ranks reduced as n11(j) decreases
and ng1 (j) increases. If those irrelevant components appear
at positions above the faulty component, it is possible that

Tler e c3 ¢4 cs5le Tler e c3 ¢4 cs5le
/T 0 1T 1T 0V /T 01 1T 0V
t2/0 1 1 1 11X tol0 1 0 O 1]X
t3)1 0 1 0 0|X = #3/1 01 0 0|xX
t2]0 1 0 0 1|V t4]0 1 0 0 1|V
ts|1 0 0 1 1|/ ts|1 0 0 1 1|/
(a) Spectra update.
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(b) Ranking update.

Figure 2: Modifications on spectra and ranking as result of slicing
code against test t2. Double arrow (=) indicates before and after.

the faulty component becomes more suspicious relative to j,
i.e., the ranking of the faulty component increases. If those
components appear at positions below the faulty components,
the ranking of the faulty components is unaffected. [

S Evaluation

We studied the following research questions:

RQ1. How effective is DS in eliminating code?

RQ2. How often does DS miss faulty statements?

RQ3. How effective is Tandem-FL for bug localization?

The first question evaluates the ability of dynamic slicing
to reduce the size of application code. Improvements on
fault localization depend on that ability. The second question
addresses the problem that affects all dynamic slicing tech-
niques [Lin et al., 2018]—that of missing faulty statements
(see Claim 1). Developers would not be able to successfully
debug code for the cases that issue is manifested. The third
research question evaluates the impact of the combination, as
substantiated by Tandem-FL, to fault localization.

5.1 Objects of Analysis

We used subject programs from the Defects4] benchmark [Just
et al., 2014] in our evaluation. Table 1 shows size, number
of tests, and number of faults, for each considered program.
Two faults from Apache commons-math were not considered
because we were unable to reproduce them in our environ-
ment. Apache commons-lang is a library providing utility
functions for the java.lang API. Apache commons-math is
a library of self-contained mathematics and statistics compo-
nents. JFreechart is a Java library for creating charts. Joda-
Time is a library for manipulating date and time. Mockito is a
mocking testing framework.

As to quantify complexity of fault localization on this bench-
mark, we measured the frequency of “faults of omission”
(FOO), which is a fault whose fix is materialized only with the
addition of new code [Pearson et al., 2017]. Intuitively, the
ability of techniques to produce accurate diagnostic reports
in those cases might be poor as existing statements are not
problematic. We found that this dataset has a total of 59.7% of
FOOs, making it challenging for techniques to perform well.



Project Size (LOC) # Tests # Faults
Apache commons-lang 111,751 6,057 65
Apache commons-math 306,276 26,797 104
JFreechart 230,159 8,458 26
Joda-Time 141,610 3,289 27
Mockito 22,787 8,835 38

Table 1: Characterization of Defects4] subjects.

Project k=5 k=10
Apache commons-lang 1.40 3146
Apache commons-math 10.30  12.34
JFreechart 59.30  53.64
Joda-Time 17.27  32.02
Mockito 16.54  21.67

Table 2: DS reduction in file size (percentages). Higher is better.

5.2 Techniques

One important independent variable for this study is the scope
of analysis for the techniques. Analyzing long rankings would
be unacceptably expensive not only for humans [Parnin and
Orso, 2011] but also for machines. For example, Critical
Slicing needs to re-compile the affected file at every iteration,
i.e., after deleting statements and before checking the oracle
(see Section 2). We control the scope of analysis through the
variable k, denoting the number of most-suspicious files that
will be analyzed. These files are selected from the SFL ranking
as follows. First, we build a ranking of files by determining,
for each ranked statement, the file that declares it. Then, we
select the top-k distinct files from such file ranking.

The techniques we evaluate in this study are Tandem-FL*
and SFL¥, which is the comparison baseline. Tandem-FL* is
as defined in Section 4 (see Step 2 of the workflow) whereas
SFLF is as SFL, but it produces a ranking only including the
statements from the top-k ranked files. In this study, we used
5 and 10 as the values of k, following the same choice as in
previous fault localization studies [Ang et al., 2017].

