Designing Jini Distributed Services®

A Framework to support the development of reliable component networks

Marcelo B. D’Amorim
Universidade Federal de Pernambuco
Caixa Postal 7851, 50640-970
Recife-PE, Brazil

mbd@cin.ufpe.br

ABSTRACT

Resolving communication is not enough to address distribu-
tion because it is not the most difficult issue of developing
distributed applications. The hard problems of distributed
computing are not the problems of how to get things on
and off the wire, but dealing with partial failure, lack of a
central resource management, concurrency, and differences
in memory access on local and remote resources [17]. Jini
is a distribution platform that recognizes the differences be-
tween building stand-alone and really distributed systems.
Its architecture provides a programming model, which en-
ables developers to handle the hard aspects of distributed
computing. However, Jini only provides a tool, and devel-
opers must apply such a tool to best address their needs
to build distributed systems. This work presents the de-
sign and implementation of a framework aimed at building
reliable Jini services on large-scale component networks.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering; D.2.11 [Software]:
Software Architectures—Data abstraction, information hid-
ing, patterns; D.2.13 [Software Engineering]: Reusable
Software—reusable libraries; D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques— Object-oriented pro-
gramming

Keywords

Component development, Separation of concerns, Jini.

1. INTRODUCTION

Designing distributed systems is harder than designing
stand-alone and even client-server systems as distribution

*Paper presented on the First OOPSLA Workshop on Lan-
guage Mechanisms for Programming Software Components
held on Tampa Bay, Florida, 2001.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XXIXX ...$5.00.

Carlos A. G. Ferraz
Universidade Federal de Pernambuco
Caixa Postal 7851, 50640-970
Recife-PE, Brazil

cagf@cin.ufpe.br

deals with aspects of concurrency, partial failure, availabil-
ity, which do not hold or are simpler to deal with in local
systems. Jini [7] is a platform for distributed application
development which recognizes the differences between build-
ing monolithic and distributed applications. Some platforms
such as CORBA make efforts to provide built-in support in
order to isolate component of distributed concerns. Jini, in
contrast, provides a programming model with which com-
ponents must conform in order to deal explicitly with these
aspects. By enabling programmers to deal with distributed
aspects, Jini also introduces the burden of dealing with their
complexity.

This paper presents the design of a toolkit to support
the building of reliable distributed components. Automatic
configuration [10, 13], for example, is specially supported
by the toolkit in order to increase fault-tolerance in an en-
vironment where distributed services eventually crash while
others become available. Actually, we assume in this work a
component network like Ninja [14] or JTrader [3] is in place
on a large-scale network in order to provide a service feder-
ation. By means of such federation different kinds of users
could interact with different kinds of components using a
semantics of service trading. Aspects such as administra-
tion interfaces, communication protocols, suitable UI (User
Interfaces) to users interact with a service under different
environments, and resource leasing have also to be carefully
considered when developing distributed services.

This paper is organized in the following manner: Sec-
tion 2 presents a brief tutorial on Jini technology, section
3 defines the design of a framework to support the imple-
mentation of Jini components. Beyond functional aspects,
distributed components must address non-functional ones as
well. Major non-functional issues such as service adminis-
tration, communication protocols, user interfaces, resource
leasing, and reconfiguration are so discussed in this section.
Finally, section 4 concludes this work and introduce future
advances.

2. JINI BACKGROUND

It is important to state that, in this section, we do not
intend to extensively present the Jini’s programming model
and describe in detail main responsabilities that components
must perform in order to get into a Jini network, but only a
general background on its architecture and major concepts.

Sketched in Figure 1, the Jini architecture is organized
into three categories: infrastructure, programming model and
services. The infrastructure layer covers discovering commu-

nities, joining services on these communities and searching
for services, and it is responsible for providing minimal con-
ditions for services to get into Jini networks. The program-
ming model defines a set of API’s that enables the construc-
tion of reliable services. While the first layer concerns with
infrastructure issues such as service availability and location,
this second layer covers application domain problems in a
distributed context such as fault-tolerance (Leasing Service),
asynchronous communication (Events) and distributed con-
sistency (Transaction Service). The last layer holds services
that make use of both the programming model as infrastruc-
ture. In fact, some of them have already been standardized,
such as the JavaSpaces service [15]. The Jini architecture

Jini ° Java Spaces Services
|
° Leasing Programming Mode!
N ° Transaction
° Discovery Infrastructure
° Join
° Lookup

Figure 1: Jini architecure

is very simple. Indeed, there is only one fundamental ab-
straction, that of a service. In this section, we describe
this abstraction and a specific kind of service, the name ser-
vice. A service is the Jini’s central concept. A service
may be hardware, software, or a combination of both. It
implements an interface describing its behavior. This inter-
face is required by the platform for every service, since it
is the interaction point between the service and its clients.
The implementation of a service, however, is only known
to itself. More specifically, a service is described by three
elements: an identifier, a proxy, and attributes. The iden-
tifier is assigned to the service when it starts, the proxy is
a mobile entity which represents the service at the client,
implements the interface describing the service, and isolates
the communication protocol with the backend server from
the client. Attributes provide additional description to the
service (location, status, GUI and others). These three ele-
ments are represented by the ServiceItem class and are also
called a service offer.

