Prevalence of Single-Fault Fixes and its Impact on Fault Localization

Alexandre Perez, Rui Abreu, Marcelo d’Amorim
alexandre.perez@fe.up.pt, rui@computer.org, damorim@cin.ufpe.br
Motivation

- Coverage-based software fault localization is effective at pinpointing bugs when only one fault is being exercised.
Motivation

- Coverage-based software fault localization is effective at pinpointing bugs when only one fault is being exercised.

- Approaches that diagnose more than one fault have been proposed.
 - However, they involve computationally expensive tasks.
 - May require system modelling.
Motivation

- Coverage-based software fault localization is effective at pinpointing bugs when only one fault is being exercised.
- Approaches that diagnose more than one fault have been proposed.
 - However, they involve computationally expensive tasks.
 - May require system modelling.
- In practice, how often are developers faced with fixing single faults versus multiple faults at once?
Single-fault Diagnosis
Spectrum-based Fault Localization

• Given:
 - A set $\mathcal{C} = \{c_1, c_2, \ldots, c_M\}$ of M system components\(^1\).
 - A set $\mathcal{T} = \{t_1, t_2, \ldots, t_N\}$ of N system tests with binary outcomes stored in the error vector e.
 - A $N \times M$ coverage matrix \mathcal{A}, where \mathcal{A}_{ij} is the involvement of component c_j in test t_i.

\[
\begin{array}{c|ccccc|c}
\mathcal{T} & c_1 & c_2 & \cdots & c_M & e \\
\hline
 t_1 & \mathcal{A}_{11} & \mathcal{A}_{12} & \cdots & \mathcal{A}_{1M} & e_1 \\
 t_2 & \mathcal{A}_{21} & \mathcal{A}_{22} & \cdots & \mathcal{A}_{2M} & e_2 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 t_N & \mathcal{A}_{N1} & \mathcal{A}_{N2} & \cdots & \mathcal{A}_{NM} & e_N \\
\end{array}
\]

\(^1\)A component can be any source code artifact of arbitrary granularity such as a class, a method, a statement, or a branch.
Single-fault Diagnosis

Spectrum-based Fault Localization

• The next step consists in determining the likelihood of each component being faulty.
• A component frequency aggregator is leveraged:
 \[n_{pq}(j) = | \{ i | A_{ij} = p \land e_i = q \} | \]
 - Number of runs in which \(c_j \) has been active during execution \((p = 1) \) or not \((p = 0) \), and in which the runs failed \((q = 1) \) or passed \((q = 0) \).
• Fault likelihood per component is achieved by means of applying different fault predictors.
• Components are then ranked according to such likelihood scores and reported to the user.
Fault Predictors

Tarantula

- Designed to assist fault-localization using a visualization.
- Intuition: components that are used often in failed executions, but seldom in passing executions, are more likely to be faulty.

Tarantula formula:

\[
\frac{n_{11}(j)}{n_{11}(j)+n_{01}(j)} + \frac{n_{10}(j)}{n_{10}(j)+n_{00}(j)}
\]

Fault Predictors

Ochiai

- Calculates the cosine similarity between each component’s activity \(A_j \) and the error vector \(e \).

\[
\text{Ochiai} = \frac{n_{11}(j)}{\sqrt{n_{11}(j) + n_{01}(j)}} + \frac{n_{11}(j) + n_{10}(j)}{\sqrt{n_{11}(j) + n_{10}(j)}}
\]
Fault Predictors

\(D^* \)

- The likelihood of a component being faulty is:
 1. Proportional to the number of failed tests that cover it;
 2. Inversely proportional to the number of passing tests that cover it;
 3. Inversely proportional to the number of failed tests that do not cover it.

- \(D^* \) provides a \(*\) parameter for changing the weight carried by term (1).

\[
D^* = \frac{n_{11}(j)^*}{n_{01}(j) + n_{10}(j)}
\]
Fault Predictors

- Assuming there is only one fault in the system:
 - $n_{01}(j)$ should always be zero for the faulty component.
 - $n_{11}(j) + n_{01}(j)$ always equals the number of failing tests.
 - $n_{10}(j) + n_{00}(j)$ always equals the number of passing tests.
 - Only one degree of freedom left, expressed by assigning $n_{00}(j)$ as the predictor's value.

