
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 1: Design and Synthesis

QII5V1-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates .. xv

About this Handbook .. xvii
How to Contact Altera ... xvii
Third-Party Software Product Information .. xvii
Typographic Conventions .. xviii

Section I. Design Flows

Chapter 1. Design Planning with the Quartus II Software
Introduction .. 1–1
Device and Programming/
Configuration Method Selection ... 1–2

Device Selection .. 1–2
Device Migration Planning ... 1–3
Programming/Configuration Method Selection ... 1–4

Early Planning Tools for Power and I/O ... 1–5
Early Power Estimation ... 1–5
Early Pin Planning and I/O Analysis ... 1–6

Selecting Third-Party EDA Tool Flows ..1–9
Synthesis Tools ... 1–9
Simulation Tools ... 1–10
Formal Verification Tools .. 1–10

Planning for On-Chip Debugging Options .. 1–11
Planning for an Incremental Compilation Flow ... 1–13

Flat Compilation Flow with No Design Partitions .. 1–13
Incremental Compilation with Design Partitions .. 1–14
Top-Down Versus Bottom-Up Incremental Flows .. 1–15
Planning Design Partitions ... 1–17
Creating a Design Floorplan ... 1–18

Early Timing Estimation ... 1–19
Conclusion .. 1–20
Referenced Documents ... 1–20
Document Revision History ... 1–21

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Introduction .. 2–1
Choosing a Quartus II Compilation Flow .. 2–3

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Flat Compilation Flow with No Design Partitions .. 2–3
Incremental Compilation Flow with Design Partitions .. 2–5
Top-Down versus Bottom-Up Compilation Flows ... 2–9

Quick Start Guide – Summary of Steps for an Incremental Compilation Flow 2–11
Top-Down Incremental Compilation Flow .. 2–11
Bottom-Up Incremental Compilation .. 2–13

Design Partitions .. 2–17
Design Partition Assignments Compared to Physical Placement Assignments 2–18

Creating Design Partitions ... 2–19
Partition Name .. 2–21

Setting the Netlist Type for Design Partitions ... 2–22
Fitter Preservation Level ... 2–24
Empty Partitions ... 2–26
What Represents a Source Change for Incremental Compilation? ... 2–27

Creating a Design Floorplan With LogicLock Location Assignments ... 2–29
Taking Advantage of the Early Timing Estimator .. 2–31

Exporting and Importing Partitions for Bottom-Up Design Flows .. 2–32
Quartus II Exported Partition File (.qxp) .. 2–32
Exporting a Lower-Level Partition to be Used in a Top-Level Project 2–33
Exporting a Lower-Level Block within a Project ... 2–35
Importing a Lower-Level Partition Into the Top-Level Project ... 2–36
Importing Assignments and Advanced Import Settings ... 2–37
Generating Bottom-Up Design Partition Scripts for Project Management 2–40

Guidelines for Creating Good Design Partitions and LogicLock Regions 2–46
Creating Good Design Partitions ... 2–47
Partition Statistics Reports .. 2–50
Resource Balancing .. 2–51
Timing Budgeting .. 2–53
Methodology to Check Partition Quality during Partition Planning 2–54
The Importance of Floorplan Location Assignments in Incremental Compilation 2–55
Creating Good Floorplan Location Assignments .. 2–57
Incremental Compilation Advisor ... 2–60
Criteria for Successful Partition and Floorplan Schemes ... 2–61

Recommended Design Flows and Compilation Application Examples 2–62
Top-Down Incremental Design Flows .. 2–62
Bottom-Up Incremental Design Flows .. 2–67

Incremental Compilation Restrictions .. 2–76
Using Incremental Synthesis Only Instead of Full Incremental Compilation 2–76
Preserving Exact Timing Performance .. 2–77
Using Incremental Compilation with Quartus II Archive Files .. 2–77
Formal Verification Support ... 2–78
OpenCore Plus MegaCore Functions in Bottom-Up Flows ... 2–78
Importing Encrypted IP Cores in Bottom-Up Flows .. 2–78
SignalProbe Pins and Engineering Change Management with the Chip Planner 2–78
SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation Flows 2–80
Logic Analyzer Interface in Bottom-Up Compilation Flows ... 2–81
Migrating Projects with Design Partitions to Different Devices ... 2–81

Altera Corporation v
Preliminary

Contents

HardCopy Compilation Flows ... 2–82
Assignments Made in HDL Source Code in Bottom-Up Flows .. 2–83
Compilation Time with Physical Synthesis Optimizations ... 2–83
Restrictions on Megafunction Partitions ... 2–84
Routing Preservation in Bottom-Up Compilation Flows ... 2–84
Bottom-Up Design Partition Script Limitations ... 2–84
Register Packing and Partition Boundaries .. 2–87
I/O Register Packing ... 2–87

Scripting Support ... 2–99
Generate Incremental Compilation Tcl Script Command .. 2–99
Preparing a Design for Incremental Compilation ... 2–100
Creating Design Partitions .. 2–100
Setting Properties of Design Partitions ... 2–101
Creating Good Floorplan Location Assignments—Excluding or Filtering Certain Device
Elements (Such as RAM or DSP Blocks) ... 2–102
Generating Bottom-Up Design Partition Scripts ... 2–103
Exporting a Partition to be Used in a Top-Level Project .. 2–105
Importing a Lower-Level Partition into the Top-Level Project ... 2–106
Makefiles .. 2–106
Recommended Design Flows and Compilation Application Examples 2–107

Conclusion .. 2–109
Referenced Documents ... 2–109
Document Revision History ... 2–111

Chapter 3. Quartus II Design Flow for MAX+PLUS II Users
Introduction .. 3–1
Chapter Overview ... 3–1
Typical Design Flow .. 3–2
Device Support ... 3–3
Quartus II GUI Overview ... 3–4

Project Navigator .. 3–4
Node Finder .. 3–4
Tcl Console .. 3–4
Messages .. 3–4
Status .. 3–5

Setting Up MAX+PLUS II Look and Feel in Quartus II...3–6
MAX+PLUS II Look and Feel ..3–7
Compiler Tool ..3–9

Analysis and Synthesis .. 3–10
Partition Merge ... 3–10
Fitter ... 3–10
Assembler .. 3–11
Timing Analyzer ... 3–11
EDA Netlist Writer ... 3–11
Design Assistant ... 3–11

MAX+PLUS II Design Conversion ...3–12
Converting an Existing MAX+PLUS II Design .. 3–12

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Converting MAX+PLUS II Graphic Design Files .. 3–13
Importing MAX+PLUS II Assignments .. 3–14

Quartus II Design Flow ... 3–15
Creating a New Project .. 3–16
Design Entry ... 3–16
Making Assignments ... 3–20
Synthesis .. 3–23
Functional Simulation .. 3–24
Place and Route .. 3–26
Timing Analysis .. 3–27
Timing Closure Floorplan ... 3–29
Timing Simulation .. 3–31
Power Estimation ... 3–33
Programming .. 3–33

Conclusion .. 3–34
Quick Menu Reference .. 3–35
Quartus II Command Reference for MAX+PLUS II Users..3–36
Referenced Documents ... 3–45
Document Revision History ... 3–46

Chapter 4. Quartus II Support for HardCopy Series Devices
Introduction .. 4–1
HardCopy II Device Support ... 4–1

HardCopy II Design Benefits .. 4–1
Quartus II Features for HardCopy II Planning .. 4–2

HardCopy II Development Flow ... 4–3
Designing the Stratix II FPGA First ... 4–4
Designing the HardCopy II Device First .. 4–6

HardCopy II Device Resource Guide ...4–8
HardCopy II Companion Device Selection ... 4–10
HardCopy II Recommended Settings in the Quartus II Software .. 4–12

Limit DSP and RAM to HardCopy II Device Resources .. 4–12
Enable Design Assistant to Run During Compile ... 4–12
Timing Settings ... 4–13
Constraints for Clock Effect Characteristics ... 4–15
Quartus II Software Features Supported for HardCopy II Designs 4–17

Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
.. 4–20

Migrating One-to-One Changes ... 4–20
Migrating Changes that Must be Implemented Differently .. 4–21
Changes that Cannot be Migrated ... 4–22

Overall Migration Flow .. 4–22
Preparing the Revisions ... 4–22
Applying ECO Changes .. 4–23

Formal Verification of Stratix II and HardCopy II Revisions ... 4–24
HardCopy II Utilities Menu ... 4–25

Companion Revisions .. 4–26
Compiling the HardCopy II Companion Revision ... 4–28

Altera Corporation vii
Preliminary

Contents

Comparing HardCopy II and Stratix II Companion Revisions ... 4–28
Generate a HardCopy II Handoff Report ... 4–29
Archive HardCopy II Handoff Files .. 4–29
HardCopy II Advisor ... 4–30
HardCopy II Floorplan View .. 4–32

HardCopy Stratix Device Support .. 4–34
Features ... 4–35
HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix and Stratix Devices 4–36
HardCopy Design Flow .. 4–38

The Design Flow Steps of the One-Step Process .. 4–39
How to Design HardCopy Stratix Devices .. 4–40

Tcl Support for HardCopy Migration ... 4–44
Design Optimization and Performance Estimation .. 4–45

Design Optimization .. 4–45
Performance Estimation .. 4–45
Buffer Insertion ... 4–48
Placement Constraints ... 4–48

Location Constraints ... 4–49
LAB Assignments ... 4–49
LogicLock Assignments .. 4–50

Checking Designs for HardCopy Design Guidelines .. 4–51
Altera-Recommended HDL Coding Guidelines ... 4–51
Design Assistant ... 4–51
Reports and Summary ... 4–52

Generating the HardCopy Design Database ... 4–53
Static Timing Analysis .. 4–55
Early Power Estimation .. 4–55

HardCopy Stratix Early Power Estimation .. 4–55
HardCopy APEX Early Power Estimation ... 4–56

Tcl Support for HardCopy Stratix ... 4–56
Targeting Designs to HardCopy APEX Devices ... 4–57
Conclusion .. 4–57
Referenced Documents ... 4–58
Document Revision History ... 4–59

Section II. Design Guidelines

Chapter 5. Design Recommendations for Altera Devices and the Quartus II Design
Assistant

Introduction .. 5–1
Synchronous FPGA Design Practices ... 5–2

Fundamentals of Synchronous Design ... 5–2
Hazards of Asynchronous Design ... 5–3

Design Guidelines ... 5–4
Combinational Logic Structures ... 5–4

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Clocking Schemes ... 5–9
Checking Design Violations Using the Design Assistant .. 5–15

Quartus II Design Flow with the Design Assistant ... 5–15
The Design Assistant Settings Page ... 5–17
Message Severity Levels .. 5–18
Design Assistant Rules .. 5–18
Enabling and Disabling Design Assistant Rules .. 5–37
Viewing Design Assistant Results ... 5–40

Targeting Clock and Register-Control Architectural Features ... 5–44
Clock Network Resources ... 5–44
Reset Resources .. 5–45
Register Control Signals .. 5–46

Conclusion .. 5–46
Referenced Documents ... 5–46
Document Revision History...5–47

Chapter 6. Recommended HDL Coding Styles
Introduction .. 6–1
Quartus II Language Templates .. 6–2
Using Altera Megafunctions .. 6–3
Instantiating Altera Megafunctions in HDL Code ... 6–4

Instantiating Megafunctions Using the MegaWizard Plug-In Manager 6–4
Creating a Netlist File for Other Synthesis Tools .. 6–6
Instantiating Megafunctions Using the Port and Parameter Definition 6–7

Inferring Multiplier and DSP Functions from HDL Code ... 6–7
Multipliers—Inferring the lpm_mult Megafunction from HDL Code 6–7
Multiply-Accumulators and Multiply-Adders—Inferring altmult_accum and altmult_add
Megafunctions from HDL Code .. 6–10

Inferring Memory Functions from HDL Code .. 6–13
RAM Functions—Inferring altsyncram and altdpram Megafunctions from HDL Code 6–14
ROM Functions—Inferring altsyncram and lpm_rom Megafunctions from HDL Code 6–31
Shift Registers—Inferring the altshift_taps Megafunction from HDL Code 6–33

Coding Guidelines for Registers and Latches ... 6–37
Register Power-Up Values in Altera Devices ... 6–37
Secondary Register Control Signals Such as Clear and Clock Enable 6–39
Latches ... 6–43

General Coding Guidelines .. 6–48
Tri-State Signals .. 6–49
Adder Trees ... 6–50
State Machines .. 6–52
Multiplexers .. 6–60
Cyclic Redundancy Check Functions .. 6–69
Comparators ... 6–71
Counters ... 6–73

Designing with Low-Level Primitives .. 6–73
Conclusion .. 6–74
Referenced Documents ... 6–74
Document Revision History ... 6–75

Altera Corporation ix
Preliminary

Contents

Section III. Synthesis

Chapter 7. Synplicity Synplify and Synplify Pro Support
Introduction .. 7–1
Altera Device Family Support ...7–2
Design Flow .. 7–3

Output Netlist File Name and Result Format .. 7–7
Synplify Optimization Strategies .. 7–8

Implementations in Synplify Pro ... 7–8
Timing-Driven Synthesis Settings ... 7–9
FSM Compiler ... 7–11
Optimization Attributes and Options ... 7–12
Altera-Specific Attributes .. 7–15

Exporting Designs to the Quartus II Software Using NativeLink Integration 7–17
Running the Quartus II Software from within the Synplify Software 7–18
Using the Quartus II Software to Run the Synplify Software .. 7–19
Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script 7–19
Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File 7–20
Passing Constraints to the Quartus II Software using Tcl Commands 7–22

Guidelines for Altera Megafunctions and Architecture-Specific Features 7–32
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 7–33
Inferring Altera Megafunctions from HDL Code .. 7–37

Incremental Compilation and Block-Based Design .. 7–44
Hierarchy and Design Considerations with Multiple VQM Files .. 7–46
Creating a Design with Separate Netlist Files .. 7–46
Creating a Design with Multiple VQM Files Using Synplify Pro MultiPoint Synthesis 7–47
Generating a Design with Multiple VQM Files Using Black Boxes .. 7–54

Conclusion .. 7–60
Referenced Documents ...7–61
Document Revision History ... 7–61

Chapter 8. Quartus II Integrated Synthesis
Introduction .. 8–1
Design Flow .. 8–2
Language Support ... 8–5

Verilog HDL Support .. 8–5
VHDL Support .. 8–10
AHDL Support ... 8–12
Schematic Design Entry Support ... 8–13
State Machine Editor .. 8–13
Design Libraries .. 8–14
Using Parameters/Generics ... 8–18

Incremental Synthesis and Incremental Compilation .. 8–23
Partitions for Preserving Hierarchical Boundaries .. 8–23

Quartus II Synthesis Options ... 8–24
Setting Synthesis Options ... 8–25

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Optimization Technique .. 8–30
Speed Optimization Technique for Clock Domains .. 8–30
PowerPlay Power Optimization .. 8–31
Restructure Multiplexers ... 8–32
State Machine Processing .. 8–34
Manually Specifying State Assignments Using the syn_encoding Attribute 8–35
Manually Specifying Enumerated Types Using the enum_encoding Attribute 8–38
Safe State Machines .. 8–40
Power-Up Level .. 8–42
Power-Up Don’t Care .. 8–43
Remove Duplicate Registers ... 8–44
Remove Redundant Logic Cells ... 8–44
Preserve Registers .. 8–44
Disable Register Merging/Don’t Merge Register .. 8–45
Noprune Synthesis Attribute/Preserve Fan-out Free Register Node 8–46
Keep Combinational Node/Implement as Output of Logic Cell ... 8–47
Don't Retime, Disabling Synthesis Netlist Optimizations ... 8–48
Don't Replicate, Disabling Synthesis Netlist Optimizations .. 8–49
Maximum Fan-Out ... 8–50
Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
...8–51
Megafunction Inference Control .. 8–52
RAM Style and ROM Style—for Inferred Memory ... 8–55
Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute Setting
.. .8–57
RAM Initialization File—for Inferred Memory ... 8–59
Multiplier Style—for Inferred Multipliers .. 8–59
Full Case .. 8–62
Parallel Case .. 8–63
Translate Off and On / Synthesis Off and On ... 8–65
Ignore translate_off and synthesis_off Directives ... 8–65
Read Comments as HDL ... 8–66
Use I/O Flipflops ... 8–67
Specifying Pin Locations with chip_pin ... 8–68
Using altera_attribute to Set Quartus II Logic Options .. 8–70

Analyzing Synthesis Results .. 8–73
Analysis and Synthesis Section of the Compilation Report ... 8–73
Project Navigator .. 8–74

Analyzing and Controlling Synthesis Messages ... 8–74
Quartus II Messages ... 8–74
VHDL and Verilog HDL Messages ... 8–75

Node-Naming Conventions in Quartus II Integrated Synthesis .. 8–79
Hierarchical Node-Naming Conventions ... 8–79
Node-Naming Conventions for Registers (DFF or D Flipflop Atoms) 8–80
Register Changes During Synthesis .. 8–81
Preserving Register Names ... 8–84
Node-Naming Conventions for Combinational Logic Cells ... 8–84

Altera Corporation xi
Preliminary

Contents

Preserving Combinational Logic Names .. 8–86
Scripting Support ... 8–86

Adding an HDL File to a Project and Setting the HDL Version .. 8–87
Quartus II Synthesis Options .. 8–88
Assigning a Pin ... 8–89
Creating Design Partitions for Incremental Compilation .. 8–90

Conclusion .. 8–91
Referenced Documents ... 8–91
Document Revision History...8–92

Chapter 9. Mentor Graphics LeonardoSpectrum Support
Introduction .. 9–1
Design Flow .. 9–2
Optimization Strategies .. 9–5

Timing-Driven Synthesis .. 9–5
Other Constraints ... 9–6

Timing Analysis with the Leonardo-Spectrum Software .. 9–8
Exporting Designs Using NativeLink Integration .. 9–9

Generating Netlist Files ... 9–9
Including Design Files for Black-Boxed Modules ... 9–9
Passing Constraints with Scripts .. 9–9
Integration with the Quartus II Software ... 9–10

Guidelines for Altera Megafunctions and LPM Functions ... 9–10
Inferring Multipliers and DSP Functions ... 9–12
Controlling DSP Block Inference ... 9–13

Block-Based Design with the Quartus II Software ... 9–19
Hierarchy and Design Considerations .. 9–20
Creating a Design with Multiple EDIF Files .. 9–21
Generating Multiple EDIF Files Using Black Boxes .. 9–25
Incremental Synthesis Flow .. 9–31

Conclusion .. 9–34
Referenced Documents ... 9–34
Document Revision History...9–35

Chapter 10. Mentor Graphics Precision RTL Synthesis Support
Introduction .. 10–1
Device Family Support ...10–2
Design Flow .. 10–2
Creating a Project and Compiling the Design...10–6

Creating a Project ... 10–6
Compiling the Design .. 10–7

Mapping the Precision Synthesis Design ... 10–7
Setting Timing Constraints ... 10–8
Setting Mapping Constraints .. 10–9
Assigning Pin Numbers and I/O Settings .. 10–9
Assigning I/O Registers .. 10–10
Disabling I/O Pad Insertion ... 10–11

xii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Controlling Fan-Out on Data Nets .. 10–12
Synthesizing the Design and Evaluating the Results ... 10–13

Obtaining Accurate Logic Utilization and Timing Analysis Reports 10–13
Exporting Designs to the Quartus II Software Using NativeLink Integration 10–14

Running the Quartus II Software from within the Precision RTL Software 10–14
Running the Quartus II Software Manually Using the Precision RTL Synthesis-Generated Tcl
Script .. 10–16
Using Quartus II Software to Launch the Precision RTL Synthesis Software 10–17
Passing Constraints to the Quartus II Software ... 10–17

Megafunctions and Architecture-Specific Features .. 10–23
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 10–24
Inferring Altera Megafunctions from HDL Code .. 10–25

Incremental Compilation and Block-Based Design .. 10–32
Hierarchy and Design Considerations .. 10–34
Creating a Design with Separate Netlist Files .. 10–34
Creating Quartus II Projects for Multiple EDIF Files .. 10–39

Conclusion .. 10–41
Referenced Documents ...10–42
Document Revision History ... 10–42

Chapter 11. Synopsys Design Compiler FPGA Support
Introduction .. 11–1
Design Flow Using the DC FPGA Software and the Quartus II Software 11–2
Setup of the DC FPGA Software Environment for Altera Device Families 11–3
Megafunctions and Architecture-Specific Features..11–5
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 11–6

Clear Box Methodology ... 11–6
Black Box Methodology ... 11–9

Inferring Altera Megafunctions from HDL Code ... 11–11
Reading Design Files into the DC FPGA Software ... 11–13
Selecting a Target Device .. 11–15
Timing and Synthesis Constraints .. 11–16
Compilation and Synthesis .. 11–18
Reporting Design Information ... 11–20
Saving Synthesis Results .. 11–21
Exporting Designs to the Quartus II Software .. 11–22

write_fpga Command .. 11–22
write and write_par_constraint Commands .. 11–23

Using Tcl Scripts with Quartus II Software ... 11–23
Place and Route with the Quartus II Software .. 11–25
Formality Software Support ... 11–26
Conclusion .. 11–26
Referenced Documents ... 11–26
Document Revision History...11–27

Chapter 12. Analyzing Designs with Quartus II Netlist Viewers
Introduction .. 12–1

Altera Corporation xiii
Preliminary

Contents

When to Use Viewers: Analyzing Design Problems .. 12–2
Quartus II Design Flow with Netlist Viewers ... 12–3
RTL Viewer Overview .. 12–4
State Machine Viewer Overview ... 12–6
Technology Map Viewer Overview .. 12–6
Introduction to the User Interface ... 12–7

Schematic View ... 12–8
Hierarchy List ... 12–16
State Machine Viewer .. 12–18

Navigating the Schematic View .. 12–21
Traversing and Viewing the Design Hierarchy ... 12–21
Viewing Contents of Atom Primitives in the Technology Map Viewer 12–22
Viewing the Properties of Instances and Primitives ... 12–24
Viewing LUT Representations in the Technology Map Viewer .. 12–24
Zooming and Magnification ... 12–26
Partitioning the Schematic into Pages ... 12–28

Customizing the Schematic Display in the RTL Viewer .. 12–31
Grouping Combinational Logic into Logic Clouds ... 12–32

Filtering in the Schematic View ... 12–34
Filter Sources Command ... 12–35
Filter Destinations Command .. 12–35
Filter Sources and Destinations Command .. 12–36
Filter Between Selected Nodes Command ... 12–36
Filter Selected Nodes and Nets Command .. 12–37
Filter Bus Index Command ... 12–37
Filter Command Processing .. 12–37
Filtering Across Hierarchies ... 12–38
Expanding a Filtered Netlist ... 12–40
Reducing a Filtered Netlist ... 12–41

Probing to Source Design File and Other Quartus II Windows ... 12–42
Moving Selected Nodes to Other Quartus II Windows .. 12–42

Probing to the Viewers from Other Quartus II Windows ... 12–44
Viewing a Timing Path ... 12–45
Other Features in the Schematic Viewer .. 12–47

Tooltips .. 12–47
Radial Menu .. 12–50
Rollover .. 12–52
Displaying Net Names .. 12–53
Displaying Node Names ... 12–53
Find Command ... 12–53
Exporting and Copying a Schematic Image ... 12–55
Printing .. 12–55

Debugging HDL Code with the State Machine Viewer ... 12–56
Simulation of State Machine Gives Unexpected Results .. 12–56

Conclusion .. 12–60
Document Revision History...12–60

xiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Altera Corporation xv
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 1, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Design Planning with the Quartus II Software
Revised: October 2007
Part number: QII51016-7.2.0

Chapter 2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
Revised: October 2007
Part number: QII51015-7.2.0

Chapter 3. Quartus II Design Flow for MAX+PLUS II Users
Revised: October 2007
Part number: QII51002-7.2.0

Chapter 4. Quartus II Support for HardCopy Series Devices
Revised: October 2007
Part number: QII51004-7.2.0

Chapter 5. Design Recommendations for Altera Devices and the Quartus II Design Assistant
Revised: October 2007
Part number: QII51006-7.2.0

Chapter 6. Recommended HDL Coding Styles
Revised: October 2007
Part number: QII51007-7.2.0

Chapter 7. Synplicity Synplify and Synplify Pro Support
Revised: October 2007
Part number: QII51009-7.2.0

Chapter 8. Quartus II Integrated Synthesis
Revised: October 2007
Part number: QII51008-7.2.0

Chapter 9. Mentor Graphics LeonardoSpectrum Support
Revised: October 2007
Part number: QII51010-7.2.0

xvi Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 1

Chapter 10. Mentor Graphics Precision RTL Synthesis Support
Revised: October 2007
Part number: QII51011-7.2.0

Chapter 11. Synopsys Design Compiler FPGA Support
Revised: October 2007
Part number: QII51014-7.2.0

Chapter 12. Analyzing Designs with Quartus II Netlist Viewers
Revised: October 2007
Part number: QII51013-7.2.0

Altera Corporation xvii
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 7.2.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Third-Party
Software
Product
Information

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its
use in the Quartus II 7.2 software release. To the extent that the software
products described in this handbook are derived from third-party software, no
third party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH
RESPECT TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Information Type Contact (1)

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature/

Altera literature services literature@altera.com (1)

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature/
ftp://ftp.altera.com

xviii Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 1

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75: High-
Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: Delete
key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown in
quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

v, —, N/A Used in table cells to indicate the following: v indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that the
table cell entry is not applicable to the item of interest.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or destroy
the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury to the
user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation Section I–i

Section I. Design Flows

The Altera® Quartus® II, version 7.2 design software provides a complete
multi-platform design environment that easily adapts to your specific
design needs. The Quartus II software also allows you to use the
Quartus II graphical user interface, EDA tool interface, or command-line
interface for each phase of the design flow. This section explains the
Quartus II, version 7.2 software options that are available for each of
these flows.

This section includes the following chapters:

■ Chapter 1, Design Planning with the Quartus II Software
■ Chapter 2, Quartus II Incremental Compilation for Hierarchical and

Team-Based Design
■ Chapter 3, Quartus II Design Flow for MAX+PLUS II Users
■ Chapter 4, Quartus II Support for HardCopy Series Devices

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation

Design Flows Quartus II Handbook, Volume 1

Altera Corporation 1–1
October 2007

1. Design Planning with the
Quartus II Software

Introduction Due to the significant increase in FPGA device densities over the last few
years, designs are increasingly complex and may involve multiple
designers. The inherent flexibility of advanced FPGAs means that the pin
layout, power consumption, and timing performance for each design
block are all dependent on the final design implementation. The system
architect must resolve these design issues when integrating design
blocks, often leading to problems that affect the overall time to market
and thereby increase cost. Many potential problems can be solved earlier
in the design cycle by selecting the optimal device and programming
method, properly planning I/O pin locations, estimating power
consumption, selecting appropriate third-party tools, planning for
in-system debugging options, performing good design partitioning for
incremental compilation, and obtaining early timing estimates.

This chapter discusses these important FPGA design planning issues,
provides recommendations, and describes various tools available for
Altera® FPGAs to help you improve design productivity. This chapter
contains the following sections:

■ “Device and Programming/ Configuration Method Selection” on
page 1–2

■ “Early Planning Tools for Power and I/O” —“Early Power
Estimation” on page 1–5

■ “Early Pin Planning and I/O Analysis” on page 1–6
■ “Selecting Third-Party EDA Tool Flows” on page 1–9
■ “Planning for On-Chip Debugging Options” on page 1–11
■ “Planning for an Incremental Compilation Flow” on page 1–13
■ “Early Timing Estimation” on page 1–19

Before reading the design planning guidelines discussed in this chapter,
consider your design priorities: What are the important factors for your
design? More device features, density, or performance can increase
system cost. Signal integrity and board issues may impact I/O pin
locations. Power, timing performance, and area utilization affect each
other, and compilation time is affected by optimizations for these factors.
The Quartus® II software optimizes designs for the best average results,
but you can change settings to focus on one aspect of the design results
and trade off other aspects. Certain tools or debugging options can lead
to restrictions in your design flow. If you know what is important in a
particular design, this knowledge will help you choose the tools, features,
and methodologies that you should use with the design. This chapter

QII51016-7.2.0

1–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

cannot cover every possible consideration for planning a complex FPGA
design, but once you understand your design priorities, you can use the
design planning issues described here as a guide to help ensure a
productive and successful FPGA design flow.

f This chapter provides an introduction to various design and planning
features in the Quartus® II software. For a general overview of the
Quartus II design flow and features, refer to the Introduction to Quartus II
Manual. For more details about specific Quartus II features and
methodologies, this chapter provides references to other appropriate
chapters in the Quartus II Handbook.

Device and
Programming/
Configuration
Method
Selection

The first stage in design planning is choosing the best device for your
application and determining how you want to program or configure the
device in your system. These factors affect the rest of your design cycle,
including board specification and layout. Most of this planning is
performed outside of the Quartus II software, but this section provides a
few suggestions to aid in the planning process.

Device Selection

It is important to choose the device family that best suits your design
needs. Different families offer different trade-offs, including cost,
performance, logic and memory density, I/O density, power utilization,
and packaging. You should also consider feature requirements such as
I/O standards support, high-speed transceivers, and the number of
phase-locked loops (PLLs) available in the device. You can review
important features of each device family in the Selector Guides available
on the Altera website (www.altera.com/literature/lit-sg.jsp). Each device
family also has a device handbook or set of data sheets that documents
the device features in detail.

Determining the required device density can be a challenging part of the
design planning process. Devices with more logic resources and higher
I/O counts can implement larger and potentially more complex designs,
but may have a higher cost. Select a device that meets your design needs
with some safety margin, in case you want to add more logic later in the
design cycle or reserve logic and memory for on-chip debugging (refer to
“Planning for On-Chip Debugging Options” on page 1–11). Consider
needs for specific types of dedicated logic blocks, such as memory blocks
of different sizes, or digital signal processing (DSP) blocks to implement
certain arithmetic functions.

If you have prior designs targeting Altera devices, you can use their
resource utilization as an estimate for your new design. You can compile
existing designs in the Quartus II software with the device selection set to

Altera Corporation 1–3
October 2007

Design Planning with the Quartus II Software

Auto to review the resource utilization and find out which device density
fits the design. Note that coding style, device architecture, and the
optimization options used in the Quartus II software can significantly
affect a design’s resource utilization.

To obtain resource utilization estimates for certain configurations of
Altera’s intellectual property (IP) designs, refer to the User Guides for
Altera Megafunctions and IP MegaCores on the IP Megafunctions page
on the Altera website (www.altera.com/literature/lit-ip.jsp). You can use
these numbers to help estimate the resource utilization of your design.

Device Migration Planning

Determine if you want the option of migrating your design to another
device density to allow flexibility when the design nears completion, or if
you want to migrate to a HardCopy® structured ASIC device when the
design reaches volume production. In some cases, designers may target a
smaller (and less expensive) device and then move to a larger device if
necessary to fit their design. Other designers may prototype their design
in a larger device to reduce optimization time and achieve timing closure
more quickly, and then migrate to a final smaller device after
prototyping. Similarly, many designers compile and optimize their
design for an FPGA device before moving to a HardCopy structured
ASIC when the design is complete and ready for higher-volume
production. If you would like this flexibility, you should specify these
migration options in the Quartus II software at the beginning of your
design cycle. Specify the target migration devices in the Migration
compatibility section of the Device page in the Settings dialog box.

Selecting a migration device has an impact on pin placement because
some pins may serve different functions in different device densities or
package sizes. When making pin assignments in the Quartus II software,
the Pin Migration View in the Pin Planner highlights pins that change
function between your migration devices. (Refer to “Early Pin Planning
and I/O Analysis” on page 1–6 for more details.) Selecting a migration
device may force you to restrict logic utilization to ensure that your
design is compatible with a selected HardCopy device. Adding migration
devices later in the design cycle is possible, but requires extra effort to
check pin assignments, and may require design changes to fit into the
new target device. It is much easier to consider these issues early in the
design cycle than at the end, when the design is near completion and
ready for migration.

1–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

In addition, if you are planning to use a HardCopy device, review
HardCopy guidelines early in the design cycle for any Quartus II settings
that should be used or other restrictions you should consider. It is
especially important to use complete timing constraints if you want to
migrate to a HardCopy device because of the rigorous verification
requirements for structured ASICs.

f For more information about timing requirements and analysis for
HardCopy designs, refer to the HardCopy Handbook.

Programming/Configuration Method Selection

Choosing your programming or configuration method up-front allows
system and board designers to determine what companion devices, if
any, are needed for your system. Your board layout also depends on the
type of programming or configuration method you plan to use for
programmable devices. Many programming options use a JTAG interface
to connect to the devices, so your design may require a JTAG chain be set
up on the board.

The device family handbooks describe the configuration options
available for a given device family. For more details about configuration
options, refer to the Configuration Handbook. For information about
programming CPLD devices, refer to your device data sheet or
handbook. Programming and configuration of Altera devices includes
the following options:

■ Using enhanced configuration devices—These devices combine
industry-standard flash memory with a feature-rich configuration
controller, including device features such as concurrent and dynamic
configuration, data compression, clock division, and an external
flash memory interface. You can also implement remote and local
system updates with enhanced configuration devices.

■ Using Flash memory devices with a memory controller, such as an
Altera MAX® device—The flash memory controller can interface
with a PC or microprocessor to receive configuration data via a
parallel port.

■ Using the Quartus II Serial Flash Loader (SFL)—This scheme allows
you to configure the FPGA and program serial configuration devices
using the same JTAG interface.

■ Using the Quartus II Parallel Flash Loader (PFL)—This solution
quickly retrieves data from a JTAG interface and generates data
formatted for the receiving target flash device, significantly reducing
the flash device programming time. If your system already contains
a common flash interface (CFI) flash memory, you can utilize it for
the FPGA configuration storage as well, because the PFL feature
supports many common industry-standard flash devices. If you

Altera Corporation 1–5
October 2007

Design Planning with the Quartus II Software

choose this method, you should check the list of supported flash
devices early in your system design cycle and plan accordingly.
Refer to AN 386: Using the MAX II Parallel Flash Loader with the
Quartus II Software for the list of supported Flash devices.

Early Planning
Tools for Power
and I/O

You can use the Quartus II early power and I/O planning tools to provide
information to PCB board and system designers. Providing FPGA device
information early in the design process enables earlier planning for
power and board design requirements. You can perform early power
estimation, as well as early pin planning and analysis, before you have
created any source code, or when you have a preliminary version of the
design, and then perform the most accurate analysis when the design is
complete.

Early Power Estimation

Device power consumption must be accurately estimated to develop an
appropriate power budget and to design the power supplies, voltage
regulators, heat sink, and cooling system. Power estimation and analysis
has two significant planning requirements:

■ Thermal planning—You must ensure that the cooling solution is
sufficient to dissipate the heat generated by the device. In particular,
the computed junction temperature must fall within normal device
specifications.

■ Power supply planning—Power supplies must provide adequate
current to support device operation.

Power consumption in FPGA devices is dependent on the design,
providing a challenge during early board specification and layout. The
Altera PowerPlay Early Power Estimator spreadsheet allows you to
estimate power utilization before the design is complete, by processing
information about the device resources that will be used in the design, as
well as the operating frequency, toggle rates, and environmental
considerations.

If you have an existing design or a partially-completed design, the power
estimator file generated by the Quartus II software can provide input to
the spreadsheet for your current design (refer to “Early Power Estimator
File” on page 1–6).

When the design is complete, the PowerPlay Power Analyzer tool in the
Quartus II software provides an accurate estimation of power to help
ensure that thermal and supply budgets are not violated.

1–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The PowerPlay Early Power Estimator spreadsheets for each supported
device family are available on the Altera website:
(www.altera.com/support/devices/estimator/pow-powerplay.jsp).

Estimating power consumption early in the design cycle allows planning
of power budgets and avoids surprises for designers developing the PCB.

f For more information about power estimation and analysis, refer to the
PowerPlay Power Analysis chapter in volume 3 of the Quartus II Handbook.

Early Power Estimator File

When entering data into the Early Power Estimator spreadsheet, you
must include the device resources, operating frequency, toggle rates, and
other parameters. Specifying these values requires familiarity with the
design. If you do not have an existing design, estimate the number of
device resources used in your design and enter it manually. If you have
an existing design or a partially completed design, you can generate a
power estimator file.

First, compile your design in the Quartus II software. After compilation
is complete, on the Project menu, click Generate PowerPlay Early Power
Estimator File. This command instructs the Quartus II software to write
out a power estimator Comma-Separated Value (.csv) file (or a text [.txt]
file for older device families).

The PowerPlay Early Power Estimator spreadsheet includes the Import
Data macro, which parses the information in the power estimation file
and transfers it into the spreadsheet. If you do not want to use the macro,
you can transfer the data into the Early Power Estimator spreadsheet
manually.

If the existing Quartus II project represents only a portion of your full
design, you should enter the additional resources used in the final design
manually. You can edit the spreadsheet and add additional device
resources after importing the power estimation file information.

Early Pin Planning and I/O Analysis

It is important to plan top-level FPGA I/O pins early, so board designers
can start developing the PCB design and layout. The FPGA device’s I/O
capabilities influence pin locations and other types of assignments. In
cases where the board design team specifies an FPGA pin-out, it is crucial
that the pin locations be verified in the FPGA place-and-route software as
soon as possible to avoid the need for board design changes.

Altera Corporation 1–7
October 2007

Design Planning with the Quartus II Software

Traditionally, designers and system architects could not check the
validity of FPGA pin assignments until the design was complete. You can
now create a preliminary pin-out for an Altera FPGA using the Quartus
II Pin Planner before the source code is designed, based on standard I/O
interfaces (such as memory and bus interfaces) and any other I/O-related
assignments defined by system requirements. Refer to “Creating a Top-
Level Design File for I/O Analysis” on page 1–8. Quartus II I/O
Assignment Analysis checks that the pin locations and assignments are
supported in the target FPGA architecture. You can use I/O Assignment
Analysis to validate I/O-related assignments that you make or modify
throughout the design process.

The Pin Planner enables easy I/O pin assignment planning, assignment,
and validation. Use the Pin Planner Package view to make pin location
and other assignments using a device package view instead of pin
numbers. The Pads view displays I/O pads in order around the silicon
die to help you follow pad distance and pin placement guidelines. With
the Pin Planner, you can identify I/O banks, voltage reference (VREF)
groups, and differential pin pairings to help you through the I/O
planning process. If migration devices are selected (including HardCopy
devices), as described in “Device Migration Planning” on page 1–3, the
Pin Migration view highlights pins that change function in the migration
device when compared to the currently selected device. Selecting pins in
the Device Migration view cross-probes to the rest of the Pin Planner, so
you can use device migration information when planning your pin
assignments. You can also configure board trace models of selected pins
for use in “board-aware” signal integrity reports generated with the
Enable Advanced I/O Timing option. You have the option to use a
Microsoft Excel spreadsheet to start the I/O planning process if you
normally use a spreadsheet in your design flow, and you can export a
Comma-Separated Value (.csv) file containing your I/O assignments for
spreadsheet use when all pins are assigned.

When planning is complete, the pin location information can be passed to
PCB designers. The Pin Planner is tightly integrated with certain PCB
design EDA tools, and can read pin location changes from these tools to
check the suggested changes. It is important that pin assignments match
between the Quartus II software and your schematic and board layout
tools to ensure the design works correctly on the board where it is placed,
especially if changes to the pin-out must be made. The system architect
can use the Quartus II software to pass pin information to team members
designing individual logic blocks, for better timing closure when they
compile their design. Once the design is complete, the Quartus II Fitter
reports should be used for the final sign-off of pin assignments.

1–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Starting FPGA pin planning early—before the HDL design is complete—
improves the confidence in early board layouts, reduces the chance of
error, and improves the design’s overall time to market.

f For more information about I/O assignment and analysis, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook. For more
information about passing I/O information between the Quartus II
software and third-party EDA tools, refer to the Mentor Graphics PCB
Design Tools Support and Cadence PCB Design Tools Support chapters in
the I/O and PCB Tools section in volume 2 of the Quartus II Handbook.

Creating a Top-Level Design File for I/O Analysis

Early in the design process, before the source code is created, the system
architect typically has information about the I/O interfaces and IP cores
that to used in the design. You can use this information with the
Create/Import Megafunction feature in the Pin Planner to specify details
about the design I/O interfaces.

The Pin Planner interfaces with the MegaWizard® Plug-In Manager, and
allows you to create or import custom megafunctions and IP cores that
use I/O interfaces. Configure the way in which they are connected to
each other by specifying matching node names for selected ports in the
Set Up Top-Level Design File dialog box. Make any other I/O-related
assignments for these interfaces or other design I/O pins in the Pin
Planner.

When you have entered as much information as possible, generate a
top-level design netlist file using the Create Top-Level Design File
command. The Pin Planner creates virtual pin assignments for internal
nodes, so internal nodes will not be assigned to device pins during
compilation. Use the generated netlist to perform I/O Analysis with the
Start I/O Assignment Analysis command.

You can use the I/O analysis results to change pin assignments or IP
parameters and repeat the checking process until the I/O interface meets
your design requirements and passes the pin checks in the Quartus II
software. When this initial pin planning is complete, you can create a
Quartus II Revision based on the Quartus II-generated netlist. You then
have a choice for how to proceed: you can use the generated netlist to
develop the top-level file for the actual design, or disregard the generated
netlist and use the generated Quartus II Settings File (.qsf) with the actual
design.

Altera Corporation 1–9
October 2007

Design Planning with the Quartus II Software

Selecting Third-
Party EDA Tool
Flows

Your complete FPGA design flow may include third-party EDA tools in
addition to the Quartus II software. Determine which tools you want to
use with the Quartus II software to ensure that they are supported and set
up correctly, and that you are aware of any useful features or undesired
limitations.

Synthesis Tools

You can synthesize your design using the Quartus II software’s
integrated synthesis tool or your preferred third-party synthesis tool.
Different synthesis tools may give different results. If you want to select
the best-performing tool for your application, you can experiment by
synthesizing typical designs for your application and coding style and
comparing the results. Be sure to perform placement and routing in the
Quartus II software to get accurate timing analysis and logic utilization
results. Results from synthesis are estimates before place-and-route and
do not include logic that is treated as a black box for synthesis (such as
megafunctions or Altera IP cores in some synthesis tools). In addition,
these estimates do not take into account logic usage reduction achieved
in the Quartus II Fitter through register packing or other Quartus II
optimizations, such as Physical Synthesis, that may change both timing
and resource utilization results.

Altera recommends that you use the most recent version of third-party
synthesis tools, because tool vendors are continuously adding new
features, fixing tool issues, and enhancing performance for Altera
devices. The Quartus II Release Notes lists the version of each synthesis tool
that is officially supported by that version of the Quartus II software.

Specify your synthesis tool in the New Project Wizard or the EDA Tools
Settings page of the Settings dialog box to use the correct Library
Mapping File for your synthesis netlist.

Synthesis tools may offer the capability to create a Quartus II project and
pass constraints such as the EDA tool setting, device selection, and timing
requirements that you specified in your synthesis project. You can use
this capability to save time when setting up your Quartus II project for
placement and routing.

If you want to take advantage of an incremental compilation
methodology, you should partition your design for synthesis and
generate multiple output netlist files. Refer to “Incremental Compilation
with Design Partitions” on page 1–14 for more information.

f For more information about synthesis tool flows, refer to the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

1–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Simulation Tools

You can use the built-in Quartus II Simulator to perform quick and easy
functional and timing simulations. Altera also provides the
ModelSim-Altera simulator with Quartus II license subscriptions, which
allows you to take advantage of advanced testbench capabilities and
other features. In addition, the Quartus II software can generate timing
netlist files to support other third-party simulation tools.

If you use a third-party simulation tool, ensure that you use the software
version that is supported with your Quartus II version. The Quartus II
Release Notes list the version of each simulation tool that is officially
supported with that particular version of the Quartus II software. Also
ensure that you use the model libraries provided with your Quartus II
software version. Libraries can change between versions, which might
cause a mismatch with your simulation netlist.

Specify your simulation tool in the EDA Tools Settings page of the
Settings dialog box to generate the appropriate output simulation netlist.

f For more information about simulation tool flows, refer to the
appropriate chapter in the Simulation section in volume 3 of the
Quartus II Handbook.

Formal Verification Tools

The Quartus II software supports some formal verification flows.
Consider whether your desired formal verification flow impacts the
design and compilation stages of your design.

Using a formal verification flow can impact performance results because
it requires that certain logic optimizations be turned off, such as register
retiming, and forces hierarchy blocks to be preserved, which can restrict
optimization. Formal verification treats memory blocks as black boxes.
Therefore, it is best to keep memory in a separate hierarchy block so that
other logic does not get incorporated into the black box for verification.
There are other restrictions that may also limit your design, so consult the
documentation for details. If formal verification is important to your
design, it is easier to plan for limitations and restrictions in the beginning
than to make changes later in the design flow.

Specify your formal verification tool in the EDA Tools Settings page of
the Settings dialog box to generate the appropriate output netlist.

f For more information about formal verification flows, refer to the
appropriate chapter in the Formal Verification section in volume 3 of the
Quartus II Handbook.

Altera Corporation 1–11
October 2007

Design Planning with the Quartus II Software

Planning for
On-Chip
Debugging
Options

Altera’s in-system debugging tools offer different advantages and
trade-offs, so different debugging tools may work better for different
systems and different designers. It is beneficial to evaluate on-chip
debugging options early in your design process, to ensure that your
system board, Quartus II project, and design are all set up to support the
appropriate options. Planning can reduce time spent during debugging
and eliminate the need to make changes later to accommodate your
preferred debugging methodologies.

The Quartus II portfolio of verification tools includes the following
in-system debugging features:

■ SignalProbe incremental routing—This feature makes design
verification more efficient by quickly routing internal signals to I/O
pins without affecting the design. Starting with a fully routed design,
you can select and route signals for debugging to either previously
reserved or currently unused I/O pins.

■ SignalTap® II Embedded Logic Analyzer—This logic analyzer helps
you debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment or extra
I/O pins, while the design is running at full speed in an FPGA
device. Defining custom trigger-condition logic provides greater
accuracy and improves the ability to isolate problems. The SignalTap
II Embedded Logic Analyzer does not require external probes or
changes to the design files to capture the state of the internal nodes
or I/O pins in the design; all captured signal data is conveniently
stored in device memory until you are ready to read and analyze the
data.

■ Logic Analyzer Interface—This interface enables you to connect and
transmit internal FPGA signals to an external logic analyzer for
analysis. You can use this feature to connect a large set of internal
device signals to a small number of output pins for debugging
purposes, and allows you to take advantage of advanced features in
your external logic analyzer or mixed signal oscilloscope.

■ In-System Memory Content Editor—This feature provides read and
write access to in-system FPGA memories and constants through the
JTAG interface, making it easy to test changes to memory contents
and constant values in the FPGA while the device is functioning in a
system.

■ In-System Sources and Probes—This feature sets up customized
register chains to drive or sample the instrumented nodes in your
logic design, providing an easy way to input simple virtual stimuli
and an easy way to capture the current value of instrumented nodes.
You can force trigger conditions set up using the SignalTap II Logic
Analyzer, create simple test vectors to exercise your design without
the use of external test equipment, and dynamically control run-time
control signals with the JTAG chain.

1–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

■ Virtual JTAG Megafunction—The sld_virtual_jtag megafunction
allows you to build your own system-level debugging infrastructure,
including both processor-based debugging solutions and debugging
tools in software for system-level debugging. The sld_virtual_jtag
megafunction can be instantiated directly in your HDL code to
provide one or more transparent communication channels to access
parts of your FPGA design using the JTAG interface of the device.

f For more information about debugging tools, refer to “Referenced
Documents” on page 1–20.

If you intend to use any of these features, you may have to plan for the
features when developing your system board, Quartus II project, and
design. The following paragraphs describe various factors to consider
during your design planning stages.

The SignalTap II Embedded Logic Analyzer, Logic Analyzer Interface, In-
System Memory Content Editor, In-System Sources and Probes, and
Virtual JTAG Megafunction all require JTAG connections to perform in-
system debugging. Plan your system and board with JTAG ports that are
available for debugging.

The JTAG debugging features also require a small amount of additional
logic resources to implement the JTAG hub logic. If you set up the
appropriate feature early in your design cycle, you can include these
device resources in your early resource estimations to ensure you do not
over-fill the device with logic.

The SignalTap II Embedded Logic Analyzer uses device memory to
capture data during system operation. Consider reserving device
memory to be used during debugging, to ensure that you have enough
memory resources to take advantage of this debugging technique.

To use incremental debugging with the SignalTap II Embedded Logic
Analyzer, the Full incremental compilation option must be turned on.
This option is on by default for projects created in the Quartus II software
version 6.1 or later, but is not turned on automatically for existing
projects. If incremental compilation is not enabled, you must recompile
the entire design when you want to add debugging functions, or when
you make certain changes to SignalTap II settings. Using incremental
compilation with the SignalTap II Embedded Logic Analyzer greatly
reduces the compilation time required for debugging.

SignalProbe and the Logic Analyzer Interface require I/O pins for
debugging. Consider reserving I/O pins for debugging so that you do not
have to change the design or board to accommodate debugging signals
later. Keep in mind that the Logic Analyzer Interface can multiplex

Altera Corporation 1–13
October 2007

Design Planning with the Quartus II Software

signals with design I/O pins if required. Ensure that your board supports
some kind of debugging mode, where debugging signals do not affect
system operation.

If you want to use the Virtual JTAG megafunction for custom debugging
applications, you must instantiate it and incorporate it as part of the
design process.

The In-System Sources and Probes feature also requires that you
instantiate a megafunction in your HDL code. In addition, you have the
option to instantiate the SignalTap II Embedded Logic Analyzer as a
megafunction so that you can connect it up to nodes in your design
manually and ensure that the tapped node names are not changed during
synthesis. You can add the debugging block as a separate design partition
for incremental compilation to minimize recompilation times.

To use the In-System Memory Content Editor for RAM or ROM blocks or
the LPM_CONSTANT megafunction, ensure that you turn on the option
Allow In-System Memory Content Editor to capture and update
content independently of the system clock when you create the memory
block in the MegaWizard Plug-In Manager.

Planning for an
Incremental
Compilation
Flow

If you want to take advantage of the compilation-time savings and
performance preservation of Quartus II incremental compilation, plan for
an incremental compilation flow from the beginning of your design cycle.
The following subsections describe the flat compilation flow, where the
design hierarchy is flattened without design partitions, and then the
incremental compilation flows that use design partitions in top-down,
bottom-up, or mixed design methodologies. Incremental compilation
flows offer several advantages but require more design planning to
ensure good quality of results. The last subsections discuss factors to
consider when planning an incremental compilation flow: planning
design partitions and creating a design floorplan.

f For details about using the incremental compilation flows in the
Quartus II software, as well as important guidelines for creating design
partitions and a design floorplan, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Flat Compilation Flow with No Design Partitions

In this compilation flow in the Quartus II software, the entire design is
compiled together in a “flat” netlist. This flow is used if you do not create
any design partitions. Your source code can have hierarchy, but the
design is flattened during compilation and all of the design source code

1–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

is synthesized and fit in the target device whenever the design is
recompiled after any change in the design. By processing the entire
design, the software performs all available logic and placement
optimizations on the entire design to improve area and performance. You
can use debugging tools incrementally, such as the SignalTap II Logic
Analyzer, but you do not specify any design partitions to preserve design
hierarchy during compilation.

The flat compilation flow is easy to use; you do not have to plan any
design partitions. However, because the entire design is recompiled
whenever there are any changes to the design, compilation times can be
relatively long for large devices. In addition, you may find that the results
for one part of the design change when you change a different part of
your design.

1 The full incremental compilation option is turned on by default
in the Quartus II software (beginning with version 6.1), so the
project is ready for you to create design partitions for
incremental compilation. If you do not create any lower-level
design partitions, the entire design is considered as a single
design partition, and the software uses a flat compilation flow.

Incremental Compilation with Design Partitions

In an incremental compilation flow, the system architect splits a large
design into smaller partitions which can be designed separately. Team
members can work on partitions independently, which can simplify the
design process and reduce compilation time.

When hierarchical design partitions are well chosen and placed in the
device floorplan, you can speed up your design compilation time while
maintaining or even improving the quality of results.

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to, or optimize, one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and reduce compilation time on subsequent iterations.

Incremental compilation may also be useful for both reducing
compilation time and achieving timing closure. For example, you may
want to specify which partitions should be preserved in subsequent
incremental compilations and then recompile the other partitions with
advanced optimizations turned on.

Altera Corporation 1–15
October 2007

Design Planning with the Quartus II Software

If a part of your design is not yet complete, you can create an empty
partition for the incomplete part of the design while compiling the
completed partitions. Then save the results for the complete partitions
while you work on the new part of the design.

Alternately, different designers or IP providers may be working on
different blocks of the design using a team-based methodology, and you
may want to combine these blocks in a bottom-up compilation flow.

In an incremental compilation flow, after you partition the design, the
software performs logic synthesis and technology mapping for each
partition individually. The Analysis and Synthesis stage reads the project
assignments to determine the partition boundaries. If any part of the
design changes, Analysis and Synthesis processes the changed partitions
and keeps the existing netlist for the unchanged partitions.

If you use a third-party synthesis tool, you should create separate VQM
or EDIF netlists for each design partition in your synthesis tool. You may
have to create separate projects within your synthesis tool so that the tool
synthesizes each partition separately and generates separate output
netlist files. Refer to your synthesis tool documentation for information
about support for Quartus II incremental compilation. The netlists are
then considered the “source files” for incremental compilation. After
completion of the Quartus II Analysis and Synthesis step, each partition
has one post-synthesis netlist.

The Quartus II Partition Merge step creates a complete netlist that
consists of post-synthesis netlists, post-fitting netlists, or both, or netlists
imported from lower-level projects, depending on the netlist type you
specify for each partition. The Fitter then processes the merged netlist,
preserving the placement or placement and routing of unchanged
partitions, and refitting only those partitions that have changed.

Top-Down Versus Bottom-Up Incremental Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows that are suitable for different design
methodologies. You can also combine these flows in a mixed compilation
flow. The following subsections briefly describe each of these compilation
flows so that you can choose the flow that best meets your design needs.

Top-Down Incremental Compilation Flow

With top-down compilation, one designer or project lead compiles the
entire design in the software. Different designers or IP providers can
design and verify different parts of the design, and the project lead can
add design entities to the project as they are completed. You can also

1–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

target optimizations on one part of the design while designating the rest
of the design as “empty.” Regardless of the source for all the design logic,
the project lead compiles and optimizes the top-level project as a whole.

Incremental compilation preserves the compilation results and
performance of unchanged partitions in your design, greatly reducing
design iteration time by focusing new compilations only on changed
design partitions. New compilation results are then merged with the
previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions
untouched. You can also use this flow with empty partitions if parts of
your design are incomplete or missing.

Bottom-Up and Team-Based Incremental Compilation Flow

Bottom-up design flows allow individual designers to complete the
optimization of their design in separate projects and then integrate each
lower-level project into one top-level project. Bottom-up methodologies
include team-based design flows in which design partitions are created
by team members in another location or by third-party IP providers.

Incremental compilation provides export and import features to enable
bottom-up design methodologies. Designers of lower-level blocks can
export the optimized netlist for their design, along with a set of
assignments, such as LogicLock™ regions. The system architect then
imports each design block as a design partition in a top-level project.

In bottom-up design flows, it is very important that the system architect
provide guidance to designers of lower-level blocks to ensure that each
partition uses the appropriate device resources. Because the designs are
developed independently, each lower-level designer has no information
about the overall design or how their partition connects with other
partitions. This lack of information can lead to problems during system
integration. The top-level project information, including pin locations,
physical constraints, and timing requirements, should be communicated
to the designers of lower-level partitions before they start their design.

The system architect can plan design partitions at the top level and use
Quartus II incremental compilation to communicate information to
lower-level designers through automatically-generated scripts. The
Quartus II option Generate bottom-up design partition scripts
automates the process of transferring top-level project information to
lower-level modules. The software provides a project manager interface
for managing project information in the top-level design.

Altera Corporation 1–17
October 2007

Design Planning with the Quartus II Software

The scripts can create Quartus II projects for all the lower-level design
blocks and pass all the relevant project assignments. Using these scripts
makes it easier for designers of lower-level modules to implement the
instructions from the project lead, and avoid conflicts between projects
when importing and incorporating the projects into the top-level design.
Using this methodology helps reduce the need to further optimize the
designs after integration and improves overall designer productivity and
team collaboration.

Mixed Incremental Compilation Flow

You can combine top-down and bottom-up compilation flows to take
advantage of top-down flows for part of your design, while importing
parts of the design that are developed independently.

The top-down flow is generally simpler to perform than its bottom-up
counterpart. For example, the need to export and import lower-level
designs is eliminated. A top-down approach also provides the design
software with information about the entire design, so it can perform
global placement optimizations when no part of the design is locked
down to a specific location.

In a bottom-up design methodology, you must perform very careful
resource balancing and time-budgeting, because the software does not
have any information about the other partitions in the top-level design
when it compiles individual lower-level partitions. Using bottom-up
compilation flows where required, in combination with top-down
compilation flows to reduce compilation time and preserve results for
other parts of the design, can be an effective way to improve your
productivity.

Planning Design Partitions

Partitioning a design for an FPGA requires planning to ensure optimal
results when the partitions are integrated, and ensure that each partition
is placed well relative to other partitions in the device. Following Altera’s
recommendations for creating design partitions improves the overall
quality of results. For example, registering partition I/O boundaries
keeps critical timing paths inside one partition that can be optimized
independently. When the design partitions are specified, you can use the
Incremental Compilation Advisor to ensure that partitions meet Altera’s
recommendations.

Determining a timing budget before designers develop their individual
blocks reduces the chance of timing problems during system integration.
If you optimize lower-level partitions separately, any unregistered paths
that cross between partitions are not optimized as an entire path. To

1–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

ensure that the software correctly optimizes the input and output logic in
each partition, you may be required to perform some manual timing
budgeting. For each unregistered timing path that crosses between
partitions, you should make timing assignments on the corresponding
I/O path in each partition to constrain both ends of the path to the
budgeted timing delay. Assigning a timing budget for each part of the
connection ensures that the software optimizes paths appropriately so
they meet the top-level design requirements.

It is important to plan and balance resource utilization. When performing
incremental compilation, the software synthesizes each partition
separately, with no data about the resources used in other partitions.
Therefore, device resources can be overused in the individual partitions
during synthesis, and the design may not fit in the target device when the
partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level. Balancing resource
utilization between the design partitions avoids any problems with
conflicting resources when all the partitions are integrated.

Creating a Design Floorplan

To take full advantage of incremental compilation, you should create a
design floorplan to avoid conflicts between design partitions, and to
ensure that each partition is placed well relative to other partitions.
Creating location assignments for each partition ensures that no conflicts
occur for locations between different partitions. In addition, a design
floorplan helps to avoid a situation in which the Fitter is directed to place
or replace a portion of the design in an area of the device where most
resources have already been claimed. Without floorplan assignments,
this situation can lead to increased compilation time and reduced quality
of results.

You can use the Quartus II Timing Closure Floorplan or Chip Planner,
depending on your target device, to create a design floorplan using
LogicLock region assignments for each design partition. With a basic
design framework for the top-level design, these floorplan editors allow
you to view connections between regions, estimate physical timing
delays on the chip, and move regions around the device floorplan. When
you have compiled the full design, you can also view logic placement and
locate areas of routing congestion to improve the floorplan assignments.

Altera Corporation 1–19
October 2007

Design Planning with the Quartus II Software

Good partition and floorplan design helps lower-level designs meet top-
level design requirements when integrated with the rest of the design,
reducing the time spent integrating and verifying the timing of the top-
level design.

f For details about creating placement assignments in the design
floorplan, refer to the Analyzing and Optimizing the Design Floorplan
chapter in volume 2 of the Quartus II Handbook.

Early Timing
Estimation

It is much less costly to find design issues early in the design cycle than
to find problems in the final timing closure stages. Once the first version
of the design source code is complete, you may want to perform a quick
compilation to create a kind of silicon virtual prototype, or SVP, that you
can use to perform timing analysis.

Regardless of your compilation flow, when the design source code is
complete you can use the Start Early Timing Estimate option to perform
a quick compilation and timing analysis of your design. The software
chooses a device automatically if required, places any LogicLock regions
used to create a floorplan, finds a quick initial placement for all the design
logic, and provides a useful estimate of the final design performance. If
you have entered timing constraints, timing analysis reports on these
constraints.

1 Early Timing Estimation is supported with both the TimeQuest
and Classic Timing Analyzers. Use the TimeQuest Timing
Analyzer with Synopsys Design Constraint (SDC) format
constraints to enable advanced timing analysis capabilities that
are not available in the Classic Timing Analyzer.

Designers of individual blocks in bottom-up design flows can use this
feature as they develop the design. Any issues the feature highlights in
the lower level design blocks can be communicated to the system
architect. Resolving these issues may require allocating additional device
resources to the individual block or changing its timing budget.

A top-level designer can also use early timing estimation to prototype the
entire design. Incomplete partitions can be marked as empty in an
incremental compilation flow, while the rest of the design is compiled to
get an early timing estimate and detect any problems with design
integration.

A system architect can use early timing estimation along with design
partition scripts (as described in “Bottom-Up and Team-Based
Incremental Compilation Flow” on page 1–16) to pass additional
constraints to lower-level designers, and provide more information about

1–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

the other partitions in the design. This information can be especially
useful to optimize cross-partition paths. Running early timing
estimations helps designers find and resolve design problems during the
early design stages.

Conclusion Modern FPGAs support large, complex designs with fast timing
performance. By planning several aspects of your design early in the
process, you can reduce unnecessary time spent handling issues in later
stages of the process. You can use various features of the Quartus II
software to quickly plan your design and achieve the best possible
results. Choosing the correct device and programming method, planning
I/O pin locations, estimating power consumption, selecting appropriate
third-party tools, planning for debugging options, performing good
design partitioning, and obtaining early timing estimates all improve
productivity, which reduces the design cost and improves the final
product’s time to market.

Referenced
Documents

This chapter references the following documents:

■ AN 386: Using the MAX II Parallel Flash Loader with the Quartus II
Software

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Cadence PCB Design Tools chapter in volume 2 of the Quartus II
Handbook

■ Configuration Handbook
■ Design Debugging Using the SignalTap II Embedded Logic Analyzer

chapter in volume 3 of the Quartus II Handbook
■ Design Debugging Using In-System Sources and Probes chapter in

volume 3 of the Quartus II Handbook
■ Formal Verification section in volume 3 of the Quartus II Handbook
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ In-System Debugging Using External Logic Analyzers chapter in

volume 3 of the Quartus II Handbook
■ In-System Updating of Memory and Constants chapter in volume 3 of

the Quartus II Handbook
■ Introduction to Quartus II Manual
■ Mentor Graphics PCB Design Tools Support chapter in volume 2 of the

Quartus II Handbook
■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the

Quartus II Handbook
■ Simulation section in volume 3 of the Quartus II Handbook

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www/literature/hb/qts/qts_qii52015.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www/literature/hb/qts/qts_qii53021.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii53012.pdf

Altera Corporation 1–21
October 2007

Design Planning with the Quartus II Software

■ sld_virtual_jtag Megafunction User Guide
■ Synthesis section in volume 1 of the Quartus II Handbook

Document
Revision History

Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 1–20. Updated for the Quartus II
7.2 software release.

May 2007 v7.1.0 Updated for the Quartus II 7.1 software release, including:
● Expanded Introduction, Device Migration Planning, and

Early Pin Planning and Analysis sections.
● Added new sections: Selecting Third-Party EDA Tool Flows

and Planning for Debug Options.
● Other minor changes and reorganization.
● Added Referenced Documents.

Updated for the Quartus II
7.1 software release and
expanded topic coverage.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November 2006
v6.1.0

Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/ug/ug_virtualjtag.pdf

1–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Altera Corporation 2–1
October 2007 Preliminary

2. Quartus II Incremental
Compilation for Hierarchical

and Team-Based Design

Introduction For today’s high-density, high-performance FPGA designs, the ability to
iterate rapidly during the design and debugging stages is critical. The
Quartus® II software delivers advanced technology to create designs for
high-density FPGAs. Altera® introduced the FPGA industry’s first true
incremental design and compilation flow, which provides the following
benefits:

■ Preserves the results and performance for unchanged logic in your
design as you make changes elsewhere.

■ Reduces design iteration time by up to 70%, so you can perform more
design iterations per day and achieve timing closure efficiently.

■ Easy to use in the graphical user interface (GUI).
■ Includes Tcl scripting, command-line, and makefile support.
■ Facilitates modular hierarchical and team-based design flows using

top-down or bottom-up methodologies.
■ Supports the Arria™ GX devices, and Stratix® and Cyclone® series of

devices. Supports some incremental compilation flows for
HardCopy® II devices (for details, refer to “HardCopy Compilation
Flows” on page 2–82).

Quartus II incremental compilation is an optional compilation flow.
“Choosing a Quartus II Compilation Flow” on page 2–3 provides an
overview of the Quartus II design flow with and without incremental
compilation to help you decide if you should take advantage of this
feature for your project. The remainder of the chapter includes the
following sections:

■ “Quick Start Guide – Summary of Steps for an Incremental
Compilation Flow” on page 2–11

■ “Design Partitions” on page 2–17
■ “Creating Design Partitions” on page 2–19
■ “Setting the Netlist Type for Design Partitions” on page 2–22
■ “Creating a Design Floorplan With LogicLock Location

Assignments” on page 2–29
■ “Exporting and Importing Partitions for Bottom-Up Design Flows”

on page 2–32
■ “Guidelines for Creating Good Design Partitions and LogicLock

Regions” on page 2–46
■ “Recommended Design Flows and Compilation Application

Examples” on page 2–62
■ “Incremental Compilation Restrictions” on page 2–76

QII51015-7.2.0

2–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ “Scripting Support” on page 2–99
■ “Conclusion” on page 2–109

To take advantage of incremental compilation, you organize your design
into logical partitions and physical regions for synthesis and fitting (or
placement and routing). Incremental compilation preserves the
compilation results and performance of unchanged partitions in your
design, dramatically reducing design iteration time by focusing new
compilations only on changed design partitions. New compilation results
are then merged with the previous compilation results from unchanged
design partitions. Additionally, you can target optimization techniques,
such as physical synthesis, to specific design partitions while leaving
other partitions untouched.

Incremental compilation supports two design methodologies: top-down,
in which one designer manages a single project for the entire design, and
bottom-up, in which each design block can be developed independently.
Bottom-up methodologies include team-based design flows in which
design partitions are created by team members in another location or by
third-party intellectual property (IP) providers. For bottom-up flows, you
can generate scripts from the top-level design that pass constraints to
lower-level design blocks compiled in separate Quartus II projects.

This chapter contains information to satisfy the following goals:

■ Provide an overview of the Quartus II compilation flow and help
you decide whether to use incremental compilation

■ Describe how to use the Quartus II incremental compilation feature
with a quick start guide and then more detailed information

■ Provide you with the level of understanding required to make good
design decisions to achieve timing closure while speeding up design
iterations

■ Present several recommended design flows for incremental
compilation in the form of examples, along with the rationale behind
them and the steps required to carry out the tasks:
● “Design Flow 1—Changing a Source File for One of Multiple

Partitions in a Top-Down Compilation Flow” on page 2–62
● “Design Flow 2—Optimizing the Placement for One of Multiple

Partitions in a Top-Down Compilation Flow” on page 2–63
● “Design Flow 3—Preserving One Critical Partition in a

Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2–64

● “Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2–65

● “Design Flow 5—Implementing a Team-Based Bottom-Up
Design Flow” on page 2–67

Altera Corporation 2–3
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

● “Design Flow 6—Performing Design Iteration in a Bottom-Up
Design Flow” on page 2–71

● “Design Flow 7—Creating Hard-Wired Macros for IP Reuse” on
page 2–73

Choosing a
Quartus II
Compilation
Flow

Quartus II incremental compilation enhances the standard Quartus II
design flow by allowing you to reuse satisfactory results from previous
compilations and save compilation time. This section outlines the flat
compilation flow with no design partitions and the incremental flow, and
explains the differences. The section explains when a flat compilation
flow is satisfactory, and highlights some of the reasons you might want
to create design partitions and use the incremental flow.

The full incremental compilation option is turned on by default in the
Quartus II software, so the project is ready for you to create design
partitions for incremental compilation. If you do not create any design
partitions, the software uses a flat compilation flow.

Flat Compilation Flow with No Design Partitions

The standard Quartus II compilation flow consists of the following
essential modules:

■ Analysis and Synthesis—performs logic synthesis to minimize the
design logic and performs technology mapping to implement the
design logic using device resources such as logic elements. This stage
also generates the project database that integrates the design files
(including netlists from third-party synthesis tools). When you are
using EDIF or VQM netlists created by third-party synthesis tools,
the Analysis and Synthesis stage performs logic synthesis and
technology mapping only for black boxes and Altera megafunctions.

■ Fitter—places and routes the logic of a design into a device.
■ Assembler—converts the Fitter’s device, logic, and pin assignments

into programming files for the device.
■ Timing Analyzer—analyzes and validates the timing performance

of all the logic in a design.

2–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–1 shows a block diagram of the Quartus II design flow with no
design partitions.

Figure 2–1. Quartus II Design Flow with No Design Partitions

Note to Figure 2–1:
(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis

tools, the Analysis and Synthesis stage of the compilation is performed to create
the design database, but logic synthesis and technology mapping are performed
only for black boxes and Altera megafunctions.

In any Quartus II compilation flow, you can use smart compilation to
allow the compiler to determine which compiler modules are required
based on the changes made to the design since the last smart compilation,
and then skip any modules that are not required. For example, when
smart compilation is selected, the compiler skips the Analysis & Synthesis
module if the design source files were unchanged. Smart compilation
skips only entire compiler stages. It cannot make incremental changes

Fitter
Place-and-Route

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

 Block
Design

File
(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Settings &

Assignments

Post-Fit
Netlist

Post-Synthesis
Netlist

Assembler

Settings &
Assignments

Make Design & Assignment
Modifications

Timing Analyzer

Requirements
Satisfied?

Yes

No

Program/Configure Device

(1)

Altera Corporation 2–5
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

within a given stage of the compilation flow. To turn on smart
compilation, on the Assignments menu, click Settings. In the Category
list, select Compilation Process Settings and click Use Smart
Compilation.

In the default flat compilation flow, all of the source code is processed
with the Analysis & Synthesis module, and all the logic is placed by the
Fitter module whenever the design is recompiled after a change in any
part of the design. One reason for this behavior is to obtain optimal
quality of results. By processing the entire design, the compiler can
perform global optimizations to improve area and performance.

You can use a flat compilation flow for small designs, such as designs in
CLPD devices or low-density FPGA devices, when the timing
requirements are met easily with a push-button compilation. A flat
design is satisfactory when compilation time and preserving results for
timing closure are not concerns.

Incremental Compilation Flow with Design Partitions

There are many situations in which an incremental compilation flow is
more desirable than the simple flat compilation flow. Using an
incremental flow allows you to preserve the results and performance for
unchanged logic in your design as you make changes elsewhere. It
reduces design iteration time by up to 70%, allowing you to perform more
design iterations per day and achieve timing closure more efficiently.
Incremental compilation is recommended for large designs and high
device densities, as well as designs that require high performance relative
to the speed of the device architecture. The feature also facilitates
team-based design environments, allowing designers to create and
optimize design blocks independently.

In conventional FPGA design, as described in the previous section, a
hierarchical design is flattened into a single netlist before logic synthesis
and fitting, and the entire design is recompiled every time the design
changes. To use the Quartus II incremental compilation flow, you start by
splitting your design along any of its hierarchical boundaries into blocks
called design partitions. Refer to “Design Partitions” on page 2–17 for
more details. The Quartus II software synthesizes each individual
hierarchical design partition separately, then merges the partitions into a
complete netlist for subsequent stages of the compilation flow. When
recompiling the design, you can choose to use source code, post-synthesis
results, or post-fitting results for each partition. If you want to preserve
the Fitter results, you can choose to keep just the Fitter netlist, keep the
placement results, or keep both the placement and routing results.

2–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to or optimize one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and to reduce compilation time on subsequent iterations.
There are also situations in which incremental compilation is useful both
for reducing compilation time and for achieving timing closure. For
example, you may want to specify which partitions should be preserved
in subsequent incremental compilations, and then recompile the other
partitions with advanced optimizations turned on.

You might also have part of your design that is not yet complete, for
which you can create an empty partition while compiling the completed
partitions, and then save the results for the complete partitions while you
work on the new part of the design. Alternatively, different designers or
IP providers may be working on different blocks of the design using a
team-based methodology, and you might want to combine them in a
bottom-up compilation flow. In these cases, the Fitter can perform
placement and routing on each partition independently.

If you want to use the incremental compilation feature at any point in
your design flow, it is beneficial to start planning for incremental
compilation from the start of your design development. It is easier to
accommodate the guidelines for partitioning and creating a floorplan if
you start planning at the beginning of your design cycle. Refer to
“Guidelines for Creating Good Design Partitions and LogicLock
Regions” on page 2–46 for more information. For more detailed examples
that describe recommended design flows to take advantage of the
incremental compilation features, refer to “Recommended Design Flows
and Compilation Application Examples” on page 2–62.

Altera Corporation 2–7
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–2 shows a block diagram of the Quartus II design flow using
incremental compilation with design partitions.

Figure 2–2. Quartus II Design Flow Using Incremental Compilation

Note to Figure 2–2:
(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis

tools, the Analysis and Synthesis stage of the compilation is performed to create
the design database, but logic synthesis and technology mapping are performed
only for black boxes and Altera megafunctions.

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis
Synthesize Changed Partitions,

Preserve Others

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each

Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

One Post-Fit
Netlist per
Partition

One Post-Synthesis
Netlist per Partition

Single Post-Fit
Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,

Preserve Others

Create Individual Netlists and
Complete Netlists

Assembler

Settings &
Assignments

Make Design &
Assignment Modifications

Settings &
Assignments

Design Partition
Assignments

Floorplan
Location

Assignments

Timing Analyzer

Requirements
Satisfied?

Yes

No

Program/Configure Device

Partition Top

Partition 1

Partition 2

(1)

2–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

In this flow, Analysis and Synthesis reads the project assignments to
determine the partition boundaries, and performs logic synthesis and
technology mapping for each partition individually.

The diagram in Figure 2–2 shows a top-level partition and two
lower-level partitions. If any part of the design changes, Analysis and
Synthesis processes the changed partitions and keeps the existing netlists
for the unchanged partitions. After completion of Analysis and Synthesis,
there is one post-synthesis netlist for each partition.

The partition merge step creates a single, complete netlist that consists of
post-synthesis netlists, post-fit netlists, and netlists imported from
lower-level projects, depending on the netlist type you specify for each
partition.

