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Abstract—One recent promising direction on reducing costs
of mutation analysis is to identify redundant mutations, i.e.,
mutations that are subsumed by some other mutations. Previous
works found out redundant mutants manually through the truth
table. Although the idea is promising, it can only be applied for
logical and relational operators. In this paper, we propose an
approach to discover redundancy in mutations through dynamic
subsumption relations among mutants. We focus on subsumption
relations among mutations of an expression or statement, named
here as “mutation target.” By focusing on targets and relying on
automatic test generation tools, we define subsumption relations
for dozens of mutation targets in which the MUJAVA tool can
apply mutations. We then implemented these relations in a tool,
named MUJAVA-M, that generates a reduced set of mutants for
each target, avoiding redundant mutants. We evaluated MUJAVA
and MUJAVA-M using classes of five open-source projects. As
results, we analyze 2,341 occurrences of 32 mutation targets
in 168 classes. MUJAVA-M generates less mutants (on average
64.43% less) with 100% of effectiveness in 20 out of 32 targets
and more than 95% in 29 out of 32 mutation targets. MUJAVA-
M also reduced the time to execute the test suites against the
mutants in 52.53% on average, considering the full mutation
analysis process.

Keywords-Mutation Testing, Redundant Mutants, Minimal
Mutants Set, Dynamic Subsumption

I. INTRODUCTION

Usually, the costs of using mutation analysis are high,
mainly due to the high number of generated mutants and
the high computing time to execute the test suite against
each mutant. However, some mutants, such as the redundant
ones, may not be necessary for the effectiveness of mutation
analysis and we may discard them [1]. A redundant mutant
does not contribute to the test assessment process because
they are killed when other mutants are also killed [1], [2]. In
other words, redundant mutants are always subsumed by other
mutants. Then, the generation of these mutants increases the
total cost and does not help to improve the test suite. Ammann
et al. [3] empirically identified that a number of the generated
mutants are redundant. Also, Papadakis et al. [4] identified
that such redundant mutants inflate the mutation score and
that 68% of recent research papers are vulnerable to threats to
validity due to the effect of these mutants.

To identify redundant mutants, we can take subsumption re-
lations into account. Kaminski et al. [5] manually constructed

subsumption hierarchies with the support of truth tables pro-
duced by the outcomes of mutants associated with the Rela-
tional Operator Replacement (ROR) mutation operator. This
operator generates seven different mutations, but Kaminski et
al. identified that only three mutations are sufficient to cover
all input domains, yielding a reduction of 57%. Just et al. [6]
expanded this idea with two more mutation operators. Both
works use truth table to infer logical relationships across the
operations. However, this only works for logical and relational
operators. Although the idea is promising, we cannot apply it
for non-logical operators.

In this paper we propose an approach to discover subsump-
tion relations among mutants. Our approach uses Dynamic
Subsumption, which relies on a set of tests. When applying
an exhaustive set of tests, the dynamic subsumption tends to
be stable and close to the true subsumption [7]. We focus on
subsumption relations among mutations of a mutation target.
A mutation target is a language expression or statement in
which it is possible to apply a set of mutations of one or
more mutation operators (e.g., a + b, a > b, exp++ etc).
Our hypothesis is that the subsumption relation found for one
specific target might be less context-dependent, and in turn,
generalizable to different programs in different domains.

We execute our approach in method-level mutation targets
where the MUJAVA tool [8], [9] can apply mutations and
define the subsumption relations for each target based on
automatic test generation tools. We introduce a tool named
MUJAVA-M to take these relations into account and avoid
the generation of redundant mutants. We evaluate MUJAVA-
M in terms of number of generated mutants, effectiveness,
and time savings. To execute this evaluation, we use five open
source programs, i.e., joda-time, commons-math, commons-
lang, h2, and javassist. However, applying mutation analysis
in all classes of these projects is not feasible. So, we selected
a total of 168 class files from these projects to evaluate our
approach. We count the number of mutants generated by
MUJAVA and MUJAVA-M. We also verify effectiveness by
checking whether MUJAVA-M has discarded the redundant
mutants correctly. To calculate the time savings and again
make our analysis feasible, we randomly selected five class
files from each project. Then, we executed MUJAVA and
MUJAVA-M with the original test suite of each subject and



measure the time to perform mutant generation and to execute
the test suite against all mutants.

As results, we analyzed 2,341 occurrences of 32 mutation
targets in 168 classes of the five subjects. MUJAVA generated
10,818 mutants whereas MUJAVA-M generated 3,848 mutants,
representing a reduction of 64.43%. When considering the
results for effectiveness, in 20 out of 32 mutation targets the
effectiveness was 100%, and in 29 targets we achieved an
effectiveness greater than 95%. Also, MUJAVA-M achieved
promising time savings, i.e., it took 11 hours to perform the
mutation analysis, representing a reduction of 52.53% when
compared to MUJAVA.

The main contributions of this paper are:

• We propose an approach to discover dynamic mutant
subsumption relations (Section III);

• We define subsumption relations for the mutation targets
in which the MUJAVA mutation testing tool is able to
create mutants and we embedded the minimal set of each
target in a tool, i.e., MUJAVA-M (Section III);

• We evaluate our approach by executing MUJAVA-M
against class files of open-source Java projects, show-
ing promising results in terms of number of generated
mutants and time savings (Section IV).

II. REDUNDANT MUTANTS

Mutation analysis uses mutation operators to introduce
faults in the program to create mutants deliberately. In this
context, there is a wide variety of mutation operators. Each
mutation operator can implement a set of mutations. In this
paper, we follow the same definition for “mutation” of previ-
ous work [10]: a mutation refers to a syntactic change (e.g.,
a && b 7→ a || b). For example, in a binary expression
with a relational operator lexp <op> rexp, where lexp
and rexp indicate expressions or literals and <op> is a
relational operator (==, !=, >, >=, <, or <=), the Relational
Operator Replacement (ROR) mutation operator performs
seven mutations, replacing the original operator <op> with
each of the other five relational operators and replacing the
entire expression with true and false. Thus, for the binary
expression a > b, the ROR operator performs the following
seven mutations: a > b 7→ a == b, a > b 7→ a != b, a
> b 7→ a >= b, a > b 7→ a < b, a > b 7→ a <= b, a
> b 7→ true, and a > b 7→ false.

However, some mutations may not be necessary for the
effectiveness of mutation analysis and are actually useless.
In fact, they can yield equivalent mutants or redundant mu-
tants [11]. In this paper, we focus on redundant mutants.
To identify them, we rely on subsumption relations [7]. In
this sense, a mutation m1 subsumes another, say m2, if
whenever m1 is detected, m2 is also detected, i.e., detecting
m1 is a sufficient condition to detect m2. The consequence
of finding these subsumption relations for mutation tools is
that subsumed mutations could not be applied, resulting in a
polynomial, but relevant, speedup.

