
Event-Based Runtime Verification of Java Programs

Marcelo d’Amorim
∗ †

Department of Computer Science
University of Illinois Urbana-Champaign, USA

damorim@cs.uiuc.edu

Klaus Havelund
Kestrel Technology

Palo Alto, USA

havelund@kestreltechnology.com

ABSTRACT

We introduce the temporal logic HAWK and its supporting tool for
runtime verification of Java programs. A monitor for a HAWK for-
mula checks if a finite trace of program events satisfies the formula.
HAWK is a programming-oriented extension of the rule-based EA-
GLE logic that has been shown capable of defining and implement-
ing a range of finite trace monitoring logics, including future and
past time temporal logic, metric (real-time) temporal logics, inter-
val logics, forms of quantified temporal logics, extended regular
expressions, state machines, and others. Monitoring is achieved
on a state-by-state basis avoiding any need to store the input trace.
HAWK extends EAGLE with constructs for capturing parameterized
program events such as method calls and method returns. Param-
eters can be executing thread, the objects that methods are called
upon, arguments to methods, and return values. HAWK allows one
to refer to these in formulae. The tool synthesizes monitors from
formulae and automates program instrumentation.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specification—lan-
guages; D.2.5 [Software Engineering]: Testing and Debugging—
monitors; D.2.4 [Software Engineering]: Software/Program Veri-
fication—assertion checkers, reliability

General Terms

Runtime verification, temporal logic, event versus state predicates,
Java, program instrumentation, aspect oriented programming.

1. Introduction
Model Checking [7], Theorem Proving [16] and Static Analy-

sis [18] are techniques aiming at static program verification. The

∗CAPES grant# 15021917.
†This author is grateful for the support received from MCT while
participating in the Summer Student Research Program at the
NASA Ames Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Dynamic Analysis(WODA 2005) 17 May 2005, St. Louis,
MO, USA
Copyright 2005 ACM ISBN 1-59593-126-0 ...$5.00.

first is concerned with checking if all possible traces derived from
a program (or abstract model) satisfy a property of interest. The
state-space explosion is known to be an issue when considering
concurrency and unbounded types. Additional model abstraction,
such as partial-order reduction, can reduce the model size consid-
erably but scalability is still an issue when checking properties of
programs in general. Theorem proving relies on the language se-
mantics and a proof system in order to come up with a proof that
the program will behave correctly for all possible inputs. Unfor-
tunately, this technique cannot be fully automated for undecidabil-
ity reasons. As yet another technique, static analysis is concerned
with analyzing the program offline to determine program proper-
ties from the program structure. Usually such static analyzers can
only detect a limited set of generic errors, such as array-bound vio-
lations and deadlock potentials; and they often yield false positives.
They usually scale fairly well, and (as a soundness condition) are
guaranteed do detect designated problems when they exist.

In contrast to these techniques, this paper describes a logic and
tool that employs dynamic analysis to detect bugs in software dur-
ing execution. Runtime Verification (RV) [1] is concerned with
checking a single trace of events generated from the program run
against properties described in some logic. When a property is vi-
olated or validated, the program can take actions to deal with it.
The technique scales since just one model of computation is con-
sidered, rather than the entire state space as in model checking.
The technique can be used both for testing before deployment of
the software, and for monitoring after deployment. In the first case,
one must come up with test cases [3] that might uncover a bug. In
this setting, RV is considered as an auxiliary tool to automate the
creation of oracles that detect errors. In the second case, RV is used
to monitor a program during its execution so to take actions in re-
sponse to the violation of properties. With this perspective in mind,
an RV tool may be used to define how the program reacts to bugs,
possibly steering it to the correct behavior [10].

This paper describes a logic and its tools, named HAWK, for run-
time verification of JAVA programs. By using a subset of JAVA’s ex-
pression language as propositions, the user can describe temporal
properties relating different points in the program and their accessi-
ble objects, and verify the program against these properties during
runtime. For instance, one can state a requirement that if a file is
ever written, it must have been opened before. This is written in
HAWK as follows:

Always([file?.write(*)] Previously(〈file.open()〉 true))

where file denotes a file object, the operator Always means al-
ways in the future, and Previously means eventually in the past.
This example has the sole purpose of giving early in this paper
“some” intuition on the role of objects, instrumentation, and how
these concepts integrate in HAWK. We will go over the details of

the language in later sections. In particular, we will give the denota-
tion of the square and angled brackets which enclose a description
for a program event.