5.3 Results and Discussion
This section discusses and answers the research questions.
RQ1: How effective is DS in eliminating code?

A necessary but insufficient condition for improvement of
fault localization with Tandem-FL is that dynamic slicing

eliminates a high amount of code from the best ranked files.

Table 2 shows, as percentages, the size reduction of the top
files obtained with dynamic slicing for different values of
k. Overall, results indicate that dynamic slicing substantially
reduces the size of highly-ranked files.

RQ2: How often does DS miss faulty statements?
A fundamental issue of purely dynamic slicing techniques

is the risk of discarding faulty statements (see Section 2).

This research question evaluates the practical impact of this
conceptual issue. Table 3 shows the number of cases dynamic
slicing captures at least one of the faulty statements among the
sliced files for different values of k. These numbers indicate

k=5 k=10

Apache commons-lang 96.9 96.9
Apache commons-math ~ 89.4 95.2

Project

JFreechart 76.9 84.6
Joda-Time 81.5 85.2
Mockito 71.1 78.9
Total 87.3 91.2

Table 3: Tandem-FL* performance on capturing faulty statements, as
percentages. Higher is better.

k=5 k=10
Project SFL Tandem-FL | SFL Tandem-FL
Apache commons-lang | 84.6 96.9 | 84.6 96.9
Apache commons-math | 81.7 89.4|85.6 95.2
JFreechart 84.6 76.9(92.3 84.6
Joda-Time 77.8 81.5|81.5 85.2
Mockito 63.2 71.1|71.1 78.9
Total | 79.6 86.5|83.5 90.4

Table 4: Number of faults where at least one of the faulty statements
appears at the report of the technique. Higher is better.

that in 87.3% of the cases, on average, dynamic slicing finds
at least one faulty statement in the top 5 of the highest-ranked
faulty classes. This number is slightly improved to 91.2% if
we consider the top 10 of the highest-ranked faulty classes.

To analyze the impact of dynamic slicing in context, we
also compared Tandem-FL* and SFL* considering the number
of cases where the fault is captured by the technique within a
certain bound k. Note that the reason SFL* misses the fault is
different compared to Tandem-FL*. SFL* captures the fault if
it is included within the top £ files; it misses the fault otherwise.
Table 4 shows results, indicating that Tandem-FL*, typically,
captures more faults compared to SFL*. In only two cases,
highlighted in gray color, SFL* outperformed Tandem-FLF.
These results show that the majority of faulty statements are
found on the 5 highest ranked faulty classes and that Tandem-
FL!0 is the technique that performs better, missing only 23
out of the 260 (~8.8%) faults.

RQ3: How effective is Tandem-FL for bug localization?

In RQ3, we evaluate the impact of combining DS with SFL to
improve fault localization. The first experiment we ran con-
sists of measuring the difference of diagnosis cost between the
two fault localization techniques. This metric has been previ-
ously used in other studies [Wong ez al., 2016; Ang et al., 2017,
Pearson et al., 2017; Perez and Abreu, 2018]. More specif-
ically, we computed AC = C(SFL*) — C(Tandem-FL*),
where C' denotes the diagnosis cost and is obtained by comput-
ing the mean position in the ranking of all buggy statements.
AC < 0 means that Tandem-FL* performs worse compared
to its baseline. That could happen if dynamic slicing misses
the faulty statement. AC' = 0 means that the faulty statement
remained in the same position. AC' > 0 means that Tandem-
FL* outperformed the baseline, i.e. the mean position of the
faulty statements is smaller in Tandem-FL* compared to that
of the baseline. It is worth noting that we assume perfect bug
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== aco ‘ SFL | Tandem-FL ‘ SFL | Tandem-FL
1201 =3 AC>0
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Figure 4: Distributions of AC considering all cases where Tandem-
FL* outperformed the baseline