III. DEFINING SUBSUMPTION RELATIONS

We propose an approach to discover subsumption relations
among mutations. It uses Dynamic Subsumption, which “is
computed relative to a specific set of tests. As the number of
tests tends towards the entire domain of the artifact under test
(not possible, of course), the dynamic subsumption approaches
‘true’ subsumption” [7]. In other words, Kurtz et al. observed
that if we apply an exhaustive set of tests, the dynamic sub-
sumption tends to be stable and close to the true subsumption.

In our approach, we focus only on a mutation target at a
time. A mutation target is a language expression or statement
in which it is possible to apply a set of mutations of one or
more mutation operators. For example, the binary expression
a + b is a target because we can apply a set of mutations
from one or more mutation operators. In case a and b are
variables, examples of mutation operators and their respective
mutations for the a + b target are described as follows.
The Arithmetic Operator Replacement (AORB) mutation op-
erator applies the following mutations: a + b 7→ a - b,
a + b 7→ a * b, a + b 7→ a / b, and a + b 7→
a % b; two mutations are applied with the Variable Deletion
(VDL); and two mutations are applied with the Operator
Deletion (ODL) (e.g., a + b 7→ a, and a + b 7→ b).

A. Running Example

To better illustrate our approach, we use the lexp &&
rexp mutation target as a running example. The first step of
our approach consists of isolating the target and implementing
it in a tiny and trivial program (see Figure 1). Then, we create
all possible mutations of all possible mutation operators for
our target. Table I outlines all possible mutations applied to
lexp && rexp.

1 public boolean and(boolean lexp, boolean rexp) {
2 return lexp && rexp;
3 }

Fig. 1: Program snippet containing the lexp && rexp target.

TABLE I: Mutations applied to the lexp && rexp mutation target.

Op. Mutation Short form

COR lexp && rexp 7→ lexp || rexp COR ||
COR lexp && rexp 7→ lexp == rexp COR ==
COR lexp && rexp 7→ lexp != rexp COR !=
COR lexp && rexp 7→ lexp ^rexp COR ^
COR lexp && rexp 7→ false COR false
COR lexp && rexp 7→ true COR true
COI lexp && rexp 7→ !(lexp && rexp) COI !()
ODL lexp && rexp 7→ lexp ODL lexp
ODL lexp && rexp 7→ rexp ODL rexp
VDL lexp && rexp 7→ lexp VDL lexp
VDL lexp && rexp 7→ rexp VDL rexp

Notice that eleven mutations of four different mutation
operators can be applied to this single mutation target. Now,
we need an exhaustive set of tests. Because it is a trivial
program, automatic test generation tools can create tests that
exercise the target with many different input values. However,
for our running example, only four test cases are needed (see
Figure 2). When executing all tests against all mutants, we
end up with the kill matrix depicted in Table II.
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1 public class TestSuite {
2 private Program p = new Program();
3 public void t1() {
4 assertEquals(true, p.and(true, true));
5 }
6 public void t2() {
7 assertEquals(false, p.and(true, false));
8 }
9 public void t3() {

10 assertEquals(false, p.and(false, true));
11 }
12 public void t4() {
13 assertEquals(false, p.and(false, false));
14 }
15 }

Fig. 2: Test suite generated for the and function.

TABLE II: Kill matrix of the lexp && rexp mutation target.

Mutation t1 t2 t3 t4

COR || 7 7
COR == 7
COR != 7 7 7
COR ^ 7 7 7
COR true 7 7 7
COR false 7
COI !() 7 7 7 7
ODL lexp 7
ODL rexp 7
VDL lexp 7
VDL rexp 7

In the kill matrix, each row represents a mutant, and each
column represents a test case. The 7 symbol indicates that the
test of this column detects the mutation in the row.

COI !()

COR ||

COR !=, COR ^COR true

COR == COR false

ODL lexp, VDL lexp ODL rexp, VDL rexp

Fig. 3: DMSG of the lexp && rexp mutation target.

Kurtz et al. [7] depict the dynamic subsumption hierarchy
with a directed graph. The Dynamic Mutant Subsumption
Graph (DMSG) supports us to identify the minimal mutant
set visually. Figure 3 illustrates the DMSG for our running
example. Notice that there are four nodes (doubled line) sub-
suming all other nodes (single line). In case a non-subsumed
node contains two or more mutations (e.g., see the node at the
upper-left corner in Figure 3: ODL lexp and VDL lexp),
we say that these mutations are undistinguished, and thus we
can pick only one to compose the minimal set (either ODL
lexp or VDL lexp in the abovementioned example). To
determine the dynamic minimal mutant set, we need to get
a mutation from each subsuming node in the graph.

So, we can state that by applying our approach to discover
the dynamic subsumption relations for the mutation target
lexp && rexp, the mutation tool should perform only four
mutations (e.g., COR ==, ODL lexp, ODL rexp, and COR
false) out of eleven possible mutations, yielding a reduction

of 64% in the number of mutants. Notice that our approach
yielded the same DMSG as the one presented by Just et
al. [12].

B. Approach

In summary, our approach works as follows:
1) Given a target, we create a trivial and tiny program

containing it;
2) We create all possible mutations of all possible mutation

operators for the given target;
3) Then, we generate an exhaustive set of tests in order to

exercise the mutation target;
4) We execute all tests against all mutants of the mutation

target in order to obtain the kill matrix;
5) Finally, we use the kill matrix to determine the dynamic

subsumption relations among the mutations applied to
the mutation target.

Notice that we isolate a mutation target and try to determine
subsumption relations considering only the mutations that can
be applied to the target. Our hypothesis is that the subsumption
relation found for one specific target might be less context-
dependent, and in turn, generalizable to different programs in
different domains. Therefore, we avoid subsumption relations
from entire programs, classes, or functions, since they might
be difficult to generalize.

Our approach to discover dynamic mutant subsumption re-
lations of a mutation target is inherently empirical. We cannot
guarantee that the minimal set of mutants—defined for a given
mutation target—represents the true subsumption hierarchy.
In addition, we cannot guarantee that the tiny and trivial
program used to wrap the mutation target can be generalized
to all possible programs. Next, we execute our approach to
all method-level mutation targets where the MUJAVA tool can
apply mutations.

C. Executing the Approach to Define Subsumption Relations

Table III illustrates all method-level mutation targets (53)
in which the MUJAVA (version 4) mutation tool [8], [9] is
able to apply mutations from one or more mutation operators.
For each target, we list the set of mutation operators able
to apply mutations into the target. For each operator, we
provide the number of possible mutations (in parentheses)
that such operator can apply into the target. For example, the
Logical Operator Replacement (LOR) operator can apply two
mutations into the lexp | rexp target.

