
Demystifying the Challenges of Formally
Specifying API Properties for Runtime Verification

Leopoldo Teixeira, Breno Miranda, Henrique Rebêlo, Marcelo d’Amorim
Federal University of Pernambuco

Recife, PE, Brazil
{lmt,bafm,hemr,damorim}@cin.ufpe.br

Abstract—Runtime Verification (RV) is a technique to monitor
formally-specified properties of the software during its execution.
RV has shown to be very effective for bug finding. Unfortunately,
RV typically relies on formal specification languages and learning
those languages be costly for developers. This paper reports on
a study to assess the challenges to specify API properties for the
purpose of RV. To that end, we wrote SIESTA, a minimalist
specification language, extending Java with two features (the
ability to catch calls to specified methods and the ability to access
the event history of a given object), and asked inexperienced
developers (students) to write specifications in that language for
certain parts of the Java API. Among our findings, we observed
that 40% of the specifications written by the students matched
the ground truth perfectly. The main messages of this work are
that 1) it is feasible to use a simple imperative language for
specifying properties without significant loss of generality; and
that 2) developers are capable of writing specifications in the
(programming) language they feel comfortable.

Index Terms—runtime verification, specification languages,
user studies

I. INTRODUCTION

Runtime Verification (RV) [38] is a technique to monitor
software properties during execution. In RV, properties are
instrumented into the code and monitored during program
execution. If an execution does not satisfy a given property, a
property violation is reported to developers. RV helps to find
bugs that occur when behavioral properties are violated. We
use the definition of behavioral property coined by Robillard et
al. [56] —“a way to use an API as asserted by the developer
or analyst, and which encodes information about the behavior
of a program when an API is used”. Legunsen et al. [33], [35],
[36] recently showed that performing RV during test execution
detected hundreds of bugs—violations of properties of the Java
API—that existing tests written by developers missed.

One important hurdle to the adoption of RV is the availabil-
ity of specifications to check against at runtime. To write spec-
ifications, developers need to be familiar with a specification
language, typically a formal language. However, the cognitive
effort that developers need to put to learn those languages
can be too high and justify the poor adoption of RV in
Software Engineering practice. Designers of specification lan-
guages often assume these languages should be programming-
language agnostic and support a variety of formalisms to
specify properties. Practitioners, on their turn, often assume
that good background in logic and deep understanding of the
application domain are critical to specify properties.

Let us consider the case of JavaMOP [20] to illustrate
the complexity of a specification language. Figure 1a shows
the specification of an API property written in the JavaMOP
syntax [21]. The property states that any access to an element
of a synchronized collection must be protected by the monitor
associated with that collection [2]. Although the property is
conceptually simple to understand for a programmer who
is familiar with Java concurrency, the example shows that
learning a rich specification language can be daunting to devel-
opers. They need to understand the constructs of the language
(e.g., declaration of events) and the formalisms supported
by the language (e.g., Extended Regular Expressions, Finite
State Machines, Linear Temporal Logics, etc.). It is worth
noting that the study conducted by Legunsen et al. [35], [36],
mentioned above, used JavaMOP specifications, which were
written by the JavaMOP team as part of a separate study [49].

JavaMOP is an example of a declarative specification lan-
guage. Imperative specification languages, in contrast, build on
a given target language to circumvent some of the aforemen-
tioned problems. JML [30], for instance, enables a developer
to annotate Java code with pre- and post-conditions and class
invariants written in a Java-like language. Unfortunately, JML
does not offer support for developers to write protocol proper-
ties, i.e., properties that impose restrictions on the ordering of
events associated with an API. These properties are common,
considering the set of Java API properties that we analyzed
from the propertyDB dataset [49]. To specify such properties,
a developer would need to use a JML extension, such as
Typestate JML [28], to precisely describe the usage protocols
of Java classes and interfaces in terms of explicit states and
transitions (e.g., particular method call sequences). Unfortu-
nately, the more features one adds to a language, the more
effort is needed from practitioners to learn, to practice, and
to use those features. To sum up, rich specification languages
impose an important burden on developers and is certainly one
factor to justify the poor practical adoption of techniques that
rely on them [15], [40].

Study Questions. This paper reports on a study to assess the
challenges of formally specifying API properties for RV. The
study aims to answer three questions:
RQ1. Are rich specification languages necessary for RV?
RQ2. Can developers with no training in logic express prop-
erties about an API by reading its documentation?

1



1 Collections_SynchronizedCollection(Collection c, Iterator i) {
2 Collection c;
3 creation event sync after() returning(Collection c):
4 call(* Collections.synchronizedCollection(Collection)){ this.c = c;}
5 event syncMk after(Collection c) returning(Iterator i) :
6 call(* Collection+.iterator()) && target(c) && Thread.holdsLock(c){}
7 event asyncMk after(Collection c) returning(Iterator i):
8 call(* Collection+.iterator())&& target(c)&& !Thread.holdsLock(c){}
9 event access before(Iterator i) :

10 call(* Iterator.*(..)) && target(i) && !Thread.holdsLock(this.c){}
11 ere: (sync asyncMk) | (sync syncMk access)
12 @match{ RVMLogging.out.println(/*violation message*/); }}

(a) Collections_SynchronizedCollection (CSC) property

1 public class CharSet ... {
2 ...
3 set = Collections.synchronizedSet(...);
4 public boolean contains(final char ch) {
5 + synchronized(set) {
6 for (final CharRange range : set) {
7 if (range.contains(ch)) {
8 return true;
9 }
10 }
11 + }
12 return false; }}

(b) Commons Lang Bug found from CSC violation

Fig. 1: The CSC JavaMOP property and a related bug in Apache project. (Example from [44].)

RQ3. What are the perceptions of developers about the prac-
tice of writing specs?

The goal of the first question is to assess the necessity
of rich specification languages to describe properties for RV
checking. Instead of answering this question directly, which is
challenging, we evaluated whether SIESTA, a minimalist spec-
ification language we proposed, was sufficient to describe most
behavioral properties from an existing set of properties [36].
The goal of the second question is to evaluate the ability of
developers with no training in logic and short training (≈1h)
in our specification language to write properties. Finally, the
goal of the third question is to understand the perceptions of
developers about writing specs in general, about using a rich
spec languages, like JavaMOP, and about writing specs in the
minimalist spec language we proposed.

Summary of Method. To run our experiment, we selected
API properties from three popular Java packages—java.io,
java.lang, and java.util. We used properties from the Prop-
ertyDB [49] dataset as ground truth. PropertyDB is a dataset
of JavaMOP specs that includes specs for various parts of
the Java API. We restricted our selection to properties listed
as “error” and “warning” since those properties are more
likely to be associated with real problems [36]. A total of
99 properties satisfied this criterion. Considering RQ1, we
selected a sample of those properties and evaluated if they
could be specified in our proposed spec language. If not, we
revised the language and repeated the process with another
sample of 99 properties until exhausting the set of properties.
Considering RQ2 and RQ3, the paper reports on an experiment
where undergraduate CS students were asked to write specs in
the proposed language. We consider students a great fit for this
experiment as they are inexperienced. Intuitively, if students
do well on this task, more experienced developers are likely
to succeed. The students participated in a 1h training session
on the proposed specification language and then received
an assignment to specify 5 properties of the Java API. The
assignment needed to be turned in within a week. It is worth
noting that the students shared a spreadsheet with their answers
as to enable them to see each other’s specs and the example
specs provided by instructors.