HAWK is defined on top of EAGLE which is more expressive than
several logics [4]. EAGLE not only allows one to state temporal and
interval properties but also to define new logics. We will present
briefly the main concepts of the EAGLE logic.

Instrumentation is acknowledged as an issue that runtime veri-
fication tools have to face in order to monitor programs [14, 11,
6]. Some tools provide no support for mechanical instrumentation,
others use annotations in the source program to check against ver-
ification formulae. We understand that automated instrumentation
is part of the problem we want to solve. Therefore, a tight inte-
gration between the logic and the source language will not only
simplify the task of writing and reasoning about properties but also
give opportunity to mechanical instrumentation.

We claim that this goal can be achieved by augmenting the EA-
GLE language with a simple construct that allows one to bind data
values from parameterized program events. This construct is the
event expression and has been mainly influenced by aspect lan-
guages [13] and process algebras [17].

It is worth mentioning that we do not address in this paper the
important problem of runtime overhead introduced by monitors.
This is an orthogonal problem that requires further investigation.

We present related work in the following section. In section 3
EAGLE is described. Section 4 presents HAWK as a specialization
of EAGLE for JAVA. It extends EAGLE with event expressions. This
section describes the tool and the syntax of the language, presents
monitor examples, and then discusses implementation. Section 5
concludes the paper.

2. Related Work

There is currently an increasing amount of work being performed
in this field, as documented for example in [1]. Here we shall only
mention part of this work. At close range, HAWK is built on top of
EAGLE. EAGLE [4] is a language-independent runtime verification
tool and logic. It requires the user to create a projection of the actual
program state that is being monitored. User-defined formulae are
evaluated with respect to this projected state. The EAGLE language
essentially extends the µ-calculus with data parameterization and
past time logic. HAWK supports automated instrumentation and
object reasoning at the expense of making the language specific to
Java. The notation and semantics of the data-binding construct is
similar to those used in modal logics like the π-calculus [17]. These
works influenced the integration of programming and logic as well
as the notation and semantics of event expressions.

JAVA MAC [14] defines an event-based language to describe
monitors. It is comprised of two specification languages, PEDL
and MEDL. The first is tightly integrated to the programming lan-
guage and defines events that might occur during the program ex-
ecution. A MEDL specification, on the other hand, makes use of
these events in order to state high-level requirements. MAC also
supports the declaration variables of primitive types, that can be
updated by user-defined assignment statements upon arrival of new
events. These variables can be referred to in formulae. HAWK can
define MAC properties as rules, and variables can be cast as either
variables in the projected EAGLE state, or as formal parameters in
rules following a functional programming paradigm. In contrast to
MAC that also allows variable accesses as primitive events, HAWK

event expressions currently only concern method calls and returns.
However, the HAWK event construct is designed to be extensible
so to allow one to reason about other program events. In addi-

tion, HAWK supports data binding and object reasoning which we
believe to be an essential feature of object-oriented program moni-
toring. To the best of our knowledge MAC does not support them.
A newer version of JAVA MAC supports extended regular expres-
sions. HAWK also supports such.

JASS [5] is a JAVA tool providing a trace-assertion checker in
addition to a language for describing pre and post conditions for
methods, loop variants (used to assure loop termination) and in-
variants, and class invariants which are predicates about the state of
objects of a particular class. These are defined in a similar fashion
as in EIFFEL [2] which follows a design-by-contract methodology.
The JASS sub-language of trace-assertions is similar to CSP and is
strongly related to the logic we present in this paper. Trace asser-
tions are defined as class invariants in the form of annotations in the
class file. The distinction between JASS and HAWK is essentially
that the first is a process algebraic “programming” language while
the latter is a logic. For example, HAWK does not provide built-in
operators for external choice, parallel composition and hiding.

TEMPORAL ROVER [9] is a commercial tool that allows the user
to specify future and past time metric temporal logic requirements
to be checked during runtime. Also, data can be captured and re-
lated over a trace. Furthermore, a recent interesting extension com-
bines temporal logic with state charts, allowing edges/transitions
in state charts to be guarded by temporal conditions. EAGLE also
allows these features, but tries to do so using an integrated single
notation rather than the combination of several notations. The user
of TEMPORAL ROVER needs to manually instrument the program
in order to emit events to the checker. In contrast, HAWK provides
automated program instrumentation.