When executing our approach to discover dynamic sub-
sumption relations, we considered the parts of each target as:
• exp: unary expression, such as identifiers, variables, field

access, array access, literals, or function calls;
• lexp and rexp: unary expressions, or binary expres-

sion;
• lhs: identifiers, variables, field access, or array access;
• rhs: unary expressions, or binary expression.
In this paper, we consider the type of expressions as

arithmetic, (i.e., they have types byte, char, short, int,
long, float, or double), boolean (tagged with bool in
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TABLE III: 53 method-level mutation targets in which MUJAVA is
able to apply mutations. We also present the mutation operators and
the number of mutations that each operator is able to create in the
corresponding target.

Mutation Target Mutation Operators

lexp + rexp AORB (4), VDL (2), CDL (2), ODL (2)
lexp + rexp (obj) VDL (2), CDL (2), ODL (2)
lexp - rexp AORB (4), VDL (2), CDL (2), ODL (2)
lexp * rexp AORB (4), VDL (2), CDL (2), ODL (2)
lexp / rexp AORB (4), VDL (2), CDL (2), ODL (2)
lexp % rexp AORB (4), VDL (2), CDL (2), ODL (2)
lexp > rexp ROR (7), COI (1)
lexp >= rexp ROR (7), COI (1)
lexp < rexp ROR (7), COI (1)
lexp <= rexp ROR (7), COI (1)
lexp == rexp ROR (7), COI (1)
lexp == rexp (obj) ROR (1), COI (1)
lexp == rexp (bool) ROR (1), COI (1), VDL (2), CDL (2), ODL (2)
lexp != rexp ROR (7), COI (1)
lexp != rexp (obj) ROR (1), COI (1)
lexp != rexp (bool) ROR (1), COI (1), VDL (2), CDL (2), ODL (2)
lexp && rexp COR (6), COI (1), VDL (2), CDL (2), ODL (2)
lexp || rexp COR (6), COI (1), VDL (2), CDL (2), ODL (2)
lexp & rexp LOR (2), VDL (2), CDL (2), ODL (2)
lexp | rexp LOR (2), VDL (2), CDL (2), ODL (2)
lexp ˆ rexp LOR (2), VDL (2), CDL (2), ODL (2)
lexp ˆ rexp (bool) COR (5), COI (1), VDL (2), CDL (2), ODL (2)
lexp >> rexp SOR (2), VDL (2), CDL (2), ODL (2)
lexp << rexp SOR (2), VDL (2), CDL (2), ODL (2)
lexp >>> rexp SOR (2), VDL (2), CDL (2), ODL (2)
exp AOIS (4), AOIU (1), LOI (1)
exp (bool) COI (1)
+exp AODU (1), LOI (1), ODL (1)
!exp COD (1), ODL (1)
-exp AODU (1), LOI (1), ODL (1)
~exp LOI (1), LOD (1), ODL (1)
++exp AORS (1), AODS (1), LOI (1), ODL (1)
exp++ AORS (1), AODS (1), LOI (1), ODL (1)
--exp AORS (1), AODS (1), LOI (1), ODL (1)
exp-- AORS (1), AODS (1), LOI (1), ODL (1)
lhs += rhs ASRS (4), ODL (1), SDL (1)
lhs -= rhs ASRS (4), ODL (1), SDL (1)
lhs *= rhs ASRS (4), ODL (1), SDL (1)
lhs /= rhs ASRS (4), ODL (1), SDL (1)
lhs %= rhs ASRS (4), ODL (1), SDL (1)
lhs <<= rhs ASRS (1), ODL (1), SDL (1)
lhs >>= rhs ASRS (1), ODL (1), SDL (1)
lhs >>>= rhs ASRS (2), ODL (1), SDL (1)
lhs &= rhs ASRS (2), ODL (1), SDL (1)
lhs |= rhs ASRS (2), ODL (1), SDL (1)
lhs ^= rhs ASRS (2), ODL (1), SDL (1)
stm_list SDL (1)
while_stm SDL (1)
if_stm SDL (1)
for_stm SDL (1)
return_stm SDL (1)
case_stm SDL (1)
try_stm SDL (1)

Table III), or object (tagged with obj in Table III) for other
types and the null literal. For each mutation target, we manu-
ally create a tiny and trivial program to isolate it. The program
is implemented with as few statements as possible. The reason
for reducing the number of statements is to make the rest of the
code to influence as little as possible the mutant subsumption
behavior of the target analyzed. Figures 1, 4 and 5 illustrate
three programs for the mutation targets lexp && rexp,
~exp, and lhs += rhs. We used these programs to create
subsumption relations for these targets.

Before executing our approach, we first disregard targets
in which MUJAVA applies only one mutation, i.e., exp
(bool), stm_list, while_stm, if_stm, for_stm,

1 public int complement(int exp) {
2 return ~exp;
3 }

Fig. 4: Program snippet containing the ~exp mutation target.

1 public int plusEquals(int lhs, int rhs) {
2 lhs += rhs;
3 return lhs;
4 }

Fig. 5: Program snippet containing the lhs += rhs mutation
target.

return_stm, case_stm, and try_stm. Because they
have only one mutation, we cannot achieve any reductions
for these targets. We also disregard three targets due to
MUJAVA compilation problems, i.e., lexp >> rexp, lexp
<< rexp, and lexp >>> rexp.

After disregarding these 11 targets, we use MUJAVA to
generate mutants for each program of the remaining 42 targets.
We enable all method-level mutation operators available in
the MUJAVA tool. To have an exhaustive test suite for each
program, we use the EVOSUITE and RANDOOP automatic test
generation tools. Despite the simplicity of the programs, we
have configured these tools to generate as many inputs as
possible. We set the generation timeout for both tools to 120
seconds. According to previous work, when considering more
than 120 seconds, the coverage does not present significant
variation [13]. Other settings were used to control the test
case size (maximum of five statements per test) and quantity
(1,000 tests per file). We used the default settings for the other
parameters. Five test suites were generated with each tool to
ensure a large number of test cases.

We then executed the tests, computed the kill matrix for
each program, and subsequently captured the subsumption
relation with the DMSG of each program. As a result, we
defined a minimal set of mutations for each mutation target.

Table IV shows the minimal sets that our approach defined
for the 42 mutation targets we studied. For instance, MUJAVA
might perform up to eight mutations in the mutation target
lexp + rexp. After the dynamic subsumption relation anal-
ysis, this mutation target needs only three out of eight possible
mutations, yielding a reduction of 62.5%. The minimal set is
composed by the following mutations: AORB %, ODL lexp,
and ODL rexp. Figure 6 illustrates DMSGs our approach
found for three targets, i.e., lexp + rexp, lexp > rexp,
and lhs <<= rhs.