Summary of Results. Regarding RQ1, we were able to
specify 92% of the 99 selected properties using SIESTA, our
minimalist spec language. Considering RQ2 and RQ3, the
students were able to successfully write specifications per-

fectly matching the ground truth (modulo variable renaming)
in 40% of the cases. If we also consider those that wrote
specifications that closely match the ground truth, this number
rises to 64%. Overall, students manifested satisfaction in
writing specifications and showed preference towards SIESTA.
These results show initial, yet strong, evidence that developers
could and should write specs. They could because our results
indicate that even inexperienced developers can do well and
they should because previous studies have shown that writing
specs can reveal lots of bugs.

Main Lessons Learned. The main lessons learned from this
study are as follows: ? The intrinsic complexity of writing
specs is overstated. ? Documentation is a great source of
information to write specifications (and it should be available
for APIs, at least). ? Leveraging the crowd is important for
learning specifications. ? Engagement of developers in writing
specs should be considered as an educational investment as
opposed to a deterrent of productivity. Section VI elaborates
on these lessons.

II. FINDING BUGS WITH RV

In this section, we discuss how to find bugs during testing
with RV by means of a running example. The RV tool receives
as inputs formally specified properties to check at runtime, a
program, and tests to exercise the program. It then instruments
the properties into the program, and, during program execu-
tion, it observes relevant events using monitors to check for
violations of properties. When a violation happens, the tool
informs the users that the corresponding property was not
satisfied. In what follows, we use JavaMOP, a tool that has
been used in RV research [19], [23], [41], [42], [50], [51], to
illustrate this process.

Figure 1a shows the JavaMOP specification [21] of the Coll
ections_SynchronizedCollection property (henceforth
called CSC). Properties have three parts: (1) event definitions,
which specify relevant events triggered during program execu-
tions; (2) a specification, which is a logical formula over the
events; and (3) a handler, which consists of code that executes
if events violate the specification.
CSC defines four events (lines 3–10). The sync event

(lines 3–4) is triggered after calling Collections.synch

ronizedCollection to create a synchronized Collection

c. The syncMk event (lines 5–6) is triggered after obtaining an
iterator i of c in a thread that locks c. In contrast, asyncMk

2



(lines 7–8) is triggered after getting i from c in a thread
that does not lock c. Lastly, access (lines 9–10) is triggered
before accessing i in a thread that does not lock c.

Line 11 specifies the property using an Extended Regular
Expression (ERE), which matches if either (1) i is created
from c without locking c, or (2) i is created from c after
locking c but i is subsequently accessed in a thread that does
not lock c. JavaMOP supports additional logical formalisms
for expressing property specifications, e.g., FSM, CFG, LTL.

If the event sequence established by the specification is
matched during runtime, then the handler (line 12) is triggered.
Arbitrary code might be placed inside a handler. In this case,
the handler prints a violation warning users that the CSC

property was violated and the program may have a bug.
Prior work [32], [39] used JavaMOP to specify properties of

Java API packages (e.g., java.lang, java.io, java.util,
and java.net) by reading through their documentation. They
classified each property into one of three severity levels. In
this work, we focus on two levels, namely error, which are
violations that likely indicate bugs, and warnings, which are
violations that might reveal bugs in some cases. The third level
refers to violations that indicate bad coding practices.

Figure 1b illustrates how RV can be used to find a bug. The
code snippet shows a bug in the code of Apache Commons
Lang [3], a utilities library providing additional methods for
the core classes in the java.lang API. This bug was revealed
by JavaMOP with a violation of the CSC property. Lines of
code starting with “+” highlight the bug fix. If we ignore
such lines and consider only the buggy version, executing
line 3 creates the synchronized set Collection, which
triggers the sync event. Afterwards, an iterator is created
without locking set (line 6), triggering asyncMk. The CSC

specification establishes that this event sequence is a violation,
so JavaMOP reports it.

III. THE SPECIFICATION LANGUAGE

This section informally presents the syntax and semantics
of SIESTA (Simple ImperativE SpecificaTion lAnguage), the
specification language that we proposed and used in this work.

A. Rationale

This paper reports on a study about writing specifications.
We realized that developers would feel discouraged to partic-
ipate in the study had we expected them to have a good grasp
of logic (to formally describe properties) and a good grasp
of some technology to describe program events (e.g., join
points [27]). As such, we decided that a simple specification
language was critical to increase engagement of developers
in participating in the study. The central requirements we
established for SIESTA are:

1) It should be developed on top of Java, which is the
programming language whose API properties we wanted
to specify and the language that lots of developers are
familiar with [22], [61];

2) It should include the minimal number of features neces-
sary to express various kinds of properties. We do not
aim for generality (see Section III-E).

It is worth noting, as per requirement 1, that SIESTA
follows an imperative rather than declarative style [30], [43].
The key reason for that choice was to enable developers to
relate the semantics of the specification language with the
semantics of the programming language they already know.
The methodology we used to design the specification language
was driven by examples. The authors partitioned a set of
properties and independently wrote specs for the properties
on each partition. As needed, they revised the language to
cover different cases.

B. Syntax

A monitor in SIESTA is 1) a non-empty sequence of field
declarations, with optional initialization code, and 2) a list
of handlers. The field declarations part enables a monitor
to store state. Unlike JavaMOP, a SIESTA monitor does not
support parameterization [23]–[25], [41], [42], which could be
useful to avoid redundancy across monitors. The handlers part
enables a monitor to capture program events. Figure 2 shows
the structure of a monitor in our language. Figure 3 shows a
concrete example of a monitor.

1 (<@Before|@After>(<MethodSelector>))+
2 void <PropertyName>(<ListOfArguments>) { <Body> }

Fig. 2: Syntax of a monitor (method calls only).

The <@Before|@After> annotations indicate when an
event handler will be triggered during program execution:
at the entry of a method call (@Before) or at the exit
of a method call (@After). <MethodSelector> is a “.”-
separated sequence of strings. Most often this string will be
a fully-qualified name of a method, as the examples from
Figure 3 illustrate. Alternatively, one can use the name of
the class to denote a constructor or an “*” after a fully-
qualified class name to denote all methods of a given class.
For simplicity, we chose not to support arbitrary regexes to
express event patterns, but we do allow multiple annotations
for the same handler function, as indicated by the + symbol,
as long as @Before and @After annotations are not mixed.
<PropertyName> is the name of the function which contains
the property to be monitored. <ListOfArguments> is a
comma-separated list of arguments. If <MethodSelector>

denotes a selector of an instance method or class con-
structor, then it should include the target object and then
the list of parameters. Figure 3 shows an example of a
monitor that uses this pattern. If <MethodSelector> de-
notes a selector of a class method then it should include
the list of parameters of the corresponding class. Finally,
if <MethodSelector> denotes a list of methods–specified
with a string of the form “<class-selector>.*”–then the list
of arguments should be “String methodName, boolean

isStatic, Object[] args” (parameter names are not en-
forced, similar convention is used in the Java Reflection

3



API). For @After handlers, the list of arguments should be
prepended with the two additional arguments “Object res,

Throwable t”, indicating the values returned on normal and
exceptional exits. Note that all of these rules can be statically
checked in a precise and efficient way. Figure 4 shows an
example of this case. <Body> is a list of Java statements,
which are responsible for checking and reporting whether a
violation occurred or not.