The Fitter then processes the merged netlist, preserving the placement or
placement and routing of unchanged partitions, refitting only those
partitions that have changed. The Fitter generates the complete netlist for
use in further stages of the compilation flow, including timing analysis
and programming file generation. It also generates individual netlists for
each partition so that the partition merge step can use the post-fit netlist
to preserve the placement and routing of a partition if you specify to do
so in future compilations.

If the design does not meet its requirements (functionality, timing, or
area), you can make changes to the design and recompile. The Quartus II
software does not resynthesize or refit unchanged partitions that have a
netlist type assignment that specifies the use of a post-synthesis or post-fit
netlist, respectively.

For more information about using the incremental compilation feature,
refer to the “Quick Start Guide – Summary of Steps for an Incremental
Compilation Flow” on page 2–11.

See Table 2–1 for a summary of the impact of incremental compilation on
your compilation results.

Table 2–1. Summary of the Impact of Full Incremental Compilation (Part 1 of 2)

Characteristic Impact of Full Incremental Compilation

Compilation Time
Savings

Typically saves 50-70% of compilation time when post-fit netlists are preserved; savings in
both Quartus II integrated synthesis and the Fitter.

Performance
Preservation

Excellent when critical paths are contained within a partition, because you can preserve
post-fitting information for unchanged partitions.

Node Name
Preservation

Preserves post-fitting node names for unchanged partitions.

Altera Corporation 2–9
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Top-Down versus Bottom-Up Compilation Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows. With top-down compilation, one
designer or project lead compiles the entire design in the software.
Different designers or IP providers can design and verify different parts
of the design, and the project lead can add design entities to the project as
they are completed. You can use a top-down flow to optimize one block
or IP core in which timing is critical before adding the rest of the design.
However, one person (generally the project lead or system architect)
compiles the top-level project as a whole. Completed parts of the design
can have fitting results and performance fixed as other parts of the design
are changing.

Bottom-up design flows allow individual designers or IP providers to
complete the optimization of their design in separate projects and then
integrate each lower-level project into one top-level project. Incremental
compilation provides export and import features to enable this design
methodology. Designers of lower-level blocks can export the optimized
placed and routed netlist for their design, along with a set of assignments
such as LogicLock™ regions. The project lead then imports each design
block as a design partition in a top-level project.

Area Changes Area might increase because cross-boundary optimizations are no longer possible, and
placement and register packing are restricted.

fM A X Changes fM A X might be reduced because cross-boundary optimizations are no longer possible. If the
design is partitioned and the floorplan location assignments are created appropriately, no
negative impact on fM A X.

Floorplan
Creation

Required for critical partitions to ensure the best quality of results when making design
changes. Required in bottom-up flows to avoid placement conflicts.

When Design is
Resynthesized

When you set the Netlist Type to use the source file. It is also resynthesized automatically
any time you make changes to the source code, unless you specify a Post-Fit (Strict) netlist,
or it is an imported partition.

When Design is
Refit

When you set the Netlist Type to use the source file, a post-synthesis netlist, or a post-fit
netlist with a Fitter preservation level of Netlist Only. It is also refit automatically any time you
make changes to the source code, unless you specify a Post-Fit (Strict) netlist, or it is an
imported partition.

Table 2–1. Summary of the Impact of Full Incremental Compilation (Part 2 of 2)

Characteristic Impact of Full Incremental Compilation

2–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The following two benefits are associated with a bottom-up design flow:

■ It facilitates team-based development
■ It permits the reuse of compilation results from another project, with

the ultimate goals of performance preservation and compilation time
reduction.

A bottom-up design flow also has the following potential drawbacks that
require careful planning:

■ It may be difficult to achieve timing closure for the full design
because you compile the lower-level blocks independently without
any information about each other. This problem may be avoided by
careful timing budgeting and special design rules, such as always
registering the ports at the module boundaries.

■ For the same reason, resource budgeting and allocation may be
required to avoid resource conflicts and overuse. Floorplan creation
is typically very important in a bottom-up flow.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. For more information about the export and import
operations, and how to use design partition scripts to help with design
planning, refer to “Exporting and Importing Partitions for Bottom-Up
Design Flows” on page 2–32.

It is important to understand that with the full incremental compilation
flow, users who traditionally relied on a bottom-up approach for the sole
reason of performance preservation can now employ a top-down
approach to achieve the same goal. This ability is important for two
reasons. First, a top-down flow is generally simpler to perform than its
bottom-up counterpart. For example, the need to export and import
lower-level designs is eliminated. Second, a top-down approach provides
the design software with information about the entire design so it can
perform global placement and routing optimizations.

You can also mix top-down and bottom-up flows within a single project.
If the top-level design includes one or more design blocks that are created
by different designers or IP providers, you can import those blocks (using
a bottom-up methodology) into a project that also includes partitions for
a top-down incremental methodology.

Altera Corporation 2–11
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Quick Start
Guide –
Summary of
Steps for an
Incremental
Compilation
Flow

This section provides a summary of the steps required to perform an
incremental compilation flow. Detailed descriptions for some of these
steps are included in later sections of this chapter. For more examples of
design flows that take advantage of the incremental compilation features,
refer to “Recommended Design Flows and Compilation Application
Examples” on page 2–62.

Top-Down Incremental Compilation Flow

The flow chart in Figure 2–3 illustrates the complete incremental
compilation flow using a top-down methodology (all partitions are
contained in one top-level project). The following subsections describe
the steps in the flow. First, prepare the design for incremental
compilation and perform a full compilation. Then proceed to verify or
debug your design and make design changes as required. When you
perform additional design iterations and recompile your design, you can
choose which netlists to reuse and perform incremental compilations.

Figure 2–3. Summary of Top-Down Incremental Compilation Flow

Perform Analysis & Elaboration

Repeat as Needed
During Design, Verification,
& Debugging Stages

Create Floorplan Location
Assignments using LogicLock Regions

Perform Complete Compilation
(All Partitions are Compiled)

Set Netlist Type for Each Partition

Make Changes to Design

Perform Incremental Compilation
(Partitions are Compiled if Required)

Create Design Partitions

2–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Preparing a Design for Top-Down Incremental Compilation

To set up your design for incremental compilation, use the following
general steps:

1. Elaborate the design. On the Processing menu, point to Start and
click Start Analysis & Elaboration, or run any compilation flow
that includes this step. Elaboration is part of the synthesis process
that identifies your design’s hierarchy.

2. Create partitions in your design by applying the Set as Design
Partition assignment to the appropriate instances.

Refer to “Design Partitions” on page 2–17 for an explanation of
design partitions and what part of your design can be specified as a
design partition. Refer to “Creating Design Partitions” on page 2–19
for details about assigning design partitions. For guidelines, refer to
“Guidelines for Creating Good Design Partitions and LogicLock
Regions” on page 2–46. The most important guidelines include using
registers at the I/O boundaries of each partition, and minimizing the
number of signals that cross between partitions.

3. Use LogicLock regions to make location assignments for each
partition to create a design floorplan. Depending on your design
flow and requirements, each partition may be required to be
assigned to a physical region on the device. Refer to the section
“Creating a Design Floorplan With LogicLock Location
Assignments” on page 2–29 for details about these assignments. For
guidelines, refer to “Guidelines for Creating Good Design Partitions
and LogicLock Regions” on page 2–46.

4. On the Processing menu, click Start Compilation to compile the
design. The first compilation after making partition and LogicLock
assignments is a complete compilation that prepares the design for
subsequent incremental compilations.

Compiling a Design Using Incremental Compilation

After compiling the design once and then making changes, you can take
advantage of incremental compilation to recompile the changed parts of
the design while preserving the results for the unchanged partitions, thus
saving time on subsequent compilations. To do this, perform the
following general steps:

1. Choose which compilation results you would like to reuse for each
partition. To preserve previous placement results for a partition, set
the Netlist Type assignment for that partition to Post-Fit. To
preserve routing information as well, set the Fitter Preservation

Altera Corporation 2–13
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Level to Placement and Routing. To save only the synthesis results,
set the Netlist Type assignment for that partition to Post-Synthesis.
Partitions with source code changes are recompiled automatically.
You can also direct the software to recompile from the source code
by choosing the Source File netlist type. If you do not want to
compile a specific partition at all, set its Netlist Type to Empty.

For details about setting these partition properties, refer to “Setting
the Netlist Type for Design Partitions” on page 2–22.

2. Compile the design. When you start a compilation for a partitioned
design with incremental compilation turned on, the Quartus II
software uses the incremental compilation flow, preserving the
results you specified in Step 1.

Bottom-Up Incremental Compilation

The flow chart in Figure 2–4 illustrates the incremental compilation flow
using a bottom-up methodology (lower-level partitions are compiled
separately before being imported into the top-level project). The
following subsections describe the steps involved in the flow.

First, prepare the top-level design for incremental compilation. Then
design, optimize, verify, and debug the lower-level projects. Export the
lower-level projects, and import them into the top-level design. Finally,
compile the entire top-level design.

Figure 2–4. Summary of Bottom-Up Incremental Compilation Flow

Prepare Top-Level Project for
Bottom-Up Incremental Compilation

Repeat as Needed
During Design, Verification,
& Debugging Stages

Design, Compile, & Optimize
Lower-Level Project(s)

Export Lower-Level Project(s)

Import Lower-Level Project(s)
into Top-Level Project

Perform Incremental Compilation
in Top-Level Project

Create Lower-Level Project(s)

2–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Preparing a Design for Bottom-Up Incremental Compilation

The design’s project lead or top-level designer should perform the
following steps to prepare the design for a successful bottom-up design
methodology:

1. Create the top-level Quartus II project that will eventually
incorporate the entire design, and apply project-wide settings and
global assignments.

a. Define source code for a “skeleton” of the entire design that
defines the hierarchy and the port interfaces for the lower-level
designs. The top-level design file must include the top-level
entity that instantiates the lower-level blocks you plan to
compile in separate Quartus II projects. Include wrapper HDL
files for each of these blocks that define at least the port
interface. Analysis and Elaboration requires this wrapper file
(also known as a “stub” or “black box” file) to connect all the
separate design partitions at the top level. For example, in
Verilog HDL you should include a module declaration, and in
VHDL you should include an entity and architecture
declaration. The wrapper file does not have to contain any logic
for the design partition.

b. Create all global assignments, including the device assignment,
pin location assignments, and timing assignments, so that the
final design meets its requirements. Lower-level project
designers can add their own constraints for their partitions as
needed, and later provide them to the top-level designer, but
the basic constraints can be passed down from the top level to
avoid any conflicts and ensure that lower-level projects use the
correct assignments.

2. Make design partition assignments for each lower-level design, and
set the Netlist Type to Empty for each partition that will be
imported. Refer to “Creating Design Partitions” on page 2–19 and
“Setting the Netlist Type for Design Partitions” on page 2–22 for
details. For guidelines, refer to “Guidelines for Creating Good
Design Partitions and LogicLock Regions” on page 2–46.

3. Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. Refer to “Creating a Design Floorplan
With LogicLock Location Assignments” on page 2–29. For
guidelines, refer to “Guidelines for Creating Good Design Partitions
and LogicLock Regions” on page 2–46.

Altera Corporation 2–15
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

4. Optional: Perform a full compilation of the skeleton design and
create scripts to pass assignments to lower-level designers. After
compilation, on the Project menu, click Generate Bottom-Up
Design Partition Scripts. Refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 2–40 for details.
Provide each lower-level designer with the generated Tcl file to
create their project with the appropriate constraints. If you use
makefiles in your design environment, provide the makefile for
each partition.

Creating and Compiling Lower-Level Projects

The designer of each lower-level design should create and compile their
design in a separate Quartus II project.

If you are creating the project manually, create a new Quartus II project
for the subdesign with all the required settings. Create with LogicLock
region assignments and global assignments (including clock settings) as
specified by the project lead, as well as Virtual Pin assignments for ports
which represent connections to core logic instead of external device pins
in the top-level module.

If you have a bottom-up design partition script from the top-level
designer, source the Tcl script to create the Quartus II project with all the
required settings and assignments from the top-level design.

If you are using makefiles, use the make command and the makefile
provided by the project lead to create a Quartus II project with all the
required settings and assignments, and compile the project. Specify the
dependencies in the makefile to indicate which source file should be
associated with which partition.

Compile and optimize each lower-level design as a separate Quartus II
project.

Exporting Lower-Level Projects

When you have achieved the design requirements for the lower-level
design, export each design as a partition for the top-level design.

If you are not using makefiles, on the Project menu, use the Export
Design Partition dialog box to export each lower-level design. Refer to
“Exporting a Lower-Level Partition to be Used in a Top-Level Project” on
page 2–33. If you want to export only a portion of the design in the
lower-level project, refer to “Exporting a Lower-Level Block within a
Project” on page 2–35 for instructions. Each lower-level designer must
provide the Quartus II Exported Partition file (.qxp) to the project lead.

2–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If your design team is using makefiles, the project lead can use the make
command with the master_makefile to export the lower-level partitions
and create Quartus II Exported Partition files, and then import them into
the top-level design.

Importing Lower-Level Projects into the Top-Level Project

The project lead then imports the files sent in by the designers of each
lower-level subdesign partition.

If you are not using makefiles, on the Project menu, click Import Design
Partition and specify the partition in the top-level project that is
represented by the subdesign Quartus II Exported Partition (QXP) file.
Refer to “Importing a Lower-Level Partition Into the Top-Level Project”
on page 2–36 for details. Repeat the import process for each partition in
the design.

If you are using makefiles, the master_makefile command imports each
partition into the top-level design. Be sure to specify which source files
should be associated with which partition so that the software can rebuild
the project if source files change.

For details about which assignments are imported, and how to avoid
conflicts, refer to “Importing Assignments and Advanced Import
Settings” on page 2–37.

Performing an Incremental Compilation in the Top-Level Project

After you have imported the design partitions that make up the top-level
project, you can perform a full compilation. The software compiles
imported partitions in the same way as partitions defined in the top-level
project. The software recompiles an imported partition only if it has been
imported since the last compilation.

Altera Corporation 2–17
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Design
Partitions

It is a common design practice to create modular or hierarchical designs
in which you develop each design entity separately and then instantiate
them in a higher-level entity, forming a complete design. The software
does not consider each design entity automatically to be a design
partition for incremental compilation; rather, you must designate one or
more design hierarchies below the top-level project to be a design
partition. Creating partitions prevents the compiler from performing
optimizations across partition boundaries, as discussed in “Guidelines
for Creating Good Design Partitions and LogicLock Regions” on
page 2–46 and illustrated in Figure 2–10. However, this allows for
separate synthesis and placement for each partition, making incremental
compilation possible.

Partitions must have the same boundaries as hierarchical blocks in the
design because a partition cannot be a portion of the logic within a
hierarchical entity. When you declare a partition, every hierarchical entity
within that partition becomes part of the same partition. You can create
new partitions for hierarchical entities within an existing partition, in
which case the entities within the new partition are no longer included in
the higher-level partition, as described in the following example.

In Figure 2–5, hierarchical entities B and F form partitions in the complete
design, which is made up of entities A, B, C, D, E, and F. The shaded
boxes in Representation A indicate design partitions in a “tree”
representation of the hierarchy. In Representation B, the lower-level
entities are represented inside the higher-level entities, and the partitions
are illustrated with different colored shading. The top-level partition,
called Top, automatically contains the top-level entity in the design, and
contains any logic not defined as part of another partition. The design file
for the top level may be just a wrapper for the hierarchical entities below
it, or it may contain its own logic. In this example, the partition for
top-level entity A also includes the logic in one of its lower-level entities,
C. Because entity F is contained in its own partition, it is not treated as
part of the top-level partition. Another separate partition, B, contains the
logic in entities B, D, and E.

2–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–5. Partitions in a Hierarchical Design

Design Partition Assignments Compared to Physical Placement
Assignments

Design partitions for incremental compilation are logical partitions,
different from physical placement assignments in the device floorplan. A
logical design partition does not refer to a physical area of the device and
does not directly control the placement of instances. A logical design
partition sets up a virtual boundary between design hierarchies so each is
compiled separately, preventing logical optimizations from occurring
between them. The software creates a separate post-synthesis and
post-fitting netlist for each partition, which allows the software to reuse
the synthesis results or reuse the fitting results (including placement and
routing information) in subsequent compilations.

If you preserve the compilation results using a Post-Fit netlist, it is not
necessary for you to back-annotate or make any location assignments for
specific logic nodes. You should not use the incremental compilation and
assignment back-annotation features in the same Quartus II project. The

Partition Top

Representation A

Representation B

Partition B Partition F

D

D

E

B

B C

A

A

F

C

E EF

Altera Corporation 2–19
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

incremental compilation feature does not use placement “assignments”
to preserve placement results; it simply reuses the netlist database that
includes the placement information.

You can assign design partitions to physical regions in the device
floorplan using LogicLock assignments. Altera recommends using
LogicLock regions to improve the quality of results and avoid placement
conflicts when performing incremental compilation. LogicLock regions
have a size and location on the device floorplan, and you can assign a
partition to a physical region to place it in a specific area of the device.
Creating floorplan location assignments for design partitions using
LogicLock regions is discussed in “Creating a Design Floorplan With
LogicLock Location Assignments” on page 2–29.

Creating Design
Partitions

To use incremental compilation, you must first split your design into
partitions, as described in “Design Partitions” on page 2–17 and “Quick
Start Guide – Summary of Steps for an Incremental Compilation Flow” on
page 2–11. You can make partition assignments to HDL or schematic
design instances, or to VQM or EDIF netlist instances (from third-party
synthesis tools). To take advantage of incremental compilation when
source files change, the top-level design entity of each partition should
have a unique design file. If you define two different entities of separate
partitions but they are in the same design file, you cannot maintain
incremental compilation because the software would have to recompile
both partitions if you changed either entity in the design file.

When you are using a third-party synthesis tool, create a separate netlist
file for each partition to allow each partition to be treated incrementally.
To create separate netlists for each partition, you may have to create a
top-level HDL wrapper file that instantiates the lower-level netlist files
and then create separate projects in your synthesis tool for each of the
lower-level partitions. In this case, the lower-level blocks should be
treated as a black box in the top-level design. Some synthesis tools allow
you to create separate netlist files for different design blocks within a
single project.

f For information about using incremental compilation with third-party
synthesis tools, refer to the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

For suggestions on determining which parts of your design should be set
as design partitions, refer to “Guidelines for Creating Good Design
Partitions and LogicLock Regions” on page 2–46.

2–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The full incremental compilation option is turned on by default (for new
projects created in the Quartus II software version 6.1 and later), so the
project is ready for you to create design partitions.

If full incremental compilation is not turned on when you specify your
first partition, a dialog box appears that asks whether you want to enable
incremental compilation. Selecting Full incremental compilation in this
dialog box turns on incremental compilation on the Incremental
Compilation page under Compilation Process Settings in the Settings
dialog box.

Selecting Off on the Incremental Compilation page of the Settings
dialog box does not remove any partition assignments. Partition
assignments have no effect on the design if incremental compilation is
turned off.

You can create design partitions in the Quartus II GUI with the Design
Partitions Window or the Project Navigator.

On the Assignments menu, click Design Partitions Window (Figure 2–6)
to create your partitions in one of the following ways:

■ Create new partitions for one or more instances by dragging and
dropping them from the Hierarchy tab of the Project Navigator, into
the Design Partitions window. Using this method, you can create
multiple partitions at once.

■ Create new partitions by double-clicking the <<new>> cell in the
Partition Name column. In the Create New Partitions dialog box,
select the design instance and click OK.

To delete partitions in the Design Partitions window, right-click a
partition and click Delete, or select the partition and press the Delete key.

Figure 2–6. Design Partitions Window

Altera Corporation 2–21
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Alternatively, you can use the list of instances under the Hierarchy tab in
the Project Navigator to create and delete design partitions. Right-click
on an instance in the Project Navigator and click Set as Design Partition.

1 A design partition icon appears next to each instance that is set
as a partition (Figure 2–7).

To remove an existing partition assignment, right-click the instance in the
Project Navigator and click Set as Design Partition again. (This process
turns off the option.)

Figure 2–7. Project Navigator Showing Design Partitions

Partition Name

When you create a partition, the Quartus II software automatically
generates a name based on the instance name and hierarchy path. You
can change the name by double-clicking on the partition name in the
Design Partitions window, or right-click the partition and click Rename.
Alternatively, you can right-click the partition in the Design Partitions
window and click Properties to open the Design Partition Properties
dialog box. On the General tab, enter the new name in the Name field.

By renaming your partitions you can avoid referring to them by their
hierarchy path, which can sometimes be long. This is especially important
when using command-line commands or assignments. Partition names
can be from 1 to 1024 characters in length and must be unique. The name
can only contain alphanumeric characters and the pipe (|), colon (:),
and underscore (_) characters.

2–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Setting the
Netlist Type for
Design
Partitions

The Netlist Type property controls the incremental compilation process,
as described in “Compiling a Design Using Incremental Compilation” on
page 2–12. The Netlist Type is a property of each design partition that
allows you to specify the type of netlist or source file that the compiler
should use as the input for each partition. This property determines
which netlist is used by the Partition Merge stage in the next compilation.

To view and modify the Netlist Type, on the Assignments menu, click
Design Partitions Window. Double-click the Netlist Type for an entry.
Alternatively, right-click on an entry, click Design Partition Properties,
then modify the Netlist Type on the Compilation tab.

Table 2–2 describes the different settings for the Netlist Type property,
explains the behavior of the Quartus II software for each setting, and
gives guidance on when to use a certain setting.

Table 2–2. Netlist Type Settings (Part 1 of 3)

Partition
Netlist Type Quartus II Behavior for Partition During Compilation

Source File Always compiles the partition using the associated design source file(s).

You can use this netlist type to recompile a partition from the source code using new synthesis
or Fitter settings.

If a partition has an associated imported netlist, compiling it with netlist type set to Source File
removes the imported netlist.

Post-Synthesis Preserves post-synthesis results for the partition and uses the post-synthesis netlist as long as
the following conditions are true:
● A post-synthesis netlist is available from a previous synthesis
● No change has been made to the associated source files since the previous synthesis
Compiles the partition from the source files if there are source changes or if a post-synthesis
netlist is not available. Changes to the assignments do not cause recompilation.

You can use this netlist type to preserve the synthesis results unless source files change, but
refit the partition using any new Fitter settings.

If a partition has an associated imported netlist, this setting is not available.

Altera Corporation 2–23
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Post-Fit Preserves post-fit results for the partition and uses the post-fit netlist as long as the following
conditions are true:
● A post-fit netlist is available from a previous fitting
● No change has been made to the associated source files since the previous fitting
Compiles the partition from the source files if there are source changes or if a post-fit netlist is
not available. Changes to assignments do not cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-fit
netlist. For details, refer to “Fitter Preservation Level” on page 2–24.

You can use this netlist type to preserve the Fitter results unless source files change. You can
also use this netlist type to apply global optimizations, such as Physical Synthesis
optimizations, to certain partitions while preserving the fitting results for other partitions.

If a partition has an associated imported netlist, this setting is not available.

Post-Fit (Strict) Always preserves post-fit results for the partition. Uses the post-fit netlist even if changes have
been made to the associated source files since the previous fitting. For more information, refer
to “Forcing Use of the Post-Fitting Netlist When a Source File has Changed” on page 2–28.

The Fitter Preservation Level specifies what level of information is preserved from the post-
fit netlist. For details, refer to “Fitter Preservation Level” on page 2–24.

If a partition has an associated imported netlist, this setting is not available.

Imported Compiles the design partition using a netlist imported from a Quartus II Exported Partition File
(.qxp).

The software does not modify or overwrite the original imported netlist during compilation. To
preserve changes made to the imported netlist (such as movement of an imported LogicLock
region), use the Post-Fit (Import-based) setting following a successful compilation with the
imported netlist. For additional details, refer to “Exporting and Importing Partitions for Bottom-
Up Design Flows” on page 2–32.

The Fitter Preservation Level specifies what level of information is preserved from the
imported netlist. For details, refer to “Fitter Preservation Level” on page 2–24.

If you have not imported a netlist for this partition using the Import Design Partition command,
this setting is not available.

Table 2–2. Netlist Type Settings (Part 2 of 3)

Partition
Netlist Type Quartus II Behavior for Partition During Compilation

2–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Fitter Preservation Level

The Fitter Preservation Level property specifies which information the
compiler will use from a post-fit or imported netlist. The property is only
available if the Netlist Type is set to Post-Fit, Post-Fit (Strict), Imported,
or Post-Fit (Import-based).

On the Assignments menu, click Design Partitions Window. You can
view and modify the Fitter Preservation Level by double-clicking an
entry. You can also right-click and click Properties, then edit the Fitter
Preservation Level on the Compilation tab.

Post-Fit
(Import-based)

Preserves post-fit results for the partition and uses the post-fit netlist as long as the following
conditions are true:
● A post-fit netlist is available from a previous fitting
● No change has been made to the associated imported netlist since the previous fitting
Compiles the partition from the imported netlist if the imported netlist changes (which means it
has been reimported) or if a post-fit netlist is not available. Changes to assignments do not
cause recompilation.

The Fitter Preservation Level specifies what level of information is preserved from the post-
fit netlist. For details, refer to “Fitter Preservation Level”.

You can use this netlist type to preserve changes to the placement and routing of an imported
netlist.

If a partition does not have an associated imported netlist, this setting is not available.

Empty Uses an empty placeholder netlist for the partition and uses virtual pins at the partition
boundaries.

You can use this netlist type to skip the compilation of a lower-level partition. For more details
on the Empty setting, refer to “Empty Partitions” on page 2–26.

Table 2–2. Netlist Type Settings (Part 3 of 3)

Partition
Netlist Type Quartus II Behavior for Partition During Compilation

Altera Corporation 2–25
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Table 2–3 describes the Fitter Preservation Level settings.

Table 2–3. Fitter Preservation Level Settings

Fitter Preservation
Level Quartus II Behavior for Partition During Compilation

Netlist Only Preserves the netlist atoms of the design partition, but replaces and reroutes the design
partition. Unlike a Post-Synthesis netlist, a Post-Fit netlist with the atoms preserved
contains any Fitter optimizations, for example, registers duplicated by Physical Synthesis
during a previous Fitting.

You can use this setting to:
● Preserve Fitter optimizations but allow the software to perform placement and routing

again
● Reapply certain Fitter optimizations (that is, physical synthesis) that would otherwise

be impossible when the placement is locked down
● Resolve resource conflicts between two imported partitions in a bottom-up design flow

Placement Preserves the netlist atoms and their placement in the design partition. Re-routes the
design partition.

This setting saves significant compilation time because the Fitter does not need to re-fit
the nodes in the partition. Note that the Fitter may need to modify the placement for timing
or legality reasons.

This setting might not be available if the netlist type is set to Imported and the imported
netlist does not contain placement data.

Placement and
Routing

Preserves the netlist atoms and their placement and routing in the design partition. The
minimum preservation level required to preserve Engineering Change Order (ECO)
changes made to the post-fitting netlist and SignalProbe pins added to the design.

This setting reduces compilation times compared to Placement only. Note that the Fitter
may need to modify the placement and routing for timing or legality reasons.

This setting may not be available if the netlist type is set to Imported and the imported
netlist does not contain routing data.

Placement, Routing,
and Tile

Preserves the netlist atoms and their placement and routing in the design partition, as well
as the power tile settings of high-speed or low-power.

Note that the Fitter may need to modify the placement and routing for timing or legality
reasons.

This setting is available only for devices with configurable power tiles (currently only
Stratix III devices).

2–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Empty Partitions

To set the Netlist Type to Empty, on the Assignments menu, click Design
Partitions Window, or double-click an entry, or right-click an entry and
click Design Partition Properties and select Empty. This setting specifies
that the Quartus II Compiler should use an empty placeholder netlist for
the partition.

You can use the Empty setting to skip the compilation of a lower-level
partition that is incomplete or missing from the top-level design. You can
also use it if you want to compile only some partitions in the design, such
as during optimization or if the compilation time is large for one partition
and you want to exclude it. This is useful if you want to optimize the
placement of a timing-critical block such as an IP core and then lock its
placement before adding the rest of your custom logic.

When a partition Netlist Type is defined as Empty, virtual pins are
created at the boundary of the partition. This means that the software
temporarily maps I/O pins in the lower-level design entity to internal
cells and not to pins during compilation.

Any subpartitions below an empty partition in the design hierarchy are
also treated as empty, regardless of their settings.

You can use a design flow in which some partitions are set to Empty in a
variation of a bottom-up design flow, where you develop pieces of the
design separately and then combine them at the top level at a later time.
When you implement part of the design without information about the
rest of the project, it is impossible for the Compiler to perform global
placement optimizations. One way to reduce this effect is to ensure the
input and output ports of the partitions are registered whenever possible,
as recommended in “Creating Good Design Partitions” on page 2–47.

When you set a design partition to Empty, a design file is required in
Analysis and Synthesis to specify, at minimum, the port interface
information so that it can connect the partition correctly to other logic and
partitions in the design. If the design file is missing, you must create a
wrapper file (called a black box or hollow-body file) that defines the
design block and specifies the input, output, and bidirectional ports. For
example, in Verilog HDL you should include a module declaration, and
in VHDL you should include an entity and architecture declaration.

Altera Corporation 2–27
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

What Represents a Source Change for Incremental Compilation?

Any change in any design source file that affects a partition triggers an
automatic recompilation of the partition. The only exception is if the
partition's Netlist Type is set to Post-Fit (Strict) – refer to “Forcing Use of
the Post-Fitting Netlist When a Source File has Changed” on page 2–28.
The Quartus II software uses an internal checksum to determine whether
the contents of a source file have changed. Source files are the design files
used to create the design, and consist of VHDL files, Verilog HDL files,
AHDL files, Block Design Files (.bdf), EDIF netlists, VQM netlists, and
memory initialization files. Changes in other files such as vector
waveform files for simulation do not trigger recompilation.

Changes to certain project-wide assignments, such as changing the device
family, also trigger automatic recompilation.

Synthesis and Fitter assignments, including optimization settings, timing
assignments, or Fitter location assignments such as pin assignments or
LogicLock assignments, do not trigger automatic recompilation in the
incremental compilation flow. To recompile a partition with new
assignments, change the Netlist Type assignment for that partition to one
of the following:

■ Source File to recompile with all new settings
■ Post-Synthesis to recompile using existing synthesis results but new

Fitter settings
■ Post-Fit with the Fitter preservation Level set to Placement to rerun

routing using existing placement results except for any new routing
settings including delay chain settings

The project database folder (\db) includes all the netlist information for
previous compilations. To avoid unnecessary recompilations, the
database files must not be altered or deleted.

If you want to archive or reproduce the project in another location, you
can use a Quartus II Archive (.qar) file. On the Project menu, click
Archive Project and turn on Include database from compilation and
simulation so that compilation results are preserved. To manually create
a project archive that preserves compilation results without keeping the
entire compilation database, you should keep all source and settings files
and create and save a Quartus II Exported Partition (.qxp) file for each
partition in the design. Refer to “Exporting a Lower-Level Block within a
Project” on page 2–35 for more details.

2–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Determining Which Partitions Will Be Recompiled

When design files in a partition have dependencies on other files,
changing one file may trigger an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis and Synthesis report
lists the design files that contribute to each design partition. You can use
this table to determine which partitions will be recompiled when a
specific file is changed.

For example, if a design has files a.v that contains entity a, b.v that
contains entity b, and c.v that contains entity c, then the Partition
Dependent Files table for the partition containing entity a lists file a.v,
the table for the partition containing entity b lists file b.v, and the table for
the partition containing entity c lists file c.v. Any dependencies are
transitive, so if file a.v depends on b.v, and b.v depends on c.v, then the
entities in file a.v depend on files b.v and c.v. In this case, files b.v and c.v
are listed in the report table as dependent files for the partition containing
entity a.

If you define module parameters in a higher-level module, you will create
file dependencies. The Quartus II software checks the parameter values
when determining which partitions require resynthesis. If you change a
parameter in a higher-level module that affects a lower-level module, the
lower-level module will be resynthesized.

If a design contains common files, such as a file includes.v that is
referenced in each entity by the command ‘include includes.v, then
all partitions are dependent on this file. A change to includes.v causes the
entire design to be recompiled. The VHDL statement use work.all
also typically results in unnecessary recompilations, because it makes all
entities in the work library visible in the current entity, which results in
the current entity being dependent on all other entities in the design.

To avoid this type of problem, ensure that files common to all entities,
such as a common include file, contain only the set of information that is
truly common to all entities. Remove use work.all statements in your
VHDL file or replace them by including only the specific design units
needed for each entity.

Forcing Use of the Post-Fitting Netlist When a Source File has Changed

Forcing the use of the post-fitting netlist when the contents of a source file
has changed is recommended only for advanced users who thoroughly
understand when a partition must be recompiled. You might want to use
this assignment, for example, if you are making source code changes but
do not want to recompile the partition until you finish debugging a

Altera Corporation 2–29
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

different partition. To force the Fitter to use a previously generated post-
fit netlist even when there are changes to the source files, you can use the
Post-Fit (Strict) Netlist Type assignment.

Misuse of the Post-Fit (Strict) Netlist Type can result in the generation of
a functionally incorrect netlist when source design files change. Use
caution in applying this assignment.

Creating a
Design
Floorplan With
LogicLock
Location
Assignments

After you have partitioned the design, create floorplan location
assignments for the design as discussed in this section to improve the
quality of results when using the full incremental compilation flow.
Creating a design floorplan is not a requirement to use an incremental
compilation flow, but it is highly recommended in many cases. Floorplan
assignments are required if you want to import partition placement
results in a bottom-up flow to avoid placement conflicts at the top level.
You should also ensure that you have a LogicLock floorplan assignment
for any timing-critical blocks that will be recompiled as you make
changes to the design. Logic that is not timing-critical can float
throughout the device in a top-down compilation flow, so a floorplan
assignment might not be required in this case.

The simplest way to create a floorplan for a partitioned design is to create
one LogicLock region per partition (including the top-level partition).
Initially, you can leave each region with the default settings of Auto size
and Floating location to allow the Quartus II software to determine the
optimal size and location for the regions. Then, after compilation, use the
Fitter-determined size and origin location as a starting point for your
design floorplan. Check the quality of results obtained for your floorplan
location assignments and make changes to the regions as needed.
Alternately, you can perform synthesis, and then set the regions to the
required size based on resource estimates. In this case, use your
knowledge of the connections between partitions to place the regions in
the floorplan.

For more information about why creating a design floorplan is important
in many cases, refer to “The Importance of Floorplan Location
Assignments in Incremental Compilation” on page 2–55. For guidelines
on creating the floorplan, refer to “Creating Good Floorplan Location
Assignments” on page 2–57.

To create a LogicLock region for each design partition, use the following
general methodology:

1. On the Assignments menu, click Design Partitions Window and
ensure that all partitions have their Netlist Type set to Source File
or Post-Synthesis. If the Netlist Type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

2–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

2. Create a LogicLock region for each partition (including the top-level
entity, which is automatically considered a partition) using one of
the following methods:

● In the Design Partitions window, right-click on a partition and
click Create New LogicLock Region. You can highlight
multiple (or all) partitions by holding down the Ctrl key and
clicking on each partition. Then you can choose the option to
create a separate LogicLock region for each highlighted
partition.

● Under Compilation Hierarchy in the Project Navigator,
right-click each instance that is denoted as a partition and click
Create New LogicLock Region.

1 A LogicLock icon appears in the Project Navigator next to
each instance that is set as a LogicLock region (Figure 2–8).

Figure 2–8. Project Navigator Showing LogicLock Regions

3. On the Processing menu, point to Start and click Start Early Timing
Estimate to place auto-sized, floating-location LogicLock regions.

1 You must perform Analysis and Synthesis and Partition
Merge before performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing
Estimate, on the Processing menu, click Start Compilation.

4. On the Assignments menu, click LogicLock Regions Window, and
click on each LogicLock region while holding the Ctrl key to select
all regions (including the top-level region).

5. Right-click on the last selected LogicLock region, and click Set Size
and Origin to Previous Fitter Results.

Altera Corporation 2–31
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1 It is important that you use the Fitter-chosen locations only
as a starting point to make the regions of a fixed size and
location. On average, regions with fixed size and location
yield better fMAX than auto-sized regions.

Do not back-annotate the contents of the region, just save
the size and origin. Placement is preserved through the use
of the post-fit netlist and not any back-annotated content
assignments.

6. If required, modify the size and location via the LogicLock Regions
Window or the Chip Planner. For example, make the regions bigger
to fill up the device and allow for future logic changes.

7. On the Processing menu, point to Start and click Start Early Timing
Estimate to estimate the timing performance of your design with
these LogicLock regions.

8. Repeat steps 6 and 7 until you are satisfied with the quality of
results for your design floorplan. On the Processing menu, click
Start Compilation to run a full compilation.

If you do not want to use auto-sized and floating-location regions, in
steps 3–5, you can estimate the size of the regions after synthesis. On the
Processing menu, point to Start, and choose Start Analysis & Synthesis.
Right-click on a region in the LogicLock Regions dialog box, and choose
Set to Estimated Size. Then continue with step 6 to modify the size and
origin of each region as appropriate.

Taking Advantage of the Early Timing Estimator

The methodology for creating a good floorplan takes advantage of the
Early Timing Estimator to enable quick compilations of the design while
creating assignments. The Early Timing Estimator feature provides a
timing estimate for a design as much as 45 times faster than running a full
compilation, yet estimates are, on average, within 11% of final design
timing. You can use the Chip Planner to view the “placement estimate”
created by this feature, identify critical paths by locating from the timing
analyzer reports, and, if necessary, add or modify floorplan constraints.
You can then rerun the Early Timing Estimator to quickly assess the
impact of any floorplan location assignments or logic changes, enabling
rapid iterations on design variants to help you find the best solution.

2–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Exporting and
Importing
Partitions for
Bottom-Up
Design Flows

The bottom-up flow refers to the design methodology in which a project
is first divided into smaller subdesigns that are implemented as separate
projects, potentially by different designers. The compilation results of
these lower-level projects are then exported and given to the designer (or
the project lead) who is responsible for importing them into the top-level
project to obtain a fully functional design.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. The bottom-up design partition scripts generated by
the Quartus II software can make it easier to plan a bottom-up design,
and limit the difficulties that can arise when integrating separate designs.
Refer to “Generating Bottom-Up Design Partition Scripts for Project
Management” on page 2–40 for details.

Refer to “Bottom-Up Incremental Compilation” on page 2–13 in the
Quick Start Guide section for an overview of the entire flow. For examples
of team-based scenarios, refer to “Bottom-Up Incremental Design Flows”
on page 2–67.

This section describes the export and import features provided to support
bottom-up compilation flows. The section covers the following topics:

■ “Quartus II Exported Partition File (.qxp)”
■ “Exporting a Lower-Level Partition to be Used in a Top-Level

Project” on page 2–33
■ “Exporting a Lower-Level Block within a Project” on page 2–35
■ “Importing a Lower-Level Partition Into the Top-Level Project” on

page 2–36
■ “Importing Assignments and Advanced Import Settings” on

page 2–37
■ “Generating Bottom-Up Design Partition Scripts for Project

Management” on page 2–40

Quartus II Exported Partition File (.qxp)

The bottom-up incremental compilation flow uses a file called the
Quartus II Exported Partition file (or QXP) to represent lower-level
design partitions. The QXP is a binary file that contains compilation
results describing the exported design partition and includes a post-fit or
post-synthesis netlist, LogicLock regions, and a set of assignments. Note
that the QXP file does not contain the original source design files from the
lower-level design.

The following sections describe how to generate a QXP file for a
lower-level design partition, and how to import the QXP into the
top-level project.

Altera Corporation 2–33
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Exporting a Lower-Level Partition to be Used in a Top-Level
Project

Each lower-level subdesign is compiled as a separate Quartus II project.
In each project, use the following guidelines to improve the exporting and
importing process:

■ If you have a bottom-up design partition script from the top level,
source the Tcl script to create the project and all the assignments
from the top-level design. Doing so may create many of the
assignments described below. Ensure that the LogicLock region uses
only the resources allocated by the top-level project lead.

■ Ensure that you know which clocks should be allocated to global
routing resources so that there are no resource conflicts in the
top-level design.
● Set the Global Signal assignment to On for the high fan-out

signals that should be routed on global routing lines.
● To avoid other signals being placed on global routing lines, on

the Assignments menu, click Settings and turn off Auto Global
Clock and Auto Global Register Controls under More Settings
on the Fitter page of the Settings dialog box.

● Alternatively, you can set the Global Signal assignment to Off
for signals that should not be placed on global routing lines.
Placement for LABs depends on whether the inputs to the logic
cells within the LAB use a global clock. You may encounter
problems if signals do not use global lines in the lower-level
design but use global routing in the top level.

■ Use the Virtual Pin assignment to indicate pins of a subdesign that
do not drive pins in the top-level design. This is critical when a
subdesign has more output ports than the number of pins available
in the target device. Using virtual pins also helps optimize
cross-partition paths for a complete design by enabling you to
provide more information about the subdesign ports, such as
location and timing assignments.

■ Because subdesigns are compiled independently without any
information about each other, you should provide more information
about the timing paths that may be affected by other partitions in the
top-level design. You can apply location assignments for each pin to
indicate where the port connection will be located after it is
incorporated in the top-level design. You can also apply timing
assignments to the I/O ports of the subdesign to perform timing
budgeting as described in “Timing Budgeting” on page 2–53.

2–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

When your subdesign partition has been compiled using these
guidelines, and is ready to be incorporated into the top-level design,
export a subdesign as a partition using the following steps:

1. In the subdesign project, on the Project menu, click Export Design
Partition. The Export Design Partition dialog box appears
(Figure 2–9).

Figure 2–9. Export Design Partition Dialog Box

2. In the Export file box, type the name of the Quartus II Exported
Partition file (.qxp). By default, the directory path and file name are
the same as the current project.

3. You can also select the Partition hierarchy to export. By default, the
Top partition (the entire project) is exported, but you can choose to
export the compilation result of any partition hierarchy in the
project, as described in “Exporting a Lower-Level Block within a
Project” on page 2–35. Choose the partition hierarchy from the
drop-down box.

4. Under Netlist to export, select either Post-fit netlist or
Post-synthesis netlist. The default is Post-fit netlist. For post-fit
netlists, turn on or off the Export routing option as required.

5. Click OK. The Quartus II software creates the Quartus II Exported
Partition file in the specified directory.

Alternatively, you can set up your project so that the export process is
performed every time you compile the design:

Altera Corporation 2–35
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Compilation Process Settings,
select the Incremental Compilation page.

3. Turn on Automatically export design partition after compilation.

4. If you want to view or change the default export settings, click the
Export Design Partition Settings button to open the Export Design
Partition Settings dialog box (Figure 2–9).

5. In the Export Design Partition Settings dialog box, change the
settings, if required, as in steps 2-4 in the preceding export
procedure. Click OK.

6. Click OK to close the Settings dialog box. During the next full
compilation, the software will create the Quartus II Exported
Partition file in the specified directory.

Exporting a Lower-Level Block within a Project

Step 3 in “Exporting a Lower-Level Partition to be Used in a Top-Level
Project” enables you to create a Quartus II Exported Partition file for a
lower-level block within a Quartus II project. When you do this, the
command exports the entire hierarchy under the specified partition into
the QXP file.

You can use this feature to add test logic around a lower-level block that
will be exported as a design partition for a top-level design. You can also
instantiate additional design components in a lower-level project so it
matches the top-level design environment. For example, you can include
a top-level PLL in your lower-level project so that you can optimize the
design with information about the frequency multipliers, phase shifts,
compensation delays, and any other PLL parameters. The software then
captures timing and resource requirements more accurately while
ensuring that the timing analysis in the lower-level project is complete
and accurate. You can export the lower-level partition, without exporting
any auxiliary components to the top-level design.

In addition, you can use this feature in a top-down design flow to create
QXP files for specific design partitions that are complete. You can then
import the QXP file back into the project and use the Imported netlist
type. In this usage, the QXP file acts as an archive for the partition,
including the netlist and placement and routing information in one file. If
you need to change the source code for the partition, you must change the
netlist type back to Source File to use the source instead of the imported
information.

2–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Importing a Lower-Level Partition Into the Top-Level Project

The import process involves importing the design netlist from the
Quartus II Exported Partition file and adding the netlist to the database
for the top-level project. Importing also filters the assignments from the
subdesign and creates the appropriate assignments in the top-level
project.

To import a subdesign partition into a top-level design:

1. In the top-level project, on the Project menu, click Import Design
Partition. Alternatively, right-click on the partition that you want to
import in the Design Partitions window and click Import Design
Partition. The Import Design Partition dialog box appears.

2. In the Partition(s) box, browse to the desired partition. To choose a
partition, highlight the partition name in the Select Partition(s)
dialog box and use the appropriate buttons to select or deselect the
desired partitions.

1 Note that you can select multiple partitions if your top-level
design has multiple instances of the subdesign partition
and you want to use the same imported netlist.

3. Under Import file, type the name of the Quartus II Exported
Partition file or browse for the file that you want to import into the
selected partition. Note that this file is required only during
importation, and is not used during subsequent compilations unless
you reimport the partition.

1 If you have already imported the Quartus II Exported
Partition file for this partition at least once, you can use the
same location as the previous import instead of specifying
the file name again. To do so, turn on Reimport using the
latest import files at previous locations. This option is
especially useful when you want to import the new
Quartus II Exported Partition files for several partitions
that you have already imported at least once. You can select
all the partitions to be imported in the Partition(s) box and
then use the Reimport using latest import files at previous
locations option to import all partitions using their
previous locations, without specifying individual file
names.

Altera Corporation 2–37
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

4. To view the contents of the selected Quartus II Exported Partition
file, click Load Properties. The properties displayed include the
Netlist Type, Entity name, Device, and statistics about the partition
size and ports.

5. Click Advanced Import Settings and make selections, as
appropriate, to control how assignments and regions are integrated
from a subdesign into a top-level design partition. During
importation, some regions may be resized or slightly moved. Click
OK to apply the settings.

For more information about the advanced settings, refer to
“Importing Assignments and Advanced Import Settings” on
page 2–37.

6. In the Import Design Partition dialog box, click OK to start
importation. The specified Quartus II Exported Partition file is
imported into the database for the current top-level project.

Importing Assignments and Advanced Import Settings

When you import a subdesign partition into a top-level design, the
software sets certain assignments by default and also imports relevant
assignments from the subdesign into the top-level design.

Design Partition Properties after Importing

When you import a subdesign partition, the import process sets the
partition’s Netlist Type to Imported.

If you compile the design and make changes to the place-and-route
results, use the Post-Fit (Import-based) Netlist Type on the subsequent
compilation. To discard an imported netlist and recompile from source
code, simply compile the partition with netlist type set to Source File and
be sure to include the relevant source code with the top-level project.

The import process sets the partition’s Fitter Preservation Level to the
setting with the highest degree of preservation supported by the
imported netlist. For example, if a post-fit netlist is imported with
placement information, the level is set to Placement, but you can change
it to the Netlist Only value.

Refer to “Setting the Netlist Type for Design Partitions” on page 2–22 for
details about the Netlist Type and Fitter Preservation Level setting.

2–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Importing Design Partition Assignments Within the Subdesign

Design partition assignments defined within the subdesign project are
not imported into the top-level project. All logic in the subdesign is
imported as one partition in the QXP file.

Synopsys Design Constraint (SDC) Files for the Quartus II TimeQuest
Timing Analyzer

Timing assignments made for the Quartus II TimeQuest Timing
Analyzer in an SDC file are currently not imported into the top-level
project. You should manually ensure that the top-level project includes
all of the timing requirements for the entire project.

If you want to copy lower-level SDC files to the top-level project, consider
prefixing lower-level constraints with a variable for the design hierarchy.
Then, when you copy the file to the top-level design, you can set the
variable to provide the hierarchy path to the lower-level partition in the
top-level design.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate
multiple instances of a subdesign in the top-level design, the imported
LogicLock regions are set to a Floating location. Otherwise, they are set to
a Fixed location. You can change the location of LogicLock regions after
they are imported, or change them to a Floating location to allow the
software to place each region but keep the relative locations of nodes
within the region wherever possible. If you want to preserve changes
made to a partition after compilation, use the Netlist Type Post-Fit
(Import-Based).

The LogicLock Member State assignment is set to Locked to signify that
it is a preserved region.

LogicLock back-annotation and node location data is not imported
because the Quartus II Exported Partition file contains all the relevant
placement information. Altera strongly recommends that you do not add
to or delete members from an imported LogicLock region.

Importing Other Instance Assignments

All instance assignments are imported, with the exception of design
partition assignments, SDC constraints, and LogicLock assignments, as
described previously.

Altera Corporation 2–39
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Importing Global Assignments

Global assignments are not imported. The project lead should make
global assignments in the top-level design. Global assignments include
clock settings for the Quartus II Classic Timing Analyzer.

Advanced Import Settings

The Advanced Import Settings dialog box allows you to specify the
options that control how assignments and regions are integrated and how
to resolve assignment conflicts when importing a subdesign partition into
a top-level design. The following subsections describe each of these
options.

Allow Creation of New Assignments
Allows the import command to add new assignments from the imported
project to the top-level project.

When this option is turned off, it imports updates to existing
assignments, but no new assignments are allowed.

Promote Assignments to all Instances of the Imported Entity
Converts and promotes entity-level assignments from the subdesign into
instance-level assignments in the top-level design.

Assignment Conflict Resolution: LogicLock Regions
Choose one of the following options to determine how to handle
conflicting LogicLock assignments (that is, subdesign assignments that
do not match the top-level assignments):

■ Always replace regions in the current project (default)—Deletes
existing regions and replaces them with the new subdesign region.
Any changes made to the LogicLock region after the assignments
were imported are also deleted.

■ Always update regions in the current projects—Overwrites existing
region assignments to reflect any new subdesign assignments with
the exception of the LogicLock Origin, in case the project lead has
made floorplan location assignments in the top-level design.

■ Skip conflicting regions—Ignores and does not import subdesign
assignments that conflict with any assignments that exist in the
top-level design.

Assignment Conflict Resolution: Other Assignments
Choose one of the following options to determine how to handle conflicts
with other types of assignments (that is, the subdesign assignments do
not match the top-level assignments):

2–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Always replace assignments in the current project (default)—
Overwrites or updates existing instance assignments with the new
subdesign assignments.

■ Skip conflicting assignments—Ignores and does not import
subdesign assignments that conflict with any assignments that exist
in the top-level design.

Generating Bottom-Up Design Partition Scripts for Project
Management

The bottom-up design partition scripts automate the process of
transferring top-level project information to lower-level modules. The
software provides a project manager interface for managing resource and
timing budgets in the top-level design. This makes it easier for designers
of lower-level modules to implement the instructions from the project
lead, and avoid conflicts between projects when importing and
incorporating the projects into the top-level design. This helps reduce the
need to further optimize the designs after integration, and improves
overall designer productivity and team collaboration.

1 Generating bottom-up design partition scripts is optional in any
bottom-up design methodology.

For example design scenarios using these scripts, refer to “Bottom-Up
Incremental Design Flows” on page 2–67. In a typical bottom-up design
flow, the project lead must perform some or all of the following tasks to
ensure successful integration of the subprojects:

■ Manually determine which assignments should be propagated from
the top level to the bottom levels. This requires detailed knowledge
of which Quartus II assignments are needed to set up low-level
projects.

■ Manually communicate the top-level assignments to the low-level
projects. This requires detailed knowledge of Tcl or other scripting
languages to efficiently communicate project constraints.

■ Manually determine appropriate timing and location assignments
that will help overcome the limitations of bottom-up design. This
requires examination of the logic in the lower levels to determine
appropriate timing constraints.

■ Perform final timing closure and resource conflict avoidance at the
top level. Because the low-level projects have no information about
each other, meeting constraints at the lower levels does not
guarantee they will be met when integrated at the top-level. It then
becomes the project lead’s responsibility to resolve the issues, even
though information about the low-level implementation may not be
available.

Altera Corporation 2–41
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Using the Quartus II software to generate bottom-up design partition
scripts from the top level of the design makes these tasks much easier and
eliminates the chance of error when communicating between the project
lead and lower-level designers. Partition scripts pass on assignments
made in the top-level design, and create some new assignments that
guide the placement and help the lower-level designers see how their
design connects to other partitions. If necessary, you can exclude specific
design partitions.

Generate design partition scripts after a successful compilation of the
top-level design. On the Project menu, click Generate Bottom-Up Design
Partition Scripts. The design can have empty partitions as placeholders
for lower-level blocks, and you can perform an Early Timing Estimation
instead of a full compilation to reduce compilation times.

The following subsections describe the information that can be included
in the bottom-up design partition Tcl scripts. Use the options in the
Generate Bottom-Up Design Partition Scripts dialog box to choose
which types of assignments you want to pass down and create in the
lower-level partition projects. Each time you rerun the script generation
process, the Quartus II software recreates the files and replaces older
versions.

For information about current limitations in the bottom-up partition
scripts, refer to “Bottom-Up Design Partition Script Limitations” on
page 2–84.

Project Creation

You can use the Create lower-level project if one does not exist option
for the partition scripts to create lower-level projects if they are required.
The Quartus II Project File for each lower-level project has the same name
as the entity name of its corresponding design partition.

With this project creation feature, the scripts work by themselves to create
a new project, or can be sourced to make assignments in an existing
project.

Excluded Partitions

Use the Excluded partition(s) option at the bottom of the dialog box to
exclude specific partitions from the Tcl script generation process. Use the
browse button, then highlight the partition name in the Select
Partition(s) dialog box and use the appropriate buttons to select or
deselect the desired partitions.

2–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Assignments from the Top-Level Design

By default, any assignments made at the top level (not including default
assignments or project information assignments) are passed down to the
appropriate lower-level projects in the scripts. The software uses the
assignment variables and determines the logical partition(s) to which the
assignment pertains (this includes global assignments, instance
assignments, and entity-level assignments). The software then changes
the assignments so that they are syntactically valid in a project with its
target partition’s logic as the top-level entity.

The names of the design files that apply to the specific partition are added
to each lower-level project. Note that the script uses the file name(s)
specified in the top-level project. If the top-level project used a
placeholder wrapper file with a different name than the design file in the
lower-level project, you should be sure to add the appropriate file to the
lower-level project.

The scripts process wildcard assignments correctly, provided there is
only one wildcard. Assignments with more than one wildcard are
ignored and warning messages are issued.

Use the following options to specify which types of assignments to pass
down to the lower-level projects:

■ Timing assignments—When this option is turned on, all Classic
Timing Analyzer global timing assignments for the lower-level
projects are included in the script, including tCO, tSU, and fMAX
constraints. This option may also include timing constraints on
internal partition connections.

■ Design partition assignments—When this option is turned on,
script assignments related to design partitions in the lower-level
projects are included, as well as assignments associated with
LogicLock regions.

■ Pin location assignments—When this option is turned on, all pin
location assignments for lower-level project ports that connect to
pins in the top-level design are included in the script, controlling the
overuse of I/Os at the top-level during the integration phase and
preserving placement.

Altera Corporation 2–43
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Virtual Pin Assignments

When Create virtual pins at low-level ports connected to other design
units is turned on, the Quartus II software searches partition netlists and
identifies all ports that have cross-partition dependencies. For each
lower-level project pin associated with an internal port in another
partition or in the top-level project, the script generates a virtual pin
assignment, ensuring more accurate placement, because virtual pins are
not directly connected to I/O ports in the top-level project. These pins are
removed from a lower-level netlist when it is imported into the top-level
design.

Virtual Pin Timing and Location Assignments
One of the main issues in bottom-up design methodologies is that each
individual design block includes no information about how it is
connected to other design blocks. If you turn on the option to write virtual
pin assignments, you can also turn on options to constrain these virtual
pins to achieve better timing performance after the lower-level partitions
are integrated at the top level.

When Place created virtual pins at location of top-level source/sink is
turned on, the script includes location constraints for each virtual pin
created. Virtual output pins are assigned to the location of the
connection’s destination in the top-level project, and virtual input pins
are assigned to the location of the connection’s source in the top-level
project. Note that if the top-level design uses Empty partitions, the final
location of the connection is not known but the pin is still assigned to the
LogicLock region that contains its source or destination.

As a result, these virtual pins are no longer placed inside the LogicLock
region of the lower-level project, but at their location in the top-level
design, eliminating resource consumption in the lower-level project and
providing more information about lower-level projects and their port
dependencies. These location constraints are not imported into the
top-level project.

When Add maximum delay to created virtual input pins, Add
maximum delay from created virtual output pins, or both, are turned on,
the script includes timing constraints for each virtual pin created. The
value you enter in the dialog box is the maximum delay allowed to or
from all paths between virtual pins to help meet the timing requirements
for the complete design. The software uses the INPUT_MAX_DELAY
assignment or OUTPUT_MAX_DELAY assignment to apply the constraint.

2–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This option allows the project lead to specify a general timing budget for
all lower-level internal pin connections. The lower-level designer can
override these constraints by applying individual node-level
assignments on any specific pin as needed.

LogicLock Region Assignments

When Copy LogicLock region assignments from top-level is turned on,
the script includes assignments identifying the LogicLock assignment for
the partition.

The script can also pass assignments to create the LogicLock regions for
all other partitions. When Include all LogicLock regions in lower-level
projects is turned on, the script for each partition includes all LogicLock
region assignments for the top-level project and each lower-level
partition, revealing the floorplan for the complete design in each
partition. Regions that do not belong to other partitions contain virtual
pins representing the source and destination ports for cross-partition
connections. This allows each designer to more easily view the
connectivity between their partition and other partitions in the top-level
design, and helps ensure that resource conflicts at the top level are
minimized.

When Remove existing LogicLock regions from lower-level projects is
turned on, the script includes commands to remove LogicLock regions
defined in the lower-level project prior to running the script. This ensures
that LogicLock regions not part of the top-level project do not become
part of the complete design, and avoids any location conflicts by ensuring
lower-level designs use the LogicLock regions specified at the top level.

Global Signal Promotion Assignments

To help prevent conflicts in global signal usage when importing projects
into the top-level design, you can choose to write assignments that
control how signals are promoted to global routing resources in the
lower-level partitions. These options can help resource balancing of
global routing resources.

When Promote top-level global signals in lower-level projects is turned
on, the Quartus II software searches partition netlists and identifies
global resources, including clock signals. For the relevant partitions, the
script then includes a global signal promotion assignment, providing
information to the lower-level projects about global resource allocation.

When Disable automatic global promotion in lower-level projects is
turned on, the script includes assignments that turn off all automatic
global promotion settings in the lower-level projects. These settings

Altera Corporation 2–45
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

include the Auto Global Memory Control Signals logic option, output
enable logic options, and clock and register control promotions. If you
select the Disable automatic global promotion in lower-level projects
option in conjunction with the Promote top-level global signals in
lower-level projects option, you can ensure that only signals promoted
to global resources in the top-level are promoted in the lower-level
projects.

Makefile Generation

Makefiles allow you to use make commands to ensure that a bottom-up
project is up-to-date if you have a make utility installed on your
computer. The Generate makefiles to maintain lower-level and
top-level projects option creates a makefile for each design partition in
the top-level design, as well as a master makefile that can run the
lower-level project makefiles. The Quartus II software places the master
makefiles in the top-level directory, and the partition makefiles in their
corresponding lower-level project directories.

You must specify the dependencies in the makefiles to indicate which
source file should be associated with which partition. The makefiles use
the directory locations generated using the Create lower-level project if
one does not exist option. If you created your lower-level projects
without using this option, you must modify the variables at the top of the
makefile to specify the directory location for each lower-level project.

To run the makefiles, use a command such as
make -f master_makefile.mak from the script output directory. The
master makefile first runs each lower-level makefile, which sources its Tcl
script and then generates a Quartus II Exported Partition file to export the
project as a design partition. Next, run the top-level makefile that
specifies these newly generated Quartus II Exported Partition files as the
import files for their respective partitions in the top-level project. The
top-level makefile then imports the lower-level results and performs a
full compilation, producing a final design.

To exclude a certain partition from being compiled, edit the
EXCLUDE_FLAGS section of master_makefile.mak according to the
instructions in the file, and specify the appropriate options. You can also
exclude some partitions from being built, exported, or imported using
make commands. To exclude a partition, run the makefile using a
command such as the one for the GNU make utility shown in the
following example:

gnumake –f master_makefile.mak exclude_<partition directory>=1 r

2–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This command instructs that the partition whose output files are in
<partition directory> are not built. Multiple directories can be excluded by
adding multiple exclude_<partition directory> commands.
Command-line options override any options in the makefile.

Another feature of makefiles is the ability to have the master makefile
invoke the low-level makefiles in parallel on systems with multiple
processors. This option can help designers working with multiple CPUs
greatly improve their compilation time. For the GNU make utility, add
the -j<N> flag to the make command. The value <N> is the number of
processors that can be used to run the build.

1 The makefile does not include a make clean option, so the design
may recompile when make is run again and a QXP file already
exists.

Guidelines for
Creating Good
Design
Partitions and
LogicLock
Regions

This section provides guidelines for creating design partitions and
floorplan location assignments that will help you achieve good quality
results, as well as criteria and methodologies to check the quality of your
assignments.

When planning your design, keep in mind the size and scope of each
partition, and the likelihood that different parts of your design might
change as your design develops. Consider placing logic that changes
frequently into its own partition, so that you have to recompile only that
partition if the rest of the design stays the same. Similarly, consider
placing fixed logic, such as IP cores or logic reused from another project,
into its own partition so that you can compile once and lock down the
placement immediately with a post-fit netlist.

Creating partitions prevents the compiler from performing logic
optimizations across partition boundaries (Figure 2–10), allowing the
software to synthesize and place each partition separately.

Figure 2–10. Effects of Partition Boundaries During Optimization

Presence of Cross-Boundary
Optimizations

Hierarchy A

Hierarchy A Hierarchy B

Compile without
Partition Boundaries

Compile with
Partition Boundaries

Hierarchy B

Hierarchy A Hierarchy B

Cannot Obtain Results of an
Individual Hierarchy for
Incremental Compilation

Hierarchies Remain Independent
from One Another During Logic
Optimizations

Possible to Incrementally
Recompile Each Hierarchy

Altera Corporation 2–47
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

For example, consider a design with a 36-bit function defined in partition
A, but with only 18 bits connected in partition B. In a flat design, you
would expect the logic for the other 18 bits to be removed during
synthesis. With incremental compilation, the Quartus II compiler does
not remove the (unused) logic from partition A because partition B is
allowed to change independently from partition A. That is, you could
later connect all 36 bits in partition B. In this case, you should remove the
unconnected ports and replace them with ground signals inside partition
A. You can create a new wrapper file to do this.

Another example is the case in which a clock is inverted at partition
boundary, but the inversion should be done in the destination LAB for
best results. With incremental compilation, the Quartus II compiler uses
logic to invert the signal, then routes the signal on global clock resource
to its destinations within the partition. The signal acts as a gated clock
with high skew. You must set up partitions to ensure that optimization
does not rely on information from other partitions, so you should
perform clock inversions in the destination partitions.

Because cross-boundary optimizations cannot occur when using
partitions, the quality of results and performance of the design may
decrease as the number of partitions increases. Although more partitions
allows for greater reduction in compilation time, you should limit the
number of partitions to prevent degradation of the quality of results. This
effect is more pronounced in a bottom-up methodology than a top-down
methodology.

In a top-down compilation where partitions are not locked down with
post-fitting results, the Fitter can perform placement optimizations on the
design as a whole to optimize the placement of cross-partition paths.
(However, the Fitter cannot perform logic optimizations such as physical
synthesis across the partition boundary.) In a bottom-up flow, partitions
are compiled separately. Typically, the fitting results are exported, so
there is no placement optimization across the partitions boundaries.

Creating Good Design Partitions

Altera recommends that you observe the following important
hierarchical design considerations when creating partitions:

■ Register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries. At the
very least, either the inputs or the outputs should be registered. The
Statistics reports described in the “Partition Statistics Reports”
section list the ports registered for each partition.

2–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 While this can be difficult in practice, adherence to this
principle results in less timing degradation and area
increase when using incremental flows. Registering lessens
the need for the cross-partition optimizations that are
prevented by partitioning. By registering the ports, you can
keep critical paths within a single partition, thus keeping
the lengths of inter-partition register-to-register paths to a
minimum.

■ Minimize the number of paths that cross partition boundaries. If
there are critical paths crossing between partitions, rework the
partitions to avoid these inter-partition paths. Capturing as many of
the timing-critical connections as possible inside a partition allows
you to effectively apply optimizations to that partition to improve
timing, while leaving the rest of the design unchanged. The Statistics
reports described in “Partition Statistics Reports” on page 2–50 list
the number of input and output ports for each partition.

■ Ensure that the size of each partition is not too small (as a rough
guideline, partitions should be greater than 2,000 logic elements
(LEs) or adaptive logic modules (ALMs)). The Statistics reports
described in the “Partition Statistics Reports” section list the logic
utilization of each partition.

■ Minimize the number of unconnected ports at partition boundaries.
When a port is left unconnected, optimizations that remove logic
driving that port could improve results. However, these
optimizations are not allowed in an incremental design, because they
would lead to cross-partition dependence. Altera recommends that
you either connect such ports to an appropriate node or remove them
from the design. If you know the port should not be used, consider
defining a wrapper module with a port interface that reflects this
fact. The Statistics reports described in the “Partition Statistics
Reports” section list the number of unconnected input and output
ports for each partition.

Altera Corporation 2–49
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

■ Do not use tri-state signals or bidirectional ports on hierarchical
boundaries, unless the port is connected directly to a top-level I/O
pin on the device. If you use boundary tri-states in a lower-level
block, synthesis pushes the tri-states through the hierarchy to the top
level to take advantage of the tri-state drivers on the output pins of
the device.
In an incremental compilation flow, internal tri-states are supported
only when all the destination logic is contained in the same partition,
in which case Analysis and Synthesis implements the internal
tri-state signals using multiplexing logic. For a bidirectional port that
feeds a bidirectional pin at the top level, all the logic that forms the
bidirectional I/O cell must reside in the same partition.

■ Note that logic is not synthesized or optimized across partition
boundaries, which means any constant value (for example, a signal
set to GND) is not propagated across partitions. If a port is supposed
to be connected to VCC or GND, replace the port with VCC or GND in
the module's design. This allows optimizations to take place that
could not be performed if VCC or GND is connected through a port.

■ Do not use the same signal to drive multiple ports on a single
partition. If the same driving signal feeds multiple ports of a
partition, those ports are logically equivalent. However, because
inter-partition optimizations cannot be performed, the compilation
of that partition cannot take advantage of this fact, which usually
results in sub-optimal performance. For example, if a single clock is
used to drive the read and write clocks of a RAM block and the RAM
block is compiled separately in a bottom-up design flow, the RAM
block is implemented as though there are two unique clocks. If you
know the port connectivity will not change (that is, the ports will
always be driven by the same signal), redefine the port interface so
there is only a single port that can then internally drive other logic in
the partition. If required, you can create a wrapper module around
the partition that has fewer ports.

■ Do not directly connect two ports of a partition. If two ports on a
module are directly connected, consider redefining the module to
remove those ports. If an output port drives an input port on the
same module, the connection can be made internally without going
through any I/O ports. If an input port drives an output port
directly, the connection can likely be implemented without the ports
by connecting the signals in a higher-level design partition.

■ You may have to perform some manual resource balancing across
partitions if device resources are overused in the individual
partitions. Refer to “Resource Balancing” on page 2–51 for details.

■ You may have to perform some timing budgeting if paths that cross
partition boundaries require further optimization. Refer to “Timing
Budgeting” on page 2–53 for details.

2–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can use the Incremental Compilation Advisor to check that your
design follows many of these guidelines. Refer to “Incremental
Compilation Advisor” on page 2–60 for more details.

Partition Statistics Reports

You can view statistics about design partitions in the Partition Merge
Partition Statistics compilation report and the Statistics tab in the Design
Partitions Properties dialog box.

The Partition Statistics page under the Partition Merge folder of the
Compilation Report lists statistics about each partition. The statistics for
each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains and
how many are registered or unconnected. This report is useful when
optimizing your design partitions in a top-down compilation flow, or
when you are compiling the top-level design in a bottom-up compilation
flow, ensuring that the partitions meet the guidelines presented in
“Creating Good Design Partitions” on page 2–47. Figure 2–11 shows the
report window.

Figure 2–11. Partition Merge Partition Statistics Report

You can also view statistics about the resource and port connections for a
particular partition on the Statistics tab of the Design Partition
Properties dialog box. On the Assignments menu, click Design
Partitions Window. Right-click on a partition and click Properties to
open the dialog box. Click Show All Partitions to view all the partitions
in the same report (Figure 2–12).

Altera Corporation 2–51
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–12. Statistics Tab in the Design Partitions Properties Dialog Box

Resource Balancing

When using incremental compilation, the software synthesizes each
partition separately, with no data about the resources used in other
partitions. This means that device resources could be overused in the
individual partitions during synthesis, and thus the design may not fit in
the target device when the partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition separately. In some cases, partitions can use
conflicting resources when combined at the top level.

To avoid these effects, you may have to perform manual resource
balancing across partitions.

2–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

RAM and DSP Blocks

In the standard synthesis flow, when DSP blocks or RAM blocks are
overused, the Quartus II Compiler can perform resource balancing and
convert some of the logic into regular logic cells (for example, LEs or
ALMs). Without data about resources used in other partitions, it is
possible for the logic in each separate partition to maximize the use of a
particular device resource, such that the design does not fit after all the
partitions are merged. In this case, you may be able to manually balance
the resources by using the Quartus II synthesis options to control
inference of megafunctions that use the DSP or RAM blocks. You can also
use the MegaWizard® Plug-In Manager to customize your RAM or DSP
megafunctions to use regular logic instead of the dedicated hardware
blocks.

f For more information about resource balancing when using Quartus II
synthesis, refer to the Megafunction Inference Control section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For more tips about resource balancing and reducing resource
utilization, refer to the appropriate Resource Utilization Optimization
Techniques section in the Area and Timing Optimization chapter in
volume 2 of the Quartus II Handbook.

Altera recommends using a LogicLock region for each partition to
minimize the chance that the logic in more than one partition uses the
same logic resource. However, there are situations in which partition
placement may still cause conflicts at the top level. For example, you can
design a partition one way in a lower-level design (such as using an
M-RAM memory block) and then instantiate it in two different ways in
the top level (such as one using an M-RAM block and another using an
M4K block). In this case, you can use a post-fit netlist only with no
placement information to allow the software to refit the logic.

Global Routing Signals

Global routing signals can cause conflicts when multiple projects are
imported into a top-level design. The Quartus II software automatically
promotes high fan-out signals to use global routing resources available in
the device. Lower-level partitions can use the same global routing
resources, thus causing conflicts at the top level.

In addition, LAB placement depends on whether the inputs to the
LCELLs within the LAB are using a global clock signal. Therefore,
problems can occur if a design does not use a global signal in the
lower-level design, but does use a global signal in the top-level design.

Altera Corporation 2–53
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

To avoid these problems, the project lead can first determine which
partitions will use global routing signals. Each designer of a lower-level
partition can then assign the appropriate type of global signals manually,
and prevent other signals from using global routing resources. If you
have all partitions available, you can compile the entire design at the top
level with floorplan assignments to allow the use of regional clocks that
span only a part of the chip. The Fitter automatically promotes some
signals to global routing, and you can use this information when
optimizing the lower-level partitions in separate Quartus II projects.

Use the Global Signal assignment set to a value of On or Off in the
Assignment Editor to place a signal on a global routing line, or to prevent
the signal from using a global routing line. You can also assign certain
types of global clock resources in some device families, such as regional
clocks that cover only part of the device. You can view the resource
coverage of such clocks in the Chip Planner, and then align LogicLock
regions that constrain partition placement with available global clock
routing resources. For example, if the LogicLock region for a particular
partition is limited to one device quadrant, that partition’s clock can use
a regional clock routing type that covers only one device quadrant.

If you want to disable the automatic global promotion performed in the
Fitter, turn off the Auto Global Clock and Auto Global Register Control
Signals options. On the Assignments menu, click Settings. On the Fitter
Settings page, click More Settings and change the settings to Off.

Alternatively, to avoid problems when importing, direct the Fitter to
discard the placement and routing of the imported netlist by setting the
Fitter preservation level property of the partition to Netlist Only. With
this option, the Fitter re-assigns all the global signals for this particular
partition when compiling the top-level design.

If you are performing a bottom-up flow using the design partition scripts,
the software can automatically write the commands to pass global
constraints and turn off the automatic options. Refer to “Generating
Bottom-Up Design Partition Scripts for Project Management” on
page 2–40 for details.

Timing Budgeting

If you optimize lower-level partitions independently and import them to
the top level, any unregistered paths that cross between partitions are not
optimized as an entire path. One way to reduce this effect is to ensure
input and output ports of the partitions are registered whenever possible.

2–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

To ensure that the Compiler correctly optimizes the input and output
logic in each partition, you may be required to perform some manual
timing budgeting. For each unregistered timing path that crosses
between partitions, make timing assignments on the corresponding I/O
path in each partition to constrain both ends of the path to the budgeted
timing delay. Timing budgets may be required for these I/O ports
because when the Compiler optimizes each partition, it has no
information about the placement of the logic that connects to that port. If
the logic in one partition is placed far away from logic in another
partition, the routing delay between the logic could lead to problems
meeting the timing requirements. Assigning a timing budget for each
part of the connection ensures that the Compiler optimizes the paths
appropriately.

When performing manual timing budgeting, you can also use Virtual Pin
assignments to represent I/O ports of a partition that feed another
partition in the full design. By assigning location and timing constraints
to the Virtual Pins that represent the connections in the full design, you
can further improve the quality of the timing budget.

If you are performing a bottom-up flow using the design partition scripts,
the software can write virtual pin assignments and I/O timing budget
constraints automatically. Refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 2–40 for details.

Methodology to Check Partition Quality during Partition Planning

There is an inherent tradeoff between compilation time and quality of
results when you vary the number of partitions in a project. You can
ensure that you limit this effect by following an iterative methodology
during the partitioning process. In any incremental compilation flow in
which you can compile the source code for each partition during the
partition planning phase, Altera recommends the following iterative
flow:

1. Start with a complete design that is not partitioned and has no
location or LogicLock assignments.

2. To perform a placement and timing analysis estimate, on the
Processing menu, point to Start and click Start Early Timing
Estimate.

Altera Corporation 2–55
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1 You must perform Analysis and Synthesis before
performing an Early Timing Estimate. If incremental
compilation is already turned on, you must also perform
Partition Merge.

To run a full compilation instead of the Early Timing Estimate, on the
Processing menu, click Start Compilation.

3. Record the quality of results from the Compilation Report (fM A X,
area, and so forth).

4. Create design partitions as described in “Creating Design
Partitions” on page 2–19 using the guidelines in “Creating Good
Design Partitions” on page 2–47.