MOP [6] is a methodology and framework for building program
monitors. In MOP the crafting of a monitoring tool is divided into
building a logic engine and a logic plugin. The first is concerned
with generating a software artifact that will check the trace. The
later is concerned with the integration of the target program and the
logic engine. Instrumentation and IDE integration are supported by
the engine. Several plugins have been created in this line already
including those for extended regular expressions and linear tempo-
ral logic. We believe HAWK could be defined in MOP as well.

Aspect Oriented Programming (AOP) [12] is a software devel-
opment technique aiming at increasing modularity of orthogonal
programming concerns. An aspect is a module that characterizes
the behavior of “cross-cutting concerns”. It defines behavior that
cross-cuts different abstractions of a program, avoiding scattering
code that is related to a single concept at multiple places of the pro-
gram, and as a consequence, protecting the encapsulation of mod-
ules. To some extent AOP can be seen as just a clean solution to the
instrumentation of programs. For this purpose, we used extensively
the ASPECTJ AOP tool. We believe, however, that a natural exten-
sion of this work is the introduction of temporal advices, which
could be integrated in an AOP tool. In contrast to the usual aspect
advices, temporal advices can provide a means to define hooks for
code to be executed upon validation or violation of a finite-trace
requirement.

3. The EAGLE Logic

This section serves to give some background on the finite-trace
monitoring logic EAGLE.

EAGLE offers a succinct but powerful set of primitives, essen-
tially supporting recursive parameterized equations, with a minimal
or maximal fix-point semantics together with three temporal oper-
ators: next-time, previous-time, and concatenation. The next-time
and previous-time operators can be used for defining future and

past time logics on top of EAGLE. The concatenation operator can
be used to define interval logics and extended regular expressions.
Rules can be parameterized with formulas and data, which allows
the definition of new combinators and contexts to be captured in
different points in time.

Atomic propositions are boolean expressions over a user-defined
Java object denoting the current state of the program. This state
is a projection of the actual state being monitored and the user has
to provide this mapping. This decision allows one to monitor pro-
grams written in different languages with reduced effort. That is,
one needs to define such a state object in JAVA, which is the EAGLE

implementation language, and send events to it from the application
being monitored in order to keep it updated. The logic is introduced
informally by means of two examples.

3.1. EAGLE by example

This sub-section is a modification of [4], of which the second
author is a co-author.

Assume we want to state a property about a program P, which
contains the declaration of two integer variables x and y. We want to
state that whenever x is positive then eventually y becomes positive.
The property can be written as follows in classical future time LTL:
2(x > 0 → ♦ y > 0). The formulas 2F (meaning “always F”) and
♦F (meaning “eventually F”), for some property F , usually satisfy
the following congruences [16], where the temporal operator ©F
stands for next F (meaning “in next state F”):

2F ≡ F ∧©(2F) ♦F ≡ F ∨©(♦F)

One can, for example, show that 2F is a solution to the recursive
equation X = F ∧©X ; in fact it is the maximal solution1. A fun-
damental idea in EAGLE is to support this kind of recursive defi-
nition, and to enable users to define their own temporal combina-
tors using equations similar to those above. In this framework one
can write the following definitions for the combinators Always and
Eventually, and the formula to be monitored (M1):

max Always(Term F) = F ∧©Always(F)
min Eventually(Term F) = F ∨©Eventually(F)
mon M1 = Always(x > 0 → Eventually(y > 0))

The Always operator is defined as having a maximal fix-point in-
terpretation. That is, if by the end of the trace the property was
not yet violated it is assumed to be validated and will evaluate to
true. On the other hand, the Eventually operator is defined as
having a minimal interpretation. If by the end of the trace the for-
mula was not yet validated the eventuality is considered violated
and will evaluate to false. Put differently, maximal rules define
safety properties (nothing bad ever happens), while minimal rules
define liveness properties (something good eventually happens). In
EAGLE, the difference only becomes important when evaluating
formulas at the boundaries of a trace.