C. Semantics

SIESTA extends Java with two features: (1) the @Before

and @After annotations, used in the definition of handler
functions and (2) a special method, Object.history(), that
enables the monitor to access the history of events on any
given object. A handler with the annotation @Before(fn) is
always called at the entry of the functions denoted by fn .
Likewise, a handler with the @After annotation is always
executed at the exit of the referred functions. We made the
conscious decision to not track field accesses as our dataset
had no property that required that feature. The method call
o.history() yields a list of strings corresponding to the
names of methods called on o since its creation. The order of
the list represents the order in which the methods are called
on the respective object. A monitor reports property violations
during execution with the call to the Log.violation()

method, which outputs a string on the standard output.

D. Examples

This section illustrates examples of specs for properties of
the Java API.

1) Flush Before Retrieve: Consider the following prop-
erty about java.io.OutputStream objects: “When an
OutputStream instance is built on top of an underlying
ByteArrayOutputStream instance, it should be flushed
or closed before the underlying instance’s toByteArray()

is invoked. Failing to fulfill this requirement may cause
toByteArray() to return incomplete contents.”.1 Figure 3
shows the corresponding specification for this property.

1 Set<ByteArrayOutputStream> set = ...
2

3 @Before("java.io.FilterOutputStream")
4 void onCreate(FilterOutputStream fos,

↪→ ByteArrayOutputStream bos){
5 set.add(bos); /* track bos */ }
6

7 @Before("java.io.ByteArrayOutputStream.toByteArray")
8 void vioFlushBeforeRetrieve(ByteArrayOutputStream os){
9 if (set.contains(os)) {

10 List<String> history = os.history();
11 String[] interesting = new String[]{"flush", "close"};
12 if (filter(history, interesting).size() == 0)
13 Log.violation("Vio: Flush before retrieve");
14 }}

Fig. 3: Flush Before Retrieve.

The onCreate handler is triggered on the OutputStream

constructor that takes a ByteArrayOutputStream ob-
ject as argument. It records that argument in a set. The

1https://bit.ly/3dqUH86

vioFlushBeforeRetrieve handler monitors invocations to
the method toByteArray on ByteArrayOutputStream ob-
jects (os). The monitor raises a violation if it can’t find flush

or close in the event history of the object os. The filter

method is syntactic sugar for the usual filter operation on lists.
2) Pass Empty Map & No Direct Access: Figure 4 shows

the specification of a property about java.util.Map ob-
jects.2 The property states that the map object passed as argu-
ment to the static method Collections.newSetFromMap()

should be empty when the call is made. In addition, that object
should not be directly accessed after returning from the call to
newSetFromMap. The first handler checks if the Map object
passed as argument to newSetFromMap() is empty. It reports
a violation if the collection is non-empty. Otherwise, it records
that object in the set marks. The second handler checks—at a
different point in time—if a message is eventually sent directly
to the marked collection. A violation is reported in that case.

1 Set<Map> marks = new HashSet<Map>();
2

3 @Before("java.util.Collections.newSetFromMap")
4 void vioCollections_SynchronizedCollection_1(Map map) {
5 if (map.isEmpty()) marks.put(map);
6 else Log.violation("Vio: Pass Empty Map."); }
7

8 @Before("java.util.Map.*")
9 void vioCollections_NewSetFromMap_2(String name, boolean

↪→ isStatic, Object[] args) {
10 if (!isStatic && marks.contains(args[0]))
11 Log.violation("Vio: Direct Access Forbidden."); }

Fig. 4: Pass Empty Map & No Direct Access.

3) StringBuilder Single Thread: Figure 5 shows the spec-
ification of a property stating that StringBuilder objects
should only be accessed by one thread as they are not protected
by any lock.3 The first access to a given StringBuider object
records, in the field map, the Thread object that accessed the
StringBuider object, i.e., the “owner” of the object. The
spec omits this parts for space. A violation report is produced
if subsequent accesses occur through a different thread.

1 Map<StringBuilder,Thread> map = ...
2

3 @Before("java.util.StringBuilder.*")
4 void vioCollections_NewSetFromMap_2(String name, boolean

↪→ isStatic, Object[] args) {
5 if (isStatic) return false;
6 Object sb = args[0];
7 Thread own = map.get(sb);
8 Thread cur = Thread.currentThread();
9 if (own == null) map.put(sb, cur); // first access
10 else if (cur != own)
11 Log.violation("Vio: StringBuilder Single Thread.");
12 }

Fig. 5: StringBuilder Single Thread.

E. Limitations

The proposed language sacrifices generality in favor of
simplicity. The language does have limitations. For example,
the language does not allow definition of parametric monitors,

2https://bitly.com/31jsAD2
3https://bit.ly/3lWjsMn

4

https://bit.ly/3dqUH86
https://bitly.com/31jsAD2
https://bit.ly/3lWjsMn


which could be used to avoid redundancy and to optimize
efficiency of property checking. Also, the language for defin-
ing join points is limited. In particular, it does not enable a
developer to capture read or write field accesses, which could
be useful for checking data races, for instance. It is worth
noting, however, that we could not find any property in our
sample where that feature would be useful.

IV. STUDY SETTINGS

The focus of the study is to assess the challenges of formally
specifying API properties for RV. The initial part of the
study (RQ1) consisted of building the SIESTA language, as
described in Section III, capable of expressing most of the
properties from our dataset, a fragment of the PropertyDB
dataset [49]. Using the specs in the PropertyDB dataset as
ground truth, we assessed the completeness of our proposed
language before its adoption in the second part of this study.
This activity produced two documents: (i) a language speci-
fication document and (ii) a spreadsheet containing example
properties specified in SIESTA. The remainder of this section
describes the settings of the study related to RQ2 and RQ3.

A. Subjects

We conducted an experiment with 14 CS students taking
a course on Software Testing and Debugging. The students
received no specific training in logic for this task and, to the
best of our knowledge, had no prior experience on it beyond
propositional logic and first-order logic, which are superficially
covered in a Discrete Math course taken in their junior year.

B. Tasks and Procedures

The study with students was conducted in two stages. In the
first stage, the students attended a 1h online training session
where the course instructor explained the goal of RV, the
syntax and semantics of SIESTA, and the individual task they
needed to complete. The task assigned to students consisted
of (1) selecting five properties listed in a shared spreadsheet,
(2) specifying them using SIESTA, and (3) responding to a
questionnaire about the task. We used a spreadsheet to enable
students to choose disjoint sets of properties to specify and
to enable them to share answers and discuss. In the second
stage of our study, the students attended another 1h online
training session where the instructor first explained JavaMOP’s
syntax and semantics through examples and then explained the
task they needed to complete. The session was recorded for
offline view. The task assigned to students consisted of (1)
comparing the specification written in the first stage with the
JavaMOP specification; (2) updating the written specification,
if necessary; and (3) answering a questionnaire about their
findings. In each of the two tasks, the students had one week
to turn in their answers.

C. Materials

Considering the first stage of the study, we made available
to the students a spreadsheet, containing all properties from the
PropertyDB [49] dataset associated with the packages java.io,

java.lang, and java.util. We discarded properties labeled as
“suggestions”, which are less likely to indicate a problem;
only properties with the “error” and “warning” labels were
considered. We also released to the students a short language
specification document to describe the syntax and semantics
of SIESTA through examples (see Section III-B).

Considering the second stage of the study, we released to
the students the specifications of the properties they specified
in the first part of the study in JavaMOP. Those specs are
part of the PropertyDB [49] dataset and were prepared as part
of prior work [32]. We also made available the video of the
training session explaining JavaMOP itself.