- Proven to be optimal under the single-fault assumption.

\[
\begin{cases}
-1 & \text{if } n_{01}(j) > 0 \\
n_{00}(j) & \text{otherwise}
\end{cases}
\]
Fault Predictors

\(O^P \)

- Relaxes the assumptions held by the \(O \) predictor.
- Does not immediately assign \(n_{01}(j) > 0 \) a low score.

\[n_{11}(j) - \frac{n_{10}(j)}{n_{10}(j) + n_{00}(j) + 1} \]

Multiple-fault Diagnosis

- Fault predictors assign a one-dimensional score to each component in the system.
- May abstract away relevant information to properly score multiple-faulted systems.

Example

<table>
<thead>
<tr>
<th>T</th>
<th>c_1</th>
<th>c_2</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>0</td>
<td>fail</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
</tbody>
</table>

Both c_1 and c_2 are faulty but are given a low O score.
Multiple-fault Diagnosis

• Several approaches were proposed to accurately diagnose multiple faults:
 - Model-based Debugging\(^2\);
 - Spectrum-based Reasoning\(^3\); and
 - Debugging in Parallel\(^4\).

• These approaches are computationally much more expensive and some partial modelling of the system may be required.

Single-Fault Prevalence

How often are developers faced with the task of having to diagnose and fix multiple bugs?
Single-Fault Prevalence

How often are developers faced with the task of having to diagnose and fix multiple bugs?

Our hypothesis is that the majority of bugs are detected and fixed one-at-a-time when failures are detected in the system.
Single Fault Prevalence

Methodology

1. Mine repositories to collect fixing commits.
2. Classify fixing commits according to the number of faults they fix.
Mining Fixing Commits

- Reverse chronological analysis of commits in a repository.
- For any given commit I:
 - Run tests in I's source tree.
 - If the suite is passing, restore each parent commit P that only modifies existing components and run I's suite.
 - A runtime error means that there are functionality changes between the two source code versions.
 - A failing test suite reveals that I’s suite has detected errors in P’s source tree.
 - $\langle P, I \rangle$ is labeled as a faulty/fixing commit pair.
Classifying Fault Cardinality

Spectra Gathering

- Given a pair of faulty/fixing commits, run the fixing commit’s test suite on faulty’s source tree and gather the hit spectrum.

Example

<table>
<thead>
<tr>
<th>T</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_6</th>
<th>c_7</th>
<th>c_8</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>pass</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>fail</td>
</tr>
<tr>
<td>t_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>pass</td>
</tr>
<tr>
<td>t_4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>fail</td>
</tr>
</tbody>
</table>

Δ Δ
Classifying Fault Cardinality

Unchanged Code Removal

- All components not in Δ can be safely exonerated from suspicion.

Example

<table>
<thead>
<tr>
<th>\mathcal{T}</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_6</th>
<th>c_7</th>
<th>c_8</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>pass</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>fail</td>
</tr>
<tr>
<td>t_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>pass</td>
</tr>
<tr>
<td>t_4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>fail</td>
</tr>
<tr>
<td>Δ</td>
<td>Δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Before.

<table>
<thead>
<tr>
<th>\mathcal{T}</th>
<th>c_1</th>
<th>c_3</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>0</td>
<td>pass</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
<tr>
<td>t_3</td>
<td>1</td>
<td>0</td>
<td>pass</td>
</tr>
<tr>
<td>t_4</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
</tbody>
</table>

After.
Classifying Fault Cardinality

Passing Tests Removal

- Passing tests are discarded as they do not reveal information about faulty components.

Example

<table>
<thead>
<tr>
<th>\mathcal{T}</th>
<th>c_1</th>
<th>c_3</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>0</td>
<td>pass</td>
</tr>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
<tr>
<td>t_3</td>
<td>1</td>
<td>0</td>
<td>pass</td>
</tr>
<tr>
<td>t_4</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
</tbody>
</table>

Before.

<table>
<thead>
<tr>
<th>\mathcal{T}</th>
<th>c_1</th>
<th>c_3</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
<tr>
<td>t_4</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
</tbody>
</table>

After.
Classifying Fault Cardinality

Hitting Set & Classification

- The final, filtered spectrum is subject to **minimal hitting set analysis**.
- Determine what (set of) components is active on every failing test.
- Cardinality of the hitting set corresponds to the number of faults.

