Estatística

Teste de hipóteses para uma média populacional:

Teste unilateral à direita

Teste unilateral à esquerda

Teste bilateral

Renata Souza

Teste de Hipótese

Definição

Uma hipótese estatística é uma afirmação acerca dos parâmetros de uma ou mais populações (testes paramétricos) ou acerca da distribuição da população. É uma afirmação sobre uma população, e não sobre amostra.

Normalmente são formuladas duas hipóteses:

H₀: (hipótese nula) que é a hipótese que não se quer testar;

 H_a : (hipótese alternativa) que será aceita se não for possível provar que H_0 é verdadeira.

Exemplo

H₀: mulheres vivem o mesmo ou mais que os homens;

H_a: mulheres vivem menos que os homens.

Teste de Hipótese

Exemplo

Em um estudo para avaliar um novo motor instalado em automóveis, um grupo de pesquisa está buscando evidências para concluir que o novo motor aumenta a média de quilômetros por litro.

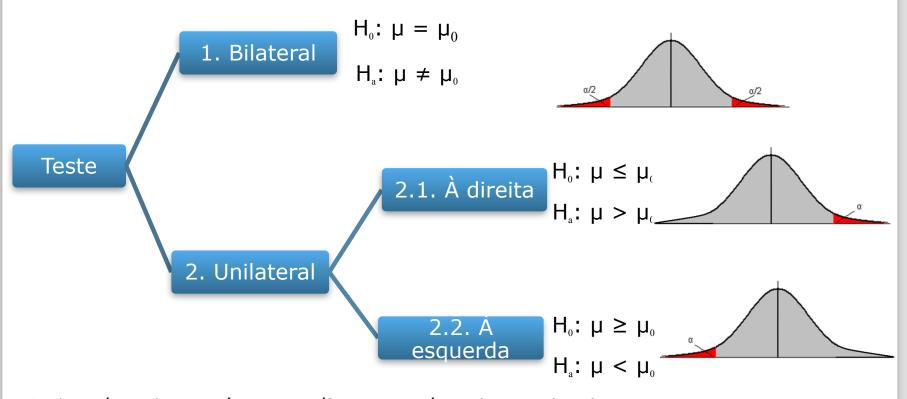
 H_{i} : $\mu \leq 15$ (hipótese nula)

 H_a : $\mu > 15$ (hipótese alternativa)

Neste exemplo a hipótese alternativa é a hipótese de pesquisa. Em tal caso as hipóteses nula e alternativa devem ser formuladas de modo que a rejeição de H₀ suporte a conclusão e ação que estão sendo procuradas.

Teste de Hipótese

As hipóteses podem ter várias formas:



Onde μ_0 é o valor numérico específico que está sendo considerado nas hipóteses nula e alternativa.

Erros de decisão

- Erro tipo I: rejeitar H₀ quando está verdadeira;
- Erro tipo II: não rejeitar H₀ quando está falsa;

Decisão	H _o é verdadeira	H ₀ é falsa
Não rejeitar H ₀	Decisão Correta	Erro tipo II
Rejeitar H ₀	Erro tipo I	Decisão Correta

- A probabilidade de cometer erro tipo I é denominada "nível de significância" e é denotada por a.
- A probabilidade de cometer erro tipo II é denotada por β.

Erros de decisão

- Na prática é especificado a probabilidade máxima permissível de se cometer o erro tipo I, chamado nível de significância.
- Escolhas comuns para o nível de significância são:

0,05 (5%) e 0,01 (1%)

- Assim, se a probabilidade de se cometer um erro Tipo I é controlada por selecionar um pequeno valor para o nível de significância, temos um alto grau de confiança que a conclusão para rejeitar H₀ está correta.
- Em tais casos temos o suporte estatístico para concluir que H_0 é falso e H_a é verdadeiro. Qualquer hipótese sugerida para H_a é aceita.

Erros de decisão

 Como na prática não se atenta para a probabilidade de se cometer o erro tipo II, se decidimos aceitar H₀ não podemos determinar quão confiantes podemos estar com aquela decisão.

• Assim recomenda-se que seja usado a declaração " $não\ rejeitar\ H_0"$ em vez de aceitar H_0 ".