D. Metrics

RQ2 is quantitatively evaluated by adopting the distribution
of students’ grades as a proxy of their ability to effectively
write specs. We measure the discrepancy between the answers
provided by students and the specifications the instructors
wrote to each property, which were used as ground truth. For
the qualitative part of the study (RQ3), we used two question-
naires with Likert scale questions to collect students’ opinions
towards various aspects of the practice of writing specs. The
first questionnaire was applied after the students concluded the
task of writing specifications adopting our proposed language
(first stage of our study); the second questionnaire was applied
after the students were introduced to the formal specifications
in JavaMOP (second stage of our study).

E. Replication Package

The replication package—including the dataset of properties
from PropertyDB, the language specification document, the
applied questionnaires (with students’ responses), and the tool
prototype—is publicly available at the following link: https:
//github.com/STAR-RG/SIESTA.

V. RESULTS AND DISCUSSION

This section reports on the results of our study.

A. Answering RQ1: Are rich specification languages neces-
sary for RV?

We were able to specify 92 out of the 99 properties from
our dataset using SIESTA. Table I shows a breakdown of
the number of properties we analysed by category. We found
that for six of the cases it is not necessary to specify these
properties as associated library code already does. We also
found that a total of seven properties could not be specified
with the language, but we considered them irrelevant to RV.
In what follows, we discuss the rationale for these categories
by presenting examples.

TABLE I: Breakdown of number of properties per category.

Category Total

Supported and relevant 86
Supported, but irrelevant 6

Unsupported, but irrelevant 7

Σ 99

5

https://github.com/STAR-RG/SIESTA
https://github.com/STAR-RG/SIESTA


Supported and relevant properties. We were able to specify
the majority of the properties using the language presented in
Section III. The examples from Section III-D are representative
of the properties that SIESTA can specify. Overall, we found
that SIESTA can specify a large number of properties with
different characteristics.
Supported, but irrelevant properties. A number of properties
can also be specified with our language, but they do not
contribute to RV as the Java API includes checks for these
cases. Figure 6 shows a code snippet to illustrate this scenario.

1 import java.io.*;
2 public class Sample {
3 public static void main(String[] args) throws Exception {
4 InputStream is = new FileInputStream("helloworld.txt");
5 InputStreamReader isr = new InputStreamReader(is);
6 isr.mark(0); // <-- throws exception; mark not supported
7 }}

Fig. 6: Example of Supported, but irrelevant property.

The corresponding property in PropertyDB for this case is
called Reader_MarkReset [52]. It states that the mark and
reset methods cannot be called on certain subtypes of the
InputStream class. The API implementation already checks
(defensively) for the property violation and RV is unable to
detect the issue earlier. Compiling this code with the Java
compiler—without any additional instrumentation for RV—
and running it raises an exception. Compiling the JavaMOP
spec would result in a duplicate (unecessary) check. Note that
this is a limitation of the dataset as opposed to a limitation
of this experiment. The dataset we used does not distinguish
between the parts of the documentation that can benefit from
specification and the parts that cannot (as this one). However,
this is irrelevant to the central goal of our study, which
is evaluating the ability of developers to specify properties
regardless of their usefulness.
Unsupported, but irrelevant properties. We found that some
properties in the dataset refer to a “program termination”
event, which SIESTA does not support, as we found no
practical use for it. For instance, consider the property
Console_FillZeroPassword from PropertyDB [9]. This
property states that after calling the readPassword() method
on a java.io.Console object (to read a password as an
array of bytes), the application should manually clean the
store of the password after processing it. The rationale of
this property is to minimize the lifetime of security-sensitive
data in memory. As one can expect, there is no way to
enforce the number of operations allowed between the call
to readPassword and the recommended cleaning operation.
Therefore, in principle, the clean check could be done as
the last event emitted by a running program, which is what
JavaMOP does. Our interpretation is that checking the prop-
erty at that point is meaningless. Similar cases as the one
above occur on objects that implement the ObjectInput

and ObjectOutput interfaces. The documentation shows that
instances of these types must be closed if opened, to release
any resources associated with the stream. Finally, four other
properties are associated with subtypes of non-serializable

classes that want to allow serialization, as well as Collection
and Map implementations. Such properties require the presence
of one (or more) constructors following certain rules. There
is no support for checking that using SIESTA, but these
properties could be statically checked.

Summary: Considering the 99 properties from Proper-
tyDB [49] that we selected, we manually-specified and cross-
checked 92% of them using our minimalist spec language.

B. Answering RQ2: Can developers with no training in logic
express properties about an API by reading its documentation?

To address this question, we measured the discrepancy
between the specs written by the students and the ground-truth,
i.e., specs written by the instructors. The specs of students and
instructors matched perfectly (modulo variable renaming) in
40% of the cases. Figure 7 shows the distribution of grades (0-
10 scale), which we used as proxy of the ability of students to
effectively write specs. In the histogram to the left, the x-axis
displays the grades for each spec, whereas the y-axis reports
the frequency that a given grade was given by the instructors.

0
10

20
30

40
0

10
20

30
40

0 2 4 6 8 10

0
2

4
6

8
10

Fig. 7: Distribution of grades of students for the task of writing specs.
The left plot shows a histogram of the scores associated with each
task whereas the right plot shows a box plot aggregating results.

The average grade attributed to each task was 8.7 with a
median of 9.7 (represented by the notch in the box plot).
A total of 64% of the specifications written by the students
(45 out of 70) received a grade ≥ 9. A grade of 9 or
more was awarded for the cases where (i) the property was
correctly specified but contained small syntactic mistakes; or
(ii) the property was over-specified, i.e., the specification was
more restrictive than necessary. A grade of 10 was awarded
only in the cases where the specification written by the
students matched precisely the one written by the instructors
(modulo variable renaming). There was one grade zero given
to a student who classified the property as Unsupported, but
irrelevant and did not write any specification but, in reality,
the property is Supported and relevant.

A total of 24% of the specifications written by the students
(17 out of 70) received a grade within the range [7, 9[. Grades
within such range were assigned for the cases where (i)
the property was only partially, but correctly specified (i.e.,
it missed at least one step to be able to fully enforce the
property); or (ii) the specification, although correct, covers
only one of the many methods impacted by the property.

6



Figure 8 shows one example where the developer made only
one small mistake and was penalized with 2/100 points for his
mistake. A violation should be signaled if one or more calls
to close is found in the history of messages to the object
is at the point of a call to any methods in the @Before list.
Instead of this, the student conditioned the violation to exactly
one call (line 9 uses ==1 instead of >1), i.e., multiple calls to
close would not result in a violation.

1 @Before("java.io.BufferedInputStream.read")
2 @Before("java.io.BufferedInputStream.available")
3 @Before("java.io.BufferedInputStream.reset")
4 @Before("java.io.BufferedInputStream.skip")
5 void vioManipulateAfterClose(BufferedInputStream is) {
6 List<String> history = is.history();
7 String[] interesting = new String[]{"close"};
8 // should be >1 instead of ==1
9 if (filter(history, interesting).size()==1)

10 Log.violation("Manipulate after close");
11 }

Fig. 8: Student specification of BufferedInputStream Manip-
ulateAfterClose property [1].

Summary: Students were successful in this task. Out of the
70 specs they answered, 64% received a grade equal or above
9. The specifications written by students matched the ground
truth perfectly (modulo renaming) in 40% of the cases.