Services associate themselves to form communities - also
known as groups. A community is a logical entity rep-
resented by a String and reflects either the physical or
the organizational structure of its services. For example,
at the physical level, services in local network may form a
community named “siteA”; at the organizational level, ser-
vices in the marketing and management departments may
be grouped in communities named “marketing” and “man-
agement”.

Within a community, services interact with one another
either as clients or servers. To support this interaction, they
must get references to themselves, which is accomplished
with support from a special service, the name service, known
in Jini as the Lookup Service. This basic service describes
the available services in a Jini community, providing oper-
ations for service search and registration. Before invoking
these operations, however, a new service must get a refer-
ence to a Lookup Service that is actually attached to some
community. This process is defined by the Discovery proto-

col [7].

In this protocol, a service does not need to know the lo-
cation of the Lookup Service, which means that clients need
no prior configuration to find the name service. An asyn-
chronous protocol version, implemented with UDP multi-
cast, searches for Lookup Service references within the local
network radius. When it is found, a remote notification
is sent back to the new service then the service is able to
retrieve the Lookup Service proxy. The following code frag-
ment illustrates the use of this protocol:

class Service {

class Listener implements DiscoveryListener {
public void discovered(DiscoveryEvent ev) {
ServiceRegistrar[] lookupServices;
lookupServices = ev.getRegistrars();

3

LookupDiscovery disco =
new LookupDiscovery(new String[] {"public"});
disco.addDiscoveryListener(new Listener());

}...

The protocol may be implemented by the class LookupDisco-
very. When the disco object is created, an asynchronous
search for a Lookup Service of the community named “pub-
lic” begins in the local network. Then a Listener object
is registered with disco so that when a Lookup Service is
found, the discovered rook method is invoked to get a ref-
erence to this service. Note that the Jini Lookup Service

implements the ServiceRegistrar interface.

Once a new service has a reference to the name server, it
can register itself by invoking the Lookup Service’s register
method:

Serviceltem item =
new Serviceltem(id, createProxy(), attributes);

ServiceRegistration sr =
lookupService.register(item, LEASE_TIME);

The item argument represents the service. It provides an
identifier to the service of ServiceID type, a proxy object
and attributes (an array of Entry objects representing ser-
vice properties). The second argument is a constant defining
for how long the service offer registration is valid. The sr
object is a record of the registration and, through the lease
object that is enclosed on it, a service is able to renew its in-
terest in keeping registered on the name service. In general,
when registering in a Lookup Service, a service also follows
a set of conventions, known as the Join protocol [7]. These
conventions state that the service must renew its registra-
tion regularly and keep its attribute and identifier descrip-
tion consistent with every Lookup Service it registers itself
with.

A service in a community may also look for another ser-
vices through the use of a Lookup protocol [7]. The following
code fragment shows the use of the —codeServiceRegistrar
lookup method:

ServiceTemplate template =
new ServiceTemplate(id, types, attributes);
Object serviceProxy =

lookupService.lookup(template);

The template object specifies the service’s identifier, the
interfaces implemented by it, and its attributes. The result

of the search is a service proxy matching all the data with
the given template. Figure 2 illustrates interaction with the
Lookup Service, also called Lus.

Lookup
Service

1D + Proxy +
Attributes

"\, 2. lookup

1 reglge[,"'

1D + Proxy +
Attributes

Service

- - -3 Service protocol @

Figure 2: Lookup Service - Lus

3. TOOLKIT DESIGN

Designing software systems is hard since you must achieve
a reasonable compromise between some conflicting aspects.
Components must provide enough flexibility to cope with
new requirements, but still be specific to the problem in
hand. Designers must identify the right classes, hierarchies,
and also configure the relationship among them by well bal-
ancing design issues. Design patterns [8] describe solutions
to common problems in software projects. At a high ab-
straction level, patterns enable engineers to reuse solutions
applied to problems already faced. The work of Beck et al.
[1] provides a means by which a system architecture can be
represented solely by patterns. It asserts that patterns gen-
erate architectures considering that they provide a high-level
and sound model to derive and evolve architectures.