For completeness we provide remaining definitions of the future
time LTL operators U (until) and W (unless) below, and also
the past-time operator S (since) used in an example later on. The
logic provides a previous-time operator, which allows us to define
such past time rules. Note how Unless is defined in terms of other
operators. However, it could have been defined recursively.

min Until(Term F1,Term F2) = F2 ∨ (F1 ∧©Until(F1,F2))
max Unless(Term F1,Term F2) = Until(F1,F2)∨Always(F1)
min Since(Term F1,Term F2) = F2 ∨ (F1 ∧

⊙

Since(F1,F2))

1Similarly, ♦F is a minimal solution to the recursive equation X =
F ∨©X .

Data Parameters

We have seen how rules can be parameterized with formulae. Let us
modify the above example to include data parameters. Suppose we
want to state the property: “whenever at some point x = k > 0 for
some k, then eventually y = k”. This can be expressed as follows
in quantified LTL: 2(x > 0 → ∃k.(x = k ∧♦y = k)). We use a
parameterized rule to state this property, capturing the value of x
when x > 0 as a rule parameter.

min R(int k) = Eventually(y = k)
mon M2 = Always(x > 0 → R(x))

Rule R is parameterized with an integer k, and is instantiated in M2
when x > 0, hence capturing the value of x at that moment. Rule
R replaces the existential quantifier. Data parameterization is also
used to elegantly model real-time logics. See [4] for more details
on EAGLE and how to encode LTL, MTL, etc. in the language.
The textual notations for © and

⊙

in EAGLE are respectively @
and #.

3.2. The EAGLE tool

EAGLE monitors and rules are specified in a text file. In order
to verify the program against the stated properties, the programmer
must instrument the application in points affecting any formula in
the specification. In the example above, at any place where x and y
are updated. In these points, the EAGLE state must be updated and
then the formulae verified as Figure 1 shows.

Auxiliary State
written in Java

Instrumented program in
Java, C, C++, etc.

Eagle Observer
written in Java

1) update2) notify

3) Evaluate formulae in the
current stateSpec

Figure 1: Eagle architecture

When an instrumentation point is hit during program execution,
the EAGLE state is updated (1). Then, the observer corresponding
to the specified properties (Spec) is notified (2). In response, the
observer evaluates the formulae in the current state (3) and derives
new obligations for the future which are stored in its internal state.

The observer component “updates” logical requirements upon
notification of state updates. It accesses the projected state, as
shown by the arrow connecting the boxes, via boolean tests. That
is, the observer tests the validity of atomic propositions included
in some of its verification rules. In practice, these propositions
take the form of (assumed pure) method calls on the projected state
and is accomplished via the JAVA reflection mechanism. Note that,
these method calls can take parameters since the context in which
that method was called (from an EAGLE rule) can be accessed. See,
for instance, rule R used in monitor M2.

4. HAWK

HAWK is a logic and tool for runtime verification of JAVA pro-
grams. It is built on top of EAGLE. HAWK specifications are ulti-
mately translated to EAGLE monitors.

HAWK follows an event-based approach to runtime verification
in contrast to EAGLE which is state-based. It allows one to re-
fer in specification formulae to events that may be emitted by the

program. For instance, one can specify that some event must even-
tually occur after another. In principle, any kind of program event
can be defined and used in HAWK formulae. However, currently
we support only a limited number, namely, method calls and re-
turns. In addition, these events can be parameterized. It is possible
to refer to actual parameters, to the calling thread, and to the re-
turn value of an event corresponding to a method call, for instance.
As a consequence, HAWK formulae might refer to these values in
contexts were they are visible.

The HAWK tool instruments the program in order to track events
referred in formulae. In addition, it generates and compiles the EA-
GLE specification and auxiliary state corresponding to the HAWK

specification. In the following, we show the syntax and semantics
of HAWK, then two examples of its use, and finally a brief discus-
sion on its implementation.