C. Answering RQ3: What are the perceptions of developers
about the practice of writing specs?

We answer this research question by interpreting the an-
swers we obtained to the two questionnaires that the students
answered during the course of our experiment (see Section IV).
Each of the following sections focuses on the discussion of one
of those questionnaires.

1) Questionnaire about writing specs in SIESTA: Recall
that during the first stage of our study, the students had
to specify five properties of the Java API. For that part,
the questionnaire focused on capturing students’ perceptions
about writing specs. Students had no prior experience in other
specification languages.

Figure 9 displays a diverging stacked bar graph for each
question answered by the students. The y-axis of the plot
shows the questions made to students whereas the x-axis shows
the percentage of responses, to a given question, that fall in
a given category (e.g., “strongly disagree”, “neutral”, etc.).
More precisely, the length of a bar shows the percentage of
answers in a given category. Neutral responses are centered
around the zero vertical line. Positive responses appear on the
right side of the zero line and all negative responses appear on
the left side. This representation helps us visualize the amount
of positive and negative responses.

Q1.1 is a sanity-check to evaluate that the students under-
stood the task correctly. All students answered this question
either in a neutral or in a positive way, meaning that the
requested activity was clear to them. Q1.2 asked how confident
the students were about their answers, i.e., how confident they
were that their specifications were correct. For this question,
≈36% of the students were neutral whereas ≈64% were

confident about their specifications. Q1.3 asked the students if
the spreadsheet with examples, shared as supporting material,
was useful for preparing their answers. We found that ≈79%
of the students answered this question positively. This was
the question that received the highest number (7) of “strongly
agree” answers. This result confirmed our expectation that
students can learn a great deal from examples of similar
properties, and even from unrelated examples, as reported
by the students. Q1.4 relates to students’ satisfaction while
conducting the requested task. While the vast majority of the
answers lies on the neutral and positive side of the plot, one
student answered this question with “disagree”. We found
the answers to this question could be rather irrational and
preferred not asking the reasons for dissatisfaction. Q1.5
collected the students’ perception on the quality of the text
describing the property. Opinions diverged for this question:
half of the students stated that the description was enough to
write the specification whereas the other half considered the
documentation insufficient. We realized that this part of the
experiment could have been improved. We did find some prop-
erties that could benefit from context or even code examples to
elucidate intent. This also highlights the importance of good
API documentation and methods to identify and aggregate
parts of the documentation relevant to specify properties.

2) Questionnaire about the comparison between reading
JavaMOP vs. SIESTA specs: In the second stage of our study,
the students were introduced to JavaMOP and were asked
to compare the specifications written by themselves against
the corresponding JavaMOP specification. The students were
also given the opportunity to update their specifications, if
necessary. The answers collected with the questionnaire are
displayed in the diverging stacked bar graph on Figure 10. We
also included an open-ended final question asking the students
whether they missed important features in the minimalist
language after being introduced to JavaMOP. We elaborate on
each question in the following.

Q2.1 asked the students if the effort required to understand a
JavaMOP specification and a specification written in SIESTA
were similar. We found that the majority of the students
disagreed or strongly disagreed (≈71%) with the statement.
While Q2.1 tells us that the students do not consider the
two specifications (formal and minimalist) to be equivalent
in terms of effort, it does not indicate preference. This is
addressed in questions Q2.2 and Q2.3. Notice that these
questions are similar. We intentionally replaced the subjects
in the sentences to check if the answers provided by the
participants were consistent. We confirmed consistency of
the answers. Overall, ≈29% of the students were neutral
while ≈50% agreed or strongly agreed that the minimalist
specification was easier to read/understand when compared
with the JavaMOP specifications. It is also worth noting that
≈21% considered JavaMOP easier to read/understand. This is
endorsed by the following comments from the students: “In
my opinion, once you learn how the JavaMOP specification
works, it is easier to read/understand (the spec) because of
the feature to name the checks which helps the programmer to

7



Percent

The text describing the property
was sufficient for writing the specification (Q1.5)

The exercise was satisfying (Q1.4)

The shared spreadsheet was helpful
for preparing my answers (Q1.3)

I was confident about my answer (Q1.2)

The activity was clear to me (Q1.1)

50 0 50

strongly_disagree disagree neutral agree strongly_agree

Fig. 9: Developers’ perceptions while writing specifications using SIESTA

Percent

After reading the specifications in JavaMOP 
I consider that SIESTA requires the addition of new features (Q2.6)

After reading the formal specification in JavaMOP for the properties assigned to me
I noticed aspects that were not covered by my specification in SIESTA (Q2.5)

After reading the formal specification in JavaMOP for the properties assigned to me
I consider that my specification in SIESTA will be able to reveal 

the same warnings during Runtime Verification (Q2.4)

SIESTA is easier to read/understand
when compared with the specification in JavaMOP (Q2.3)

The specification in JavaMOP is easier to read/understand
when compared with SIESTA (Q2.2)

The cognitive effort required to understand 
the JavaMOP and SIESTA specifications is similar (Q2.1)

50 0 50

strongly_disagree disagree neutral agree strongly_agree

Fig. 10: Developers’ perceptions while comparing the specifications written by themselves against the formal specifications from JavaMOP.

have an idea about what the code does” from student #3; and
“JavaMOP is much more expressive and it enables the use
of CFG, LTL, ERE, etc, for matching some scenarios.” from
student #7. The answers to Q2.4 indicate that, after reading
the JavaMOP specifications, ≈57% of the students remained
confident that their specifications were as good as JavaMOP’s,
i.e., students believe that RV with either spec would reveal the
same set of violations. Note that questions Q2.4 and Q2.5 are
similar. Again, our intention with this redundancy was to check
consistency in the answers. Q2.5 asked whether the students
noticed behaviors that were not covered in their specifications
after reading the JavaMOP specifications. Given that most
students answered, in Q2.4, that their specs could capture the
behaviors specified in the JavaMOP specs, we expected that
only few students would answer positively to Q2.5. However,
we found that 71% of the students agreed or strongly agreed
that they found, after reading JavaMOP’s specs, that their
specifications missed some behavior.

To understand the extent of the modifications performed
by the students, we manually analyzed the new versions of

the 33 modified specs, which correspond to 47.1% of the
total specs. We classified modifications into three categories:
minor, moderate, and major changes. Changes were classified
as major either because the student had classified the property
as unsupported and then realized that it could be specified,
or because the student performed severe changes. Only five
modifications were classified as major. The majority of the
modifications (20) were minor. We classified changes as minor
if they consisted of variable renaming, small syntactic changes,
or if the specification was modified only for the purpose of
covering additional methods (e.g., the spec covered only the
add method, and now it also covers the addAll method). The
remaining eight cases were classified as moderate.

When we asked if SIESTA required the addition of new
features (Q2.6), the percentage of agree or strongly agree
was ≈43%. This might indicate that the students’ perception
of missing coverage is not associated with a lack of expres-
siveness of the proposed minimalist language, but rather with
other aspects (e.g., unclear/incomplete textual description of
the property to be specified).From the group of students who

8



answered that SIESTA required new features, the following
suggestions have been made: student #13 suggested “the
possibility of defining events and telling the order of those
events as an faulty scenario”, whereas student #7 stressed
that “the lightweight language does not support evaluation of
future events”. The majority of the students (≈57%) answered
this question in either a neutral way or considered that SIESTA
does not require the addition of new features: student #11
stated “no additions are required”; and student #8 commented
“I believe I was able to translate from JavaMOP to the
minimalist language without requiring additional features”.