As a result of the JTrader system [3] development we ob-
served that some patterns could be regularly applied when
building Jini components. This suggested the development
of a framework to support component development. There
are some currently available, however, they do not consider
the forces we are concerned with, specially that of sepa-
ration of concerns. In general, these toolkits define a root
class that encapsulates every aspect a service must deal with,
and in turn user-defined services just extend this class and
implement some rook methods. This approach works well
when developing services on-the-small, but we experienced
difficulties when components did not follow the behavior ex-
pected by the root class.

In order to be considered Jini citizens, services have to
perform some key responsibilities [7]. For example, a ser-
vice must store in persistent state its identification object
- a ServiceID instance. This object, acquired at the first
time the offer is registered, is to be used for registering the
service offer in other Lus instances thereafter. Moreover, the
service is in charge to renew its registration lease every time
the lease is to expire. In fact, programmers have to deal with
many issues: implement persistence, the Discovery and Join
protocols, implement a protocol for smooth termination, de-
fine a specific service protocol that establishes how the proxy
should contact the backend server or servers.

On the other hand, a client component is capable of trad-
ing for services in a Jini community by means of its Lookup
Service. In fact, this capability enables unprecedented op-

portunity to dynamic software configuration, which is achieved

by resolving dependencies among distributed components.
As presented in [5], automatic configuration of distributed
components is becoming an issue to provide resilience to
services on large-scale component networks. As embedded
systems and handheld devices, such as PDAs (Personal Digi-
tal Assistants) and cellular telephones, become popular, dis-
tributed adaptability deserves special attention of designers.
For example, a Jini client component may stop running until
it rediscovers a new instance of the failed service that pro-
vides the same interface. This situation may be an essential
requirement as long as the client cannot perform its tasks
without a reference to that service, and it is often referred
to as dependence management [11].

On component networks, like Ninja [14] and JTrader [3],
there is not the strict figure of clients and servers, but just
components which are composed with other components. In
fact, these components may perform both client and server
roles. The framework is then supposed to support all these
issues in order to aim the construction of distributed com-
ponents, and its design is governed by the following forces:

* Separation of concerns - Non-functional responsibilities that
services have to perform are to be decoupled from their in-
terfaces and implementation. This force aim at dealing
with each service aspect independently.

* FEase of use - The framework must simplify the implemen-
tation, configuration and deployment of Jini components.

* Minimal and complete interface - The framework must pro-
vide a facade component by which programmers could in-
teract with in order to implement their services. Since the
service public interface concerns functional aspects only,
the facade is the interaction point whereby non-functional
aspects are configured.

This section is organized according to non-functional as-
pects a service must consider. Section 3.1 considers service
administration and also presents the approach to configure
dependencies between a user-defined service and its dele-
gate components, which are charged to deal with different
responsibilites of a service implementation. This approach
makes use of a component called Starter that hides from
the service implementation non-functional responsibilities.
In sequence, section 3.2 considers communication issues, sec-
tion 3.4 presents the framework leasing support to control
resource misuse in the distributed environment. Finally, sec-
tion 3.5 briefly describes the approach used by the frame-
work to deal with reconfiguration.

3.1 Implementing Administration Interfaces

Jini services should implement administration interfaces
in order to handle persistence, manage the discovery and
join protocol, and also handle service termination by releas-
ing all previously acquired resources. The Jini API defines
interfaces which dictate how these tasks should be accom-
plished [7], like the JoinAdmin interface. In fact, Jini does
not provide an exhaustive set of administration interfaces;
there could be others, even user defined ones. Furthermore,
Jini does not provide any implementation of these interfaces,
beyond those of its own services. As a rule of thumb, services
should implement these interfaces by themselves.

Implementing administration interfaces right on the ser-
vice class may incur to some problems. This practice leads

to an intricate implementation and non-reusable code since
several distinct and in general not related aspects are pro-
grammed on a single software unit. The toolkit, on the
other hand, approaches a solution that delegates to third-
party components administrative responsibilities. As repre-
sented in figure 3, each administrative interface (JoinAdmin,
DestroyAdmin and StorageLocationAdmin) is implemented
by a delegate component, which has a default implementa-
tion provided by the toolkit. These components have depen-
dencies among each other. For example, the JoinDelegate
should notify the StorageDelegate when the join state has
changed, like when the set of groups to which a service joins
is being modified. Also, the DestroyDelegate should notify
any resource consumer delegate that the service is about to
be destroyed. In this case, StorageDelegate would have
to checkpoint the service state and also close non-memory
resources acquired, like an opened file, for example. As rep-

T DestroyDelegate

(————— domdearoy O

SroyListen Destroyadrmi
n
from dsst
A ctrom acnin)
®Erminate() woid

JoinDelegate StorageDelegate
Oi ifrom joiny (from daorage) O

JoinAdmin Storageloca

from admin) \ -
(from admin)