With the minimal sets of the mutation targets presented in
Table IV, we implemented a new version of MUJAVA. We
named this tool MUJAVA-M. The companion website [14] of
this work has a link to download MUJAVA-M, as well as all
the programs we developed, the generated test suite for each
program, and the DMSGs.

IV. EVALUATION

This section presents the evaluation of our approach.
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AORB *

AORB /

AORB %

AORB -, ODL lexp, VDL lexp ODL rexp, VDL rexp

(a) DMSG for the target lexp + rexp.

COI !(), ROR <=

ROR >=

ROR == ROR trueROR <

ROR !=ROR false

(b) DMSG for the target lexp > rexp.

ASRS >>=

SDL

ODL lexp = rexp

(c) DMSG for the target lhs <<= rhs.

Fig. 6: Three DMSGs we found by applying our approach.

TABLE IV: Minimal mutants set for the 42 mutation targets analyzed.

Target Minimal Set Reduction

lexp + rexp AORB %, ODL lexp, ODL rexp 62.5%
lexp + rexp (obj) ODL lexp, ODL rexp 50.0%
lexp - rexp AORB %, ODL lexp, ODL rexp 62.5%
lexp * rexp AORB /, ODL lexp, ODL rexp 62.5%
lexp / rexp AORB %, AOIS *, ODL rexp 62.5%
lexp % rexp AORB +, AORB -, AORB /, ODL lexp 50.0%
lexp > rexp ROR false, ROR !=, ROR >= 62.5%
lexp >= rexp ROR true, ROR ==, ROR > 62.5%
lexp < rexp ROR false, ROR !=, ROR <= 62.5%
lexp <= rexp ROR true, ROR ==, ROR < 62.5%
lexp == rexp ROR false, ROR <=, ROR >= 62.5%
lexp == rexp (obj) ROR != 50.0%
lexp == rexp (bool) ROR !=, ODL lexp, ODL rexp 50.0%
lexp != rexp ROR true, ROR <, ROR > 62.5%
lexp != rexp (obj) ROR == 50.0%
lexp != rexp (bool) ROR ==, ODL lexp, ODL rexp 50.0%
lexp && rexp COR false, COR == 81.8%
lexp || rexp COR true, COR != 81.8%
lexp & rexp ODL lexp, ODL rexp 66.7%
lexp | rexp ODL lexp, ODL rexp, LOR ^ 66.7%
lexp ˆ rexp LOR | 83.3%
lexp ˆ rexp (bool) COR false, COR || 80.0%
exp AOIU -exp 83.3%
+exp LOI exp 75.0%
!exp COD exp 50.0%
-exp AODU exp 66.7%
~exp LOD exp 75.0%
++exp AODS exp 75.0%
exp++ LOI exp 75.0%
--exp AODS exp 75.0%
exp-- LOI exp 75.0%
lhs += rhs ASRS -=, ASRS %=, ODL = 50.0%
lhs -= rhs ASRS +=, ASRS %=, ODL = 50.0%
lhs *= rhs ASRS /=, ASRS %=, ODL = 50.0%
lhs /= rhs ASRS *=, ASRS %=, ODL = 50.0%
lhs %= rhs ASRS +=, ASRS -=, ASRS *=, ASRS /= 33.3%
lhs <<= rhs ASRS >>=, 66.7%
lhs >>= rhs ASRS <<=, ODL =, SDL 0.0%
lhs >>>= rhs ASRS >>=, ASRS <<= 50.0%
lhs &= rhs ODL =, SDL 50.0%
lhs |= rhs ODL =, ASRS ^=, SDL 25.0%
lhs ^= rhs ASRS |= 75.0%

A. Definition

To better structure our evaluation, we rely on the Goal,
Question, Metrics methodology [15]. The goal of our ex-
periment consists of analyzing our approach, implemented
by MUJAVA-M, with the purpose of evaluating the dynamic
subsumption relations we found with respect to the number
of mutants discarded, the correctness of this discard, and time
savings, from the point of view of testers in the context of
applying mutation testing to Java open source programs.

We address the following research questions:
• RQ1: How many mutants are likely-subsumed?
To answer this question, we count the number of mutants

generated by MUJAVA and MUJAVA-M for each mutation

target. Notice that answering RQ1 is important because it
allows us to estimate the amount of computational effort saved.
However, the dynamic subsumption relations we embedded in
MUJAVA-M must be effective in the sense that they should not
discard important mutants that would be in the minimal set.
To better understand this point, we formulate the following
research question:
• RQ2: How many mutants are incorrectly discarded from

the minimal set?
To answer RQ2, we rely on the definition of minimal

tests set [3]. The minimal tests set necessary to kill the
minimal mutants set must also kill all the mutants in the
full mutants set. Thus, we generate this minimal tests set and
execute against the full mutants set. If a mutant from the full
mutants set survives, this means that we incorrectly discarded
this mutant. We compute the frequency of these cases and
manually analyze them to understand the reasons of why the
mutant was discarded incorrectly.

Our focus is on mutant subsumption relations with respect
to the mutation targets (instead of entire programs, classes,
or functions). This makes MUJAVA-M potentially scalable.
However, we need empirical evidence to determine the degree
to which it scales. To better understand the real gain in
reducing the total time of the mutation analysis, we elaborate
the following research question:
• RQ3: What are the time savings of eliminating likely-

subsumed mutants?
We answer this question by executing MUJAVA and

MUJAVA-M as full mutation analysis tools. That is, we not
only use the tools to generate the mutants, but we also use
them to execute the test suite against the mutants. Then, we
measure the time required to perform mutant generation and
mutation analysis on both tools.

B. Planning

We use five large open source programs to carry out our
evaluation. Table V illustrates the programs studied, i.e.,
joda-time, commons-math, commons-lang, h2, and javassist.
These programs varies in size and application domain. We
performed the evaluation on Intel Core i5-7400 with 8 GB of
RAM equipped with Linux 3.10.0 operating system. We used
MUJAVA and MUJAVA-M command-line version. In both, all
method-level mutation operators were enabled.

After generating mutants in both tools, we need to calcu-
late the mutants incorrectly discarded by MUJAVA-M. Thus,
we need to execute a minimal test set—necessary to kill
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TABLE V: Programs we used in our evaluation.

Project Version Lines of Code (LOC)

joda-time 2.10.1 28,790
commons-math 3.6.1 100,364
commons-lang 3.6 27,267
h2 1.4.199 134,234
javassist 3.20 35,249

the MUJAVA-M mutants—against the mutants generated by
MUJAVA. To find out the minimal test set, we rely on EVO-
SUITE’s [16] Regression test suite generation (EVOSUITER)
version 1.0.6. EVOSUITER is a specialization of EVOSUITE
that tries to generate one test revealing the difference between
two versions of a Java class. For instance, given two Java
classes with a small syntactic difference in code, say a
mutant, EVOSUITER tries to find a test case that exposes
this behavioral difference between the two files. We set up
60 seconds as the time limit to EVOSUITER generate tests.
We used the default values for the other parameters.