4.1. Syntax and a Semantics Fragment

The syntax of HAWK in EBNF form follows. The usual symbols
∗,+ might be qualified with a terminal denoting a separator:

Observer ::= observer Id { Vardecl∗; Monitor+ }
Vardecl ::= var Id Id
Monitor ::= mon Id = Hawk proposition .
Hawk proposition ::= 〈 Event 〉 Hawk proposition

| [Event] Hawk proposition
| “ Java boolean expression ”
| “ Eagle formula extended with Hawk propositions ”

Event ::= [IdQ :] Method expression [returns [IdQ]]
Method expression ::= IdQ . Id (IdQ∗,)
IdQ ::= “ Java identifier ” [?] | *

A HAWK specification is given in Figure 2. The initial (root)
syntactic category of this grammar is Observer. A HAWK speci-
fication is thus an observer comprised of possibly many monitors.
Event expressions correspond to the first two productions of the
syntactic category Hawk proposition. That is, they can take either
forms:

〈event〉 proposition [event]proposition

Here, event corresponds to a method being called or returned
from and may bind free variables in proposition. Question marks
are used in event to extend the environment with such new bind-
ings. For instance, an event expression of the form:

〈o?.method-name(p?)returns r?〉 P

can bind variables o, p, and r in the scope of P. So the HAWK

proposition P can use these objects in its definition, possibly in-
volving temporal operators and relating other objects captured in
the body of P.

The construct 〈 〉 has a conjunctive semantics. It means the en-
tire proposition will evaluate to true iff the associated event occurs
and the proposition argument evaluates to true in the current state.
The construct [] , on the other hand, has an implicative semantics
meaning that the proposition will only be checked if the event de-
noted by event occurs. Therefore, 〈event〉true means that event
must occur while [event]false means that it cannot occur.

More formally, let the semantic function for HAWK propositions
have the following signature:

[[]] : Hawk proposition → (Id → Object) → Hawk proposition

It takes a formula, a state, and returns a new formula, being true,
false, or a new temporal proposition that has to be satisfied in the
next state. The semantic function is defined as follows for the 〈 〉

construct:

[[〈ev〉prop]]Σ =

{

f alse i f [[ev]] Σ = f alse
[[prop]] Σ′ , otherwise

and for the [] construct:

[[[ev]prop]]Σ =

{

true i f [[ev]] Σ = f alse
[[prop]] Σ′ , otherwise

for all events ev, HAWK propositions prop, and environment
maps Σ. The semantic function on events returns a boolean de-
noting if the event has occurred or not in the current state. Note
that the generation of events from the run of a program leads to
a notion of pattern-matching of variables in our specifications. In
particular, the state2 Σ′ denotes the extension of Σ with the bind-
ing from variables, occurring in the pattern matching of ev, to their
corresponding program values. Therefore, in addition to only re-
turning a boolean the semantic function of Event should also return
an environment for the match which captures the variables in the
corresponding event. Due to this we say these events are parame-
terized. We omitted the definition of this function for the sake of
brevity.

4.2. HAWK by Example

We show in the following examples of liveness and safety [15]
properties specified as HAWK specifications. Intuitively, a liveness
property states that something good must eventually happen while
a safety property states what should never happen. It is perhaps
surprising that liveness properties can be monitorable [8]. This is
because eventualities may not hold in a finite trace and still hold in
the future. The finite trace semantics of EAGLE, however, makes a
simplifying assumption that if the program terminates, and an even-
tuality has not been satisfied, the system will emit a warning even
though the eventuality perhaps could be satisfied if the program
continued.

Temporal Buffer Requirements

Figure 2 illustrates the format of a logic observer specification in
HAWK.

observer BufferObserver {

classPath = C:/downloads/src
targetPath = C:/downloads/src
terminationMethod = bufferexample.Barrier.end()

var Buffer b ;
var Object o ;
var Object k ;

mon B =
Always ([b?.put(o?)]
Eventually (<b.get() returns k?> (o == k))) .

}

Figure 2: HAWK observer for Buffer requirement

We omitted in the syntax the declaration of configuration at-
tributes associated to the compilation, distribution, and execution

2We use the terms environment and state indistinctly in this defini-
tion.

of the observer. Here we declare classpath, targetPath, and
termina tionMethod. The first serves to access the class defini-
tions associated to the types of the declared variables. In this case,
Buffer. The attribute targetPath indicates where the generated
files will be stored. Finally, terminationMethod indicates a static
method that will trigger the end of the monitoring session. This
method must be called from the program to allow monitors to fin-
ish. Variables are typed and can be used in monitor definitions.
In this figure, monitor B states a property that whenever an object o
is inserted into a buffer b, eventually it is taken out from that buffer.
Note that this specification is not sensible to duplicates. That is, it
will be satisfied if the trace consists only of two put on the same
object and only one later get on that object. The eventuality of B
can be alternatively expressed as:

<b.get() returns o> true.