CheckpointListener

(from storage)

Scheckpaintiary : PersistentObject) - void
Figure 3: Dependencies among delegate components

resented by the DestroyListener and CheckpointListener,
the toolkit uses a slight different variation of the Observer
design pattern [8] to resolve these dependencies. In its most
common version, the subject of observation (observed) calls
back the subject entity (observer) when a state change has
taken place. In contrast, toolkit’s delegators communicate
the observed state along with the notification using an ap-
proach very similar to the Java event model. Actually, this
pattern is applied twice. When a service terminates, no
object is to be transmitted to observers within the noti-
fication. However when some modification is made on the
service state, a PersistentObject should be communicated.
This approach uses N (where N is the number of observers
registered to receive notifications) method calls to notify ob-
servers and also communicate some state change; in contrast
with the original observer pattern, which uses 2*N messages
due to “callback”. Despite this advantage, the decision for
this approach was justified for simplicity. Applying this pat-
tern with distributed observers may reduce the number of
messages to one because of multicast communication. How-
ever, we did not envision a scenario where the administration
objects are remote to the service object they administer.

Introducing Persistence

The Jini StorageLocationAdmin interface defines operations
to set and get the current storage location, suggesting that
Jini’s support to persistence uses the file system, however,
this interface does not define operations to store and re-
trieve the service state from persistent storage. These op-
erations are required to update the persistent state of the

service - checkpoint [12, 6] - and also to restore such state
prior to the service becomes active - backward recovery. The
StorageDelegate toolkit’s class indeed defines these opera-
tions. Therefore, in contrast with the other delegator com-
ponents, the relation between the Jini interface and the
StorageDelegate is not equivalent because the Jini API
does not define a complete set of operations on a single inter-
face to implement persistence. The persistent representation

1+

Pgfsistehio
bject
Cirom storage)

1

CompoundPersistentObject JoinStae
fromstomge) fromjoin)

Figure 4: Composite

of a service supported by the toolkit is not supposed to be
hierarchical like an ordinary object, but flat. As depicted
on the figure 4, a service is represented persistently by an
object of CompoundPersistentObject type that maps Class
instances to PersistentObject instances and, in principle,
any object is able to persist its state through the storage
delegate. For example, a JoinState object is built by the
JoinDelegate component prior to “checkpoint” its state to
the StorageDelegate of a given service. The “checkpoint”
event is triggered when the JoinDelegate component veri-
fies that its state has been modified.

As the delegate approach attempts to separate concerns
in independent components, such decoupled (flat) represen-
tation of the service state suits well as it allows any object,
even those not concerned on the first design, to be included
as a participant on the service state without affecting other
dependant components, and also allow the state of a service
to be distributed on classes related to its semantic. As an
example, the JoinState is a fundamental toolkit class since
it represents the persistent elements necessary to enable dis-
covery and join protocols. The JoinState is the part of the
service state that comprises, for example, the identification
of the service, a list of properties, and a list of groups where
the service should be registered.

The Java RMI activatable framework provides support to
long-lived persistent objects. In essence, it means that a
service is able to restore its state after a failure and con-
tinue servicing without affecting client remote references.
Using UnicastRemoteObject turns a remote reference in-
valid whenever the server fails. In addition, by using the
activatable alternative instead, the storage delegate has the
opportunity to retrieve the service’s state from the persis-
tence mechanism after the underlying framework notifies a
failure recovery event.

Configuring Dependencies among Delegate Objects

Isolating the implementation of administration interfaces in
specific classes gives rise to other problems: how and where
these administration delegate objects are created and how
the service should be aware of them. In order to answer
the first two questions we recur to the Abstract Factory pat-
tern [8]. The remaining question we defer to the follow-
ing section. The abstract factory pattern hides from the
programmer how concrete classes are instantiated and what

relationships do exist among created objects. In addition,
the factory provides methods to retrieve the objects prop-
erly configured. The DefaultAdminFactoryImpl class, illus-
trated in figure 5, represents the default toolkit administra-
tion factory implementation, but users are completely free
to develop new ones which better suit to their purpose. In
practice, any AdminFactory implementation is valid.