5. Perform another Early Timing Estimate or full compilation.

6. Record the quality of results from the Compilation Report. If the
quality of results is significantly worse than that obtained in the
previous compilation in Step 3, repeat Step 4 through this step
(Step 6) to change your partition assignments and use a different
partitioning scheme.

7. Even if the quality of results is acceptable, you can repeat Step 4
through Step 6 by further dividing a large partition into several
smaller partitions. Doing so improves compilation time in future
incremental compilations. You can repeat this step until you achieve
a good tradeoff point (that is, all critical paths are localized within
partitions, the quality of results is not negatively affected, and the
size of each partition is reasonable).

The Importance of Floorplan Location Assignments in
Incremental Compilation

Floorplan location planning can be very important for a design that uses
full incremental compilation, for the following two reasons:

■ To avoid resource conflicts between partitions
■ To ensure a good quality of results when recompiling partitions and

other partition placement is unchanged

Location assignments for each partition ensures that there are no conflicts
for locations between different partitions. If there are no LogicLock
region assignments, or if LogicLock regions are set to auto-size or
floating, it is unclear which resources on the device are allocated for the
logic associated with the region. Without clearly defining this resource
budget, bottom-up design can produce many resource conflicts when

2–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

importing results, because each bottom-up partition has no information
about its resource budget and may therefore claim resources required by
another partition.

In addition, a design floorplan helps to avoid the situation that arises
when the Fitter is directed to place or replace a portion of the design in an
area of the device where most resources have already been claimed. In
this case, the placement of the post-fit netlists of other modules forces the
Fitter to place the new portion of the design in the empty parts of the
device. There are two immediate disadvantages to this situation. First, the
Fitter must work harder because of the higher number of physical
constraints, and therefore compilation time probably increases. Second,
the quality of results often decreases, sometimes dramatically, because
the placement of the target module is now scattered throughout the
device.

Figures 2–13 and 2–14 illustrate the problems associated with refitting
designs that do not have floorplan location assignments. Figure 2–13
shows the initial placement of a four-partition design (P1–P4) without
floorplan location assignments. The second part of the figure shows the
situation if a change occurs to P3. After removing the logic for the
changed partition, the Fitter must replace and reroute the new logic for
P3 using the white space shown in the figure.

Figure 2–13. Representation of Device Floorplan without Location
Assignments

Performing this placement is very difficult. The Fitter may not be able to
find any legal placement for the logic in partition P3, even if it was able to
do so in the initial compilation. If the Fitter does find a legal placement,
the results are probably sub-optimal.

P1

P3

P3

P4P1

P2

P2

P1

Device Floorplan
With 4 Partitions

P3

P1

P4P1

P2

P2

P1

Device Floorplan
After Removing Changed Partition P3

Altera Corporation 2–57
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–14 shows the initial placement of a four-partition design with
floorplan location assignments made by the user, and the situation after
partition P3 is removed in this case.

Figure 2–14. Representation of Device Floorplan with Location Assignments

This placement presents a much more reasonable task to the Fitter and
yields better results than the previous case that does not have floorplan
location assignments. Due to this effect, you should ensure that you have
a LogicLock floorplan assignment for any timing-critical blocks that will
be recompiled as you make changes to the design. You can use the
Reserved property to ensure that there are no placement conflicts in
bottom-up flows. Logic that is not timing-critical can float throughout the
device in a top-down compilation flow, so a floorplan assignment might
not be required in this case.

Creating Good Floorplan Location Assignments

This section presents recommendations for creating a design floorplan
using LogicLock regions.

In most cases, each LogicLock region should contain logic from only one
partition. This organization helps prevent resource conflicts in a bottom-
up design and can lead to better performance preservation when locking
down parts of a project in a top-down design. One exception to this rule
is the case where you want to have two lower-level partitions compiled
together in the same LogicLock region because of tight interaction, but
you want to separate the placement of the parent logic for each partition.
In this case, you can place more than one partition in one LogicLock
region, but for best results you must ensure that you recompile all
partitions every time the logic in one partition changes. In addition, if
your partition consists of a wrapper around more than one lower-level

P2 P3

P1 P4

Device Floorplan
With 4 Partitions

Device Floorplan
After Removing Changed Partition P3

P2

P1 P4

2–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

module, you can place those modules in different areas of the device by
using different LogicLock regions even if they are defined in the same
partition.

If your design contains hierarchical partitions (that is, parent-child
relationships between partitions), you can create hierarchical LogicLock
regions to ensure that the logic in the child partition is physically placed
inside the LogicLock region for the parent partition. This can be useful
when the parent partition does not contain registers at the boundary with
the lower-level child partition and has a lot of signal connectivity. To
create a hierarchical relationship between regions in the LogicLock
Regions window, drag and drop the child region to the parent region.

Ensure that all LogicLock regions in the design have a fixed size and have
their origin locked to a specific location on the chip. If you use auto-sized,
floating-location regions to create an initial floorplan, be sure to set the
size and origin to use the fitter results before you recompile. Do not use
the Soft LogicLock region property. Refer to “The Importance of
Floorplan Location Assignments in Incremental Compilation” on
page 2–55 for more information.

If resource utilization is low, you can enlarge the regions chosen by the
Fitter with the auto-size setting. Doing so usually improves the final
results because it gives the Fitter more freedom to place additional logic
added to the partition during future incremental compilations.

Ideally, almost the entire device should be covered by LogicLock regions
if all partitions are assigned to a region. Give more area to regions that are
densely populated, because overly congested regions can lead to poor
results. You may move the region origins from auto-floating region
placement to satisfy this requirement, but Altera recommends preserving
the Fitter-determined relative placement of the regions. Also, regions that
are too large for their logic can result in wasted resources and also lead to
poor results. You should define LogicLock regions that are neither too
small nor too large.

Regions should not overlap in the device floorplan, especially in
bottom-up flows. If two partitions are allocated an overlapping portion of
the chip, each may independently claim some common resources in this
region. This will lead to resource conflicts when importing bottom-up
results into a final top-level design.

If two LogicLock regions have several connections between them, place
them near each other to improve timing performance. By placing
connected regions near each other, the Fitter has more opportunity to

Altera Corporation 2–59
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

optimize inter-region paths when both partitions are recompiled.
Reducing the criticality of inter-region paths also allows the Fitter more
flexibility when placing the other logic in each region.

You can use the Incremental Compilation Advisor to check that your
design follows many of these guidelines. Refer to “Incremental
Compilation Advisor” on page 2–60 for more details.

f For more information about making and editing LogicLock regions, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2
of the Quartus II Handbook.

Excluding Certain Device Elements (such as RAM or DSP Blocks) with
Resource Exceptions

If your design contains memory or digital signal processing (DSP)
elements, you may want to exclude these elements from the LogicLock
region. You can use LogicLock resource exceptions to prevent elements
of certain types from being assigned to a region. Note that the filter does
not prevent them from being placed inside the region boundaries unless
the region’s Reserved property is turned on. Defining a resource
exception instructs the Fitter that certain blocks are not required to be
inside a region.

Resource exceptions are useful in cases where it is difficult to place
rectangular regions for design blocks that contain memory and DSP
elements, because of their placement in columns throughout the device
floorplan. Excluding these elements can help to resolve no-fit errors that
are caused by regions spanning too many resources, especially for
designs that are memory-intensive, DSP-intensive, or both. If desired,
you can also create separate regions for the memory or DSP blocks,
excluding logic cell resources, which can be shaped to accommodate the
columns in the device to control the placement of those design elements.

To view any resource exceptions, right-click in the LogicLock Regions
window and click Properties. In the LogicLock Region Properties dialog
box, highlight the design element (module/entity) in the Members box
and click Edit. To set up a resource exception, click the browse button
under Excluded element types, then turn on the design element types to
be excluded from the region. You can choose to exclude combinational
logic or registers from logic cells, or any of the sizes of TriMatrix™
memory blocks, or DSP blocks.

2–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Incremental Compilation Advisor

You can use the Incremental Compilation Advisor to check that your
design follows many of the recommendations presented in this chapter
for creating design partitions and floorplan location assignments. On the
Tools menu, point to Advisors, and click Incremental Compilation
Advisor.

As shown in Figure 2–15, recommendations are split into General
Recommendations that apply to all compilation flows and Bottom-Up
Design Recommendations that apply to bottom-up design
methodologies. Each recommendation provides an explanation,
describes the effect of the recommendation, and provides the action
required to make the suggested change. In some cases, there is a link to
the appropriate Quartus II settings page where you can make a suggested
change to assignments or settings.

Figure 2–15. Incremental Compilation Advisor

To check whether the design follows the recommendations, go to the
Timing Independent Recommendations page or the Timing
Dependent Recommendations page, and click Check
Recommendations. For large designs, these operations can take a few
minutes. After you perform a check operation, symbols appear next to
each recommendation to indicate whether the design or project setting
follows the recommendations, or if some or all of the design or project
settings do not follow the recommendations. Refer to the Legend on the
How to use the Incremental Compilation Advisor page in the advisor
for more information.

For some items in the Advisor, if your design does not follow the
recommendation, the Check Recommendations operation lists any parts
of the design that could be improved. For example, if not all of the
partition I/O ports follow the Register All Ports recommendation, the
advisor displays a list of unregistered ports with the partition name and
the source and destination nodes for the port.

Altera Corporation 2–61
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

When the advisor provides a list of nodes, you can right-click on a node
and click Locate to cross-probe to other Quartus II features such as the
RTL Viewer, Chip Planner, or the design source code in the text editor.

1 The first time you open the RTL or Technology Map Viewer, a
preprocessor stage runs. This preprocessor resets the
Incremental Compilation Advisor, so you must rerun the Check
Recommendations process. Alternatively, you can open the
appropriate netlist viewer before you use the Incremental
Compilation Advisor if you want to locate nodes in the viewer.

Criteria for Successful Partition and Floorplan Schemes

The end results of design partitioning and floorplan creation differ from
design to design. However, it is important to evaluate your results to
ensure that your scheme is successful. Compare the results before
creating your floorplan location assignments to the results after doing so,
and consider using another scheme if any of the following guidelines are
not met:

■ No degradation in fMAX should be observed after the design is
partitioned and floorplan location assignments are created. In many
cases, a slight increase in fMAX is possible.

■ The area increase should be no more than 5% after the design is
partitioned and floorplan location assignments are created.

■ The time spent in the routing stage should not significantly increase.

The amount of compilation time spent in the routing stage is reported in
the Messages window with an Info message indicating the elapsed time
for Fitter routing operations. If you notice a dramatic increase in routing
time, the floorplan location assignments may be creating substantial
routing congestion. In this case, decrease the number of LogicLock
regions. Doing so typically reduces the compilation time in subsequent
incremental compilations, and may also improve design performance. To
help you modify your LogicLock regions, you can identify areas of
congested routing in your design using the Chip Planner. On the Tools
menu, click Chip Planner. To view the routing congestion, click the
Layers icon located next to the Task menu. Under Background Color
Map, select the Routing Utilization map.

2–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Recommended
Design Flows
and Compilation
Application
Examples

This section provides design flows for solving common timing closure
and team-based design issues using incremental compilation. Each flow
describes the situation in which it should be used, and gives a
step-by-step description of the commands required to implement the
flow. These examples are divided into the following two sections:

■ “Top-Down Incremental Design Flows”
■ “Bottom-Up Incremental Design Flows”

Top-Down Incremental Design Flows

There are four top-down incremental design flow examples that reduce
compilation time while making incremental changes to the design. The
following design flow examples also allow you to achieve timing closure
more quickly by optimizing or preserving the results for one partition in
a larger design:

■ “Design Flow 1—Changing a Source File for One of Multiple
Partitions in a Top-Down Compilation Flow”

■ “Design Flow 2—Optimizing the Placement for One of Multiple
Partitions in a Top-Down Compilation Flow” on page 2–63

■ “Design Flow 3—Preserving One Critical Partition in a Multiple-
Partition Design in a Top-Down Compilation Flow” on page 2–64

■ “Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow” on
page 2–65

All examples assume you have set up the project to use the full
incremental compilation flow, using the steps described in “Quick Start
Guide – Summary of Steps for an Incremental Compilation Flow” on
page 2–11.

Design Flow 1—Changing a Source File for One of Multiple Partitions in a
Top-Down Compilation Flow

Use this flow to update the source file in one partition without having to
recompile the other parts of the design. You can reduce the compilation
time by keeping the post-fit netlists for the unchanged partitions, while
also preserving the performance for these blocks to reduce additional
timing closure efforts.

Example background: You have just performed a lengthy, complete
compilation of a design that consists of multiple partitions. An error is
found in the HDL source file for one partition and it is being fixed.
Because the design is currently meeting timing requirements and the fix
is not expected to affect timing performance, it makes sense to compile
only the affected partition and preserve the rest of the design.

Altera Corporation 2–63
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Perform the following steps to update the single source file:

1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, click Design Partitions Window.

3. For the partitions that should be preserved, change the Netlist Type
to Post-Fit. You can set the Fitter Preservation Level to either
Placement or Placement and Routing. For the partition that
contains the fix, you can change the netlist type to Source File.
Making the Source File setting is optional because the Quartus II
software recompiles partitions if changes are detected in a
source file.

4. Click Start Compilation to incrementally compile the fixed HDL
code. This compilation should take much less time than the initial
full compilation.

5. Run simulation again to ensure that the bug is fixed, and use the
Timing Analyzer report to ensure that timing results have not
degraded.

Design Flow 2—Optimizing the Placement for One of Multiple Partitions
in a Top-Down Compilation Flow

Use this flow when you want to optimize the results of one partition
when the other partitions in the design already meet their requirements.

Example background: You have just performed a lengthy full
compilation of a design that consists of multiple partitions. The Timing
Analyzer reports that the clock timing requirement is not met. After some
analysis, you believe that timing closure can be achieved if placement can
be improved for one particular partition. You have at least three
optimization techniques in mind: raising the Placement Effort Multiplier,
enabling Physical Synthesis, and running the Design Space Explorer.
Because these techniques all involve significant compilation time, it
makes sense to apply them (or just one of them) to only the partition in
question.

Perform the following steps to raise the Placement Effort Multiplier or
enable Physical Synthesis:

1. On the Assignments menu, click Design Partitions Window.

2. For the partition in question, set the Netlist Type to Post-Synthesis.
This causes the partition to be placed and routed with the new Fitter
settings (but not resynthesized) during the next compilation.

2–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

3. For the remaining partitions (including the top-level entity), set the
Netlist Type to Post-Fit. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing. To
reduce compilation time further, use the Placement and Routing
setting. These partitions are preserved during the next compilation.

4. Apply the desired optimization settings.

5. Click Start Compilation to incrementally compile the design with
the new settings. During this compilation, the Partition Merge stage
automatically merges the post-synthesis netlist of the critical
partition with the post-fit netlists of the remaining partitions. This
“merged” netlist is fed to the Fitter. The Fitter then refits only one
partition. Since the effort is reduced as compared to the initial full
compilation, the compilation time is also reduced.

To use Design Space Explorer, perform the following steps:

1. Repeat steps 1–3 of the previous set of steps.

2. Save the project and run Design Space Explorer.

Design Flow 3—Preserving One Critical Partition in a Multiple-Partition
Design in a Top-Down Compilation Flow

Use this flow to optimize one partition by itself, and then lock the
placement to preserve its results while you complete the rest of your
design. For example, you can incorporate some IP that comes with
instructions to perform optimization before you incorporate the rest of
your custom logic.

Example background: Prior to any compilation, you have some insight
into which partition will be the most critical (in terms of timing) after
placement and routing. To help achieve timing closure, you decide to use
the following compilation flow.

The critical partition is placed and routed by itself, with all optimizations
turned on (manually or through Design Space Explorer). After timing
closure is achieved for this partition, its content and placement are
preserved and the remaining partitions are fit with normal or reduced
optimization levels so that the compilation time can be reduced.

1 This flow generally works only if the critical path is contained
inside the partition in question. This is one reason why both the
inputs and outputs of each partition should be registered.

To implement this design flow, perform the following steps:

Altera Corporation 2–65
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1. Partition the design and create floorplan location assignments.

2. For the partition expected to be critical, on the Assignments menu,
click Design Partitions Window and set Netlist Type to Source
File.

3. For the remaining partitions (other than any direct or indirect
parents of the critical one), set the Netlist Type to Empty.

4. Click Start Compilation to compile with the desired optimizations
turned on, or use Design Space Explorer.

5. Check Timing Analyzer reports to ensure that timing requirements
are met. If so, proceed to step 6. Otherwise, repeat steps 4 and 5 until
the requirements are met.

6. In the Design Partitions Window, set the Netlist Type to Post-Fit
for the critical partition. Set the Fitter Preservation Level to
Placement and Routing to preserve the results.

7. Change the Netlist Type from Empty to Source File for the
remaining partitions.

8. Turn off the optimizations set in step 4, and compile the design.
Turning off the optimizations at this point does not affect the fitted
partition, because its Netlist Type is set to Post-Fit.

9. Check Timing Analyzer reports to ensure that timing requirements
are met. If not, make design or option changes and repeat step 8 and
step 9 until the requirements are met.

1 This flow is similar to a bottom-up design flow in which a
module is implemented separately and is merged into the
rest of the design afterwards. Refer to “Empty Partitions”
on page 2–26 for more information about potential issues.
Ensure that if there are any partitions representing a design
file that is missing from the project, you create a placeholder
wrapper file that defines the port interface.

Design Flow 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow

Use this flow if you want to compile your design without one
timing-critical partition or a partition that requires a long compilation
time, and then preserve the rest of your design when you add the last
design block.

2–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example background: Prior to any compilation, you have some insight
into which partition will be the most critical (in terms of timing) after
placement and routing. To help achieve timing closure, you decide to use
the following compilation flow.

Only the non-critical partitions are placed and routed initially, using
floorplan location assignments. These non-critical partitions are then
preserved when the critical partition is introduced into the Fitter, with
various optimizations turned on (manually or through Design Space
Explorer).

To implement this design flow, perform the following steps:

1. Perform partitioning and floorplan creation.

2. For the partition expected to be critical, on the Assignments menu,
click Design Partitions Window and set the Netlist Type to Empty.

3. For the remaining partitions, set the Netlist Type to Source File.

4. Click Start Compilation to compile the non-critical partitions.

5. Check the Timing Analyzer report to ensure that the timing
requirements are met. If so, proceed to step 6. Otherwise, make
design or option changes and repeat steps 4 and 5 until the
requirements are met.

6. In the Design Partitions Window, set the Netlist Type to Post-Fit
for the processed partitions. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing.

7. Change the Netlist Type from Empty to Source File for the
partition expected to be critical.

8. Click Start Compilation to compile the design with optimizations
turned on, or use Design Space Explorer.

9. Check the Timing Analyzer report to ensure that the timing
requirements are met. If not, make design or option changes and
repeat steps 8 and 9 until the requirements are met.

Altera Corporation 2–67
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1 This flow is similar to a bottom-up design flow, in which a
module is implemented separately and merged into the rest of
the design afterwards. Refer to “Empty Partitions” on page 2–26
for more information about potential issues. If there are any
partitions representing a design file that is missing from the
project, ensure that you create a placeholder wrapper file that
defines the port interface.

Bottom-Up Incremental Design Flows

This section contains the following three bottom-up design flow
examples to illustrate team-based design methodologies and IP reuse:

■ “Design Flow 5—Implementing a Team-Based Bottom-Up Design
Flow” on page 2–67

■ “Design Flow 6—Performing Design Iteration in a Bottom-Up
Design Flow” on page 2–71

■ “Design Flow 7—Creating Hard-Wired Macros for IP Reuse” on
page 2–73

Design Flow 5—Implementing a Team-Based Bottom-Up Design Flow

This example describes how to use incremental compilation in a
bottom-up design flow.

Example background: A project consists of several lower-level
subdesigns that are implemented separately by different designers. The
top-level project instantiates each of these subdesigns exactly once. The
subdesign designers want to optimize their designs independently and
pass on the results to the project lead.

As the project lead in this scenario, perform the following steps to prepare
the design for a successful bottom-up design methodology:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. To prepare for the bottom-up methodology, create a “skeleton” of
the design that defines the hierarchy for the subdesigns that will be
implemented by separate designers. The top-level design
implements the top-level entity in the design and instantiates
wrapper files that represent each subdesign by defining only the
port interfaces but not the implementation.

2–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

3. Make project-wide settings. Select the device, make global
assignments for clocks and device I/O ports, and make any global
signal constraints to specify which signals can use global routing
resources.

4. Ensure that Full incremental compilation is turned on.

5. Make design partition assignments for each subdesign and set the
Netlist Type for each design partition that will be imported to
Empty in the Design Partitions window.

6. Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. This floorplan should consider the
connectivity between partitions and estimates of the size of each
partition based on any initial implementation numbers and
knowledge of the design specifications.

7. On the Project menu, click Generate Bottom-Up Design Partition
Scripts, or launch the script generator from Tcl or the command
prompt.

8. Make any changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including
LogicLock region, for all partitions and virtual pin location
assignments. Altera further recommends that you add a maximum
delay timing constraint for the virtual I/O connections in each
partition to help timing closure during integration at the top level. If
lower-level projects have not already been created by the other
designers, use the partition script to set up the projects so that you
can easily take advantage of makefiles.

9. Provide each lower-level designer with the Tcl file to create their
project with the appropriate constraints. If you are using makefiles,
provide the makefile for each partition.

As the designer of a lower-level subdesign in this example, perform the
appropriate set of steps to successfully export your design, whether your
design team is using makefiles, or exporting and importing the design
manually.

Altera Corporation 2–69
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

If you are using makefiles, perform the following steps:

1. Use the make command and the makefile provided by the project
lead to create a Quartus II project with all design constraints, and
compile the project.

2. The information about which source file should be associated with
which partition is not available to the software automatically, so
you must specify this information in the makefile. You must specify
the dependencies before the software will rebuild the project after
the initial call to the makefile.

3. When you have achieved the desired compilation results and the
design is ready to be imported into the top-level design, the project
lead can use the master_makefile command to export this
lower-level partition and create a Quartus II Exported Partition file,
and then import it into the top-level design.

If you are not using makefiles, perform the following steps:

1. Create a new Quartus II project for the subdesign.

2. Make LogicLock region assignments and global assignments
(including clock settings) as specified by the project lead.

3. Make Virtual Pin assignments for ports which represent
connections to core logic instead of external device pins in the top-
level module.

4. Make floorplan location assignments to the Virtual Pins so that they
are placed in their corresponding regions as determined by the
top-level module. This provides the Fitter with more information
about the timing constraints between modules. Alternatively, you
can apply timing I/O constraints to the paths that connect to virtual
pins.

5. Ensure that Full incremental compilation is turned on and proceed
to compile and optimize the design as needed.

6. When you have achieved the desired compilation results, on the
Project menu, click Export Design Partition. The Export Design
Partition dialog box appears.

2–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

7. Under Netlist to export, select the netlist type Post-fit netlist to
preserve the placement and performance of the subdesign, and turn
on Export routing to include the routing information if required.
You can export Post-synthesis netlist instead if placement or
performance preservation is not required.

8. Provide the Quartus II Exported Partition file to the project lead.

Finally, as the project lead in this example, perform the appropriate set of
steps to import the files sent in by the designers of each lower-level
subdesign partition.

If you are using makefiles, perform the following steps:

1. Use the master_makefile command to export each lower-level
partition and create Quartus II Exported Partition files, and then
import them into the top-level design.

2. The software does not have all the information about which source
files should be associated with which partition, so you must specify
this information in the makefile. The software cannot rebuild the
project if source files change unless you specify the dependencies.

If you are not using makefiles, perform the following steps:

1. After you obtain the Quartus II Exported Partition file for each
subdesign from the other designers on the team, on the Project
menu, click Import Design Partition and specify the partition in the
top-level project that is represented by the subdesign Quartus II
Exported Partition file.

2. Repeat the import process described in step 1 for each partition in
the design. After you have imported each partition once, select all
the design partitions and use the Reimport using latest import files
at previous locations option to import all of the files from their
previous locations at one time.

Resolving Assignment Conflicts During Import
When importing the subdesigns, the project lead may become aware of
some assignment conflicts. This can occur, for example, if the subdesign
designers changed their LogicLock regions to account for additional logic
or placement constraints, or if the designers applied I/O port timing
constraints that differ from constraints added to the top-level project by
the project lead. To address these conflicts, the project lead may want to
take one or both of the following actions:

■ Allow new assignments to be imported

Altera Corporation 2–71
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

■ Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may
take one of the following actions:

■ Allow the imported region to replace the existing region
■ Allow the imported region to update the existing region
■ Skip assignment import for regions with conflicts

The project lead can address all of these situations using the Advanced
Import Settings as described in “Importing Assignments and Advanced
Import Settings” on page 2–37.

If the placement of different subdesigns conflict, the project lead can also
set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported
netlist.

Importing a Partition to be Instantiated Multiple Times
In this variation of the scenario, one of the subdesigns is instantiated more
than once in the top-level design. The designer of the subdesign may
want to compile and optimize the entity once under a lower-level project,
and then import the results as multiple partitions in the top-level project.

In this case, placement conflict resolution as described in “Resolving
Assignment Conflicts During Import” is mandatory because the top-level
partitions share the same imported post-fit netlist. If you import multiple
instances of a subdesign in the top-level design, the imported LogicLock
regions are automatically set to Floating status.

If you choose to resolve conflicts manually, you can use the import
options and manual LogicLock assignments to specify the placement of
each instance in the top-level design.

Design Flow 6—Performing Design Iteration in a Bottom-Up Design Flow

Use this flow if you want to re-optimize lower-level partitions in a
bottom-up compilation by incorporating additional constraints from the
integrated top-level design.

Example background: A project consists of several lower-level
subdesigns that have been exported from separate Quartus II projects
and imported into the top-level design in a bottom-up compilation flow.
In this example, integration at the top level has failed because the timing
requirements are not met. The timing requirements are met in each
individual lower-level project, but critical inter-partition paths in the top
level are causing timing requirements to fail.

2–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

After trying various optimizations at the top level, the project lead
determines that they cannot meet the timing requirements given the
current lower-level partition placements that were imported. The project
lead decides to pass additional constraints to the lower-level projects to
improve the placement.

To implement this design flow, perform the following steps:

1. In the top-level design, on the Project menu, click Generate
Bottom-Up Design Partition Scripts, or launch the script generator
from Tcl or the command line.

2. Because lower-level projects have already been created for each
partition, turn off Create lower-level project if one does not exist.

3. Make any additional changes to the default script options as
desired. Altera recommends that you pass all the default
constraints, including LogicLock regions, for all partitions and
virtual pin location assignments. Altera also recommends that you
add a maximum delay timing constraint for the virtual I/O
connections in each partition.

4. The Quartus II software generates Tcl scripts for all partitions, but in
this scenario, you would focus on the partitions that make up the
cross-partition critical paths. The following assignments are
important in the script:

● Virtual pin assignments for module pins not connected to device
I/O ports in the top-level design.

● Location constraints for the virtual pins that reflect the initial
top-level placement of the pin’s source or destination. These
help make the lower-level placement “aware” of its
surroundings in the top-level, leading to a greater chance of
timing closure during integration at the top-level.

● INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing
constraints on the paths to and from the I/O pins of the
partition. These constrain the pins to optimize the timing paths
to and from the pins.

5. The low-level designers source the file provided by the project lead.

● To source the Tcl script from the Quartus II GUI, on the Tools
menu, click Utility Windows and open the Tcl console.
Navigate to the script’s directory, and type the following
command:

source <filename> r

Altera Corporation 2–73
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

● To source the Tcl script at the system command prompt, type the
following command:

quartus_cdb -t <filename>.tcl r

6. The lower-level designers recompile their designs with the new
assignments.

7. The lower-level designers re-export their results.

8. The top-level designer re-imports the results.

9. You can now analyze the design to determine if the timing
requirements have been achieved. Since the lower-level partitions
were compiled with more information about connectivity at the top
level, it is more likely that the inter-partition paths have improved
placement which helps to meet the timing requirements.

Design Flow 7—Creating Hard-Wired Macros for IP Reuse

Use this design flow to create a hard-wired macro or IP block that can be
instantiated in a top-level design. This flow provides the ability to export
a design block with placement (and optionally routing) information and
to import any number of copies of this pre-placed macro into another
design.

Example background: An IP provider wants to produce and sell an IP
core for a component to be used in higher-level systems. The IP provider
wants to optimize the placement of their block for maximum
performance in a specific Altera device and then pass on the placement
information to their end customer. To preserve their IP, they also prefer
to send a compiled netlist instead of providing the HDL source code to
their customer.

The customer first specifies what Altera device they are using for this
project and provides the design specifications.

As the IP provider in this example, perform the following steps to export
a preplaced IP core (or hard macro):

1. Create an HDL black box wrapper file that defines the port interface
for the IP core and provide the file to the customer to instantiate as
an empty partition in their top-level design.

2. Create a Quartus II project for the IP core.

3. Create a LogicLock region for the design hierarchy to be exported.

2–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 Creating a floorplan using LogicLock regions is recommended
although not required for the generation and use of QXP files.
Using a LogicLock region for the IP core allows the customer to
create an empty placeholder region to reserve space for the IP in
their design floorplan. This ensures there are no conflicts with
the top-level design logic, and that the IP core will not affect the
timing performance of other logic in the top-level design.
LogicLock regions can be effective to reduce resource utilization
conflicts and to enable performance preservation. In addition,
without LogicLock regions, placement can be preserved only in
an absolute manner. With LogicLock regions, you can preserve
placement absolutely or relative to the origin of the associated
regions. This is important when a QXP file is imported for
multiple partition hierarchies in the same project, because in this
case the location of at least one instance in the top-level project
does not match the location used by the IP provider.

4. If required, add any logic (such as PLLs or other logic that will be
defined in the customer’s top-level design) around the design
hierarchy to be exported. If you do so, create a design partition for
the design hierarchy that is to be exported as an IP core.

For more information, refer to “Exporting a Lower-Level Block
within a Project” on page 2–35.

5. Optimize the design and close timing to meet the design
specifications.

6. Export the appropriate level of hierarchy into a single QXP file.
Following a successful compilation of the project, you can generate
a QXP file from the GUI, the command-line, or with Tcl commands:

● If you are using the Quartus II GUI, use the Export Design
Partition command.

● If you are using command-line executables, run quartus_cdb
with the --incremental_compilation_export option.

● If you are using Tcl commands, run the following command:
execute_flow -incremental_compilation_export.

7. Provide the QXP file to the customer. Note that you do not have to
send any of your design source code to the customer; the design
netlist as well as placement and routing information is contained
within this single file.

As the customer in this example, incorporate the IP core in your design
by performing the following steps:

Altera Corporation 2–75
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

1. Create a Quartus II project for the top-level design and instantiate a
copy or multiple copies of the IP core. Add the black box wrapper
file from the IP provider to your project to specify the entity name
and the port interface.

2. On the Processing menu, point to Start and click Perform Analysis
& Elaboration to identify the design hierarchy.

3. Create a design partition for each instance of the IP core (refer to
“Creating Design Partitions” on page 2–100) with the Netlist Type
set to Empty (refer to “Setting the Netlist Type for Design
Partitions” on page 2–22).

4. You can now continue work on your part of the design and accept
the IP core from the IP provider whenever it is ready.

5. Import the QXP file from the IP provider for the appropriate
partition hierarchy. You can import a QXP file from the GUI, the
command-line, or with Tcl commands.

● If you are using the Quartus II GUI, use the Import Design
Partition command.

● From the command-line, run quartus_cdb with the
--incremental_compilation_import option.

● With Tcl commands, run the following command:
execute_flow -incremental_compilation_import.

6. You can set the imported LogicLock regions to floating or move
them to a new location, with the relative locations of the region
contents preserved. Routing information is preserved whenever
possible.

1 The Fitter ignores relative placement assignments if the
LogicLock region’s location in the top-level design is not
compatible with the locations exported in the QXP file.

7. You can control whether to preserve the imported netlist only,
placement, or placement and routing (if the placement or placement
and routing information was exported in the QXP file) with the
Fitter Preservation Level.

By default, the software preserves the absolute placement and
routing of all nodes in the imported netlist if you choose to preserve
placement and routing. However, if you use the same QXP files for
multiple partitions in the same project, the software preserves the
relative placement for each of the imported modules (relative to the
origin of the LogicLock region).

2–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 If the IP provider did not define a LogicLock region in the
exported partition, the software preserves absolute placement
locations and this leads to placement conflicts if the partition is
imported for more than one instance.

Incremental
Compilation
Restrictions

This section documents the restrictions and limitations that you may
encounter when using incremental compilation, including interactions
with other Quartus II features. Some restrictions apply to both top-down
and bottom-up design flows, while some additional restrictions apply
only to bottom-up design flows.

The following restrictions and limitations are covered:

■ “Using Incremental Compilation with Quartus II Archive Files” on
page 2–77

■ “OpenCore Plus MegaCore Functions in Bottom-Up Flows” on
page 2–78

■ “SignalProbe Pins and Engineering Change Management with the
Chip Planner” on page 2–78

■ “SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation
Flows” on page 2–80

■ “HardCopy Compilation Flows” on page 2–82
■ “Restrictions on Megafunction Partitions” on page 2–84
■ “Routing Preservation in Bottom-Up Compilation Flows” on

page 2–84
■ “Bottom-Up Design Partition Script Limitations” on page 2–84
■ “Register Packing and Partition Boundaries” on page 2–87
■ “I/O Register Packing” on page 2–87

Using Incremental Synthesis Only Instead of Full Incremental
Compilation

You can turn on incremental compilation for only the synthesis stage of
compilation to perform incremental synthesis, with no incremental
place-and-route. This mode is not recommended for new projects
because it is not compatible with certain Quartus II design flows, such as
formal verification and incremental SignalTap II verification.

To use incremental synthesis only, you can follow the steps for full
incremental compilation, but turn on the Incremental synthesis only
(Can reduce compilation time for a design with partition assignments)
option on the Incremental Compilation page under Compilation
Process Settings in the Settings dialog box.

Altera Corporation 2–77
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

In this mode, the Fitter uses a flattened netlist without partition
boundaries, so the design is always replaced and rerouted. The difference
between this flow and the one shown in Figure 2–2 on page 2–7 is that the
partition merge stage does not accept post-fit netlists produced by the
Fitter, and the Fitter does not compile partitions separately. The following
differences exist in the impact of incremental synthesis only as compared
to full incremental compilation:

■ Compilation time reduction is limited to Quartus II integrated
synthesis.

■ You cannot preserve placement and routing, therefore the feature
does not preserve partition timing performance.

■ A partition is automatically resynthesized whenever you make a
change to the source code or any synthesis assignments (changes to
synthesis or fitting assignments do not trigger an automatic
recompilation with Full Incremental Compilation).

Preserving Exact Timing Performance

Timing performance might change slightly in the top-level design when
all partitions are incorporated due to differences between the separate
partitions and the full design. For example, there may be parasitic effects
or crosstalk that was not present in the initial compilation with only part
of the design. Additional fan-out on routing lines can also degrade timing
performance. To ensure that the design will meet performance when all
partitions are present, only approximately 2% margin is required. This
applies to both bottom-up and top-down methodologies. The Fitter
automatically works to achieve more than 2% margin when compiling
any design.

Using Incremental Compilation with Quartus II Archive Files

The post-synthesis and post-fitting netlist information for each design
partition is stored in the project database. When you archive a project, the
database information is not included in the archive unless you include the
database files in the Quartus II Archive file (.qar). In addition, when you
import a design partition into a top-level design, the lower-level design
netlist is stored in the project database for the top-level design (the
top-level project does not use the original source files or the Quartus II
Exported Partition file). If you archive the top-level project, the imported
design information is not included unless the database files are included
in the Quartus II Archive file.

Altera recommends that you turn on Include database from compilation
and simulation in the Archive Project dialog box if any form of
incremental compilation is used so that compilation results are
preserved.

2–78 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Formal Verification Support

You cannot use design partitions if you are creating a netlist for a formal
verification tool.

OpenCore Plus MegaCore Functions in Bottom-Up Flows

You can use OpenCore Plus MegaCore® functions in top-down
incremental compilation flows beginning with the Quartus II software
version 7.1. You cannot export partitions containing OpenCore Plus
MegaCore functions, so you cannot use OpenCore Plus functions in a
bottom-up design flow. Include any OpenCore IP functions in your
top-level Quartus II project.

Importing Encrypted IP Cores in Bottom-Up Flows

Proper license information is required to compile encrypted IP cores. The
license assignment is imported in to the top-level project when a design
is imported as a QXP file. However, the license assignment contains an
absolute path to the licensed IP source files. Therefore, the QXP file
usually works correctly only if imported into a top-level project on the
same computer as the lower-level project.

To avoid this problem, you can include this partition in the top-level
project instead of importing it, because IP cores generally do not require
additional changes by a designer in the project team. You can set the
partition that contains the core to Post-Fit after the first compilation to
reduce future compilation times, because the partition will not be
changing in any subsequent compilation. You can also set the partition to
Empty to exclude the IP core from the database until you are ready to
compile the entire design.

If you do want to import an encrypted IP core, copy the encrypted IP
source files to the top-level project's computer in exactly the same path
structure. For example, if the IP encrypted source file was
d:/work/my_encrypted_file.vhd, the top-level designer that imports the
QXP file must create the same folder and place the file in this location.

SignalProbe Pins and Engineering Change Management with the
Chip Planner

When you create SignalProbe pins or use the Resource Property Editor to
make changes due to engineering change orders (ECOs) after performing
a full compilation, recompiling the entire design is not necessary. These
changes are made directly to the netlist without performing a new
placement and routing. You can preserve these changes using a post-fit

Altera Corporation 2–79
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

netlist with placement and routing. When a partition is recompiled,
SignalProbe pins and ECO changes in unaffected partitions are
preserved.

f For more information about using the SignalProbe feature to debug your
design, refer to the Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook. For more
information about using the Chip Planner and the Resource Property
Editor to make ECOs, refer to the Engineering Change Management with
the Chip Planner chapter in volume 2 of the Quartus II Handbook.

To preserve SignalProbe pins or ECO changes, the partitions must be set
to a Netlist Type of Post-fit with the Fitter Preservation Level set to
Placement and routing. If any partitions with SignalProbe pins or ECO
changes are set to post-fit without routing or to netlist only, the software
issues a warning and internally uses the post-fit netlist with placement
and routing. If the partitions are set to use the source code or a
post-synthesis netlist, the software issues a warning and the post-fit
SignalProbe pins or ECO changes are not included in the new
compilation. However, partitions can become linked due to the
SignalProbe pins or ECO changes, as described below, in which case all
linked partitions inherit the netlist type from the linked partition with the
highest level of preservation.

Linked Partitions Due to SignalProbe Pins or ECO Changes

If ECO changes affect more than one partition or the connection between
any partitions, the partitions become linked. All of the higher-level
“parent” partitions up to their nearest common parent are also linked. In
this case, the connection between the partitions is actually defined
outside of the two partitions immediately affected, so all the partitions
must be compiled together. All linked partitions use the same netlist type,
and they inherit the netlist type from the linked partition with the highest
level of preservation.

When a SignalProbe pin is created, it affects the partition that contains the
node being probed. In addition, any pipeline registers are created in the
same partition as the node being probed. The SignalProbe output pin is
assigned to the top-level partition. Therefore, there is a new connection
formed between the top-level partition and the lower-level partition that
is being probed. Because of this connection, the lower-level partition
being probed and all of the higher-level “parent” partitions up to the top
level become linked. All linked partitions use the same netlist type, and
they inherit the netlist type from the linked partition with the highest
level of preservation.

2–80 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

When partitions are linked, they can change which netlists are preserved
when you recompile the design, as follows:

■ If all the linked partitions are set to use the source code or a
post-synthesis netlist, the partitions are refit as normal. In this case,
the SignalProbe pins or ECO changes are not included in the new
netlists, so you must reapply the changes in the Change Manager.

■ If any of the linked partitions is set to the Post-Fit netlist type, and
there are no source code changes, the software issues a warning and
internally uses the post-fit netlist with placement and routing for all
linked partitions. By preserving the appropriate post-fit netlists, the
software can preserve the SignalProbe pins or ECO changes.

■ If any of the linked partitions is set to the Post-Fit (Strict) netlist type,
the software issues a warning and internally uses the post-fit netlist
with placement and routing for all linked partitions, regardless of
any source code changes. By preserving the appropriate post-fit
netlists, the software can preserve the SignalProbe pins or ECO
changes. Note that in this case, source code changes in any of the
linked partitions are not included in the new netlist.

■ If any of the linked partitions is recompiled due to a change in source
code, the software issues a warning and recompiles the other linked
partition(s) as well. When this occurs, the SignalProbe pins or ECO
changes are not included in the new netlist, so you must reapply the
changes in the Change Manager.

Exported Partitions

In a bottom-up incremental compilation, the exported netlist includes all
currently saved SignalProbe pins and ECO changes. This might require
flattening and combining lower-level partitions in the child project to
avoid partition boundary violations at the top level. After importing this
netlist, changes made in the lower-level partition do not appear in the
Change Manager at the top level.

If you make any ECO changes that affect the interface to the lower-level
partition, the software issues a warning message during the export
process that this netlist will not work in the top-level design without
modifying the top-level HDL code to reflect the lower-level change.

SignalTap II Embedded Logic Analyzer in Bottom-Up
Compilation Flows

You can use the SignalTap® II Embedded Logic Analyzer in any project
that you can compile and program into an Altera device. You cannot
export a lower-level project that uses a SignalTap II File (.stp) for the
SignalTap II Logic Analyzer in a bottom-up incremental compilation
flow. You must disable the SignalTap II feature and recompile the design

Altera Corporation 2–81
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

before you export the design as a partition. You can instantiate the
SignalTap II Megafunction directly in your lower-level design (instead of
using an .stp file) and export the design to the top level in a bottom-up
flow.

You can tap any nodes in a Quartus II project, including nodes imported
from other projects. Use the appropriate filter in the Node Finder to find
your node names. Use SignalTap II: post-fitting if the Netlist Type is
Post-Fit to incrementally tap node names in the post-fit netlist database.
Use SignalTap II: pre-synthesis if the Netlist Type is Source File to make
connections to the source file (pre-synthesis) node names when you
synthesize the partition from the source code.

f For details about using the SignalTap II logic analyzer in an incremental
design flow, refer to the Design Debugging Using the SignalTap II Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook.

Logic Analyzer Interface in Bottom-Up Compilation Flows

You can use the Logic Analyzer Interface in any project that you can
compile and program into an Altera device. You cannot export a
lower-level project that uses the Logic Analyzer Interface in a bottom-up
incremental compilation flow. You must disable the Logic Analyzer
Interface feature and recompile the design before you export the design
as a partition.

f For more information about the Logic Analyzer Interface, refer to the
In-System Debugging Using External Logic Analyzers chapter in volume 3
of the Quartus II Handbook.

Migrating Projects with Design Partitions to Different Devices

Partition assignments are still valid if you migrate to a different device
density or family. LogicLock region size is valid if you migrate to a device
in the same family, but the origin location is not valid. Specific floorplan
assignments are not valid for different devices or families because the
location coordinates change between devices.

Post-synthesis netlists are valid if you migrate to a different-sized device
in the same family. Post-fit netlists are not valid if you migrate to a
different device density or family.

2–82 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy Compilation Flows

HardCopy APEX and HardCopy Stratix Devices

Incremental compilation with the Quartus II software is not supported
for HardCopy APEX or HardCopy Stratix design flows.

HardCopy II Migration Flows

Top-down incremental compilation is supported for the base family in
HardCopy II migration flows for both the Stratix II first and HardCopy II
first flows. Design partitions are migrated to the companion device.
LogicLock regions are suggested for design partitions but are not
migrated to the companion device, due to the different device
architecture. However, you can not make changes to the design after
migration because the design would not match the compilation results for
the base family.

The Netlist only preservation level is not supported for Post-fit netlists for
Stratix II or HardCopy II device compilations when there is a migration
device set (that is, for HardCopy II device compilations with a Stratix II
migration device, or Stratix II device compilations with a HardCopy II
migration device).

Bottom-up incremental compilation is not supported in HardCopy II or
Stratix II device compilations when there is a migration device setting.
The Revision Compare feature requires that the HardCopy II and FPGA
netlists are the same. Therefore, all operations performed on one revision
must also occur on the other revision. This is accomplished by logging all
operations and replaying them on the other revision. Unfortunately,
using the bottom-up flow and importing partitions does not support this
requirement. You can often use a top-down flow with Empty partitions
to implement behavior similar to bottom-up flows.

HardCopy II Stand-Alone Compilations

You can use both top-down and bottom-up incremental compilation for
stand-alone HardCopy II compilations.

Routing preservation is not supported for HardCopy II devices.
Therefore, the Placement and Routing preservation level is not available,
and routing cannot be exported in the bottom-up flow.

Altera Corporation 2–83
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Assignments Made in HDL Source Code in Bottom-Up Flows

Assignments made with I/O primitives or the altera_attribute
HDL synthesis attribute in lower-level partitions are not currently
honored at the top level in a bottom-up flow. The assignments are
processed at the top level, but cannot always be applied to the netlist
database after import. Fitter-related assignments (such as I/O
termination setting) can be applied correctly if you use a post-synthesis
QXP file.

Compilation Time with Physical Synthesis Optimizations

If Physical Synthesis is turned on, the optimizations run whenever there
is any partition placement that is not fixed with a post-fit netlist. For
example, when using the SignalTap II logic analyzer, there is an
automatic partition created for the SignalTap II instance which does not
have its placement preserved. Physical synthesis cannot make any
changes to partitions that are set to post-fit; however, it does still analyze
the netlist as whole. Therefore, the compilation time is not reduced as
much if physical synthesis optimizations are turned on.

You can set partitions to Empty to reduce compilation time if you want to
use physical synthesis for other partitions. You can go back to the Post-fit
netlist type directly from Empty, so the previous fitting results can be
reused when you want to include all partitions in the netlist. This method
works best if you assign each Empty partition to a LogicLock region with
the Reserved property, so that no other logic is placed in that region of the
device floorplan when the design is recompiled.

You can also turn off physical synthesis if you are recompiling a partition
which does not require physical synthesis optimizations. For example,
when using the SignalTap II Logic Analyzer on a design that has all
partitions using post-fit netlists, you can turn off physical synthesis to
reduce compilation time. You can also compile critical partitions that
require Physical Synthesis first, and close timing for those partitions. If
those partitions do not require any logic changes, you can set the critical
partitions to post-fit and then subsequent compilations can have physical
synthesis turned off. Be sure to turn the option on again if you make
design changes to timing-critical partitions and want to recompile the
new logic with physical synthesis optimizations.

2–84 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction
instantiations. If you use the MegaWizard Plug-In Manager to customize
a megafunction variation, the MegaWizard-generated wrapper file
instantiates the megafunction. You can create a partition for the
MegaWizard-generated megafunction custom variation wrapper file.

The Quartus II software does not support the creation of a partition for
inferred megafunctions (that is, where the software infers a megafunction
to implement logic in your design). If you have a module or entity for the
logic that is inferred, you can create a partition for that hierarchy level in
the design.

The Quartus II software does not support creation of a partition for any
Quartus II internal hierarchy that is dynamically generated during
compilation to implement the contents of a megafunction.

Routing Preservation in Bottom-Up Compilation Flows

There are some cases in which routing information cannot be preserved
exactly, especially in bottom-up compilation, because of legality in the
device architecture. For example, when multiple partitions are imported,
there may be routing conflicts because you cannot pre-assign routing for
each lower-level block. In addition, if an imported LogicLock region is
moved in the top-level design, the relative placement of the nodes is
preserved but the routing may not be preserved.

Bottom-Up Design Partition Script Limitations

The Quartus II software has some limitations related to bottom-up design
partition scripts.

Synopsys Design Constraint (SDC) Files for the TimeQuest Timing
Analyzer

As described in “Importing Assignments and Advanced Import Settings”
on page 2–37, timing assignments made for the TimeQuest Timing
Analyzer in an SDC file are currently not imported into the top-level
project. You should manually ensure that the top-level project includes
all of the timing requirements for the entire project.

If you want to copy lower-level SDC files to the top-level project, consider
prefixing lower-level constraints with a variable that describes the
constraint’s location in the design hierarchy. Then, when you copy the file
to the top-level design, you can set the variable to provide the hierarchy
path to the lower-level partition in the top-level design.

Altera Corporation 2–85
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Wildcard Support in Bottom-Up Design Partition Scripts

When applying constraints with wildcards, wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be
made to these nodes: Top|A:inst|B:inst|*, where A and B are
lower-level partitions, and hierarchy B is a child of A, that is B is
instantiated in hierarchy A. This assignment is applied to modules A, B
and all children instances of B. However, the assignment
Top|A:inst|B:inst* is applied to hierarchy A, but is not applied to the B
instances because the single level of hierarchy represented by B:inst* is
not expanded into multiple levels of hierarchy. To avoid this issue, ensure
that you apply the wildcard to the hierarchical boundary if it should
represent multiple levels of hierarchy.

When using the wildcard to represent a level of hierarchy, only single
wildcards are supported. This means assignments such as
Top|A:inst|*|B:inst|* are not supported. The Quartus II software
issues a warning in these cases.

Derived Clocks and PLLs in Bottom-Up Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level
partition, then the lower-level partition does not receive assignments and
constraints from the top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing
constraints and clock group settings. Problems can occur if your design
uses logic or inversion to derive a new clock from a clock input pin. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained.

In addition, if you use a PLL in your top-level design and connect it to
lower-level partitions, the lower-level partitions do not have information
about the multiplication or phase shift factors in the PLL. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained or constrained with the incorrect
frequency. Alternately, you can manually duplicate the top-level derived
clock logic or PLL in the lower-level design file to ensure that you have
the correct multiplication or phase shift factors, compensation delays and
other PLL parameters for complete accurate timing analysis. Create a
design partition for the rest of the lower-level design logic that will be
exported to the top level. When the lower-level design is complete, export
just the partition that contains the relevant logic with the “Exporting a
Lower-Level Block within a Project” on page 2–35 feature.

2–86 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts

The design partition scripts use INPUT_MAX_DELAY and
OUTPUT_MAX_DELAY assignments to specify the inter-partition delays
associated with input and output pins which would not otherwise be
visible to the project. These assignments require that the software specify
the clock domain for the assignment, and the software sets this clock
domain to ‘*’.

This clock domain assignment means that there may be some paths
constrained and reported by the timing analysis engine that are not
required.

To restrict which clock domains are included in these assignments, edit
the generated scripts or change the assignments in your lower-level
Quartus II project. In addition, because there is no known clock
associated with the delay assignments, the software assumes the
worst-case skew, which makes the paths seem more timing critical than
they are in the top-level design. To make the paths appear less
timing-critical, lower the delay values from the scripts. If required, you
can also enter negative numbers for input and output delay values.

Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up
Design Partition Scripts

When a single top-level I/O port drives multiple pins on a lower-level
module, it unnecessarily restricts the quality of the synthesis and
placement at the lower-level. This occurs because in the lower-level
design, the software must maintain the hierarchical boundary and cannot
use any information about pins being logically equivalent at the top level.
In addition, because I/O constraints are passed from the top-level pin to
each of the children, it is possible to have more pins in the lower level
than at the top level, and these pins use the top-level I/O constraints and
placement options that might make them impossible to place at the
lower-level. The software avoids this situation whenever possible, but it
is best to avoid this design practice to avoid these potential problems.
Restructure your design so that the single I/O port feeds the design
partition boundary, and then the connection is split into multiple signals
within the lower-level partition.

Altera Corporation 2–87
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Register Packing and Partition Boundaries

The Quartus II software automatically performs register packing during
compilation. However, when incremental compilation is enabled, logic in
different partitions cannot be packed together because partition
boundaries prevent cross-boundary optimization. (Refer to “Guidelines
for Creating Good Design Partitions and LogicLock Regions” on
page 2–46 for more information.) This restriction applies to all types of
register packing, including I/O cells, DSP blocks, sequential logic, and
unrelated logic.

I/O Register Packing

Cross-partition register packing of I/O registers is allowed in certain
cases where your input and output pins exist in the top hierarchy level
(and the Top partition), but the corresponding I/O registers exist in other
partitions.

The following specific circumstances are required for cross-partition
register packing of input pins:

■ The input pin feeds exactly one register
■ The path between the input pin and the register includes only input

ports of partitions that have one fan-out each

The following specific circumstances are required for cross-partition
register packing of output registers:

■ The register feeds exactly one output pin
■ The output pin is fed by only one signal
■ The path between the register and the output pin includes only

output ports of partitions that have one fan-out each

Output pins with an output enable signal cannot be packed into the
device I/O cell if the output enable logic is part of a different partition
from the output register. To allow register packing for output pins with
an output enable signal, structure your HDL code or design partition
assignments so that the register and the tri-state logic are defined in the
same partition.

Bidirectional pins are handled in the same way as output pins with an
output enable. If the registers that need to be packed are in the same
partition as the tri-state logic, then register packing can be performed.

2–88 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The restrictions on tri-state logic are due to the fact that the I/O atom
(device primitive) is created as part of the partition that contains the
tri-state logic. If an I/O register and its tri-state logic are contained in the
same partition, the register can always be packed with the tri-state logic
into the I/O atom. The same cross-partition register packing restrictions
also apply to I/O atoms for input and output pins. The I/O atom must
feed the I/O pin directly with exactly one signal and the path between the
I/O atom and the I/O pin must include only ports of partitions that have
one fan-out each.

Examples of I/O Register Packing Across Partition Boundaries

The following examples provide detailed explanations for various I/O
and partition configurations. The examples use BDF schematics to
illustrate the design logic.

Example 1—Output Register in Partition Feeding Output Pin
In this example, a subdesign contains a single register, as shown in
Figure 2–16. As shown in Figure 2–17, the top-level design instantiates
the subdesign with a single fan-out directly feeding an output pin, and
designates the subdesign as a separate design partition.

Figure 2–16. Subdesign with One Register, Designated as a Separate Partition

Figure 2–17. Top-level Design Instantiating the Subdesign in Figure 2–16 as an Output Register

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment on pin out. This type of
cross-partition output register packing is permitted because the port
interface of the subdesign partition does not need to be changed and the
partition port feeds an output pin directly.

Altera Corporation 2–89
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Example 2—Output Register in Partition Feeding Multiple Output
Pins
In this example, a subdesign designated as a separate partition contains a
register as in Figure 2–16. The top-level design instantiates the subdesign
as an output register with more than one fan-out signal, as shown in
Figure 2–18.

Figure 2–18. Top-level Design Instantiating the Subdesign in Figure 2–16 with Two Output Pins

In this case, the software does not perform output register packing. If
there is a Fast Output Register assignment on pin out, the software issues
a warning that the Fitter can't pack the node to an I/O pin because the
node and the I/O cell are connected across a design partition boundary.

This kind of cross-partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 2–16 with the output pin out in Figure 2–18, make one of the
following changes:

■ Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the partition containing the output pin.
This guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

■ Restructure your HDL code so the register feeds only one output pin.
Turn off the Analysis and Synthesis setting Remove Duplicate
Registers. Duplicate the register in your subdesign HDL as in

2–90 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–19 so that each register feeds only one pin, then connect the
extra output pin to the new port in the top-level design as shown in
Figure 2–20. This converts the cross-partition register packing into
the simplest case where the register has a single fan-out.

Figure 2–19. Modified Subdesign from Figure 2–16 with Two Output Registers and Two Output Ports

Figure 2–20. Modified Top-Level Design from Figure 2–18 Connecting Two Output Ports to Output Pins

Example 3—Output Register, Output Enable Register and Tri-State
Logic in Partition Feeding Output Pin
In this example, a subdesign designated as a separate partition contains
an output register, an output enable register, and the tri-state logic to
drive the output pin, as shown in Figure 2–21. The top-level design
instantiates the subdesign with a single fan-out directly feeding an output
pin, as shown in Figure 2–22.

Altera Corporation 2–91
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–21. Subdesign with Output Register, Output Enable Register and Tri-State Logic, Designated as a
Separate Partition

Figure 2–22. Top-level Design Instantiating the Subdesign in Figure 2–21

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment, Fast Output Enable Register
assignment, or both, on pin out. This kind of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed, no logic needs to be optimized
across the partition boundary, and the partition port feeds an output pin
directly.

Example 4—Output Register, Output Enable Register, or Both, in
Partition Feeding Tri-State Output Pin
In this example, a subdesign designated as a separate partition contains
two registers, as shown in Figure 2–23. The top-level design instantiates
the subdesign with the registers driving the output and the output enable
signal for an output pin, as shown in Figure 2–24.

2–92 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–23. Subdesign with Two Registers, Designated as a Separate Partition

Figure 2–24. Top-level Design Instantiating the Subdesign in Figure 2–25 to Drive Output Enable Logic

In this case, the software cannot perform register packing. If there is a Fast
Output Register or Fast Output Enable Register assignment on pin out,
the software issues a warning that the Fitter cannot pack the node to an
I/O pin because the node and the I/O cell are connected across a design
partition boundary.

The same restrictions apply in the case that the top-level design includes
either the output register or the output enable register as well as the
tri-state logic. The software cannot pack the register that is part of the
subdesign partition into the I/O register.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single I/O
device atom. To perform register packing, either the registers must be
moved out of the subdesign partition or the tri-state logic must be moved
into the subdesign partition. In order to guarantee correctness of the
design with subsequent incremental compilations, the contents of design
partitions must be preserved.

Altera Corporation 2–93
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

To allow the software to pack the output register, output enable register,
or both, in the subdesign from Figure 2–23 with the output pin out in
Figure 2–24, make one of the following changes:

■ Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not need to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the top-level partition containing the
output pin. This guarantees that the Fitter can optimize the two
nodes without violating any partition boundaries.

■ Restructure your HDL code so the register and the tri-state logic are
contained in the same partition. Move the tri-state logic from the
top-level block into the subdesign with both registers as shown in
Figure 2–21. Then connect the subdesign to an output pin in the
top-level design, as shown in Figure 2–22.

Example 5—Bidirectional Logic in Partition Feeding Bidirectional Pin
The behavior for bidirectional pins is similar to that of an output pin with
an output enable. To allow register packing, the registers must be
included in the same partition as the tri-state logic that drives the
bidirectional pin.

In this example, a subdesign designated as a separate partition contains
three registers and the tri-state logic for a bidirectional pin, as shown in
Figure 2–25. The top-level design instantiates the subdesign with ports
feeding bidirectional and output pins, as shown in Figure 2–26.

2–94 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–25. Subdesign with Three Registers and Tri-State Logic, Designated as a Separate Partition

Figure 2–26. Top-level Design Instantiating the Subdesign in Figure 2–28

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register, Fast Output Enable Register, or Fast Input
Register assignment on pin bidir. This type of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed and the partition port feeds a
bidirectional pin directly.

Registers cannot be packed in designs that have the registers and tri-state
logic in different partitions. The situations described in “Example 4—
Output Register, Output Enable Register, or Both, in Partition Feeding
Tri-State Output Pin” on page 2–91 apply similarly to bidirectional pins if
you replace the output pin out with a bidirectional pin in the top-level
design.

Altera Corporation 2–95
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Example 6—Input Register in Partition Fed by Input Pin
In this example, a subdesign contains a single register, as shown in
Figure 2–27. The top-level design instantiates the subdesign with a single
fanin directly fed by an input pin, as shown in Figure 2–28, and
designates the subdesign to be a separate design partition.

Figure 2–27. Subdesign with One Register, Designated as a Separate Partition

Figure 2–28. Top-level Design Instantiating the Subdesign in Figure 2–27 as an Input Register

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This type of cross-partition
output register packing is permitted because the port interface of the
subdesign partition does not have to be changed and the partition port is
fed by an input pin directly.

Example 7—Input Register in Partition Fed by Input with Multiple
Fan-Out

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2–27. The top-level design instantiates the subdesign
as an input register but the input pin also feeds another destination, as
shown in Figure 2–29.

2–96 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–29. Top-level Design Instantiating the Subdesign in Figure 2–27 as an Input Register for a Pin with
Two Destinations

In this case, the software does not perform input register packing. If there
is a Fast Input Register assignment on pin in, the software issues a
warning that the Fitter cannot pack the node to an I/O pin because the
node and the I/O cell are connected across a design partition boundary.

This type of cross-partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 2–27 with the input pin in in Figure 2–29, make one of the
following changes:

■ Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it also prevents you from using incremental compilation
for this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the input pin. The simplest option is to move the register from the
subdesign partition into the partition containing the input pin. This
guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

Example 8—Inverted Input Register in Partition Fed by Input Pin
In this example, a subdesign designated as a separate partition contains
an inverted register as in Figure 2–30. The top-level design instantiates
the subdesign as an input register, as shown in Figure 2–31.

Altera Corporation 2–97
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Figure 2–30. Subdesign with an Inverted Register, Designated as a Separate Partition

Figure 2–31. Top-level Design Instantiating the Subdesign in Figure 2–30 as an Input Register

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin in. This kind of cross-partition
input register packing is permitted because the software can implement
the logic for the inversion with the input register inside the partition, and
then the partition port is fed by an input pin directly.

Example 9—Input Register in Partition Fed by Inverted Input Pin, or
Output Register in Partition Feeding Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a
register as in Figure 2–32. The top-level design in Figure 2–33 instantiates
the subdesign as an input register with the input pin inverted. The
top-level design in Figure 2–34 instantiates the subdesign as an output
register with the signal inverted before feeding an output pin.

Figure 2–32. Subdesign with One Register, Designated as a Separate Partition

2–98 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 2–33. Top-level Design Instantiating the Subdesign in Figure 2–32 as an Input Register with an
Inverted Input Pin

Figure 2–34. Top-level Design Instantiating the Subdesign in Figure 2–33 as an Output Register Feeding an
Inverted Output Pin

In these cases, the software does not perform register packing. If there is
a Fast Input Register assignment on pin in in Figure 2–33 or a Fast
Output Register assignment on pin out in Figure 2–34, the software
issues a warning that the Fitter cannot pack the node to an I/O pin
because the node and the I/O cell are connected across a design partition
boundary.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single I/O
device atom. To perform register packing, either the register must be
moved out of the subdesign partition or the inverter must be moved into
the subdesign partition to be implemented in the register. In order to
guarantee correctness of the design with subsequent incremental
compilations, the contents of design partitions must be preserved.

Altera Corporation 2–99
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

To allow the software to pack the register in the subdesign from
Figure 2–32 with the input pin in in Figure 2–33 or the output pin out in
Figure 2–34, make one of the following changes:

■ Remove the design partition assignment from the subdesign. This
allows the Fitter to perform all cross-hierarchy optimizations.
However, it prevents you from using incremental compilation for
this block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

■ Restructure your HDL code to place the register in the same partition
as the pin. The simplest option is to move the register from the
subdesign partition into the top-level partition containing the pin.
This ensures that the Fitter can optimize the two nodes without
violating any partition boundaries.

■ Restructure your HDL code so the register and the inverter are
contained in the same partition. Move the inverter from the top-level
block into the subdesign as shown in Figure 2–30 for an input pin.
Then connect the subdesign to a pin in the top-level design, as shown
in Figure 2–31 for an input pin.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

The Quartus II Scripting Reference Manual includes the same information
in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Generate Incremental Compilation Tcl Script Command

To create a template Tcl script for full incremental compilation, use the
Generate Incremental Compilation Tcl Script feature. Right-click in the
Design Partitions Window and click Generate Incremental
Compilation Tcl Script.

2–100 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If you have made any partition assignments in the user interface, this
script contains the Tcl equivalents of the assignments. The Tcl
assignments are described in the following sections.

Preparing a Design for Incremental Compilation

To set or modify the current mode of incremental compilation, use the
following command:

set_global_assignment -name INCREMENTAL_COMPILATION \
<value>

The incremental compilation <value> setting must be one of the following
values:

■ FULL_INCREMENTAL_COMPILATION—Full incremental
compilation (this is the default)

■ INCREMENTAL_SYNTHESIS—Incremental synthesis only
■ OFF—No incremental compilation is performed

Creating Design Partitions

To create a partition, use the following command:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name
(including quotation marks), for example:

"ram:ram_unit|altsyncram:altsyncram_component"

For the top-level partition, you can use the pipe (|) symbol to represent
the top-level entity.

f For more information about hierarchical naming conventions, refer to
Node-Naming Conventions in Quartus II Integrated Synthesis in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters. The name can consist only of
alphanumeric characters, and the pipe (|), colon (:), and underscore
(_) characters. Altera recommends enclosing the name in double
quotation marks (" ").

Altera Corporation 2–101
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored, and you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the \db compilation database directory.

Setting Properties of Design Partitions

After a partition is created, set its Netlist Type with the following
command:

set_global_assignment -name PARTITION_NETLIST_TYPE <value> -section_id \
<partition name>

The netlist type <value> setting is one of the following values:

■ SOURCE—Source File
■ POST_SYNTH—Post-Synthesis
■ POST_FIT—Post-Fit
■ STRICT_POST_FIT—Post-Fit (Strict)
■ IMPORTED—Imported
■ IMPORT_BASED_POST_FIT—Post-Fit (Import-based)
■ EMPTY—Empty

Set the Fitter Preservation Level for a post-fit or imported netlist using the
following command:

set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL <value> \
-section_id <partition name>

The Fitter Preservation Level <value> setting is one of the following
values:

■ NETLIST_ONLY—Netlist only
■ PLACEMENT—Placement
■ PLACEMENT_AND_ROUTING—Placement and routing
■ PLACEMENT_AND_ROUTING_AND_TILE— Placement and routing,

as well as the power tile setting of high-speed or low-power

2–102 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

For details about these partition properties, refer to “Setting Properties of
Design Partitions”.

Creating Good Floorplan Location Assignments—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP Blocks)

Resource filtering uses the optional Tcl argument
-exclude_resources in the set_logiclock_contents function of
the LogicLock Tcl package. If left unspecified, no resource filter is created.

The argument takes a list of resources-to-be-excluded as input. The list is
a colon-delimited string of the following keywords:

For example, the following command assigns everything under
alu:alu_unit to the ALU region, excluding all the DSP and M512 blocks:

set_logiclock_contents -region ALU -to alu:alu_unit -exceptions \
"DSP:SMALL_MEM"

In the QSF, resource filtering uses an extra LogicLock membership
assignment called LL_MEMBER_RESOURCE_EXCLUDE. For example, the
following line in the QSF is used to specify a resource filter for the
alu:alu_unit entity assigned to the ALU region. The value of the
assignment takes the same format as the resource listing string taken by
the previous Tcl command.

set_instance_assignment -name LL_MEMBER_RESOURCE_EXCLUDE "DSP:SMALL_MEM" \
-to "alu:alu_unit" -section_id ALU

Table 2–4. Resources-to-be-Excluded Keywords

Keyword Resource

REGISTER Any registers in the logic cells

COMBINATIONAL Any combinational elements in the logic cells

SMALL_MEM The small TriMatrix memory blocks (M512 or MLAB)

MEDIUM_MEM The medium TriMatrix memory blocks (M4K or M9K)

LARGE_MEM The large TriMatrix memory blocks (M-RAM or M144K)

DSP Any DSP blocks

VIRTUAL_PIN Any virtual pins

Altera Corporation 2–103
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Generating Bottom-Up Design Partition Scripts

To generate scripts, type the following Tcl command at a Tcl prompt:

generate_bottom_up_scripts <options> r

The command is part of the database_manager package, which must
be loaded using the following command before the command can be
used:

load_package database_manager

You must open a project before you can generate scripts.

The Tcl options are the same as those available in the GUI. The exact
format of each option is specified in Table 2–5.

The following example shows how to use the Tcl command:

load_package database_manager
set project test_proj

Table 2–5. Options for Generating Bottom-Up Partition Scripts with Tcl Commands

Option Default

-include_makefiles <on|off> On

-include_project_creation <on|off> On

-include_virtual_pins <on|off> On

-include_virtual_pin_timing <on|off> On

-include_virtual_pin_locations <on|off> On

-include_logiclock_regions <on|off> On

-include_all_logiclock_regions <on|off> On

-include_global_signal_promotion <on|off> Off

-include_pin_locations <on|off> On

-include_timing_assignments <on|off> On

-include_design_partitions <on|off> On

-remove_existing_regions <on|off> On

-disable_auto_global_promotion <on|off> Off

-bottom_up_scripts_output_directory <output directory> Current project directory

-virtual_pin_delay <delay in ns> (1)

Note to Table 2–5:
(1) No default.

2–104 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

project_open $project
generate_bottom_up_scripts -bottom_up_scripts_output_directory test \

-include_virtual_pin_timing on -virtual_pin_delay 1.2
project_close

Command Line Support

To generate scripts at the command prompt, type the following
command:

quartus_cdb <project name> --generate_bottom_up_scripts=on <options> r
Once again, the options map to the same as those in the GUI. To add an
option, append “--<option_name>=<val>” to the command line call.

The command prompt options are the same as those available in the GUI.
They are listed in Table 2–6.

Table 2–6. Options for Generating Bottom-Up Partition Scripts

Option Default

--include_makefiles_with_bottom_up_scripts=<on|off> On

--include_project_creation_in_bottom_up_scripts=<on|off> On

--include_virtual_pins_in_bottom_up_scripts=<on|off> On

--include_virtual_pin_timing_in_bottom_up_scripts=<on|off> On

--bottom_up_scripts_virtual_pin_delay=<delay in ns> (1)

--include_virtual_pin_locations_in_bottom_up_scripts=<on|off> On

--include_logiclock_regions_in_bottom_up_scripts=<on|off> On

--include_all_logiclock_regions_in_bottom_up_scripts=<on|off> On

--include_global_signal_promotion_in_bottom_up_scripts=<on|off> Off

--include_pin_locations_in_bottom_up_scripts=<on|off> On

--include_timing_assignments_in_bottom_up_scripts=<on|off> On

--include_design_partitions_in_bottom_up_scripts=<on|off> On

--remove_existing_regions_in_bottom_up_scripts=<on|off> On

--disable_auto_global_promotion_in_bottom_up_scripts=<on|off> Off

--bottom_up_scripts_output_directory=<output directory> Current project
directory

Note to Table 2–6:
(1) No default. You must provide this option if you are including virtual pin timing.

Altera Corporation 2–105
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Exporting a Partition to be Used in a Top-Level Project

Use the quartus_cdb executable to export a file for a bottom-up
incremental compilation flow with the following command:

quartus_cdb --INCREMENTAL_COMPILATION_EXPORT=<file> \
[--incremental_compilation_export_netlist_type=<POST_SYNTH|POST_FIT>] \
[--incremental_compilation_export_partition_name=<partition name>] \
[--incremental_compilation_export_routing=<on|off>]

The <file> argument is the file path to the exported file. The
<partition name> is the name of the partition, not its hierarchical path. If
you do not specify the options, the executable uses any settings in the QSF
file, or otherwise uses the default values. The default partition is the
top-level partition in the project, the default netlist type is post-fit, and the
default for routing is on (for all device families that support exported
routing).

The command reads the assignment
INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPE to determine
which netlist type to export; the default is post-fit.

You can also use the flow INCREMENTAL_COMPILATION_EXPORT in the
execute_flow Tcl command contained in the flow Tcl package.

Use the following commands to export a QXP file for a given partition,
choose the netlist type, and specify whether to export routing.

load_package flow
set_global_assignment –name INCREMENTAL_COMPILATION_EXPORT_FILE <filename>
set_global_assignment –name INCREMENTAL_COMPILATION_EXPORT_NETLIST_TYPE \
<POST_FIT|POST_SYNTH>
set_global_assignment -name \
INCREMENTAL_COMPILATION_EXPORT_PARTITION_NAME <partition name>
set_global_assignment -name INCREMENTAL_COMPILATION_EXPORT_ROUTING \
<on|off>
execute_flow –INCREMENTAL_COMPILATION_EXPORT

The default partition is the top-level partition in the project, the default
netlist type is post-fit, and the default for routing is on (for all device
families that support exported routing).

To turn on the option to always perform exportation following
compilation, use the following Tcl command:

set_global_assignment -name AUTO_EXPORT_INCREMENTAL_COMPILATION ON

2–106 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Importing a Lower-Level Partition into the Top-Level Project

Use the quartus_cdb executable to import a lower-level partition with
the following command:

quartus_cdb -- INCREMENTAL_COMPILATION_IMPORT r
You can also use the flow called INCREMENTAL_COMPILATION_IMPORT
in the execute_flow Tcl command contained in the flow Tcl package.

The following example script shows how to import a partition using a Tcl
script:

load_package flow
commands to set the import-related assignments for each partition
execute_flow --INCREMENTAL_COMPILATION_IMPORT

Specify the location for the imported file with the
PARTITION_IMPORT_FILE assignment. Note that the file specified by
this assignment is read only during importation. For example, the project
is completely independent from any files from the lower-level projects
after importing. In the command-line and Tcl flow, any partition that has
this assignment set to a non-empty value will be imported.

The following assignments specify how the partition should be imported:

PARTITION_IMPORT_PROMOTE_ASSIGNMENTS = on | off
PARTITION_IMPORT_NEW_ASSIGNMENTS = on | off
PARTITION_IMPORT_EXISTING_ASSIGNMENTS = \
replace_conflicting | skip_conflicting
PARTITION_IMPORT_EXISTING_LOGICLOCK_REGIONS = \
replace_conflicting | update_conflicting | skip_conflicting

Makefiles

For an example of how to use incremental compilation with a
makefile as part of the bottom-up design flow, refer to the read_me.txt
file that accompanies the incr_comp example located in the
/qdesigns/incr_comp_makefile subdirectory. When using a bottom-up
incremental compilation flow, the Generate Bottom-Up Design Partition
Scripts feature can write makefiles that automatically export lower-level
design partitions and import them into the top-level project whenever
design files change.

Altera Corporation 2–107
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Recommended Design Flows and Compilation Application
Examples

This section provides scripting examples that cover some of the topics
discussed in the main section of the chapter.

The script shown in Example 2–1 opens a project called AB_project,
sets up two partitions, entities A and B, for the first time, and performs an
initial complete compilation.

Example 2–1. AB_project
set project AB_project

package require ::quartus::flow
project_open $project

Ensure that incremental compilation is turned on
set_global_assignment -name INCREMENTAL_COMPILATION \
FULL_INCREMENTAL_COMPILATION

Set up the partitions
set_instance_assignment -name PARTITION_HIERARCHY \
db/A_inst -to A –section_id "Partition_A"

set_instance_assignment -name PARTITION_HIERARCHY \
db/B_inst -to B –section_id "Partition_B"

Set the netlist types to post-fit for subsequent
compilations (all partitions are compiled during the
initial compilation since there are no post-fit
netlists)
set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_A"

set_global_assignment –name PARTITION_NETLIST_TYPE \
POST_FIT –section_id "Partition_B"

Run initial compilation:
export_assignments
execute_flow -full_compile

project_close

Design Flow 1—Changing a Source File for One of Multiple Partitions in a
Top-Down Compilation Flow

Example background: You have run the initial compilation shown in the
example script under “Recommended Design Flows and Compilation
Application Examples” on page 2–62. You have modified the HDL source
file for partition A, and would like to recompile it.