In case the mutant survives the test generated by EVO-
SUITER, we need to know if it is an equivalent mutant.
Detecting equivalent mutants is a well-known undecidable
problem [17]. Besides, equivalent mutants contribute nega-
tively to the confidence assessment of the reduction applied.
To minimize this problem, we avoid some equivalent mutants
by using the Trivial Compiler Equivalence (TCE) [18]. TCE
is a sound tool because it checks whether the bytecodes of the
original program and the mutant are the same. This eliminates
the possibility of false positives. However, TCE cannot identify
equivalent mutants that have different bytecodes, which may
yield false negatives.

In summary, to answer RQ1 and RQ2 the planning is the
following: generate the mutants with MUJAVA and MUJAVA-
M, then generate the minimal tests set with EVOSUITER,
execute the test generated against the MUJAVA mutants, detect
equivalence with TCE, and calculate the surviving mutants.
Because it is a computationally costly experiment, we leave
the programs running for seven days for each subject. Conse-
quently, the number of randomly selected files of each subject
varied. In total, 168 class files were evaluated.

Regarding RQ3, applying full mutation analysis to all possi-
ble mutants of the programs presented in Table V is infeasible.
So, we randomly selected five classes from each subject to
compute the time savings. To perform the analysis, we not
only generated the mutants with MUJAVA and MUJAVA-M,
but also executed the subjects test suite against each mutant.

C. Procedure

To carry out our evaluation we follow two different pro-
cedures. The first procedure is used to answer the research
questions RQ1 and RQ2. Next, we explain how we proceed:

1) A Java class is the MUJAVA unity of work, thus we need
to generate the mutants for the whole class. Applying all
possible mutants to all files in a large program is clearly
infeasible. This way we randomly selected a set of Java
class files for each subject.

2) With the classes selected, we executed MUJAVA and
MUJAVA-M against these classes to generate the full set
and the minimal set of mutants, respectively. We enabled
all method-level mutation operators in both tools.

3) Next, we added up the mutants of MUJAVA and
MUJAVA-M grouped by target. For instance, for each
target t in the class file, MUJAVA generated the full
set M = {m1,m2,m3,m4} containing all mutants, and
MUJAVA-M generated the minimal set M̄ = {m1,m2}
containing only the sufficient mutants according to the
dynamic subsumption relations found previously by our
approach (Section III).

4) We now proceed to create a minimal test set. As
explained, the minimal test set necessary to kill the
minimal mutants set must also kill the full mutants
set [3]. Thus, we use EVOSUITER to create a test
case for each mutant in the minimal set (M̄ ). We
provide the original program and a mutant from M̄ , and
EVOSUITER generates a test containing only one test
case to kill the mutant. We repeat this process for all
mutants in M̄ . At the end, we group the generated tests
to create a minimal test suite T̄ for the minimal set of
mutants M̄ .

5) To validate if the mutants of M̄ indeed represent the
minimal mutants set for the target, we execute T̄ against
M . In case all mutants of M get killed, we confirm that
M̄ is a reliable representation of M . But if a mutant
of M survives, it represents a fail in our approach. For
example, if only the m1, m2, and m3 mutants of M are
killed by suite T̄ , only 75% of the mutants in the full
set were killed. This means that m4 is a useful mutant
and should not be discarded from the minimal set. An
exception occurs when m4 is an equivalent mutant. In
this case m4 is useless to the mutation test. This way, we
executed TCE against the mutants of M that survived
to T̄ . If TCE identifies a mutant as equivalent, we take
this mutant out of the analysis. If TCE does not mark
a mutant as equivalent, then we understand that this
mutant represents an error in our reduction and it should
be part of the minimal mutant set.

6) To understand if our approach has eliminated impor-
tant mutants, we verified the number of mutants not
generated by MUJAVA-M but should be part of the
minimal set. We also manually verified a subset of these
incorrectly deleted mutants and did a qualitative analysis
where we discuss the possible causes that led to the
approach failing.

To automate the process described above, we create a script
that executes all the steps. In some exceptional scenarios we
discard the target. Below we list these scenarios:

• In case EVOSUITER cannot identify a test case to dis-
tinguish the original program and a mutant in a limit of
60 seconds, we did not proceed with the analysis of the
target.

• We execute the minimal test suite against the original
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program to confirm they are passing. We repeat this pro-
cess three times to reduce the presence of flaky tests [19].
In case we identify flaky tests, or the test suite does not
pass in the original program, we do not proceed with the
analysis of the target.

To answer RQ3, we proceed as follows:
1) We randomly selected five class files from each subject.
2) Next, we executed the MUJAVA and MUJAVA-M to

generate the mutants. Again, we enable all method-level
mutation operators.

3) Then, we complete the mutation analysis executing
original test suites of the subjects against all the mutants
generated by MUJAVA and MUJAVA-M.

D. Replication Package

We provide a comprehensive report of our evaluation in our
companion website [14]. All data, setups, scripts, spreadsheets
are also available for replication and reproduction purposes.

E. Results

1) RQ1: How many mutants are likely-subsumed?: Ta-
ble VI presents the number of mutants generated by MUJAVA
and MUJAVA-M for each subject. In particular, we analyzed
2,341 occurrences of mutation targets in 168 classes. MUJAVA
generated 10,818 mutants, which gives an average of 4.62
mutants per target. MUJAVA-M, in its turn, generated 3,848
mutants for the same set of mutation targets, i.e., an average
of 1.64 mutants per target. This way, MUJAVA-M achieved a
reduction of 64.43% in the number of generated mutants when
compared to the original version of MUJAVA.

TABLE VI: Number of mutants per subject.

Project Classes Occurrences of mut. targets MUJAVA MUJAVA-M

joda-time 51 929 4,712 1,691
commons-math 35 425 1,924 654
commons-lang 33 631 2,500 943
h2 19 74 327 117
javassist 35 282 1,355 443

Total 168 2,341 10,818 3,848

Table VII illustrates the occurrences of 32 mutation targets
we analyzed in the 168 classes. Although we provide sub-
sumption relations for 42 targets (see Table IV), we could
only analyze 32 basically for two reasons. First, we did
not find occurrences of some targets in the 168 classes
(e.g., lhs >>>= rhs); second, for some targets occurrences,
EVOSUITER could not generate the minimal test set, which
is a prerequisite to check the effectiveness of our minimal
mutation sets. Table VII also presents the reductions per target
applied by MUJAVA-M. The most common target is exp. We
identified 1,307 exp occurrences. The reduction was 71.15%
on average.