Note that we were able to capture the actual parameter of the method
put and the return of method get. In addition, we assume events
to be disjoint – they do not occur simultaneously. In other words,
events have an interleaving semantics.

Strict Alternation in Acquisition and Release of Locks

The monitors F1 and F2 in Figure 3 state properties about the way
locks are acquired and released via the methods acquireLock and
releaseLock, which can be seen as part of a user-defined thread
synchronization JAVA package for a File System implementation.
We want to check if the file system correctly follows the lock pro-
tocol.
F1 states that there should not be an acquire of a lock without a

future release by the same thread, and no other acquisitions by any
thread can occur in between. F1 states the dual property about lock
releases. The term “t?:” qualifies the event description with the
thread from which the event was sent. Note that these properties
are more restrictive than those of Java’s standard reentrant locking
discipline, which allows nested lock acquisitions.

observer FileSystemObserver {
...
var Thread t ;
var FileSystem fs ;
var int l ;

mon F1 =
Always ([t?:fs?.acquireLock(l?) returns]
@ (Until([*:fs.acquireLock(l) returns]false,

<t:fs.releaseLock(l)>true))) .

mon F2 =
Always ([t?:fs?.releaseLock(l?)]
(Since([*:fs.releaseLock(l)]false ,

<t:fs.acquireLock(l) returns>true))) .
}

Figure 3: HAWK observer for Lock requirement

4.3. The compiler

The compilation of the specification shown in Figure 2 produces
the following EAGLE monitor and rules:

max R2(Object o, Object k) = compare references(o,k) .
max R1(Object b, Object o) =

Eventually(get (b)∧R2(o,getValue(ht,‘‘return’’)) .
mon B = Always(put () →

R1(getValue(ht,‘‘caller’’),getValue(ht,‘‘arg1’’)) .

The methods get , put , and compare references are declared
in the EAGLE state. The variable ht is a hash table stored in the
state and carried over to access the parameters of the last event.

We show below a fragment of the ASPECTJ aspect the compiler
generates. This aspect is in charge of instrumenting the program to
track the events and call the observer:

public aspect BufferObserverAspect {

BufferObserverState state = new BufferObserverState();
Observer observer =

new Observer(RuleBase.parse(...spec-file));
Object lock = new Object();

pointcut put (bufferexample.Buffer caller, Object arg0) :
target(caller) && args(arg0) &&
execution(* bufferexample.Buffer.put(Object));

before(bufferexample.Buffer caller,Object arg0) returning :
put (caller,arg0){
synchronized (lock) {

MethodCall mcall = new MethodCall("caller", caller,
new EagleMethod("bufferexample.Buffer","put",

new String[]{"Object"}));
mcall.addActualParameter("arg0",arg0);
state.setCurrentEvent(mcall);
state.eventMessage();
observer.handle(state);

}
}
...

}

This aspect includes a before execution advice on the method put
of class Buffer. When this advice is triggered we create a rep-
resentation of the call and update the EAGLE state denoted by an
instance of the class BufferObserverState. The observer is no-
tified in the sequence with a call to the method handle.

The generated files corresponding to the Buffer specification are
presented in Appendix A.

4.4. Implementation

A parser for HAWK was built using JLEX and JAVA CUP. The
tool has 6500 lines of Java source code. The compiler works by
transforming HAWK sentences written in a specification file into
equivalent EAGLE specifications, and AspectJ aspects.

The user must provide the name of a method - terminationMethod
- that must be called when the program terminates. HAWK tracks
this call and informs EAGLE to finish observation. This is neces-
sary to determine whether eventualities occurring logic formulae
hold.

During program execution the generated EAGLE state contains
information about the most recent event emitted which is also de-
clared in the specification. We create ASPECTJ aspects [13] to track
events that occur in the formulae and update this state.

Methods declared in the state check if an event has occurred.
These methods are called from the observer to decide if the state
satisfies the (event) guard of an event expression. In practice, when-
ever a program point of interest is hit, the EAGLE state gets updated
and the formulae are checked by the observer.