Summary: Overall, the students expressed satisfaction in
writing specifications, even though the documentation is not
always precise enough for the task, and expressed preference
in using lightweight imperative specifications.

VI. LESSONS LEARNED

The main lessons we learned from this study are as follows:
? The intrinsic complexity of writing specs is largely over-

stated. No participant of the study reported that the activity
was time demanding. Consequently, engaging developers in
the task of creating specs is beneficial;

? API documentation is a great source of information to write
specifications. Despite the fact that Natural Language is
ambiguous, we found that carefully-written documentation,
when exists, was central to writing good specs, especially
when developers were not acquainted with the related code.
Note that documentation is essential to enable usage of APIs.

? Leveraging the crowd is important for learning specifica-
tions. We observed that (i) there are patterns in the API
properties and (ii) participants can leverage those patterns
to write specs. For example, a number of properties refer
to Iterator objects, that can be obtained from different
Collection implementations. Moreover, other properties
related to Collections deal with ordered data structures
that require their elements to implement the Comparable

interface. We also found property patterns in the java.io

package, specially regarding resource manipulation;
? Engagement of developers should be considered as an ed-

ucational investment as opposed to a deterrent of produc-
tivity. The participants of the study spontaneously reported
that they learned from reading the API documentation and
specifying corresponding properties.

VII. THREATS TO VALIDITY

A threat related to RQ1 is the set of properties that were
selected for establishing the ground truth. We focused on
properties related to popular packages from the Java API.
However, it remains as future work to evaluate whether
properties from other packages would require enhancing our
specification language with more features. Nonetheless, we
do not aim for generality, as described in Section III-A.
To answer RQ2 we measured the discrepancy between the
specifications provided by students and those written by the
instructors. The quality of our ground truth is tied to the level
of expertise of the instructors and this might have impacted

the specifications considered correct/wrong for the conduction
of our experiment. To minimize this threat, the specifications
considered as ground truth were prepared independently by
two instructors that interacted at the end of this task to
reach agreement. They were also reviewed by another author.
Another potential threat related to RQ2 is the fact that we use
the students’ grades as a proxy of their ability to effectively
write specifications. The students’ grades could have been
impacted by the selection of properties that are easier/harder
to specify. To address this threat we instructed the students to
choose each of the five properties from different classes. While
this does not guarantee an equal level of difficulty assigned
to each student, it maximizes our chances of a balanced
assignment. We adopted this method for assigning properties
to students primarily to let them chose their preference as to
incentivize engagement. To note that we did not find properties
in the dataset that are trivial or very challenging to specify.

VIII. RELATED WORK

RV received intense attention over the last two decades. In
what follows, we discuss work that is closely related to ours.

Runtime Verification. As mentioned, many RV techniques
and tools were proposed in the two decades after the first
papers on RV [11], [17], [18] came out. RV is suitable to
find bugs when some given specified properties are violated. It
improved in recent years [7], [14], [23], [39], [45], [62], to the
extent where there are now proposals for using RV even to find
bugs during software development and testing [33]–[37]. For
instance, Legunsen et al. [33], [35], [36] recently showed that
performing RV during test execution is scalable and can detect
hundreds of bugs that existing tests written by developers did
not find. They found these bugs as the result of a large-scale
study [35], [36], involving hundreds of open-source projects,
where they used JavaMOP [20] to specify and monitor parts
of the standard Java library API [32], [48]. JavaMOP [20]
allows one to express parametric properties and it also enables
the dynamically monitoring of such properties in one test
run. In addition to JavaMOP [20], we have several other
tools for RV, such as jMonitor [26], JPaX [18], MarQ [55],
MOPBox [5], Mufin [10], Ruler [4], and TraceMatches [6].
However, unlike the approach we present, none of these
tools offers a simplistic way to perform runtime verification,
with a minimalist specification language to enable behavioral
property specification in a quite straightforward fashion.

Mining specs from documentation. @TCOMMENT [60]
is an approach to testing Javadoc comments, specifically
method properties about null values and related exceptions.
The approach consists of two components: the first takes as
input source files for a Java project and automatically analyzes
the English text in Javadoc comments to infer a set of likely
properties for a method in the files; the second component
generates random tests for these methods, checks the inferred
properties, and reports inconsistencies. Our approach also
consists on analyzing the documentation from the original
Javadoc comments of APIs, but we need to manually specify
the behavioral properties of interest. In addition, we can write

9



richer behavioral properties than those of @TCOMMENT,
which focus on checking null values and exceptions.

Zhai et al. [63] present a technique to build models for
Java API functions by analysing the documentation. Their
models are simpler implementations in Java compared to the
original ones and hence easier to analyse. More importantly,
they provide the same functionalities as the original functions.
They argue that API documentation, like Javadoc and .NET
documentation, usually contains information about the library
functions, such as the behaviour and exceptions they may
throw. Thus, it is feasible to generate models for library
functions from such documentation. Unlike their approach
for models of Java API functions, we use our minimalist
specification language to derive behavioral properties from
those Java API functions. However, their generated models
could be useful and used as input to our specification language
for behavioral property specification.

Sun et al. [59] propose CrowdSpec, an approach that lever-
ages crowd intelligence to produce or improve specifications.
They use human annotators to interpret whether automati-
cally inferred specifications from input traces conform to the
documentation. While the works are complementary, and we
also find that leveraging the crowd is important, there are
some distinctions in the way in which the studies have been
conducted. They performed a screening process using Amazon
Mechanical Turk, while we relied on students, which might not
possess the same level of technical competence. Moreover, in
our study, the participants produced the specification from the
documentation, while in their study, the participants received
an inferred specification to improve.

Contracts. As with RV, contracts are a popular tool for
specifying and checking the functional behavior of software
during runtime [43], [57]. A contract precisely and unam-
biguously specifies what must be true when a method is
called (preconditions) and what must be true when it returns
(postconditions) [16]. Similar to standard RV tools, languages
such as JML [30], [54] and Code Contracts [13] might require
training. Thus, it might become hard to read and write, and
hence, often used sparingly, as reported by empirical studies on
contract usage [8], [12], [47], [58]. Such studies show that de-
velopers only use simple, short, and straightforward contracts.
This implies that little of a rich specification language is, in
fact, used in practice by developers. Hence, a rich language
like JML requires learning new features and, along with new
supporting syntax, could lead to unexpected interactions [15],
[40]. For example JML visibility rules for contracts [31], [53]
do not follow the Java semantics, thus becoming a source of
problems for beginners.

On the other hand, one point in favor of contracts is
that there is evidence programmers are more likely to use
contracts in languages that natively support them [8], such
as Microsoft’s Code Contracts [13]. However, any contract
expressed by these built-in contract languages (or even the
non-builtin ones, such as JML) may be useful for programmers
(internal documentation), but it does not meet the needs of

other readers (separate/external documentation), such as third-
party libraries [29], [46]. To use those libraries, a programmer
should not need to look in the code to find out how to use it.

The decision to keep a minimalist specification language
avoids any semantic complications due to additional language
constructs and ultimately lack of adoption. Also, even though
the language is not defining contracts, building the language
on top of Java also leverages the existing knowledge from
developers. Moreover, our minimalist specification language
does care about API specification. That is, similarly to Java-
MOP, our language does provide the behavioral specifications
properly separated from the client code and instrumented
accordingly with the monitors for runtime verification.