Notice that the reduction percentage must be equal to or
lower than the minimal sets that our approach defined in
Table IV. This is because the full set of mutations may not
always be applied, so the reduction percentage may vary

TABLE VII: General results for RQ1 and RQ2.

Mutation Target Occurrences Reduction Effectiveness

lexp + rexp 111 58.89% 98.88%
lexp + rexp (obj) 86 40.07% 100.00%
lexp - rexp 74 60.57% 99.64%
lexp * rexp 55 58.54% 99.50%
lexp / rexp 35 59.62% 99.23%
lexp % rexp 13 47.47% 96.97%
lexp > rexp 19 62.50% 100.00%
lexp >= rexp 26 62.50% 100.00%
lexp < rexp 35 62.50% 100.00%
lexp <= rexp 16 62.20% 100.00%
lexp == rexp 34 62.50% 100.00%
lexp == rexp (obj) 234 51.72% 98.53%
lexp == rexp (bool) 4 40.00% 100.00%
lexp != rexp 14 62.50% 100.00%
lexp != rexp (obj) 85 51.15% 98.85%
lexp != rexp (bool) 1 40.00% 100.00%
lexp && rexp 13 55.56% 100.00%
lexp || rexp 25 55.56% 100.00%
lexp & rexp 33 64.32% 100.00%
lexp | rexp 6 40.00% 100.00%
lexp ˆ rexp 6 66.67% 100.00%
exp 1,307 71.15% 76.31%
!exp 27 50.00% 100.00%
-exp 38 58.70% 96.74%
~exp 13 58.06% 100.00%
exp++ 4 71.43% 100.00%
--exp 1 80.00% 100.00%
exp-- 4 83.33% 83.33%
lhs += rhs 11 37.93% 96.55%
lhs -= rhs 8 38.10% 100.00%
lhs /= rhs 2 33.33% 100.00%
lhs ^= rhs 1 66.67% 66.67%

downwards. For example, consider the lexp * rexp target.
According to the minimal set applied by MUJAVA-M, the
reduction for this mutation target can reach 62.5% (Table IV).
However, when analyzing this target in real programs, this
percentage dropped to 58.54%. Notice that eight possible
mutations can be applied by MUJAVA for this mutation target:
AORB +, AORB -, AORB /, AORB %, ODL lexp, ODL
rexp, VDL lexp or CDL lexp, and VDL rexp or CDL
rexp. Figure 7 presents an instance of the lexp * rexp
mutation target from the joda-time subject. Here, VDL lexp,
CDL lexp, VDL rexp, and CDL rexp are not applicable
in this context and thus these mutants are dropped from the
full set generated by MUJAVA.

1 (wrappedValue - thisValue) * getUnitMillis();

Fig. 7: Code snippet with an instance of the target lexp * rexp.

In general, even though we are focusing only on mutation
targets, we achieve significant reductions when considering the
total number of generated mutants (see column “Reduction” in
Table VII). However, we may have been discarded important
mutants for the mutation analysis. In this sense, to better
understand to what extent our reductions are indeed focusing
only on redundant mutants, we now answer RQ2.

2) RQ2: How many mutants are incorrectly discarded
from the minimal set?: Table VII also presents numbers
with respect to the effectiveness of MUJAVA-M, i.e., we
check whether the mutants discarded by our tool were indeed
discarded correctly. Column “Effectiveness” presents these
results. This percentage represents the number of mutants
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generated by MUJAVA that were killed by the minimal test
set. In the ideal scenario, the minimal test set should kill all
MUJAVA mutants.

According to Table VII, we achieve 100% of effectiveness
in 20 targets (62.5%). In 29 out of 32 targets we achieve
effectiveness greater than 95%. On the other hand, we achieved
only 76.31% of effectiveness for the exp target (the one more
common in the subjects we studied, i.e., 1,307 occurrences).
Notice that exp is a very generic constructor that can be,
for example, a variable that stores the index of an array, i.e.,
arr[i]. Thus, according to the context in which the mutation
target is placed, the dynamic subsumption behavior can vary
significantly.

To better understand the reasons of why MUJAVA-M
wrongly discarded some mutants, we performed a manual
analysis in a sample of them. Now we discuss two examples
and explain why our approach was not effective in these cases.

a) Example 1: In the first example, we present an error
in a minimal set with the lexp + rexp mutation target.
According to Table VII, this target occurred 111 times and had
an effectiveness of 98.88%. Figure 8 presents a code snippet
of the InnerClassesAttribute class in the javassist
project. In the append method, we have the expression len
+ 8 (Line 4). This expression is used to define the length of an
array in a local variable. The minimal mutation set defined for
this target would be: ODL lexp (len + 8 7→ len), ODL
rexp (len + 8 7→ 8), and AORB % (len + 8 7→ len
% 8 ). However, the minimal test set did not kill the AORB

* (len + 8 7→ len * 8) mutation.
Initially, we thought that the mutant resulting from the

AORB * mutation was equivalent, because it simply increases
the array storage space and, in principle, would not change
the behavior of the program. However, in Line 8 of Figure 8
the newdata reference is passed as a parameter to a parent
class method that uses newdata to change a byte array field.
Notice that in the parent class there is also a public method
that returns the size of this field. Thus, a test that checks the
length of this field could kill the AORB * mutation, which in
this context turns this mutation not subsumed by any mutant
of the minimal mutant set proposed.

b) Example 2: In the second example, we discuss an
error when defining the minimal set for an instance of
the target lhs ^= rhs. This target occurred only once in
the subjects studied. Figure 9 presents a code snippet of
the BooleanUtils class of the project commons-lang. At
Line 5 of the xor method there is the following statement:
result ^= element. This statement applies an exclusive
disjunction logic operation among all elements of the array.
The minimal mutation set for this target is made up of
just one mutation: ASRS |= (result ^= element 7→
result |= element). However, the minimal test set did
not kill the ASRS &= (result ^= element 7→ result
&= element) mutation.

Lindström and Márki [20] suggest that the subsumption
relations cannot hold when the mutated statements are re-
executed (in the context of strong mutation [21]). If the

mutated instruction is executed more than once by any test
execution, we cannot determine the future state of the program.
Since our subsumption relations were obtained from a program
where the final state is known, they are not sufficient to
represent the mutation within a repeating context.

Although evaluating only the mutation target decreases the
influence of the context of the program, we found that, in some
cases, we indeed need some context information in order to
define subsumption relations for targets within more specific
contexts, such as array initialization and field access.