2–108 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Run the standard flow compilation command in your Tcl script:

execute_flow –full_compile

Or, run the following command at a system command prompt:

quartus_sh --flow compile AB_projectr
Assuming the source files for partition B do not depend on A, only A is
recompiled. The placement of B and its timing performance is preserved,
which also saves significant compilation time.

Design Flow 2—Optimizing the Placement for One of Multiple Partitions
in a Top-Down Compilation Flow

Example background: You have run the initial compilation shown in the
example script under “Recommended Design Flows and Compilation
Application Examples” on page 2–62. You would like to apply Fitter
optimizations, such as physical synthesis, only to partition A. No changes
have been made to the HDL files.

To ensure the previous compilation result for partition B is preserved,
and to ensure that Fitter optimizations are applied to the post-synthesis
netlist of partition A, set the netlist type of B to Post-Fit (which was
already done in the initial compilation, but is repeated here for safety),
and the netlist type of A to Post-Synthesis, as shown in the following
script:

Altera Corporation 2–109
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

set project AB_project

package require ::quartus::flow
project_open $project

Turn on Physical Synthesis Optimization
set_global_assignment -name \
PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON

For A, set the netlist type to post-synthesis
set_global_assignment –name PARTITION_NETLIST_TYPE POST_SYNTH \
–section_id "Partition_A"

For B, set the netlist type to post-fit
set_global_assignment –name PARTITION_NETLIST_TYPE POST_FIT \
–section_id "Partition_B"

Run incremental compilation:
export_assignments
execute_flow -full_compile

project_close

Conclusion With the Quartus II incremental compilation feature described in this
chapter, you can preserve the results and the performance of unchanged
logic in your design as you make changes elsewhere. The various
applications of incremental compilation enable you to improve your
productivity while designing for high-density FPGAs, using either
top-down or bottom-up design methodologies.

Referenced
Documents

This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

■ Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook

■ Introduction to Quartus II Manual
■ In-System Debugging Using External Logic Analyzers chapter in

volume 3 of the Quartus II Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook

http://www/literature/manual/intro_to_quartus2.pdf
http://www/literature/hb/qts/qts_qii52005.pdf
http://www/literature/hb/qts/qts_qii52006.pdf
http://www/literature/hb/qts/qts_qii53009.pdf
http://www/literature/hb/qts/qts_qii53004.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf

2–110 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook

■ Quartus II Settings File Reference Manual
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Switching to the TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Synthesis section in volume 1 of the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www/literature/manual/mnl_qsf_reference.pdf
http://www/literature/hb/qts/qts_qii5v1_03.pdf
http://www/literature/hb/qts/qts_qii51008.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii53018.pdf
http://www/literature/hb/qts/qts_qii53019.pdf

Altera Corporation 2–111
October 2007 Preliminary

Quartus II Incremental Compilation for Hierarchical and Team-Based Design

Document
Revision History

Table 2–7 shows the revision history for this chapter.

Table 2–7. Document Revision History (Part 1 of 2)

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated “Introduction” on page 2–1.
● Updated “Choosing a Quartus II Compilation Flow” on

page 2–3.
● Changed title and updated “Preparing a Design for

Incremental Compilation” section to “Quick Start Guide –
Summary of Steps for an Incremental Compilation Flow” on
page 2–11.

● Updated “Design Partition Assignments Compared to
Physical Placement Assignments” on page 2–18.

● Updated “Creating Design Partitions” on page 2–19.
● Updated “Creating a Design Floorplan With LogicLock

Location Assignments” on page 2–29.
● Updated “Exporting and Importing Partitions for Bottom-Up

Design Flows” on page 2–32.
● Updated “Guidelines for Creating Good Design Partitions and

LogicLock Regions” on page 2–46.
● Updated “Incremental Compilation Restrictions” on

page 2–76.

Updated for Quartus II
software version 7.2.

May 2007
v7.1.0

● Updated “Choosing a Quartus II Compilation Flow” on
page 2–3.Updated “Preparing a Design for Incremental
Compilation” on page 2–10.

● Updated Tables 2–1 and 2–3.
● Updated design in “Recommended Design Flows and

Compilation Application Examples” on page 2–61.
● Added new examples to “Design Flow 7—Creating Hard-

Wired Macros for IP Reuse” on page 2–72.
● Moved and simplified “Using Incremental Synthesis Only

Instead of Full Incremental Compilation” on page 2–76.
● Updated “HardCopy Compilation Flows” on page 2–81.
● Updated “Support for the TimeQuest Timing Analyzer and

SDC Constraints” on page 2–81.
● Updated “Setting Properties of Design Partitions” on

page 2–98.
● Added “Referenced Documents” on page 2–106.

Removed several
dialog box figures.
Added support for
Arria GX devices.
Added Fitter
Preservation Level
Post-Fit Placement,
Routing, and Tiles.

March 2007
v7.0.0

No changes to chapter. —

2–112 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

November 2006
v6.1.0

Chapter 2 was formerly Chapter 1 in version 6.0.0.
Reorganized chapter to group recommendations and guidelines
together.
Updated for the Quartus II software version 6.1:
● Added support for Stratix III devices.
● Added information on the Incremental Compilation Advisor.
● The full incremental compilation option is now turned on by

default.
● Added new feature for Exporting a Lower-Level Block within

a Project.
● Changed the location of the Automatically export design

partition after compilation option.
● Added support for HardCopy Compilation Flows.
● Added that routing can be exported in bottom-up flows.
● Added I/O port guidelines in Creating Good Design Partitions.
● Updated limitations: SignalProbe Pins and Engineering

Change Management with the Chip Planner.

Added support for
Stratix III devices.
Added information
about new features and
updates in the
Quartus II software
version 6.1.

May 2006
v6.0.0

Name changed to Quartus II Incremental Compilation for
Hierarchical and Team-Based Design.
Updated for the Quartus II software version 6.0.
● Added new device support information.
● Added top-down and bottom-up design flow information.
● Added incremental compilation design compiling information.
● Added recommendations for creating good floorplan location

assignments.
● Added register packing and partition boundary information.
● Added engineering management with the Chip Editor.
● Added information on how to check and save to reapply

SignalProbe.
● Added user scenarios.

—

December 2005
v5.1.1

Minor typographic update. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

August 2005
v5.0.1

Added documentation on cross-partition register packing. —

May 2005
v5.0.0

Initial release. —

Table 2–7. Document Revision History (Part 2 of 2)

Date and
Document Version Changes Made Summary of Changes

Altera Corporation 3–1
October 2007

3. Quartus II Design Flow for
MAX+PLUS II Users

Introduction The feature-rich Quartus® II software helps you shorten your design
cycles and reduce time-to-market. With support for FLEX®, ACEX®, and
MAX® device families, as well as all of Altera®’s newest devices, the
Quartus II software is the most widely accepted Altera design software
tool today.

This chapter describes how to convert MAX+PLUS® II designs to
Quartus II projects, as well as the similarities and differences between the
MAX+PLUS II and Quartus II design flows. This discussion includes
supported device families, graphical user interface (GUI) comparisons,
and the advantages of the Quartus II software.

There are many features in the Quartus II software to help MAX+PLUS II
users easily transition to the Quartus II software design environment.
These include a customizable Look & Feel feature, which changes the
GUI to display menus, toolbars, and utility windows as they appear in the
MAX+PLUS II software without sacrificing Quartus II software
functionality.

Chapter
Overview

This chapter covers the following topics:

■ “Typical Design Flow” on page 3–2
■ “Device Support” on page 3–3
■ “Quartus II GUI Overview” on page 3–4
■ “Setting Up MAX+PLUS II Look and Feel in Quartus II” on page 3–6
■ “Compiler Tool” on page 3–9
■ “MAX+PLUS II Design Conversion” on page 3–12
■ “Quartus II Design Flow” on page 3–15
■ “Quick Menu Reference” on page 3–35

QII51002-7.2.0

3–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Typical Design
Flow

Figure 3–1 shows a typical design flow with the Quartus II software.

Figure 3–1. Quartus II Software Design Flow

Analysis & Elaboration

Integrated Analysis & Synthesis

Fitter

Configuration/
Programming
Files (.sof/.pof)

Functional
Netlist

Constraints
& Settings

Constraints
& Settings

Functional
Simulation

Timing
and Area

Requirements
Satisfied?

Yes

No

Post Place-and-Route
Simulation Files
(.vo/.vho, .sdo)

Gate-Level
Timing

Simulation

Program/Configure Device

Design Files

Altera Corporation 3–3
October 2007

Device Support

Device Support The Quartus II software supports most of the devices supported in the
MAX+PLUS II software, but it does not support any obsolete devices or
packages. The devices supported by these two software packages are
shown in Table 3–1.

Table 3–1. Device Support Comparison

Device Supported Quartus II MAX+PLUS II

Arria GX™ v —

Stratix® Series v —

Cyclone® Series v —

Hardcopy® Series v —

MAX® II v —

Classic™ — v
MAX 3000A v v
MAX 7000S/AE/B v v
MAX 7000E — v
MAX 9000 — v
ACEX® 1K v v
FLEX® 6000 v v
FLEX 8000 — v
FLEX 10K v (1) v
FLEX 10KA v v
FLEX 10KE v (2) v
Mercury™ v —

 APEX™ II v —

APEX™ 20K v —

Notes to Table 3–1:
(1) PGA packages (represented as package type G in the ordering code) are not

supported in the Quartus II software.
(2) Some packages are not supported.

3–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Quartus II GUI
Overview

The Quartus II software provides the following utility windows to assist
in the development of your designs:

■ Project Navigator
■ Node Finder
■ Tcl Console
■ Messages
■ Status
■ Change Manager

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the
MAX+PLUS II Hierarchy Display and provides additional information
such as logic cell, register, and memory bit resource utilization. The Files
and Design Units tabs of the Project Navigator window provide a list of
project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the
MAX+PLUS II Search Node Database dialog box and allows you to find
and use any node name stored in the project database.

Tcl Console

The Tcl Console window allows access to the Quartus II Tcl shell from
within the GUI. You can use the Tcl Console window to enter Tcl
commands and source Tcl scripts to make assignments, perform
customized timing analysis, view information about devices, or fully
automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the
MAX+PLUS II software.

f For more information on using Tcl with the Quartus II software, refer to
the Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS II software, providing detailed information, warnings, and
error messages.You also can use it to locate a node from a message to
various windows in the Quartus II software.

Altera Corporation 3–5
October 2007

Quartus II GUI Overview

Status

The Status window displays information similar to the MAX+PLUS II
Compiler window. Progress and elapsed time are shown for each stage of
the compilation.

Change Manager

The Change Manager provides detailed tracking information on all
design changes made with the Chip Planner.

f For more information about the Engineering Change Manager and the
Chip Editor, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus II Handbook.

Figure 3–2 shows a typical Quartus II software display.

Figure 3–2. Quartus II Look and Feel

3–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Setting Up
MAX+PLUS II
Look and Feel in
Quartus II

You can choose the MAX+PLUS II look and feel by selecting
MAX+PLUS II in the Look & Feel box of the General tab of the
Customize dialog box on the Tools menu.

1 Any changes to the look and feel do not become effective until
you restart the Quartus II software.

By default, when you select the MAX+PLUS II look and feel, the
MAX+PLUS II quick menu (Figure 3–21 on page 3–35) appears on the
left side of the menu bar. You can turn the Quartus II and MAX+PLUS II
quick menus on or off. You also can change the preferred positions of the
two quick menus. To change these options, perform the following steps:

1. On the Tools menu, click Customize. The Customize dialog box is
shown.

2. Click the General tab.

3. Under Quick menus, select your preferred options.

Altera Corporation 3–7
October 2007

MAX+PLUS II Look and Feel

MAX+PLUS II
Look and Feel

The MAX+PLUS II look and feel in the Quartus II software closely
resembles the MAX+PLUS II software. Figures 3–3 and 3–4 compare the
MAX+PLUS II software appearance with the Quartus II MAX+PLUS II
look and feel.

Figure 3–3. MAX+PLUS II Software GUI

3–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–4. Quartus II Software with MAX+PLUS II Look and Feel

The standard MAX+PLUS II toolbar is also available in the Quartus II
software with the MAX+PLUS II look and feel in the Quartus II software
(Figure 3–5).

Figure 3–5. Standard MAX+PLUS II Toolbar

Altera Corporation 3–9
October 2007

Compiler Tool

Compiler Tool The Quartus II Compiler Tool provides an intuitive MAX+PLUS II style
interface. You can edit the settings and view result files for the following
modules:

■ Analysis and Synthesis
■ Partition Merge
■ Fitter
■ Assembler
■ Timing Analyzer
■ EDA Netlist Writer
■ Design Assistant

Each of these modules is described later in this section.

To start a compilation using the Compiler Tool, click Compiler Tool from
either the MAX+PLUS II menu or the Tools menu and click Start in the
Compiler Tool. The Compiler Tool, shown in Figure 3–6, displays all
modules, including optional modules such as Partition Merge,
Assembler, EDA Netlist Writer, and the Design Assistant.

f For information about using the Quartus II software modules at the
command line, refer to the Command-Line Scripting chapter in volume 2
of the Quartus II Handbook.

Figure 3–6. Running a Full Compilation with the Compiler Tool

3–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Analysis and Synthesis

The Quartus II Analysis and Synthesis module analyzes your design,
builds the design database, optimizes the design for the targeted
architecture, and maps the technology to the design logic.

In MAX+PLUS II software, these functions are performed by the
Compiler Netlist Extractor, Database Builder, and Logic Synthesizer.
There is no module in the Quartus II software similar to the
MAX+PLUS II Partitioner module.

Partition Merge

The optional Quartus II Partition Merge module merges the partitions to
create a flattened netlist for further stages of the Quartus II compilation
flow. The Partition Merge module is not similar to the MAX+PLUS II
Partitioner. This tool is available only if you turn on incremental
compilation. You can turn on incremental compilation by performing the
following steps:

1. On the Assignment menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the + icon to expand Compilation Process
Settings, and select Incremental Compilation. The Full
Incremental Compilation page appears.

3. Under Incremental compilation, turn on Incremental Compilation.

Fitter

The Quartus II Fitter module uses the PowerFitTM fitter to fit your design
into the available resources of the targeted device. The Fitter places and
routes the design. The Fitter module is similar to the Fitter stage of the
MAX+PLUS II software.

Altera Corporation 3–11
October 2007

Compiler Tool

Assembler

The optional Quartus II Assembler module creates a device
programming image of your design so that you can configure your
device. You can select from the following types of programming images:

■ Programmer Object File (.pof)
■ SRAM Output File (.sof)
■ Hexadecimal (Intel-Format) Output File (.hexout)
■ Tabular Text File (.ttf)
■ Raw Binary File (.rbf)
■ Jam™ STAPL Byte Code 2.0 File (.jbc)
■ JEDEC STAPL Format File (.jam)

You can turn off the Assembler module during compilation by turning off
Run assembler in the Compilation Process Settings page in the Settings
dialog box. You also can turn off the Assembler by right-clicking in the
Compiler Tool window. The Assembler module is similar to the
Assembler stage of the MAX+PLUS II software.

Timing Analyzer

The Quartus II Timing Analyzer allows you to analyze more complex
clocking schemes than is possible with the MAX+PLUS II Timing
Analyzer. The Quartus II Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains, and also reports
both fMAX and slack. Slack is the margin by which the timing requirement
is met or is not met. For more information on the Timing Analyzer, refer
to “Timing Analysis” on page 3–27.

EDA Netlist Writer

The optional Quartus II EDA Netlist Writer module generates a netlist for
simulation with an EDA simulation tool. The EDA Netlist Writer module
is comparable to the VHDL and Verilog Netlist Writer in the
MAX+PLUS II software.

Design Assistant

The optional Quartus II Design Assistant module checks the reliability of
your design based on a set of design rules. The Design Assistant analyzes
and generates messages for a design targeting any Altera device and is
especially useful for checking the reliability of a design to be converted to
HardCopy series devices. The Design Assistant is similar to the Design
Doctor in the MAX+PLUS II software.

3–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

In the Quartus II software, you can reduce subsequent compilation time
significantly by turning Use Smart compilation on before compiling your
design. The Smart Compilation feature skips any compilation stages
which are not required and which may use more disk space. This
Quartus II smart compilation option is similar to the MAX+PLUS II
Smart Recompile command. To turn the Use Smart compilation option
on, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Compilation Process Settings. The
Compilation Process Settings page appears.

3. Turn on Use Smart compilation.

MAX+PLUS II
Design
Conversion

With the Quartus II software, you can open MAX+PLUS II designs and
convert MAX+PLUS II assignments and files.

The Quartus II software is project based. All the files for your design
(HDL input, simulation vectors, assignments, and other relevant files) are
associated with a project file. For more information about creating a new
project, refer to “Creating a New Project” on page 3–16.

Converting an Existing MAX+PLUS II Design

You can easily convert an existing MAX+PLUS II design for use with the
Quartus II software with the Convert MAX+PLUS II Project command
in the Quartus II software or the Open Project command. You can find
these commands on the File menu

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level
design file (Figure 3–7) and click Open. The Convert MAX+PLUS II
Project command generates a Quartus II Project File (.qpf) and a
Quartus II Settings File (.qsf). The Quartus II software stores project and
design assignments in the Quartus II Settings File, which is equivalent to
the Assignments and Configuration File in the MAX+PLUS II software.

You also can open and convert a MAX+PLUS II design with the Open
Project command. In the Open Project dialog box, browse to the
Assignments and Configuration File or the top-level design file. Click
Open to display the Convert MAX+PLUS II Project dialog box.

Altera Corporation 3–13
October 2007

MAX+PLUS II Design Conversion

1 The Quartus II software can import all MAX+PLUS II-generated
files, but it cannot save files in the MAX+PLUS II format. You
cannot open a Quartus II project in the MAX+PLUS II software,
nor can you convert a Quartus II project to a MAX+PLUS II
project.

Figure 3–7. Convert MAX+PLUS II Project Dialog Box

The conversion process performs the following actions:

■ Converts the MAX+PLUS II Assignments and Configuration File
into a Quartus II Settings File (equivalent to importing all
MAX+PLUS II assignments)

■ Creates a Quartus II Project File

■ Displays all errors and warnings in the Quartus II message window

1 The Quartus II software can read MAX+PLUS II generated
Graphic Design Files (.gdf) and Simulation Channel Files (.scf)
without converting them. These files are not modified during a
MAX+PLUS II design conversion.

Converting MAX+PLUS II Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor)
saves files as Block Design Files (.bdf). You can convert your
MAX+PLUS II Graphic Design File into a Quartus II Block Design File
using one of the following methods:

1. Open the Graphic Design File and on the File menu, click Save As.
The Save As dialog box is shown.

2. In the Save as type list, select Block Diagram/Schematic File
(*.bdf).

3–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

3. Run the quartus_g2b.exe command line executable located in the
\<Quartus II installation>\bin directory. For example, to convert the
chiptrip.gdf file to a Block Design File, type the following command
at a command prompt:

quartus_g2b.exe chip_trip.gdf r

Importing MAX+PLUS II Assignments

You can import MAX+PLUS II assignments into an existing Quartus II
project. Open the project, and on the Assignments menu, click Import
Assignments. Browse to the Assignments and Configuration File
(Figure 3–8). You can also import Quartus II Settings Files and Entity
Setting Files (.esf).

Figure 3–8. Import Assignments Dialog Box

The Quartus II software accepts most MAX+PLUS II assignments.
However, some assignments can be imported incorrectly from the
MAX+ PLUS II software into the Quartus II software due to differences in
node naming conventions and the advanced Quartus II integrated
synthesis algorithms.

The differing node naming conventions in the Quartus II and
MAX+PLUS II software can cause improper mapping when importing
your design from MAX+PLUS II software into the Quartus II software.
Improper node names can interfere with the design logic if you are
unaware of these node name differences and do not take appropriate

Altera Corporation 3–15
October 2007

Quartus II Design Flow

steps to prevent improper node name mapping. Table 3–2 compares the
differences between the naming conventions used by the Quartus II and
MAX+PLUS II software.

When you import MAX+PLUS II assignments containing node names
that use numbers, such as signal0 or signal1, the Quartus II software
imports the original assignment and also creates an additional copy of the
assignment. The additional assignment has square brackets inserted
around the number, resulting in signal[0] or signal[1]. The square
bracket format is legal for signals that are part of a bus, but creates illegal
signal names for signals that are not part of a bus in the Quartus II
software. If your MAX+PLUS II design contains node names that end in
a number and are not part of a bus, you can edit the Quartus II Settings
File to remove the square brackets from the node names after importing
them.

1 You can remove obsolete assignments in the Remove
Assignments dialog box. Open this dialog box on the
Assignments menu by clicking Remove Assignments.

The Quartus II software may not recognize valid MAX+PLUS II node
names, or may split MAX+PLUS II nodes into two different nodes. As a
result, any assignments made to synthesized nodes are not recognized
during compilation.

f For more information about Quartus II node naming conventions, refer
to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Quartus II
Design Flow

The following sections include information to help you get started using
the Quartus II software. They describe the similarities and differences
between the Quartus II software and the MAX+PLUS II software. The
following sections highlight improvements and benefits in the Quartus II
software.

f For an overview of the Quartus II software features and design flow,
refer to the Introduction to Quartus II manual.

Table 3–2. Quartus II and MAX+PLUS II Node and Pin Naming Conventions

Feature Quartus II Format MAX+PLUS II Format

Node name auto_max:auto|q0 |auto_max:auto|q0

Pin name d[0], d[1], d[2] d0, d1, d2

3–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Creating a New Project

The Quartus II software provides a wizard to help you create new
projects. On the File menu, click New Project Wizard to start the New
Project Wizard. The New Project Wizard generates the Quartus II Project
File and Quartus II Settings File for your project.

Design Entry

The Quartus II software supports the following design entry methods:

■ Altera HDL (AHDL) Text Design File (.tdf)
■ Block Diagram File
■ EDIF Netlist File (.edf)
■ Verilog Quartus Mapping Netlist File (.vqm)
■ VHDL (.vhd)
■ Verilog HDL (.v)

The Quartus II software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process.

f For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.

To create a new design file, perform the following steps:

1. On the File menu, click New. The New dialog box appears.

2. Click the Device Design Files tab.

3. Select a design entry type.

4. Click OK (see Figure 3–9).

Altera Corporation 3–17
October 2007

Quartus II Design Flow

Figure 3–9. New Dialog Box

1 You can create other files from the Software Files tab and Other
Files tab of the New dialog box on the File menu. For example,
the Vector Waveform File (.vwf) is located in the Other Files tab.

To analyze a netlist file created by an EDA tool, perform the following
steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Design Entry & Synthesis. The Design
Entry & Synthesis page appears.

3. In the Tool name list, select the synthesis tool used to generate the
netlist (Figure 3–10).

3–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–10. Settings Dialog Box Specifying Design Entry Tool

The Quartus II Block Editor has many advantages over the MAX+PLUS II
Graphic Editor. The Block Editor offers an unlimited sheet size, multiple
region selections, an enhanced Symbol Editor, and conduits.

The Symbol Editor allows you to change the positions of the ports in a
symbol (refer to the three images in Figure 3–11). You can reduce wire
congestion around a symbol by changing the positions of the ports.

Altera Corporation 3–19
October 2007

Quartus II Design Flow

Figure 3–11. Various Port Position for a Symbol

To make changes to a symbol in a Block Design File, right-click a symbol
in the Block Editor and select Properties to display the Symbol
Properties dialog box. This dialog box allows you to change the instance
name, add parameters, and specify the line and text color.

You can use conduits to connect blocks (including pins) in the Block
Editor. Conduits contain signals for the connected objects
(see Figure 3–12). You can determine the connections between various
blocks in the Conduit Properties dialog box by right-clicking a conduit
and clicking Properties.

3–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–12. Blocks and Pins Connected with Conduits

Making Assignments

The Quartus II software stores all project and design assignments in a
Quartus II Settings File, which is a collection of assignments stored as Tcl
commands and organized by the compilation stage and assignment type.
The Quartus II Settings File stores all assignments, regardless of how they
are made, from the Floorplan Editor, the Pin Planner, the Assignment
Editor, with Tcl, or any other method.

Altera Corporation 3–21
October 2007

Quartus II Design Flow

Assignment Editor

The Assignment Editor is an intuitive spreadsheet interface designed to
allow you to make, change, and manage a large number of assignments
easily. With the Assignment Editor, you can list all available pin numbers
and design pin names for efficiently creating pin assignments. You also
can filter all assignments based on assignment categories and node names
for viewing and creating assignments.

The Assignment Editor is composed of the Category Bar, Node Filter Bar,
Information Bar, Edit Bar, and spreadsheet.

To make an assignment, follow these steps:

1. On the Assignments menu, click Assignment Editor. The
Assignment Editor window appears.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter
into the Node Filter bar. (This step is optional; it excludes all
assignments unrelated to the node name.)

4. Type the required values into the spreadsheet.

5. On the File menu, click Save.

If you are unsure about the purpose of a cell in the spreadsheet, select the
cell and read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the
Edit box.

Other advantages of the Assignment Editor include clipboard support in
the spreadsheet and automatic font coloring to identify the status of
assignments.

f For more information, refer to the Assignment Editor chapter in volume 1
of the Quartus II Handbook.

3–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Timing Assignments

You can use the timing wizard to help you set your timing requirements.
On the Assignments menu, click Timing Wizard to create global clock
and timing settings. The settings include fMAX, setup times, hold times,
clock to output delay times, and individual absolute or derived clocks.

You also can set timing settings manually by performing the following
steps:

1. On the Assignments menu, click Settings. The Setting dialog box is
shown.

2. In the Category list, select Timing Requirements & Options. The
Timing Requirements & Options page is shown.

3. Set your timing settings.

You can make more complex timing assignments with the Quartus II
software than allowed by the MAX+PLUS II software, including
multicycle and point-to-point assignments using wildcards and time
groups.

1 A time group is a collection of design nodes grouped together
and represented as a single unit for the purpose of making
timing assignments to the collection.

Multicycle timing assignments allow you to identify register-to-register
paths in the design where you expect a delayed latch edge. This
assignment enables accurate timing analysis of your design.

Point-to-point timing assignments allow you to specify the required
delay between two pins, two registers, or a pin and a register. This
assignment helps you optimize and verify your design timing
requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a
large number of nodes with just a few assignments. For example,
Figure 3–13 shows a 4 ns tSU requirement assignment to all paths from
any node to the “d” bus in the Assignment Editor.

Altera Corporation 3–23
October 2007

Quartus II Design Flow

Figure 3–13. Single tSU Timing Assignment Applied to All Nodes of a Bus

f For more information, refer to the Classic Timing Analyzer or the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Synthesis

The Quartus II advanced integrated synthesis software fully supports the
hardware description languages, Verilog HDL, VHDL, and AHDL,
schematic entry, and also provides options to control the synthesis
process. With this synthesis support, the Quartus II software provides a
complete, easy-to-use, stand-alone solution for today's designs.

You can specify synthesis options in the Analysis & Synthesis Settings
page of the Settings dialog box. Similar to MAX+PLUS II synthesis
options, you select one of these optimization techniques: Speed, Area, or
Balanced.

To achieve higher design performance, you can turn on synthesis netlist
optimizations that are available when targeting certain devices. You can
unmap a netlist created by an EDA tool and remap the components in the
netlist back to Altera primitives by turning on Perform WYSIWYG
primitive resynthesis. Additionally, you can move registers across
combinational logic to balance timing without changing design
functionality by turning on Perform gate-level register retiming. Both of
these options are accessible from the Synthesis Netlist Optimizations
page under Analysis & Synthesis Settings in the Settings dialog box on
the Assignments menu.

f For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.

3–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Functional Simulation

Similar to the MAX+PLUS II Simulator, the Quartus II Simulator Tool
performs both functional and timing simulations.

To open the Simulator Tool, on MAX+PLUS II menu, click Simulator or
on the Tools menu, click Simulator Tool. Before you perform a functional
simulation, an internal functional simulation netlist is required. Click
Generate Functional Simulation Netlist in the Simulator Tool window
(Figure 3–14), or on the Processing menu, click Generate Functional
Simulation Netlist.

1 Generating a functional simulation netlist creates a separate
database that improves the performance of the simulation
significantly.

Figure 3–14. Simulator Tool Dialog Box

You can view and modify the simulator options on the Simulator page of
the Settings dialog box or in the Simulator Tool window. You can set the
simulation period and turn Check outputs on or off. You can choose to
display the simulation outputs in the simulation report or in the Vector
Waveform File. To display the simulation results in the simulation input
vector waveform file, which is the MAX+PLUS II behavior, turn on
Overwrite simulation input file with simulation results.

Altera Corporation 3–25
October 2007

Quartus II Design Flow

When using either the MAX+PLUS II or Quartus II software, you may
have to compile additional behavioral models to perform a simulation
with an EDA simulation tool. In the Quartus II software, behavioral
models for library of parameterized modules (LPM) functions and
Altera-specific megafunctions are available in the altera_mf and
220model library files, respectively. The 220model and altera_mf files
can be found in the \<Quartus II Installation>\eda\sim_lib directory.

The Quartus II schematic design files (Block Design File, or .bdf) are not
compatible with EDA simulation tools. To perform a register transfer
level (RTL) functional simulation of a Block Design File using an EDA
tool, convert your schematic designs to a VHDL or Verilog HDL design
file. Open the schematic design file and on the File menu, click
Create/Update > Create HDL Design File for Current File to create an
HDL design file that corresponds to your Block Design File.

You can export a Vector Waveform File or Simulator Channel File as a
Verilog HDL or VHDL test bench file for simulation with an EDA tool.
Open your Vector Waveform File or Simulator Channel File and on the
File menu, click Export. See Figure 3–15. Select Verilog or VHDL Test
Bench File (*.vt) from the Save as type list. Turn on Add self-checking
code to file to add additional self-checking code to the test bench.

Figure 3–15. Export Dialog Box

3–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Place and Route

The Quartus II PowerFit is an incremental fitter that performs
place-and-route to fit your design into the targeted device. You can
control the Fitter behavior with options in the Fitter Settings page of the
Settings dialog box on the Assignments menu.

High-density device families supported in the Quartus II software, such
as the Stratix series, sometimes require significant fitter effort to achieve
an optimal fit. The Quartus II software offers several options to reduce
the time required to fit a design. You can control the effort the Quartus II
Fitter expends to achieve your timing requirements with these options:

■ Optimize timing performs timing-based placement using the timing
requirements you specify for the design. You can use this option by
itself or with one or more of the options below.

■ Optimize hold timing optimizes the hold times within a device to
meet timing requirements and assignments you specify. You can
select this option only if the Optimize timing option is also chosen.

■ Optimize fast-corner timing instructs the Fitter, when optimizing
your design, to consider fast-corner delays, in addition to
slow-corner delays, from the fast-corner timing model (fastest
manufactured device, operating in low-temperature and
high-voltage conditions). You can select this option only if the
Optimize timing option is also chosen.

If minimizing compilation time is more important than achieving specific
timing results, you can turn these options off.

Another way to decrease the processing time and effort the Fitter expends
to fit your design is to select either Standard Fit or Fast Fit in the Fitter
Effort box of the Fitter Settings page in the Settings dialog box on the
Assignments menu. The option you select affects the Fitter behavior and
your design as described below.

■ Select Standard Fit for the Fitter to use the highest effort and
preserve the performance from previous compilations.

■ Select Fast Fit for up to 50% faster compilation times, although this
may reduce design performance.

You can also select Auto Fit to decrease compilation time by directing the
Fitter to reduce Fitter effort after meeting your timing requirements. The
Auto Fit option is available for select devices.

f For more information, refer to the Area and Timing Optimization chapter
in volume 2 of the Quartus II Handbook.

Altera Corporation 3–27
October 2007

Quartus II Design Flow

To further reduce compilation times, turn on Limit to one fitting attempt
in the Fitter Settings page in the Settings dialog box on the Assignments
menu.

If your design is very close to meeting your timing requirements, you can
control the seed number used in the fitting algorithm by changing the
value in the Seed box of the Fitter Settings page of the Settings dialog
box on the Assignments menu. The default seed value is 1. You can
specify any non-negative integer value. Changing the value of the seed
only repositions the starting location of the Fitter, but does not affect
compilation time or the Fitter effort level. However, if your design is
difficult to fit optimally or takes a long time to fit, sometimes you can
improve results or processing time by changing the seed value.

Timing Analysis

Version 6.1 and later of the Quartus II software supports two native
timing analysis tools: TimeQuest Timing Analyzer and the Classic
Timing Analyzer. Both timing analysis tools provide more complex
clocking schemes than is possible with the MAX_PLUS II Timing
Analyzer. The TimeQuest analyzer uses the industry-standard Synopsys
Design Constraint (SDC) methodology for constraining designs and
reporting results. In general, the TimeQuest Timing Analyzer provides
more control in constraining a design as compared to the Classic Timing
Analyzer. However, the Classic Timing Analyzer incorporates a basic
graphical user interface and the timing analysis flow is similar to the flow
in the MAX_PLUS II software. As such, the section that follows provides
a more detailed look at timing analysis using the Classic Timing
Analyzer.

f For more information on choosing between the TimeQuest Timing
Analyzer or the Classic Timing Analyzer, refer to the Timing Analysis
Section in the Introduction to Quartus II manual.

Launch the Classic Timing Analyzer tool on the MAX+PLUS II menu by
clicking Classic Timing Analyzer or by selecting Classic Timing
Analyzer Tool on the Processing menu. See Figure 3–16. To start the
analysis, click Start in the Timing Analyzer Tool or on the Processing
menu, by pointing to Start, and clicking Start Timing Analyzer.

3–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–16. Registered Performance Tab of the Timing Analyzer Tool

The Quartus II Classic Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains. You can ignore
paths that cross clock domains by using the following options in the
Timing Requirements & Options page in the Settings dialog box on the
Assignments menu:

■ Create a Cut Timing Path assignment
■ Turn on Cut paths between unrelated clock domains

To view the results from the Classic Timing Analyzer Tool, click the
Report button located at the bottom of the Classic Timing Analyzer
dialog box, or to get specific information, click on any of the following
tabs at the top of the Classic Timing Analyzer window:

■ Registered Performance
■ tPD

■ tSU

■ tCO

■ tH
■ Custom Delays

Altera Corporation 3–29
October 2007

Quartus II Design Flow

The Quartus II Classic Timing Analyzer reports both fMAX and slack.
Slack is the margin by which the timing requirement was met or not met.
A positive slack value, displayed in black, indicates the margin by which
a requirement was met. A negative slack value, displayed in red,
indicates the margin by which a requirement was not met.

To analyze a particular path in more detail, select a path in the Classic
Timing Analyzer Tool and click List Paths. This displays a detailed
description of the path in the System tab of the Messages window
(Figure 3–17).

Figure 3–17. Messages Window Displaying Detailed Timing Information

f For more information, refer to the Classic Timing Analyzer or the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II
Floorplan Editor but has many improvements to help you more
effectively view and debug your design. With its ability to display logic
cell usage, routing congestion, critical paths, and LogicLockTM regions,
the Timing Closure Floorplan also makes the task of improving your
design performance much easier.

3–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To view the Timing Closure Floorplan, on the MAX+PLUS II menu, click
Floorplan Editor or Timing Closure Floorplan.

The Timing Closure Floorplan Editor provides Interior Cell views
equivalent to the MAX+PLUS II logic array block (LAB) views. In
addition to these views, available from the View menu, you also can
select from the Interior MegaLABs (where applicable), Interior LABs, and
Field views.

1 The Pin Planner is equivalent to the MAX+PLUS II Device view.
The Pin Planner can be launched from the Timing Closure
Floorplan Editor by selecting Package (Top or Bottom) from the
View menu or on the Assignments menu by clicking Pin
Planner.

The Interior LABs view hides cell details for logic cells, Adaptive Logic
Modules (ALM), and macrocells, and shows LAB information
(see Figure 3–18). You can display the number of cells used in each LAB
on the View menu by clicking Show Usage Numbers.

Figure 3–18. Interior LAB View of the Timing Closure Floorplan

The Field view is a color-coded, high-level view of your device resources
that hides both cell and LAB details. In the Field view, you can see critical
paths and routing congestion in your design.

The View Critical Paths feature shows a percentage of all critical paths in
your floorplan. You can enable this feature on the View menu by clicking
Show Critical Paths. You can control the number of critical paths shown
by modifying the settings in the Critical Paths Settings dialog box on the
View menu.

The View Congestion feature displays routing congestion by coloring
and shading logic resources. Darker shading shows greater resource
utilization. This feature assists in identifying locations where there is a
lack of routing resources.

Altera Corporation 3–31
October 2007

Quartus II Design Flow

1 To show lower level details in any view, right-click on a resource
and click Show Details.

f For more information, refer to the Timing Closure Floorplan chapter in
volume 2 of the Quartus II Handbook.

Timing Simulation

Timing simulation is an important part of the verification process. The
Quartus II software supports native timing simulation and exports
simulation netlists to third-party software for design verification.

Quartus II Simulator Tool

The Quartus II Simulator tool is an easy-to-use integrated solution that
uses the compiler database to simulate the logical and timing
performance of your design (Figure 3–19). When performing timing
simulation, the simulator uses place-and-route timing information.

Figure 3–19. Quartus II Simulator Tool

You can use Vector Table Output Files (.tbl), Vector Waveform Files,
Vector Files (.vec), or an existing Simulator Channel File as the vector
stimuli for your simulation.

3–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation
and the type of checks performed by the Simulator. When the
MAX+PLUS II look and feel is selected, the Overwrite simulation input
file with simulation results option is on by default. If you turn it off, the
simulation results are written to the report file. To view the report file,
click Report in the Simulator Tool window.

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA
simulation software. Performing timing simulation with other EDA
simulation software requires a Quartus II generated timing netlist file in
the form of a Verilog Output File (.vo) or VHDL Output File (.vho), a
Standard Delay Format Output File (.sdo), and a device-specific atom file
(or files), shown in Table 3–3.

Specify your EDA simulation tool by performing the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. In the Tool name list, select your EDA Tool.

You can generate a timing netlist for the selected EDA simulator tool by
running a full compile or on the Processing menu, by pointing to Start
and clicking Start EDA Netlist Writer. The generated netlist and SDF file
are placed into the \<project directory>\simulation\<EDA simulator tool>
directory. The device-specific atom files are located in the
\<Quartus II Install>\eda\sim_lib directory.

Table 3–3. Altera Timing Simulation Library Files

Verilog VHDL

<device_family>_atoms.v <device_family>_atoms_87.vhd

<device_family>_atoms.vhd

<device_family>_components.vhd

Altera Corporation 3–33
October 2007

Quartus II Design Flow

Power Estimation

To develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink, and cooling system, you need an
accurate estimate of the power that your design consumes. You can
estimate power by using the PowerPlay Early Power Estimation
spreadsheet available on the Altera website at www.altera.com, or with
the PowerPlay Power Analyzer in the Quartus II software.

You can perform early power estimation with the PowerPlay Early Power
Estimation spreadsheet by entering device resource and performance
information. The Quartus II PowerPlay Analyzer tool performs
vector-based power analysis by reading either a Signal Activity File (.saf),
generated from a Quartus II simulation, or a Value Change Dump File
(VCD) generated from a third-party simulation.

f For more information about how to use the PowerPlay Power Analyzer
tool, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

Programming

The Quartus II Programmer has the same functionality as the
MAX+PLUS II Programmer, including programming, verifying,
examining, and blank checking operations. Additionally, the Quartus II
Programmer now supports the erase capability for CPLDs. To improve
usability, the Quartus II Programmer displays all programming-related
information in one window (Figure 3–20).

Click Add File or Add Device in the Programmer window to add a file
or device, respectively.

3–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 3–20. Programmer Window

1 Figure 3–20 shows that the Programmer Window now supports
Erase capability.

You can save the programmer settings as a Chain Description File (.cdf).
The CDF is an ASCII text file that stores device name, device order, and
programming file name information.

Conclusion The Quartus II software is the most comprehensive design environment
available for programmable logic designs. Features such as the
MAX+PLUS II look and feel help you make the transition from Altera’s
MAX+PLUS II design software and become more productive with the
Quartus II software. The Quartus II software has all the capabilities and
features of the MAX+PLUS II software and many more to speed up your
design cycle.

Altera Corporation 3–35
October 2007

Quick Menu Reference

Quick Menu
Reference

The commands displayed in the MAX+PLUS II Quick Menu and the
Quartus II Quick Menu vary based on whichever window is active
(Figures 3–21). In the following figure, the Graphic Editor window is
active.

Figure 3–21. MAX+PLUS II Quick Menus in MAX+PLUS II and Quartus II
Software

MAX+PLUS II Quick Menu MAX+PLUS II Quick Menu in Quartus II Software

3–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Quartus II
Command
Reference for
MAX+PLUS II
Users

Table 3–4 lists the commands in the MAX+PLUS II software and gives
their equivalent commands in the Quartus II software.

NA means either Not Applicable or Not Available. If a command is not
listed, then the command is the same in both tools.

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 1 of 10)

MAX+PLUS II Software Quartus II Software

MAX+PLUS II Menu

Hierarchy Display View menu, Utility Windows, Project Navigator

Graphic Editor Block Editor

Symbol Editor Block Symbol Editor

Text Editor Text Editor

Waveform Editor Waveform Editor

Floorplan Editor Assignments menu, Timing Closure Floorplan

Compiler Tools menu, Compiler Tool

Simulator Tools menu, Simulator Tool

Timing Analyzer Tools menu, Timing Analyzer Tool

Programmer Tools menu, Programmer

Message Processor View menu, Utility Windows, Messages

File Menu

File menu, Project, Name (Ctrl+J) File menu, Open Project (Ctrl+J)

File menu, Project, Set Project to Current
File (Ctrl+Shift+J)

Project menu, Set as Top-Level Entity (Ctrl+Shift+J)
or
File menu, New Project Wizard

File menu, Project, Save & Check (Ctrl+K) Processing menu, Start, Start Analysis & Synthesis
(Ctrl+K)
or
Processing menu, Start, Start Analysis &
Elaboration

File menu, Project, Save & Compile (Ctrl+L) Processing menu, Start Compilation (Ctrl+L)

Altera Corporation 3–37
October 2007

Quartus II Command Reference for MAX+PLUS II Users

File menu, Project, Save & Simulate
(Ctrl+Shift+L)

Processing menu, Start Simulation (Ctrl+I)

File menu, Project, Compile & Simulate
(Ctrl+Shift+K)

Processing menu, Start Compilation & Simulation
(Ctrl+Shift+K)

File menu, Project, Archive Project menu, Archive Project

File menu, Project, <Recent Projects> File menu, <Recent Projects>

File menu, Delete File NA

File menu, Retrieve NA

File menu, Info (Ctrl+I) File menu, File Properties

File menu, Create Default Symbol File menu, Create/Update, Create Symbol Files for
Current File

File menu, Edit Symbol (Block Editor) Edit menu, Edit Selected Symbol

File menu, Create Default Include File File menu, Create/Update, Create AHDL Include Files for
Current File

File menu, Hierarchy Project Top (Ctrl+T) Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, Hierarchy, Up (Ctrl+U) Project menu, Hierarchy, Up (Ctrl+U)

File menu, Hierarchy, Down (Ctrl+D) Project menu, Hierarchy, Down (Ctrl+D)

File menu, Hierarchy, Top NA

File menu, Hierarchy, Project Top (Ctrl+T) Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, MegaWizard Plug-In Manager Tools menu, MegaWizard Plug-In Manager

(Graphic Editor) File menu, Size NA

(Waveform Editor) File menu, End Time (Waveform Editor) Edit menu, End Time

(Waveform Editor) File menu, Compare (Waveform Editor) View menu, Compare to
Waveforms in File

(Waveform Editor) File menu, Import Vector File File menu, Open (Ctrl+O)

(Waveform Editor) File menu, Create Table File File menu, Save As

(Hierarchy Display) File menu, Select Hierarchy NA

(Hierarchy Display) File menu, Open Editor (Project Navigator) Double-click

(Hierarchy Display) File menu, Close Editor NA

(Hierarchy Display) File menu, Change File Type (Project Navigator) Select file in Files tab and select
Properties on right click menu

(Hierarchy Display) File menu, Print Selected
Files

NA

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 2 of 10)

MAX+PLUS II Software Quartus II Software

3–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

(Programmer) File menu, Select Programming
File

File menu, Open

(Programmer) File menu, Save Programming
Data As

File menu, Save

(Programmer) File menu, Inputs/Outputs NA

(Programmer) File menu, Convert SRAM Object
Files

File menu, Convert Programming Files

(Programmer) File menu, Archive JTAG
Programming Files

NA

(Programmer) File menu, Create Jam or SVF File File menu, Create/Update, Create JAM, SVF, or ISC File

(Message Processor) Select Messages NA

(Message Processor) Save Messages As (Messages) Save Messages on right click menu

(Timing Analyzer) Save Analysis As Processing menu, Compilation Report - Save Current
Report on right click menu in Timing Analyzer sections

(Simulator) Create Table File (Waveform Editor) File menu, Save As

(Simulator) Execute Command File NA

(Simulator) Inputs/Outputs NA

Edit Menu

(Waveform Editor) Edit menu, Overwrite (Waveform Editor) Edit menu, Value

(Waveform Editor) Edit menu, Insert (Waveform Editor) Edit menu, Insert Waveform Interval

(Waveform Editor) Edit menu, Align to Grid
(Ctrl+Y)

NA

(Waveform Editor) Edit menu, Repeat (Waveform Editor) Edit menu, Repeat Paste

(Waveform Editor) Edit menu, Grow or Shrink Edit menu, Grow or Shrink (Ctrl+Alt+G)

(Text Editor) Edit menu, Insert Page Break (Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Increase Indent
(F2)

(Text Editor) Edit menu, Increase Indent

(Text Editor) Edit menu, Decrease Indent
(F3)

(Text Editor) Edit menu, Decrease Indent

(Graphic Editor) Edit menu, Toggle
Connection Dot (Double-Click)

(Block Editor) Edit menu, Toggle Connection Dot

(Graphic Editor) Edit menu, Flip Horizontal (Block Editor) Edit menu, Flip Horizontal

(Graphic Editor) Edit menu, Flip Vertical (Block Editor) Edit menu, Flip Vertical

(Graphic Editor) Edit menu, Rotate (Block Editor) Edit menu, Rotate by Degrees

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 3 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–39
October 2007

Quartus II Command Reference for MAX+PLUS II Users

View Menu

 View menu, Fit in Window (Ctrl+W) View menu, Fit in Window (Ctrl+W)

 View menu, Zoom In (Ctrl+Space) View menu, Zoom In (Ctrl+Space)

 View menu, Zoom Out (Ctrl+Shift+Space) View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Normal Size (Ctrl+1) NA

View menu, Maximum Size (Ctrl+2) NA

(Hierarchy Display) View menu, Auto Fit in
Window

NA

(Waveform Editor) View menu, Time Range View menu, Zoom

Assign menu, Device Assignments menu, Device
or
Assignments menu, Settings (Ctrl+Shift+E)

Assign menu, Pin/Location/Chip Assignments menu, Assignment Editor - Locations
category

Assign menu, Timing Requirements Assignments menu, Assignment Editor - Timing
category

Assign menu, Clique Assignments menu, Assignment Editor - Cliques
category

Assign menu, Logic Options Assignments menu, Assignment Editor - Logic
Options category

Assign menu, Probe NA

Assign menu, Connected Pins Assignments menu, Assignment Editor - Simulation
category

Assign menu, Local Routing Assignments menu, Assignment Editor - Local
Routing category

Assign menu, Global Project Device Options Assignments menu, Device - Device and Pin Options

Assign menu, Global Project Parameters Assignments menu, Settings - Analysis and
Synthesis - Default Parameters

Assign menu, Global Project Timing
Requirements

Assignments menu, Timing Settings

Assign menu, Global Project Logic Synthesis Assignments menu, Settings - Analysis and
Synthesis

Assign menu, Ignore Project Assignments Assignments menu, Assignment Editor - disable

Assign menu, Clear Project Assignments Assignments menu, Remove Assignments

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 4 of 10)

MAX+PLUS II Software Quartus II Software

3–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Assign menu, Back-Annotate Project Assignments menu, Back-Annotate Assignments

Assign menu, Convert Obsolete Assignment
Format

NA

Utilities Menu

 Utilities menu, Find Text (Ctrl+F) Edit menu, Find (Ctrl+F)

Utilities menu, Find Node in Design File
(Ctrl+B)

Project menu, Locate, Locate in Design File

Utilities menu, Find Node in Floorplan Project menu, Locate, Locate in Timing Closure
Floorplan

Utilities menu, Find Clique in Floorplan NA

Utilities menu, Find Node Source (Ctrl+Shift+S) NA

Utilities menu, Find Node Destination
(Ctrl+Shift+D)

NA

Utilities menu, Find Next (Ctrl+N) Edit menu, Find Next (F3)

Utilities menu, Find Previous (Ctrl+Shift+N) NA

Utilities menu, Find Last Edit NA

Utilities menu, Search and Replace (Ctrl+R) Edit menu, Replace (Ctrl+H)

Utilities menu, Timing Analysis Source
(Ctrl+Alt+S)

NA

Utilities menu, Timing Analysis Destination
(Ctrl+Alt+D)

NA

Utilities menu, Timing Analysis Cutoff
(Ctrl+Alt+C)

NA

Utilities menu, Analyze Timing NA

Utilities menu, Clear All Timing Analysis Tags NA

(Text Editor) Utilities menu, Go To (Ctrl+G) Edit menu, Go To (Ctrl+G)

(Text Editor) Utilities menu, Find Matching
Delimiter (Ctrl+M)

(Text Editor) Edit, Find Matching Delimiter (Ctrl+M)

(Waveform Editor) Utilities menu, Find Next
Transition (Right Arrow)

(Waveform Editor) View menu, Next Transition (Right
Arrow)

(Waveform Editor) Utilities menu, Find Previous
Transition (Left Arrow)

(Waveform Editor) View menu, Next Transition (Left
Arrow)

Options Menu

Options menu, User Libraries Assignments menu, Settings (Ctrl+Shift+E)
Tools, Options, Global User LIbraries

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 5 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–41
October 2007

Quartus II Command Reference for MAX+PLUS II Users

Options menu, Color Palette Tools menu, Options

Options menu, License Setup Tools menu, License Setup

Options menu, Preferences Tools menu, Options

(Hierarchy Display) Options menu, Orientation NA

(Hierarchy Display) Options menu, Compact
Display

NA

(Hierarchy Display) Options menu, Show All
Hierarchy Branches

(Project Navigator) Expand All on right click menu

(Hierarchy Display) Options menu, Hide All
Hierarchy Branches

NA

(Editors) Options menu, Font Tools menu, Options

(Editors) Options menu, Text Size Tools menu, Options

(Graphic Editor) Options menu, Line Style Edit menu, Line

(Graphic Editor) Options menu,
Rubberbanding

Tools menu, Options

(Graphic Editor) Options menu, Show Parameters View menu, Show Parameter Assignments

(Graphic Editor) Options menu, Show Probes NA

(Graphic Editor) Options menu, Show
Pins/Locations/Chips

View menu, Show Pin and Location Assignments

(Graphic Editor) Options menu, Show Clique,
Timing & Local Routing Assignments

NA

(Graphic Editor) Options menu, Show Logic
Options

NA

(Graphic Editor) Options menu, Show All
(Ctrl+Shift+M)

NA

(Graphic Editor) Options menu, Show Guidelines
(Ctrl+Shift+G)

Tools menu, Options - Block/Symbol Editor page

(Graphic Editor) Options menu, Guideline
Spacing

Tools menu, Options - Block/Symbol Editor page

(Symbol Editors) Options menu, Snap to Grid Tools menu, Options - Block/Symbol Editor page

(Text Editor) Options menu, Tab Stops Tools menu, Options - Text Editor page

(Text Editor) Options menu, Auto-Indent Tools menu, Options - Text Editor page

(Text Editor) Options menu, Syntax Coloring NA

(Waveform Editor) Options menu, Snap to Grid View menu, Snap to Grid

(Waveform Editor) Options menu, Show Grid
(Ctrl+Shift+G)

Tools menu, Options - Waveform Editor page

(Waveform Editor) Options menu, Grid Size Edit menu, Grid Size - Waveform Editor page

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 6 of 10)

MAX+PLUS II Software Quartus II Software

3–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

(Floorplan Editor) Options menu, Routing
Statistics

NA

(Floorplan Editor) Options menu, Show
Node Fan-In

View menu, Routing, Show Fan-In

(Floorplan Editor) Options menu, Show
Node Fan-Out

View menu, Routing, Show Fan-Out

(Floorplan Editor) Options menu, Show Path View menu, Routing, Show Paths between Nodes

(Floorplan Editor) Options menu, Show Moved
Nodes in Gray

NA

(Simulator) Options menu, Breakpoint Processing menu, Simulation Debug, Breakpoints

(Simulator) Options menu, Hardware Setup NA

(Timing Analyzer) Options menu, Time
Restrictions

Assignments menu, Timing Settings

(Timing Analyzer) Options menu,
Auto-Recalculate

NA

(Timing Analyzer) Options menu, Cell Width NA

(Timing Analyzer) Options menu, Cut Off I/O Pin
Feedback

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Clear &
Reset Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Read
During Write Paths

Assignments menu, Timing Settings

(Timing Analyzer) Options menu, List Only
Longest Path

NA

(Programmer) Options menu, Sound NA

(Programmer) Options menu, Programming
Options

Tools menu, Options - Programmer page

(Programmer) Options menu, Select Device (Programmer) Edit menu, Change Device

(Programmer) Options menu, Hardware Setup (Programmer) Edit menu, Hardware Setup

Symbol (Graphic Editor)

Symbol menu, Enter Symbol (Double-Click) (Block Editor) Edit menu, Insert Symbol (Double-
Click)

Symbol menu, Update Symbol Edit menu, Update Symbol or Block

Symbol menu, Edit Ports/Parameters Edit menu, Properties

Element (Symbol Editor)

Element menu, Enter Pinstub Double-click on edge of symbol

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 7 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–43
October 2007

Quartus II Command Reference for MAX+PLUS II Users

Element menu, Enter Parameters NA

Templates (Text Editor)

Templates (Text Editor) Edit menu, Insert Template

Node (Waveform Editor)

Node menu, Insert Node (Double-Click) Edit menu, Insert Node or Bus (Double-Click)

Node menu, Enter Nodes from SNF Edit menu, Insert Node - click on Node Finder…

Node menu, Edit Node Double-click on the Node

Node menu, Enter Group Edit menu, Group

Node menu, Ungroup Edit menu, Ungroup

Node menu, Sort Names Edit menu, Sort

Node menu, Enter Separator NA

Layout (Floorplan Editor)

Layout menu, Full Screen View menu, Full Screen (Ctrl+Alt+Space)

Layout menu, Report File Equation Viewer View menu, Equations

Layout menu, Device View (Double-Click) View menu, Package Top

or
View menu, Package Bottom

Layout menu, LAB View (Double-Click) View menu, Interior Labs

Layout menu, Current Assignments
Floorplan

View menu, Assignments, Show User Assignments

Layout menu, Last Compilation Floorplan View menu, Assignments, Show Fitter
Assignments

Processing (Compiler)

Processing menu, Design Doctor Processing menu, Start, Start Design Assistant

Processing menu, Design Doctor Settings Assignments menu, Settings - Design Assistant

Processing menu, Functional SNF Extractor Processing menu, Generate Functional Simulation
Netlist

Processing menu, Timing SNF Extractor Processing menu, Start Analysis & Synthesis

Processing menu, Optimize Timing SNF NA

Processing menu, Linked SNF Extractor NA

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 8 of 10)

MAX+PLUS II Software Quartus II Software

3–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Processing menu, Fitter Settings Assignments menu, Settings - Fitter Settings

Processing menu, Report File Settings Assignments menu, Settings

Processing menu, Generate AHDL TDO File NA

Processing menu, Smart Recompile Assignments menu, Settings - Compilation Process

Processing menu, Total Recompile Assignments menu, Settings - Compilation Process

Processing menu, Preserve All Node Name
Synonyms

Assignments menu, Settings - Compilation Process

Interfaces (Compiler) Assignments menu, EDA Tool Settings

Initialize (Simulator)

Initialize menu, Initialize Nodes/Groups NA

Initialize menu, Initialize Memory NA

Initialize menu, Save Initialization As NA

Initialize menu, Restore Initialization NA

Initialize menu, Reset to Initial SNF Values NA

Node (Timing Analyzer)

Node menu, Timing Analysis Source (Ctrl+Alt+S) NA

Node menu, Timing Analysis Destination
(Ctrl+Alt+D)

NA

Node menu, Timing Analysis Cutoff (Ctrl+Alt+C) NA

Analysis (Timing Analyzer)

Analysis menu, Delay Matrix (Timing Analyzer Tool) Delay tab

Analysis menu, Setup/Hold Matrix NA

Analysis menu, Registered Performance (Timing Analyzer Tool) Registered Performance tab

JTAG (Programmer)

JTAG menu, Multi-Device JTAG Chain (Programmer) Mode: JTAG

JTAG menu, Multi-Device JTAG Chain Setup (Programmer) Window

JTAG menu, Save JCF File menu, Save

JTAG menu, Restore JCF File menu, Open

JTAG menu, Initiate Configuration from
Configuration Device

Tools menu, Options - Programmer page

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 9 of 10)

MAX+PLUS II Software Quartus II Software

Altera Corporation 3–45
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Command Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Engineering Change Management with the Chip Planner chapter in
volume 3 of the Quartus II Handbook

■ Introduction to Quartus II manual
■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of

the Quartus II Handbook

FLEX (Programmer)

FLEX menu, Multi-Device FLEX Chain (Programmer) Mode: Passive Serial

FLEX menu, Multi-Device FLEX Chain Setup (Programmer) Window

FLEX menu, Save FCF File menu, Save

FLEX menu, Restore FCF File menu, Open

Table 3–4. Quartus II Command Reference for MAX+PLUS II Users (Part 10 of 10)

MAX+PLUS II Software Quartus II Software

http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52017.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf

3–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Document
Revision History

Table 3–5 show the revision history of this chapter.

Table 3–5. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents”. Updated for the
Quartus II 7.2 software
release.

May 2007
v7.1.0

● Added support for Arria GX in Table 3–1.
● Added “Referenced Documents” section.

Minor updates to
support Altera’s newest
device, Arria GX.

March 2007
v7.0.0

Consolidated the device support table (Table 1-3) to show
support for Stratix series and Cyclone series devices.

—

November 2006
v6.1.0

Added document revision history to chapter.
—

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.
—

December 2005
v5.1.1

Minor typographic and formatting updates.
—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.
—

May 2005
v5.0.0

Chapter 2 was formerly Chapter 1 in version 4.2. —

Dec. 2004
v2.1.0

Updated for Quartus II software version 4.2.
● Chapter 1 was formerly Chapter 2.
● General formatting, editing updates, and figure updates.
● FLEX® 600 device support added.
● Assignment Editor, Timing Assignments, and Synthesis

updated.
● APEX II support for balanced optimization technique

removed, MAX II support added.
● Minor updates to Place and Route.
● Tcl commands no longer supported for the Quartus II

Simulator Tool.
● Excel-based power calculator replaced by PowerPlay Early

Power Estimation spreadsheet.
● Added support for erase capability for CPLDs.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

Feb. 2004
v1.0

Initial release. —

Altera Corporation 4–1
October 2007 Preliminary

4. Quartus II Support for
HardCopy Series Devices

Introduction This chapter includes Quartus® II Support for HardCopy® II and
HardCopy Stratix® devices. This chapter is divided into the following
sections:

■ “HardCopy II Device Support” on page 4–1
■ “HardCopy Stratix Device Support” on page 4–34

HardCopy II
Device Support

Altera® HardCopy II devices feature 1.2-V, 90 nm process technology,
and provide a structured ASIC alternative to increasingly expensive
multi-million gate ASIC designs. The HardCopy II design methodology
offers a fast time-to-market schedule, providing ASIC designers with a
solution to long ASIC development cycles. Using the Quartus II software,
you can leverage a Stratix II FPGA as a prototype and seamlessly migrate
your design to a HardCopy II device for production.

This document discusses the following topics:

■ “HardCopy II Development Flow” on page 4–3
■ “HardCopy II Device Resource Guide” on page 4–8
■ “HardCopy II Recommended Settings in the Quartus II Software” on

page 4–12
■ “HardCopy II Utilities Menu” on page 4–25

f For more information about HardCopy II, HardCopy Stratix, and
HardCopy APEX™ devices, refer to the respective device data sheets in
the HardCopy Series Handbook.

HardCopy II Design Benefits

Designing with HardCopy II structured ASICs offers substantial benefits
over other structured ASIC offerings:

■ Prototyping using a Stratix II FPGA for functional verification and
system development reduces total project development time

■ Seamless migration from a Stratix II FPGA prototype to a
HardCopy II device reduces time to market and risk

■ Unified design methodology for Stratix II FPGA design and
HardCopy II design reduces the need for ASIC development
software

QII51004-7.2.0

4–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Low up-front development cost of HardCopy II devices reduces the
financial risk to your project

Quartus II Features for HardCopy II Planning

With the Quartus II software you can design a HardCopy II device using
a Stratix II device as a prototype. The Quartus II software contains the
following expanded features for HardCopy II device planning:

■ HardCopy II Companion Device Assignment—Identifies
compatible HardCopy II devices for migration with the Stratix II
device currently selected.

1 This feature constrains the pins of your Stratix II FPGA
prototype making it compatible with your HardCopy II
device. It also constrains the correct resources available for
the HardCopy II device making sure that your Stratix II
FPGA design does not become incompatible. In addition,
you are still required to compile the design targeting the
HardCopy II device to ensure that the design fits, routes,
and meets timing.

■ HardCopy II Utilities—The HardCopy II Utilities functions create
or overwrites HardCopy II companion revisions, change revisions to
use, and compare revisions for equivalency.

■ HardCopy II Advisor—The HardCopy II Advisor helps you follow
the necessary steps to successfully submit a HardCopy II design to
Altera’s HardCopy Design Center.

1 The HardCopy II Advisor is similar to the Resource
Optimization Advisor and Timing Optimization Advisor.
The HardCopy II Advisor provides guidelines you can
follow during development, reporting the tasks completed
as well as the tasks that remain to be completed during
development.

■ HardCopy II Floorplan—The Quartus II software can show a
preliminary floorplan view of your HardCopy II design’s Fitter
placement results.

■ HardCopy II Design Archiving—The Quartus II software archives
the HardCopy II design project’s files needed to handoff the design
to the HardCopy Design Center.

1 This feature is similar to the Quartus II software HardCopy
Files Wizard used for HardCopy Stratix and HardCopy
APEX families.

Altera Corporation 4–3
October 2007 Preliminary

HardCopy II Development Flow

■ HardCopy II Device Preliminary Timing—The Quartus II software
performs a timing analysis of HardCopy II devices based on
preliminary timing models and Fitter placements. Final timing
results for HardCopy II devices are provided by the HardCopy
Design Center.

■ HardCopy II Handoff Report-—The Quartus II software generates
a handoff report containing information about the HardCopy II
design used by the HardCopy Design Center in the design review
process.

■ Formal Verification—Cadence Encounter Conformal software can
now perform formal verification between the source RTL design files
and post-compile gate level netlist from a HardCopy II design.

HardCopy II
Development
Flow

In the Quartus II software, you have two methods for designing your
Stratix II FPGA and HardCopy II companion device together in one
Quartus II project.

■ Design the HardCopy II device first, and create the Stratix II FPGA
companion device second and build your prototype for in-system
verification

■ Design the Stratix II FPGA first and create a HardCopy II companion
device second

Both of these flows are illustrated at a high level in Figure 4–1. The added
features in the HardCopy II Utilities menu assist you in completing your
HardCopy II design for submission to Altera’s HardCopy Design Center
for back-end implementation.

4–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 4–1. HardCopy II Flow in Quartus II Software

Notes for Figure 4–1:
(1) Refer to Figure 4–2 on page 4–5 for an expanded description of this process.
(2) Refer to Figure 4–3 on page 4–7 for an expanded description of this process.

Designing the Stratix II FPGA First

The HardCopy II development flow beginning with the Stratix II FPGA
prototype is very similar to a traditional Stratix II FPGA design flow, but
requires a few additional tasks be performed to migrate the design to the
HardCopy II companion device. To design your HardCopy II device
using the Stratix II FPGA as a prototype, complete the following tasks:

■ Specify a HardCopy II device for migration
■ Compile the Stratix II FPGA design
■ Create and compile the HardCopy II companion revision
■ Compare the HardCopy II companion revision compilation to the

Stratix II device compilation

Select Stratix II Device
& HardCopy II

Companion Device

Design Stratix II First

Complete Stratix II
Device First Flow (1)

Select HardCopy II
Device & Stratix II
Companion Device

Design Stratix II Second

Complete HardCopy II
Device First Flow (2)

In-System Verification
of Stratix II

FPGA Design

Compare Stratix II
& HardCopy II

Design Revisions

Generate HardCopy II
Archive

Prepare Design HDL

Handoff Design Archive for
Back-End Migration

Design
Stratix II

First?

Yes No

Altera Corporation 4–5
October 2007 Preliminary

HardCopy II Development Flow

Figure 4–2 provides an overview highlighting the development process
for designing with a Stratix II FPGA first and creating a HardCopy II
companion device second.

Figure 4–2. Designing Stratix II Device First Flow

Review HardCopy II Advisor

Select HardCopy II Companion Device

Apply Design Constraints

Compile Stratix II Design

Compile HardCopy II Companion Revision

Create or Overwrite HardCopy II
Companion Revision

Fix Violations
Any

Violations?

Any
Violations?

Stratix II Prototype Device Development Phase

HardCopy II Companion Device Development Phase

Design Submission & Back-End Implementation Phase

Yes

Yes

No

No

Generate Handoff Report

Prepare Stratix II Design

Archive Project for Handoff

In-System Verification

Fits in
HardCopy II Device?

Compare Stratix II & HardCopy II Revisions

Select a Larger
HardCopy II Companion

Device?

4–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Prototype your HardCopy II design by selecting and then compiling a
Stratix II device in the Quartus II software.

After you compile the Stratix II design successfully, you can view the
HardCopy II Device Resource Guide in the Quartus II software Fitter
report to evaluate which HardCopy II devices meet your design’s
resource requirements. When you are satisfied with the compilation
results and the choice of Stratix II and HardCopy II devices, on the
Assignments menu, click Settings. In the Category list, select Device. In
the Device page, select a HardCopy II companion device.

After you select your HardCopy II companion device, do the following:

■ Review the HardCopy II Advisor for required and recommended
tasks to perform

■ Enable Design Assistant to run during compilation
■ Add timing and location assignments
■ Compile your Stratix II design
■ Create your HardCopy II companion revision
■ Compile your design for the HardCopy II companion device
■ Use the HardCopy II Utilities to compare the HardCopy II

companion device compilation with the Stratix II FPGA revision
■ Generate a HardCopy II Handoff Report using the HardCopy II

Utilities
■ Generate a HardCopy II Handoff Archive using the HardCopy II

Utilities
■ Arrange for submission of your HardCopy II handoff archive to

Altera’s HardCopy Design Center for back-end implementation

f For more information about the overall design flow using the Quartus II
software, refer to the Introduction to Quartus II manual on the Altera
website at www.altera.com.

Designing the HardCopy II Device First

The HardCopy II family presents a new option in designing unavailable
in previous HardCopy families. You can design your HardCopy II device
first and create your Stratix II FPGA prototype second in the Quartus II
software. This allows you to see your potential maximum performance in
the HardCopy II device immediately during development, and you can
create a slower performing FPGA prototype of the design for in-system
verification. This design process is similar to the traditional HardCopy II
design flow where you build the FPGA first, but instead, you merely
change the starting device family. The remaining tasks to complete your
design for both Stratix II and HardCopy II devices roughly follow the

Altera Corporation 4–7
October 2007 Preliminary

HardCopy II Development Flow

same process (Figure 4–3). The HardCopy II Advisor adjusts its list of
tasks based on which device family you start with, Stratix II or
HardCopy II, to help you complete the process seamlessly.

Figure 4–3. Designing HardCopy II Device First Flow

4–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy II
Device Resource
Guide

The HardCopy II Device Resource Guide compares the resources
required to successfully compile a design with the resources available in
the various HardCopy II devices. The report rates each HardCopy II
device and each device resource for how well it fits the design. The
Quartus II software generates the HardCopy II Device Resource Guide
for all designs successfully compiled for Stratix II devices. This guide is
found in the Fitter folder of the Compilation Report. Figure 4–4 shows an
example of the HardCopy II Device Resource Guide. Refer to Table 4–1
for an explanation of the color codes in Figure 4–4.

Figure 4–4. HardCopy II Device Resource Guide

Use this report to determine which HardCopy II device is a potential
candidate for migration of your Stratix II design. The HardCopy II device
package must be compatible with the Stratix II device package. A logic

Altera Corporation 4–9
October 2007 Preliminary

HardCopy II Device Resource Guide

resource usage greater than 100% or a ratio greater than 1/1 in any
category indicates that the design does not fit in that particular
HardCopy II device.

The HardCopy II architecture consists of an array of fine-grained HCells,
which are used to build logic equivalent to Stratix II adaptive logic
modules (ALMs) and digital signal processing (DSP) blocks. The DSP
blocks in HardCopy II devices match the functionality of the Stratix II
DSP blocks, though timing of these blocks is different than the FPGA DSP
blocks because they are constructed of HCell Macros. The M4K and
M-RAM memory blocks in HardCopy II devices are equivalent to the
Stratix II memory blocks. Preliminary timing reports of the HardCopy II
device are available in the Quartus II software. Final timing results of the
HardCopy II device are provided by the HardCopy Design Center after
back-end migration is complete.

Table 4–1. HardCopy II Device Resource Guide Color Legend

Color Package Resource (1) Device Resources

Green
(High)

The design can migrate to the Hardcopy II
package and the design has been fitted with
target device migration enabled in the
HardCopy II Companion Device dialog box.

The resource quantity is within the range of the
HardCopy II device and the design can likely
migrate if all other resources also fit.

You are still required to compile the HardCopy II
revision to make sure the design is able to route
and migrate all other resources.

Orange
(Medium)

The design can migrate to the Hardcopy II
package. However, the design has not been
fitted with target device migration enabled in the
HardCopy II Companion Device dialog box.

The resource quantity is within the range of the
HardCopy II device. However, the resource is at
risk of exceeding the range for the HardCopy II
package.

If your target HardCopy II device falls in this
category, compile your design targeting the
HardCopy II device as soon as possible to check
if the design fits and is able to route and migrate
all other resources. You may need to migrate to
a larger device.

Red
(None)

The design cannot migrate to the Hardcopy II
package.

The resource quantity exceeds the range of the
HardCopy II device. The design cannot migrate
to this HardCopy II device.

Note to Table 4–1:
(1) The package resource is constrained by the Stratix II FPGA for which the design was compiled. Only vertical

migration devices within the same package are able to migrate to HardCopy II devices.

4–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

f For more information about the HardCopy II device resources, refer to
the Introduction to HardCopy II Devices and the Description, Architecture
and Features chapters in the HardCopy II Device Family Data Sheet in the
HardCopy Series Handbook.

The report example in Figure 4–4 shows the resource comparisons for a
design compiled for a Stratix II EP2S130F1020 device. Based on the
report, the HC230F1020 device in the 1,020-pin FineLine BGA® package
is an appropriate HardCopy II device to migrate to. If the HC230F1020
device is not specified as a migration target during the compilation, its
package and migration compatibility is rated orange, or Medium. The
migration compatibilities of the other HardCopy II devices are rated red,
or None, because the package types are incompatible with the Stratix II
device. The 1,020-pin FBGA HC240 device is rated red because it is only
compatible with the Stratix II EP2S180F1020 device.

Figure 4–5 shows the report after the (unchanged) design was recompiled
with the HardCopy II HC230F1020 device specified as a migration target.
Now the HC230F1020 device package and migration compatibility is
rated green, or High.

Figure 4–5. HardCopy II Device Resource Guide with Target Migration Enabled

HardCopy II
Companion
Device Selection

In the Quartus II software, you can select a HardCopy II companion
device to help structure your design for migration from a Stratix II device
to a HardCopy II device. To make your HardCopy II companion device
selection, on the Assignments menu, click Settings. In the Settings dialog
box in the Category list, select Device (Figure 4–6) and select your
companion device from the Available devices list.

Selecting a HardCopy II Companion device to go with your Stratix II
prototype constrains the memory blocks, DSP blocks, and pin
assignments, so that your Stratix II and HardCopy II devices are
migration-compatible. Pin assignments are constrained in the Stratix II
design revision so that the HardCopy II device selected is

Altera Corporation 4–11
October 2007 Preliminary

HardCopy II Companion Device Selection

pin-compatible. The Quartus II software also constrains the Stratix II
design revision so it does not use M512 memory blocks or exceed the
number of M-RAM blocks in the HardCopy II companion device.

Figure 4–6. Quartus II Settings Dialog Box

You can also specify your HardCopy II companion device using the
following tool command language (Tcl) command:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST <HardCopy II Device Part Number>

For example, to select the HC230F1020 device as your HardCopy II
companion device for the EP2S130F1020C4 Stratix II FPGA, the Tcl
command is:

set_global_assignment -name\
DEVICE_TECHNOLOGY_MIGRATION_LIST HC230F1020C

4–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy II
Recommended
Settings in the
Quartus II
Software

The HardCopy II development flow involves additional planning and
preparation in the Quartus II software compared to a standard FPGA
design. This is because you are developing your design to be
implemented in two devices: a prototype of your design in a Stratix II
prototype FPGA, and a companion revision in a HardCopy II device for
production. You need additional settings and constraints to make the
Stratix II design compatible with the HardCopy II device and, in some
cases, you must remove certain settings in the design. This section
explains the additional settings and constraints necessary for your design
to be successful in both Stratix II FPGA and HardCopy II structured ASIC
devices.

Limit DSP and RAM to HardCopy II Device Resources

On the Assignments menu, click Settings to view the Settings dialog box.
In the Category list, select Device. In the Family list, select Stratix II.
Under Companion device, Limit DSP & RAM to HardCopy II device
resources is turned on by default (Figure 4–7). This maintains
compatibility between the Stratix II and HardCopy II devices by ensuring
your design does not use resources in the Stratix II device that are not
available in the selected HardCopy II device.

1 If you require additional memory blocks or DSP blocks for
debugging purposes using SignalTap® II, you can temporarily
turn this setting off to compile and verify your design in your
test environment. However, your final Stratix II and
HardCopy II designs submitted to Altera for back-end
migration must be compiled with this setting turned on.

Figure 4–7. Limit DSP & RAM to HardCopy II Device Resources Check Box

Enable Design Assistant to Run During Compile

You must use the Quartus II Design Assistant to check all HardCopy
series designs for design rule violations before submitting the designs to
the Altera HardCopy Design Center. Additionally, you must fix all
critical and high-level errors.