Example

<table>
<thead>
<tr>
<th>\mathcal{T}</th>
<th>c_1</th>
<th>c_3</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_2</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
<tr>
<td>t_4</td>
<td>0</td>
<td>1</td>
<td>fail</td>
</tr>
</tbody>
</table>

$\{c_3\}$ is the minimal hitting set with cardinality 1.
Empirical Study

Setup

- We have applied our fault cardinality classification to several software projects.
- Subjects are open-source projects hosted on Github, gathered in the work of Gousios and Zaidman\(^5\).
- The dataset was filtered so that considered projects
 - Are written in Java;
 - Are built using Apache Maven;
 - Contain JUnit test cases.
- In total we studied 279 subjects.

Empirical Study
Effort To Diagnose

- To assess diagnostic performance, we resort to using the effort to diagnose metric.
- Also known as wasted effort.
- Since SFL outputs a ranked list of components sorted by predictor score, effort measures the average number of components to be inspected until the real faulty component is reached.
- Usually normalized by the total number of components in the system.
Fault Cardinality

Fixes

Fault Cardinality

1 2 3 4 5 6

/two.pnum/zero.pnum//two.pnum/six.pnum
Effort To Diagnose Single Faults

Detected Faults (%) vs. Effort for different detection methods:
- D^2
- O
- O^P
- Ochiai
- Tarantula

The graph shows the cumulative percentage of detected faults as a function of effort for each method.
Effort To Diagnose Multiple Faults – Best Case

The graph illustrates the detected faults (%) over effort for different fault detection methods. The methods compared are D^2, O, O^P, Ochiai, and Tarantula. The x-axis represents the effort, while the y-axis represents the detected faults (%).
Effort To Diagnose Multiple Faults – Worst Case

![Graph showing detected faults (%) against effort for different methods: D^2, O, O_P, Ochiai, and Tarantula.](image)
Conclusions

- Single-fault SFL is an inexpensive approach to fault localization, but does not take into account the possibility of failures due to multiple bugs.
- However, our hypothesis is that while software can have many dormant bugs, these are detected (and fixed) individually.
- Our empirical study found that 82.5% of the time, developers are faced with single faults.
- While the O predictor is theoretically optimal assuming a single faulted system, its diagnostic performance becomes random in the event of a multiple faults.
 - Other predictors are less sensitive to this issue.
Single-fault Diagnosis
Spectrum-based Fault Localization

• Given:
 - A set \(\mathcal{C} = \{ c_1, c_2, \ldots, c_M \} \) of \(M \) system components\(^1\).
 - A set \(\mathcal{T} = \{ t_1, t_2, \ldots, t_N \} \) of \(N \) system tests with binary outcomes stored in the error vector \(e \).
 - A \(N \times M \) coverage matrix \(\mathcal{A} \), where \(\mathcal{A}_{ij} \) is the involvement of component \(c_j \) in test \(t_i \).

\[
\begin{array}{cccc}
 \mathcal{T} & c_1 & c_2 & \cdots & c_M \\
 t_1 & \mathcal{A}_{11} & \mathcal{A}_{12} & \cdots & \mathcal{A}_{1M} \\
 t_2 & \mathcal{A}_{21} & \mathcal{A}_{22} & \cdots & \mathcal{A}_{2M} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 t_N & \mathcal{A}_{N1} & \mathcal{A}_{N2} & \cdots & \mathcal{A}_{NM} \\
\end{array}
\]

\(e \)

\(^1\)A component can be any source code artifact of arbitrary granularity such as a class, a method, a statement, or a branch.

Single-Fault Prevalence

How often are developers faced with the task of having to diagnose and fix multiple bugs?

Our hypothesis is that the majority of bugs are detected and fixed \textit{one-at-a-time} when failures are detected in the system.

Fault Cardinality

Conclusions

• Single-fault SFL is an inexpensive approach to fault localization, but does not take into account the possibility of failures due to multiple bugs.
• However, our hypothesis is that while software can have many dormant bugs, these are detected (and fixed) individually.
• Our empirical study found that 82.5% of the time, developers are faced with single faults.
• While the O predictor is theoretically optimal assuming a single faulted system, its diagnostic performance becomes random in the event of a multiple faults.
 - Other predictors are less sensitive to this issue.