understanding [Parnin and Orso, 2011], i.e., if the developer
sees the bug in the ranking, he is able to precisely determine if
it is the faulty one. Figure 3 summarizes the performance of
Tandem-FL* relative to SFL*. The figure shows a histogram
over AC for different values of k. Note that (1) the number
of cases where the baseline outperforms Tandem-FL* is small
(e.g., 33 of the 260 faults for k£ = 10) and that (2) the number
of cases Tandem-FL* outperforms the baseline is significative
(e.g., 117 of the 260 faults for £ = 10). One of the following
reasons justifies the baseline outperforming Tandem-FL*: (1)
a fault of omission or (2) the test has design limitations which
DS is not capable of handling (mentioned in Section 2).

Figure 4 shows the distributions of AC considering all the
cases where the predicate AC >= 0 holds, i.e., it focuses only
on the cases where Tandem-FL* outperformed the baseline
technique in at least one k. To sum, although we observed a
relatively small number of cases where AC is negative (33)
and a high number of cases where AC is zero (110), there is
a considerable amount of cases where AC is positive and for
those cases Tandem-FL* seems very beneficial.

In the following, we present statistical analysis of the tech-
niques. Table 5 reports descriptive statistics about the distribu-
tions of C for the techniques under different values of k. In
bold, we present the results for the 227 faults corresponding
to the cases where A(C) > 0. The number in parentheses

are relative to the dataset including all faults. We observe
the following when considering the faults which can benefit
from Tandem-FL (numbers in bold). For £ = 5, Tandem-FL
achieves a mean improvement of 41.1 (9.57% on average)
statements on the ranking and an impressive maximum rank-
ing improvement of 3171 (96.7% on average) statements. For
k = 10, Tandem-FLF achieves a mean improvement of 19
(13.35% on average) statements on the ranking and a maxi-
mum ranking improvement of 209 (73.7% on average) state-
ments. Such difference is justified by the fact that entire files
are discarded in Tandem-FL5, whose statements are included
in the ranking of Tandem-FL!°. Consequently, the improve-
ments obtained by the technique will not be as high if slicing
on these additional files is unable to aggressively and safely
discard statements. This also shows that slicing files, in addi-
tion to slicing statements from those files, is very beneficial
for fault localization performance.

Table 5 presents the statistics to determine if the observed
results are statistically significant. Shapiro-Wilk tests the null
hypothesis that results are drawn from a normal distribution.
The test is performed for all techniques and values of k. With
99% confidence, the results tell us that the distributions are
not normal. Given that C is not normally distributed, we
used Friedman, a non-parametric statistical test of hypothe-
sis. The null hypothesis is that the rankings obtained with
all techniques and variants are the same. With 99% confi-
dence, the results show that the distributions are distinct. To
understand which techniques perform differently, i.e., to an-
swer the question Does Tandem-FL* perform differently than
SFL*, we performed a Siegel post-hoc analysis. Figure 5 re-
ports results. Each square shows the statistical significance
of the difference in diagnostic accuracy amongst the different
techniques—the lighter color means no statistical significance
and smaller values of p indicates higher significance. Based on
these results, it is possible to determine with 95% confidence
that the performance of each pair of techniques is different
(except for Tandem-FL? versus Tandem-FL0, where there is
no significance).

As the results are statistically significant, it is possible to
state that Tandem-FLF has a positive effect on the localization
of some types of bugs. There is indeed a problem on using
slicing on fault of omission bugs that needs further research.
Although, this dataset has more than 50% of fault of omis-
sions, our simple slicing approach was capable of improving
the ranking of 95 faults for £ = 5 and 115 faults for k£ = 10.
These may be promising results from what Automated Pro-
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Figure 5: Siegel post-hoc analysis results

gram Repair (APR) techniques may directly benefit to improve
the accuracy of their own techniques.