Finally, one may argue that typestate protocol specifications
could be written or encoded together with pre- and postcondi-
tions to properly specify particular method call sequences as
well as the usage constraints of each method. In this direction,
Kim et al. [28] extend JML syntax to include typestate protocol
specification features. Although we do not support specific
constructs for pre- and postconditions specifications along
with explicit typestate protocol specifications, their notion of
typestate JML is not actually implemented and, therefore, a
programmer could not be benefited from RV of such specifi-
cations. Moreover, regardless of tool support, a typestate JML
developer should learn, besides all the standard JML features,
the additional ones for typestate specification support. This
scenario is even less attractive for beginners.

IX. CONCLUSION

An important obstacle for adopting RV is having property
specifications to monitor during runtime. Specification lan-
guages are typically rich in features and this may hold back
developers from adopting RV. This paper reports on a study to
assess the extent to which this can be simplified. We do so by
conducting a study with students with superficial knowledge
in logic using a simplistic language to express properties. Our
results show that even using such a language, we are able to
specify the majority of the properties we have selected from
the existing PropertyDB dataset [49]. Moreover, students were
also able to successfully write specifications that closely match
the ground truth, and expressed satisfaction on performing this
task. The main message from this work is that writing specs
is not much harder than writing code. In fact, they are quite
similar in our specification language. We intend to conduct
further evaluations to better understand the tradeoffs between
rich specifications and learning curves, as well as investigating
it with senior developers. Moreover, we intend to explore
crowd learning for writing and checking specifications.

ACKNOWLEDGMENTS

This research was partially funded by INES 2.0, FACEPE
grants PRONEX APQ 0388-1.03/14, APQ-0399-1.03/17,
APQ-0751-1.03/14, and APQ-0570-1.03/14, CAPES grant
88887.136410/2017-00, and CNPq grants 465614/2014-0,
309032/2019-9, 406308/2016-0.

10



REFERENCES

[1] “BufferedInputStream.close() API property documentation,” 2020, short-
url.at/dpsuB.

[2] “Collections.synchronizedCollection() API property documentation,”
2020, shorturl.at/fwDEN.

[3] “Apache Commons Lang,” 2019, https://commons.apache.org/proper/
commons-lang/.

[4] H. Barringer, D. Rydeheard, and K. Havelund, “Rule systems for
run-time monitoring: From eagle to ruler,” in Runtime Verification,
O. Sokolsky and S. Taşıran, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 111–125.

[5] E. Bodden, “Mopbox: A library approach to runtime verification,” in
Runtime Verification, S. Khurshid and K. Sen, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 365–369.

[6] E. Bodden, L. Hendren, P. Lam, O. Lhoták, and N. A. Naeem, “Collabo-
rative runtime verification with tracematches,” in Proceedings of the 7th
International Conference on Runtime Verification, ser. RV’07. Berlin,
Heidelberg: Springer-Verlag, 2007, p. 22–37.

[7] E. Bodden, P. Lam, and L. Hendren, “Finding programming errors
earlier by evaluating runtime monitors ahead-of-time,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. SIGSOFT ’08/FSE-16. New York, NY,
USA: Association for Computing Machinery, 2008, p. 36–47.

[8] P. Chalin, Are Practitioners Writing Contracts? Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 100–113.

[9] “Console_FillZeroPassword property,” 2020, shorturl.at/fkG26.
[10] N. Decker, J. Harder, T. Scheffel, M. Schmitz, and D. Thoma, “Runtime

monitoring with union-find structures,” in Tools and Algorithms for the
Construction and Analysis of Systems, M. Chechik and J.-F. Raskin, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 868–884.

[11] U. Erlingsson and F. B. Schneider, “Irm enforcement of java stack
inspection,” in Proceedings of the 2000 IEEE Symposium on Security
and Privacy, ser. SP ’00. USA: IEEE Computer Society, 2000, p. 246.

[12] H. C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer,
“Contracts in practice,” in FM 2014: Formal Methods, C. Jones, P. Pih-
lajasaari, and J. Sun, Eds. Cham: Springer International Publishing,
2014, pp. 230–246.

[13] M. Fähndrich, M. Barnett, and F. Logozzo, “Embedded contract lan-
guages,” in Proceedings of the 2010 ACM Symposium on Applied
Computing, ser. SAC ’10. New York, NY, USA: Association for
Computing Machinery, 2010, p. 2103–2110.

[14] V. Forejt, M. Kwiatkowska, D. Parker, H. Qu, and M. Ujma, “Incremen-
tal runtime verification of probabilistic systems,” in Runtime Verification,
S. Qadeer and S. Tasiran, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 314–319.

[15] W. H. Harrison, H. L. Ossher, and P. L. Tarr, “Asymmetrically vs.
symmetrically organized paradigms for software composition,” Research
Report RC22685, IBM Thomas J. Watson Research, Tech. Rep., 2002.

[16] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. Parkinson,
“Behavioral interface specification languages,” ACM Comput. Surv.,
vol. 44, no. 3, Jun. 2012.

[17] K. Havelund and G. Rosu, “Monitoring programs using rewriting,” in
Proceedings of the 16th IEEE International Conference on Automated
Software Engineering, ser. ASE ’01. USA: IEEE Computer Society,
2001, p. 135.

[18] K. Havelund and G. Roşu, “Monitoring java programs with java pathex-
plorer,” Electronic Notes in Theoretical Computer Science, vol. 55, no. 2,
pp. 200 – 217, 2001, in RV’2001, Runtime Verification.

[19] S. Hussein, P. Meredith, and G. Roşlu, “Security-policy monitoring and
enforcement with javamop,” in Proceedings of the 7th Workshop on
Programming Languages and Analysis for Security, ser. PLAS ’12. New
York, NY, USA: Association for Computing Machinery, 2012.

[20] “JavaMOP4,” 2015, http://fsl.cs.illinois.edu/index.php/JavaMOP4.
[21] “JavaMOP4 Syntax,” 2015, http://fsl.cs.illinois.edu/index.php/

JavaMOP4_Syntax.
[22] “The state of developer ecosystem 2020 - jetbrains,” 2020, https://www.

jetbrains.com/lp/devecosystem-2020/.
[23] D. Jin, P. O. Meredith, D. Griffith, and G. Rosu, “Garbage collection

for monitoring parametric properties,” in Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 415–424.

[24] D. Jin, P. O. Meredith, C. Lee, and G. Roşu, “Javamop: Efficient
parametric runtime monitoring framework,” in Proceedings of the 34th

International Conference on Software Engineering, ser. ICSE ’12. IEEE
Press, 2012, p. 1427–1430.

[25] D. Jin, P. O. Meredith, and G. Roşu, “Scalable parametric runtime
monitoring,” Computer Science Dept., UIUC, Tech. Rep., 2012.

[26] M. Karaorman and J. Freeman, “jmonitor: Java runtime event specifica-
tion and monitoring library,” Electronic Notes in Theoretical Computer
Science, vol. 113, pp. 181 – 200, 2005, proceedings of the Fourth
Workshop on Runtime Verification (RV 2004).

[27] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of aspectj,” in Proceedings of the 15th European
Conference on Object-Oriented Programming, ser. ECOOP ’01. Berlin,
Heidelberg: Springer-Verlag, 2001, p. 327–353.