5. Conclusion

We described a logic and tool, HAWK, that generates observers to
monitor temporal properties of JAVA programs. The tool translates
HAWK specifications into EAGLE. The contribution of this work
is twofold. It integrates a very powerful temporal logic with auto-
mated aspect oriented program instrumentation. Second, the logic
HAWK allows to state properties about Java objects. Further work
includes enhancing the tool to support additional events, eventually
all events supported by ASPECTJ.

In the current implementation ASPECTJ is hidden under the sur-
face to support the connection to Java. One can, however, consider
an even tighter integration of a system like Eagle with an AOP sys-
tem like AspectJ by supporting temporal cutpoints: temporal EA-
GLE formulae now become part of the ASPECTJ cutpoint language,
and can function as triggers for actions to be executed. This can be
used for developing fault tolerant programs that can change behav-
ior when temporal properties are violated.

6. References

[1] 1st, 2nd, 3rd, and 4th CAV Workshops on Runtime
Verification (RV’01 - RV’04), volume 55(2), 70(4), 89(2) ,
113 of ENTCS. Elsevier Science: 2001, 2002, 2003, 2004.

[2] Eiffel language, 2005. http://www.eiffel.com/.
[3] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund,

M. Lowry, C. Pasareanu, G. Roşu, and W. Visser.
Experiments with Test Case Generation and Runtime
Analysis. In E. Börger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines (ASM’03), volume 2589 of
LNCS, pages 87–107. Springer, March 2003.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-Based Runtime Verification. In Proceedings of the 5th
International Conference on Verification, Model Chacking,
and Abstract Interpretation (VMCAI’04), volume 55(2),
70(4), 89(2) of LNCS, Venice, Italy, Jan 2004. Springer.

[5] D. Bartetzko, C. Fisher, M. Moller, and H. Wehrheim. Jass -
Java with Assertions. In K. Havelund and G. Roşu, editors,
Proceedings of the First Workshop on Runtime Verification
(RV’01), volume 55 of ENTCS, Paris, France, 2001. Elsevier
Science.

[6] F. Chen, M. d’Amorim, and G. Roşu. A Formal
Monitoring-Based Framework for Software Development
and Analysis. In Proceedings of ICFEM’04, volume 3308 of
LNCS, pages 357–372, 2004.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[8] M. d’Amorim and G. Roşu. Efficient Monitoring of
ω-languages. to appear in Computer Aided Verification
(CAV’05).

[9] D. Drusinsky. The Temporal Rover and the ATG Rover. In
K. Havelund, J. Penix, and W. Visser, editors, SPIN Model
Checking and Software Verification, volume 1885 of LNCS,
pages 323–330. Springer, 2000.

[10] D. Gabbay. The Declarative Past and Imperative Future:
Executable Temporal Logic for Interactive Systems. In
Proceedings of the 1st Conference on Temporal Logic in
Specification, Altrincham, April 1987, volume 398 of LNCS,
pages 409–448, 1989.

[11] K. Havelund and G. Roşu. Monitoring Java Programs with
Java PathExplorer. In Proceedings of the 1st International
Workshop on Runtime Verification (RV’01) [1], pages

97–114. Extended version to appear in the journal: Formal
Methods in System Design, Kluwer, 2004.

[12] G. Kiczales and et al. Aspect-Oriented Programming. In
ECOOP, volume 1241. Springer-Verlag, 1997.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In
Proceedings of the 15th ECOOP, Lecture Notes in Computer
Science, pages 327–353. Springer-Verlag, 2001.

[14] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a
Run-time Assurance Tool for Java. In Proceedings of
Runtime Verification (RV’01), volume 55 of ENTCS. Elsevier
Science, 2001.

[15] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems. Springer, New York, 1992.

[16] Z. Manna and A. Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer, New York, 1995.

[17] R. Milner. Communicating and Mobile Systems: The
π-Calculus. Cambridge University Press, New York, 1992.

[18] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

Appendix A: Generated Files

We show the complete output produced from an input specification
for the Buffer example shown in Figure 2.

Source HAWK specification

max Always(Term t) = t /\ @ Always(t) .
min Eventually(Term t) = t \/ @ Eventually(t) .

observer BufferObserver {
classPath = C:/tests/eaglepp
targetPath = C:/tests/eaglepp
terminationMethod = bufferexample.Barrier.end()
var bufferexample.Buffer b ;
var Object o ;
var Object k ;
mon B = Always([b?.put(o?)]

Eventually (
<b.get() returns k?> (o == k))) .