1 public void append(int i, int o, int n, int f) {
2 byte[] data = get();
3 int len = data.length;
4 byte[] newData = new byte[len + 8];
5 for (int i = 2; i < len; ++i)
6 newData[i] = data[i];
7 ...
8 set(newData);
9 }

Fig. 8: Code snippet of from javassist project

1 public static boolean xor(final boolean... array) {
2 ...
3 boolean result = false;
4 for (final boolean element : array) {
5 result ^= element;
6 }
7 return result;
8 }

Fig. 9: Code snippet of from commons-lang project

3) RQ3: What are the time savings of eliminating likely-
subsumed mutants?: To answer RQ3, we applied the full
mutation analysis with MUJAVA and MUJAVA-M (differently
from RQ1 and RQ2, where we focused only on the mutants
generation). By full mutation analysis, we mean the mutants
generation and the execution of the original test suite of each
subject against the mutants. We randomly selected five class
files of each project. However, due to several crashes during
the test suite execution, we are not able to provide numbers
regarding the h2 subject. This way, our analysis regards 20
class files instead of 25.

Table VIII presents the results by each class file ana-
lyzed. The full set part presents the number of generated
mutants (“Mut.”), the time necessary to generate these mutants
(“Time(G)”), and the time necessary to execute the test suite
against all mutants (“Time(E)”). The minimal set part presents
the same columns for the minimal mutation set. Table VIII also
presents the reductions with respect to the number of mutants
(“Mut. %”), time to generate the mutants (“Time(G) %”), and
time to execute the test suite (“Time(E) %”).

In total, MUJAVA generated 5,053 mutants and MUJAVA-
M generated 2,234 mutants. This represents a reduction of
55.79% in the number of mutants. The time to generate
all mutants on MUJAVA was two minutes and 30 seconds.
In MUJAVA-M, this number dropped to one minute and
35 seconds, which represents a gain of 36.03% in mutant
generation time.
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TABLE VIII: Results for RQ3.

Full set Minimal set Reductions
Class Project Mut. Time (G) Time (E) Mut. Time (G) Time (E) Mut. % Time (G) % Time (E) %

MutableDateTime joda-time 844 31.372 s 0:29:44 432 19.848 s 0:16:41 48.82% 36.73% 43.89%
MutableInterval joda-time 127 5.054 s 0:05:13 71 3.986 s 0:03:33 44.09% 21.13% 31.95%
GJMonthOfYearDateTimeField joda-time 13 1.577 s 0:00:41 11 1.540 s 0:00:35 15.38% 2.35% 14.47%
ISOYearOfEraDateTimeField joda-time 138 3.908 s 0:06:21 85 3.013 s 0:04:11 38.41% 22.90% 34.12%
UnsupportedDateTimeField joda-time 108 7.508 s 0:04:01 59 4.482 s 0:02:45 45.37% 40.30% 31.54%
ClassPathUtils commons-lang 24 1.985 s 0:06:29 20 1.894 s 0:05:20 16.67% 4.58% 17.74%
ConstantInitializer commons-lang 24 1.890 s 0:04:17 13 1.725 s 0:03:29 45.83% 8.73% 18.68%
MutableInt commons-lang 235 5.528 s 0:48:40 131 4.519 s 0:31:20 44.26% 18.25% 35.62%
MutableObject commons-lang 41 2.207 s 0:06:11 18 1.934 s 0:04:51 56.10% 12.37% 21.56%
IEEE754rUtils commons-lang 456 7.212 s 1:18:00 216 4.761 s 0:38:25 52.63% 33.99% 50.75%
Subroutine javassist 45 2.269 s 0:08:10 27 2.105 s 0:04:56 40.00% 7.23% 39.59%
TypeAnnotationsWriter javassist 110 3.285 s 0:19:56 86 3.029 s 0:15:35 21.82% 7.79% 21.82%
MapMaker javassist 2,018 42.581 s 5:18:00 717 19.983 s 2:04:00 64.47% 53.07% 61.01%
Keyword javassist 21 1.686 s 0:02:23 8 1.351 s 0:00:42 61.90% 19.87% 70.87%
Handler javassist 137 4.532 s 0:19:54 79 3.745 s 0:10:23 42.34% 17.37% 47.82%
DefaultIterativeLinearSolverEvent commons-math 47 2.819 s 0:30:31 24 2.365 s 0:22:52 48.94% 16.11% 25.07%
MaxIter commons-math 39 2.084 s 0:59:23 17 1.756 s 0:24:56 56.41% 15.74% 58.01%
SimpleValueChecker commons-math 190 4.885 s 3:08:00 61 2.914 s 1:29:00 67.89% 40.35% 52.66%
LeastSquaresConverter commons-math 276 7.476 s 5:47:00 105 4.520 s 2:38:00 61.96% 39.54% 54.47%
FunctionUtils commons-math 160 9.736 s 4:18:00 54 5.571 s 1:37:00 66.25% 42.78% 62.40%

Total 5,053 0:02:30 24:00:54 2,234 0:01:35 10:58:33 55.79% 36.47% 54.30%

It is well-known that a critical problem of mutation testing
analysis is the computational time to execute the test suite.
Here, MUJAVA-M achieves a promising reduction. Whilst
MUJAVA took one day to execute the test suite against all
mutants, MUJAVA-M was able to reduce this time by 52.53%,
i.e., it took 11 hours on this task.

F. Discussion

Approximated DMSGs. The subsumption relations found
by our approach are dependent on the test suite’s quality.
We use automatic test generation tools to create suites that
exhaustively exercise the mutation target. However, automatic
test generation tools have limitations. To better illustrate this
scenario, consider the DMSG showed in Figure 6a. This
DMSG presents the subsumption relations among the muta-
tions of the lexp + rexp target. For this mutation target,
the test case where lexp and rexp are equal to two—i.e.,
(2, 2)—does not detect the AORB * mutation, since 2+2 = 4,
as well as 2 ∗ 2 = 4. However, the test case (2, 2) detects the
AORB - mutation, since 2+2 = 4 and 2−2 = 0. The test case
(2, 0) does not detect the AORB - mutation, since 2 + 0 = 2
and 2 − 0 = 2. On the other hand, this test case detects the
AORB * mutation, i.e., 2 + 0 = 2 and 2 ∗ 0 = 0. Therefore,
we can conclude that AORB - does not subsume AORB * and
vice-versa, differently from what is suggested in the DMSG
in Figure 6a. We found this subsumption relation (AORB -
subsuming AORB *) because the automatic test generation
tools did not generate the test case (2, 2). Notice that there is
a higher probability of generating test cases that do not detect
AORB -, e.g., (x, 0) for any value of x than generating test
cases that do not detect AORB *, i.e., (0, 0) and (2, 2). This
way, detecting AORB - is more difficult than detecting AORB
*. This is why we found that AORB - subsumes AORB *.

Still, we obtained 98.88% of effectiveness for the lexp +
rexp mutation target. Therefore, the subsumption relation we
found between AORB - and AORB * does not significantly

reduce the effectiveness of the minimal set in representing the
full mutation set.