1 Altera recommends turning on the Design Assistant to run
automatically during each compile, so that during development,
you can see the violations you must fix.

Altera Corporation 4–13
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

f For more information about the Design Assistant and the rules it uses,
refer to the Design Guidelines for HardCopy Series Devices chapter of the
HardCopy Series Handbook.

To enable the Design Assistant to run during compilation, on the
Assignment menu, click Settings. In the Category list, select Design
Assistant and turn on Run Design Assistant during compilation
(Figure 4–8) or by entering the following Tcl command in the Tcl Console:

set_global_assignment -name ENABLE_DRC_SETTINGS ON

Figure 4–8. Enabling Design Assistant

Timing Settings

Beginning in Quartus II Software version 7.1, TimeQuest is the
recommended timing analysis tool for all designs. Classic Timing
Analyzer is no longer supported and the HardCopy Design Center will
not accept any designs which use Classic Timing Analyzer for timing
closure.

If you are still using the Classic Timing Analyzer, Altera strongly
recommends that you switch to TimeQuest.

4–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 For more information on how to switch to TimeQuest, refer to
the Switching to the TimeQuest Timing Analyzer chapter of the
Quartus II Handbook, volume 3, on the Altera website at
www.altera.com.

When you specify the TimeQuest analyzer as the timing analysis tool, the
TimeQuest analyzer guides the Fitter and analyzes timing results after
compilation.

TimeQuest

The TimeQuest Timing Analyzer is a powerful ASIC-style timing
analysis tool that validates timing in your design by using an
industry-standard constraint, analysis, and reporting methodology. You
can use the TimeQuest Timing Analyzer’s GUI or command-line
interface to constrain, analyze, and report results for all timing paths in
your design.

Before running the TimeQuest Timing Analyzer, you must specify initial
timing constraints that describe the clock characteristics, timing
exceptions, and signal transition arrival and required times. You can
specify timing constraints in the Synopsys Design Constraints (SDC) file
format using the GUI or command-line interface. The Quartus II Fitter
optimizes the placement of logic to meet your constraints.

During timing analysis, the TimeQuest Timing Analyzer analyzes the
timing paths in the design, calculates the propagation delay along each
path, checks for timing constraint violations, and reports timing results as
slack in the Report pane and in the Console pane. If the TimeQuest
Timing Analyzer reports any timing violations, you can customize the
reporting to view precise timing information about specific paths, and
then constrain those paths to correct the violations. When your design is
free of timing violations, you can be confident that the logic will operate
as intended in the target device.

The TimeQuest Timing Analyzer is a complete static timing analysis tool
that you can use as a sign-off tool for Altera FPGAs and structured ASICs.

Setting Up the TimeQuest Timing Analyzer

If you want use TimeQuest for timing analysis, from the Assignments tab
in the Quartus II software, click on Timing Analysis Settings, and in the
pop-up window, click the Use TimeQuest Timing Analyzer during
compilation tab.

Altera Corporation 4–15
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

Use the following Tcl command to use TimeQuest as your timing analysis
engine:

set_global_assignment -name \
USE_TIMEQUEST_TIMING_ANALYZER ON

You can launch the TimeQuest analyzer in one of the following modes:

■ Directly from the Quartus II software
■ Stand-alone mode
■ Command-line mode

In order to perform a thorough Static Timing Analysis, you would need
to specify all the timing requirements. The most important timing
requirements are clocks and generated clocks, input and output delays,
false paths and multi-cycle paths, minimum and maximum delays.

In TimeQuest, clock latency, and recovery and removal analysis are
enabled by default.

f For more information about TimeQuest, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook on the
Altera website at www.altera.com.

Constraints for Clock Effect Characteristics

The create_clock, create_generated_clock commands create
ideal clocks and do not account for board effects. In order to account for
clock effect characteristics, you can use the following commands:

■ set_clock_latency
■ set_clock_uncertainty

1 For more information about how to use these commands, refer
to the Quartus II TimeQuest Timing Analyzer chapter in volume 3
of the Quartus II Handbook.

Beginning in Quartus II version 7.1, you can use the new command
derive_clock_uncertainty to automatically derive the clock
uncertainties. This command is useful when you are not sure what the
clock uncertainties might be. The calculated clock uncertainty values are
based on I/O buffer, static phase errors (SPE) and jitter in the PLL's, clock
networks, and core noises.

4–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The derive_clock_uncertainty command applies inter-clock,
intra-clock, and I/O interface uncertainties. This command automatically
calculates and applies setup and hold clock uncertainties for each
clock-to-clock transfer found in your design.

In order to get I/O interface uncertainty, you must create a virtual clock,
then assign delays to the input/output ports by using the
set_input_delay and set_output_delay commands for that
virtual clock.

1 These uncertainties are applied in addition to those you
specified using the set_clock_uncertainty command.
However, if a clock uncertainty assignment for a source and
destination pair was already defined, the new one will be
ignored. In this case, you can use either the -overwrite
command to overwrite the previous clock uncertainty
command or manually remove them by using the
remove_clock_uncertainty command.

The syntax for the derive_clock_uncertainty is as follows:

derive_clock_uncertainty [-h | -help] [-long_help]
[-dtw] [-overwrite]

where the arguments are listed in Table 4–2:

When the dtw option is used, a PLLJ_PLLSPE_INFO.txt file is generated.
This file lists the name of the PLLs, as well as their jitter and SPE values
in the design. This text file can be used by HCII_DTW_CU_Calculator.
When this option is used, clock uncertainties are not calculated.

f For more information on the derive_clock_uncertainty command,
refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus II Handbook.

Table 4–2. Arguments for derive_clock_uncertainty

Option Description

-h | -help Short help

-long_help Long help with examples and possible return values

-dtw Creates PLLJ_PLLSPE_INFO.txt file

-overwrite Overwrites previously performed clock uncertainty assignments

Altera Corporation 4–17
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

Altera strongly recommends that you use the
derive_clock_uncertainty command in the HardCopy II revision.
The HardCopy Design Center will not be accepting designs that do not
have clock uncertainty constraint by either using the
derive_clock_uncertainty command or the HardCopy II Clock
Uncertainty Calculator, and then using the set_clock_uncertainty
command.

f For more information on how to use the HardCopy II Clock Uncertainty
Calculator, refer to the HardCopy II Clock Uncertainty User Guide available
on the Altera website at www.altera.com.

Quartus II Software Features Supported for HardCopy II Designs

The Quartus II software supports optimization features for HardCopy II
prototype development, including:

■ Physical Synthesis Optimization
■ LogicLock Regions
■ PowerPlay Power Analyzer
■ Incremental Compilation (Synthesis and Fitter)
■ Maximum Fan-Out Assignments

Physical Synthesis Optimization

To enable Physical Synthesis Optimizations for the Stratix II FPGA
revision of the design, on the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Fitter Settings. These
optimizations are migrated into the HardCopy II companion revision for
placement and timing closure. When designing with a HardCopy II
device first, physical synthesis optimizations can be enabled for the
HardCopy II device, and these post-fit optimizations are migrated to the
Stratix II FPGA revision.

LogicLock™ Regions

The use of LogicLock Regions in the Stratix II FPGA is supported for
designs migrating to HardCopy II. However, LogicLock Regions are not
passed into the HardCopy II Companion Revision. You can use
LogicLock in the HardCopy II design but you must create new
LogicLock Regions in the HardCopy II companion revision. In addition,
LogicLock Regions in HardCopy II devices can not have their properties
set to Auto Size. However, Floating LogicLock regions are supported.
HardCopy II LogicLock Regions must be manually sized and placed in
the floorplan. When LogicLock Regions are created in a HardCopy II
device, they start with width and height dimensions set to (1,1), and the
origin coordinates for placement are at X1_Y1 in the lower left corner of

4–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

the floorplan. You must adjust the size and location of the LogicLock
Regions you created in the HardCopy II device before compiling the
design.

f For information about using LogicLock Regions, refer to the Quartus II
Analyzing and Optimizing Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

PowerPlay Power Analyzer

You can perform power estimation and analysis of your HardCopy II and
Stratix II devices using the PowerPlay Early Power Estimator. Use the
PowerPlay Power Analyzer for more accurate estimation of your device’s
power consumption. The PowerPlay Early Power Estimator is available
in the Quartus II software version 5.1 and later. The PowerPlay Power
Analyzer supports HardCopy II devices in version 6.0 and later of the
Quartus II software.

f For more information about using the PowerPlay Power Analyzer, refer
to the Quartus II PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook on the Altera website at www.altera.com.

Incremental Compilation

The use of the Quartus II Incremental Compilation in the Stratix II FPGA
is supported when migrating a design to a HardCopy II device.
Incremental compilation is supported in the Stratix II First design flow or
HardCopy II First design flow.

To take advantage of Quartus II Incremental Compilation, organize your
design into logical and physical partitions for synthesis and fitting (or
place-and-route). Incremental compilation preserves the compilation
results and performance of unchanged partitions in your design. This
feature dramatically reduces your design iteration time by focusing new
compilations only on changed design partitions. New compilation results
are then merged with the previous compilation results from unchanged
design partitions. You can also target optimization techniques, such as
physical synthesis, to specific partitions while leaving other partitions
untouched.

In addition, be aware of the following guidelines:

● User partitions and synthesis results are migrated to a
companion device.

● LogicLock regions are suggested for user partitions, but are not
migrated automatically.

Altera Corporation 4–19
October 2007 Preliminary

HardCopy II Recommended Settings in the Quartus II Software

● The first compilation after migration to a companion device
requires a full compilation (all partitions are compiled), but
subsequent compilations can be incremental if changes to the
source RTL are not required. For example, PLL phase changes
can be implemented incrementally if the blocks are partitioned.

● The entire design must be migrated between Stratix II and
HardCopy II companion devices. The Quartus II software does
not support migration of partitions between companion
devices.

● Bottom-up Quartus II Incremental Compilation is not supported
for HardCopy II devices.

● Physical Synthesis can be run on individual partitions within
the originating device only. The resulting optimizations are
preserved in the migration to the companion device.

f For information about using Quartus II Incremental Compilation, refer
to the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

Maximum Fanout Assignments

This feature is supported beginning in Quartus II 6.1. In order to meet
timing, it may be necessary to limit the number of fanouts of a net in your
design. You can limit the maximum fanout of a given net by using this
feature.

For example, you can use the following Tcl command to enable the
maximum fanout setting:

set_instance_assignment -name MAX_FANOUT <number>
- to\ <net name>

For example, if you want to limit the maximum fanout of net called
"m3122_combout_1" to 25, the Tcl command is as follows:

set_instance_assignment -name MAX_FANOUT 25 -to\
m3122_combout_1

4–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Performing
ECOs with
Quartus II
Engineering
Change
Management
with the Chip
Planner

As designs grow larger and larger in density, the need to analyze the
design for performance, routing congestion, logic placement, and
executing Engineering Change Orders (ECOs) becomes critical. In
addition to design analysis, you can use various bottom-up and
top-down flows to implement and manage the design. This becomes
difficult to manage since ECOs are often implemented as last minute
changes to your design.

With the Altera Chip Planner tool, you can shorten the design cycle time
significantly. When changes are made to your design as ECOs, you do not
have to perform a full compilation in the Quartus II software. Instead,
you would make changes directly to the post place-and-route netlist,
generate a new programming file, test the revised design by performing
a gate-level simulation and timing analysis, and proceed to verify the fix
on the system (if you are using a Stratix II FPGA as a prototype). Once the
fix has been verified on the Stratix II FPGA, switch to the HardCopy II
revision, apply the same ECOs, run the timing analyzer and assembler,
perform a revision compare and then run the HardCopy II Netlist Writer
for design submission.

There are three scenarios from a migration point of view:

■ There are changes which can map one-to-one (that is, the same
change can be implemented on each architecture—Stratix II FPGA
and HardCopy II).

■ There are changes that must be implemented differently on the two
architectures to achieve the same result.

■ There are some changes that cannot be implemented on both
architectures.

The following sections outline the methods for migrating each of these
types of changes.

Migrating One-to-One Changes

One-to-one changes are implemented using identical commands in both
architectures. In general, such changes include those that affect only I/O
cells or PLL cells. Some examples of one-to-one changes are changes such
as creating, deleting or moving pins, changing pin or PLL properties, or
changing pin connectivity (provided the source and destination of the
connectivity changes are I/Os or PLLs). These can be implemented
identically on both architectures.

If such changes are exported to Tcl, a direct reapplication of the generated
Tcl script (with a minor text edit) on the companion revision should
implement the appropriate changes as follows:

Altera Corporation 4–21
October 2007 Preliminary

Performing ECOs with Quartus II Engineering Change Management with the Chip Planner

■ Export the changes from the Change Manager to Tcl.
■ Open the generated Tcl script, change the line "project_open

<project> -revision <revision>" to refer to the appropriate companion
revision.

■ Apply the Tcl script to the companion revision.

A partial list of examples of this type are as follows:

■ I/O creation, deletion, and moves
■ I/O property changes (for example, I/O standards, delay chain

settings, etc.)
■ PLL property changes
■ Connectivity changes between non-LCELL_COMB atoms (for

example, PLL to I/O, DSP to I/O, etc.)

Migrating Changes that Must be Implemented Differently

Some changes must be implemented differently on the two architectures.
Changes affecting the logic of the design may fall into this category.
Examples are LUTMASK changes, LC_COMB/HSADDER creation and
deletion, and connectivity changes not covered in the previous section.

Another example of this would be to have different PLL settings for the
Stratix II and the HardCopy II revisions.

f For more information about how to use different PLL settings for the
Stratix II and HardCopy II Devices, refer to AN432: Using Different PLL
Settings Between Stratix II and HardCopy II Devices.

Table 4–3 summarizes suggested implementation for various changes.

Table 4–3. Implementation Suggestions for Various Changes (Part 1 of 2)

Change Type Suggested Implementation

LUTMASK changes Because a single Stratix II atom may require
multiple HardCopy II atoms to implement, it may be
necessary to change multiple HardCopy II atoms to
implement the change, including adding or
modifying connectivity

Make/Delete LC_COMB If you are using a Stratix II LC_COMB in extended
mode (7-LUT) or using a SHARE chain, you must
create multiple atoms to implement the same logic
functions in HardCopy II. Additionally, the
placement of the LC_COMB cell has no meaning in
the companion revision as the underlying
resources are different.

4–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Changes that Cannot be Migrated

A small set of changes cannot be implemented in the other architecture
because they do not make sense in the other architecture. The best
example of this occurs when moving logic in a design; because the logic
fabric is different between the two architectures, locations in Stratix II
make no sense in HardCopy II and vice versa.

Overall
Migration Flow

This section outlines the migration flow and the suggested procedure for
implementing changes in both revisions to ensure a successful Revision
Compare such that the design can be submitted to the HardCopy Design
Center.

Preparing the Revisions

The general procedure for migrating changes between devices is the
same, whether going from Stratix II to HardCopy II or vice versa. The
major steps are as follows:

1. Compile the design on the initial device.
2. Migrate the design from the initial device to the target device in the

companion revision.
3. Compile the companion revision.
4. Perform a Revision Compare operation. The two revisions should

pass the Revision Compare.

If testing identifies problems requiring ECO changes, equivalent changes
can be applied to both Stratix II and HardCopy II revisions, as described
in the next section.

Make/Delete LC_FF The basic creation and deletion is the same on both
architectures. However, as with LC_COMB
creation and deletion, the location of an LC_FF in a
HardCopy II revision has no meaning in the
Stratix II revision and vice versa.

Editing Logic Connectivity Because a Stratix II LCELL_COMB atom may have
to be broken up into several HardCopy II
LCELL_COMB atoms, the source or destination
ports for connectivity changes may need to be
analyzed to properly implement the change in the
companion revision.

Table 4–3. Implementation Suggestions for Various Changes (Part 2 of 2)

Change Type Suggested Implementation

Altera Corporation 4–23
October 2007 Preliminary

Overall Migration Flow

Applying ECO Changes

The general flow for applying equivalent changes in companion revisions
is as follows:

1. Make changes in one revision using the Chip Planner tools (Chip
Planner, Resource Property Editor, and Change Manager), then
verify and export these changes. The procedure for doing this is as
follows:
a. Make changes using the Chip Planner tool.

b. Perform a netlist check using the Check and Save All Netlist
Changes command.

c. Verify correctness using timing analysis, simulation, and
prototyping (Stratix II only). If more changes are required,
repeat steps a-b.

d. Export change records from the Change Manager to Tcl scripts,
or .csv or .txt file formats.

This exported file is used to assist in making the equivalent
changes in the companion revision.

2. Open the companion revision in the Quartus II software.

3. Using the exported file, manually reapply the changes using the
Chip Planner tool.

As stated previously, some changes can be reapplied directly to the
companion revision (either manually or by applying the Tcl
commands), while others require some modifications.

4. Perform a Revision Compare operation. The revisions should now
match once again.

5. Verify the correctness of all changes (you may need to run timing
analysis).

6. Run the HardCopy II Assembler and the HardCopy II Netlist Writer
for design submission along with handoff files.

The Tcl command for running the HardCopy II Assembler is as follows:

execute_module -tool asm -args "--
read_settings_files=\ off --write_settings_files=off"

4–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The Tcl command for the HardCopy II Netlist Writer is as follows:

execute_module -tool cdb \
-args "--generate_hardcopyii_files"\

f For more information about using Chip Planner, refer to the Quartus II
Engineering Change Management with Chip Planner chapter in volume 3 of
the Quartus II Handbook at www.altera.com.

Formal
Verification of
Stratix II and
HardCopy II
Revisions

Third-party formal verification software is available for your
HardCopy II design. Cadence Encounter Conformal verification software
is used for Stratix II and HardCopy II families, as well as several other
Altera product families.

To use the Conformal software with the Quartus II software project for
your Stratix II and HardCopy II design revisions, you must enable the
EDA Netlist Writer. It is necessary to turn on the EDA Netlist Writer so
it can generate the necessary netlists and command files needed to run the
Conformal software. To automatically run the EDA Netlist Writer during
the compile of your Stratix II and HardCopy II design revisions, perform
the following steps:

1. On the Assignment menu, click EDA Tool Settings. The Settings
dialog box displays.

2. In the EDA Tool Settings list, select Formal Verification, and in the
Tool name list, select Conformal LEC.

3. Compile your Stratix II and Hardcopy II design revisions, with both
the EDA Tool Settings and the Conformal LEC turned on so the
EDA Netlist Writer automatically runs.

The Quartus II EDA Netlist Writer produces one netlist for Stratix II
when it is run on that revision, and generates a second netlist when it runs
on the HardCopy II revision. You can compare your Stratix II
post-compile netlist to your RTL source code using the scripts generated
by the EDA Netlist Writer. Similarly, you can compare your HardCopy II
post-compile netlist to your RTL source code with scripts provided by
the EDA Netlist Writer.

f For more information about using the Cadence Encounter Conformal
verification software, refer to the Cadence Encounter Conformal Support
chapter in volume 3 of the Quartus II Handbook.

Altera Corporation 4–25
October 2007 Preliminary

HardCopy II Utilities Menu

HardCopy II
Utilities Menu

The HardCopy II Utilities menu in the Quartus II software is shown
Figure 4–9. To access this menu, on the Project menu, click HardCopy II
Utilities. This menu contains the main functions you use to develop your
HardCopy II design and Stratix II FPGA prototype companion revision.
From the HardCopy II Utilities menu, you can:

■ Create or update HardCopy II companion revisions
■ Set which HardCopy II companion revision is the current revision
■ Generate a HardCopy II Handoff Report for design reviews
■ Archive HardCopy II Handoff Files for submission to the HardCopy

Design Center
■ Compare the companion revisions for functional equivalence
■ Track your design progress using the HardCopy II Advisor

Figure 4–9. HardCopy II Utilities Menu

4–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Each of the features within HardCopy II Utilities is summarized in
Table 4–4. The process for using each of these features is explained in the
following sections.

Companion Revisions

HardCopy II designs follow a different development flow in the
Quartus II software compared with previous HardCopy families. You
can create multiple revisions of your Stratix II prototype design, but you
can also create separate revisions of your design for a HardCopy II
device. The Quartus II software creates specific HardCopy II design

Table 4–4. HardCopy II Utilities Menu Options

Menu Description Applicable Design
Revision Restrictions

Create/Overwrite
HardCopy II
Companion Revision

Create a new companion
revision or update an existing
companion revision for your
Stratix II and HardCopy II
design.

Stratix II prototype
design and HardCopy II
Companion Revision

● Must disable Auto Device
selection

● Must set a Stratix II device
and a HardCopy II
companion device

Set Current
HardCopy II
Companion Revision

Specify which companion
revision to associate with
current design revision.

Stratix II prototype
design and HardCopy II
Companion Revision

Companion Revision must
already exist

Compare
HardCopy II
Companion
Revisions

Compares the Stratix II design
revision with the HardCopy II
companion design revision
and generates a report.

Stratix II prototype
design and HardCopy II
Companion Revision

Compilation of both revisions
must be complete

Generate
HardCopy II Handoff
Report

Generate a report containing
important design information
files and messages generated
by the Quartus II compile

Stratix II prototype
design and HardCopy II
Companion Revision

● Compilation of both
revisions must be complete

● Compare HardCopy II
Companion Revisions
must have been executed

Archive HardCopy II
Handoff Files

Generate a Quartus II Archive
File specifically for submitting
the design to the HardCopy
Design Center. Similar to the
HardCopy Files Wizard for
HardCopy Stratix and APEX.

HardCopy II
Companion Revision

● Compilation of both
revisions must be
completed

● Compare HardCopy II
Companion Revisions
must have been executed

● Generate HardCopy
Handoff Report must have
been executed

HardCopy II Advisor Open an Advisor, similar to the
Resource Optimization
Advisor, helping you through
the steps of creating a
HardCopy II project.

Stratix II prototype
design and HardCopy II
Companion Revision

None

Altera Corporation 4–27
October 2007 Preliminary

HardCopy II Utilities Menu

revisions of the project in conjunction to the regular project revisions.
These parallel design revisions for HardCopy II devices are called
companion revisions.

1 Although you can create multiple project revisions, Altera
recommends that you maintain only one Stratix II FPGA
revision once you have created the HardCopy II companion
revision.

When you have successfully compiled your Stratix II prototype FPGA,
you can create a HardCopy II companion revision of your design and
proceed with compiling the HardCopy II companion revision. To create
a companion revision, on the Project menu, point to HardCopy II Utilities
and click Create/Overwrite HardCopy II Companion Revision. Use the
dialog box to create a new companion revision or overwrite an existing
companion revision (Figure 4–10).

Figure 4–10. Create or Overwrite HardCopy II Companion Revision

You can associate only one Stratix II revision to one HardCopy II
companion revision. If you created more than one revision or more than
one companion revision, set the current companion for the revision you
are working on. On the Project menu, point to HardCopy II Utilities and
click Set Current HardCopy II Companion Revision (Figure 4–11).

Figure 4–11. Set Current HardCopy II Companion Revision

4–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Compiling the HardCopy II Companion Revision

The Quartus II software allows you to compile your HardCopy II design
with preliminary timing information. The timing constraints for the
HardCopy II companion revision can be the same as the Stratix II design
used to create the revision. The Quartus II software contains preliminary
timing models for HardCopy II devices and you can gauge how much
performance improvement you can achieve in the HardCopy II device
compared to the Stratix II FPGA. Altera verifies that the HardCopy II
Companion Device timing requirements are met in the HardCopy Design
Center.

After you create your HardCopy II companion revision from your
compiled Stratix II design, select the companion revision in the Quartus II
software design revision drop-down box (Figure 4–12) or from the
Revisions list. Compile the HardCopy II companion revision. After the
Quartus II software compiles your design, you can perform a comparison
check of the HardCopy II companion revision to the Stratix II prototype
revision.

Figure 4–12. Changing Current Revision

Comparing HardCopy II and Stratix II Companion Revisions

Altera uses the companion revisions in a single Quartus II project to
maintain the seamless migration of your design from a Stratix II FPGA to
a HardCopy II structured ASIC. This methodology allows you to design
with one set of Register Transfer Level (RTL) code to be used in both
Stratix II FPGA and HardCopy II structured ASIC, guaranteeing
functional equivalency.

When making changes to companion revisions, use the Compare
HardCopy II Companion Revisions feature to ensure that your Stratix II
design matches your HardCopy II design functionality and compilation
settings. To compare companion revisions, on the Project menu, point to
HardCopy II Utilities and click Compare HardCopy II Companion
Revisions.

1 You must perform this comparison after both Stratix II and
HardCopy II designs are compiled in order to hand off the
design to Altera’s HardCopy Design Center.

Altera Corporation 4–29
October 2007 Preliminary

HardCopy II Utilities Menu

The Comparison Revision Summary is found in the Compilation Report
and identifies where assignments were changed between revisions or if
there is a change in the logic resource count due to different compilation
settings.

Generate a HardCopy II Handoff Report

In order to submit a design to the HardCopy Design Center, you must
generate a HardCopy II Handoff Report providing important
information about the design that you want the HardCopy Design Center
to review. To generate the HardCopy II Handoff Report, you must:

■ Successfully compile both Stratix II and HardCopy II revisions of
your design

■ Successfully run the Compare HardCopy II Companion Revisions
utility

Once you generate the HardCopy II Handoff Report, you can archive the
design using the Archive HardCopy II Handoff Files utility described in
“Archive HardCopy II Handoff Files” on page 4–29.

Archive HardCopy II Handoff Files

The last step in the HardCopy II design methodology is to archive the
HardCopy II project for submission to the HardCopy Design Center for
back-end migration. The HardCopy II archive utility creates a different
Quartus II Archive File than the standard Quartus II project archive
utility generates. This archive contains only the necessary data from the
Quartus II project needed to implement the design in the HardCopy
Design Center.

In order to use the Archive HardCopy II Handoff Files utility, you must
complete the following:

■ Compile both the Stratix II and HardCopy II revisions of your design
■ Run the Compare HardCopy II Revisions utility
■ Generate the HardCopy II Handoff Report

To select this option, on the Project menu, point to HardCopy II Utilities
and click Archive HardCopy II Handoff File utility.

4–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy II Advisor

The HardCopy II Advisor provides the list of tasks you should follow to
develop your Stratix II prototype and your HardCopy II design. To run
the HardCopy II Advisor, on the Project menu, point to HardCopy II
Utilities and click HardCopy II Advisor. The following list highlights the
checkpoints that the HardCopy II Advisor reviews. This list includes the
major check points in the design process; it does not show every step in
the process for completing your Stratix II and HardCopy II designs:

1. Select a Stratix II device.

2. Select a HardCopy II device.

3. Turn on the Design Assistant.

4. Set up timing constraints.

5. Check for incompatible assignments.

6. Compile and check the Stratix II design.

7. Create or overwrite the companion revision.

8. Compile and check the HardCopy II companion results.

9. Compare companion revisions.

10. Generate a Handoff Report.

11. Archive Handoff Files and send to Altera.

The HardCopy II Advisor shows the necessary steps that pertain to your
current selected device. The Advisor shows a slightly different view for a
design with Stratix II selected as compared to a design with HardCopy II
selected.

In the Quartus II software, you can start designing with the HardCopy II
device selected first, and build a Stratix II companion revision second.
When you use this approach, the HardCopy II Advisor task list adjusts
automatically to guide you from HardCopy II development through
Stratix II FPGA prototyping, then completes the comparison archiving
and handoff to Altera.

When your design uses the Stratix II FPGA as your starting point, Altera
recommends following the Advisor guidelines for your Stratix II FPGA
until you complete the prototype revision.

Altera Corporation 4–31
October 2007 Preliminary

HardCopy II Utilities Menu

When the Stratix II FPGA design is complete, create and switch to your
HardCopy II companion revision and follow the Advisor steps shown in
that revision until you are finished with the HardCopy II revision and are
ready to submit the design to Altera for back-end migration.

Each category in the HardCopy II Advisor list has an explanation of the
recommended settings and constraints, as well as quick links to the
features in the Quartus II software that are needed for each section. The
HardCopy II Advisor displays:

■ A green check box when you have successfully completed one of the
steps

■ A yellow caution sign for steps that must be completed before
submitting your design to Altera for HardCopy development

■ An information callout for items you must verify

1 Selecting an item within the HardCopy II flow menu provides a
description of the task and recommended action. The view in
the HardCopy II Advisor differs depending on the device you
select.

Figure 4–13 shows the HardCopy II Advisor with the Stratix II device
selected.

Figure 4–13. HardCopy II Advisor with Stratix II Selected

4–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 4–14 shows the HardCopy II Advisor with the HardCopy II device
selected.

Figure 4–14. HardCopy II Advisor with HardCopy II Device Selected

HardCopy II Floorplan View

The Quartus II software displays the preliminary timing closure
floorplan and placement of your HardCopy II companion revision. This
floorplan shows the preliminary placement and connectivity of all I/O
pins, PLLs, memory blocks, HCell macros, and DSP HCell macros.
Congestion mapping of routing connections can be viewed using the
Layers Setting dialog box (in the View menu) settings. This is useful in
analyzing densely packed areas of your floorplan that could be reducing
the peak performance of your design. The HardCopy Design Center
verifies final HCell macro timing and placement to guarantee timing
closure is achieved.

Altera Corporation 4–33
October 2007 Preliminary

HardCopy II Utilities Menu

Figure 4–15 shows an example of the HC230F1020 device floorplan.

Figure 4–15. HC230F1020 Device Floorplan

In this small example design, the logic is placed near the bottom edge.
You can see the placement of a DSP block constructed of HCell Macros,
various logic HCell Macros, and an M4K memory block. A labeled
close-up view of this region is shown in Figure 4–16.

Figure 4–16. Close-Up View of Floorplan

4–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The HardCopy Design Center performs final placement and timing
closure on your HardCopy II design based on the timing constraints
provided in the Stratix II design.

f For more information about the HardCopy Design Center’s process,
refer to the Back-End Design Flow for HardCopy Series Devices chapter in
volume 1 of the HardCopy Series Device Handbook.

HardCopy Stratix
Device Support

Altera HardCopy devices provide a comprehensive alternative to ASICs.
HardCopy structured ASICs offer a complete solution from prototype to
high-volume production, and maintain the powerful features and
high-performance architecture of their equivalent FPGAs with the
programmability removed. You can use the Quartus II design software to
design HardCopy devices in a manner similar to the traditional ASIC
design flow and you can prototype with Altera’s high density Stratix,
APEX 20KC, and APEX 20KE FPGAs before seamlessly migrating to the
corresponding HardCopy device for high-volume production.

HardCopy structured ASICs provide the following key benefits:

■ Improves performance, on the average, by 40% over the
corresponding -6 speed grade FPGA device

■ Lowers power consumption, on the average, by 40% over the
corresponding FPGA

■ Preserves the FPGA architecture and features and minimizes risk
■ Guarantees first-silicon success through a proven, seamless

migration process from the FPGA to the equivalent HardCopy
device

■ Offers a quick turnaround of the FPGA design to a structured ASIC
device—samples are available in about eight weeks

Altera’s Quartus II software has built-in support for HardCopy Stratix
devices. The HardCopy design flow in Quartus II software offers the
following advantages:

■ Unified design flow from prototype to production
■ Performance estimation of the HardCopy Stratix device allows you

to design systems for maximum throughput
■ Easy-to-use and inexpensive design tools from a single vendor
■ An integrated design methodology that enables system-on-a-chip

designs

Altera Corporation 4–35
October 2007 Preliminary

Features

This section discusses the following areas:

■ How to design HardCopy Stratix and HardCopy APEX structured
ASICs using the Quartus II software

■ An explanation of what the HARDCOPY_FPGA_PROTOTYPE
devices are and how to target designs to these devices

■ Performance and power estimation of HardCopy Stratix devices
■ How to generate the HardCopy design database for submitting

HardCopy Stratix and HardCopy APEX designs to the HardCopy
Design Center

Features Beginning with version 4.2, the Quartus II software contains several
powerful features that facilitate design of HardCopy Stratix and
HardCopy APEX devices:

■ HARDCOPY_FPGA_PROTOTYPE Devices
These are virtual Stratix FPGA devices with features identical to
HardCopy Stratix devices. You must use these FPGA devices to
prototype your designs and verify the functionality in silicon.

■ HardCopy Timing Optimization Wizard
Using this feature, you can target your design to HardCopy Stratix
devices, providing an estimate of the design’s performance in a
HardCopy Stratix device.

■ HardCopy Stratix Floorplans and Timing Models
The Quartus II software supports post-migration HardCopy Stratix
device floorplans and timing models and facilitates design
optimization for design performance.

■ Placement Constraints
Location and LogicLock constraints are supported at the HardCopy
Stratix floorplan level to improve overall performance.

■ Improved Timing Estimation
Beginning with version 4.2, the Quartus II software determines
routing and associated buffer insertion for HardCopy Stratix
designs, and provides the Timing Analyzer with more accurate
information about the delays than was possible in previous versions
of the Quartus II software. The Quartus II Archive File automatically
receives buffer insertion information, which greatly enhances the
timing closure process in the back-end migration of your HardCopy
Stratix device.

4–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Design Assistant
This feature checks your design for compliance with all HardCopy
device design rules and establishes a seamless migration path in the
quickest time.

■ HardCopy Files Wizard
This wizard allows you to deliver to Altera the design database and
all the deliverables required for migration. This feature is used for
HardCopy Stratix and HardCopy APEX devices.

f The HardCopy Stratix and HardCopy APEX PowerPlay Early Power
Estimator is available on the Altera website at www.altera.com.

HARDCOPY_FPGA
_PROTOTYPE,
HardCopy Stratix
and Stratix
Devices

You must use the HARDCOPY_FPGA_PROTOTYPE virtual devices
available in the Quartus II software to target your designs to the actual
resources and package options available in the equivalent post-migration
HardCopy Stratix device. The programming file generated for the
HARDCOPY_FPGA_PROTOTYPE can be used in the corresponding
Stratix FPGA device.

The purpose of the HARDCOPY_FPGA_PROTOTYPE is to guarantee
seamless migration to HardCopy by making sure that your design only
uses resources in the FPGA that can be used in the HardCopy device after
migration. You can use the equivalent Stratix FPGAs to verify the
design’s functionality in-system, then generate the design database
necessary to migrate to a HardCopy device. This process ensures the
seamless migration of the design from a prototyping device to a
production device in high volume. It also minimizes risk, assures samples
in about eight weeks, and guarantees first-silicon success.

1 HARDCOPY_FPGA_PROTOTYPE devices are only available
for HardCopy Stratix devices and are not available for the
HardCopy II or HardCopy APEX device families.

Table 4–5 compares HARDCOPY_FPGA_PROTOTYPE devices, Stratix
devices, and HardCopy Stratix devices.

Table 4–5. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE to Stratix and HardCopy Stratix
Devices (Part 1 of 2)

Stratix Device HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device

FPGA Virtual FPGA Structured ASIC

FPGA Architecture identical to Stratix FPGA Architecture identical to Stratix FPGA

Altera Corporation 4–37
October 2007 Preliminary

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix and Stratix Devices

Table 4–6 lists the resources available in each of the HardCopy Stratix
devices.

For a given device, the number of available M-RAM blocks in
HardCopy Stratix devices is identical with the corresponding
HARDCOPY_FPGA_PROTOTYPE devices, but may be different from
the corresponding Stratix devices. Maintaining the identical resources
between HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix
devices facilitates seamless migration from the FPGA to the structured
ASIC device.

f For more information about HardCopy Stratix devices, refer to the
HardCopy Stratix Device Family Data Sheet section in volume 1 of the
HardCopy Series Handbook.

The three devices, Stratix FPGA, HARDCOPY_FPGA_PROTOTYPE, and
HardCopy device, are distinct devices in the Quartus II software. The
HARDCOPY_FPGA_PROTOTYPE programming files are used in the
Stratix FPGA for your design. The three devices are tied together with the
same netlist, thus a single SRAM Object File (.sof) can be used to achieve
the various goals at each stage. The same SRAM Object File is generated

FPGA Resources identical to HardCopy Stratix device M-RAM resources different than
Stratix FPGA in some devices

Ordered through
Altera part number

Cannot be ordered, use the Altera Stratix FPGA
part number

Ordered by Altera part number

Table 4–5. Qualitative Comparison of HARDCOPY_FPGA_PROTOTYPE to Stratix and HardCopy Stratix
Devices (Part 2 of 2)

Stratix Device HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device

Table 4–6. HardCopy Stratix Device Physical Resources

Device LEs ASIC Equivalent
Gates (K) (1)

M512
Blocks

M4K
Blocks

M-RAM
Blocks

DSP
Blocks PLLs Maximum

User I/O Pins

HC1S25F672 25,660 250 224 138 2 10 6 473

HC1S30F780 32,470 325 295 171 2 (2) 12 6 597

HC1S40F780 41,250 410 384 183 2 (2) 14 6 615

HC1S60F1020 57,120 570 574 292 6 18 12 773

HC1S80F1020 79,040 800 767 364 6 (2) 22 12 773

Notes to Table 4–6:
(1) Combinational and registered logic do not include DSP blocks, on-chip RAM, or PLLs.
(2) The M-RAM resources for these HardCopy devices differ from the corresponding Stratix FPGA.

4–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

in the HARDCOPY_FPGA_PROTOTYPE design, and is used to program
the Stratix FPGA device, the same way that it is used to generate the
HardCopy Stratix device, guaranteeing a seamless migration.

f For more information about the SRAM Object File and programming
Stratix FPGA devices, refer to the Programming and Configuration chapter
of the Introduction to Quartus II Manual.

HardCopy
Design Flow

Figure 4–17 shows a HardCopy design flow diagram. The design steps
are explained in detail in the following sections of this chapter. The
HardCopy Stratix design flow utilizes the HardCopy Timing
Optimization Wizard to automate the migration process into a one-step
process. The remainder of this section explains the tasks performed by
this automated process.

For a detailed description of the HardCopy Timing Optimization Wizard
and HardCopy Files Wizard, refer to “HardCopy Timing Optimization
Wizard” on page 4–42 and “Generating the HardCopy Design Database”
on page 4–53.

Altera Corporation 4–39
October 2007 Preliminary

HardCopy Design Flow

Figure 4–17. HardCopy Stratix and HardCopy APEX Design Flow Diagram

Notes for Figure 4–17:
(1) Migrate-Only Process: The displayed flow is completed manually.
(2) Two-Step Process: Migration and Compilation are done automatically (shaded area).
(3) One-Step Process: Full HardCopy Compilation. The entire process is completed automatically (shaded area).

The Design Flow Steps of the One-Step Process

The following sections describe each step of the full HardCopy
compilation (the One Step Process), as shown in Figure 4–17.

Compile the Design for an FPGA

This step compiles the design for a HARDCOPY_FPGA_PROTOTYPE
device and gives you the resource utilization and performance of the
FPGA.

Stratix APEX

Select Stratix
HARDCOPY_FPGA_PROTOTYPE

Device

Select APEX FPGA
Device Supported by

HardCopy APEX

Select FPGA Family

Mirgrate the
Compiled Project
Migrate Only (1)

Close the Quartus II
FPGA Project

Open the Quartus II
HardCopy Project

Migrate the
Compiled Project

Migrate the
Compiled Project

Two Step Process (2)

One Step Process (3)

CompileCompile Compile

Placement
Info for

HardCopy

Run HardCopy Files
Wizard (Quartus II

Archive File for
delivery to Altera)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Close the Quartus II
FPGA Project

Close the Quartus II
FPGA Project

Open the Quartus II
HardCopy Project

Open the Quartus II
HardCopy Project

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Start Quartus HardCopy Flow

4–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Migrate the Compiled Project

This step generates the Quartus II Project File (.qpf) and the other files
required for HardCopy implementation. The Quartus II software also
assigns the appropriate HardCopy Stratix device for the design
migration.

Close the Quartus FPGA Project

Because you must compile the project for a HardCopy Stratix device, you
must close the existing project which you have targeted your design to a
HARDCOPY_FPGA_PROTOTYPE device.

Open the Quartus HardCopy Project

Open the Quartus II project that you created in the “Migrate the
Compiled Project” step. The selected device is one of the devices from the
HardCopy Stratix family that was assigned during that step.

Compile for HardCopy Stratix Device

Compile the design for a HardCopy Stratix device. After successful
compilation, the Timing Analysis section of the compilation report shows
the performance of the design implemented in the HardCopy device.

How to Design
HardCopy Stratix
Devices

This section describes the process for designing for a HardCopy Stratix
device using the HARDCOPY_FPGA_PROTOTYPE as your initial
selected device. In order to use the HardCopy Timing Optimization
Wizard, you must first design with the
HARDCOPY_FPGA_PROTOTYPE in order for the design to migrate to a
HardCopy Stratix device.

To target a design to a HardCopy Stratix device in the Quartus II
software, follow these steps:

1. If you have not yet done so, create a new project or open an existing
project.

2. On the Assignments menu, click Settings. In the Category list, select
Device.

3. On the Device page, in the Family list, select Stratix. Select the
desired HARDCOPY_FPGA_PROTOTYPE device in the Available
Devices list (Figure 4–18).

Altera Corporation 4–41
October 2007 Preliminary

How to Design HardCopy Stratix Devices

Figure 4–18. Selecting a HARDCOPY_FPGA_PROTOTYPE Device

By choosing the HARDCOPY_FPGA_PROTOTYPE device, all the
design information, available resources, package option, and pin
assignments are constrained to guarantee a seamless migration of
your project to the HardCopy Stratix device. The netlist resulting
from the HARDCOPY_FPGA_PROTOTYPE device compilation
contains information about the electrical connectivity, resources
used, I/O placements, and the unused resources in the FPGA device.

4. On the Assignments menu, click Settings. In the Category list, select
HardCopy Settings and specify the input transition timing to be
modeled for both clock and data input pins. These transition times
are used in static timing analysis during back-end timing closure of
the HardCopy device.

5. Add constraints to your HARDCOPY_FPGA_PROTOTYPE device,
and on the Processing menu, click Start Compilation to compile the
design.

4–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

HardCopy Timing Optimization Wizard

After you have successfully compiled your design in the
HARDCOPY_FPGA_PROTOTYPE, you must migrate the design to the
HardCopy Stratix device to get a performance estimation of the
HardCopy Stratix device. This migration is required before submitting
the design to Altera for the HardCopy Stratix device implementation. To
perform the required migration, on the Project menu, point to HardCopy
Utilities and click HardCopy Timing Optimization Wizard.

At this point, you are presented with the following three choices to target
the designs to HardCopy Stratix devices (Figure 4–19):

■ Migration Only: You can select this option after compiling the
HARDCOPY_FPGA_PROTOTYPE project to migrate the project to a
HardCopy Stratix project.

You can now perform the following tasks manually to target the
design to a HardCopy Stratix device. Refer to“Performance
Estimation” on page 4–45 for additional information about how to
perform these tasks.
● Close the existing project
● Open the migrated HardCopy Stratix project
● Compile the HardCopy Stratix project for a HardCopy Stratix

device

■ Migration and Compilation: You can select this option after
compiling the project. This option results in the following actions:
● Migrating the project to a HardCopy Stratix project
● Opening the migrated HardCopy Stratix project and compiling

the project for a HardCopy Stratix device

■ Full HardCopy Compilation: Selecting this option results in the
following actions:
● Compiling the existing HARDCOPY_FPGA_PROTOTYPE

project
● Migrating the project to a HardCopy Stratix project
● Opening the migrated HardCopy Stratix project and compiling

it for a HardCopy Stratix device

Altera Corporation 4–43
October 2007 Preliminary

How to Design HardCopy Stratix Devices

Figure 4–19. HardCopy Timing Optimization Wizard Options

The main benefit of the HardCopy Timing Wizard’s three options is
flexibility of the conversion process automation. The first time you
migrate your HARDCOPY_FPGA_PROTOTYPE project to a HardCopy
Stratix device, you may want to use Migration Only, and then work on
the HardCopy Stratix project in the Quartus II software. As your
prototype FPGA project and HardCopy Stratix project constraints
stabilize and you have fewer changes, the Full HardCopy Compilation is
ideal for one-click compiling of your HARDCOPY_FPGA_PROTOTYPE
and HardCopy Stratix projects.

4–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

After selecting the wizard you want to run, the “HardCopy Timing
Optimization Wizard: Summary” page shows you details about the
settings you made in the Wizard, as shown in Figure 4–20.

Figure 4–20. HardCopy Timing Optimization Wizard Summary Page

When either of the second two options in Figure 4–19 are selected
(Migration and Compilation or Full HardCopy Compilation), designs
are targeted to HardCopy Stratix devices and optimized using the
HardCopy Stratix placement and timing analysis to estimate
performance. For details on the performance optimization and estimation
steps, refer to “Performance Estimation” on page 4–45. If the performance
requirement is not met, you can modify your RTL source, optimize the
FPGA design, and estimate timing until you reach timing closure.

Tcl Support for HardCopy Migration

To complement the GUI features for HardCopy migration, the Quartus II
software provides the following command-line executables (which
provide the tool command language (Tcl) shell to run the --flow Tcl
command) to migrate the HARDCOPY_FPGA_PROTOTYPE project to
HardCopy Stratix devices:

quartus_sh --flow migrate_to_hardcopy <project_name> [-c <revision>] r

This command migrates the project compiled for the
HARDCOPY_FPGA_PROTOTYPE device to a HardCopy Stratix device.

quartus_sh --flow hardcopy_full_compile <project_name> [-c <revision>] r

Altera Corporation 4–45
October 2007 Preliminary

Design Optimization and Performance Estimation

This command performs the following tasks:

■ Compiles the exsisting project for a
HARDCOPY_FPGA_PROTOTYPE device.

■ Migrates the project to a HardCopy Stratix project.
■ Opens the migrated HardCopy Stratix project and compiles it for a

HardCopy Stratix device.

Design
Optimization
and
Performance
Estimation

The HardCopy Timing Optimization Wizard creates the HardCopy
Stratix project in the Quartus II software, where you can perform design
optimization and performance estimation of your HardCopy Stratix
device.

Design Optimization

Beginning with version 4.2, the Quartus II software supports HardCopy
Stratix design optimization by providing floorplans for placement
optimization and HardCopy Stratix timing models. These features allows
you to refine placement of logic array blocks (LAB) and optimize the
HardCopy design further than the FPGA performance. Customized
routing and buffer insertion done in the Quartus II software are then used
to estimate the design’s performance in the migrated device. The
HardCopy device floorplan, routing, and timing estimates in the
Quartus II software reflect the actual placement of the design in the
HardCopy Stratix device, and can be used to see the available resources,
and the location of the resources in the actual device.

Performance Estimation

Figure 4–21 illustrates the design flow for estimating performance and
optimizing your design. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, migrate the design to the
HardCopy Stratix device, and get placement optimization and timing
estimation of your HardCopy Stratix device.

In the event that the required performance is not met, you can:

■ Work to improve LAB placement in the HardCopy Stratix project.

or

■ Go back to the HARDCOPY_FPGA_PROTOTYPE project and
optimize that design, modify your RTL source code, repeat the
migration to the HardCopy Stratix device, and perform the
optimization and timing estimation steps.

4–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

1 On average, HardCopy Stratix devices are 40% faster than the
equivalent -6 speed grade Stratix FPGA device. These
performance numbers are highly design dependent, and you
must obtain final performance numbers from Altera.

Figure 4–21. Obtaining a HardCopy Performance Estimation

To perform Timing Analysis for a HardCopy Stratix device, follow these
steps:

1. Open an existing project compiled for a
HARDCOPY_FPGA_PROTOYPE device.

2. On the Project menu, point to HardCopy Utilities and click
HardCopy Timing Optimization Wizard.

3. Select a destination directory for the migrated project and complete
the HardCopy Timing Optimization Wizard process.

On completion of the HardCopy Timing Optimization Wizard, the
destination directory created contains the Quartus II project file, and
all files required for HardCopy Stratix implementation. At this stage,
the design is copied from the HARDCOPY_FPGA_PROTOTYPE
project directory to a new directory to perform the timing analysis.
This two-project directory structure enables you to move back and
forth between the HARDCOPY_FPGA_PROTOTYPE design
database and the HardCopy Stratix design database. The Quartus II
software creates the <project name>_hardcopy_optimization
directory.

You do not have to select the HardCopy Stratix device while
performing performance estimation. When you run the HardCopy
Timing Optimization Wizard, the Quartus II software selects the
HardCopy Stratix device corresponding to the specified
HARDCOPY_FPGA_PROTOTYPE FPGA. Thus, the information
necessary for the HardCopy Stratix device is available from the
earlier HARDCOPY_FPGA_PROTOTYPE device selection.

No

YesTiming
Met?

Proven Netlist & New
Timing & Placement

Constraint

Proven Netlist,
Pin Assignments, & Timing

Constraints

Stratix FPGA HardCopy Placement
& Timing Analysis

HardCopy Stratix

Altera Corporation 4–47
October 2007 Preliminary

Design Optimization and Performance Estimation

All constraints related to the design are also transferred to the new
project directory. You can modify these constraints, if necessary, in
your optimized design environment to achieve the necessary timing
closure. However, if the design is optimized at the
HARDCOPY_FPGA_PROTOTYPE device level by modifying the
RTL code or the device constraints, you must migrate the project
with the HardCopy Timing Optimization Wizard.

c If an existing project directory is selected when the HardCopy
Timing Optimization Wizard is run, the existing information is
overwritten with the new compile results.

The project directory is the directory that you chose for the migrated
project. A snapshot of the files inside the
<project name>_hardcopy_optimization directory is shown in
Table 4–7.

Table 4–7. Directory Structure Generated by the HardCopy Timing
Optimization Wizard

<project name>_hardcopy_optimization\
<project name>.qsf
<project name>.qpf
<project name>.sof
<project name>.macr
<project name>.gclk
db\
hardcopy_fpga_prototype\

fpga_<project name>_violations.datasheet
fpga_<project name>_target.datasheet
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_hcpy.vo
fpga_<project name>_cpld.datasheet
fpga_<project name>_cksum.datasheet
fpga_<project name>.tan.rpt
fpga_<project name>.map.rpt
fpga_<project name>.map.atm
fpga_<project name>.fit.rpt
fpga_<project name>.db_info
fpga_<project name>.cmp.xml
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.atm
fpga_<project name>.asm.rpt
fpga_<project name>.qarlog
fpga_<project name>.qar
fpga_<project name>.qsf
fpga_<project name>.pin
fpga_<project name>.qpf

db_export\
<project name>.map.atm
<project name>.map.hdbx
<project name>.db_info

4–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

4. Open the migrated Quartus II project created in Step 3.

5. Perform a full compilation.

After successful compilation, the Timing Analysis section of the
Compilation Report shows the performance of the design.

1 Performance estimation is not supported for HardCopy APEX
devices in the Quartus II software. Your design can be
optimized by modifying the RTL code or the FPGA design and
the constraints. You should contact Altera to discuss any desired
performance improvements with HardCopy APEX devices.

Buffer Insertion

Beginning with version 4.2, the Quartus II software provides improved
HardCopy Stratix device timing closure and estimation, to more
accurately reflect the results expected after back-end migration. The
Quartus II software performs the necessary buffer insertion in your
HardCopy Stratix device during the Fitter process, and stores the location
of these buffers and necessary routing information in the Quartus II
Archive File. This buffer insertion improves the estimation of the
Quartus II Timing Analyzer for the HardCopy Stratix device.

Placement Constraints

Beginning with version 4.2, the Quartus II software supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 4–22 shows an iterative process to modify the placement
constraints until the best placement for the HardCopy Stratix device is
achieved.

Altera Corporation 4–49
October 2007 Preliminary

Location Constraints

Figure 4–22. Placement Constraints Flow for HardCopy Stratix Devices

Location
Constraints

This section provides information about HardCopy Stratix logic location
constraints.

LAB Assignments

Logic placement in HardCopy Stratix is limited to LAB placement and
optimization of the interconnecting signals between them. In a Stratix
FPGA, individual logic elements (LE) are placed by the Quartus II Fitter
into LABs. The HardCopy Stratix migration process requires that LAB
contents cannot change after the Timing Optimization Wizard task is
done. Therefore, you can only make LAB-level placement optimization
and location assignments after migrating the
HARDCOPY_FPGA_PROTOTYPE project to the HardCopy Stratix
device.

Migrate to HardCopy Stratix
Device Using the HardCopy
Timing Optimization Wizard

Add/Update
Placement Constraints

Add/Update
LogicLock Constraints

Compile for HardCopy
Stratix Device

Yes

No

Compile the Design for
HARDCOPY_FPGA_PROTOTYPE

Generate HardCopy Files

Performance
Met?

4–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The Quartus II software supports these LAB location constraints for
HardCopy Stratix devices. The entire contents of a LAB is moved to an
empty LAB when using LAB location assignments. If you want to move
the logic contents of LAB A to LAB B, the entire contents of LAB A are
moved to an empty LAB B. For example, the logic contents of
LAB_X33_Y65 can be moved to an empty LAB at LAB_X43_Y56 but
individual logic cell LC_X33_Y65_N1 can not be moved by itself in the
HardCopy Stratix Timing Closure Floorplan.

LogicLock Assignments

The LogicLock feature of the Quartus II software provides a block-based
design approach. Using this technique you can partition your design and
create each block of logic independently, optimize placement and area,
and integrate all blocks into the top level design.

f To learn more about this methodology, refer to the Quartus II Analyzing
and Optimizing Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

LogicLock constraints are supported when you migrate the project from
a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as “Size=Fixed” and
“Location=Locked” in the HARDCOPY_FPGA_PROTOTYPE project, it
is converted to have “Size=Auto” and “Location=Floating” as shown in
the following LogicLock examples. This modification is necessary
because the floorplan of a HardCopy Stratix device is different from that
of the Stratix device, and the assigned coordinates in the
HARDCOPY_FPGA_PROTOTYPE do not match the HardCopy Stratix
floorplan. If this modification did not occur, LogicLock assignments
would lead to incorrect placement in the Quartus II Fitter. Making the
regions auto-size and floating, maintains your LogicLock assignments,
allowing you to easily adjust the LogicLock regions as required and lock
their locations again after HardCopy Stratix placement.

Example 4–1 and Example 4–2 show two examples of LogicLock
assignments.

Example 4–1. LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE Quartus II Settings File
set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test
set_global_assignment -name LL_STATE LOCKED -entity risc8 -section_id test
set_global_assignment -name LL_AUTO_SIZE OFF -entity risc8 -section_id test

Altera Corporation 4–51
October 2007 Preliminary

Checking Designs for HardCopy Design Guidelines

Example 4–2. LogicLock Region Definition in the Migrated HardCopy Stratix Quartus II Settings File
set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test
set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test
set_global_assignment -name LL_STATE FLOATING -entity risc8 -section_id
test
set_global_assignment -name LL_AUTO_SIZE ON -entity risc8 -section_id test

Checking
Designs for
HardCopy
Design
Guidelines

When you develop a design with HardCopy migration in mind, you must
follow Altera-recommended design practices that ensure a
straightforward migration process or the design will not be able to be
implemented in a HardCopy device. Prior to starting migration of the
design to a HardCopy device, you must review the design and identify
and address all the design issues. Any design issues that have not been
addressed can jeopardize silicon success.

Altera-Recommended HDL Coding Guidelines

Designing for Altera PLD, FPGA, and HardCopy structured ASIC
devices requires certain specific design guidelines and hardware
description language (HDL) coding style recommendations be followed.

f For more information about design recommendations and HDL coding
styles, refer to the Design Guidelines section in volume 1 of the Quartus II
Handbook.

Design Assistant

The Quartus II software includes the Design Assistant feature to check
your design against the HardCopy design guidelines. Some of the design
rule checks performed by the Design Assistant include the following
rules:

■ Design should not contain combinational loops
■ Design should not contain delay chains
■ Design should not contain latches

To use the Design Assistant, you must run Analysis and Synthesis on the
design in the Quartus II software. Altera recommends that you run the
Design Assistant to check for compliance with the HardCopy design
guidelines early in the design process and after every compilation.

4–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Design Assistant Settings

You must select the design rules in the Design Assistant page prior to
running the design. On the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Design Assistant and turn
on Run Design Assistant during compilation. Altera recommends
enabling this feature to run the Design Assistant automatically during
compilation of your design.

Running Design Assistant

To run Design Assistant independently of other Quartus II features, on
the Processing menu, point to Start and click Start Design Assistant.

The Design Assistant automatically runs in the background of the
Quartus II software when the HardCopy Timing Optimization Wizard is
launched, and does not display the Design Assistant results immediately
to the display. The design is checked before the Quartus II software
migrates the design and creates a new project directory for performing
timing analysis.

Also, the Design Assistant runs automatically whenever you generate the
HardCopy design database with the HardCopy Files Wizard. The Design
Assistant report generated is used by the Altera HardCopy Design Center
to review your design.

Reports and Summary

The results of running the Design Assistant on your design are available
in the Design Assistant Results section of the Compilation Report. The
Design Assistant also generates the summary report in the
<project name>\hardcopy subdirectory of the project directory. This
report file is titled <project name>_violations.datasheet. Reports include
the settings, run summary, results summary, and details of the results
and messages. The Design Assistant report indicates the rule name,
severity of the violation, and the circuit path where any violation
occurred.

f To learn about the design rules and standard design practices to comply
with HardCopy design rules, refer to the Quartus II Help and the
HardCopy Series Design Guidelines chapter in volume 1 of the HardCopy
Series Handbook.

Altera Corporation 4–53
October 2007 Preliminary

Generating the HardCopy Design Database

Generating the
HardCopy
Design
Database

You can use the HardCopy Files Wizard to generate the complete set of
deliverables required for migrating the design to a HardCopy device in a
single click. The HardCopy Files Wizard asks questions related to the
design and archives your design, settings, results, and database files for
delivery to Altera. Your responses to the design details are stored in
<project name>_hardcopy_optimization\<project name>.hps.txt.

You can generate the archive of the HardCopy design database only after
compiling the design to a HardCopy Stratix device. The Quartus II
Archive File is generated at the same directory level as the targeted
project, either before or after optimization.

1 The Design Assistant automatically runs when the HardCopy
Files Wizard is started.

4–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Table 4–8 shows the archive directory structure and files collected by the
HardCopy Files Wizard.

After creating the migration database with the HardCopy
Timing Optimization Wizard, you must compile the design
before generating the project archive. You will receive an error
if you create the archive before compiling the design.

Table 4–8. HardCopy Stratix Design Files Collected by the HardCopy Files
Wizard

<project name>_hardcopy_optimization\
<project name>.flow.rpt
<project name>.qpf
<project name>.asm.rpt
<project name>.blf
<project name>.fit.rpt
<project name>.gclk
<project name>.hps.txt
<project name>.macr
<project name>.pin
<project name>.qsf
<project name>.sof
<project name>.tan.rpt

hardcopy\
<project name>.apc
<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo
<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

hardcopy_fpga_prototype\
fpga_<project name>.asm.rpt
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.xml
fpga_<project name>.db_info
fpga_<project name>.fit.rpt
fpga_<project name>.map.atm
fpga_<project name>.map.rpt
fpga_<project name>.pin
fpga_<project name>.qsf
fpga_<project name>.tan.rpt
fpga_<project name>_cksum.datasheet
fpga_<project name>_cpld.datasheet
fpga_<project name>_hcpy.vo
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_target.datasheet
fpga_<project name>_violations.datasheet

db_export\
<project name>.db_info
<project name>.map.atm
<project name>.map.hdbx

Altera Corporation 4–55
October 2007 Preliminary

Static Timing Analysis

Static Timing
Analysis

In addition to performing timing analysis, the Quartus II software also
provides all of the requisite netlists and Tcl scripts to perform static
timing analysis (STA) using the Synopsys STA tool, PrimeTime. The
following files, necessary for timing analysis with the PrimeTime tool, are
generated by the HardCopy Files Wizard:

■ <project name>_hcpy.vo—Verilog HDL output format
■ <project name>_hpcy_v.sdo—Standard Delay Format Output File
■ <project name>_pt_hcpy_v.tcl—Tcl script

These files are available in the <project name>\hardcopy directory.
PrimeTime libraries for the HardCopy Stratix and Stratix devices are
included with the Quartus II software.

1 Use the HardCopy Stratix libraries for PrimeTime to perform
STA during timing analysis of designs targeted to
HARDCOPY_FPGA_PROTOTYPE device.

f For more information about static timing analysis, refer to the Classic
Timing Analyzer and the Synopsys PrimeTime Support chapters in
volume 3 of the Quartus II Handbook.

Early Power
Estimation

You can use PowerPlay Early Power Estimation to estimate the amount
of power your HardCopy Stratix or HardCopy APEX device will
consume. This tool is available on the Altera website. Using the Early
Power Estimator requires some knowledge of your design resources and
specifications, including:

■ Target device and package
■ Clock networks used in the design
■ Resource usage for LEs, DSP blocks, PLL, and RAM blocks
■ High speed differential interfaces (HSDI), general I/O power

consumption requirements, and pin counts
■ Environmental and thermal conditions

HardCopy Stratix Early Power Estimation

The PowerPlay Early Power Estimator provides an initial estimate of ICC
for any HardCopy Stratix device based on typical conditions. This
calculation saves significant time and effort in gaining a quick
understanding of the power requirements for the device. No stimulus
vectors are necessary for power estimation, which is established by the
clock frequency and toggle rate in each clock domain.

4–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This calculation should only be used as an estimation of power, not as a
specification. The actual ICC should be verified during operation because
this estimate is sensitive to the actual logic in the device and the
environmental operating conditions.

f For more information about simulation-based power estimation, refer to
the Power Estimation and Analysis Section in volume 3 of the Quartus II
Handbook.

1 On average, HardCopy Stratix devices are expected to consume
40% less power than the equivalent FPGA.

HardCopy APEX Early Power Estimation

The PowerPlay Early Power Estimator can be run from the Altera website
in the device support section
(http://www.altera.com/support/devices/dvs-index.html). You cannot
open this feature in the Quartus II software.

With the HardCopy APEX PowerPlay Early Power Estimator, you can
estimate the power consumed by HardCopy APEX devices and design
systems with the appropriate power budget. Refer to the web page for
instructions on using the HardCopy APEX PowerPlay Early Power
Estimator.

1 HardCopy APEX devices are generally expected to consume
about 40% less power than the equivalent APEX 20KE or
APEX 20KC FPGA devices.

Tcl Support for
HardCopy Stratix

The Quartus II software also supports the HardCopy Stratix design flow
at the command prompt using Tcl scripts.

f For details on Quartus II support for Tcl scripting, refer to the
Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 4–57
October 2007 Preliminary

Targeting Designs to HardCopy APEX Devices

Targeting
Designs to
HardCopy APEX
Devices

Beginning with version 4.2, the Quartus II software supports targeting
designs to HardCopy APEX device families. After compiling your design
for one of the APEX 20KC or APEX 20KE FPGA devices supported by a
HardCopy APEX device, run the HardCopy Files Wizard to generate the
necessary set of files for HardCopy migration.

The HardCopy APEX device requires a different set of design files for
migration than HardCopy Stratix. Table 4–9 shows the files collected for
HardCopy APEX by the HardCopy Files Wizard.

Refer to “Generating the HardCopy Design Database” on page 4–53 for
information about generating the complete set of deliverables required
for migrating the design to a HardCopy APEX device. After you have
successfully run the HardCopy Files Wizard, you can submit your design
archive to Altera to implement your design in a HardCopy device. You
should contact Altera for more information about this process.

Conclusion The methodology for designing HardCopy Stratix devices using the
Quartus II software is the same as that for designing the Stratix FPGA
equivalent. You can use the familiar Quartus II software tools and design
flow, target designs to HardCopy Stratix devices, optimize designs for
higher performance and lower power consumption than the Stratix
FPGAs, and deliver the design database for migration to a HardCopy
Stratix device. Compatible APEX FPGA designs can migrate to
HardCopy APEX after compilation using the HardCopy Files Wizard to
archive the design files. Submit the files to the HardCopy Design Center
to complete the back-end migration.

Table 4–9. HardCopy APEX Files Collected by the HardCopy Files Wizard

<project name>.tan.rpt
<project name>.asm.rpt
<project name>.fit.rpt
<project name>.hps.txt
<project name>.map.rpt
<project name>.pin
<project name>.sof
<project name>.qsf
<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo
<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

4–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Referenced
Documents

This chapter references the following documents:

■ AN432: Using Different PLL Settings Between Stratix II and HardCopy II
Devices

■ Back-End Design Flow for HardCopy Series Devices chapter in volume 1 of
the HardCopy Series Device Handbook

■ Cadence Encounter Conformal Support chapter in volume 3 of the
Quartus II Handbook

■ Classic Timing Analyzer chapter in volume 3 of the Quartus II Handbook
■ Description, Architecture and Features chapter in the HardCopy II Device

Family Data Sheet in the HardCopy Series Handbook
■ Design Guidelines for HardCopy Series Devices chapter of the HardCopy

Series Handbook
■ Design Guidelines Section in volume 1 of the Quartus II Handbook
■ HardCopy Series Handbook
■ HardCopy Stratix Device Family Data Sheet section in volume 1 of the

HardCopy Series Handbook
■ Introduction to Quartus II Manual
■ Introduction to HardCopy II Devices chapter in the HardCopy II Device

Family Data Sheet in the HardCopy Series Handbook
■ Power Estimation and Analysis section in volume 3 of the Quartus II

Handbook
■ Programming and Configuration chapter of the Introduction to Quartus II

Manual
■ Quartus II Analyzing and Optimizing Design Floorplan chapter in

volume 2 of the Quartus II Handbook
■ Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II PowerPlay Power Analysis chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Synopsys PrimeTime Support chapter in volume 3 of the Quartus II

Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/an/AN432.pdf
http://www.altera.com/literature/hb/hrd/hc_h51015.pdf
http://www.altera.com/literature/hb/hrd/hc_h51016.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53011.pdf
http://www.altera.com/literature/hb/hrd/hc_h51019.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1_05.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_02.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53005.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Altera Corporation 4–59
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 4–10 shows the revision history for this chapter.

Table 4–10. Document Revision History (Part 1 of 2)

Date and Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 4–58. Updated for Quartus II
version 7.2

May 2007
v7.1.0

● Updated Timing Settings.
● Updated TimeQuest.
● Added Setting Up the TimeQuest Timing Analzyer.
● Added Constraints for Clock Effect Characteristics.
● Changed Performing ECOs with Change Manager and

Chip Planner title to Performing ECOs with Quartus II
Engineering Change Management with the Chip
Planner.

● Updated Migrating Changes that must be Implemented
Differently.

● Added Referenced Documents.

Updated for Quartus II
version 7.1

March 2007 v7.0.0 Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November 2006
v6.1.0

Minor updates for the Quartus II software version 6.1
● Added Performing ECOs with Change Manager and

Chip Planner and Overall Migration Flow sections.
● Updated Quartus II Software Features Supported for

HardCopy II Designs section.

A medium update to the
chapter, due to changes in
the Quartus II software
version 6.1 release; most
changes were in the
Performing ECOs with
Change Manager and Chip
Planner and Overall
Migration Flow sections.

May 2006 v6.0.0 Minor updates for the Quartus II software version 6.0. —

October 2005 v5.1.0 Updated for the Quartus II software version 5.1. —

May 2005 v5.0.0 ● Chapter 3 was formerly Chapter 2.
● Updated for consistency with the Quartus II Support for

HardCopy II Devices and Quartus II Support for
HardCopy Stratix Devices chapters in the HardCopy
Series Handbook.

—

Jan. 2005 v2.1 ● Added HardCopy II Device Material. —

Dec. 2004 v2.1 ● Chapter 2 was formerly Chapter 3.
● Updates to tables, figures.
● New functionality for Quartus II software 4.2

—

4–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

June 2004 v2.0 ● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

Feb. 2004 v1.0 Initial release. —

Table 4–10. Document Revision History (Part 2 of 2)

Date and Document
Version Changes Made Summary of Changes

Altera Corporation Section II–i
Preliminary

Section II. Design
Guidelines

Today's programmable logic device (PLD) applications have reached the
complexity and performance requirements of ASICs. In the development
of such complex system designs, good design practices have an
enormous impact on your device's timing performance, logic utilization,
and system reliability. Designs coded optimally will behave in a
predictable and reliable manner, even when re-targeted to different
device families or speed grades. This section presents design and coding
style recommendations for Altera® devices.

This section includes the following chapters:

■ Chapter 5, Design Recommendations for Altera Devices and the
Quartus II Design Assistant

■ Chapter 6, Recommended HDL Coding Styles

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation
Preliminary

Design Guidelines Quartus II Handbook, Volume 1

Altera Corporation 5–1
October 2007 Preliminary

5. Design Recommendations
for Altera Devices and the

Quartus II Design Assistant

Introduction Current FPGA applications have reached the complexity and
performance requirements of ASICs. In the development of such complex
system designs, good design practices have an enormous impact on your
device’s timing performance, logic utilization, and system reliability.
Well-coded designs behave in a predictable and reliable manner even
when re-targeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for prototyping and production.

For optimal performance, reliability, and faster time-to-market when
designing with Altera® devices, you should adhere to the following
guidelines:

■ Understand the impact of synchronous design practices
■ Follow recommended design techniques including hierarchical

design partitioning
■ Take advantage of the architectural features in the targeted device

This chapter presents design recommendations in these areas, and
describes the Quartus® II Design Assistant that can help you check your
design for violations of design recommendations.

This chapter contains the following sections:

■ “Synchronous FPGA Design Practices” on page 5–2
■ “Design Guidelines” on page 5–4
■ “Checking Design Violations Using the Design Assistant” on

page 5–15
■ “Targeting Clock and Register-Control Architectural Features” on

page 5–44

f For specific HDL coding examples and recommendations, including
coding guidelines for targeting dedicated device hardware, such as
memory and DSP blocks, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook. For information about
migrating designs to HardCopy devices, refer to the Design Guidelines for
HardCopy Series Devices chapter in the HardCopy Series Handbook. For
guidelines on partitioning a hierarchical design for incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

QII51006-7.2.0

5–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Synchronous
FPGA Design
Practices

The first step in a good design methodology is to understand the
implications of your design practices and techniques. This section
outlines some of the benefits of optimal synchronous design practices and
the hazards involved in other techniques. Good synchronous design
practices can help you meet your design goals consistently. Problems
with other design techniques can include reliance on propagation delays
in a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all
of the registers’ timing requirements are met, a synchronous design
behaves in a predictable and reliable manner for all process, voltage, and
temperature (PVT) conditions. You can easily target synchronous designs
to different device families or speed grades. In addition, synchronous
design practices help ensure successful migration if you plan to migrate
your design to a high-volume solution such as Altera HardCopy devices,
or if you are prototyping an ASIC.

Fundamentals of Synchronous Design

In a synchronous design, everything is related to the clock signal. On
every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active
clock edge, the outputs of combinational logic feeding the data inputs of
registers change values. This change triggers a period of instability due to
propagation delays through the logic as the signals go through a number
of transitions and finally settle to new values. Changes happening on data
inputs of registers do not affect the values of their outputs until the next
active clock edge.

Because the internal circuitry of registers isolates data outputs from
inputs, instability in the combinational logic does not affect the operation
of the design as long as the following timing requirements are met:

■ Before an active clock edge, the data input has been stable for at least
the setup time of the register

■ After an active clock edge, the data input remains stable for at least
the hold time of the register

When you specify all of your clock frequencies and other timing
requirements, the Quartus II Classic Timing Analyzer issues actual
hardware requirements for the setup times (tSU) and hold times (tH) for
every pin of your design. By meeting these external pin requirements and
following synchronous design techniques, you ensure that you satisfy the
setup and hold times for all registers within the Altera device.

Altera Corporation 5–3
October 2007 Preliminary

Synchronous FPGA Design Practices

1 To meet setup and hold time requirements on all input pins, any
inputs to combinational logic that feeds a register should have a
synchronous relationship with the clock of the register. If signals
are asynchronous, you can register the signals at the input of the
Altera device to help prevent a violation of the required setup
and hold times.

When the setup or hold time of a register is violated, the output can be set
to an intermediate voltage level between the high and low levels, called a
metastable state. In this unstable state, small perturbations like noise in
power rails can cause the register to assume either the high or low voltage
level, resulting in an unpredictable valid state. Various undesirable effects
can occur, including increased propagation delays and incorrect output
states. In some cases, the output can even oscillate between the two valid
states for a relatively long period of time.

f For details about timing requirements and analysis in the Quartus II
software, refer to the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II
Handbook.

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as
ripple counters or pulse generators in programmable logic device (PLD)
designs, enabling them to take “short cuts” to save device resources.
Asynchronous design techniques have inherent problems such as relying
on propagation delays in a device, which can result in incomplete timing
constraints and possible glitches and spikes. Because current FPGAs
provide many high-performance logic gates, registers, and memory,
resource and performance trade-offs have changed. Now it is more
important to focus on design practices that help you meet design goals
consistently than to save device resources using problematic
asynchronous techniques.

Some asynchronous design structures rely on the relative propagation
delays of signals to function correctly. In these cases, race conditions can
arise where the order of signal changes can affect the output of the logic.
PLD designs can have varying timing delays, depending on how the
design is placed and routed in the device with each compilation.
Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices
become faster because of device process improvements, the delays in an
asynchronous design may decrease, resulting in a design that does not
function as expected. Specific examples are provided in “Design

5–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Guidelines” on page 5–4. Relying on a particular delay also makes
asynchronous designs very difficult to migrate to different architectures,
devices, or speed grades.

The timing of asynchronous design structures is often difficult or
impossible to model with timing assignments and constraints. If you do
not have complete or accurate timing constraints, the timing-driven
algorithms used by your synthesis and place-and-route tools may not be
able to perform the best optimizations, and reported results may not be
complete.

Some asynchronous design structures can generate harmful glitches,
which are pulses that are very short compared with clock periods. Most
glitches are generated by combinational logic. When the inputs of
combinational logic change, the outputs exhibit a number of glitches
before they settle to their new values. These glitches can propagate
through the combinational logic, leading to incorrect values on the
outputs in asynchronous designs. In a synchronous design, glitches on
the data inputs of registers are normal events that have no negative
consequences because the data is not processed until the clock edge.

Design
Guidelines

When designing with HDL code, it is important to understand how a
synthesis tool interprets different HDL design techniques and what
results to expect. Your design techniques can affect logic utilization and
timing performance, as well as the design’s reliability. This section
discusses some basic design techniques that ensure optimal synthesis
results for designs targeted to Altera devices while avoiding several
common causes of unreliability and instability. Design your
combinational logic carefully to avoid potential problems and pay
attention to your clocking schemes so you can maintain synchronous
functionality and avoid timing problems.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend
only on the current state of the inputs. In Altera FPGAs, these functions
are implemented in the look-up tables (LUTs) of the device’s architecture,
using either logic elements (LEs) or adaptive logic modules (ALMs). For
some cases in which combinational logic feeds registers, the register
control signals can also be used to implement part of the logic function to
save LUT resources. By following the recommendations in this section,
you can improve the reliability of your combinational design.