[28] T. Kim, K. Bierhoff, J. Aldrich, and S. Kang, “Typestate protocol
specification in jml,” in Proceedings of the 8th International Workshop
on Specification and Verification of Component-Based Systems, ser.
SAVCBS ’09. New York, NY, USA: Association for Computing
Machinery, 2009, p. 11–18.

[29] G. T. Leavens, “The future of library specification,” in Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: Association for Computing
Machinery, 2010, p. 211–216.

[30] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, “How
the design of JML accommodates both runtime assertion checking and
formal verification,” Science of Computer Programming, vol. 55, no.
1-3, pp. 185–208, Mar. 2005.

[31] G. T. Leavens and P. Muller, “Information hiding and visibility in inter-
face specifications,” in Proceedings of the 29th International Conference
on Software Engineering, ser. ICSE ’07. USA: IEEE Computer Society,
2007, p. 385–395.

[32] C. Lee, D. Jin, P. O. Meredith, and G. Roşu, “Towards categorizing and
formalizing the JDK API,” Computer Science Dept., UIUC, Tech. Rep.,
2012.

[33] O. Legunsen, Y. Zhang, M. Hadzi-Tanovic, G. Rosu, and D. Mari-
nov, “Techniques for evolution-aware runtime verification,” in 2019
12th IEEE Conference on Software Testing, Validation and Verification
(ICST), 2019, pp. 300–311.

[34] O. Legunsen, “Evolution-Aware Runtime Verification,” Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign, USA, 2019.

[35] O. Legunsen, N. A. Awar, X. Xu, W. U. Hassan, G. Roşu, and
D. Marinov, “How effective are existing Java API specifications for
finding bugs during runtime verification?” Autom. Softw. Eng., vol. 26,
no. 4, 2019.

[36] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov, “How
good are the specs? a study of the bug-finding effectiveness of existing
java api specifications,” in Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE 2016.
New York, NY, USA: Association for Computing Machinery, 2016, p.
602–613.

[37] O. Legunsen, D. Marinov, and G. Roşu, “Evolution-aware monitoring-
oriented programming,” in Proceedings of the 37th International Con-
ference on Software Engineering - Volume 2, ser. ICSE ’15. IEEE
Press, 2015, p. 615–618.

[38] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp.
293 – 303, 2009, the 1st Workshop on Formal Languages and Analysis
of Contract-Oriented Software (FLACOS’07).

[39] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. ŞerbănuŢă, and
G. Roşu, “Rv-monitor: Efficient parametric runtime verification with
simultaneous properties,” in Runtime Verification, B. Bonakdarpour and
S. A. Smolka, Eds. Cham: Springer International Publishing, 2014, pp.
285–300.

[40] B. J. MacLennan, Principles of Programming Languages: Design,
Evaluation, and Implementation (2Nd Ed.). Austin, TX, USA: Holt,
Rinehart & Winston, 1986.

[41] P. O. Meredith, D. Jin, F. Chen, and G. Rosu, “Efficient monitoring
of parametric context-free patterns,” in Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’08. USA: IEEE Computer Society, 2008, p. 148–157.

[42] P. Meredith and G. Rosu, “Efficient parametric runtime verification with
deterministic string rewriting,” in Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE’13. IEEE Press, 2013, p. 70–80.

[43] B. Meyer, “Applying "Design by Contract",” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

11

https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
http://fsl.cs.illinois.edu/index.php/JavaMOP4_Syntax
http://fsl.cs.illinois.edu/index.php/JavaMOP4_Syntax
https://www.jetbrains.com/lp/devecosystem-2020/
https://www.jetbrains.com/lp/devecosystem-2020/


[44] B. Miranda, I. Lima, O. Legunsen, and M. d’Amorim, “Prioritizing
runtime verification violations,” in 13th IEEE International Conference
on Software Testing, Validation and Verification, ICST 2020, Porto,
Portugal, October 24-28, 2020. IEEE, 2020, pp. 297–308.

[45] S. Navabpour, C. W. W. Wu, B. Bonakdarpour, and S. Fischmeister,
“Efficient techniques for near-optimal instrumentation in time-triggered
runtime verification,” in Proceedings of the Second International Confer-
ence on Runtime Verification, ser. RV’11. Berlin, Heidelberg: Springer-
Verlag, 2011, p. 208–222.

[46] D. Parnas, Precise Documentation: The Key to Better Software. Springer
Berlin Heidelberg, 2011, pp. 125–148.

[47] N. Polikarpova, I. Ciupa, and B. Meyer, “A comparative study of
programmer-written and automatically inferred contracts,” in Proceed-
ings of the Eighteenth International Symposium on Software Testing
and Analysis, ser. ISSTA ’09. New York, NY, USA: Association for
Computing Machinery, 2009, p. 93–104.

[48] M. Pradel and T. R. Gross, “Automatic generation of object usage
specifications from large method traces,” in Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’09. USA: IEEE Computer Society, 2009, p. 371–382.

[49] “FSL Specification Database,” 2016, https://runtimeverification.com/
monitor/propertydb.

[50] R. Purandare, M. B. Dwyer, and S. Elbaum, “Monitor optimization
via stutter-equivalent loop transformation,” in Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 270–285.

[51] ——, “Optimizing monitoring of finite state properties through monitor
compaction,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 280–290.

[52] “Reader_MarkReset property,” 2020, shorturl.at/zGSV0.
[53] H. Rebêlo and G. T. Leavens, “Enforcing information hiding in inter-

face specifications: A client-aware checking approach,” in Companion
Proceedings of the 14th International Conference on Modularity, ser.
MODULARITY Companion 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 47–51.

[54] H. Rebêlo, G. T. Leavens, M. Bagherzadeh, H. Rajan, R. Lima, D. M.
Zimmerman, M. Cornélio, and T. Thüm, “Aspectjml: Modular specifica-

tion and runtime checking for crosscutting contracts,” in Proceedings of
the 13th International Conference on Modularity, ser. MODULARITY
’14. New York, NY, USA: Association for Computing Machinery,
2014, p. 157–168.

[55] G. Reger, H. C. Cruz, and D. Rydeheard, “Marq: Monitoring at runtime
with qea,” in Tools and Algorithms for the Construction and Analysis
of Systems, C. Baier and C. Tinelli, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 596–610.

[56] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2013.

[57] D. S. Rosenblum, “Towards a method of programming with asser-
tions,” in Proceedings of the 14th International Conference on Software
Engineering, ser. ICSE ’92. New York, NY, USA: Association for
Computing Machinery, 1992, p. 92–104.

[58] T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst, “Case
studies and tools for contract specifications,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
596–607.

[59] P. Sun, C. Brown, I. Beschastnikh, and K. T. Stolee, “Mining specifica-
tions from documentation using a crowd,” in 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 275–286.

[60] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in IEEE
Fifth International Conference on Software Testing, Verification and
Validation, 2012, pp. 260–269.

[61] “TIOBE Index for October 2020,” 2020, https://www.tiobe.com/
tiobe-index/.

[62] C. W. W. Wu, D. Kumar, B. Bonakdarpour, and S. Fischmeister,
“Reducing monitoring overhead by integrating event- and time-triggered
techniques,” in Runtime Verification, A. Legay and S. Bensalem, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 304–321.

[63] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao, and F. Qin,
“Automatic model generation from documentation for java api func-
tions,” in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 380–391.

12

https://runtimeverification.com/monitor/propertydb
https://runtimeverification.com/monitor/propertydb
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