Passo 1

Interprete a situação de modo a obter a média µ;

Passo 2

Construa as hipóteses, dizendo se é bilateral ou unilateral, considerando a média em questão;

Passo 3

Obtenha o grau de significância;

Passo 4

Verifique qual o tipo de distribuição mais apropriado (normal ou t-Student);

Passo 5

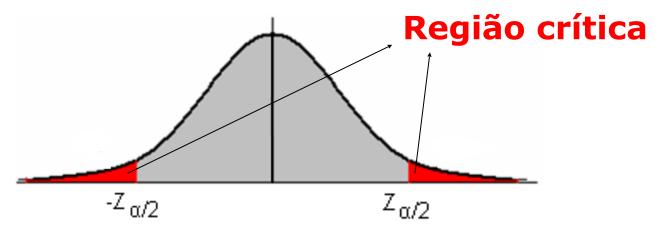
Calcule a estatística de teste, usando:

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 (para a normal)

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$
 (para a t-Student)

Passo 6

Interprete a estatística de teste para verificar se a hipótese nula será ou não rejeitada. Se z ou t corresponder a valores da região crítica, rejeite H_0 , caso contrário, não rejeite H_0 .



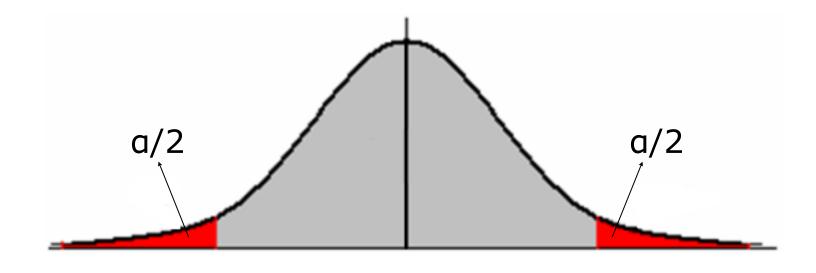
Diferentes níveis de significância podem gerar diferentes conclusões. Com um nível de 5%, H₀ poderá ser rejeitado, mas com 1% poderá

- Quando σ for desconhecido, usamos o desvio padrão amostral s.
- Para σ desconhecido, a distribuição da estatística do teste é uma t-Student, não é uma normal, e consideramos os graus de liberdade da t-Student como n-1, onde n é o tamanho da amostra;
- Mas para amostras de tamanho muito grandes, as diferenças entre os scores das distribuições normal e t são desprezíveis, mas o uso da distribuição t dá melhores resultados.

1. Testes de Hipótese Bilateral

$$H_0$$
: $\mu = \mu_0$

$$H_a$$
: $\mu \neq \mu_0$



Rejeitar H₀

Não rejeitar H₀

Rejeitar H₀

1. Testes de Hipótese Bilateral

Exemplo

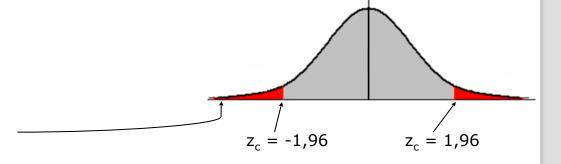
Um comprador de tijolos julga que a qualidade dos tijolos está deteriorando. Sabe-se pela experiência passada que a média de resistência ao esmagamento destes tijolos é de 400 libras com desvio padrão de 20 libras. Uma amostra de 100 tijolos deu uma média de 395 libras. Teste a hipótese de que a qualidade média não se alterou contra a alternativa de que se tenha deteriorado. (considere o nível de significância de 5%)

$$H_0$$
: $\mu = 400$

$$H_a$$
: $\mu \neq 400$

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{395 - 400}{\frac{20}{\sqrt{100}}} = \frac{-5}{2} = -2,5$$

Para 5%,
$$z_c = 1,96$$

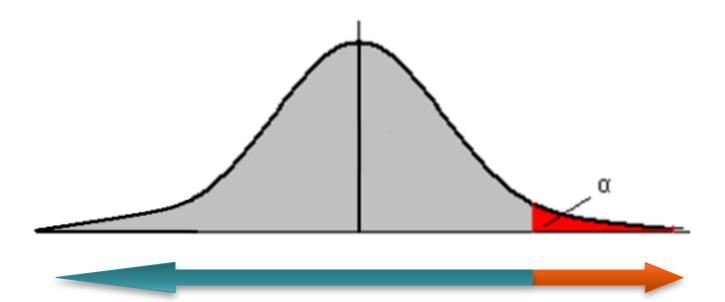


Conclusão: rejeitamos H₀, isto é, a resistência não é mais de 400 libras.