Altera Corporation 5–5
October 2007 Preliminary

Design Guidelines

Combinational Loops

Combinational loops are among the most common causes of instability
and unreliability in digital designs, and should be avoided whenever
possible. In a synchronous design, feedback loops should include
registers. Combinational loops generally violate synchronous design
principles by establishing a direct feedback loop that contains no
registers. For example, a combinational loop occurs when the left-hand
side of an arithmetic expression also appears on the right-hand side in
HDL code. A combinational loop also occurs when you feed back the
output of a register to an asynchronous pin of the same register through
combinational logic, as shown in Figure 5–1.

Figure 5–1. Combinational Loop through Asynchronous Control Pin

1 Use recovery and removal analysis to perform timing analysis
on asynchronous ports such as clear or reset in the
Quartus II software. On the Assignments menu, click Settings.
In the Settings dialog box, under Timing Analysis Settings,
select Classic Timing Analyzer Settings. On the Classic Timing
Analyzer Settings page, click More Settings, and turn on the
Enable Recovery/Removal Analysis option.

Combinational loops are inherently high-risk design structures for the
following reasons:

■ Combinational loop behavior generally depends on the relative
propagation delays through the logic involved in the loop. As
discussed, propagation delays can change, which means the
behavior of the loop is unpredictable.

■ Combinational loops can cause endless computation loops in many
design tools. Most tools break open combinational loops to process
the design. The various tools used in the design flow may open a
given loop in a different manner, processing it in a way that is
inconsistent with the original design intent.

Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned. Latches can also be inferred from HDL code
when you did not intend to use a latch. FPGA architectures are based on

D Q

CLRN

Logic

5–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

registers. In FPGA devices, latches actually use more logic resources and
lead to lower performance than registers. This is different from other
device architectures where latches may add less delay and can be
implemented with less silicon area than registers.

Latches can cause various difficulties in the design. Although latches are
memory elements, they are fundamentally different from registers. When
a latch is in feed-through or transparent mode, there is a direct path
between the data input and the output. Glitches on the data input can
pass through the output. The timing for latches is also inherently
ambiguous. For example, when analyzing a design with a D-latch, the
software cannot determine whether you intended to transfer data to the
output on the leading edge of the clock or on the trailing edge. In many
cases, only the original designer knows the full intent of the design;
therefore, another designer cannot easily modify the design or reuse the
code.

In some cases, your synthesis tool can infer a latch that does not exhibit
problems with glitches. Inferring the Altera lpm_latch function ensures
that the implementation is glitch-free in Altera architectures. Some third-
party synthesis tools list the number of lpm_latch functions that are
inferred. When using Quartus II integrated synthesis, these latches are
reported in the User-Specified and Inferred Latches section of the
Compilation Report. If a latch or combinational loop in your design is not
listed in this report, it means that it was not inferred as a “safe” latch by
the software and is not considered glitch-free.

However, even glitch-free latches may not be analyzed completely during
timing analysis. The Analyze latches as synchronous elements option in
the Quartus II software allows you to treat latches as start and end points
for timing analysis (a typical analysis performed in FPGA design tools).
With this option turned on, latches are analyzed as registers (with an
inverted clock). The Quartus II software does not perform
cycle-borrowing analysis, such as that performed by third-party timing
analysis tools such as Synopsys PrimeTime.

In addition, latches have a limited support in formal verification tools.
Therefore, it is especially important to ensure that you do not use latches
when using formal verification.

Altera recommends avoiding using latches to ensure that you can
completely analyze and verify the timing performance and reliability of
your design.

Altera Corporation 5–7
October 2007 Preliminary

Design Guidelines

Delay Chains

Delay chains occur when two or more consecutive nodes with a single
fan-in and a single fan-out are used to cause delay. Inverters are often
chained together to add delay. Delay chains are sometimes used to
resolve race conditions created by other asynchronous design practices.

As described earlier in this chapter, delays in PLD designs can change
with each place-and-route cycle. Effects such as rise/fall time differences
and on-chip variation mean that delay chains, especially those placed on
clock paths, can cause significant problems in your design. See “Hazards
of Asynchronous Design” on page 5–3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to
prevent these kind of problems.

In some ASIC designs, delays are used for buffering signals as they are
routed around the device. This functionality is not needed in FPGA
devices because the routing structure provides buffers throughout the
device.

Pulse Generators and Multivibrators

Delay chains are sometimes used to generate either one pulse (pulse
generators) or a series of pulses (multivibrators). There are two common
methods for pulse generation, as shown in Figure 5–2. These techniques
are purely asynchronous and should be avoided.

Figure 5–2. Asynchronous Pulse Generators

In “Using an AND Gate” (Figure 5–2), a trigger signal feeds both inputs
of a 2-input AND gate, but the design inverts or adds a delay chain to one
of the inputs. The width of the pulse depends on the relative delays of the
path that feeds the gate directly and the one that goes through the delay.

D Q

Q

Pulse

PulseTrigger

Trigger

Clock

CLRN

Using an AND Gate

Using a Register

5–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

This is the same mechanism responsible for the generation of glitches in
combinational logic following a change of input values. This technique
artificially increases the width of the glitch by using a delay chain.

In “Using a Register” (Figure 5–2), a register’s output drives the same
register’s asynchronous reset signal through a delay chain. The register
resets itself asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse
width can only be determined after placement and routing, when routing
and propagation delays are known. You cannot reliably determine the
width of the pulse when creating HDL code, and it cannot be set by EDA
tools. The pulse may not be wide enough for the application under all
PVT conditions, and the pulse width changes if you change to a different
device. In addition, static timing analysis cannot be used to verify the
pulse width, so verification is very difficult.

Multivibrators use a glitch generator to create pulses, together with a
combinational loop that turns the circuit into an oscillator. This creates
additional problems because of the number of pulses involved. In
addition, when the structures generate multiple pulses, they also create a
new artificial clock in the design that has to be analyzed by the design
tools.

When you must use a pulse generator, use synchronous techniques, as
shown in Figure 5–3.

Figure 5–3. Recommended Pulse-Generation Technique

In this design, the pulse width is always equal to the clock period. This
pulse generator is predictable, can be verified with timing analysis, and is
easily moved to other architectures, devices, or speed grades.

D QTrigger Signal

Clock

Pulse

D Q

Altera Corporation 5–9
October 2007 Preliminary

Design Guidelines

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your
design’s performance and reliability. Avoid using internally generated
clocks wherever possible because they can cause functional and timing
problems in the design. Clocks generated with combinational logic can
introduce glitches that create functional problems, and the delay inherent
in combinational logic can lead to timing problems. The following
sections provide some specific examples and recommendations for
avoiding these problems.

1 Specify all clock relationships in the Quartus II software to allow
for the best timing-driven optimizations during fitting and to
allow correct timing analysis. Use clock setting assignments on
any derived or internal clocks to specify their relationship to the
base clock.

Altera recommends using global device-wide, low-skew
dedicated routing for all internally-generated clocks, instead of
routing clocks on regular routing lines. See “Clock Network
Resources” on page 5–44 for a detailed explanation.

Avoid data transfers between different clocks wherever
possible. If a data transfer between different clocks is needed,
use FIFO circuitry. You can use the clock uncertainty features in
the Quartus II software to compensate for the variable delays
between clock domains. Consider setting a Clock Setup
Uncertainty and Clock Hold Uncertainty value of 10% to 15% of
the clock delay.

Internally Generated Clocks

If you use the output from combinational logic as a clock signal or as an
asynchronous reset signal, you should expect to see glitches in your
design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on
the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s
minimum pulse width requirements. Setup and hold times may also be
violated if the data input of the register is changing when a glitch reaches
the clock input. Even if the design does not violate timing requirements,
the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

Because of these problems, always register the output of combinational
logic before you use it as a clock signal. See Figure 5–4.

5–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 5–4. Recommended Clock-Generation Technique

Registering the output of combinational logic ensures that the glitches
generated by the combinational logic are blocked at the data input of the
register.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most
Altera FPGAs provide dedicated phase-locked loop (PLL) circuitry for
clock division. Using dedicated PLL circuitry can help you to avoid many
of the problems that can be introduced by asynchronous clock division
logic.

When you must use logic to divide a master clock, always use
synchronous counters or state machines. In addition, create your design
so that registers always directly generate divided clock signals, as
described in “Internally Generated Clocks” on page 5–9, and route the
clock on global clock resources. To avoid glitches, you should not decode
the outputs of a counter or a state machine to generate clock signals.

Ripple Counters

To simplify verification, Altera recommends avoiding ripple counters in
your design. In the past, FPGA designers implemented ripple counters to
divide clocks by a power of two because the counters are easy to design
and may use fewer gates than their synchronous counterparts. Ripple
counters use cascaded registers, in which the output pin of each register
feeds the clock pin of the register in the next stage. This cascading can
cause problems because the counter creates a ripple clock at each stage.
These ripple clocks have to be handled properly during timing analysis,
which can be difficult and may require you to make complicated timing
assignments in your synthesis and place-and-route tools.

D Q
Internally Generated Clock

Routed on Global Clock Resource

D Q D Q

D Q
Clock

Generation
Logic

Altera Corporation 5–11
October 2007 Preliminary

Design Guidelines

Ripple clock structures are often used to make ripple counters out of the
smallest amount of logic possible. However, in all Altera devices
supported by the Quartus II software, using a ripple clock structure to
reduce the amount of logic used for a counter is unnecessary because the
device allows you to construct a counter using one logic element per
counter bit. Altera recommends that you avoid using ripple counters
under any circumstances.

Multiplexed Clocks

Clock multiplexing can be used to operate the same logic function with
different clock sources. In these designs, multiplexing selects a clock
source, as in Figure 5–5. For example, telecommunications applications
that deal with multiple frequency standards often use multiplexed clocks.

Figure 5–5. Multiplexing Logic and Clock Sources

Adding multiplexing logic to the clock signal can create the problems
addressed in the previous sections, but requirements for multiplexed
clocks vary widely depending on the application. Clock multiplexing is
acceptable when the clock signal uses global clock routing resources, if
the following criteria are met:

■ The clock multiplexing logic does not change after initial
configuration

■ The design uses multiplexing logic to select a clock for testing
purposes

■ Registers are always reset when the clock switches
■ A temporarily incorrect response following clock switching has no

negative consequences

Clock 1

Multiplexed Clock Routed
on Global Clock Resource

Clock 2

Select Signal

D Q

D Q

D Q

5–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If the design switches clocks in real time with no reset signal, and your
design cannot tolerate a temporarily incorrect response, you must use a
synchronous design so that there are no timing violations on the registers,
no glitches on clock signals, and no race conditions or other logical
problems. By default, the Quartus II software optimizes and analyzes all
possible paths through the multiplexer and between both internal clocks
that may come from the multiplexer. This may lead to more restrictive
analysis than required if the multiplexer is always selecting one particular
clock. If you do not need the more complete analysis, you can assign the
output of the multiplexer as a base clock in the Quartus II software, so
that all register-register paths are analyzed using that clock.

Altera recommends using dedicated hardware to perform clock
multiplexing when it is available, instead of using multiplexing logic. For
example, you can use the Clock Switchover feature or the Clock Control
Block available in certain Altera devices. These dedicated hardware
blocks ensure that you use global low-skew routing lines and avoid any
possible hold time problems on the device due to logic delay on the clock
line.

f Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that
controls some sort of gating circuitry, as shown in Figure 5–6. When a
clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 5–6. Gated Clock

You can use gated clocks to reduce power consumption in some device
architectures by effectively shutting down portions of a digital circuit
when they are not in use. When a clock is gated, both the clock network
and the registers driven by it stop toggling, thereby eliminating their
contributions to power consumption. However, gated clocks are not part
of a synchronous scheme and therefore can significantly increase the

Clock

Gated Clock

D Q D Q

Gating Signal

Altera Corporation 5–13
October 2007 Preliminary

Design Guidelines

effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These
clocks are also sensitive to glitches, which can cause design failure.

Altera recommends that you use dedicated hardware to perform clock
gating rather than using multiplexing logic, if it is available in your target
device. For example, you can use the clock control block in newer Altera
devices to shut down an entire clock network. Dedicated hardware blocks
ensure that you use global routing with low skew and avoid any possible
hold time problems on the device due to logic delay on the clock line.

f Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

From a functional point of view, you can shut down a clock domain in a
purely synchronous manner using a synchronous clock enable signal.
However, when using a synchronous clock enable scheme, the clock
network continues toggling. This practice does not reduce power
consumption as much as gating the clock at the source does. In most
cases, you should use a synchronous scheme such as those described in
“Synchronous Clock Enables”. For improved power reduction when
gating clocks with logic, refer to “Recommended Clock-Gating Methods”
on page 5–14.

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous
clock enable signal. FPGAs efficiently support clock enable signals
because there is a dedicated clock enable signal available on all device
registers. This scheme does not reduce power consumption as much as
gating the clock at the source because the clock network keeps toggling,
but it will perform the same function as a gated clock by disabling a set of
registers. Insert a multiplexer in front of the data input of every register
to either load new data or copy the output of the register (Figure 5–7).

Figure 5–7. Synchronous Clock Enable

D Q

Enable

Data

5–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Recommended Clock-Gating Methods

Use gated clocks only when your target application requires power
reduction and when gated clocks are able to provide the required
reduction in your device architecture. If you must use clocks gated by
logic, implement these clocks using the robust clock-gating technique
shown in Figure 5–8 and ensure that the gated clock signal uses dedicated
global clock routing.

You can gate a clock signal at the source of the clock network, at each
register, or somewhere in between. Because the clock network contributes
to switching power consumption, gate the clock at the source whenever
possible, so you can shut down the entire clock network instead of gating
it further along the clock network at the registers.

Figure 5–8. Recommended Clock Gating Technique

In the technique shown in Figure 5–8, a register generates the enable
signal to ensure that the signal is free of glitches and spikes. The register
that generates the enable signal is triggered on the inactive edge of the
clock to be gated (use the falling edge when gating a clock that is active
on the rising edge, as shown in Figure 5–8). Using this technique, only
one input of the gate that turns the clock on and off changes at a time. This
prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the
falling edge, use an OR gate to gate the clock and register the enable
command with a positive edge-triggered register.

When using this technique, pay attention to the duty cycle of the clock
and the delay through the logic that generates the enable signal, because
the enable signal must be generated in half the clock cycle. This situation
might cause problems if the logic that generates the enable command is
particularly complex, or if the duty cycle of the clock is severely
unbalanced. However, careful management of the duty cycle and logic
delay may be an acceptable solution when compared with problems
created by other methods of gating clocks.

D Q

Clock

Enable
Gated Clock Routed on
Global Clock Resources

D Q D Q

Gating Signal

Altera Corporation 5–15
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Ensure that you apply a clock setting to the gated clock in the Quartus II
software. As shown in Figure 5–8, apply a clock setting to the output of
the AND gate. Otherwise, the timing analyzer may analyze the circuit
using the clock path through the register as the longest clock path and the
path that skips the register as the shortest clock path, resulting in artificial
clock skew.

Checking Design
Violations Using
the Design
Assistant

To improve the reliability, timing performance, and logic utilization of
your design, practicing good design methodology and understanding
how to avoid design rule violations are important. The Quartus II
software provides a tool that automatically checks for design rule
violations, and tells you where they occur.

The Design Assistant is a design rule checking tool that allows you to
check for design issues early in the design flow. The Design Assistant
checks your design for adherence to Altera-recommended design
guidelines. You can specify which rules you want the Design Assistant to
apply to your design. This is useful if you know that your design violates
particular rules that are not critical, so you want to allow these rule
violations. The Design Assistant generates design violation reports with
clear details about each violation, based on the settings you specified.

The first parts in this section provide an introduction to the Quartus II
design flow with Design Assistant, message severity levels, and an
explanation about how to set up the Design Assistant. The last parts of the
section describe the design rules and the reports generated by the Design
Assistant.

Quartus II Design Flow with the Design Assistant

You can run the Design Assistant after Analysis and Elaboration,
Analysis and Synthesis, fitting, or a full compilation. To run the Design
Assistant, on the Processing menu, point to Start, and click Start Design
Assistant.

To set the Design Assistant to run automatically during compilation, on
the Assignments menu, click Settings. In the Category list, select Design
Assistant. Turn on Run Design Assistant during compilation. This
enables the Design Assistant to perform a post-fitting netlist analysis of
your design. The default is to apply all of the rules to your project. But if
there are some rules that are unimportant to your design, you can turn off
the rules that you do not want the Design Assistant to use. Refer to “The
Design Assistant Settings Page” on page 5–17.

5–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 5–9 shows the Quartus II software design flow with the Design
Assistant.

Figure 5–9. Quartus II Design Flow with the Design Assistant

The Design Assistant analyzes your design netlist at different stages of
the compilation flow and may yield different warnings or errors, even
though the netlists are functionally the same. Your pre-synthesis,
post-synthesis, and post-fitting netlists may be different due to
optimizations performed by the Quartus II software. For example, a
warning message in a pre-synthesis netlist may be removed after the
netlist has been synthesized into a post-synthesis or post-fitting netlist.

When you run the Design Assistant after running a full compilation or
fitting, the Design Assistant performs a post-fitting analysis on the
design. When you start the Design Assistant after performing Analysis
and Synthesis, the Design Assistant performs post-synthesis analysis on
the design. When you start the Design Assistant after performing
Analysis and Elaboration, the Design Assistant performs a pre-synthesis
analysis on the design. You can also perform pre-synthesis analysis with
the Design Assistant using the command-line. You can use -rtl option
with the quartus_drc executable, as shown in the following example:

quartus_drc <project_name> --rtl=on r

Analysis &
Elaboration

Synthesis
(Logic Synthesis &

Technology Mapping

Fitter

Timing Analysis

Design Files

Design Assistant

Pre-Synthesis
Netlist

Post-Synthesis
Netlist

Post-Fitting
Netlist

Rule Violation
Report

Altera Corporation 5–17
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

The Design Assistant generates warning messages when your design
violates design rules, and generates information messages to provide
information regarding the rules. The Design Assistant supports all Altera
devices supported by the Quartus II software.

The Design Assistant Settings Page

To apply design rules in the Design Assistant, on the Assignments menu,
click Settings. In the Settings dialog box, in the Category list, select
Design Assistant. In the Design Assistant page, turn on the rules that
you want the Design Assistant to apply during analysis. By default, all of
the rules except the finite state machine rules are turned on.

In the Timing Closure category, if Nodes with more than specified
number of fan-outs or Top nodes with highest fan-out are turned on,
you can use the High Fan-Out Net Settings dialog box to specify the
number of fan-out a node must have to be reported by the Design
Assistant. To open the High Fan-Out Net Settings dialog box, in the
Design Assistant page, in the Timing Closure category, select Nodes
with more than specified number of fan-outs or Top nodes with highest
fan-out. Click High Fan-Out Net Settings.

In the Clock category, if you turn on Clock signal should be a global
signal, you can use the Global Clock Threshold Settings dialog box to
specify the number of nodes with the highest fan-out which you want the
Design Assistant to report. To open the Global Clock Threshold Settings
dialog box, on the Design Assistant page, in the Clock category, select
Clock signal should be a global signal. Click Global Clock Threshold
Settings.

To specify the maximum number of messages reported by the Design
Assistant, on the Design Assistant page, click Report Settings, and enter
the maximum number of violation messages and detail messages to be
reported.

5–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Message Severity Levels

The Design Assistant classifies messages and rules using the four severity
levels described in Table 5–1. Following Altera guidelines is very
important for designs that are migrated to the HardCopy series of
devices, therefore the table highlights the impact of a rule violation on a
HardCopy migration. Designs that adhere to Altera recommended
design guidelines do not produce any messages with critical, high, or
medium level of severity.

Design Assistant Rules

This section describes the Design Assistant rules and details some of the
reasons that Altera recommends following certain guidelines. Many of
the Design Assistant rules enforce the design guidelines discussed in
previous sections of this chapter.

Every rule is represented by a rule ID and has its own severity level. The
rule ID is normally used in Tcl commands for rule suppression. The letter
in each rule ID corresponds to the group of rules based on the following
scheme.

■ A—Asynchronous design structure rules
■ C—Clock rules
■ R—Reset rules
■ S—Signal race rules
■ T—Timing closure rules
■ D—Asynchronous clock domain rules
■ H—HardCopy rules
■ M—Finite state machine rules

Table 5–1. Design Assistant Message Severity Levels

Severity Level Explanation

Critical A violation of the rule critically affects the reliability of the design. Altera may not
be able to implement the design successfully without closely reviewing the
violations with the designer for HardCopy device conversions.

High A violation of the rule affects the reliability of the design. Altera must review the
violation before implementing the design for HardCopy device conversions.

Medium The rule violation may result in implementation complexity which may have an
impact for HardCopy device conversions.

Information Only The rule provides information regarding the design.

Altera Corporation 5–19
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

For example, the rule “Design Should Not Contain Combinational
Loops” is the first rule in the asynchronous design structure rules;
therefore it is represented by rule ID A101.

1 The finite state machine rules are applicable only to RTL level
verification.

Summary of Rules and IDs

Table 5–2 lists the rules, their rule IDs, and their severity level.

Table 5–2. Summary of Rules and IDs (Part 1 of 2)

Rule ID Rule Name Severity Level

A101 Design Should Not Contain Combinational Loops Critical

A102 Register Output Should Not Drive Its Own Control Signal Directly or through
Combinational Logic

Critical

A103 Design Should Not Contain Delay Chains High

A104 Design Should Not Contain Ripple Clock Structures Medium

A105 Pulses Should Not Be Implemented Asynchronously Critical

A106 Multiple Pulses Should Not Be Generated in the Design Critical

A107 Design Should Not Contain SR Latches High

A108 Design Should Not Contain Latches High

A109 Combinational Logic Should Not Directly Drive Write Enable Signal of Asynchronous
RAM

Medium

A110 Design Should Not Contain Asynchronous Memory Medium

C101 Gated Clocks Should Be Implemented According to Altera Standard Scheme Critical

C102 Logic Cell Should Not Be Used to Generate Inverted Clock High

C103 Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to
Effectively Save Power: <n>

High

C104 Clock Signal Source Should Drive Only Input Clock Ports Medium

C105 Clock Signal Should Be a Global Signal High

C106 Clock Signal Source Should Not Drive Registers that Are Triggered by Different
Clock Edges

Medium

R101 Combinational Logic Used as a Reset Signal Should Be Synchronized High

R102 External Reset Should Be Synchronized Using Two Cascaded Registers Medium

R103 External Reset Should Be Synchronized Correctly High

R104 Reset Signal Generated in One Clock Domain and Used in Other Asynchronous
Clock Domains Should Be Synchronized Correctly

High

R105 Reset Signal Generated in One Clock Domain and Used in Other Asynchronous
Clock Domains Should Be Synchronized

Medium

5–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Design Should Not Contain Combinational Loops

Severity Level: Critical
Rule ID: A101

A combinational loop is created by establishing a direct feedback loop on
combinational logic that is not synchronized by a register. A
combinational loop also occurs when the output of a register is fed back
to an asynchronous pin of the same register through combinational logic.
Combinational loops are among the most common causes of instability
and reliability in your designs, and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5–5 for examples of the kinds of
problems that combinational loops can cause.

S101 Output Enable and Input of the Same Tri-state Nodes Should Not Be Driven by the
Same Signal Source

High

S102 Synchronous Port and Asynchronous Port of the Same Register Should Not Be
Driven by the Same Signal Source

High

S103 More Than One Asynchronous Signal Source of the Same Register Should Not Be
Driven by the Same Source

High

S104 Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven
by the Same Signal Source

High

T101 Nodes with More Than Specified Number of Fan-outs: <n> Information Only

T102 Top Nodes with Highest Fan-out: <n> Information Only

D101 Data Bits Are Not Synchronized When Transferred between Asynchronous Clock
Domains

High

D102 Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain

Medium

D103 Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains

High

H101 Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an I/O Bank Medium

H102 A PLL Drives Multiple Clock Network Types Medium

M101 Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains

High

M102 No Reset Signal Defined to Initialize the State Machine Medium

M103 State Machine Should Not Contain Unreachable State Medium

M104 State Machine Should Not Contain a Deadlock State Medium

M105 State Machine Should Not Contain a Dead Transition Medium

Table 5–2. Summary of Rules and IDs (Part 2 of 2)

Rule ID Rule Name Severity Level

Altera Corporation 5–21
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Register Output Should Not Drive Its Own Control Signal Directly or
through Combinational Logic

Severity Level: Critical
Rule ID: A102

A combinational loop occurs when you feed back the output of a register
to an asynchronous pin of the same register (for example, the register’s
preset or asynchronous load signal), or the register drives combinational
logic that drives one of the control signals on the same register.
Combinational loops are among the most common causes of instability
and reliability in your designs, and should be avoided whenever possible.
Refer to “Combinational Loops” on page 5–5 for examples of the kinds of
problems that combinational loops can cause.

Design Should Not Contain Delay Chains

Severity Level: High
Rule ID: A103

Delay chains are created when one or more consecutive nodes with a
single fan-in and a single fan-out are used to cause delay. Delay chains are
sometimes used to create intentional delay to resolve race conditions.
Delay chains may cause significant problems, because they affect the rise
and fall time differences in your design.

This rule applies only for delay chains implemented in logic cells, and is
limited to the clock and reset path of your design. This rule does not apply
to delay chains in the data path. Altera recommends that you do not
instantiate a cell that does not benefit the design, and is used only to delay
the signal. Refer to “Delay Chains” on page 5–7 for examples of the kinds
of problems that delay chains can cause.

Design Should Not Contain Ripple Clock Structures

Severity Level: Medium
Rule ID: A104

Designs should not contain ripple clock structures. These structures use
two or more cascaded registers in which the output of each register feeds
the clock pin of the register in the next stage. Cascading structures cause
large skew in the output signal because each stage of the structure causes
a new clock domain to be defined. The additional clock domains from
each stage of the ripple clock are difficult for static timing analysis tools
to analyze. Refer to “Ripple Counters” on page 5–10 for examples of the
kinds of problems that ripple clock structures can cause.

5–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Pulses Should Not Be Implemented Asynchronously

Severity Level: Critical
Rule ID: A105

There are two common methods for pulse generation:

■ Increasing the width of a glitch using a 2-input AND, NAND, OR, or NOR
gate, where the source for the two gate inputs are the same, but one
of the gate inputs is inverted

■ Using a register where the register output drives the register’s own
asynchronous reset signal through a delay chain (refer to “Delay
Chains” on page 5–7 for more details).

These techniques are purely asynchronous and therefore should be
avoided. Refer to “Pulse Generators and Multivibrators” on page 5–7 for
recommended pulse generation guidelines.

Multiple Pulses Should Not Be Generated in the Design

Severity Level: Critical
Rule ID: A106

A common asynchronous multiple-pulse-generation technique consists
of a combinational logic gate in which the inverted output feeds back to
one of the inputs of the same gate. This feedback path causes a
combinational loop which forces the output to change state, and therefore
oscillate. Sometimes multiple pulse generators or multivibrator circuits
are built out of a series of cascaded inverters in a structure called a “ring
oscillator.” Oscillation creates a new artificial clock in your design that is
difficult for the Quartus II software to determine, set, or verify.

Structures that generate multiple pulses cause more problems than pulse
generators because of the number of pulses involved. In addition,
multi-pulse generators also increase the frequency of the design. See
“Pulse Generators and Multivibrators” on page 5–7 for recommended
pulse generation guidelines.

Altera Corporation 5–23
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Design Should Not Contain SR Latches

Severity Level: High
Rule ID: A107

A latch is a combinational loop that holds the value of a signal until a new
value is assigned. Combinational loops are hazardous to your design and
are the most common causes of instability and reliability. Refer to
“Combinational Loops” on page 5–5 for examples of the kinds of
problems that combinational loops can cause.

Rule A107 triggers only when your design contains SR latches. An SR
latch can cause glitches and ambiguous timing, which complicates the
timing analysis of your design. Refer to “Latches” on page 5–5 for details
about latches, and for more examples of the kinds of problems that latches
can cause.

Design Should Not Contain Latches

Severity Level: High
Rule ID: A108

The Design Assistant generates warnings when it identifies one or more
structures as latches.

Refer to “Latches” on page 5–5 for details about latches, and for examples
of the kinds of problems that latches can cause.

1 The difference between A107 (“Design Should Not Contain SR
Latches”) and A108 is that A107 triggers only when an SR latch
is detected. A108 triggers when there’s an unidentified latch in
your design.

Combinational Logic Should Not Directly Drive Write Enable Signal of
Asynchronous RAM

Severity Level: Medium
Rule ID: A109

Altera FPGA devices contain flexible embedded memory structures that
can be configured into many different modes. One possible mode is
asynchronous RAM. The definition of an asynchronous RAM circuit is
one in which the write-enable signal driving into the RAM causes data to
be written into it without a clock being required.

5–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You should not use combinational logic to directly drive the write-enable
signal of an asynchronous RAM. Any glitches that exist on the
write-enable signal can cause the asynchronous RAM to be corrupted.
Also, the data and write address ports of the RAM should be stable before
the write pulse is asserted, and must remain stable until the write pulse is
de-asserted. Because of the limitations to using memory structures in this
asynchronous mode, synchronous memories are always preferred. In
addition, synchronous memories provide higher design performance.

As a guideline, a register should be used between the combinational logic
and the asynchronous RAM, or the asynchronous RAM should be
replaced with synchronous memory. Refer to “Hazards of Asynchronous
Design” on page 5–3 for examples of the kinds of problems asynchronous
techniques can cause.

This rule applies only to device families that support asynchronous RAM.

Design Should Not Contain Asynchronous Memory

Severity Level: Medium
Rule ID: A110

You should avoid using asynchronous memory (for example,
asynchronous RAM) in your design, because asynchronous memory can
become corrupted by glitches created in the combinational logic that
drives the write-enable signal of the memory. Asynchronous memory
requires that the data and write address ports of the memory be stable
before the write pulse is asserted, and must remain stable until the write
pulse is de-asserted. In addition, asynchronous memory has lower
performance than synchronous memory.

As a guideline, a register should be used between the combinational logic
and the asynchronous RAM, or the asynchronous RAM should be
replaced with synchronous memory. Immediately registering both input
and output of the RAM improves performance and timing closure. Refer
to “Hazards of Asynchronous Design” on page 5–3 for examples of the
kinds of problems asynchronous techniques can cause.

This rule applies only to device families that support asynchronous RAM.

Altera Corporation 5–25
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Gated Clocks Should Be Implemented According to Altera Standard
Scheme

Severity Level: Critical
Rule ID: C101

Clock gating is sometimes used to turn parts of a circuit on and off to
reduce the total power consumption of a device. Clock gating is
implemented using an enable signal that controls some sort of gating
circuitry. The gated clock signal prevents any of the logic driven by it from
switching so the logic does not consume any power. For example, when
a clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive. However, the disadvantage of using this
type of circuit is that it can lead to unexpected glitches on the resultant
gated clock signal if certain rules are not followed.

Refer to “Gated Clocks” on page 5–12 for examples of the kinds of
problems gated clocks can cause. Refer to “Recommended Clock-Gating
Methods” on page 5–14 for a recommended clock gating technique.
However, when following the recommended clock gating techniques,
your design must have a minimum number of fan-outs to meet rule C103,
“Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock
Ports to Effectively Save Power: <n>."

Logic Cell Should Not Be Used to Generate Inverted Clock

Severity Level: High
Rule ID: C102

Your design may require both positive and negative edges of a clock to
operate. However, you should not implement an inverter to drive the
clock input of a register in your design with a logic cell. Implementing the
inverter with a logic cell can lead to clock insertion delay and skew, which
is hazardous to your design and can cause problems with the timing
closure of the design.

In addition, using a logic cell to implement an inverter is unnecessary.
You should use the programmable clock inversion featured in the register
to generate the inverted clock signal. Refer to “Clocking Schemes” on
page 5–9 for details about different types of clocking methods.

5–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports
to Effectively Save Power: <n>

Severity Level: Medium
Rule ID: C103

Your design can contain an input clock pin that fans out to more than one
gated clock. However, to effectively reduce power consumption, Altera
recommends that the gated clock feed at least a pre-defined number of
clock ports (n ports). The default value for n is 30. You can set the number
of clock ports (n) by clicking Settings on the Assignments menu. In the
Category list, select Design Assistant. On the Design Assistant page,
expand the Clock category, and turn on Gated clock is not feeding at
least a pre-defined number of clock port to effectively save power: <n>.
Click on the Gated Clock Settings button, and in the Gated Clock
Settings dialog box, set the number of clock ports a gated clock should
feed. Refer to “Clocking Schemes” on page 5–9, and “Recommended
Clock-Gating Methods” on page 5–14 for proper clock-gating techniques.

Clock Signal Source Should Drive Only Input Clock Ports

Severity Level: Medium
Rule ID: C104

Clock signal sources in a design should drive only input clock ports of
registers. Rule C104 triggers when a design contains a clock signal source
of a register that connects to port rather than the clock port of another
register. Note that if the clock signal source and ports are of the same
register, rule S104 “Clock Port and Any Other Signal Port of the Same
Register Should Not Be Driven by the Same Signal Source” is triggered
instead. Such a design is considered asynchronous and should be
avoided. Asynchronous design structures can be hazardous to your
design because some of them rely on the relative propagation delays of
signals to function correctly, which can result in incomplete timing
constraints and possible glitches and spikes. Refer to “Hazards of
Asynchronous Design” on page 5–3 for examples of the kinds of
problems that asynchronous design structures can cause. Also refer to
“Clocking Schemes” on page 5–9 for proper clocking techniques.

This rule does not apply in the following conditions:

■ When the clock signal source drives combinational logic that is used
as a clock signal, and the combinational logic is implemented
according to the Altera standard scheme

■ When the clock signal source drives only a clock multiplexer that
selects one clock source from a number of different clock sources

Altera Corporation 5–27
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

1 This type of multiplexer adds complexity to the timing analysis
of a design. You should avoid using the multiplexer in the
design.

■ Using a clock multiplexer causes the “Gated Clocks Should Be
Implemented According to Altera Standard Scheme” rule (C101) to
be applied; refer to “Multiplexed Clocks” on page 5–11 for
recommended clock multiplexing techniques

Clock Signal Should Be a Global Signal

Severity Level: High
Rule ID: C105

You should ensure that all clock signals in your design use the global
clock networks that exist in the target FPGA. Mapping clock signals to use
non-dedicated clock networks can negatively affect the performance of
your design. A non-global signal can be slower and have larger skew than
a global signal because the clock must be distributed using regular FPGA
routing resources.

To specify the number of minimum fan-outs that you want the Design
Assistant to report, on the Design Assistant page, in the Clock category,
select Clock signal should be a global signal. Click Global Clock
Threshold Settings, and enter the number in the dialog box.

If a design contains more clock signals than are available in the target
device, you should consider reducing the number of clock signals in the
design, such that only dedicated clock resources are used for clock
distribution. However, if the design must use more clock signals than you
can specify as global signals, implement the clock signals with the lowest
fan-out using regular routing resources. Also, implement the fastest clock
signals as global signals. Refer to “Clock Network Resources” on
page 5–44 for detailed information about clock resources.

Clock Signal Source Should Not Drive Registers that Are Triggered by
Different Clock Edges

Severity Level: Medium
Rule ID: C106

This rule triggers an error message if your design contains a clock signal
source that drives the clock inputs of both positive and negative
edge-sensitive registers. This error also triggers if your design contains an
inverted clock signal that drives the clock inputs of either positive or
negative edge-sensitive registers.

5–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

These two scenarios can cause an increase in timing requirement
complexity and difficulties in design optimization. Also, because those
registers are clocked on the different edges, synchronous resetting is
impossible. Refer to “Clocking Schemes” on page 5–9 for some specific
examples and recommended clocking methods.

Combinational Logic Used as a Reset Signal Should Be Synchronized

Severity Level: High
Rule ID: R101

All combinational logic used to drive reset signals in your design should
be synchronized. This means that a register should be placed between the
combinational logic that drives reset signal and the input reset pin.
Unsynchronized combinational logic can cause glitches and spikes that
lead to unintentional reset signals. Synchronizing the combinational logic
that drives the reset signal delays the resulting reset signal by an extra
clock cycle and avoids unintentional reset. You should consider the extra
clock cycle delay when using this method in your design.

Rule R101 does not trigger if the combinational logic used is either a
2-input AND or NOR that feeds active low reset port, or either a 2-input OR
or NAND that feeds active high reset port.

External Reset Should Be Synchronized Using Two Cascaded Registers

Severity Level: Medium
Rule ID: R102

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using a
double-buffer circuit, which consists of two cascaded registers triggered
on the same clock edge, and on the same clock domain as the targeted
registers.

This rule does not apply in the following two conditions:

■ When the targeted registers use active-high reset ports, and the
external reset signal drives the PRE ports on the cascaded registers
with the input port of the first cascaded registers is fed to GND. Refer
to Figure 5–11.

Altera Corporation 5–29
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Figure 5–10. Active-Low Reset Ports

■ When the targeted registers use active-low reset ports, and the
external reset signal drives the CLR ports on the cascaded registers
with the input port of the first cascaded registers is fed to VCC. Refer
to Figure 5–10.

Figure 5–11. Active-High Reset Ports

PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA

Clock

Reset

inst6 inst5

inst4

inst9

Cascaded Registers

Targeted
Registers

0

PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA PRE

CLR

D Q

ENA

PRE

CLR

D Q

ENA

Clock

Reset

inst2inst3

inst1

inst

Cascaded Registers

Targeted
Registers

1

5–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

External Reset Should Be Synchronized Correctly

Severity Level: High
Rule ID: R103

The only way to put your design into a reset state in the absence of a clock
signal is to use an asynchronous reset or external reset. However, the
asynchronous reset can affect the recovery time of a register, cause design
stability problems, and unintentionally reset the state machines in your
design to incorrect states.

As a guideline, you can synchronize an external reset signal by using two
cascaded registers. The registers should be triggered on the same clock
edge, and on the same clock domain as the targeted registers.

This rule applies when an asynchronous reset or external reset signal is
synchronized but fails to follow the recommended guidelines as
described in rule R102 (“External Reset Should Be Synchronized Using
Two Cascaded Registers”). This violation happens when the external
reset is synchronized with only one register, or the cascaded
synchronization registers are triggered on different clock edges.

1 R102 triggers when you don’t use two cascaded registers to
synchronize the external reset. R103 triggers when the external
reset is synchronized but fails to follow the recommended
guidelines.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly

Severity Level: High
Rule ID: R104

If your design uses an internally generated reset signal generated in one
clock domain and used in one or more other asynchronous clock domain,
the reset signal should be synchronized. An unsynchronized reset signal
can cause metastability issues. To synchronize reset signals across clock
domains, use the following guidelines:

■ The reset signal should be synchronized with two or more cascading
registers in the receiving asynchronous clock domain.

■ The cascading registers should be triggered on the same clock edge.

Altera Corporation 5–31
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

■ There should be no logic between the output of the transmitting
clock domain and the cascaded registers in the receiving
asynchronous clock domain. The synchronization registers may
sample unintended data due to the glitches caused by the logic.

This rule applies when the internal reset signal is synchronized but fails
to follow the recommended guidelines. This happens when the external
reset is only synchronized with one register, or the cascaded
synchronization registers are triggered on different clock edges, or there
is logic between the output of the transmitting clock domain and the
cascaded registers in the receiving asynchronous clock domain.
Synchronizing the reset signal delays the signal by an extra clock cycle.
You should consider this delay when using the reset signal in a design.

Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized

Severity Level: Medium
Rule ID: R105

If your design uses an internally generated reset signal that is generated
in one clock domain and used in one or more other asynchronous clock
domain, the reset signal should be synchronized. An unsynchronized
reset signal can cause metastability issues. To synchronize reset signals
across clock domains, you should follow guidelines described in Rule
R104 (“Reset Signal Generated in One Clock Domain and Used in Other
Asynchronous Clock Domains Should Be Synchronized Correctly”).

This rule applies when the internally generated reset signal is not being
synchronized.

Output Enable and Input of the Same Tri-state Nodes Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: S101

This rule applies when your design contains a tri-state node in which the
input and output enable are driven by the same signal source. Signal race
occurs between the input and output enable signals of the tri-state when
they are propagated simultaneously. Race conditions lead to incorrect
design function and unpredictable results. To avoid violation of this rule,
the input and output enable of the tri-state should be driven by separate
signal sources.

5–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Synchronous Port and Asynchronous Port of the Same Register Should
Not Be Driven by the Same Signal Source

Severity Level: High
Rule ID: S102

A purely synchronous design is free of signal race conditions as long as
the clock signal is properly distributed and the timing requirements of the
registers are met. However, race conditions can occur typically when the
synchronous and asynchronous input pins of the register are driven by
the same signal source. Race conditions can cause incorrect design
function and unpredictable results. Rule S102 triggers when the
synchronous and asynchronous pins of a register are driven by the same
signal source. Rule S102 does not trigger if the signal source is from a
negative-edge sensitive register of the same clock, and if the source
register is directly feeding the reset port, provided there is no
combinational logic in-between the signal and the register.

More Than One Asynchronous Signal Source of the Same Register
Should Not Be Driven by the Same Source

Severity Level: High
Rule ID: S103

To avoid race conditions in your design, Altera recommends that you
avoid using the same signal source to drive more than one port on a
register. The following ports are affected: ALOAD, ADATA, Preset, and
Clear.

Clock Port and Any Other Signal Port of the Same Register Should Not Be
Driven by the Same Signal Source

Severity Level: High
Rule ID: S104

Any clock signal source in your design should drive only input clock
ports of registers. Rule S104 triggers only when your design contains
clock signal sources that connect to ports other than the clock ports of the
same register. Rule S104 is a sub rule of C104 “Clock Signal Source Should
Drive Only Input Clock Ports.” Such a design is considered asynchronous
and should be avoided. Refer to “Hazards of Asynchronous Design” for
examples of the kinds of problems that asynchronous design structures
can cause. Refer to “Clocking Schemes” for proper clocking techniques.

Altera Corporation 5–33
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Nodes with More Than Specified Number of Fan-outs: <n>

Severity Level: Information Only
Rule ID: T101

This rule reports nodes that have more than a specified number of
fan-outs, which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design
Assistant page, expand the Timing closure category by clicking the
icon next to Timing closure. Turn on Nodes with more than specified
number of fan-outs. Click High Fan-Out Net Settings. In the High
Fan-Out Net Settings dialog box, enter the number of fan-outs a node
must have to be reported by the Design Assistant.

Top Nodes with Highest Fan-out: <n>

Severity Level: Information Only
Rule ID: T102

This rule reports the specified number of nodes with the highest fan-out,
which can create timing challenges for your design.

To specify the number of fan-outs, on the Assignments menu, click
Settings. In the Category list, select Design Assistant. On the Design
Assistant page, click the icon next to Timing closure to expand the
folder. Select Nodes with more than specified number of fan-outs. Click
High Fan-out Net Settings. In the High Fan-Out Net Settings dialog box,
enter the number of nodes with the highest fan-out to be reported by the
Design Assistant.

Data Bits Are Not Synchronized When Transferred between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D101

The data bits transferred between asynchronous clock domains in a
design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain, in which the cascaded registers are triggered on the same
clock edge. There should be no logic between the output of the
transmitting clock domain and the cascaded registers in the receiving
asynchronous clock domain.

5–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If the data bits belong to multiple-bit data, a handshake protocol should
be used to guarantee that all bits of the data bus are stable when the
receiving clock domain samples the data. If a handshake protocol is used,
only the data bits that act as REQ (request) and ACK (acknowledge) signals
should be synchronized. The data bits that belong to multiple-bit data do
not need to be synchronized. You can ignore the violation on the data bits
that use a handshake protocol.

Multiple Data Bits Transferred Across Asynchronous Clock Domains Are
Synchronized, But Not All Bits May Be Aligned in the Receiving Clock
Domain

Severity Level: Medium
Rule ID: D102

This rule applies when data bits from a multiple-bit data that are
transferred between asynchronous clock domains are synchronized.
However, not all data bits may be aligned in the receiving clock domain.
Propagation delays may cause skew when the data reaches the receiving
clock domain.

If the data bits belong to multiple-bit data and a handshake protocol is
used, only the data bits that act as REQ, ACK, or both signals for the
transfer should be synchronized with two or more cascading registers in
the receiving asynchronous clock domain.

If all of the data bits belong to single-bit data, the synchronization of the
data bits does not cause problems in the design.

Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains

Severity Level: High
Rule ID: D103

The data bits that are transferred between asynchronous clock domains in
a design should be synchronized to avoid metastability problems.

If the data bits belong to single-bit data, each data bit should be
synchronized with two cascading registers in the receiving asynchronous
clock domain. In this case, the cascaded registers are triggered on the
same clock edge, and there should be no logic between the output of the
transmitting clock domain. The cascaded registers in the receiving
asynchronous clock domain.

This rule only applies when the data bits across asynchronous clock
domains are synchronized but fail to follow the guidelines.

Altera Corporation 5–35
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an
I/O Bank

Severity Level: Medium
Rule ID: H101

If your design targets a HardCopy APEX™ 20K device, you should not
assign more than one VREF pin to a HardCopy test pin in an I/O bank in
that targeted device. The assignment of more than one VREF pin to a
HardCopy test pin can cause contention of the VREF bus.

You can find the list of the HardCopy test pins that are in each of a
HardCopy APEX 20K device’s I/O banks in the Messages window, the
Design Assistant Messages report, and the Design Assistant HardCopy
Test Pins report. You should use this information to ensure that only one
VREF pin is assigned to a HardCopy test pin.

However, the Fitter may have assigned the VREF pins to the HardCopy
test pins during compilation. To prevent the Fitter from making these
assignments during the next compilation, create and assign the VREF
pins manually instead of allowing the Fitter to do so automatically.

This rule applies only to designs that target HardCopy APEX 20K
devices.

A PLL Drives Multiple Clock Network Types

Severity Level: Medium
Rule ID: H102

A PLL can compensate only one of the clock network types; therefore, the
other non-compensated clock network types have a non-zero delay.
However, the non-zero delay for the non-compensated clock network
types can change between a Stratix device and its corresponding
HardCopy Stratix device, or a Stratix II device and its corresponding
HardCopy II device.

Therefore, if a Stratix FPGA design relies on the relative offset between
the compensated clock network type and the non-compensated clock
network types driven by a PLL, an error can occur in the corresponding
HardCopy Stratix design because the relative offset in the HardCopy
Stratix design may differ from the relative offset in the original Stratix
FPGA design.

This rule reports only nodes in a design where a PLL drives multiple
clock network types.

5–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Data Bits Are Not Synchronized When Transferred to the State Machine of
Asynchronous Clock Domains

Severity Level: High
Rule ID: M101

The data bits that are transferred between asynchronous clock domains in
your design should be synchronized to avoid metastability problems.
Rule M101 is a state machine specific rule that triggers when input signals
of a state machine across asynchronous clock domains are not
synchronized or improperly synchronized. Rule M101 applies to state
machines only, while the “Data Bits Are Not Synchronized When
Transferred between Asynchronous Clock Domains” rule (D101) and the
“Data Bits Are Not Correctly Synchronized When Transferred Between
Asynchronous Clock Domains” rule (D103) apply only for data
synchronization between registers.

No Reset Signal Defined to Initialize the State Machine

Severity Level: Medium
Rule ID: M102

A finite state machine (FSM) should have a reset signal that initializes to
its initial state. A finite state machine without a proper initialization state
is susceptible to functional problems and can introduce extra difficulty in
analysis, verification, and maintenance.

State Machine Should Not Contain Unreachable State

Severity Level: Medium
Rule ID: M103

An unreachable state is a state that can never be reached from the initial
state. Having an unreachable state in your design causes logic
redundancy and affects your design functionality. Rule M103 triggers
when the initial state cannot traverse to a state through any of the
reachable states and transitions.

State Machine Should Not Contain a Deadlock State

Severity Level: Medium
Rule ID: M104

A deadlock state is a state that does not have any transitions to another
state except to loop to itself. When the state machine enters a deadlock
state, it stays in that state until the state machine is reset. Your design may

Altera Corporation 5–37
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

have a single state, or a few states forming a deadlock structure. Having
a deadlock state in your design leads to design functionality problems,
and theoretically may consume more power.

You can change the maximum number of states to be detected as a
deadlock structure by clicking Settings on the Assignments menu, and in
the Settings dialog box, in the Category list, select Design Assistant. In
the Design Assistant page, click Finite State Machine Deadlock
Settings. In the Finite State Machine Deadlock Settings dialog box,
specify the maximum number of states to be reported as a deadlock
structure. The default setting is 2.

State Machine Should Not Contain a Dead Transition

Severity Level: Medium
Rule ID: M105

A dead transition is a redundant transition that never occurs regardless
of the event sequence input to the state machine. A dead transition
indicates logic redundancy in your design, although it may not affect
your design functionality. Rule M105 triggers when the condition
required to trigger a transition is not possible.

Enabling and Disabling Design Assistant Rules

You can selectively enable or disable Design Assistant rules on individual
nodes by making an assignment in the Assignment Editor, or using the
altera_attribute synthesis attribute in Verilog HDL or VHDL, or
using a Tcl command.

f For a list of the types of nodes that allow Design Assistant rule
suppression, refer to Node Types Eligible for Rule Suppression in the
Quartus II Help.

1 Assignments made with Assignment Editor, the Quartus
Settings File (.qsf), and Tcl scripts and commands take
precedence over assignments made with the
altera_attribute synthesis attribute. Assignments made to
nodes, entities, or instances take precedence over global
assignments.

Using the Assignment Editor

You can enable or disable a Design Assistant rule on selected nodes in
your design by using the Assignments Editor. You must first compile
your design if you have not already done so. On the Assignments menu,
click Assignment Editor. In the spreadsheet, for the desired node, entity,

5–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

or instance, double-click the cell in the Assignment Name column and
select Enable Design Assistant Rule or Disable Design Assistant Rule
in the pull-down menu. Then double-click the Value cell and type in the
Rule ID, or click Browse to open the Design Assistant Rules dialog box.
In the Design Assistant Rules dialog box, select the rule you want to
enable or disable for that particular node.

1 You can enable or disable multiple rules by typing more than
one Rule ID in the cell, and separating each Rule ID with a
comma.

Using Verilog HDL

You can use the altera_attributes synthesis attribute in your
Verilog HDL code to enable or disable a Design Assistant rule on the
selected nodes in your design.

To enable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable_da_rule=<ruleID>" */

You can enable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="enable_da_rule=\"<ruleID>,<ruleID>,
<ruleID>\""*/

To disable the rule on the selected node, the syntax is as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable_da_rule=<ruleID>" */

You can disable more than one rule on a selected node as shown in the
following example:

<entity class> <object> /* synthesis
altera_attribute="disable_da_rule=\"<ruleID>,
<ruleID>,<ruleID>\""*/

1 When enabling or disabling multiple rules in Verilog HDL, you
must separate the Rule ID strings with commas and spaces only,
and they must be enclosed with the \" and \" characters.

Altera Corporation 5–39
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Using VHDL

You can use the altera_attributes synthesis attribute in your VHDL
code to enable or disable a Design Assistant rule on the selected nodes in
your design.

To enable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"enable_da_rule=<ruleID>"

You can enable more than one rule on a selected node as shown in the
following example:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"enable_da_rule=""<ruleID>, <ruleID>, <ruleID>"""

To disable the rule on the selected node, use the following syntax:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable_da_rule=<ruleID>"

You can disable more than one rule on a selected node as shown in the
following example:

attribute altera_attribute : string;attribute
altera_attribute of <object>: <entity class> is
"disable_da_rule=""<ruleID>, <ruleID>, <ruleID>"""

1 When enabling or disabling multiple rules in VHDL, you must
separate the Rule ID strings with commas and spaces only, and
they must be enclosed with double quotation mark ("")
characters.

5–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Using TCL Commands

To enable a Design Assistant rule on the selected node in your design
using Tcl in a script or at a command or Tcl prompt, use the following Tcl
command:

set_instance_assignment -name enable_da_rule "<rule ID>" -to <design element> r
To enable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name enable_da_rule "<rule ID>, <rule ID>" -to <design element> r
To disable a Design Assistant rule on a selected node in your design using
Tcl in a script, or at a command or Tcl prompt, use the following Tcl
command:

set_instance_assignment -name disable_da_rule "<rule ID>" -to <design element> r
To disable more than one rule on a selected node, use the following Tcl
command:

set_instance_assignment -name disable_da_rule "<rule ID>,<rule ID>" -to <design element> r

Viewing Design Assistant Results

If your design violates a design rule, the Design Assistant generates
warning messages and information messages about the violated design
rule. The Design Assistant displays these messages in the Messages
window, in the Design Assistant Messages report, and in the Design
Assistant report files. You can find the Design Assistant report files called
<project_name>.drc.rpt in the <project_name> subdirectory of the project
directory.

The Design Assistant generates the following reports based on the
settings specified in the Design Assistant page:

■ Summary Report
■ Settings Report
■ Detailed Results Report
■ Messages Report
■ HardCopy Test Pins Report
■ Rule Suppression Assignments Report
■ Ignored Design Assistant Assignments Report

Altera Corporation 5–41
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Summary Report

The Design Assistant Summary report contains summary of the Design
Assistant process on a particular project. This includes Design Assistant
Status, Revision Name, Top-level Entity, Targeted Family Device, and
total number of design violations of the project. The Design Assistant
Summary report provides the following information:

■ Design Assistant Status—the status, end date, and end time of the
Design Assistant operation

■ Revision Name—the revision name specified in the Revisions
dialog box

■ Top-level Entity Name—the top-level entity of your design
■ Family—the device family name specified in the Device page of the

Settings dialog box
■ Total Critical Violations, Total High Violations, Total Medium

Violations, and Total Information Only Violations—the total
violations of the rules organized by level, some of which might affect
the reliability of the design

1 You must first review the violations closely before converting
your design for HardCopy devices to achieve a successful
conversion.

Settings Report

The Design Assistant Settings report contains a list of enabled Design
Assistant rules and options that you specified in the Design Assistant
Settings page, as shown in Figure 5–12.

5–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Figure 5–12. The Design Assistant Settings Report

Detailed Results Report

The Detailed Results report contains detailed information of every rule
violation including the rule name, the node name, and the fan-out. This
report only appears if you specify settings in the Design Assistant
Settings page. Refer to “The Design Assistant Settings Page” on
page 5–17 for more information about how to specify the settings.

Separate Detailed Results reports are generated for critical, high,
medium, and information only results. Figure 5–13 shows the
Information Only Violations report.

Altera Corporation 5–43
October 2007 Preliminary

Checking Design Violations Using the Design Assistant

Figure 5–13. The Design Detailed Results Report, Information Only

Messages Report

The Messages report contains current information, warning, and error
messages generated during the Design Assistant process. You can
right-click a message in the Messages report and click Help to display the
Quartus II software Help with details about the selected message, or click
Locate to trace or cross-probe the selected node and locate the source of
the violation.

HardCopy Test Pins Report

The HardCopy Test Pins report appears only if you turn on Run Design
Assistant during compilation in the Design Assistant page, and if your
design violates the “Only One VREF Pin Should Be Assigned to
HardCopy Test Pin in an I/O Bank” rule (H101). The report lists all the
HardCopy design rule violations, and also list all of the test pins in the
HardCopy device.

5–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Rule Suppression Assignments Report

The Rule Suppression Assignments report contains detailed information
about which Design Assistant rules are enabled or disabled, as explained
in the “Enabling and Disabling Design Assistant Rules” on page 5–37.
The report shows you the following information:

■ Assignment—shows the name of the assignment
■ Value—identifies the rule
■ To—shows the name of the node where the rule is being applied

Ignored Design Assistant Assignments Report

The Ignored Design Assistant Assignments report lists detailed
information about the invalid and conflicting rule assignments reported
by the Design Assistant. Note that this report is generated only if you
specify an invalid rule ID in the rule suppression, or a conflicting rule
assignment. The following information appears in the report:

■ Assignment—shows the name of the assignment
■ Value—identifies the rule
■ To—shows the name of the node where the rule is being applied
■ Comment—shows why the assignment is being ignored

Targeting
Clock and
Register-Control
Architectural
Features

In addition to following general design guidelines, it is important to code
your design with the device architecture in mind. FPGAs provide
device-wide clocks and register control signals that can improve
performance.

Clock Network Resources

Altera FPGAs provide device-wide global clock routing resources and
dedicated inputs. You should use the FPGA’s low-skew, high fan-out,
dedicated routing where available. By assigning a clock input to one of
these dedicated clock pins or using a Quartus II logic option to assign
global routing, you can take advantage of the dedicated routing available
for clock signals.

In ASIC design, balancing the clock delay as it is distributed across the
device can be important. Because Altera FPGAs provides device-wide
global clock routing resources and dedicated inputs, there is no need to
manually balance delays on the clock network.

Altera recommends limiting the number of clocks in your design to the
number of dedicated global clock resources available in your FPGA.
Clocks feeding multiple locations that do not use global routing may
exhibit clock skew across the device that could lead to timing problems.

Altera Corporation 5–45
October 2007 Preliminary

Targeting Clock and Register-Control Architectural Features

In addition, when you use combinational logic to generate an internal
clock, it adds delays on the clock line. In some cases, delay on a clock line
can result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing
parameters of the register (such as hold time requirements) are violated
and the design will not function correctly.

Current FPGAs offer increasing numbers of global clocks to address large
designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated
fast regional clock networks. These clocks are typically organized into a
hierarchical clock structure that allows many clocks in each device region
with low skew and delay. There are typically a number of dedicated clock
pins to drive either the global or regional clock networks and both PLL
outputs and internal clocks can drive various clock networks.

To reduce the clock skew within a given clock domain and ensure that
hold times are met within that clock domain, assign each clock signal to
one of the global high fan-out, low-skew clock networks in the FPGA
device. Quartus II automatically uses global routing for high fan-out
control signals, PLL outputs, and signals feeding the global clock pins on
the device. You can make explicit Global Signal logic option settings by
turning on the signal logic option settings. On the Assignment menu,
click Assignment Editor. Use this option when it is necessary to force the
software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock
signals in a design (input clock pins or internally-generated clocks)
should drive only the clock input ports of registers. In older Altera device
families (such as FLEX® 10K and ACEX® 1K), if a clock signal feeds the
data ports of a register, the signal may not be able to use the dedicated
routing, which can lead to decreased performance and clock skew
problems. In general, allowing clock signals to drive the data ports of
registers is not considered synchronous design, and it can complicate
timing analysis. It is not a recommended practice.

Reset Resources

ASIC designs may use local resets to avoid long routing delays on the
signal. You should take advantage of the device-wide asynchronous reset
pin available on most FPGAs to eliminate these problems. This reset
signal provides low-skew routing across the device.

5–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Register Control Signals

Avoid using an asynchronous load signal if the design target device
architecture does not include registers with dedicated circuitry for
asynchronous loads. Also, avoid using both asynchronous clear and
preset if the architecture provides only one of those control signals. APEX
devices, for example, directly support an asynchronous clear function,
but not a preset or load function. When the target device does not directly
support the signals, the place-and-route software must use combinational
logic to implement the same functionality. In addition, if you use signals
in a priority other than the inherent priority in the device architecture,
combinational logic may be required to implement the desired control
signals. The combinational logic is less efficient and can cause glitches
and other problems; it is best to avoid these implementations.

f For Verilog HDL and VHDL examples of registers with various control
signals, and information about the inherent priority order of register
control signals in Altera device architecture, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Conclusion Following the design practices outlined in this chapter can help you meet
your design goals consistently. Asynchronous design techniques may
result in incomplete timing analysis, may clause glitches on data signals,
and may rely on propagation delays in a device leading to race conditions
and unpredictable results. Taking advantage of the architectural features
in your FPGA device can also improve your quality of results.

Referenced
Documents

This chapter references the following documents:

■ Design Guidelines for HardCopy Series Devices chapter in the HardCopy
Series Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

■ Quartus II Classic Timing Analysis chapter in volume 3 of the
Quartus II Handbook

■ Quartus II TimeQuest Timing Analysis chapter in volume 3 of the
Quartus II Handbook

■ Quartus II Handbook
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/hrd/hc_h51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Altera Corporation 5–47
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History (Part 1 of 2)

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Added restrictions to the rule “External Reset
Should Be Synchronized Using Two Cascaded
Registers” on page 5–28

● Added Figure 5–11 and 5–10 on page 5–29
● Some changes regarding the Delay Chain rule

description (page 5–21)
● Added hyperlinks to referenced documents

Updated for Quartus II software version
7.2.

May 2007
v7.1.0

● Changed chapter name to Design
Recommendations for Altera Devices and the
Quartus II Design Assistant

● Removed Hierarchical Design Partitioning
section

● Updated Design Assistant Rules on page 5–19
● Added Finite State Machine Rules on

page 5–36
● Added Enabling and Disabling Design

Assistant Rules on page 5–38
● Added Rule Suppression Assignments Report

on page 5–45
● Added Ignored Design Assistant Assignments

Report on page 5–45
● Updated Table 5–2
● Added Referenced Documents on page 5–47

Updated for Quartus II software version
7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date
only. No other changes made to chapter.

—

November 2006
v6.1.0

Added the following sections (with additional
subsections):
● “Checking Design Violations Using the Design

Assistant”
● “Quartus II Design Flow with the Design

Assistant”
● “The Design Assistant Page”
● “Message Severity Levels”
● “Design Assistant Rules”
● “Viewing Design Assistant Results”

Quartus II software version 6.1 added the
Design Assistant; the bulk of the changes
to this chapter are related to this update.

May 2006
v6.0.0

Minor updates for the Quartus II version 6.0. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

5–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

May 2005
v.5.0.0

Chapter 5 was formerly Chapter 4 in version 4.2. —

December 2004
v2.1

Updated for Quartus II software version 4.2:
● Chapter 5 was formerly Chapter 6 in version

4.1.
● General formatting and editing updates.
● Updated hardware requirements for the

Quartus II Timing Analyzer.
● Added timing requirements and analysis

details.
● Updated Design Guidelines.
● Added information about performing timing

analysis on asynchronous ports.
● Added inferred latches information.
● Updated Delay Chains description.
● Updated figures, tables.
● Added Clocking Schemes information.
● Added details to Multiplexed Clocks details.
● Added clock gating details.
● Updated Hierarchical Design Partitioning to

include synthesis and incremental synthesis.
● Added global routing information.

—

June 2004
v.2.0

● Updates to tables, figures, coding examples.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

Table 5–3. Document Revision History (Part 2 of 2)

Date and
Document

Version
Changes Made Summary of Changes

Altera Corporation 6–1
October 2007

6. Recommended HDL
Coding Styles

Introduction HDL coding styles can have a significant effect on the quality of results
that you achieve for programmable logic designs. Synthesis tools
optimize HDL code for both logic utilization and performance. However,
sometimes the best optimizations require human understanding of the
design, and synthesis tools have no information about the purpose or
intent of the design. You are often in the best position to improve your
quality of results.

This chapter addresses HDL coding style recommendations to ensure
optimal synthesis results when targeting Altera® devices, including the
following sections:

■ “Quartus II Language Templates” on page 6–2
■ “Using Altera Megafunctions” on page 6–3
■ “Instantiating Altera Megafunctions in HDL Code” on page 6–4
■ “Inferring Multiplier and DSP Functions from HDL Code” on

page 6–7
■ “Inferring Memory Functions from HDL Code” on page 6–13
■ “Coding Guidelines for Registers and Latches” on page 6–37
■ “General Coding Guidelines” on page 6–48
■ “Designing with Low-Level Primitives” on page 6–73

f For additional guidelines on structuring your design, refer to the Design
Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook.

For style recommendations, options, or HDL attributes specific to your
synthesis tool (including Quartus® II Integrated Synthesis and other EDA
tools), refer to the tool vendor’s documentation or the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.

QII51007-7.2.0

6–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Quartus II
Language
Templates

The Quartus II software provides Verilog HDL, VHDL, AHDL, Tcl script,
and megafunction language templates that can help you with your
design.

Many of the Verilog HDL and VHDL examples in this document
correspond with examples in the templates. You can easily insert
examples from this document into your HDL source code using the Insert
Template dialog box in the Quartus II user interface, shown in Figure 6–1.

Figure 6–1. Insert Template Dialog Box

To open the Insert Template dialog box when you have a file open in the
Quartus II Text Editor, on the Edit menu, click Insert Template.
Alternately, you can right-click in the Text Editor window and choose
Insert Template.

Altera Corporation 6–3
October 2007 Preliminary

Using Altera Megafunctions

Using Altera
Megafunctions

Altera provides parameterizable megafunctions that are optimized for
Altera device architectures. Using megafunctions instead of coding your
own logic saves valuable design time. Additionally, the Altera-provided
megafunctions may offer more efficient logic synthesis and device
implementation. You can scale the megafunction’s size and set various
options by setting parameters. Megafunctions include the library of
parameterized modules (LPM) and Altera device-specific megafunctions.

To use megafunctions in your HDL code, you can instantiate them as
described in “Instantiating Altera Megafunctions in HDL Code” on
page 6–4.

Sometimes it is preferable to make your code independent of device
family or vendor, and you do not want to instantiate megafunctions
directly. For some types of logic functions, such as memory and DSP
functions, you can infer a megafunction instead of instantiating it.
Synthesis tools, including Quartus II integrated synthesis, recognize
certain types of HDL code and automatically infer the appropriate
megafunction. The synthesis tool uses the Altera megafunction code
when compiling your design—even when you do not specifically
instantiate the megafunction. Synthesis tools infer megafunctions to take
advantage of logic that is optimized for Altera devices or to target
dedicated architectural blocks.

In cases where you prefer to use generic HDL code instead of
instantiating a megafunction, follow the guidelines and coding examples
in “Inferring Multiplier and DSP Functions from HDL Code” on page 6–7
and “Inferring Memory Functions from HDL Code” on page 6–13 to
ensure your HDL code infers the appropriate Altera megafunction.

1 You must use megafunctions to access some Altera
device-specific architecture features. You can infer or instantiate
megafunctions to target some features such as memory and DSP
blocks. You must instantiate megafunctions to target certain
device and high-speed features such as LVDS drivers, PLLs,
transceivers, and double-data rate input/output (DDIO)
circuitry.

6–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

For some designs, generic HDL code can provide better results than
instantiating a megafunction. Refer to the following general guidelines
and examples that describe when to use standard HDL code and when to
use megafunctions:

■ For simple addition or subtraction functions, use the + or – symbol
instead of an LPM function. Instantiating an LPM function for simple
arithmetic operations can result in a less efficient result because the
function is hard coded and the synthesis algorithms cannot take
advantage of basic logic optimizations.

■ For simple multiplexers and decoders, use array notation (such as
out = data[sel]) instead of an LPM function. Array notation
works very well and has simple syntax. You can use the lpm_mux
function to take advantage of architectural features such as cascade
chains in APEX™ series devices, but use the LPM function only if you
understand the device architecture in detail and want to force a
specific implementation.

■ Avoid division operations where possible. Division is an inherently
slow operation. Many designers use multiplication creatively to
produce division results.

Instantiating
Altera
Megafunctions
in HDL Code

The following sections describe how to use megafunctions by
instantiating them in your HDL code with the following methods:

■ “Instantiating Megafunctions Using the MegaWizard Plug-In
Manager”—You can use the MegaWizard® Plug-In Manager to
parameterize the function and create a wrapper file.

■ “Creating a Netlist File for Other Synthesis Tools”—You can
optionally create a netlist file instead of a wrapper file.

■ “Instantiating Megafunctions Using the Port and Parameter
Definition”—You can instantiate the function directly in your HDL
code.

Instantiating Megafunctions Using the MegaWizard Plug-In
Manager

Use the MegaWizard Plug-In Manager as described in this section to
create megafunctions in the Quartus II GUI that you can instantiate in
your HDL code. The MegaWizard Plug-In Manager provides a graphical
user interface to customize and parameterize megafunctions, and ensures
that you set all megafunction parameters properly. When you finish
setting parameters, you can specify which files you want to be generated.
Depending on which language you choose, the MegaWizard Plug-In

Altera Corporation 6–5
October 2007 Preliminary

Instantiating Altera Megafunctions in HDL Code

Manager instantiates the megafunction with the correct parameters and
generates a megafunction variation file (wrapper file) in Verilog HDL
(.v), VHDL (.vhd), or AHDL (.tdf) along with other supporting files.

The MegaWizard Plug-In Manager provides options to create the
following files:

■ A sample instantiation template for the language of the variation file
(_inst.v|vhd|tdf).

■ Component Declaration File (.cmp) that can be used in VHDL
Design Files

■ ADHL Include File (.inc) that can be used in Text Design Files (.tdf)
■ Quartus II Block Symbol File (.bsf) for schematic designs
■ Verilog HDL module declaration file that can be used when

instantiating the megafunction as a black box in a third-party
synthesis tool (_bb.v).

■ If you enable the option to generate a synthesis area and timing
estimation netlist, the MegaWizard Plug-In Manager generates an
additional synthesis netlist file (_syn.v). Refer to “Creating a Netlist
File for Other Synthesis Tools” on page 6–6 for details.

Refer to Table 6–1 for a list and description of files generated by the
MegaWizard Plug-In Manager.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 1 of 2)

File Description

<output file>.v (1) Verilog HDL Variation Wrapper File—Megafunction wrapper file for instantiation in a
Verilog HDL design.

<output file>.vhd (1) VHDL Variation Wrapper File—Megafunction wrapper file for instantiation in a VHDL
design.

<output file>.tdf (1) AHDL Variation Wrapper File—Megafunction wrapper file for instantiation in an
AHDL design.

<output file>.inc ADHL Include File—Used in AHDL designs.

<output file>.cmp Component Declaration File—Used in VHDL designs.

<output file>.bsf Block Symbol File—Used in Quartus II Block Design Files (.bdf).

<output file>_inst.v Verilog HDL Instantiation Template—Sample Verilog HDL instantiation of the module
in the megafunction wrapper file.

<output file>_inst.vhd VHDL Instantiation Template—Sample VHDL instantiation of the entity in the
megafunction wrapper file.

<output file>_inst.tdf Text Design File Instantiation Template—Sample AHDL instantiation of the
subdesign in the megafunction wrapper file.

6–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Creating a Netlist File for Other Synthesis Tools

When you use certain megafunctions with third-party EDA synthesis
tools (that is, tools other than Quartus II integrated synthesis), you can
optionally create a netlist for area and timing estimation instead of a
wrapper file.

The netlist file is a representation of the customized logic used in the
Quartus II software. The file provides the connectivity of architectural
elements in the megafunction but may not represent true functionality.
This information enables certain third-party synthesis tools to better
report area and timing estimates. In addition, synthesis tools can use the
timing information to focus timing-driven optimizations and improve
the quality of results.

f For information about support for area and timing estimation netlists in
your synthesis tool, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

To generate the netlist, turn on Generate a synthesis area and timing
estimation netlist on the EDA page of the MegaWizard Plug-In Manager.
The netlist file is called <output file>_syn.v.

<output file>_bb.v Black box Verilog HDL Module Declaration—Hollow-body module declaration that
can be used in Verilog HDL designs to specify port directions when creating black
boxes in third-party synthesis tools.

<output file>_syn.v (2) Synthesis area and timing estimation netlist—Megafunction netlist used by certain
third-party synthesis tools to improve area and timing estimations.

Notes to Table 6–1:
(1) The MegaWizard Plug-In Manager generates either the Verilog HDL, VHDL, or AHDL Variation Wrapper File,

depending on the language you select for the output file on the megafunction-selection page of the wizard.
(2) The MegaWizard Plug-In Manager generates this file only if you turn on the Generate a synthesis area and timing

estimation netlist option on the EDA page of the wizard.

Table 6–1. MegaWizard Plug-In Manager Generated Files (Part 2 of 2)

File Description

Altera Corporation 6–7
October 2007 Preliminary

Inferring Multiplier and DSP Functions from HDL Code

Instantiating Megafunctions Using the Port and Parameter
Definition

You can instantiate the megafunction directly in your Verilog HDL,
VHDL, or AHDL code by calling the megafunction and setting its
parameters as you would any other module, component, or subdesign.

f Refer to the specific megafunction in the Quartus II Help for a list of the
megafunction ports and parameters. Quartus II Help also provides a
sample VHDL component declaration and AHDL function prototype for
each megafunction.

1 Altera strongly recommends that you use the MegaWizard
Plug-In Manager for complex megafunctions such as PLLs,
transceivers, and LVDS drivers. For details on using the
MegaWizard Plug-In Manager, refer to “Instantiating
Megafunctions Using the MegaWizard Plug-In Manager” on
page 6–4.

Inferring
Multiplier and
DSP Functions
from HDL Code

The following sections describe how to infer multiplier and DSP
functions from generic HDL code, and, if applicable, how to target the
dedicated DSP block architecture in Altera devices:

■ “Multipliers—Inferring the lpm_mult Megafunction from HDL
Code” on page 6–7

■ “Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code” on
page 6–10

f For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Multipliers—Inferring the lpm_mult Megafunction from HDL
Code

To infer multiplier functions, synthesis tools look for multipliers and
convert them to lpm_mult or altmult_add megafunctions, or may
map them directly to device atoms. For devices with DSP blocks, the
software can implement the function in a DSP block instead of logic,

6–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

depending on device utilization. The Quartus II Fitter can also place
input and output registers in DSP blocks (that is, perform register
packing) to improve performance and area utilization.

f For additional information about the DSP block and the supported
functions, refer to the appropriate Altera device family handbook and
Altera’s DSP Solutions Center website at www.altera.com.

The following four code samples show Verilog HDL and VHDL
examples for unsigned and signed multipliers that synthesis tools can
infer as an lpm_mult or altmult_add megafunction. Each example fits
into one DSP block 9-bit element. In addition, when register packing
occurs, no extra logic cells for registers are required.

1 The signed declaration in Verilog HDL is a feature of the
Verilog 2001 Standard.

Example 6–1. Verilog HDL Unsigned Multiplier
module unsigned_mult (out, a, b);

output [15:0] out;
input [7:0] a;
input [7:0] b;
assign out = a * b;

endmodule

Example 6–2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)
module signed_mult (out, clk, a, b);

output [15:0] out;
input clk;
input signed [7:0] a;
input signed [7:0] b;

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
out <= mult_out;

end
endmodule

http://www.altera.com

Altera Corporation 6–9
October 2007 Preliminary

Inferring Multiplier and DSP Functions from HDL Code

Example 6–3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.all;

ENTITY unsigned_mult IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr ='1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;

END IF;
END PROCESS;

END rtl;

Example 6–4. VHDL Signed Multiplier
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.all;

ENTITY signed_mult IS
PORT (

a: IN SIGNED (7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
result: OUT SIGNED (15 DOWNTO 0)

);
END signed_mult;

BEGIN
result <= a * b;

END rtl;

6–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Multiply-Accumulators and Multiply-Adders—Inferring
altmult_accum and altmult_add Megafunctions from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and
convert them to altmult_accum or altmult_add megafunctions,
respectively, or may map them directly to device atoms. The Quartus II
software then places these functions in DSP blocks during placement and
routing.