}

Generated EAGLE Specification

max Always(Term t) = t /\ @ Always(t) .
min Eventually(Term t) = t \/ @ Eventually(t) .
max r 5(Object o, Object k) = m 7(htable, o, k) .
max r 1(Object o, Object b) =

Eventually(m 4(htable, b) /\
r 5(o, getValue(htable,c6))) .

mon B = Always(m 0(htable) ->
r 1(getValue(htable,c2) ,

getValue(htable,c3))) .

Generated Instrumentation Aspects
package monitors; import ...

public aspect BufferObserverAspect {

BufferObserverState state = new BufferObserverState();
Observer observer =
new Observer(RuleBase.parse(
"C:/tests/eaglepp/bufferexample/buffer compiled.spec"));

Object lock = new Object();

pointcut put (bufferexample.Buffer caller , Object arg0) :
target(caller) && args(arg0) &&
execution(* bufferexample.Buffer.put(Object));

before (bufferexample.Buffer caller , Object arg0) returning :
put (caller , arg0){
synchronized (lock) {
MethodCall mcall = new MethodCall("caller", caller,
new EagleMethod(
"bufferexample.Buffer","put", new String[]{"Object"}));

mcall.addActualParameter("arg0",arg0);
state.setCurrentEvent(mcall);
state.eventMessage();
observer.handle(state);

}
}

pointcut get (bufferexample.Buffer caller) :
target(caller) && execution(* bufferexample.Buffer.get());

before (bufferexample.Buffer caller) returning (Object result) :
get (caller){
synchronized(lock) {
MethodReturn mret = new MethodReturn(caller, new

EagleMethod(
"bufferexample.Buffer","get", new String[]{}) , result);
state.setCurrentEvent(mret);
state.eventMessage();
observer.handle(state);

}
}

pointcut end () : call(* bufferexample.Barrier.end(..));

before() : end (){
state.terminate();
observer.end();

}

}

Generated EAGLE State
package monitors;

import eaglepp.*; import java.util.*; import java.io.*;

public class BufferObserverState extends EaglePPState {

public static boolean m 0(Hashtable htable) {
return (((String)getValue(htable,"methodName"))!=null &&
((String)getValue(htable,"methodName")).equals("put")) &&
(((String)getValue(htable,"targetType"))!=null &&
((String)getValue(htable,"targetType")).equals(

"bufferexample.Buffer"));}

public static boolean m 4(Hashtable htable, bufferexample.Buffer b) {
return (((String)getValue(htable,"methodName"))!=null &&
((String)getValue(htable,"methodName")).equals("get")) &&
(((String)getValue(htable,"targetType"))!=null &&
((String)getValue(htable,"targetType")).equals(

"bufferexample.Buffer")) &&
(getValue(htable,"caller") == b);}

public static boolean m 7(Hashtable htable, Object o, Object k) {
return (o == k) ; }

public static final String c2 = "arg0";
public static final String c3 = "caller";
public static final String c6 = "retObject";
private static File logFile =

new File("bufferexample/errors.BufferObserverState");
private static StringBuffer errorMessages = new StringBuffer();
private static StringBuffer errorWarningMonitors = new StringBuffer();
private static StringBuffer warningMessages = new StringBuffer();

public void eventMessage() {
errorWarningMonitors.append(printEventAsString()+"\n");

}

public void error(String args) {
errorWarningMonitors.append("error: " + args + " was violated\n");
errorMessages.append("error: " + args + " was violated\n");

}

public void warning(String args) {
errorWarningMonitors.append("warning : monitor " + args +
" was not validated.\n");

warningMessages.append("warning : monitor " + args +
" was not validated.\n");

}

public static void terminate() {
System.out.println("--");
System.out.println("SUMMARY FOR MONITORS");
if (errorMessages.length()>0) {
System.out.println(errorMessages.toString());

} else {
System.out.println(" no violation");

}
if (warningMessages.length()>0) {
System.out.println(warningMessages.toString());

} else {
System.out.println(" eventualities validated");

}
System.out.println("--");
try {
PrintWriter pwriter = new PrintWriter(new FileWriter(logFile));
pwriter.print(errorWarningMonitors.toString());
pwriter.flush();
pwriter.close();

} catch (IOException ioException) {
System.err.println("Could not write to the file."); } } }