Recall that the toolkit delegate components have depen-
dencies among each other. Hence, a factory can express
these dependencies internally so that clients only interact
with objects returned from factory methods; and these ob-
jects are abstract type implementations, rather than con-
crete ones. System administrators should rely on Jini ad-

DefaultAdminF actorympl
(from toolkdit)
—_—

O _—
JoinAdmin =
~
(o netjini acmin) \\\
//’»/DO\._N‘ RemoteAdminimpl
O ///// DestroyAdmin (from tooll) ———=0
— |

AdminFactory
from toolkf)

\ rom com.sun i adrmin)
RemoteAdrin /

fomtoolkt) \L
A \(\,/
2 ScreateoinDe egate()
Screate StorageDelegate()
StorageLocationAdmin
{from com.sun jini.admin)

ScreateDestroyDelegate()

Figure 5: Abstract Factory

ministrative interfaces, not concrete implementations, and
therefore the AdminFactory is in charge of creating these
Jini types. Except for the case of IStorageDelegate, all
objects created by the factory are direct implementations
of the administrative interfaces. As mentioned before, this
happens because the Jini StorageLocationAdmin interface
does not provide a complete set of operations required to
implement persistence. However, these additional capabili-
ties implemented by the IStorageDelegate (checkpointing
and recovering) are hidden from the admistrator.
Considering that services regularly implement the basic
Jini administrative interfaces, the RemoteAdmin is defined
as a means to unify these functionalities in just one re-
mote component, which is the server-side counterpart for
administration. This is desired to avoid the construction
of it n different remote types for administrative purposes.
In fact, beyond the administrative interfaces, this type also
extends java.rmi.Remote interface turning its implementa-
tions accessible in remote locations. The RemoteAdmin con-
crete class - RemoteAdminImpl - implements these interfaces
by delegating its responsibilities to the objects the Admin-
Factory creates. This behavior is represented in figure 5 by
the RemoteAdminImpl outgoing arrows. This administrative
backend server is actually the object to be returned when
calling the getAdmin method on some Administrable type.
In addition, as an application typically needs only one
instance of a concrete factory per family of created objects,
AdminFactory concrete classes may also apply the Singleton
design pattern [8]. In what follows, we present how a service
is configured to use the backend administration component.

Resolving Service’s Dependencies

Now we define a service example to present main dependen-
cies between some service and the toolkit. Basically, this
example defines three components, which are represented
in figure 6: the IPatternExample interface, the Pattern-

ExampleProxy class, and the PatternExample class, which
is actually the service implementation class. A service has
two dependencies on the toolkit:

* IService- Implemented by the service class, this interface
defines the getServiceProxy method used to retrieve the
service proxy object.

* Starter- This central component is responsible to export
the remote object to the RMI system®, starts the admin-
istration process, and also loads the service configuration
file. Actually it behaves like a facade object [8, 4] between
the service and the toolkit.

The Starter component creates a RemoteAdmin object and
defines a method to return the proxy responsible to remote
control this administration backend object - notice in fig-
ure 6 that, like the service implementation, the Starter
actually implements the Administrable interface. When
the getAdmin method is called on the service, it calls the
Starter getAdmin method in turn. Moreover, in order to
enable user-defined factories to be easily configured in cus-
tomized services, the Starter component loads a factory ob-
ject by reflection? and passes it as parameter to the Remote-
AdminImpl constructor. This special parameter is retrieved
from a configuration file named “<service name>.properties”
which is stored on a Properties object accessible through
the getParameters method of the Starter class. However,
if a user-defined factory is not set, the default one aforemen-
tioned is used instead.

=0
|PattemnExample Administrable
- (rom net.fini admin)
%storel) e
IOy > SgerAdmin() - Object
PattemEsxcampl eProxy
PatternExample Starter

/

<<proxy=>

AdminProxy ————={7)

RemoteAdmin

ISenice

Vet SeniceProxy() - Object

RemoteAdminimpl

—
Figure 6: Toolkit components and dependencies.

3.2 Dealing with Communication

The Jini architecture defines an object located on the
same address space as the client which behaves as a ser-
vice counterpart. As presented on the section 2, this is the
service proxy. Therefore, any distribution platform can be
selected to handle communication in principle; that is, when
the service is not entirely locally implemented. Despite this
capability, the toolkit starter component currently supports
only RMI but it does not enforce users to use it.

'Tn principle, Jini can be implemented over any distributed
platform.

“Reflection is a Java API that provides access to a class
representation. For example, its constructors and methods.

Minimizing implementation efforts due to communication
is a very important toolkit concern in order to achieve pro-
ductivity. In RMI, concrete Remote object implementations
extends UnicastRemoteObject or Activatable. Extending
the former class enables objects to register on the RMI sys-
tem and be able to receive remote calls. However, if the
client fails to communicate with the object due to a ma-
chine failure, for example, that client must get a new refer-
ence to the remote object. On the other hand, implementing
activatable objects provides a means for persistent remote
references thus, if a remote object fails, binding reconfigu-
ration occurs transparently when the service recovers. Af-
ter the remote component turns back running, remote calls
through the activatable reference are likely to succeed since
the remote reference is persists to failures.