1 Synthesis tools infer multiply-accumulator and multiply-adder
functions only if the Altera device family has dedicated DSP
blocks that support these functions.

A multiply-accumulator consists of a multiplier feeding an addition
operator. The addition operator feeds a set of registers that then feeds the
second input to the addition operator. A multiply-adder consists of two
to four multipliers feeding one or two levels of addition, subtraction, or
addition/subtraction operators. Addition is always the second-level
operator, if it is used. In addition to the multiply-accumulator and
multiply-adder, the Quartus II Fitter also places input and output
registers into the DSP blocks to pack registers and improve performance
and area utilization.

The Verilog HDL and VHDL code samples shown in Examples 6–5
through 6–8 infer specific multiply-accumulators and multiply-adders.

Altera Corporation 6–11
October 2007 Preliminary

Inferring Multiplier and DSP Functions from HDL Code

Example 6–5. Verilog HDL Unsigned Multiply-Accumulator with Input, Output and Pipeline Registers
(Latency = 3)
module unsig_altmult_accum (dataout, dataa, datab, clk, aclr, clken);

input [7:0] dataa;
input [7:0] datab;
input clk;
input aclr;
input clken;
output [31:0] dataout;
reg [31:0] dataout;
reg [7:0] dataa_reg;
reg [7:0] datab_reg;
reg [15:0] multa_reg;
wire [15:0] multa;
wire [31:0] adder_out;
assign multa = dataa_reg * datab_reg;
assign adder_out = multa_reg + dataout;
always @ (posedge clk or posedge aclr)
begin

if (aclr)
begin

dataa_reg <= 8'b0;
datab_reg <= 8'b0;
multa_reg <= 16'b0;
dataout <= 32'b0;

end
else if (clken)
begin

dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_out;

end
end

endmodule

Example 6–6. Verilog HDL Signed Multiply-Adder (Latency = 0)
module sig_altmult_add (dataa, datab, datac, datad, result);

input signed [15:0] dataa;
input signed [15:0] datab;
input signed [15:0] datac;
input signed [15:0] datad;
output [32:0] result;

wire signed [31:0] mult0_result;
wire signed [31:0] mult1_result;

assign mult0_result = dataa * datab;
assign mult1_result = datac * datad;
assign result = (mult0_result + mult1_result);

endmodule

6–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–7. VHDL Unsigned Multiply-Adder with Input, Output and Pipeline Registers (Latency = 3)
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (

a: IN UNSIGNED (7 DOWNTO 0);
b: IN UNSIGNED (7 DOWNTO 0);
c: IN UNSIGNED (7 DOWNTO 0);
d: IN UNSIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
aclr: IN STD_LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)

);
END unsignedmult_add;

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_reg, b_reg, c_reg, d_reg: UNSIGNED (7 DOWNTO 0);
SIGNAL pdt_reg, pdt2_reg: UNSIGNED (15 DOWNTO 0);
SIGNAL result_reg: UNSIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk, aclr)
BEGIN

IF (aclr = '1') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
c_reg <= (OTHERS => '0');
d_reg <= (OTHERS => '0');
pdt_reg <= (OTHERS => '0');
pdt2_reg <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1') THEN
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
pdt_reg <= a_reg * b_reg;
pdt2_reg <= c_reg * d_reg;
result_reg <= pdt_reg + pdt2_reg;

END IF;
END PROCESS;

result <= result_reg;
END rtl;

Altera Corporation 6–13
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Example 6–8. VHDL Signed Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (

a: IN SIGNED(7 DOWNTO 0);
b: IN SIGNED (7 DOWNTO 0);
clk: IN STD_LOGIC;
accum_out: OUT SIGNED (15 DOWNTO 0)

) ;
END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b_reg: SIGNED (7 DOWNTO 0);
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0);
SIGNAL adder_out: SIGNED (15 DOWNTO 0);

BEGIN
PROCESS (clk)
BEGIN

IF (clk'event and clk = '1') THEN
a_reg <= (a);
b_reg <= (b);

pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;

END IF;
END process;
accum_out <= adder_out;

END rtl;

Inferring
Memory
Functions from
HDL Code

The following sections describe how to infer memory functions from
generic HDL code and, if applicable, to target the dedicated memory
architecture in Altera devices:

■ “RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code” on page 6–14

■ “ROM Functions—Inferring altsyncram and lpm_rom
Megafunctions from HDL Code” on page 6–31

■ “Shift Registers—Inferring the altshift_taps Megafunction from HDL
Code” on page 6–33

f For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Altera's dedicated memory architecture offers a number of advanced
features that can be easily targeted using the MegaWizard Plug-In
Manager as described in “Instantiating Altera Megafunctions in HDL
Code” on page 6–4. The coding recommendations in the following

6–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

sections provide portable examples of generic HDL code that infer the
appropriate megafunction. However, if you want to use some of the
advanced memory features in Altera devices, consider using the
megafunction directly so that you can control the ports and parameters
more easily.

RAM Functions—Inferring altsyncram and altdpram
Megafunctions from HDL Code

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or altdpram megafunctions
for device families that have dedicated RAM blocks, or may map them
directly to device memory atoms.

Standard synthesis tools recognize single-port and simple dual-port (one
read port and one write port) RAM blocks. Some tools (such as the
Quartus II software) also recognize true dual port RAM blocks that map
to the memory blocks in certain Altera devices. Tools usually do not infer
small RAM blocks because small RAM blocks typically can be
implemented more efficiently using the registers in regular logic.

1 If you are using Quartus II integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any RAM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

1 If your design contains a RAM block that your synthesis tool
does not recognize and infer, the design might require a large
amount of system memory that potentially can cause
compilation problems.

Some synthesis tools provide options to control the implementation of
inferred RAM blocks for Altera devices with TriMatrix™ memory blocks.
For example, Quartus II integrated synthesis provides the ramstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block. Quartus II
integrated synthesis does not map inferred memory into Stratix III
MLABs unless the HDL code specifies the appropriate ramstyle
attribute, although the Fitter may map some memories to MLABs.

f For details about using the ramstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook.

Altera Corporation 6–15
October 2007 Preliminary

Inferring Memory Functions from HDL Code

When you are using a formal verification flow, Altera recommends that
you create RAM blocks in separate entities or modules that contain only
the RAM logic. In certain formal verification flows, for example, when
using Quartus II integrated synthesis, the entity or module containing the
inferred RAM is put into a black box automatically because formal
verification tools do not support RAM blocks. The Quartus II software
issues a warning message when this occurs. If the entity or module
contains any additional logic outside the RAM block, this logic also must
be treated as a black box for formal verification and therefore cannot be
verified.

This section presents several guidelines for inferring RAM functions that
match the dedicated memory architecture in Altera devices, and then
provides recommended HDL code for different types of memory logic.

Use Synchronous Memory Blocks

Altera recommends using synchronous memory blocks for Altera
designs. The TriMatrix memory blocks in Altera’s newest devices are
synchronous, so RAM designs that are targeted towards architectures
that contain these dedicated memory blocks must be synchronous to be
mapped directly into the device architecture. Asynchronous memory
logic is not inferred as a memory block or placed in the device dedicated
memory blocks; the logic is implemented in regular logic cells.

Synchronous memories are supported in all Altera device families. A
memory block is considered synchronous if it uses one of the following
read behaviors:

■ Memory read occurs in a Verilog always block with a clock signal or
a VHDL clocked process.

■ Memory read occurs outside a clocked block, but there is a
synchronous read address (that is, the address used in the read
statement is registered). This type of logic is not always inferred as a
memory block, depending on the target device architecture.

1 The synchronous memory structures in Altera devices differ
from the structures in other vendors’ devices. Match your
design to the target device architecture to achieve the best
results.

Later subsections provide coding recommendations for various memory
types. All of these examples are synchronous to ensure that they can be
directly mapped into the dedicated memory architecture available in
Altera FPGAs.

6–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

f For additional information about the dedicated memory blocks in your
specific device, refer to the appropriate Altera device family data sheet
on the Altera website at www.altera.com.

Avoid Unsupported Reset Conditions

You cannot clear the RAM contents of Altera memory blocks. If your
HDL code describes a RAM with a reset signal for the RAM contents, the
logic is not inferred as a memory block or mapped to dedicated memory
architecture. As a general rule, avoid putting RAM read or write
operations in an always block or process block with a reset signal.

Example 6–9 shows an example of undesirable code where there is a reset
signal that clears part of the RAM contents. Avoid this coding style
because it is not supported in Altera memories.

Example 6–9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device Architecture
module clear_ram
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
mem[address] <= 0;

else if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
end

endmodule

http://www.altera.com

Altera Corporation 6–17
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Example 6–10 shows an example of undesirable code where the reset
signal affects the RAM, although the effect may not be intended. Avoid
this coding style because it is not supported in Altera memories.

Example 6–10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device Architecture
module bad_reset
(

input clock,
input reset,
input we,
input [7:0] data_in,
input [4:0] address,
output reg [7:0] data_out,
input d,
output reg q

);

reg [7:0] mem [0:31];
integer i;

always @ (posedge clock or posedge reset)
begin

if (reset == 1'b1)
q <= 0;

else
begin

if (we == 1'b1)
mem[address] <= data_in;

data_out <= mem[address];
q <= d;

end
end

endmodule

Check Read-During-Write Behavior

It is important to check the read-during-write behavior of the memory
block described in your HDL design as compared to the behavior in your
target device architecture. HDL source code specifies the memory
behavior when you attempt to read and write from the same memory
address in the same clock cycle. The code specifies that the read returns
either the old data at the address, or the new data being written to the
address. This is referred to as the read-during-write behavior of the
memory block. Altera memory blocks have different read-during-write
behavior depending on the target device family, memory mode and block
type.

Synthesis tools map an HDL design into the target device architecture,
with the goal of maintaining the functionality described in your source
code. In some cases, memory blocks map directly into the device

6–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

architecture; however, in some cases, the device architecture cannot
implement the memory behavior described in your source code, so the
logic is not mapped to the dedicated memory blocks in the device. In still
other cases, the software can implement the memory functionality using
some extra logic in addition to the dedicated RAM block. To implement
the behavior in the target device, synthesis software may add bypass
logic around the memory block, which increases the area utilization of the
design and decreases the performance if the memory block is part of the
design's critical path.

In many synthesis tools, you can specify that the read-during-write
behavior is not important to your design; for example, if you never read
from the same address to which you write in the same clock cycle. For
Quartus II integrated synthesis, add the synthesis attribute
ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code. Using this type of attribute prevents the
synthesis tool from using extra logic to implement the memory block, and
in some cases, can allow memory inference when it would otherwise be
impossible.

f For more information about attribute syntax, the no_rw_check
attribute value, or specific options for your synthesis tool, refer to your
synthesis tool documentation or to the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

The following subsections provide coding recommendations for various
memory types. Each example describes the read-during-write behavior
and addresses the support for the memory type in Altera devices.

Single-Clock Synchronous RAM with Old Data Read-During-Write
Behavior

The code examples in this section show Verilog HDL and VHDL code
that infers simple dual port, single-clock synchronous RAM. Single-port
RAM blocks use a similar coding style.

The read-during-write behavior in these examples is to read the old data
at the memory address. Refer to “Check Read-During-Write Behavior” on
page 6–17 for details. Altera recommends that you use this coding style
as long as your design does not require that a simultaneous read and
write to the same RAM location read the new value that is currently being
written to that RAM location.

If you require that the read-during-write results in new data, refer to
“Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior” on page 6–20.

Altera Corporation 6–19
October 2007 Preliminary

Inferring Memory Functions from HDL Code

The simple dual-port RAM code samples shown in Examples 6–11 and
6–12 map directly into Altera TriMatrix memory.

Single-port versions of memory blocks (that is, using the same read
address and write address signals) can allow better RAM utilization than
dual-port memory blocks, depending on the device family.

Example 6–11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-
Write Behavior
module single_clk_ram(

output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address]; // q doesn't get d in this clock cycle

end
endmodule

6–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-Write
Behavior
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY single_clock_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_ram;

ARCHITECTURE rtl OF single_clock_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);
-- VHDL semantics imply that q doesn't get data
-- in this clock cycle

END IF;
END PROCESS;

END rtl;

Single-Clock Synchronous RAM with New Data Read-During-Write
Behavior

These examples describe RAM blocks in which a simultaneous read and
write to the same location reads the new value that is currently being
written to that RAM location.

To implement this behavior in the target device, synthesis software adds
bypass logic around the RAM block. This bypass logic increases the area
utilization of the design and decreases the performance if the RAM block
is part of the design’s critical path. Refer to “Check Read-During-Write
Behavior” on page 6–17 for details. If this behavior is not required for
your design, use the examples from “Single-Clock Synchronous RAM
with Old Data Read-During-Write Behavior” on page 6–18.

The simple dual-port RAM examples shown in Examples 6–13 and 6–14
require bypass the software to create this logic around the RAM block.

Altera Corporation 6–21
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Single-port versions of the Verilog memory block (that is, using the same
read address and write address signals) do not require any logic cells to
create bypass logic in Arria™ GX devices, and Stratix® and Cyclone®
series of devices, because the device memory supports new data read-
during-write behavior when in single-port mode (same clock, same read
and write address).

Example 6–13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-
Write Behavior
module single_clock_wr_ram(

output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)

mem[write_address] = d;
q = mem[read_address]; // q does get d in this clock cycle if we is high

end
endmodule

Note that Example 6–13 is similar to Example 6–11, but Example 6–13
uses a blocking assignment for the write so that the data is assigned
immediately.

An alternative way to create a single-clock RAM is to use an assign
statement to read the address of mem to create the output q, as shown in
following the coding style. By itself, the code describes new data
read-during-write behavior. However, if the RAM output feeds a register
in another hierarchy, then a read-during-write would result in the old
data. Synthesis tools may not infer a RAM block if the tool cannot
determine which behavior is described, such as when the memory feeds
a hard hierarchical partition boundary. For this reason, avoid using this
alternate type of coding style.

reg [7:0] mem [127:0];
reg [6:0] read_address_reg;

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;

read_address_reg <= read_address;
end

assign q = mem[read_address_reg];

6–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–14 uses a concurrent signal assignment to read from the RAM.
By itself, this example describes new data read-during-write behavior.
However, if the RAM output feeds a register in another hierarchy, then a
read-during-write would result in the old data. Synthesis tools may not
infer a RAM block if the tool cannot determine which behavior is
described, such as when the memory feeds a hard hierarchical partition
boundary.

Example 6–14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-Write
Behavior
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY single_clock_rw_ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END single_clock_rw_ram;

ARCHITECTURE rtl OF single_clock_rw_ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

This example does not infer a RAM block for APEX, ACEX, or FLEX
devices by default because the read-during-write behavior depends on
surrounding logic. For Quartus II integrated synthesis, if you do not
require the read-through-write capability, add the synthesis attribute
ramstyle="no_rw_check" to allow the software to choose the
read-during-write behavior of a RAM, rather than use the behavior
specified by your HDL code.

Altera Corporation 6–23
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Simple Dual-Port, Dual-Clock Synchronous RAM

In dual clock designs, synthesis tools cannot accurately infer the
read-during-write behavior because it depends on the timing of the two
clocks within the target device. Therefore, the read-during-write
behavior of the synthesized design is undefined and may differ from
your original HDL code. Refer to “Check Read-During-Write Behavior”
on page 6–17 for details.

When Quartus II integrated synthesis infers this type of RAM, it issues a
warning because of the undefined read-during-write behavior. If this
functionality is acceptable in your design, you can avoid the warning by
adding the synthesis attribute ramstyle="no_rw_check" to allow the
software to choose the read-during-write behavior of a RAM.

The code samples shown in Examples 6–15 and 6–16 show Verilog HDL
and VHDL code that infers dual-clock synchronous RAM. The exact
behavior depends on the relationship between the clocks.

Example 6–15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM
module dual_clock_ram(

output reg [7:0] q,
input [7:0] d,
input [6:0] write_address, read_address,
input we, clk1, clk2

);
reg [6:0] read_address_reg;
reg [7:0] mem [127:0];

always @ (posedge clk1)
begin

if (we)
mem[write_address] <= d;

end

always @ (posedge clk2) begin
q <= mem[read_address_reg];
read_address_reg <= read_address;

end
endmodule

Example 6–16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY dual_clock_ram IS

PORT (
clock1, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)

6–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

);
END dual_clock_ram;
ARCHITECTURE rtl OF dual_clock_ram IS

TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock1)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;

END IF;
END PROCESS;
PROCESS (clock2)
BEGIN

IF (clock2'event AND clock2 = '1') THEN
q <= ram_block(read_address_reg);
read_address_reg <= read_address;

END IF;
END PROCESS;

END rtl;

True Dual-Port Synchronous RAM

The code examples in this section show Verilog HDL and VHDL code
that infers true dual-port synchronous RAM. Different synthesis tools
may differ in their support for these types of memories. This section
describes the inference rules for Quartus II integrated synthesis. This type
of RAM inference is supported only for Arria GX devices, and the Stratix
and Cyclone series of devices.

Altera TriMatrix memory blocks have two independent address ports,
allowing for operations on two unique addresses simultaneously. A read
operation and a write operation can share the same port if they share the
same address. The Quartus II software infers true dual-port RAMs in
Verilog HDL and VHDL with any combination of independent read or
write operations in the same clock cycle, with at most two unique port
addresses, performing two reads and one write, two writes and one read,
or two writes and two reads in one clock cycle with one or two unique
addresses.

In the TriMatrix RAM block architecture, there is no priority between the
two ports. Therefore if you write to the same location on both ports at the
same time, the result is indeterminate. You must ensure your HDL code
does not imply priority for writes to the memory block. For example, if
both ports are defined in the same process block, the code is synthesized

Altera Corporation 6–25
October 2007 Preliminary

Inferring Memory Functions from HDL Code

and simulated sequentially so there would be a priority between the two
ports. If you code does imply a priority, the logic cannot be implemented
in the device RAM blocks.

You must also consider the read-during-write behavior of the RAM
block, to ensure that it can be mapped directly to the device RAM
architecture. Refer to “Check Read-During-Write Behavior” on page 6–17
for details.

When a read and write operation occur on the same port for the same
address, the read operation may behave as follows:

■ Read new data. This mode matches the behavior of TriMatrix
memory blocks.

■ Read old data. This mode is supported only by Stratix III and
Cyclone III TriMatrix memory blocks. This behavior is not possible
in TriMatrix memory blocks of other families.

When a read and write operation occur on different ports for the same
address (also known as mixed port), the read operation may behave as
follows:

■ Read new data. Quartus II integrated synthesis supports this mode
by creating bypass logic around the TriMatrix memory block.

■ Read old data. This behavior is supported by TriMatrix memory
blocks.

The Verilog HDL single-clock code sample shown in Example 6–17 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on
different ports for the same address, the old data in the memory is read.
Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the
memory in the target device will have undefined mixed port read-
during-write behavior because it depends on the relationship between
the clocks.

Example 6–17. Verilog HDL True Dual-Port RAM with Single Clock
module true_dual_port_ram_single_clock
(

input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk,
output reg [(DATA_WIDTH-1):0] q_a, q_b

);

6–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

parameter DATA_WIDTH = 8;
parameter ADDR_WIDTH = 6;

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge clk)
begin // Port A

if (we_a)
begin

ram[addr_a] <= data_a;
q_a <= data_a;

end
else

q_a <= ram[addr_a];
always @ (posedge clk)
begin // Port b

if (we_b)
begin

ram[addr_b] <= data_b;
q_b <= data_b;

end
else

q_b <= ram[addr_b];
end

endmodule

If you use Verilog read statements shown below instead of the if-else
statements in Example 6–17, the read results in old data when a read and
write operation occur at the same time for the same address on the same
port or mixed ports. This behavior is supported only in the TriMatrix
memories of Stratix III and Cyclone III devices, and is not inferred as
memory for other device families.

always @ (posedge clk)
begin // Port A
 if (we_a)

 ram[addr_a] <= data_a;

 q_a <= ram[addr_a];
end

always @ (posedge clk)
begin // Port B
 if (we_b)

 ram[addr_b] <= data_b;

 q_b <= ram[addr_b];
end

The VHDL single-clock code sample shown in Example 6–18 maps
directly into Altera TriMatrix memory. When a read and write operation
occur on the same port for the same address, the new data being written
to the memory is read. When a read and write operation occur on

Altera Corporation 6–27
October 2007 Preliminary

Inferring Memory Functions from HDL Code

different ports for the same address, the old data in the memory is read.
Simultaneous writes to the same location on both ports results in
indeterminate behavior.

A dual-clock version of this design describes the same behavior, but the
memory in the target device will have undefined mixed port read-
during-write behavior because it depends on the relationship between
the clocks.

Example 6–18. VHDL True Dual-Port RAM with Single Clock
library ieee;
use ieee.std_logic_1164.all;

entity true_dual_port_ram_single_clock is

generic
(

DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 6

);

port
(

clk : in std_logic;
addr_a: in natural range 0 to 2**ADDR_WIDTH - 1;
addr_b: in natural range 0 to 2**ADDR_WIDTH - 1;
data_a: in std_logic_vector((DATA_WIDTH-1) downto 0);
data_b: in std_logic_vector((DATA_WIDTH-1) downto 0);
we_a: in std_logic := '1';
we_b: in std_logic := '1';
q_a : out std_logic_vector((DATA_WIDTH -1) downto 0)
q_b : out std_logic_vector((DATA_WIDTH -1) downto 0)

);

end true_dual_port_ram_single_clock;

architecture rtl of true_dual_port_ram_single_clock is

-- Build a 2-D array type for the RAM
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array(raddr'high downto 0) of word_t;

-- Declare the RAM signal.
signal ram : memory_t;

begin

process(clk)
begin
if(rising_edge(clk)) then -- Port A

if(we_a = '1') then
ram(addr_a) <= data_a;

-- Read-during-write on the same port returns NEW data
q_a <= data_a;

else
-- Read-during-write on the mixed port returns OLD data

6–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

q_a <= ram(addr_a);
end if;

end process;

process(clk)
begin
if(rising_edge(clk)) then -- Port B

if(we_b = '1') then
ram(addr_b) <= data_b;

-- Read-during-write on the same port returns NEW data
q_b <= data_b;

else
-- Read-during-write on the mixed port returns OLD data
q_b <= ram(addr_b);

end if;
end if;
end process;

end rtl;

Specifying Initial Memory Contents at Power-Up

Your synthesis tool may offer various ways to specify the initial contents
of an inferred memory.

1 Certain device memory types do not support initialized
memory, such as the M-RAM blocks in Stratix and Stratix II
devices.

1 Note that there are slight power-up and initialization
differences between dedicated RAM blocks and the Stratix III
MLAB memory due to the continuous read of the MLAB. Altera
dedicated RAM block outputs always power-up to zero and are
set to the initial value on the first read. For example, if address 0
is pre-initialized to FF, the RAM block powers up with the
output at 0. A subsequent read after power up from address 0
outputs the pre-initialized value of FF. Therefore, if a RAM is
powered up and an enable (read enable or clock enable) is held
low, then the power-up output of “0” is maintained until the
first valid read cycle. The Stratix III MLAB is implemented using
registers that power-up to 0, but are initialized to their initial
value immediately at power-up or reset. You will therefore see
the initial value regardless of the enable status. Quartus II
integrated synthesis does not map inferred memory to MLABs
unless the HDL code specifies the appropriate ramstyle
attribute.

Altera Corporation 6–29
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Quartus II integrated synthesis supports the ram_init_file synthesis
attribute that allows you to specify a Memory Initialization File (.mif) for
an inferred RAM block.

f For information about the ram_init_file attribute, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For information about synthesis attributes in other synthesis
tools, refer to the tool vendor’s documentation.

In Verilog HDL, you can use an initial block to initialize the contents of
an inferred memory. Quartus II integrated synthesis automatically
converts the initial block into a MIF for the inferred RAM. Example 6–19
shows Verilog HDL code that infers a simple dual-port RAM block and
corresponding MIF file.

Example 6–19. Verilog HDL RAM with Initialized Contents
module ram_with_init(

output reg [7:0] q,
input [7:0] d,
input [4:0] write_address, read_address,
input we, clk

);
reg [7:0] mem [0:31];
integer i;

initial begin
for (i = 0; i < 32; i = i + 1)

mem[i] = i[7:0];
end

always @ (posedge clk) begin
if (we)

mem[write_address] <= d;
q <= mem[read_address];

end
endmodule

Quartus II integrated synthesis and other synthesis tools also support the
$readmemb and $readmemh commands so that RAM and ROM
initialization work identically in synthesis and simulation. Example 6–20
shows an initial block that initializes an inferred RAM block using the
$readmemb command.

Example 6–20. Verilog HDL RAM Initialized with the readmemb Command
reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

6–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

In VHDL, you can initialize the contents of an inferred memory by
specifying a default value for the corresponding signal. Quartus II
integrated synthesis automatically converts the default value into a MIF
for the inferred RAM. Example 6–21 shows VHDL code that infers a
simple dual-port RAM block and corresponding MIF file.

Example 6–21. VHDL RAM with Initialized Contents
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
use ieee.numeric_std.all;

ENTITY ram_with_init IS
PORT(

clock: IN STD_LOGIC;
data: IN UNSIGNED (7 DOWNTO 0);
write_address: IN integer RANGE 0 to 31;
read_address: IN integer RANGE 0 to 31;
we: IN std_logic;
q: OUT UNSIGNED (7 DOWNTO 0));

END;

ARCHITECTURE rtl OF ram_with_init IS

TYPE MEM IS ARRAY(31 DOWNTO 0) OF unsigned(7 DOWNTO 0);
FUNCTION initialize_ram

return MEM is
variable result : MEM;

BEGIN
FOR i IN 31 DOWNTO 0 LOOP

result(i) := to_unsigned(natural(i), natural'(8));
END LOOP;
RETURN result;

END initialize_ram;

SIGNAL ram_block : MEM := initialize_ram;
BEGIN

PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
ram_block(write_address) <= data;
END IF;
q <= ram_block(read_address);

END IF;
END PROCESS;

END rtl;

Altera Corporation 6–31
October 2007 Preliminary

Inferring Memory Functions from HDL Code

ROM Functions—Inferring altsyncram and lpm_rom
Megafunctions from HDL Code

To infer ROM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncram or lpm_rom megafunctions,
depending on the target device family, only for device families that have
dedicated memory blocks.

ROMs are inferred when a case statement exists in which a value is set
to a constant for every choice in the case statement. Because small ROMs
typically achieve the best performance when they are implemented using
the registers in regular logic, each ROM function must meet a minimum
size requirement to be inferred and placed into memory.

1 If you are using Quartus II integrated synthesis, you can direct
the software to infer ROM blocks for all sizes with the Allow
Any ROM Size for Recognition option under More Settings on
the Analysis & Synthesis Settings page of the Settings dialog
box.

Some synthesis tools provide options to control the implementation of
inferred ROM blocks for Altera devices with TriMatrix memory blocks.
For example, Quartus II integrated synthesis provides the romstyle
synthesis attribute to specify the type of memory block or to specify the
use of regular logic instead of a dedicated memory block.

f For details about using the romstyle attribute, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook. For
information about synthesis attributes in other synthesis tools, refer to
the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook.

When you are using a formal verification flow, Altera recommends that
you create ROM blocks in separate entities or modules that contain only
the ROM logic because you may need to treat the entity and module as a
black box during formal verification.

1 Because formal verification tools do not support ROM
megafunctions, Quartus II integrated synthesis does not infer
ROM megafunctions when a formal verification tool is selected.

The Verilog HDL and VHDL code samples shown in Examples 6–22
and 6–23 infer synchronous ROM blocks. Depending on the device
family’s dedicated RAM architecture, the ROM logic may have to be
synchronous; consult the device family handbook for details.

6–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

For device architectures with synchronous RAM blocks, such as the
Stratix series devices and newer device families, either the address or the
output has to be registered for ROM code to be inferred. When output
registers are used, the registers are implemented using the input registers
of the RAM block, but the functionality of the ROM is not changed. If you
register the address, the power-up state of the inferred ROM can be
different from the HDL design. In this scenario, the synthesis software
issues a warning. The Quartus II Help explains the condition under
which the functionality changes when you are using Quartus II
integrated synthesis.

These ROM code samples map directly to the Altera TriMatrix memory
architecture.

Example 6–22. Verilog HDL Synchronous ROM
module sync_rom (clock, address, data_out);

input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin

case (address)
8'b00000000: data_out = 6'b101111;
8'b00000001: data_out = 6'b110110;
...
8'b11111110: data_out = 6'b000001;
8'b11111111: data_out = 6'b101010;

endcase
end

endmodule

Example 6–23. VHDL Synchronous ROM
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY sync_rom IS
PORT (

clock: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR(7 downto 0);
data_out: OUT STD_LOGIC_VECTOR(5 downto 0)

);
END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)

BEGIN
IF rising_edge (clock) THEN

CASE address IS

Altera Corporation 6–33
October 2007 Preliminary

Inferring Memory Functions from HDL Code

WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data_out <= "110110";
...
WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END IF;
END PROCESS;

END rtl;

Shift Registers—Inferring the altshift_taps Megafunction from
HDL Code

To infer shift registers, synthesis tools detect a group of shift registers of
the same length and convert them to an altshift_taps megafunction.
To be detected, all the shift registers must have the following
characteristics:

■ Use the same clock and clock enable
■ Do not have any other secondary signals
■ Have equally spaced taps that are at least three registers apart

When you are using a formal verification flow, Altera recommends that
you create shift register blocks in separate entities or modules containing
only the shift register logic, because you may need to treat the entity or
module as a black box during formal verification.

1 Because formal verification tools do not support shift register
megafunctions, the Quartus II integrated synthesis does not
infer the altshift_taps megafunction when a formal
verification tool is selected. You can select EDA tools for use
with your Quartus II project on the EDA Tool Settings page of
the Settings dialog box.

Synthesis software recognizes shift registers only for device families that
have dedicated RAM blocks and the software uses certain guidelines to
determine the best implementation. The following guidelines are
followed in Quartus II integrated synthesis and also are generally
followed by other EDA tools:

■ For FLEX® 10K and ACEX® 1K devices, the software does not infer
altshift_taps megafunctions because FLEX 10K and ACEX 1K
devices have a relatively small amount of dedicated memory.

■ For APEX™ 20K and APEX II devices, the software infers the
altshift_taps megafunction only if the shift register has more
than a total of 128 bits. Smaller shift registers typically do not benefit
from implementation in dedicated memory.

6–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ For Arria GX devices, and the Stratix and Cyclone series devices, the
software determines whether to infer the altshift_taps
megafunction based on the width of the registered bus (W), the
length between each tap (L), and the number of taps (N).
● If the registered bus width is one (W = 1), the software infers

altshift_taps if the number of taps times the length
between each tap is greater than or equal to 64 (N × L ≥ 64).

● If the registered bus width is greater than one (W > 1), the
software infers altshift_taps if the registered bus width
times the number of taps times the length between each tap is
greater than or equal to 32 (W × N × L ≥ 12).

If the length between each tap (L) is not a power of two, the software uses
more logic to decode the read and write counters. This situation occurs
because for different sizes of shift registers, external decode logic that
uses logic elements (LEs) or Adaptive Logic Modules (ALMs) is required
to implement the function. This decode logic eliminates the performance
and utilization advantages of implementing shift registers in memory.

The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in a Verilog HDL or
VHDL output file for simulation tools because their node names do not
exist after synthesis.

Simple Shift Register

The code sample shown in Example 6–24 and Example 6–25 show a
simple, single-bit wide, 64-bit long shift register. The synthesis software
implements the register (W = 1 and M = 64) in an altshift_taps
megafunction for supported devices. If the length of the register is less
than 64 bits, the software implements the shift register in logic.

Example 6–24. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
module shift_1x64 (clk, shift, sr_in, sr_out);
 input clk, shift;

input sr_in;
output sr_out;

reg [63:0] sr;

always @ (posedge clk)
begin

if (shift == 1'b1)
begin

sr[63:1] <= sr[62:0];
sr[0] <= sr_in;

end
end
assign sr_out = sr[63];

endmodule

Altera Corporation 6–35
October 2007 Preliminary

Inferring Memory Functions from HDL Code

Example 6–25. VHDL Single-Bit Wide, 64-Bit Long Shift Register
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY shift_1x64 IS
 PORT (
 clk: IN STD_LOGIC;
 shift: IN STD_LOGIC;
 sr_in: IN STD_LOGIC;
 sr_out: OUT STD_LOGIC
);
 END shift_1x64;

ARCHITECTURE arch OF shift_1x64 IS
 TYPE sr_length IS ARRAY (63 DOWNTO 0) OF STD_LOGIC;
 SIGNAL sr: sr_length;
BEGIN
 PROCESS (clk)
 BEGIN
 IF (clk'EVENT and clk = '1') THEN
 IF (shift = '1') THEN
 sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
 sr(0) <= sr_in;
 END IF;
 END IF;
 END PROCESS;
 sr_out <= sr(63);
END arch;

Shift Register with Evenly Spaced Taps

The code samples shown in Examples 6–26 and 6–27 show a Verilog HDL
and VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with
evenly spaced taps at 15, 31, and 47. The synthesis software implements
this function in a single altshift_taps megafunction and maps it to
RAM in supported devices.

Example 6–26. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
module shift_8x64_taps (clk, shift, sr_in, sr_out, sr_tap_one, sr_tap_two, sr_tap_three);

input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

 always @ (posedge clk)
begin

if (shift == 1'b1)
begin

for (n = 63; n>0; n = n-1)
begin

sr[n] <= sr[n-1];
end

6–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

sr[0] <= sr_in;
end

end
assign sr_tap_one = sr[15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];

endmodule

Example 6–27. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY shift_8x64_taps IS

PORT (
clk: IN STD_LOGIC;
shift: IN STD_LOGIC;
sr_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_one: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_two : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_tap_three: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
sr_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END shift_8x64_taps;

ARCHITECTURE arch OF shift_8x64_taps IS
SUBTYPE sr_width IS STD_LOGIC_VECTOR(7 DOWNTO 0);
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN

IF (clk'EVENT and clk = '1') THEN
IF (shift = '1') THEN

sr(63 DOWNTO 1) <= sr(62 DOWNTO 0);
sr(0) <= sr_in;

END IF;
END IF;

END PROCESS;
sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_three <= sr(47);
sr_out <= sr(63);

END arch;

Altera Corporation 6–37
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Coding
Guidelines for
Registers and
Latches

This section provides device-specific coding recommendations for Altera
registers and latches. Understanding the architecture of the target Altera
device helps ensure that your code provides the expected results and
achieves the optimal quality of results.

This section provides guidelines in the following areas:

■ “Register Power-Up Values in Altera Devices”
■ “Secondary Register Control Signals Such as Clear and Clock

Enable” on page 6–39
■ “Latches” on page 6–43

Register Power-Up Values in Altera Devices

Registers in the device core always power up to a low (0) logic level on all
Altera devices. However, there are ways to implement logic such that
registers behave as if they were powering up to a high (1) logic level.

If you use a preset signal on a device that does not support presets in the
register architecture, then your synthesis tool may convert the preset
signal to a clear signal, which requires synthesis to perform an
optimization referred to as NOT gate push-back. NOT gate push-back adds
an inverter to the input and the output of the register so that the reset and
power-up conditions will appear to be high but the device operates as
expected. In this case, your synthesis tool may issue a message informing
you about the power-up condition. The register itself powers up low, but
the register output is inverted so the signal that arrives at all destinations
is high.

Due to these effects, if you specify a non-zero reset value, you may cause
your synthesis tool to use the asynchronous clear (aclr) signals available
on the registers to implement the high bits with NOT gate push-back. In
that case, the registers look as though they power up to the specified reset
value. You see this behavior, for example, if your design targets
FLEX 10KE or ACEX devices.

When a load signal is available in the device, your synthesis tools can
implement a reset of 1 or 0 value by using an asynchronous load of 1 or
0. When the synthesis tool uses an asynchronous load signal, it is not
performing NOT gate push-back, so the registers power up to a 0 logic
level.

f For additional details, refer to the appropriate device family handbook
or the appropriate handbook of the Altera website at www.altera.com.

6–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Designers typically use an explicit reset signal for the design, which
forces all registers into their appropriate values after reset but not
necessarily at power-up. You can create your design such that the
asynchronous reset allows the board to operate in a safe condition and
then you can bring up the design with the reset active. This is a good
practice so you do not depend on the power-up conditions of the device.

You can make the your design more stable and avoid potential glitches by
synchronizing external or combinational logic of the device architecture
before you drive the asynchronous control ports of registers.

f For additional information about good synchronous design practices,
refer to the Design Recommendations for Altera Devices chapter in volume 1
of the Quartus II Handbook.

If you want to force a particular power-up condition for your design, use
the synthesis options available in your synthesis tool. With Quartus II
integrated synthesis, you can apply the Power-Up Level logic option.
You can also apply the option with an altera_attribute assignment
in your source code. Using this option forces synthesis to perform NOT
gate push-back because synthesis tools cannot actually change the
power-up states of core registers.

You can apply the Quartus II integrated synthesis Power-Up Level
assignment to a specific register or to a design entity, module or
subdesign. If you do so, every register in that block receives the value.
Registers power up to 0 by default; therefore you can use this assignment
to force all registers to power up to 1 using NOT gate push-back.

1 Be aware that using NOT gate push-back as a global assignment
could slightly degrade the quality of results due to the number
of inverters that are needed. In some situations, issues are
caused by enable or secondary control logic inference. It may
also be more difficult to migrate such a design to an ASIC or a
HardCopy® device. You can simulate the power-up behavior in
a functional simulation if you use initialization.

f The Power-Up Level option and the altera_attribute assignment
are described in the Quartus II Integrated Synthesis chapter in volume 1 of
the Quartus II Handbook.

Altera Corporation 6–39
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Some synthesis tools can also read the default or initial values for
registered signals and implement this behavior in the device. For
example, Quartus II integrated synthesis converts default values for
registered signals into Power-Up Level settings. That way, the
synthesized behavior matches the power-up state of the HDL code
during a functional simulation.

For example, the code samples in Example 6–28 and Example 6–29 both
infer a register for q and set its power-up level to high (while the reset
value is 0).

Example 6–28. Verilog Register with Reset and High Power-Up Value
reg q = 1’b1;

always @ (posedge clk or posedge aclr)
begin
 if (aclr)
 q <= 1'b0;
 else
 q <= d;
end

Example 6–29. VHDL Register with Reset and High Power-Up Level
SIGNAL q : STD_LOGIC := '1'; -- q has a default value of '1'

PROCESS (clk, reset)
BEGIN
 IF (reset = '1') THEN
 q <= '0';
 ELSIF (rising_edge(clk)) THEN
 q <= d;
 END IF;
END PROCESS;

Secondary Register Control Signals Such as Clear and Clock
Enable

FPGA device architectures contain registers, also known as “flipflops”.
The registers in Altera FPGAs provide a number of secondary control
signals (such as clear and enable signals) that you can use to implement
control logic for each register without using extra logic cells. Device
families vary in their support for secondary signals, so consult the device
family data sheet to verify which signals are available in your target
device.

6–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. The control
signals have a certain priority due to the nature of the architecture, so
your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic,
so getting functionally correct results is always possible. However, if
your design requirements are flexible in terms of which control signals
are used and in what priority, match your design to the target device
architecture to achieve the most efficient results. If the priority of the
signals in your design is not the same as that of the target architecture,
then extra logic may be required to implement the control signals. This
extra logic uses additional device resources, and can cause additional
delays for the control signals.

In addition, there are certain cases where using logic other than the
dedicated control logic in the device architecture can have a larger
impact. For example, the clock enable signal has priority over the
synchronous reset or clear signal in the device architecture. The clock
enable turns off the clock line in the logic array block (LAB), and the clear
signal is synchronous. So in the device architecture, the synchronous
clear takes effect only when a clock edge occurs.

If you code a register with a synchronous clear signal that has priority
over the clock enable signal, the software must emulate the clock enable
functionality using data inputs to the registers. Because the signal does
not use the clock enable port of a register, you cannot apply a Clock
Enable Multicycle constraint. In this case, following the priority of signals
available in the device is clearly the best choice for the priority of these
control signals, and using a different priority causes unexpected results
with an assignment to the clock enable signal.

1 The priority order for secondary control signals in Altera
devices differs from the order for other vendors’ devices. If your
design requirements are flexible regarding priority, verify that
the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors
and try to match your target device architecture to achieve the
best results.

Altera Corporation 6–41
October 2007 Preliminary

Coding Guidelines for Registers and Latches

The signal order is the same for all Altera device families, although as
noted previously, not all device families provide every signal. The
following priority order is observed:

1. Asynchronous Clear, aclr—highest priority
2. Preset, pre
3. Asynchronous Load, aload
4. Enable, ena
5. Synchronous Clear, sclr
6. Synchronous Load, sload
7. Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that
creates a register with the aclr, aload, and ena control signals.

1 The Verilog HDL example (Example 6–30) does not have adata
on the sensitivity list, but the VHDL example (Example 6–31)
does. This is a limitation of the Verilog HDL language—there is
no way to describe an asynchronous load signal (in which q
toggles if adata toggles while aload is high). All synthesis
tools should infer an aload signal from this construct despite
this limitation. When they perform such inference, you may see
information or warning messages from the synthesis tool.

Example 6–30. Verilog HDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
module dff_control(clk, aclr, aload, ena, data, adata, q);

input clk, aclr, aload, ena, data, adata;
output q;

reg q;

always @ (posedge clk or posedge aclr or posedge aload)
begin

if (aclr)
q <= 1'b0;

else if (aload)
q <= adata;

else if (ena)
q <= data;

end
endmodule

6–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–31. VHDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff_control IS
PORT (

 clk: IN STD_LOGIC;
 aclr: IN STD_LOGIC;
 aload: IN STD_LOGIC;
 adata: IN STD_LOGIC;
 ena: IN STD_LOGIC;

 data: IN STD_LOGIC;
 q: OUT STD_LOGIC

);
END dff_control;

ARCHITECTURE rtl OF dff_control IS
BEGIN

PROCESS (clk, aclr, aload, adata)
BEGIN

 IF (aclr = '1') THEN
 q <= '0';
 ELSIF (aload = '1') THEN
 q <= adata;
 ELSE

IF (clk = '1' AND clk'event) THEN
IF (ena ='1') THEN

 q <= data;
END IF;

END IF;
END IF;

END PROCESS;
END rtl;

The preset signal is not available in many device families, so the preset
signal is not included in the examples.

Creating many registers with different sload and sclr signals can make
packing the registers into LABs difficult for the Quartus II Fitter because
the sclr and sload signals are LAB-wide signals. In addition, using the
LAB-wide sload signal prevents the Fitter from packing registers using
the quick feedback path in the device architecture, which means that
some registers cannot be packed with other logic.

Synthesis tools typically restrict use of sload and sclr signals to cases
in which there are enough registers with common signals to allow good
LAB packing. Using the LUT to implement the signals is always more
flexible if it is available. Because different device families offer different
numbers of control signals, inference of these signals is also device-
specific. For example, Stratix II devices have more flexibility than
Stratix devices with respect to secondary control signals, so synthesis
tools might infer more sload and sclr signals for Stratix II devices.

Altera Corporation 6–43
October 2007 Preliminary

Coding Guidelines for Registers and Latches

If you use these additional control signals, use them in the priority order
that matches the device architecture. To achieve the most efficient results,
ensure the sclr signal has a higher priority than the sload signal in the
same way that aclr has higher priority than aload in the previous
examples. Remember that the register signals are not inferred unless the
design meets the conditions described previously. However, if your HDL
described the desired behavior, the software always implements logic
with the correct functionality.

In Verilog HDL, the following code for sload and sclr could replace
the if (ena) q <= data; statements in the Verilog HDL example
shown in Example 6–30 on page 6–41 (after adding the control signals to
the module declaration).

Example 6–32. Verilog HDL sload and sclr Control Signals
if (ena) begin
 if (sclr)
 q <= 1'b0;
 else if (sload)
 q <= sdata;
 else
 q <= data;
end

In VHDL, the following code for sload and sclr could replace the IF
(ena ='1') THEN q <= data; END IF; statements in the VHDL
example shown in Example 6–31 on page 6–42 (after adding the control
signals to the entity declaration).

Example 6–33. VHDL sload and sclr Control Signals
IF (ena ='1') THEN
 IF (sclr = '1') THEN
 q <= '0';
 ELSIF (sload = '1') THEN
 q <= sdata;
 ELSE
 q <= data;
 END IF;
END IF;

Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned.

1 Altera recommends that you design without the use of latches
whenever possible.

6–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

f For additional information about the issues involved in designing with
latches and all combinational loops, refer to the Design Recommendations
for Altera Devices chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a
latch as detailed in “Unintentional Latch Generation”. If you do intend to
infer a latch, it is important to infer it correctly to guarantee correct device
operation as detailed in “Inferring Latches Correctly” on page 6–45.

Unintentional Latch Generation

When you are designing combinational logic, certain coding styles can
create an unintentional latch. For example, when CASE or IF statements
do not cover all possible input conditions, latches may be required to hold
the output if a new output value is not assigned. Check your synthesis
tool messages for references to inferred latches. If your code
unintentionally creates a latch, make code changes to remove the latch.

1 Latches have limited support in formal verification tools.
Therefore, ensure that you do not infer latches unintentionally.
For example, an incomplete CASE statement may create a latch
when you are using formal verification in your design flow.

The full_case attribute can be used in Verilog HDL designs to treat
unspecified cases as don’t care values (X). However, using the
full_case attribute can cause simulation mismatches because this
attribute is a synthesis-only attribute, so simulation tools still treat the
unspecified cases as latches.

f Refer to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook for more information about using attributes in
your synthesis tool. The Quartus II Integrated Synthesis chapter provides
an example explaining possible simulation mismatches.

Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE
statement can also generate a latch. Don’t care (X) assignments on the
default conditions are useful in preventing latch generation. For the best
logic optimization, assign the default CASE or final ELSE value to don’t
care (X) instead of a logic value.

The VHDL sample code shown in Example 6–34 prevents unintentional
latches. Without the final ELSE clause, this code creates unintentional
latches to cover the remaining combinations of the sel inputs. When you
are targeting a Stratix device with this code, omitting the final ELSE
condition can cause the synthesis software to use up to six LEs, instead of
the three it uses with the ELSE statement. Additionally, assigning the
final ELSE clause to 1 instead of X can result in slightly more LEs because
the synthesis software cannot perform as much optimization when you
specify a constant value compared to a don’t care value.

Altera Corporation 6–45
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Example 6–34. VHDL Code Preventing Unintentional Latch Creation
LIBRARY ieee;
USE IEEE.std_logic_1164.all;

ENTITY nolatch IS
PORT (a,b,c: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (4 DOWNTO 0);
oput: OUT STD_LOGIC);

END nolatch;

ARCHITECTURE rtl OF nolatch IS
BEGIN

PROCESS (a,b,c,sel) BEGIN
IF sel = "00000" THEN

oput <= a;
ELSIF sel = "00001" THEN

oput <= b;
ELSIF sel = "00010" THEN

oput <= c;
ELSE --- Prevents latch inference

oput <= ''X'; --/
END IF;

END PROCESS;
END rtl;

Inferring Latches Correctly

Synthesis tools can infer a latch that does not exhibit the glitch and timing
hazard problems typically associated with combinational loops.

1 Any use of latches generates warnings and is flagged if the
design is migrated to a HardCopy structured ASIC. In addition,
timing analysis does not completely model latch timing in some
cases. Do not use latches unless you are very certain that your
design requires it, and you fully understand the impact of using
the latches.

When using Quartus II integrated synthesis, latches that are inferred by
the software are reported in the User-Specified and Inferred Latches
section of the Compilation Report. This report indicates whether the latch
is considered safe and free of timing hazards.

If a latch or combinational loop in your design is not listed in the
User-Specified and Inferred Latches report, it means that it was not
inferred as a safe latch by the software and is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are
at risk of timing hazards. These entries indicate possible problems with
your design that you should investigate. However, it is possible to have

6–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

a correct design that includes combinational loops. For example, it is
possible that the combinational loop cannot be sensitized. This can occur
in cases where there is an electrical path in the hardware, but either the
designer knows that the circuit will never encounter data that causes that
path to be activated, or the surrounding logic is set up in a mutually
exclusive manner that prevents that path from ever being sensitized,
independent of the data input.

For macrocell-based devices such as MAX® 7000AE and MAX 3000A, all
data (D-type) latches and set-reset (S-R) latches listed in the Analysis &
Synthesis User-Specified and Inferred Latches table have an
implementation free of timing hazards such as glitches. The
implementation includes a cover term to ensure there is no glitching, and
includes a single macrocell in the feedback loop.

For 4-input LUT-based devices such as Stratix devices, the Cyclone series,
and MAX II devices, all latches in the User-Specified and Inferred
Latches table with a single LUT in the feedback loop are free of timing
hazards when a single input changes. Because of the hardware behavior
of the LUT, the output does not glitch when a single input toggles
between two values that are supposed to produce the same output value.
For example, a D-type input toggling when the enable input is inactive,
or a set input toggling when a reset input with higher priority is active.
This hardware behavior of the LUT means that no cover term is needed
for a loop around a single LUT. The Quartus II software uses a single LUT
in the feedback loop whenever possible. A latch that has data, enable, set,
and reset inputs in addition to the output fed back to the input cannot be
implemented in a single 4-input LUT. If the Quartus II software cannot
implement the latch with a single-LUT loop because there are too many
inputs, then the User-Specified and Inferred Latches table indicates that
the latch is not free of timing hazards.

For 6-input LUT-based devices, the software can implement all latch
inputs with a single adaptive look-up table (ALUT) in the combinational
loop. Therefore, all latches in the User-Specified and Inferred Latches
table are free of timing hazards when a single input changes.

If a latch is listed as a safe latch, other Quartus II optimizations, such as
physical synthesis netlist optimizations in the Fitter, maintain the
hazard-free performance.

To ensure hazard-free behavior, only one control input may change at a
time. Changing two inputs simultaneously, such as deasserting set and
reset at the same time, or changing data and enable at the same time, can
produce incorrect behavior in any latch.

Altera Corporation 6–47
October 2007 Preliminary

Coding Guidelines for Registers and Latches

Quartus II integrated synthesis infers latches from always blocks in
Verilog HDL and process statements in VHDL, but not from
continuous assignments in Verilog HDL or concurrent signal
assignments in VHDL. These rules are the same as for register inference.
The software infers registers or flipflops only from always blocks and
process statements.

The Verilog HDL code sample shown in Example 6–35 infers a S-R latch
correctly in the Quartus II software.

Example 6–35. Verilog HDL Set-Reset Latch
module simple_latch (

input SetTerm,
input ResetTerm,
output reg LatchOut
);

always @ (SetTerm or ResetTerm) begin
if (SetTerm)

LatchOut = 1'b1
else if (ResetTerm)

LatchOut = 1'b0
end

endmodule

The VHDL code sample shown in Example 6–36 infers a D-type latch
correctly in the Quartus II software.

Example 6–36. VHDL Data Type Latch
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

ENTITY simple_latch IS
 PORT (
 enable, data : IN STD_LOGIC;
 q : OUT STD_LOGIC
);
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
 BEGIN
 IF (enable = '1') THEN
 q <= data;
 END IF;
 END PROCESS latch;
END rtl;

6–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The following example shows a Verilog HDL continuous assignment that
does not infer a latch in the Quartus II software. The behavior is similar
to a latch, but it may not function correctly as a latch and its timing is not
analyzed as a latch.

assign latch_out = (~en & latch_out) | (en & data);

Quartus II integrated synthesis also creates safe latches when possible for
instantiations of the lpm_latch megafunction. You can use this
megafunction to create a latch with any combination of data, enable, set,
and reset inputs. The same limitations apply for creating safe latches as
for inferring latches from HDL code.

Inferring the Altera lpm_latch function in another synthesis tool
ensures that the implementation is also recognized as a latch in the
Quartus II software. If a third-party synthesis tool implements a latch
using the lpm_latch megafunction, then the Quartus II integrated
synthesis lists the latch in the User-Specified and Inferred Latches table
in the same way as it lists latches created in HDL source code. The coding
style necessary to produce an lpm_latch implementation may depend
on your synthesis tool. Some third-party synthesis tools list the number
of lpm_latch functions that are inferred.

For LUT-based families, the Fitter uses global routing for control signals
including signals that Analysis and Synthesis identifies as latch enables.
In some cases the global insertion delay may decrease the timing
performance. If necessary, you can turn off the Quartus II Global Signal
logic option to manually prevent the use of global signals. Global latch
enables are listed in the Global & Other Fast Signals table in the
Compilation Report.

General Coding
Guidelines

This section helps you understand how synthesis tools map various types
of HDL code into the target Altera device. Following Altera
recommended coding styles, and in some cases designing logic structures
to match the appropriate device architecture, can provide significant
improvements in the design’s quality of results.

This section provides coding guidelines for the following logic structures:

■ “Tri-State Signals”. This section explains how to create tri-state
signals for bidirectional I/O pins.

■ “Adder Trees” on page 6–50. This section explains the different
coding styles that lead to optimal results for devices with 4-input
look-up tables and 6-input adaptive look-up tables.

■ “State Machines” on page 6–52. This section helps ensure the best
results when you use state machines.

Altera Corporation 6–49
October 2007 Preliminary

General Coding Guidelines

■ “Multiplexers” on page 6–60. This section explains how multiplexers
can be synthesized for 4-input LUT devices, addresses common
problems, and provides guidelines to achieve optimal resource
utilization.

■ “Cyclic Redundancy Check Functions” on page 6–69. This section
provides guidelines for getting good results when designing CRC
functions.

■ “Comparators” on page 6–71. This section explains different
comparator implementations and provides suggestions for
controlling the implementation.

■ “Counters” on page 6–73. This section provides guidelines to ensure
your counter design targets the device architecture optimally.

Tri-State Signals

When you are targeting Altera devices, you should use tri-state signals
only when they are attached to top-level bidirectional or output pins.
Avoid lower level bidirectional pins, and avoid using the Z logic value
unless it is driving an output or bidirectional pin.

Synthesis tools implement designs with internal tri-state signals correctly
in Altera devices using multiplexer logic, but Altera does not recommend
this coding practice.

1 In hierarchical block-based or incremental design flows, a
hierarchical boundary cannot contain any bidirectional ports,
unless the lower level bidirectional port is connected directly
through the hierarchy to a top-level output pin without
connecting to any other design logic. If you use boundary
tri-states in a lower level block, synthesis software must push
the tri-states through the hierarchy to the top-level to make use
of the tri-state drivers on output pins of Altera devices. Because
pushing tri-states requires optimizing through hierarchies,
lower level tri-states are restricted with block-based design
methodologies.

The code examples shown in Examples 6–37 and 6–38 show Verilog HDL
and VHDL code that creates tri-state bidirectional signals.

Example 6–37. Verilog HDL Tri-State Signal
module tristate (myinput, myenable, mybidir);

input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);

endmodule

6–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–38. VHDL Tri-State Signal
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY tristate IS
PORT (

mybidir : INOUT STD_LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
);

END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0') ELSE myinput;
END rtl;

Adder Trees

Structuring adder trees appropriately to match your targeted Altera
device architecture can result in significant performance and density
improvements. A good example of an application using a large adder tree
is a finite impulse response (FIR) correlator. Using a pipelined binary or
ternary adder tree appropriately can greatly improve the quality of your
results.

This section explains why coding recommendations are different for
Altera 4-input LUT devices and 6-input LUT devices.

Architectures with 4-Input LUTs in Logic Elements

Architectures such as Stratix devices and the Cyclone series, APEX series,
and FLEX series devices contain 4-input LUTs as the standard
combinational structure in the LE.

If your design can tolerate pipelining, the fastest way to add three
numbers A, B, and C in devices that use 4-input lookup tables is to add
A + B, register the output, and then add the registered output to C.
Adding A + B takes one level of logic (one bit is added in one LE), so this
runs at full clock speed. This can be extended to as many numbers as
desired.

Altera Corporation 6–51
October 2007 Preliminary

General Coding Guidelines

In the code sample shown in Example 6–39, five numbers A, B, C, D, and E
are added. Adding five numbers in devices that use 4-input lookup tables
requires four adders and three levels of registers for a total of 64 LEs
(for 16-bit numbers).

Example 6–39. Verilog HDL Pipelined Binary Tree
module binary_adder_tree (A, B, C, D, E, CLK, OUT);

parameter WIDTH = 16;
input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] sum1, sum2, sum3, sum4;
reg [WIDTH-1:0] sumreg1, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;
sumreg3 <= sum3;
sumreg4 <= sum4;

end

// 2-bit additions
assign sum1 = A + B;
assign sum2 = C + D;
assign sum3 = sumreg1 + sumreg2;
assign sum4 = sumreg3 + E;
assign OUT = sumreg4;

endmodule

Architectures with 6-Input LUTs in Adaptive Logic Modules

Newer high-performance Altera device families use a 6-input LUT in
their basic logic structure, so these devices benefit from a different coding
style from the previous example presented for 4-input LUTs. Specifically,
in these devices, ALMs can simultaneously add three bits. Therefore, the
tree in the previous example must be two levels deep and contain just two
add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for
6-input LUT devices, the code is inefficient and does not take advantage
of the 6-input adaptive look-up table (ALUT). By restructuring the tree as
a ternary tree, the design becomes much more efficient, significantly
improving density utilization. Therefore, when you are targeting with
ALUTs and ALMs, large pipelined binary adder trees designed for
4-input LUT architectures should be rewritten to take advantage of the
advanced device architecture.

6–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–40 uses just 32 ALUTs in a Stratix II device—more than a 4:1
advantage over the number of LUTs in the prior example implemented in
a Stratix device.

1 You cannot pack a LAB full when using this type of coding style
because of the number of LAB inputs. However, in a typical
design, the Quartus II Fitter can pack other logic into each LAB
to take advantage of the unused ALMs.

Example 6–40. Verilog HDL Pipelined Ternary Tree
module ternary_adder_tree (A, B, C, D, E, CLK, OUT);

parameter WIDTH = 16;
input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] sum1, sum2;
reg [WIDTH-1:0] sumreg1, sumreg2;
// Registers

always @ (posedge CLK)
begin

sumreg1 <= sum1;
sumreg2 <= sum2;

end

// 3-bit additions
assign sum1 = A + B + C;
assign sum2 = sumreg1 + D + E;
assign OUT = sumreg2;

endmodule

These examples show pipelined adders, but partitioning your addition
operations can help you achieve better results in nonpipelined adders as
well. If your design is not pipelined, a ternary tree provides much better
performance than a binary tree. For example, depending on your
synthesis tool, the HDL code sum = (A + B + C) + (D + E) is
more likely to create the optimal implementation of a 3-input adder for
A + B + C followed by a 3-input adder for sum1 + D + E than the
code without the parentheses. If you do not add the parentheses, the
synthesis tool may partition the addition in a way that is not optimal for
the architecture.

State Machines

Synthesis tools can recognize and encode Verilog HDL and VHDL state
machines during synthesis. This section presents guidelines to ensure the
best results when you use state machines. Ensuring that your synthesis
tool recognizes a piece of code as a state machine allows the tool to recode
the state variables to improve the quality of results, and allows the tool to

Altera Corporation 6–53
October 2007 Preliminary

General Coding Guidelines

use the known properties of state machines to optimize other parts of the
design. When synthesis recognizes a state machine it is often able to
improve the design area and performance.

To achieve the best results on average, synthesis tools often use one-hot
encoding for FPGA devices and minimal-bit encoding for CPLD devices,
although the choice of implementation can vary for different state
machines and different devices. Refer to your synthesis tool
documentation for specific ways to control the manner in which state
machines are encoded.

f For information about state machine encoding in Quartus II integrated
synthesis, refer to the State Machine Processing section in the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to
improve the quality of results, Altera recommends that you observe the
following guidelines, which apply to both Verilog HDL and VHDL:

■ Assign default values to outputs derived from the state machine so
that synthesis does not generate unwanted latches.

■ Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

■ If your design contains an operation that is used by more than one
state, define the operation outside the state machine and cause the
output logic of the state machine to use this value.

■ Use a simple asynchronous or synchronous reset to ensure a defined
power-up state. If your state machine design contains more elaborate
reset logic, such as both an asynchronous reset and an asynchronous
load, the Quartus II software generates regular logic rather than
inferring a state machine.

If a state machine enters an illegal state due to a problem with the device,
the design likely ceases to function correctly until the next reset of the
state machine. Synthesis tools do not provide for this situation by default.
The same issue applies to any other registers if there is some kind of fault
in the system. A default or when others clause does not affect this
operation, assuming that your design never deliberately enters this state.
Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Many synthesis tools (including Quartus II integrated synthesis) have an
option to implement a safe state machine. The software inserts extra logic
to detect an illegal state and force the state machine’s transition to the
reset state. It is commonly used when the state machine can enter an

6–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

illegal state. The most common cause of this situation is a state machine
that has control inputs that come from another clock domain, such as the
control logic for a dual-clock FIFO.

Of course this option protects only state machines, and all other registers
in the design are not protected this way.

f For additional information about tool-specific options for implementing
state machines, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

The following two sections, “Verilog HDL State Machines” and “VHDL
State Machines” on page 6–58, describe additional language-specific
guidelines and coding examples.

Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state
machines, observe the following additional Verilog HDL guidelines.
Some of these guidelines may be specific to Quartus II integrated
synthesis. Refer to your synthesis tool documentation for specific coding
recommendations.

If the state machine is not recognized by the synthesis software (such as
Quartus II integrated synthesis), the state machine is implemented as
regular logic gates and registers and the state machine is not listed as a
state machine in the Analysis & Synthesis section of the Quartus II
Compilation Report. In this case, the software does not perform any of the
optimizations that are specific to state machines.

■ If you are using the SystemVerilog standard, use enumerated types
to describe state machines (as shown in the “SystemVerilog State
Machine Coding Example” on page 6–57).

■ Represent the states in a state machine with the parameter data
types in Verilog-1995 and -2001 and use the parameters to make state
assignments (as shown below in the “Verilog HDL State Machine
Coding Example”). This implementation makes the state machine
easier to read and reduces the risk of errors during coding.

1 Altera recommends against the direct use of integer values
for state variables such as next_state <= 0. However,
using an integer does not prevent inference in the
Quartus II software.

Altera Corporation 6–55
October 2007 Preliminary

General Coding Guidelines

■ No state machine is inferred in the Quartus II software if the state
transition logic uses arithmetic similar to that shown in the following
example:

case (state)
0: begin

if (ena) next_state <= state + 2;
else next_state <= state + 1;

end
1: begin
...

endcase

■ No state machine is inferred in the Quartus II software if the state
variable is an output.

■ No state machine is inferred in the Quartus II software for signed
variables

Verilog HDL State Machine Coding Example
The following module verilog_fsm is an example of a typical Verilog
HDL state machine implementation (Example 6–41).

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of in_1 and in_2 is an output of the
state machine in state_1 and state_2. The difference (in_1 – in_2)
is also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in_1
and in_2. Using these temporary variables in the various states of the
state machine ensures proper resource sharing between the mutually
exclusive states.

Example 6–41. Verilog-2001 State Machine
module verilog_fsm (clk, reset, in_1, in_2, out);

input clk;
input reset;
input [3:0] in_1;
input [3:0] in_2;output [4:0] out;
parameter state_0 = 3'b000;
parameter state_1 = 3'b001;
parameter state_2 = 3'b010;
parameter state_3 = 3'b011;
parameter state_4 = 3'b100;

reg [4:0] tmp_out_0, tmp_out_1, tmp_out_2;
reg [2:0] state, next_state;

always @ (posedge clk or posedge reset)
begin

if (reset)
state <= state_0;

else

6–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

state <= next_state;
end
always @ (state or in_1 or in_2)
begin

tmp_out_0 = in_1 + in_2;
tmp_out_1 = in_1 - in_2;
case (state)

state_0: begin
tmp_out_2 <= in_1 + 5'b00001;
next_state <= state_1;

end
state_1: begin

if (in_1 < in_2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;

end
else begin

next_state <= state_3;
tmp_out_2 <= tmp_out_1;

end
end
state_2: begin

tmp_out_2 <= tmp_out_0 - 5'b00001;
next_state <= state_3;

end
state_3: begin

tmp_out_2 <= tmp_out_1 + 5'b00001;
next_state <= state_0;

end
state_4:begin

tmp_out_2 <= in_2 + 5'b00001;
next_state <= state_0;

end
default:begin

tmp_out_2 <= 5'b00000;
next_state <= state_0;

end
endcase

end
assign out = tmp_out_2;

endmodule

An equivalent implementation of this state machine can be achieved by
using ‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_1 3'b001
‘define state_2 3'b010
‘define state_3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a
‘state_x instead of a state_x, as shown in the following example:

next_state <= ‘state_3;

Altera Corporation 6–57
October 2007 Preliminary

General Coding Guidelines

1 Although the ‘define construct is supported, Altera strongly
recommends the use of the parameter data type because doing
so preserves the state names throughout synthesis.

SystemVerilog State Machine Coding Example
The module enum_fsm shown in Example 6–42 is an example of a
SystemVerilog state machine implementation that uses enumerated
types. Altera recommends using this coding style to describe state
machines in SystemVerilog.

1 In Quartus II integrated synthesis, the enumerated type that
defines the states for the state machine must be of an unsigned
integer type as shown in Example 6–42. If you do not specify the
enumerated type as int unsigned, a signed int type is used
by default. In this case, the Quartus II integrated synthesis
synthesizes the design, but does not infer or optimize the logic
as a state machine.

Example 6–42. SystemVerilog State Machine Using Enumerated Types
module enum_fsm (input clk, reset, input int data[3:0], output int o);

 enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_state;

 always_comb begin : next_state_logic
 next_state = S0;
 case(state)

S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;

 endcase
 end

 always_comb begin
 case(state)

 S0: o = data[3];
 S1: o = data[2];
 S2: o = data[1];
 S3: o = data[0];

 endcase
 end

 always_ff@(posedge clk or negedge reset) begin
 if(~reset)

 state <= S0;
 else

 state <= next_state;
 end
endmodule

6–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

VHDL State Machines

To ensure proper recognition and inference of VHDL state machines,
represent the states in a state machine with enumerated types and use the
corresponding types to make state assignments. This implementation
makes the state machine easier to read and reduces the risk of errors
during coding. If the state is not represented by an enumerated type,
synthesis software (such as Quartus II integrated synthesis) does not
recognize the state machine. Instead, the state machine is implemented as
regular logic gates and registers and the state machine is not listed as a
state machine in the Analysis & Synthesis section of the Quartus II
Compilation Report. In this case, the software does not perform any of the
optimizations that are specific to state machines.

VHDL State Machine Coding Example
The following entity, vhd1_fsm, is an example of a typical VHDL state
machine implementation (Example 6–43).

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of in1 and in2 is an output of the
state machine in state_1 and state_2. The difference (in1 - in2) is
also used in state_1 and state_2. The temporary variables
tmp_out_0 and tmp_out_1 store the sum and the difference of in1 and
in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive
states.

Example 6–43. VHDL State Machine
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY vhdl_fsm IS
PORT(

clk: IN STD_LOGIC;
reset: IN STD_LOGIC;
in1: IN UNSIGNED(4 downto 0);
in2: IN UNSIGNED(4 downto 0);
out_1: OUT UNSIGNED(4 downto 0)
);

END vhdl_fsm;

ARCHITECTURE rtl OF vhdl_fsm IS
TYPE Tstate IS (state_0, state_1, state_2, state_3, state_4);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;

BEGIN
PROCESS(clk, reset)
BEGIN

IF reset = '1' THEN
state <=state_0;

Altera Corporation 6–59
October 2007 Preliminary

General Coding Guidelines

ELSIF rising_edge(clk) THEN
state <= next_state;

END IF;
END PROCESS;
PROCESS (state, in1, in2)

VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

BEGIN
tmp_out_0 := in1 + in2;
tmp_out_1 := in1 - in2;
CASE state IS

WHEN state_0 =>
out_1 <= in1;
next_state <= state_1;

WHEN state_1 =>
IF (in1 < in2) then

next_state <= state_2;
out_1 <= tmp_out_0;

ELSE
next_state <= state_3;
out_1 <= tmp_out_1;

END IF;
WHEN state_2 =>

IF (in1 < "0100") then
out_1 <= tmp_out_0;

ELSE
out_1 <= tmp_out_1;

END IF;
next_state <= state_3;

WHEN state_3 =>
out_1 <= "11111";
next_state <= state_4;

WHEN state_4 =>
out_1 <= in2;
next_state <= state_0;

WHEN OTHERS =>
out_1 <= "00000";
next_state <= state_0;

END CASE;
END PROCESS;

END rtl;

6–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexer logic, you ensure the most
efficient implementation in your Altera device. This section addresses
common problems and provides design guidelines to achieve optimal
resource utilization for multiplexer designs. The section also describes
various types of multiplexers, and how they are implemented in the
4-input LUT found in many FPGA architectures, such as Altera’s Stratix
devices.

1 Stratix II and newer high-performance devices have 6-input
ALUTs and are not specifically addressed here. Although many
of the principles and techniques for optimization are similar,
device utilization differs in the 6-input LUT devices. For
example, these devices can implement wider multiplexers in
one ALM than can be implemented in the 4-input LUT of an LE.

Quartus II Software Option for Multiplexer Restructuring

Quartus II integrated synthesis provides the Restructure Multiplexers
logic option that extracts and optimizes buses of multiplexers during
synthesis. In certain situations, this option automatically performs some
of the recoding functions described in this section without changing the
HDL code in your design. This option is on by default, when the
Optimization technique is set to Balanced (the default for most device
families) or set to Area.

f For details, refer to the Restructure Multiplexers subsection in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Even with this Quartus II-specific option turned on, it is beneficial to
understand how your coding style can be interpreted by your synthesis
tool, and avoid the situations that can cause problems in your design.

Multiplexer Types

This first subsection addresses how multiplexers are created from various
types of HDL code. CASE statements, IF statements, and state machines
are all common sources of multiplexer logic in designs. These HDL
structures create different types of multiplexers including binary
multiplexers, selector multiplexers, and priority multiplexers.
Understanding how multiplexers are created from HDL code and how
they might be implemented during synthesis is the first step towards
optimizing multiplexer structures for best results.

Altera Corporation 6–61
October 2007 Preliminary

General Coding Guidelines

Binary Multiplexers
Binary multiplexers select inputs based on binary-encoded selection bits.
Example 6–44 shows Verilog HDL code for two ways to describe a simple
4:1 binary multiplexer.

Example 6–44. Verilog HDL Binary-Encoded Multiplexers
case (sel)

2'b00: z = a;
2'b01: z = b;
2'b10: z = c;
2'b11: z = d;

endcase

A 4:1 binary multiplexer is efficiently implemented by using two 4-input
LUTs. Larger binary multiplexers can be constructed that use the 4:1
multiplexer; constructing an N-input multiplexer (N:1 multiplexer) from
a tree of 4:1 multiplexers can result in a structure using as few as
0.66*(N - 1) LUTs.

Selector Multiplexers
Selector multiplexers have a separate select line for each data input. The
select lines for the multiplexer are one-hot encoded. Example 6–45 shows
a simple Verilog HDL code example describing a one-hot selector
multiplexer.

Example 6–45. Verilog HDL One-Hot-Encoded Case Statement
case (sel)

4'b0001: z = a;
4'b0010: z = b;
4'b0100: z = c;
4'b1000: z = d;
default: z = 1'bx;

endcase

Selector multiplexers are commonly built as a tree of AND and OR gates.
Using this scheme, two inputs can be selected using two select lines in a
single 4-input LUT that uses two AND gates and an OR gate. The outputs
of these LUTs can be combined with a wide OR gate. An N-input selector
multiplexer of this structure requires at least 0.66*(N-0.5) LUTs, which is
just slightly worse than the best binary multiplexer.

Priority Multiplexers
In priority multiplexers, the select logic implies a priority. The options to
select the correct item must be checked in a specific order based on signal
priority. These structures commonly are created from IF, ELSE, WHEN,

6–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

SELECT, and ?: statements in VHDL or Verilog HDL. The example
VHDL code in Example 6–46 will probably result in the schematic
implementation illustrated in Figure 6–2.

Example 6–46. VHDL IF Statement Implying Priority
IF cond1 THEN z <= a;
ELSIF cond2 THEN z <= b;
ELSIF cond3 THEN z <= c;
ELSE z <= d;
END IF;

The multiplexers shown in Figure 6–2 form a chain, evaluating each
condition or select bit, one at a time.

Figure 6–2. Priority Multiplexer Implementation of an IF Statement

An N-input priority multiplexer uses a LUT for every 2:1 multiplexer in
the chain, requiring N-1 LUTs. This chain of multiplexers generally
increases delay because the critical path through the logic traverses every
multiplexer in the chain.

To improve the timing delay through the multiplexer, avoid priority
multiplexers if priority is not required. If the order of the choices is not
important to the design, use a CASE statement to implement a binary or
selector multiplexer instead of a priority multiplexer. If delay through the
structure is important in a multiplexed design requiring priority,
consider recoding the design to reduce the number of logic levels to
minimize delay, especially along your critical paths.

1 0

1 0

cond3

cond2

cond1 1 0

c

b

a

z

d

Altera Corporation 6–63
October 2007 Preliminary

General Coding Guidelines

Default or Others Case Assignment

To fully specify the cases in a CASE statement, include a DEFAULT
(Verilog HDL) or OTHERS (VHDL) assignment. This assignment is
especially important in one-hot encoding schemes where many
combinations of the select lines are unused. Specifying a case for the
unused select line combinations gives the synthesis tool information
about how to synthesize these cases, and is required by the Verilog HDL
and VHDL language specifications.

Some designs do not require that the outcome in the unused cases be
considered, often because designers assume these cases will not occur.
For these types of designs, you can choose any value for the DEFAULT or
OTHERS assignment. However, be aware that the assignment value you
choose can have a large effect on the logic utilization required to
implement the design due to the different ways synthesis tools treat
different values for the assignment, and how the synthesis tools use
different speed and area optimizations.

In general, to obtain best results, explicitly define invalid CASE selections
with a separate DEFAULT or OTHERS statement instead of combining the
invalid cases with one of the defined cases.

If the value in the invalid cases is not important, specify those cases
explicitly by assigning the X (don’t care) logic value instead of choosing
another value. This assignment allows your synthesis tool to perform the
best area optimizations.

You can experiment with different DEFAULT or OTHERS assignments for
your HDL design and your synthesis tool to test the effect they have on
logic utilization in your design.

Implicit Defaults

The IF statements in Verilog HDL and VHDL can be a convenient way to
specify conditions that do not easily lend themselves to a CASE-type
approach. However, using IF statements can result in complicated
multiplexer trees that are not easy for synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even
when it is not specified. These implicit defaults can cause additional
complexity in a multiplexed design.