Last but not least, although the DMSGs obtained are ap-
proximations to the true subsumption relations, in most cases,
they were close enough to obtain 100% of effectiveness in
almost all mutation targets we analyzed.
Comparison with weak mutation. In our approach, we
use tiny programs to isolate the mutation targets and obtain
approximations for subsumption relations. In most cases, these
programs contain public methods that only return the result of
the instruction with the mutation target. In these programs,
the test cases assert the program’s output immediately after
the mutation is executed, similarly to the definition of weak
mutation, where the difference in the state after the mutation
execution is sufficient to determine whether the mutant was
detected. However, our proposal differs from weak mutation
because we can take the entire program context into account
(not only the context right after the execution of the mutated
target that infected the program’s state).
Generalizability of the approach. Our approach allows us
to obtain the subsumption relations of any mutation target
covered by the tests generated by the RANDOOP and EVO-
SUITE tools. We isolated the targets in tiny programs to obtain
subsumption relations with the least influence of the context.
In this sense, our hypothesis is that the subsumption relations
found in this way are maintained in most contexts where
the target can be found. The proposed approach allows us
to find subsumption relations in any context, for example, in
a mutation target within the scope of a repetition structure.

G. Threats to Validity

The set of projects we used represents a threat to external
validity. Also, we did not evaluate all files of all projects. To
increase diversity, we consider projects of different sizes and
domains. As another threat to external validity, we focused
only on method-level operators of only one tool, i.e., MUJAVA.
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In some cases MUJAVA generates mutants that do not
compile or fails to generate some mutants, representing a threat
to internal validity. So, the DMSGs that we identified may
change in case we use another mutation testing tool.

Subsumption relations were determined in isolated targets
in tiny programs. These tiny programs do not reflect all the
contexts in which the targets could be inserted. For example,
our programs consider only the int type for arithmetic ex-
pressions. Thus, the absence of targeting programs in different
contexts is a threat to internal validity. To reduce this threat,
we have verified the effectiveness of the minimal mutation sets
to represent the full mutation set.

We only considered in this study mutation targets that did
not generate flaky tests and that EVOSUITER could generate
the minimal test sets. This represents a threat to internal
validity. This decision was necessary to assess the effectiveness
of the reductions. The minimal test sets also poses a threat to
internal validity. This is because computing minimal mutant
sets for all possible test sets is computationally hard [3]. Thus,
the EVOSUITER can generate the test set which is minimal but
not minimum [3].

The mutants that survived the minimal test sets also rep-
resents a threat. Despite running TCE to identify equivalent
mutants, TCE cannot detect all equivalent mutants due to the
undecidability of the Equivalent Mutant Problem [22].

Some targets did not appear frequently in our evaluation.
For instance, the mutation targets --exp and lhs ^= rhs,
occurred only once. So, the effectiveness of the minimal set
defined for these targets may not hold for general cases. We
intend to perform other studies to evaluate these targets.

V. RELATED WORK

Zhu et al. [23] investigated different compression techniques
to speed up mutation testing. They have introduced six com-
pression strategies based on two clustering algorithms and
three mutant selection strategies. Just et al. [24] described three
methods to: (i) detect test-equivalent mutants by monitoring
infected execution states, (ii) detect test-equivalent mutants
by monitoring propagation of infected execution states in
com-pound expressions during execution on the unmutated
program, and (iii) reduce the number of partitioning mu-
tants with identically infected state. They implemented the
optimizations in the Major tool and empirically evaluated
them on 14 open source programs. The optimizations reduced
the mutation analysis time by 40% on average. We derive
a number of dynamic subsumption relationships using our
approach to avoid the generation of redundant mutants.

Kaminski et al. [5] defined a sufficient replacements for
ROR mutations. Just et al. [6] present sufficient sets of non-
redundant mutations for the COR and UOI operators. These
subsumption hierarchies are defined by manually analyzing
the combinations of all possible input situations. However, we
discuss in this paper that, in several other cases, analyzing all
possible combinations is prohibitive due to the high costs.

Just and Schweiggert [10] presented a study that analyzes
the effect of redundant mutants on mutation analysis efficiency,

mutation score, and mutation coverage ratio. The authors show
that the mutants generated by COR, ROR, and UOI have a
mean ratio of 45% of the total mutants generated. Using the
sufficient set of non-redundant mutations for these operators,
the number of mutants was reduced by 27% overall. Just
and Schweiggert also show that redundant mutants worsen
the accuracy of the mutation score. In this paper, we show
approximations of the subsumption hierarchy for 32 mutation
targets. We also conducted a study to show the effectiveness
of a test suite that detects all mutants in the sufficient set of
non-redundant mutants to detect all generated mutants.

Several other approaches in the literature suggest cost re-
duction strategies for mutation analysis [25]. Offutt et al. [26]
presented an empirical approach to define an appropriate set of
selective mutation operators. The idea was to randomly select
a subset of mutation operators [27], [28]. Perez et al. [29]
explored Evolutionary Mutation Testing to reduce the number
of mutants to be executed. Namin et al. [30] formulated
the selective mutation problem as a statistical problem. They
applied linear statistical approaches to identify a subset of
28 mutation operators for C. However, in a recent empirical
study Gopinath et al. [31] found no differences in effectiveness
between selective mutation and random selection. The main
challenge in reducing the mutants set is not losing useful
information. Just et al. [32] state that existing approaches to
selective mutation take no account of program context and
this is fundamental to avoid losing useful information. Our
approach might also lose useful information, i.e., an useful
mutant might be discarded. In this context, we achieved 100%
of effectiveness in 20 (62.5%) out of 32 targets.

VI. CONCLUSIONS AND FUTURE WORKS

We proposed an approach to discover dynamic mutant
subsumption relations among mutants in a specific mutation
target. We isolate a mutation target, generate all possible
mutations for this target, and apply an exhaustive set of tests
to discover the dynamic mutant subsumption relation, i.e., a
minimal mutant set for such target. We empirically defined the
minimal mutant sets for 42 method-level mutation targets of
the MUJAVA mutation testing tool. Then, we implemented a
new version of the tool which we call MUJAVA-M. Then, we
executed MUJAVA-M against 168 classes of five open-source
projects and evaluate the tool in terms of reducing the number
of mutants, effectiveness, and time speedup. Our findings
indicate that even focusing only on a mutation target at a
time, the reductions in the number of generated mutants can
be significant. We analyzed 2,341 occurrences of 32 mutation
targets and MUJAVA-M achieved 100% of effectiveness in 20
out of 32 targets, and more than 95% in 29 mutation targets.
Also, MUJAVA-M achieved a reduction of 52.53% in the time
to execute the mutation analysis.

Future work include carrying out new experiments to use
the targets not found in the projects we studied in this paper.
We also intend to use other mutation tools such as Major [33]
and PIT [34], as well as class-level mutation operators [35].
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