The toolkit assumes that the Jini ServiceStarter util-
ity class (this is not the toolkit Starter class) is used to
ease bookkeeping of activatable objects. This component is
in charge to create activatable groups, an activatable iden-
tification, and then call the activatable service constructor
by reflection. Although it does not extend Activatable,
the service behaves as if it had really extended it since; as
mentioned, the constructor is supposed to be called by re-
flection thus relaxing the strong typed characteristic of Java.
In addition, by using reflection we eliminate a dependency
between the activation framework and the service. The fol-
lowing code illustrates how communication an the service
initialization proceeds:

public class PatternExample
implements IPatternExample,IService {

Starter starter;

public PatternExample(ActivationID id,
MarshalledObject state)
throws IOException, ClassNotFoundException {

starter = new Starter(this, id, state);

}
public Object getServiceProxy() {

return new PatternExampleProxy((Remote) this);

3
, o

The service object passed as the first parameter to the Star-
ter constructor must implement the IService interface.
Within this constructor, the service remote object should
be registered on the RMI system. In addition, the service
proxy should be retrieved in order to start the administra-
tion process, and the service state, properly represented by
the state® object have to be restored. Notice that the fol-
lowing code fragment does not present the factory object
reflective load. However, when a customized factory can-
not be loaded, the default factory implementation is used
instead.

Activatable.exportObject((Remote) service, id, 0);
proxy = ((IService) service).getServiceProxy();
if (factory == null) {

factory = new DefaultAdminFactoryImpl(proxy);
}
adminBackend = new RemoteAdminImpl(factory);

3 A MarshalledObject enables object compression.

When using the Jini ServiceStarter class to start an ac-
tivatable service, it is required to supply the groups that
the service should join. Therefore, after the reflective con-
struction of the service object, such utility class retrieves
the Administrable object by calling the service getAdmin
method and test, using the instanceof operator, if it im-
plements the JoinAdmin interface. If so, the service is au-
tomatically registered on Lookup Service that participates
on informed groups. As a consequence, this event causes
the service persistent state to be updated (due to the de-
pendence among delegates) and it becomes available on the
network (due to the JoinDelegate).

3.3 Supporting User Interfaces

Very often applications merge user interface (UI) and func-
tional code, turning reuse difficult as well as the maintenance
of graphical components and business rules. Jini services are
able to provide their own user interfaces and they do that by
separating user interface and functional concerns in different
modules. The UI behaves like a human being adapter [8] as
it provides access to the service by a distinguished interface.
This can be a great advantage concerning interoperability.
The UI knows the service interface and how to interact with
it by means of a proxy. This way we enable interoperability
with the final user, not among services. To achieve that user
interfaces need to be built on the client address space. Code
transmission is so required not only for the service proxy
but also for the UL
The user interface can be a Swing component, AWT (Ab-
stract Windowing Toolkit), textual, speech-controlled, or
whatever the service designer wishes. The word UI is used
intentionally to distinguish from GUI as it does not stand
only for graphical components [16]. A service may have as
many Ul components as UIDescriptor objects it contains.
As a subclass of Entry, the objects such descriptor repre-
sents are regular service properties, which are bound to a
ServiceItem object during service registration (see section
2). In addition to strictly describing user interfaces, descrip-
tors provide access to a factory object enabled to create a
concrete user interface object. UI enabled services are in
charge of creating the descriptor object and attaching it to
the service offer as a property. If the client environment
is capable of supporting the graphical toolkit required by
the UI descriptor, say some version of the Java Swing, it
requests the factory to create the user interface by passing
the service proxy as parameter to the factory method.
In fact, the user interface aspect is well isolated on the
descriptor object. Third-party components could even be
acquired and used as customized user interfaces as long as
these components relies on the same interface the service
implements.
In order to support user interfaces and isolate the service
class from administrative interfaces, the Starter component
defines a public addEntry method.
public void addEntry(Entry entry) {
JoinAdmin admin = (JoinAdmin) adminBackend;
Entry[] entries = new Entry[]l{entry};
admin.addLookupAttributes(entries);

}

An instance of UIDescriptor can be passed as parameter to
this method, which uses the JoinAdmin object to add prop-
erties to the service offer. Therefore, services can build a Ul
descriptor and then configure it as an eligible user interface
by calling this method, defined in the Starter component.

3.4 Leasing Resources

Lease [9] is a powerful mechanism provided by the Jini
programming model, which establishes that resource alloca-
tion interest should be renewed in order to control misuse.
Events and Lookup are elements of Jini architecture that
use leases to manage respectively event and service regis-
tration. For example, a service, which registers to receive
some kind of event, must renew the lease returned within
the event registration while it is interested in receiving those
events. Two components participate on the lease “protocol”:
the lease grantor and the holder. The former is in charge
to manage the resource allocation and return a lease that
must be renewed by the later in order to guarantee access
to the resource. When using events, the resource the lease
grantor stores is actually the lease holder’s interest in re-
ceiving events. Remarkably, the holder’s role is supposed to
be performed by services, however this is not a requirement
[2].