5.4 Threats to Validity

A potential threat to external validity relates to the set of pro-
grams used in our study. When choosing the projects for our
study, our aim was to opt for projects that resemble a general
and large-sized application. To reduce selection bias and fa-
cilitate the comparison of our results, we decided to choose a
benchmark that is popular in the community [Just ez al., 2014].
Our study did not evaluate the faults from the Closure compiler
project because of the high CPU cost of running Tandem-FL*
on it. A potential threat to construct validity relates to the
choice of oracle we used for the Lithium slicer. We found em-
pirically that our choice was able to capture the faults for the
cases we analyzed. The main threat to internal validity lies in
the complexity of several of the tools used in our experiments,
most notably the Lithium toolset, the SFL diagnosis tool, and
the implementation of Tandem-FL. To mitigate this threat, we
carefully inspected our code and looked for discrepancies and
incoherence in our results.

6 Related Work

Model-based diagnosis is a well-known approach that has
been proposed by the DX community, a sub-field of AT [Re-
iter, 1987; Wotawa, 2002; de Kleer and Kurien, 2003]. Ap-
plications of model-based diagnosis to localize software
faults have demonstrated that it can be framed as dynamic
slicing [Mayer and Stumptner, 2008; Mayer et al., 2008;
Nica et al., 2013]. Not many interesting techniques have been
pursued due to scalability limitations. We have tackled this us-
ing the program slicing technique — critical slicing [DeMillo
et al., 1996] — for its simplicity and generality.

Dynamic Slicing has found its main application in fault lo-
calization [Agrawal and Horgan, 1990], e.g., on the minimiza-
tion of failing tests through the identification of code compo-
nents that do not contribute to the fault revelation. Research in
this area has mainly focused on slicing code efficiently [Wang
and Roychoudhury, 2008; Wang and Roychoudhury, 2004]
and locate and contour faults of omission [Zhang et al., 2007,
Lin et al., 2018].

Statistics-based techniques (e.g., [Pearson et al., 2017]) are
popular automated fault localization techniques. Spectrum-
based fault localization (SFL) is amongst the most common

statistical fault localization technique used to rank faulty
components [Wong et al., 2016; Jones and Harrold, 2005;
Lucia et al., 2014a; Abreu et al., 2009]. This technique uses
tests coverage information to rank program’s components.

Prior work has investigated the DS-SFL combina-
tion [Wotawa, 2010; Alves et al., 2011; Hofer and Wotawa,
2012; Lei et al., 2012; Guo et al., 2018; Christi et al., 2018].
Overall, these studies reported promising results but based
their conclusions on a very small group of (mostly artificial)
faults and using different techniques. In this study, a larger
set of faults is evaluated and a more rigorous experimental
methodology. In contrast with other studies on this combina-
tion, our approach is the first using Critical Slicing to minimize
test cases and leveraging SFL rank to choose and minimize
the top-k of highest-ranked faulty classes.

7 Conclusions and Future Work

Several approaches have been proposed in the literature to
reduce software debugging costs through automated fault di-
agnosis with the goal of improving productivity in software
development. In this domain, Dynamic Slicing (DS) and
Spectrum-based Fault Localization (SFL) are very popular
techniques and normally seen as complementary.

This paper reports the outcome of a comprehensive study
using real-world applications with the goal of demystifying
the impact of combining DS with SFL. The results of our
empirical study show that, in practice, DS misses faulty state-
ments infrequently 9% (23 misses in 260 cases) and that the
DS-SFL combination, coined as Tandem-FL*, improves the
diagnostic accuracy up to 73.7% (13.4% on average).

Despite tacit opinions of the research community about the
usefulness of DS in automated debugging, we found the DS-
SFL combination practical (as per the relatively low number
of misses) and effective (as per the improvements of A(C)
on the relevant cases), and encourage new SFL techniques to
be evaluated against that optimization. Future work includes
1) improving our oracle heuristics to handle more exceptions,
2) conducting experiments in more Defects4] faults and other
datasets, and 3) handling cases of faults of omission.
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