2.1 Testes de Hipótese Unilateral a direita

 H_0 : $\mu \leq \mu_0$

 H_a : $\mu > \mu_0$



Não rejeitar H₀

Rejeitar H₀

2.1 Testes de Hipótese Unilateral a direita

Exemplo

Um trecho de uma rodoviária, quando é utilizado o radar, são verificadas em média 7 infrações diárias por excesso de velocidade. O chefe da polícia acredita que este número pode ter aumentado. Para verificar isso, o radar foi mantido por 10 dias consecutivos. Os resultados foram: 8, 9, 5, 7, 8, 12, 6, 9, 6, 10. Os dados trazem evidências do aumento das infrações?

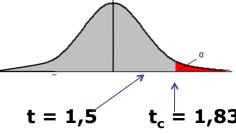
$$H_0: \mu \le 7$$

$$H_a$$
: $\mu > 7$

$$\frac{8+9+5+7+8+12+6+9+6+1}{10}$$

Não conhecendo σ , estimamos s, onde s = 2,1

Usando t-Student:
$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{8 - 7}{\frac{2,1}{\sqrt{10}}} = 1,5$$

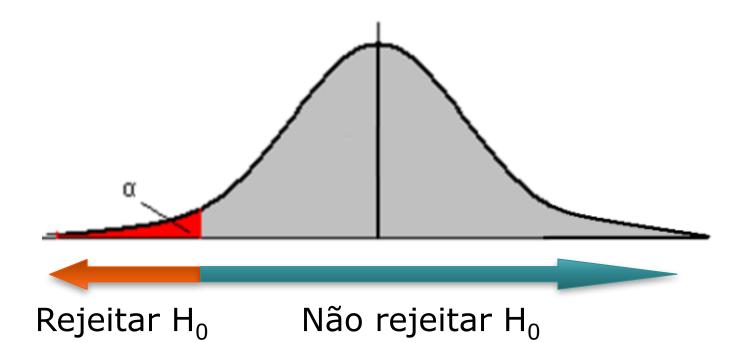


Conclusão: Não rejeitamos H0, o que implica que o número de infrações não teve um aumento significativo.

2.2 Testes de Hipótese Unilateral a esquerda

 H_0 : $\mu \ge \mu_0$

 H_a : $\mu < \mu_0$



2.2 Testes de Hipótese Unilateral a esquerda

Exemplo

Uma pesquisa feita em universidades mostrou que professores de Estatística ganham em média de R\$45.678. Um deles contestou a pesquisa e disse que a real média seria de R\$48.000 com um desvio padrão de R\$7.000. Foram analisados 81 professores para que ele chegasse a essa média amostral. O que o professor disse é válido? (nível de significância de 5%)

$$\begin{split} H_0: \mu &\geq 48.000 \\ H_a: \mu &< 48.000 \\ Z &= \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{45.678 - 48.000}{\frac{7.000}{\sqrt{81}}} = \frac{-2.322}{777,77} = -2,98 \end{split}$$

Para 5%,
$$z_c = -1,65$$

Conclusão: Rejeitamos H_{0.} O salário é menor que R\$ 48.000 considerando o nível de significância de 5%.

Exercício

1) A vida média de uma amostra de 100 lâmpadas fluorescentes produzidas por uma companhia foi calculada em 1570 horas, com desvio padrão de 120 horas. Se µ é a vida média de todas as lâmpadas produzidas pela companhia, teste a hipótese $\mu = 1600$ horas, em face da hipótese alternativa $\mu \neq 1600$ horas, adotando o nível de significância 0,05 e 0,01.

Exercício

Em um estudo para avaliar um novo motor instalado em automóveis, um grupo de pesquisa está buscando evidências para concluir que o novo motor aumenta a média de quilômetros por litro. Numa amostra de 25 carros com o motor antigo, a média de km/l foi de 12 e desvio padrão de 0,5. O que se pode concluir a respeito desse novo motor, sabendo que o fabricante garante uma média de 13km/l e nível de significância de 5%?