Lease grantors must honor some Jini specification rules
like: “do not renew a lease for more than the requested
time”, “throw UnknowLeaseException if the holder tries to
renew or cancel the lease after expiration”, etc. Therefore,
developing lease grantors is harder than developing holders
and may be well supported by the toolkit.

Providing methods to cancel and renew leases, the Landlord

is the Jini remote interface grantors should implement. A
landlord instance behaves as a server to every lease instance
the grantor generates. The toolkit provides an abstract im-
plementation of this interface through the toolkit.lease
.AbstractLandlord class which is in charge of implementing
the operations that do not depend on the mechanism used
to store the leased resource, leaving to concrete subclasses
the implementation of the storage mechanism. In fact, the
toolkit provides a concrete and transient (non-persistent)
AbstractLandlord implementation - toolkit.lease.Hash-
tableLandlord - which uses a hashtable to store leased re-
sources, instances of the LeasedResource Jini’s interface.
This type defines methods to get the leased resource iden-
tification (also called “cookie”), set and get the lease expi-
ration time. Figure 7 presents the abstract landlord class
and its main dependencies. The abstract landlord delegates

@ ©
Lendiord Grantor

ftom corm aun jini leas landior) (fom tolkit lea =)

AbstractLandord

@rom toolkit leass)

A

HashtableLand ord
dmmtoolkit lease)

Figure 7: The abstract landlord

the lease object creation to a factory class, represented by
the Jini class LandlordLeaseFactory. The factory is able to
create LandlordLease (a subclass of Lease) instances that
contain the identification of the leased resource and a refer-
ence to the remote landlord. Therefore, this object serves

to lease holders contact grantors, say landlords.

The Jini API defines what operation landlords should per-
form to manage lease renewal, however, it does not define
operations through some interface to create leases. The
toolkit.lease.IGrantor interface, presented below, does

exactly this. Notice that AbstractLandlord implements
both Landlord and IGrantor interfaces, so it is able not
only to manage lease renewal but also granting leases.

public interface IGrantor {

public Lease leaseFreeSlot(Object value,
long duration)
throws LeaseDeniedException, RemoteException;

}

The leaseFreeSlot method requests space to allocate the
resource, represented by the Object parameter. As a result,
a lease with an expiration time not higher than duration
miliseconds is returned to the holder, which is in charge to
properly renew the lease. In order to conserve service encap-
sulation, lease holders should not access methods defined on
the IGrantor interface directly. Services very often provide
specific operations which indeed lease resources, thus hid-
ing the IGrantor interface to the client. For example, the
ServiceRegistrar Jini interface defines a register method
that returns a lease within a service registration object. In
such case, the Lookup Service could have used the toolkit
abstract landlord to implement the register operation once
the IGrantor interface provides a general functionality.

3.4.1 Leasing Service’s Resources

Following to the example presented in the previous sub-
section, now we introduce leasing to the PatternExample
service. The principle of isolating concerns still applies, so
that functional aspects are implemented in the service and
non-functional aspects in delegated objects; notice the ab-
stract landlord is the object in charge to manage leases. In
contrast to administration delegates, which are completely
isolated from the service functionality, the service class de-
pends on a lease delegate object since the request to create
a lease is triggered by its own in response to a client request.
As described earlier, the Lookup Service register method
is an example of such behavior. After the lease object is cre-
ated, communication conveys directly through the landlord,
thus alleviating the service of lease bookkeeping. Therefore,
the interaction between the service and landlord is regularly
represented by the IGrantor interface, as presented in the
figure 8. The Starter component stores a reference to an

O
ISerice
— —
PatternExample
%storef)
|Grantor :‘

Figure 8: The service and landlord interaction

AbstractLandlord object, provides an operation to get a
reference to the IGrantor interface, and an operation to set
the abstract landlord to be used. If the service does not set
one, the default implementation - HashtableLandlord - is
used instead.

Suppose the IPatternExample defines an operation, named
storeMessage, that allows clients to store a message re-
motely. This operation returns a registration object which
contains an enclosed lease object. The following code im-
plements this example:

public class PatternExample
implements IPatternExample, IService {

Starter starter;

public MessageRegistration store(String message,
int duration)
throws RemoteException, LeaseDeniedException {

AbstractLandlord absLandlord =
starter.getAbstractLandlord();

IGrantor grantor = (IGrantor) absLandlord;

Lease lease = grantor.leaseFreeSlot(message, duration);

return new MessageRegistration(lease);

Neither the client nor the service interacts directly with
the Landlord. The service calls the IGrantor to create lease
objects, the client calls the Lease when it is to be renewed,
and the lease calls the Landlord through the enclosed refer-
ence stored within the lease object.

3.5 Fault-detection and Reconfiguration

The Reverse Lease Subscriber (RLS) design pattern [2]
proposes a means to detect failures and reconfigure service
dependencies on large-scale component networks that pro-
vides a trading semantics to enable service discovery. In fact,
both pattern and toolkit are integral part of the JTrader ef-
forts to build a global service federation on the Internet.
This toolkit uses the pattern to increase reliability of com-
posite services. An extensive discussion about reconfigura-
tion on component networks and about the RLS pattern is
given on [2].

4. CONCLUDING REMARKSAND FUTURE

WORKS

This paper presented the design of a framework to support
the development of Jini components that perform both client
and server tasks. Instead of concentrating responsibilities
on the service class, specialized delegate components are in-
structed to deal with non-functional aspects thus isolating
from the functional code these concerns. As long as aspects
as communication protocols and fault-tolerance deserve very
special care in distributed systems, we argue for the rele-
vance of this approach. We observed that services commu-
nicate with delegate components in a disciplined manner. A
discipline imposed by the Starter component that behaves
like a facade object.

The current framework version does not support transac-
tion management and event producers. In addition, it lacks
full support to fault-tolerance. The framework helps on au-
tomatically searching currently available components that
implement a similar interface as that of a failed service (see
section 3.5). It resolves the problem under a client point of
view, but it still lacks support to enable fault-tolerance at
the server-side. Issues like election protocols, active repli-
cation, and implementation of shared state [12, 6] shoud be
considered in future releases.

5.
(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES
K. Beck and R. Johnson. Patterns Generate

Architectures. In M. Tokoro and R. Pareschi, editors,
Proc. European Conf. on Object Oriented
Programming (ECOOP), volume 821, pages 139-149,
Bologna, Italy, 1994. Springer-Verlag, Berlin.
Marcelo B. d’Amorim. Reverse Lease Subscriber: a
Design Pattern for Failure Detection and
Reconfiguration of Distributed Systems. In proceedings
of the First Latin American Conference on Pattern
Languages of Programming - SugarLoafPLoP’2001.
Rio de Janeiro-BRAZIL., 3th-5th October 2001.
Marcelo B. d’Amorim. Service Trading on the
Internet, the JTrader approach, May 2001. Univ.
Federal de Pernambuco. M.Sc. dissertation.

Douglas Schmidt et al. Pattern-Oriented Software
Architecture: Patterns for Concurrency and Networked
Objects. John Wiley & Sons, September 2000.

Fabio Kon et al. Dynamic Resource Management and
Automatic Configuration of Distributed Component
Systems. In Proceedings of the 6th USENIX
Conference on Object-Oriented Technologies and
Systems - COOTS’2001, Texas, February 2001.
George Coulouris et al. Distributed Systems: Concepts
and Design. Addison-Wesley, 2th edition, May 1994.
Ken Arnold et al. The Jini Specification.
Addison-Wesley, December 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Elements of Reusable
Object Oriented Software. Addison-Wesley, Jan. 1995.
Prashant Jain and Michael Kircher. Leasing. Pattern
Language of Programming - PLOP’2000. Allerton
Park, Monticello, Illinois, USA, 13th-16th Aug. 1996.
Prashant Jain and Douglas C. Schmidt. Service
Configurator: A Pattern for Dynamic Configuration
and Reconfiguration of Communication Services. In
8rd USENIX Annual Pattern Languages of
Programming Conference, Allerton Park, Illinois,
pages 209-219, 1997.

Fabio Kon and Roy H. Campbell. Dependence
Management in Component-Based Distributed
Systems. IEEE Concurrency, 8(1):26-36,
January-March 2000.

Evan Marcus and Hal Stern. Blueprints for High
Availability: Designing Resilient Distributed Systems.
John Wiley & Somns, January 2000.

Francisco Assis Rosa and Antonio Rito Silva.
Component Configurer. In Proceedings of the 2nd
European Conference on Pattern Languages of
Programming - EuroPLoP ’97, pages 209-219, 1997.
Steven D. Gribble et. al. The Ninja Architecture for
Robust Internet-Scale Systems and Services. Special
Issue of IEEE Computer Networks on Pervasive
Computing (to appear), 2000.

Sun Microsystems. JavaSpaces Service Specification,
1.1 edition, October 2000.

Sun Microsystems and Artima.com. The Jini User
Interface Specification, April 2000. Available at
http://artima.com/jini.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam
Kendall. Note on Distributed Computing. Sun
Microsystems Laboratories, November 1994.