6–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The code in Example 6–47 represents a multiplexer with four inputs (a, b,
c, d) and one output (z).

Example 6–47. VHDL IF Statement with Implicit Defaults
IF cond1 THEN

IF cond2 THEN
z <= a;

END IF;
ELSIF cond3 THEN

IF cond4 THEN
z <= b;

ELSIF cond5 THEN
z <= c;

END IF;
ELSIF cond6 THEN

z <= d;
END IF;

This is not a recommended coding style. Although the code appears to
implement a 4:1 multiplexer, each of the three separate IF statements in
the code has an implicit ELSE condition that is not specified. Because the
output values for the ELSE cases are not specified, the synthesis tool
assumes the intent is to maintain the same output value for these cases
and infers a combinational loop, such as a latch. Latches add to the
design’s logic utilization and can also make timing analysis difficult and
lead to other problems.

The code sample shown in Example 6–48 shows code with the same
functionality as the code shown in Example 6–47, but specifies the ELSE
cases explicitly. (This is not a recommended coding style improvement,
but it explicitly shows the default conditions from the previous example.)

Example 6–48. VHDL IF Statement with Default Conditions Explicitly Specified
IF cond1 THEN

IF cond2 THEN
z <= a;

ELSE
z <= z;

END IF;
ELSIF cond3 THEN

IF cond4 THEN
z <= b;

ELSIF cond5 THEN
z <= c;

ELSE
z <= z;

END IF;
ELSIF cond6 THEN

z <= d;
ELSE

z <= z;
END IF;

Altera Corporation 6–65
October 2007 Preliminary

General Coding Guidelines

Figure 6–3 is a schematic representing the code in Example 6–48, which
illustrates that the multiplexer logic is significantly more complicated
than a basic 4:1 multiplexer, although there are only four inputs.

Figure 6–3. Multiplexer Implementation of an IF Statement with Implicit
Defaults

There are several ways you can simplify the multiplexed logic and
remove the unneeded defaults. The optimal method may be to recode the
design so the logic takes the structure of a 4:1 CASE statement.
Alternatively, if priority is important, you can restructure the code to
deduce default cases and flatten the multiplexer. In this example, instead
of IF cond1 THEN IF cond2, use IF (cond1 AND cond2), which
performs the same function. In addition, examine whether the defaults
are don’t care cases. In this example, you can promote the last ELSIF
cond6 statement to an ELSE statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce
the complexity and logic utilization required to implement your design.

Degenerate Multiplexers

A degenerate multiplexer is a multiplexer in which not all of the possible
cases are used for unique data inputs. The unneeded cases tend to
contribute to inefficiency in the logic utilization for these multiplexers.
You can recode degenerate multiplexers so they take advantage of the
efficient logic utilization possible with full binary multiplexers.

1 0

1 0

cond6
0 1cond4

0 1cond2

cond3

cond1

0 1cond5

1 0

z

z a

z c

d

b

z

6–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 6–49 shows a VHDL CASE statement describing a degenerate
multiplexer.

Example 6–49. VHDL CASE Statement Describing a Degenerate Multiplexer
CASE sel[3:0] IS

WHEN "0101" => z <= a;
WHEN "0111" => z <= b;
WHEN "1010" => z <= c;
WHEN OTHERS => z <= d;

END CASE;

The number of select lines in a binary multiplexer normally dictates the
size of a multiplexer needed to implement the desired function. For
example, the multiplexer structure represented in Figure 6–4 has four
select lines capable of implementing a binary multiplexer with 16 inputs.
However, the design does not use all 16 inputs, which makes this
multiplexer a degenerate 16:1 multiplexer.

Figure 6–4. Binary Degenerate Multiplexer

In the example in Figure 6–4, the first and fourth multiplexers in the top
level can easily be eliminated because all four inputs to each multiplexer
are the same value, and the number of inputs to the other multiplexers
can be reduced, as shown in Figure 6–5.

sel[1:0]

Binary mux
sel[3:2]

"10xx""01xx"

"00xx" "11xx"

z

a b c d

Altera Corporation 6–67
October 2007 Preliminary

General Coding Guidelines

Figure 6–5. Optimized Version of the Degenerate Binary Multiplexer

Implementing this version of the multiplexer still requires at least five
4-input LUTs, two for each of the remaining 3:1 multiplexers and one for
the 2:1 multiplexer. This design selects an output from only four inputs,
a 4:1 binary multiplexer can be implemented optimally in two LUTs, so
this degenerate multiplexer tree reduces the efficiency of the logic.

You can improve logic utilization of this structure by recoding the select
lines to implement a full 4:1 binary multiplexer. The code sample shown
in Example 6–50 shows a recoder design that translates the original select
lines into the z_sel signal with binary encoding.

Example 6–50. VHDL Recoder Design for Degenerate Binary Multiplexer
CASE sel[3:0] IS

WHEN "0101" => z_sel <= "00";
WHEN "0111" => z_sel <= "01";
WHEN "1010" => z_sel <= "10";
WHEN OTHERS => z_sel <= "11";

END CASE;

The code sample shown in Example 6–51 shows you how to implement
the full binary multiplexer.

Example 6–51. VHDL 4:1 Binary Multiplexer Design
CASE z_sel[1:0] IS

WHEN "00" => z <= a;
WHEN "01" => z <= b;
WHEN "10" => z <= c;
WHEN "11" => z <= d;

END CASE;

sel[1:0]

sel[3:2]

"10xx""01xx"

"00xx" "11xx"

3:1

3:1

2:1

a

z

b c d

6–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Use the new z_sel control signal from the recoder design to control the
4:1 binary multiplexer that chooses between the four inputs a, b, c, and d,
as illustrated in Figure 6–6. The complexity of the select lines is handled
in the recoder design, and the data multiplexing is performed with simple
binary select lines enabling the most efficient implementation.

Figure 6–6. Binary Multiplexer with Recorder

The design for the recoder can be implemented in two LUTs and the
efficient 4:1 binary multiplexer uses two LUTs, for a total of four LUTs.
The original degenerate multiplexer required five LUTs, so the recoded
version uses 20% less logic than the original.

You can often improve the logic utilization of multiplexers by recoding
the select lines into full binary cases. Although logic is required to
perform the encoding, the overall logic utilization is often improved.

Buses of Multiplexers

The inputs to multiplexers are often data input buses in which the same
multiplexer function is performed on a set of data input buses. In these
cases, any inefficiency in the multiplexer is multiplied by the number of
bits in the bus. The issues described in the previous sections become even
more important for wide multiplexer buses.

For example, the recoding of select lines into full binary cases detailed in
the previous section can often be used in multiplexed buses. Recoding the
select lines may need to be completed only once for all the multiplexers
in the bus. By sharing the recoder logic among all the bits in the bus, you
can greatly improve the logic efficiency of a bus of multiplexers.

The degenerate multiplexer in the previous section requires five LUTs to
implement. If the inputs and output are 32 bits wide, the function could
require 32 × 5 or 160 LUTs for the whole bus. The recoder design uses only
two LUTs, and the select lines only need to be recoded once for the entire
bus. The binary 4:1 multiplexer requires two LEs per bit of the bus. The

sel[3:0]

z_sel[1:0]

Recoder

4:1

z

a b c d

Altera Corporation 6–69
October 2007 Preliminary

General Coding Guidelines

total logic utilization for the recoded version could be 2 + (2 x 32) or 66
LUTs for the whole bus, compared to 160 LUTs for the original version.
The logic savings become more important with wide multiplexer buses.

Using techniques to optimize degenerate multiplexers, removing
unneeded implicit defaults, and choosing the optimal DEFAULT or
OTHERS case can play an important role when optimizing buses of
multiplexers.

Cyclic Redundancy Check Functions

Cyclic redundancy check (CRC) computations are used heavily by
communications protocols and storage devices to detect any corruption
of the data. These functions are highly effective; there is a very low
probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The
way that synthesis tools flatten and factor these XOR gates to implement
the logic in FPGA LUTs can greatly impact the area and performance
results for the design. XOR gates have a cancellation property which
creates an exceptionally large number of reasonable factoring
combinations, so synthesis tools cannot always choose the best result by
default.

The 6-input ALUT has a significant advantage over 4-input LUTs for
these designs. When properly synthesized, CRC processing designs can
run at high speeds in devices with 6-input ALUTs.

The following guidelines help you improve the quality of results for CRC
designs in Altera devices.

If Performance is Important, Optimize for Speed

Synthesis tools flatten XOR gates to minimize area and depth of levels of
logic. Synthesis tools such as Quartus II integrated synthesis target area
optimization by default for these logic structures. Therefore, for more
focus on depth reduction, set the synthesis optimization technique to
speed.

1 Note that flattening for depth sometimes causes a significant
increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages

Some designers optimize their CRC designs to use cascaded stages, for
example, four stages of 8 bits. In such designs, intermediate calculations
are used as needed (such as the calculations after 8, 24, or 32 bits)

6–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

depending on the data width. This design is not optimal in FPGA devices.
The XOR cancellations that can be performed in CRC designs mean that
the function does not require all the intermediate calculations to
determine the final result. Therefore, forcing the use of intermediate
calculations increases the area required to implement the function, as
well as increasing the logic depth because of the cascading. It is typically
better to create full separate CRC blocks for each data width that you
need in the design, then multiplex them together to choose the
appropriate mode at a given time.

Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing
resources and extracting duplicates in two different CRC blocks because
of the factoring options in the XOR logic. As addressed previously, the
CRC logic allows significant reductions but this works best when each
CRC function is optimized separately. Check for duplicate extraction
behavior if you have different CRC functions that are driven by common
data signals or that feed the same destination signals.

If you are having problems with the quality of results and you see that
two CRC functions are sharing logic, ensure that the blocks are
synthesized independently using one of the following methods:

■ Define each CRC block as a separate design partition in an
incremental compilation design flow.

f For details, refer to the Quartus II Incremental Compilation
for Hierarchical and Team-Based Design chapter in volume 1
of the Quartus II Handbook.

■ Synthesize each CRC block as a separate project and then write a
separate VQM or EDIF netlist file for each.

Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC
functionality, adding registers and retiming the design can help reduce
area, improve performance, and reduce power utilization. If your
synthesis tool offers a retiming feature (such as the Quartus II software
Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide
and alternate between halves of the data in each clock cycle.

Altera Corporation 6–71
October 2007 Preliminary

General Coding Guidelines

Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic
toggles whenever there is a change in the design. To save power, use
clock enables to disable the CRC function for every clock cycle that the
logic is not needed. Some designs don't check the CRC results for a few
clock cycles while other logic is performed. It is valuable to disable the
CRC function even for this short amount of time.

Use the Device Synchronous Load (sload) Signal to Initialize

The data in many CRC designs must be initialized to 1’s before operation.
If your target device supports the use of the sload signal, you should use
it to set all the registers in your design to 1’s before operation. To enable
use of the sload signal, follow the coding guidelines presented in
“Secondary Register Control Signals Such as Clear and Clock Enable” on
page 6–39. You can check the register equations in the Timing Closure
Floorplan or the Chip Planner to ensure that the signal was used as
expected.

f If you must force a register implementation using an sload signal, you
can use low-level device primitives as described in the Introduction to
Low-Level Primitives Design User Guide.

Comparators

Synthesis software, including Quartus II integrated synthesis, uses
device and context-specific implementation rules for comparators (<, >,
or ==) and selects the best one for your design. This section provides
some information about the different types of implementations available
and provides suggestions on how you can code your design to encourage
a specific implementation.

The == comparator is implemented in general logic cells. The <
comparison can be implemented using the carry chain or general logic
cells. In devices with 6-input ALUTs, the carry chain is capable of
comparing up to three bits per cell. In devices with 4-input LUTs, the
capacity is one bit of comparison per cell, similar to an add/subtract
chain. The carry chain implementation tends to be faster than the general
logic on standalone benchmark test cases, but can result in lower
performance when it is part of a larger design due to the increased
restriction on the Fitter. The area requirement is similar for most input
patterns. The synthesis software selects an appropriate implementation
based on the input pattern.

6–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

If you are using Quartus II integrated synthesis, you can guide the
synthesis by using specific coding styles. To select a carry chain
implementation explicitly, rephrase your comparison in terms of
addition. As a simple example, the following coding style allows the
synthesis tool to select the implementation, which is most likely using
general logic cells in modern device families:

wire [6:0] a,b;
wire alb = a<b;

In the following coding style, the synthesis tool uses a carry chain (except
for a few cases, such as when the chain is very short or the signals a and
b minimize to the same signal):

wire [6:0] a,b;
wire [7:0] tmp = a - b;
wire alb = tmp[7]

This second coding style uses the top bit of the tmp signal, which is 1 in
twos complement logic if a is less than b, because the subtraction a – b
results in a negative number.

If you have any information about the range of the input, you have “don't
care” values that you can use to optimize the design. Because this
information is not available to the synthesis tool, you can often reduce the
device area required to implement the comparator with specific hand
implementation of the logic.

You can also check whether a bus value is within a constant range with a
small amount of logic area by using the logic structure shown in
Figure 6–7. This type of logic occurs frequently in address decoders.

Figure 6–7. Example Logic Structure for Using Comparators to Check a Bus
Value Range

Address[]

Select[0]Select[3] Select[2] Select[1]

< 200< 2f00 < 1a0 < 100

Altera Corporation 6–73
October 2007 Preliminary

Designing with Low-Level Primitives

Counters

Implementing counters in HDL code is easy; they are implemented with
an adder followed by registers. Remember that the register control
signals, such as enable (ena), synchronous clear (sclr) and synchronous
load (sload), are available. For the best area utilization, ensure that the
up/down control or controls are expressed in terms of one addition
instead of two separate addition operators.

If you use the following coding style, your synthesis tool may implement
two separate carry chains for addition (if it doesn't detect the issue and
optimize the logic):

out <= count_up ? out + 1 : out - 1;

The following coding style requires only one adder along with some
other logic:

out <= out + (count_up ? 1 : -1);

In this case, the coding style better matches the device hardware because
there is only one carry chain adder, and the –1 constant logic is
implemented in the look-up table in front of the adder without adding
extra area utilization.

Designing with
Low-Level
Primitives

Low-level HDL design is the practice of using low-level primitives and
assignments to dictate a particular hardware implementation for a piece
of logic. Low-level primitives are small architectural building blocks that
assist you in creating your design. With the Quartus II software, you can
use low-level HDL design techniques to force a specific hardware
implementation that can help you achieve better resource utilization or
faster timing results.

1 Using low-level primitives is an advanced technique to help
with specific design challenges, and is optional in the Altera
design flow. For many designs, synthesizing generic HDL
source code and Altera megafunctions gives you the best
results.

Low-level primitives allow you to use the following types of coding
techniques:

■ Instantiate the logic cell or LCELL primitive to prevent Quartus II
integrated synthesis from performing optimizations across a logic
cell

■ Create carry and cascade chains using CARRY, CARRY_SUM, and
CASCADE primitives

6–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

■ Instantiate registers with specific control signals using DFF
primitives

■ Specify the creation of LUT functions by identifying the LUT
boundaries

■ Use I/O buffers to specify I/O standards, current strengths, and
other I/O assignments

■ Use I/O buffers to specify differential pin names in your HDL code,
instead of using the automatically-generated negative pin name for
each pair

Refer to the Designing With Low-Level Primitives User Guide for details
about and examples of using these types of assignments.

Conclusion Because coding style and megafunction implementation can have such a
large effect on your design performance, it is important to match the
coding style to the device architecture from the very beginning of the
design process. To improve design performance and area utilization, take
advantage of advanced device features, such as memory and DSP blocks,
as well as the logic architecture of the targeted Altera device by following
the coding recommendations presented in this chapter.

f For additional optimization recommendations, refer to the
Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook.

Referenced
Documents

This chapter references the following documents:

■ Area and Timing Optimization in volume 2 of the Quartus II Handbook
■ Design Recommendations for Altera Devices in volume 1 of the

Quartus II Handbook
■ Quartus II Integrated Synthesis in volume 1 of the Quartus II Handbook
■ Synthesis section in volume 1 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Altera Corporation 6–75
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 6–2 shows the revision history for this chapter.

Table 6–2. Document Revision History (Part 1 of 2)

Date and
Document
Version

Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 6–74. Updates for the Quartus II
software version 7.2.

May 2007
v7.1.0

Updates for the Quartus II software version 7.1 release,
including:
● Added Quartus II Language Templates.
● Updated text in Using Altera Megafunctions.
● Updated Table 6-1.
● Added Avoide Unsupported Reset Conditions.
● Added Check Read-During-Write Behavior.
● Added True Dual-Port Synchronous RAM.
● Added Specifying Initial Memory Contents at Power-Up.
● Added Referenced Documents.

Updates for the Quartus II
software version 7.1,
including the addition of
Arria GX devices, new HDL
design templates, new
support for inferring true
dual-port RAM blocks.
Clarified RAM inference
guidelines with respect to
synchronous memory and
read-during-write behavior.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Updates for the Quartus II software version 6.1 release,
including:
● Moved the “Simple Dual-Port, Dual-Clock Synchronous

RAM” on page 7–19 section within the chapter
● Added information about read-through-write conditions
● Added example code, including Examples 7–13 and 7–14;

Examples 7–17 and 7–19; and Example 7–23
● Added a section about “Designing with Low-Level Primitives”

on page 7–71
● Added information about implementing a safe state machine
● Reorganized the chapter, shuffling the “Coding Guidelines

for Registers and Latches” and “General Coding Guidelines”
and the subsections therein

● Added “Comparators” on page 7–69 and “Counters” on
page 7–71 to the General Coding Guidelines section

Updates for the Quartus II
software version 6.1,
including the addition of
Stratix III devices.
Changes to the
recommendations for RAM
block inference to ensure
better quality of results,
and new suggestions for
different general logic
structures.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

6–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

May 2005
v5.0.0

Chapter 4 was formerly Chapter 1 in version 4.2. —

December 2004
v2.1

Updated for Quartus II software version 4.2:
● Chapter 4 was formerly Chapter 1.
● General formatting and editing updates.
● Device family support descriptions updated.
● Updated HardCopy structured support for performance

improvements.
● Quartus II Archive File automatically receives buffer

insertion.
● Power Calculator now Power Estimator for affected devices.
● Updates to tables, figures.
● The description of How to Design HardCopy Stratix Devices

was updated.
● The description of HardCopy Timing Optimization Wizard

was updated.
● HardCopy Floorplans and Timing Modules was renamed to

Design Optimization.
● The description of Performance Estimation was updated.
● Added new section on Buffer Insertion.
● Location Constraints was updated.
● Targeting Designs to HardCopy APEX 20KC and HardCopy

APEX 20KE Devices was removed.
● A new section Altera Recommended HDL was added.
● Table 2–5 was added. It lists the HardCopy Stratix design

files collected by the hardCopy Files Wizard.
● The description of the HardCopy APEX Power Estimator was

updated.
● A new section about Targeting Designs to HardCopy APEX

Devices was added.

—

Table 6–2. Document Revision History (Part 2 of 2)

Date and
Document
Version

Changes Made Summary of Changes

Altera Corporation Section III–i
Preliminary

Section III. Synthesis

As programmable logic devices (PLDs) become more complex and
require increased performance, advanced design synthesis has become
an important part of the design flow. In the Quartus® II software you can
use the Analysis and Synthesis module of the Compiler to analyze your
design files and create the project database. You can also use other EDA
synthesis tools to synthesize your designs, and then generate EDIF netlist
files or VQM files that can be used with the Quartus II software. This
section explains the options that are available for each of these flows, and
how they are supported in the Quartus II, version 7.2 software.

This section includes the following chapters:

■ Chapter 7, Synplicity Synplify and Synplify Pro Support
■ Chapter 8, Quartus II Integrated Synthesis
■ Chapter 9, Mentor Graphics LeonardoSpectrum Support
■ Chapter 10, Mentor Graphics Precision RTL Synthesis Support
■ Chapter 11, Synopsys Design Compiler FPGA Support
■ Chapter 12, Analyzing Designs with Quartus II Netlist Viewers

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation
Preliminary

Synthesis Quartus II Handbook, Volume 1

Altera Corporation 7–1
October 2007

7. Synplicity Synplify and
Synplify Pro Support

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. This chapter documents support for
the Synplicity Synplify and Synplify Pro software in the Quartus® II
software, as well as key design flows, methodologies, and techniques for
achieving good results in Altera® devices. This chapter includes the
following topics:

■ General design flow with the Synplify and Quartus II software
■ Synplify software optimization strategies, including timing-driven

compilation settings, optimization options, and Altera-specific
attributes

■ Exporting designs and constraints to the Quartus II software using
NativeLink® integration

■ Guidelines for Altera megafunctions and library of parameterized
module (LPM) functions, instantiating them with the MegaWizard®
Plug-In Manager, and tips for inferring them from hardware
description language (HDL) code

■ Incremental compilation and block-based design, including the
Synplify Pro software MultiPoint flow

The content in this chapter applies to both the Synplify and Synplify Pro
software unless otherwise specified.This chapter includes the following
sections:

■ “Altera Device Family Support” on page 7–2
■ “Design Flow” on page 7–3
■ “Synplify Optimization Strategies” on page 7–8
■ “Exporting Designs to the Quartus II Software Using NativeLink

Integration” on page 7–17
■ “Guidelines for Altera Megafunctions and Architecture-Specific

Features” on page 7–32
■ “Incremental Compilation and Block-Based Design” on page 7–44

This chapter assumes that you have set up, licensed, and are familiar with
the Synplify or Synplify Pro software.

QII51009-7.2.0

7–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Altera Device
Family Support

The Synplify software maps synthesis results to Altera device families.
The following list shows the Altera device families supported by the
Synplify software version 9.0, with the Quartus II software version 7.2:

■ Cyclone® III
■ Stratix® III
■ Stratix II, Stratix II GX, Hardcopy® II
■ Stratix, Stratix GX, HardCopy Stratix
■ Cyclone II
■ Cyclone
■ MAX® II
■ MAX® 7000, MAX 3000
■ APEX™ II
■ APEX 20K, APEX 20KC, APEX 20KE
■ FLEX® 10K, FLEX 6000
■ ACEX® 1K

The Synplify software also supports the following legacy devices that are
supported in the Quartus II software only with a specific license
requested at www.altera.com/mysupport:

■ Excalibur™ ARM®
■ Mercury™

The Synplify software also supports the following legacy devices that are
supported only in the Altera MAX+PLUS II software:

■ FLEX 8000
■ MAX 9000

1 To learn about new device support for a specific Synplify
version, refer to the release notes on Synplicity's web site at
www.synplicity.com.

http://www.altera.com/mysupport
http://www.altera.com/mysupport
www.synplicity.com

Altera Corporation 7–3
October 2007

Design Flow

Design Flow A Quartus II software design flow using the Synplify software consists of
the following steps:

1. Create Verilog HDL or VHDL design files in the Quartus II
software, Synplify software, or a text editor.

2. Set up a project in the Synplify software and add the HDL design
files for synthesis.

3. Select a target device and add timing constraints and compiler
directives to optimize the design during synthesis.

4. Create a Quartus II project and import the technology-specific EDIF
(.edf) or VQM (.vqm) netlist, the Synopsys Constraints Format (.scf)
file (for TimeQuest constraints if a Stratix III or Cyclone III device is
selected), and the tool command language (.tcl) constraint file
generated by the Synplify software into the Quartus II software for
placement and routing, and for performance evaluation.

5. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

7–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 7–1 shows the recommended design flow when using the Synplify
and the Quartus II software.

Figure 7–1. Recommended Design Flow

The Synplify and Synplify Pro software support both VHDL and Verilog
HDL source files. The Synplify Pro software also supports mixed
synthesis, allowing a combination of VHDL and Verilog HDL source
files.

No

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Gate-Level
Functional
Simulation

Configuration/
Programming

Files (.sof/.pof)

Quartus II Software

Constraints
& Settings

Constraints
& Settings

Program/Configure Device

Post-Synthesis
Simulation Files

(.vho/.vo)

Post Place-and-Route
Simulation File

(.vho/.vo)

Functional/RTL
Simulation

Synplify Software

Verilog
HDL
(.v)

VHDL
(.vhd)

Forward Annotated
Project & Timing Constraints

(.tcl/.acf)

Technology-
Specific Netlist

(.vqm/.edf)

(1)Synopsys Constraints
Format (.scf) File

Altera Corporation 7–5
October 2007

Design Flow

Specify timing constraints and attributes for the design in a Synplify
Constraints File (.sdc) with the SCOPE window in the Synplify software
or directly in the HDL source file. Compiler directives can also be defined
in the HDL source file. Many of these constraints are forward-annotated
for use by the Quartus II software.

The HDL Analyst that is included in the Synplify software is a graphical
tool for generating schematic views of the technology-independent
register transfer level (RTL) view netlist (.srs) and technology-view netlist
(.srm) files. You can use the Synplify HDL Analyst to analyze and debug
your design visually. The HDL Analyst supports cross probing between
the RTL and Technology views, the HDL source code, and the Finite State
Machine (FSM) viewer. Refer to “FSM Compiler” on page 7–11.

1 A separate license file is required to enable the HDL Analyst in
the Synplify software. The Synplify Pro software includes the
HDL Analyst.

Once synthesis is complete, import the electronic design interchange
format (EDIF) or Verilog Quartus Mapping (VQM) netlist to the
Quartus II software for place-and-route. You can use the Tcl file
generated by the Synplify software to forward-annotate your constraints
(including device selection), and optionally to set up your project in the
Quartus II software.

If a Stratix III or Cyclone III device is selected, the Quartus II software
uses the SDC-format timing constraints from the .scf file with the
TimeQuest Timing Analyzer by default. For other devices, the Quartus II
software uses the Tcl Classic Timing Analyzer timing constraints written
to the Quartus Setting File (.qsf). Refer to “Passing TimeQuest SDC
Timing Constraints to the Quartus II Software in the .scf File” on
page 7–20 for information about to manually changing from the
TimeQuest Timing Analyzer to the Classic Timing Analyzer manually for
Stratix III and Cyclone III devices.

If the area and timing requirements are satisfied, use the files generated
by the Quartus II software to program or configure the Altera device. As
shown in Figure 7–1, if your area or timing requirements are not met, you
can change the constraints in the Synplify software or the Quartus II
software and repeat the synthesis. Repeat the process until the area and
timing requirements are met.

While you can perform simulation at various points in the process, final
timing analysis should be performed after placement and routing is
complete. Formal verification may also be performed at various stages of
the design process.

7–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f For more information about how the Synplify software supports formal
verification, refer to the Formal Verification section in volume 3 of the
Quartus II Handbook.

You can also use other options and techniques in the Quartus II software
to meet area and timing requirements. One such option is called
WYSIWYG Primitive Resynthesis, which can perform optimizations on
your VQM netlist within the Quartus II software.

f For information about netlist optimizations, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook.

In some cases, you may be required to modify the source code if area and
timing requirements cannot be met using options in the Synplify and
Quartus II software.

After synthesis, the Synplify software produces several intermediate and
output files. Table 7–1 lists these file types.

Table 7–1. Synplify Intermediate and Output Files (Part 1 of 2)

File Extensions File Description

.srs Technology-independent RTL netlist that can be read only by the Synplify software

.srm Technology view netlist

.srr (1) Synthesis Report file

.edf/.vqm (2) Technology-specific netlist in electronic design interchange format (EDIF) or VQM file
format

Altera Corporation 7–7
October 2007

Design Flow

Output Netlist File Name and Result Format

Specify the output netlist directory location and name by performing the
following steps:

1. On the Project menu, click Implementation Options.

2. Click the Implementation Results tab.

3. In the Results Directory box, type your output netlist file directory
location.

4. In the Result File Name box, type your output netlist file name.

By default, directory and file name are set to the project implementation
directory and the top-level design module or entity name.

The Result Format and Quartus version options are also available on the
Implementation Results tab. The Result Format list specifies an EDIF or
VQM netlist depending on your device family. The software creates an
EDIF output netlist file only for ACEX 1K, FLEX 10K, FLEX 6000,
FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. For other
Altera devices, the software generates a VQM-formatted netlist.

.acf/.tcl (3) Forward-annotated constraints file containing constraints and assignments

.scf Synopsys Constraint Format file containing timing constraints for the TimeQuest Timing
Analyzer

Notes to Table 7–1:
(1) This report file includes performance estimates that are often based on pre-place-and-route information. Use the

fMAX reported by the Quartus II software after place-and-route—it is the only reliable source of timing information.
This report file includes post-synthesis device resource utilization statistics that may inaccurately predict resource
usage after place-and-route. The Synplify software does not account for black box functions nor for logic usage
reduction achieved through register packing performed by the Quartus II software. Register packing combines a
single register and look-up table (LUT) into a single logic cell, reducing the logic cell utilization below the Synplify
software estimate. Use the device utilization reported by the Quartus II software after place-and-route.

(2) An EDIF output file (.edf) is created for ACEX 1K, FLEX 10K, FLEX 10KA, FLEX 10KE, FLEX 6000, FLEX 8000,
MAX 7000, MAX 9000, and MAX 3000 devices. A VQM file is created for all other Altera device families.

(3) An Assignment and Configuration File (.acf) file is created only for ACEX 1K, FLEX 10K, FLEX 10KA, FLEX 10KE,
FLEX 6000, FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. The ACF is generated for backward
compatibility with the MAX+PLUSII software. A Tcl file for the Quartus II software is created for all devices. The
Tcl file contains the appropriate Tcl commands to create and set up a Quartus II project and, if applicable, the
MAX+PLUS II assignments are imported from the ACF file.

Table 7–1. Synplify Intermediate and Output Files (Part 2 of 2)

File Extensions File Description

7–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Beginning with the Synplify software version 8.4, select the version of the
Quartus II software that you are using in the Quartus version list. This
option ensures that the netlist is compatible with the software version and
supports the newest features. Altera recommends using the latest version
of the Quartus II software whenever possible. If your Quartus II software
is newer than the versions available in the Quartus version list, check if
there is a newer version of the Synplify software available that supports
the current Quartus II software version. Otherwise, choose the latest
version in the list for the best compatibility.

1 The Quartus version list is available only after selecting an
Altera device.

Synplify
Optimization
Strategies

As designs become more complex and require increased performance,
using different optimization strategies has become important.
Combining Synplify software constraints with VHDL and Verilog HDL
coding techniques and Quartus II software options can help you obtain
the required results.

f For additional design and optimization techniques, refer to the Design
Recommendations for Altera Devices chapter in volume 1 and the Area and
Timing Optimization chapter in volume 2 of the Quartus II Handbook.

The Synplify software offers many constraints and optimization
techniques to improve your design’s performance. The Synplify Pro
software adds some additional techniques that are not supported in the
basic Synplify software. Wherever this document describes Synplify
support, this includes both the basic Synplify and the Synplify Pro
software; Synplify Pro-only features are labeled as such. This section
provides an overview of some of the techniques you can use to help
improve the quality of your results.

f For more information about applying the attributes discussed in this
section, refer to the Tasks and Tips chapter of the Synplify Software User
Guide.

Implementations in Synplify Pro

To create different synthesis results without overwriting the others, In the
Synplify Pro software, on the Project menu, click New Implementation.
For each implementation, specify the target device, synthesis options,
and constraint files. Each implementation generates its own subdirectory
that contains all the resulting files, including VQM/EDIF, .scf and Tcl
files, from a compilation of the particular implementation. You can then
compare the results of the different implementations to find the optimal
set of synthesis options and constraints for a design.

Altera Corporation 7–9
October 2007

Synplify Optimization Strategies

Timing-Driven Synthesis Settings

The Synplify software supports timing-driven synthesis with
user-assigned timing constraints to optimize the performance of the
design. The Synplify software optimizes the design to attempt to meet
these constraints.

The Quartus II NativeLink feature allows timing constraints that are
applied in the Synplify software to be forward-annotated for the
Quartus II software using either a Tcl script file or a .scf file for
timing-driven place and route. Refer to “Passing TimeQuest SDC Timing
Constraints to the Quartus II Software in the .scf File” on page 7–20 or
“Passing Constraints to the Quartus II Software using Tcl Commands” on
page 7–22 for more details about how constraints such as clock
frequencies, false paths, and multicycle paths are forward-annotated.
This section explains some of the important timing constraints in the
Synplify software.

1 The Synplify Synthesis Report File (.srr) contains timing reports
of estimated place-and-route delays. The Quartus II software
can perform further optimizations on a post-synthesis netlist
from third-party synthesis tools. In addition, designs may
contain black boxes or intellectual property (IP) functions that
have not been optimized by the third-party synthesis software.
Actual timing results are obtained only after the design has gone
through full placement and routing in the Quartus II software.
For these reasons, the Quartus II post place-and-route timing
reports provide a more accurate representation of the design.
The statistics in these reports should be used to evaluate design
performance.

Clock Frequencies

For single-clock designs, specify a global frequency when using the
push-button flow. While this flow is simple and provides good results,
often it does not meet the performance requirements for more advanced
designs. You can use timing constraints, compiler directives, and other
attributes to help optimize the performance of a design. You can enter
these attributes and directives directly in the HDL code. Alternatively,
you can enter attributes (not directives) into an .sdc file with the SCOPE
window in the Synplify software.

Use the SCOPE window to set global frequency requirements for the
entire design and individual clock settings. Use the Clocks tab in the
SCOPE window to specify frequency (or period), rise times, fall times,
duty cycle, and other settings. Assigning individual clock settings, rather
than over-constraining the global frequency, helps the Quartus II

7–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

software and the Synplify software achieve the fastest clock frequency for
the overall design. The define_clock attribute assigns clock
constraints.

Multiple Clock Domains

The Synplify software can perform timing analysis on unrelated clock
domains. Each clock group is a different clock domain and is treated as
unrelated to the clocks in all other clock groups. All the clocks in a single
clock group are assumed to be related and the Synplify software
automatically calculates the relationship between the clocks. You can
assign clocks to a new clock group, or put related clocks in the same clock
group by using the Clocks tab in the SCOPE window or with the
define_clock attribute.

Input/Output Delays

Specify the input and output delays for the ports of a design in the
Input/Output tab of the SCOPE window or with the
define_input_delay and define_output_delay attributes. The
Synplify software does not allow you to assign the tCO and tSU values
directly to inputs and outputs. However, a tCO value can be inferred by
setting an external output delay, and a tSU value can be inferred by setting
an external input delay. Equation 1 and 2 below illustrate the relationship
between tCO /tSU and the input/output delays:

(1) tCO = clock period – external output delay

(2) tSU = clock period – external input delay

When the syn_forward_io_constraints attribute is set to 1, the
Synplify software passes the external input and output delays to the
Quartus II software using NativeLink integration. The Quartus II
software then uses the external delays to calculate the maximum system
frequency.

Multicycle Paths

Specify any multicycle paths in the design in the Multi-Cycle Paths tab
of the SCOPE window or with the define_multicycle_path
attribute. A multicycle path is a path that requires more than one clock
cycle to propagate. It is important to specify which paths are multicycle
to avoid having the Quartus II and the Synplify compilers work
excessively on a non-critical path. Not specifying these paths can also
result in an inaccurate critical path being reported during timing analysis.

Altera Corporation 7–11
October 2007

Synplify Optimization Strategies

False Paths

False paths are paths that should not be considered during timing
analysis or which should be assigned low (or no) priority during
optimization. Some examples of false paths are slow asynchronous resets
and test logic added to the design. Set these paths in the False Paths tab
of the SCOPE window. Use the define_false_path attribute.

FSM Compiler

If the FSM Compiler is turned on, the compiler automatically detects state
machines in a design. The compiler can then extract and optimize the
state machine. The FSM Compiler analyzes the state machine and decides
to implement sequential, gray, or one-hot encoding based on the number
of states. It also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic.

If the FSM Compiler is turned off, the compiler does not infer state
machines. The state machines are implemented as coded in the HDL
code. Thus, if the coding style for the state machine was sequential, then
the implementation is also sequential. If the FSM Compiler is turned on,
the compiler infers the state machines. The implementation is based on
the number of states regardless of the coding style in the HDL code.

You can use the syn_state_machine complier directive to specify or
prevent a state machine from being extracted and optimized. To override
the default encoding of the FSM Compiler, use the syn_encoding
directive.

The values for the syn_encoding directive are shown in Table 7–2.

Table 7–2. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flip-flops. Sequential, also called binary,
state machines are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flip-flop changes during each transition.
Gray-encoded state machines tend to be free of glitches.

One-hot Generates state machines containing one flip-flop for each state. One-hot state machines
typically provide the best performance and shortest clock-to-output delays. However, one-hot
implementations are usually larger than binary implementations.

Safe Generates extra control logic to force the state machine to the reset state if an invalid state is
reached. The safe value can be used in conjunction with the other three values, which results
in the state machine being implemented with the requested encoding scheme and the
generation of the reset logic.

7–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 7–1 shows sample VHDL code for applying the syn_encoding
directive.

Example 7–1. VHDL Code for syn_encoding
SIGNAL current_state : STD_LOGIC_VECTOR(7 DOWNTO 0);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF current_state : SIGNAL IS "sequential";

The default is to optimize state machine logic for speed and area, but this
is potentially undesirable for critical systems. The safe value generates
extra control logic to force the state machine to the reset state if an invalid
state is reached.

FSM Explorer in Synplify Pro

The Synplify Pro software can use the FSM Explorer to explore different
encoding styles for a state machine automatically, and then implement
the best encoding based on the overall design constraints. The FSM
Explorer uses the FSM Compiler to identify and extract state machines
from a design. However, unlike the FSM Compiler which chooses the
encoding style based on the number of states, the FSM Explorer tries
several different encoding styles before choosing a specific one. The
trade-off is that the compilation requires more time to perform the
analysis of the state machine, but finds an optimal encoding scheme for
the state machine.

Optimization Attributes and Options

The following sections describe other attributes and options that you can
modify in the Synplify software to improve your design performance.

Retiming in Synplify Pro

The Synplify Pro software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register
balancing) across combinational elements. Be aware that retimed
registers incur name changes. To retime your design, turn on the
Retiming option in the Device tab in the Implementation Options
section, or use the syn_allow_retiming attribute.

Maximum Fan-Out

When your design has critical path nets with high fan-out, you can use
the syn_maxfan attribute to control the fan-out of the net. Setting this
attribute for a specific net results in the replication of the driver of the net
to reduce the overall fan-out. The syn_maxfan attribute takes an integer

Altera Corporation 7–13
October 2007

Synplify Optimization Strategies

value and applies it to inputs or registers. (The syn_maxfan attribute
cannot be used to duplicate control signals, and the minimum allowed
value of the attribute is 4.) Using this attribute may result in increased
logic resource utilization, thus putting a strain on routing resources and
leading to long compile times and difficult fitting.

If you need to duplicate an output register or output enable register, you
can create a register for each output pin by using the syn_useioff
attribute (refer to “Register Packing”).

Preserving Nets

During synthesis, the compiler maintains ports, registers, and
instantiated components. However, some nets may not be maintained to
create an optimized circuit. Applying the syn_keep directive overrides
the optimization of the compiler and preserves the net during synthesis.
The syn_keep directive takes a Boolean value and can be applied to
wires (Verilog HDL) and signals (VHDL). Setting the value to true
preserves the net through synthesis.

Register Packing

Altera devices allow for the packing of registers into I/O cells. Altera
recommends allowing the Quartus II software to make the I/O register
assignments. However, it is possible to control register packing with the
syn_useioff attribute. The syn_useioff attribute takes a Boolean
value and can be applied to ports or entire modules. Setting the value to
1 instructs the compiler to pack the register into an I/O cell. Setting the
value to 0 prevents register packing in both the Synplify and Quartus II
software.

Resource Sharing

The Synplify software uses resource sharing techniques during synthesis
by default to reduce area. Turning off the Resource Sharing option on the
Options tab of the Implementation Options dialog box can improve
performance results for some designs. If you turn off this option, be sure
to check the results to determine if it helps the timing performance; if it
does not help, then you should leave Resource Sharing turned on.

Preserving Hierarchy

The Synplify software performs cross-boundary optimization by default.
This results in the flattening of the design to allow optimization. Use the
syn_hier attribute to over-ride the default compiler settings. The

7–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

syn_hier attribute takes a string value and applies it to modules and/or
architectures. Setting the value to hard maintains the boundaries of a
module and/or architecture, and prevents cross-boundary optimization.

By default, the Synplify software generates a hierarchical VQM file. To
flatten the file, set the syn_netlist_hierarchy attribute equal to 0.

Register Input and Output Delays

The advanced options called define_reg_input_delay and
define_reg_output_delay can speed up paths feeding a register or
coming from a register by a specific number of nanoseconds. The Synplify
software attempts to meet the global clock frequency goals for a design as
well as the individual clock frequency goals (set with define_clock).
You can use these attributes to add delay to paths feeding into or out of
registers to further constrain critical paths.

These options are useful to close timing when your design does not meet
timing goals because the routing delay after placement and routing
exceeds the delay predicted by the Synplify software. Rerun synthesis
using this option, specifying the actual routing delay (from
place-and-route results) so that the tool can meet the required clock
frequency.

In the SCOPE constraint window, use the registers panel with the
following entries:

■ Register—Specifies the name of the register. If you have initialized a
compiled design, you can choose the name from the list.

■ Type—Specifies whether the delay is an input or output delay.
■ Route—Shrinks the effective period for the constrained registers by

the specified value without affecting the clock period that is
forward-annotated to the Quartus II software.

Use the following Tcl command syntax to specify an input or output
register delay in nanoseconds.

Example 7–2. Specifying an Input or Output Register Delay Using Tcl Command Syntax
define_reg_input_delay {<register>} -route <delay in ns>
define_reg_output_delay {<register>} -route <delay in ns>

Altera Corporation 7–15
October 2007

Synplify Optimization Strategies

syn_direct_enable

This attribute controls the assignment of a clock-enable net to the
dedicated enable pin of a register. Using this attribute, you can direct the
Synplify mapper to use a particular net as the only clock enable when the
design has multiple clock enable candidates.

You can also use this attribute as a compiler directive to infer registers
with clock enables. To do so, enter the syn_direct_enable directive in
your source code, not the SCOPE spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true
enables net assignment to the clock-enable pin. The syntax for Verilog
HDL is shown below:

object /* synthesis syn_direct_enable = 1 */ ;

Standard I/O Pad

For certain Altera devices and the equivalent device I/O standard, you
can specify the I/O standard type to use for the I/O pad in the design
using the I/O Standard panel in the Synplify SCOPE window.

Example 7–3 shows the Synplify SDC syntax for the define_io_standard
constraint, in which the delay_type must be either input_delay or
output_delay.

Example 7–3. Synplify SDC Syntax for the define_io_standard Constraint
define_io_standard [-disable|-enable] {<objectName>} -delay_type \
[input_delay|output_delay] <columnTclName>{<value>} \
[<columnTclName>{<value>}...]

f For details about supported I/O standards, refer to Altera I/O Standards
in the Synplify Reference Manual.

Altera-Specific Attributes

The following attributes are for use with specific Altera device features.
These attributes are forward-annotated to the Quartus II project and are
used during the place-and-route process.

7–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

altera_chip_pin_lc

Use this attribute to make pin assignments. This attribute takes a string
value and applies it to inputs and outputs. The attribute can be used only
on the ports of the top-level entity in the design, and cannot be used to
assign pin locations from entities at lower levels of the design hierarchy.

1 This attribute is not supported for any of the MAX series
devices. In the SCOPE window, select the attribute
altera_chip_pin_lc and set the value to a pin number or a list of
pin numbers.

Example 7–4 shows VHDL code for making location assignments to
ACEX 1K and FLEX 10KE devices.

1 The “@” is used to specify pin locations for ACEX 1K and
FLEX 10KE devices. For these devices, the pin location
assignments are written to the output EDIF.

Example 7–4. Making Location Assignments to ACEX 1K and FLEX 10KE Devices, VHDL
ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "@14, @5,@16, @15";

Example 7–5 shows VHDL code for making location assignments for
other Altera devices. The pin location assignments for these devices are
written to the output Tcl script.

Example 7–5. Making Location Assignments to Other Devices, VHDL
ENTITY sample (data_in : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

data_out: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));
ATTRIBUTE altera_chip_pin_lc : STRING;
ATTRIBUTE altera_chip_pin_lc OF data_out : SIGNAL IS "14, 5, 16,

15";

1 The data_out signal is a 4-bit signal; data_out[3] is
assigned to pin 14 and data_out[0] is assigned to pin 15.

altera_implement_in_esb or altera_implement_in_eab

You can use these attributes to implement logic in either embedded
system blocks (ESBs) or embedded array blocks (EABs) rather than in
logic resources to improve area utilization. The modules selected for such
implementation cannot have feedback paths, and either all or none of the

Altera Corporation 7–17
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

I/Os must be registered. This attribute takes a boolean value and can be
applied to instances. (This option is applicable for devices with
ESBs/EABs only. For example, the Stratix family of devices is not
supported by this option. This attribute is ignored for designs targeting
devices that do not have ESBs or EABs.)

altera_io_powerup

You can use this attribute to define the power-up value of an I/O register
that has no set or reset. This attribute takes a string value (high|low) and
applies it to ports that have I/O registers.

altera_io_opendrain

Use this attribute to specify open-drain mode I/O ports. This attribute
takes a boolean value and applies it to outputs or bidirectional ports for
devices that support open-drain mode.

Exporting
Designs to the
Quartus II
Software Using
NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools,
and allows you to run other EDA design entry or synthesis, simulation,
and timing analysis tools automatically from within the Quartus II
software. After a design is synthesized in the Synplify software, a VQM
(or EDIF) netlist file, an .scf file for TimeQuest Timing Analyzer timing
constraints, and Tcl files are used to import the design into the Quartus II
software for place-and-route. You can run the Quartus II software from
within the Synplify software or as a standalone application. Once you
have imported the design into the Quartus II software, you can specify
different options to further optimize the design.

1 When you are using NativeLink integration, the path to your
project must not contain white space. The Synplify software
uses Tcl scripts to communicate with the Quartus II software,
and the Tcl language does not accept arguments with white
space in the path.

You can use NativeLink integration to integrate the Synplify software
and Quartus II software with a single GUI for both the synthesis and
place-and-route operations. NativeLink integration allows you to run the
Quartus II software from within the Synplify software GUI or to run the
Synplify software from within the Quartus II software GUI.

7–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

This section explains the different Nativelink flows and provides details
on how constraints are passed to the Quartus II software. This section
describes the following topics:

■ “Running the Quartus II Software from within the Synplify
Software” on page 7–18

■ “Using the Quartus II Software to Run the Synplify Software” on
page 7–19

■ “Running the Quartus II Software Manually Using the
Synplify-Generated Tcl Script” on page 7–19

■ “Passing TimeQuest SDC Timing Constraints to the Quartus II
Software in the .scf File” on page 7–20

■ “Passing Constraints to the Quartus II Software using Tcl
Commands” on page 7–22

Running the Quartus II Software from within the Synplify
Software

To use the Quartus II software from within the Synplify software, you
must first verify that the QUARTUS_ROOTDIR environment variable
contains the Quartus II software installation directory. This environment
variable is required to use the Synplify and Quartus II software together.

Under each Implementation in the Synplify Pro software, you can create
a place-and-route implementation called pr_<number> Altera Place and
Route. You can create new place and route implementations using the
New P&R button in the GUI. To run the Quartus II software in
command-line mode after each synthesis run, use the text box to turn on
the place-and-route implementation. The results of the place and route
are written to a log file in the pr_<number> directory under the current
implementation directory.

You can also use the commands in the Quartus II menu to run the
Quartus II software at any time following a successful completion of
synthesis. Use one of the following commands from the Quartus II
submenu under the Options menu in the Synplify software:

■ Launch Quartus—Opens the Quartus II software GUI and creates a
Quartus II project with the synthesized output file,
forward-annotated timing constraints, and pin assignments. You can
use this to configure options for the project and execute any
Quartus II commands.

■ Run Background Compile—Runs the Quartus II software in
command-line mode with the project settings from the synthesis run.
The results of the place-and-route are written to a log file.

Altera Corporation 7–19
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

The <project_name>_cons.tcl file is used to set up the Quartus II project
and calls the <project_name>.tcl file to pass constraints from the Synplify
software to the Quartus II software. By default, the <project_name>.tcl file
contains device, timing, and location assignments. If a Stratix III or a
Cyclone III device is selected, the <project_name>.tcl file contains the
command to use the Synplify-generated .scf constraints file with the
TimeQuest Timing Analyzer instead of using the Tcl constraints with the
Classic Timing Analyzer.

Using the Quartus II Software to Run the Synplify Software

You can set up the Quartus II software to run the Synplify software for
synthesis using NativeLink integration. This feature allows you to use the
Synplify software to synthesize a design as part of a normal compilation
in the Quartus II software.

To set up Synplify in Quartus II, on the Tools menu, click Options. In the
Options window, click EDA Tool Options and specify the path of
Synplify or Synplify Pro software.

f For detailed information about using NativeLink integration with the
Synplify software, refer to the Quartus II Help.

1 If you are running the Quartus II software version 7.1 or later,
running the Synplify software with NativeLink integration is
supported on both floating network and node-locked single-PC
licenses. Both types of licenses support batch mode compilation.

Running the Quartus II Software Manually Using the
Synplify-Generated Tcl Script

You can also use the Quartus II software separately from the Synplify
software. To run the Tcl script generated by the Synplify software to set
up your project and set up assignments such as the device selection,
perform the following steps:

1. Ensure the VQM/EDIF, .scf (if you are using the TimeQuest Timing
Analyzer timing constraints), and Tcl files are located in the same
directory (they should be located in the implementation directory
by default).

2. In the Quartus II software, on the View menu, point to Utility
Windows and click Tcl Console. The Quartus II Tcl Console opens.

3. At the Tcl Console command prompt, type the following:

source <path>/<project name>_cons.tcl r

7–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Passing TimeQuest SDC Timing Constraints to the Quartus II
Software in the .scf File

The TimeQuest Timing Analyzer is a powerful ASIC-style timing
analysis tool that validates the timing performance of all logic in your
design using an industry standard constraints format, Synopsys Design
Constraints (SDC). This section explains how timing constraints set in
Synplify are passed to the Quartus II software for use with the TimeQuest
Timing Analyzer.

The timing constraints you set in Synplify are stored in the Synplify
Design Constraints (.sdc) file. The Tcl file always contains all other
constraints for the Quartus II software, such as the device specification
and any location constraints. The timing constraints are
forward-annotated using the Tcl file for the Quartus II Classic Timing
Analyzer, as described in “Passing Constraints to the Quartus II Software
using Tcl Commands” on page 7–22. For the TimeQuest Timing Analyzer,
the timing constraints are forward-annotated in the Synopsys Constraints
Format (.scf) file.

Altera recommends that you use the TimeQuest Timing Analyzer for
Stratix III and Cyclone III devices, as specified in the Synplify Tcl file that
sets up the Quartus II project. However, you can continue to use the Tcl
commands for the Classic Timing Analyzer if required. You can manually
change from the TimeQuest Timing Analyzer to the Classic Timing
Analyzer in the Quartus II software by performing the following steps:

1. From the Assignments menu, select Settings.

2. Click Timing Analysis Settings.

3. Under Timing analysis processing, click the Use Classic Timing
Analyzer during compilation radio button. Click OK.

1 For addition information about the TimeQuest Timing
Analyzer, refer to the Quartus II TimeQuest Timing Analyzer
chapter in the Quartus II Handbook.

Synplicity recommends that you modify constraints using the SCOPE
constraint editor window and not through the generated .sdc, .scf or .tcl
file.

The following list of Synplify constraints are converted to the equivalent
Quartus II SDC commands and are forward-annotated to the Quartus II
software in the .scf file:

■ define_clock

Altera Corporation 7–21
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

■ define_input_delay
■ define_output_delay
■ define_multicycle_path
■ define_false_path

All Synplify constraints described in the following sections use the same
Synplify commands as described in “Passing Constraints to the
Quartus II Software using Tcl Commands” on page 7–22; however, the
constraints are mapped to SDC commands for the TimeQuest Timing
Analyzer.

f For the syntax and arguments for these commands, refer to the
applicable subsection or refer to the Synplify Help. For a list of
corresponding commands in the Quartus II software, refer to the
Quartus II Help.

Individual Clocks and Frequencies

You can specify clock frequencies for individuals clocks in Synplify
software with the command, define_clock. This command is passed
to Quartus II software with create_clock.

Input and Output Delay

You can specify input delay and output delay constraints in Synplify
software with the commands define_input_delay and
define_output_delay respectively. These commands are passed to
the Quartus II software with set_input_delay and
set_output_delay.

Multicycle Path

You can specify a multicycle path constraint in Synplify with the
command define_multicycle_path. This command is passed to the
Quartus II software with define_multicycle_path.

False Path

You can specify a false path constraint in Synplify software with the
command define_false_path. This command is passed to the
Quartus II software with set_false_path.

7–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Passing Constraints to the Quartus II Software using Tcl
Commands

This section describes how Synplify constraints are converted to the
equivalent Quartus II assignments and are forward-annotated to the
Quartus II software with Tcl commands.

This section discusses timing constraints for the Quartus II Classic
Timing Analyzer. If you are using the TimeQuest Timing Analyzer, the
Quartus II timing constraints described in this section do not apply. Refer
to “Passing TimeQuest SDC Timing Constraints to the Quartus II
Software in the .scf File” on page 7–20 for information about timing
constraints supported by TimeQuest.

Global Signals

The Synplify software automatically promotes clock signals to global
routing lines and passes Global Signal assignments to the Quartus II
software. The assignments ensure that the same global routing
constraints are applied during placement and routing.

1 The signals promoted to global routing can be different than the
ones that the Quartus II software promotes to global routing by
default. Synplify promotes only clock signals and not other
control signals such as reset or enable. By default, without
constraints from the Synplify software, the Quartus II software
promotes control signals to global routing if they have high fan-
out.

Default or Global Clock Frequency

Use the following Synplify command to set the Synplify default or global
clock frequency that applies to the entire project:

set_option -frequency <frequency>

The <frequency> is specified in MHz. If a global frequency is not specified,
the software uses the default global clock frequency of 1 MHz.

The set_option Synplify constraint is passed to the Quartus II software
with the following command:

set_global_assignment -name FMAX_REQUIREMENT
<frequency> MHz

If a frequency is not specified in the Quartus II software, the software uses
the default global clock frequency of 1 GHz.

Altera Corporation 7–23
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Individual Clocks and Frequencies

You can specify clock frequencies for individual clocks with the following
Synplify commands:

Example 7–6. Specifying Clock Frequencies for Individual Clocks
define_clock -name {<clock_name>} -freq <frequency> -clockgroup <clock_group>
-rise <rise_time> -fall <fall_time>
define_clock -name {<clock_name>} -period <period> -clockgroup <clock_group>
-rise <rise_time> -fall <fall_time>

Table 7–3 shows the command arguments.

The equivalent Quartus II Classic Timing Analyzer commands depend
on how the clock groups are defined. In the Quartus II software, clocks
that belong to the same or related clock settings are considered related
clocks. Clocks assigned to unrelated clock settings are unrelated clocks.
There is a one-to-one correspondence between each Quartus II clock
setting and a Synplify clock group.

1 The following sections describe only the frequency constraints.
You can use the corresponding constraints for period.

Table 7–3. Command Arguments

Argument Description

-name The <clock_name> specifies a design port name or a register output signal name, and, after
synthesis, corresponds to a <mapped_clock_name>.

-freq (1) The <frequency> is specified in MHz.

-period (2) The <period> is specified in ns.

-clockgroup If the <clock_group> is not specified, it defaults to default_clkgroup. Synplify assumes all
clocks belonging to the same clock group are related. If you do not specify a clock group, the
clock belongs to the default clock group. Therefore, if you do not specify any clock groups, all
the clocks are considered related by default in the software.

-rise
-fall

The <rise_time> and <fall_time> specify a non-default duty cycle. By default, the Synplify
synthesis tool assumes that the clock is a 50% duty cycle clock, with the rising edge at 0 and
the falling edge at period/2. If you have another duty clock cycle, you can specify the
appropriate Rise At and Fall At values.

Notes to Table 7–3:
(1) When the <frequency> is specified, the Synplify software uses <fall_time> and <frequency> to calculate the

duty_cycle with the following formula: duty_cycle = (<fall_time> – <rise_time>) × <frequency> ÷ 10.
(2) When the <period> is specified, the Synplify software uses <fall_time> and <period> to calculate the duty_cycle

with the following formula: duty_cycle = 100 × (<fall_time> – <rise_time>) ÷ <period>.

7–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Virtual Clocks

The Quartus II software supports virtual clocks. If you use the virtual
clock setting in Synplify, the setting is mapped to a constraint in the
Quartus II software.

Route Delay Option

The -route option in Synplify clock constraints is designed for use for
synthesis only if you do not meet timing goals because the routing delay
after placement and routing exceeds the delay predicted by the Synplify
software. This constraint does not have to be forward annotated to the
Quartus II software.

Multiple Clocks in Different Clock Groups

You can specify clock frequencies for multiple clocks with the Synplify
commands shown in Example 7–7.

Example 7–7. Specifying Clock Frequencies for Multiple Clocks
define_clock -name {<clock_name1>} -freq <frequency1> \
-clockgroup <clock_group1> -rise <rise_time1> -fall <fall_time1>

define_clock -name {<clock_name2>} -freq <frequency2> \
-clockgroup <clock_group2> -rise <rise_time2> -fall <fall_time2>

<clock_group1> and <clock_group2> are unique names defined in the
Synplify software for base clock settings in the Quartus II Classic Timing
Analyzer.

If the clock <rise_time> is zero (“0”), multiple separate clocks are passed
to the Quartus II software with the commands shown in Example 7–8:

Example 7–8. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Zero
create_base_clock -fmax <frequency1>MHz -duty_cycle <duty_cycle1> \
-target mapped_clock_name1 <base_clock_setting1>

create_base_clock -fmax <frequency2>MHz -duty_cycle <duty_cycle2> \
-target mapped_clock_name2 <base_clock_setting2>

Altera Corporation 7–25
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

If the clock <rise_time> is non-zero, multiple separate clocks are passed to
the Quartus II software with the following commands shown in
Example 7–9:

Example 7–9. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Not Zero
create_base_clock -fmax <frequency1>MHz -duty_cycle <duty cycle1> \
-no_target <base clock setting1>

create_base_clock -fmax <frequency2>MHz -duty_cycle <duty cycle2> \
-no_target <base clock setting2>

create_relative_clock -base_clock <base clock setting1> -offset <rise time1>ns \
-duty_cycle <duty cycle1> -multiply <multiply by> -divide <divide by> \
-target <mapped clock name1> <derived clock setting1>

create_relative_clock -base_clock <base clock setting2> -offset <rise time2>ns \
-duty_cycle <duty cycle2> -multiply <multiply by> -divide <divide by> \
-target <mapped clock name2> <derived clock_setting2>

Multiple Clocks with Different Frequencies in the Same Clock Group

You can specify multiple clocks with relative clock settings in the same
clock group in Synplify with different frequencies with the commands
shown in Example 7–10:

Example 7–10. Specifying Multiple Clocks with Different Frequencies in the Same Clock Group
define_clock -name {<clock_name1>} -freq <frequency1> -clockgroup <clock_group1> \
-rise <rise_time1> -fall <fall_time1>

define_clock -name {<clock_name2>} -freq <frequency2> -clockgroup <clock_group1> \
-rise <rise_time2> -fall <fall_time2>

1 When you specify clocks with different frequencies in the same
clock group, the software calculates the <multiply_by> and the
<divide_by> factors for relative clock settings from <frequency1>
and <frequency2> in the clock group settings.

7–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If the clock <rise_time> is zero, multiple clocks with relative clock settings
in the same clock group with different frequencies are passed to the
Quartus II software with the commands shown in Example 7–11:

Example 7–11. Quartus II Assignments for Multiple Clocks with Different Frequencies in the Same Clock
Group, if the Clock Rise Time is Zero
create_base_clock -fmax <frequency1>MHz -duty_cycle <duty_cycle1> \
-target <mapped_clock_name1> <base_clock_setting1>

create_relative_clock -base_clock <base_clock_setting1> \
-duty_cycle <duty_cycle2> -multiply <multiply_by> -divide <divide_by> \
-target <mapped_clock_name2> <derived_clock_setting2>

Inter-Clock Relationships—Delays and False Paths between Clocks

You can set a clock-to-clock delay constraint in Synplify with the
commands in Example 7–12.

Example 7–12. Specifying Clock-to-Clock Delay Constraints
define_clock_delay -fall <clock_name1> -rise <clock_name2> <delay_value>
define_clock_delay -rise <clock_name1> -fall <clock_name2> <delay_value>
define_clock_delay -rise <clock_name1> -rise <clock_name2> <delay_value>
define_clock_delay -fall <clock_name1> -fall <clock_name2> <delay_value>

If <delay_value> is set to false, these constraints in Synplify indicate a
false path between the two clocks. If all four rise/fall clock-edge pairs are
specified in the Synplify software, the Synplify constraints are mapped to
the following constraint in the Quartus II software:

set_timing_cut_assignment -from <clock_name1> \
-to <clock_name2>

If all four clock-edge pairs are not specified in Synplify, the constraint
cannot be mapped to a constraint for the Quartus II Classic Timing
Analyzer.

If <delay_value> is set to a value other than false, these constraints in
Synplify is not mapped to a constraint in the Quartus II software. The
Quartus II Classic Timing Analyzer does not support clock-edge to clock-
edge delay constraints.

Altera Corporation 7–27
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

False Paths

You can specify the false path constraint in Synplify with the following
command:

define_false_path -from <sig_name1> -to <sig_name2>

The signals <sig_name1> and <sig_name1> can be design port names or
register instance names.

The define_false_path constraint in Synplify is mapped to the constraint
in the Quartus II software, as shown below.

set_timing_cut_assignment -from <sig_name1> \
-to <sig_name2>

Synplify can identify pairs of signal sets such that every member of the
cross-product of these two sets is a valid false path constraint. Signal
groups can be defined in the Quartus II Classic Timing Analyzer with the
following commands:

timegroup -add_member sig_name1_i <sig_group1>
(for every signal in <sig_group1>)

timegroup -add_member sig_name2_i <sig_group2>
(for every signal in <sig_group2>)

set_timing_cut_assignment -from <sig_group1> \
-to <sig_group2>

If the signals <sig_name1> or <sig_name2> represent multiple signals such
as a wildcard, group, or bus, the constraints you can expand
appropriately for representation in the Quartus II software. The
Quartus II software supports wildcard signal names, and signal groups
for timing assignments. The Quartus II software does not support bus
notation, such as A[7:4].

7–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

False Path from a Signal
You can specify a false path constraint from a signal in Synplify with the
following command:

define_false_path -from <sig_name>

The Quartus II Classic Timing Analyzer does not support “from-only”
path specifications. You must also include a “to-path” specification.
However, you can specify a wildcard for the -to signal. This constraint
in Synplify is mapped to the following constraint in the Quartus II
software:

set_timing_cut_assignment -from <sig_name> -to {*}

False Path to a Signal
You can specify a false path constraint to a signal in Synplify with the
following command:

define_false_path -to <sig_name>

The Quartus II Classic Timing Analyzer does not support to-only path
specifications. You must include a from-path specification.” However,
you can specify a wildcard for the -from signal. This constraint in
Synplify is mapped to the following constraint in the Quartus II software:

set_timing_cut_assignment -from {*} -to <sig_name>

False Path Through a Signal
You can specify a false path constraint through a signal in Synplify with
the following command:

define_false_path -from <sig_name1> -to <sig_name2> \
-through <sig_name3>

The Quartus II Classic Timing Analyzer does not support false paths with
a “through path” specification. Any constraint in Synplify with a
-through specification is not mapped to a constraint for the Quartus II
Classic Timing Analyzer.

Multicycle Paths

You can specify a multicycle path constraint in Synplify with the
following command:

define_multicycle_path -from <sig_name1> \
-to <sig_name2> <clock_cycles>

Altera Corporation 7–29
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

This constraint in Synplify is mapped to the following constraint in the
Quartus II software:

set_multicycle_assignment -from <sig_name1> \
-to <sig_name2> <clock_cycles>

If the signals <sig_name1> or <sig_name2> represent multiple signals such
as a wildcard, group, or bus, the constraints can be appropriately
expanded for representation in the Quartus II software as described in
“False Paths” on page 7–11.

1 <clock_cycles> is the number of clock cycles for the multicycle
path.

Multicycle Path from a Signal
You can specify a multicycle path constraint from a signal in Synplify
with the following command:

define_multicycle_path -from <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the -to value in the
Quartus II Classic Timing Analyzer, similar to the false path constraints:

set_multicycle_assignment -from <sig_name> \
-to {*} <clock_cycles>

Multicycle Path to a Signal
You can specify a multicycle path constraint to a signal in Synplify with
the following command:

define_multicycle_path -to <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the -from value in the
Quartus II Classic Timing Analyzer, similar to the false path constraints:

set_multicycle_assignment -from {*} <sig_name> \
<clock_cycles>

Multicycle Path Through a Signal
You can specify a multicycle path constraint through a signal in Synplify
using the following command:

define_multicycle_path -from <sig_name1> -to <sig_name2> \
-through <sig_name3> <clock_cycles>

7–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The Quartus II Classic Timing Analyzer does not support multicycle
paths with a “through path” specification. Any constraint in Synplify
with a -through specification is not mapped to a constraint for the
Quartus II Classic Timing Analyzer.

Maximum Path Delays

You can specify the maximum path delay relationships between signals
in Synplify with the following command:

define_path_delay -from <sig_name1> -to <sig_name2> \
-max <delay_value>

This constraint in Synplify is mapped to the following constraint in the
Quartus II software:

set_instance_assignment -from <sig_name1> \
-to <sig_name2> -name SETUP_RELATIONSHIP <delay_value>ns

The Quartus II Classic Timing Analyzer does not support signal groups
or bus notation, and supports only register names for this constraint.

Maximum Path Delay from a Signal
You can specify the maximum path delay constraint from a signal in
Synplify with the following command:

define_path_delay -from <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the -to value in the
Quartus II Classic Timing Analyzer, similar to false path constraints:

set_instance_assignment -from <sig_name> -to {*} \
-name SETUP_RELATIONSHIP <delay_value>ns

Maximum Path Delay to a Signal
You can specify the maximum path delay constraint to a signal in
Synplify with the following command:

define_path_delay -to <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the -from value in the
Quartus II Classic Timing Analyzer, similar to the false path constraints.

set_instance_assignment -from {*}<sig_name> \
-to <sig_name> -name SETUP_RELATIONSHIP <delay_value>ns

Altera Corporation 7–31
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Maximum Path Delay through a Signal
You can specify the maximum path delay constraint through a signal in
Synplify with the following command:

define_path_delay -from <sig_name1> -to <sig_name2> \
-through <sig_name3> -max <delay_value>

The Quartus II Classic Timing Analyzer does not support maximum path
delay constraints with a “through path” specification. Any constraint in
Synplify with a -through specification is not mapped to a constraint for
the Quartus II Classic Timing Analyzer.

Register Input and Output Delays
These register input delay and register output delay constraints in
Synplify are for use in synthesis only, and therefore are not
forward-annotated to the Quartus II software.

Default External Input Delay
You can specify the default input delay constraint in Synplify with the
following command:

define_input_delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II
software:

set_input_delay -clock {*} <delay_value> {*}

Port-Specific External Input Delay
You can specify a port-specific input delay constraint in Synplify with the
following command:

define_input_delay <input_port_name> <delay_value> \
-ref <clock_name>:<clock_edge>

The <clock_edge> can be set to r (rising edge) or f (falling edge).

When the clock edge is r (rising edge), this constraint is mapped to the
following constraint in the Quartus II software:

set_input_delay -clock <clock_name> <delay_value> \
<input_port_name>

When the clock_edge is f (falling edge), this constraint is not mapped to
a constraint in the Quartus II software. The Quartus II Classic Timing
Analyzer does not support the specification of input delays with respect
to the falling edge of the clock.

7–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Default External Output Delay
You can specify the default output delay constraint in Synplify with the
following command:

define_output_delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II
software:

set_output_delay -clock {*} <delay_value> {*}

Port-Specific External Output Delay
You can specify a port-specific input delay constraint in Synplify with the
following command:

define_output_delay <output_port_name> <delay_value> \
-ref <clock_name>:<clock_edge>

The <clock_edge> can be set to r (rising edge) or f (falling edge). When the
clock edge is r (rising edge), this constraint is mapped to the following
constraint in the Quartus II software:

set_output_delay -clock <clock_name> <delay_value> \
<output_port_name>

When the clock_edge is f (falling edge), this constraint is not mapped to
a constraint in the Quartus II software. The Quartus II Classic Timing
Analyzer does not support the specification of output delays with respect
to the falling edge of the clock.

Guidelines for
Altera
Megafunctions
and
Architecture-
Specific
Features

Altera provides parameterizable megafunctions including the LPMs,
device-specific Altera megafunctions, IP available as Altera MegaCore®
functions, and IP available through the Altera Megafunction Partners
Program (AMPPSM). You can use megafunctions by instantiating them in
your HDL code or inferring them from generic HDL code.

If you want to instantiate a megafunction in your HDL code, you can do
so with the MegaWizard Plug-In Manager to parameterize the function or
instantiating the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface within the
Quartus II software for customizing and parameterizing any available
megafunction for the design. “Instantiating Altera Megafunctions Using
the MegaWizard Plug-In Manager” on page 7–33 describes the
MegaWizard Plug-In Manager flow with the Synplify software.

Altera Corporation 7–33
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

f For more information about specific Altera megafunctions, refer to the
Quartus II Help. For more information about IP functions, refer to the
appropriate IP documentation.

The Synplify software also automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. The Synplify software provides options to
control inference of certain types of megafunctions, as described in
“Inferring Altera Megafunctions from HDL Code” on page 7–37.

f For a detailed discussion about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. The Recommended HDL Coding
Styles chapter also provides details on using the MegaWizard Plug-In
Manager in the Quartus II software and explains the files generated by
the wizard, as well as providing coding style recommendations and
HDL examples for inferring megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction, the MegaWizard Plug-In Manager creates
a VHDL or Verilog HDL wrapper file that instantiates the megafunction.

1 Beginning with the Quartus II software version 7.1, there is an
option in the MegaWizard Plug-In Manager to create a netlist
for area and timing estimation instead of a wrapper file. This
option is not supported with the Synplify software version 8.8,
therefore you must use the megafunction wrapper file as
described in this section.

Using the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black box methodology because the megafunction is
treated as a black box in the Synplify software. The black box
methodology does not allow the synthesis tool any visibility into the
function module and therefore does not take full advantage of the
synthesis tool’s timing-driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes. Refer to “Other Synplify
Software Attributes for Creating Black Boxes” on page 7–36 for details.

Make sure to set the correct Quartus II version in the Synplify software
before compiling the Megawizard-generated file. The Quartus version
setting should match the version of the Quartus II software used to
generate the customized megafunction in the MegaWizard Plug-In
Manager.

7–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1. On the Project menu, click Implementation Options.

2. Click the Implementation Results tab, then click Quartus Version.

3. Choose the correct version number in the list.

Alternately, use the following command from the command line:

set_option -quartus_version <version number> r

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for
Black Box Megafunction Instantiation

If you check the <output file>_inst.v and <output file>_bb.v options on the
last page of the wizard, the MegaWizard Plug-In Manager generates a
Verilog HDL instantiation template file and a hollow-body black box
module declaration for use in your Synplify design. The instantiation
template file helps to instantiate the megafunction variation wrapper file,
<output file>.v, in your top-level design. Do not include the megafunction
variation wrapper file in your Synplify Project, but add it, with your
Synplify-generated VQM netlist, to your Quartus II project. Add the
hollow-body black box module declaration <output file>_bb.v to your
Synplify project to describe the port connections of the black box.

1 The Synplify software reads black box instantiations for the
alt_pll megafunction and writes the phase-locked loop (PLL)
instance into the resulting VQM output netlist. Reading the PLL
function allows the Synplify software to interpret the
multiplication and division factors in the PLL instantiation to
make the correct timing assignments. Therefore, for alt_pll
instantiations, make sure to include the megafunction variation
wrapper file <output file>.v in your Synplify project and do not
declare it as a black box. Because the instance is written in the
VQM file, do not include the alt_pll megafunction variation
wrapper file <output file>.v in your Quartus II project.

You can use the syn_black_box compiler directive to declare a module
as a black box. The top-level design files must contain the megafunction
port mapping and hollow-body module declaration, as described above.
You can apply the syn_black_box directive to the module declaration
in the top-level file or a separate file included in the project (such as the
<output file>_bb.v file) to instruct the Synplify software that this is a black
box. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you
to add other directives as discussed in “Other Synplify Software
Attributes for Creating Black Boxes” on page 7–36.

Altera Corporation 7–35
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Example 7–13 shows a sample top-level file that instantiates
verilogCount.v, which is a customized variation of the lpm_counter
generated by the MegaWizard Plug-In Manager.

Example 7–13. Top-Level Verilog HDL Code with Black Box Instantiation of lpm_counter
module topCounter (clk, count);

input clk;
output[7:0] count;
verilogCounter verilogCounter_inst (

.clock (clk),

.q (count)
);
endmodule
// Module declaration found in verilogCounter_bb.v
// The following attribute is added to create a
// black box for this module.
module verilogCounter (

clock,
q) /* synthesis syn_black_box */;
input clock;
output[7:0] q;

endmodule

Using MegaWizard Plug-In Manager-Generated VHDL Files for Black Box
Megafunction Instantiation

If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL component declaration file and a VHDL instantiation template
file for use in your Synplify design. These files can help you instantiate
the megafunction variation wrapper file, <output file>.vhd, in your
top-level design. Do not include the megafunction variation wrapper file
in your Synplify project, but add it, along with your Synplify-generated
VQM netlist, to your Quartus II project.

1 The Synplify software reads black box instantiations for the
alt_pll megafunction and writes the phase-locked loop (PLL)
instance into the resulting VQM output netlist. Reading the PLL
function allows the Synplify software to interpret the
multiplication and division factors in the PLL instantiation to
make the correct timing assignments. Therefore, for alt_pll
instantiations, make sure to include the megafunction variation
wrapper file <output file>.vhd in your Synplify project and do
not declare it as a black box. Because the instance is written in
the VQM file, do not include the alt_pll megafunction
variation wrapper file <output file>.vhd in your Quartus II
project.

7–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can use the syn_black_box compiler directive to declare a
component as a black box. The top-level design files must contain the
megafunction variation component declaration and port mapping, as
described above. Apply the syn_black_box directive to the component
declaration in the top-level file. The software compiles successfully
without this directive, but reports an additional warning message. Using
this directive allows you to add other directives such as the ones in the
“Other Synplify Software Attributes for Creating Black Boxes” section.

Example 7–14 shows a sample top-level file that instantiates
vhdlCount.vhd, which is a customized variation of the lpm_counter
generated by the MegaWizard Plug-In Manager.

Example 7–14. Top-Level VHDL Code with Black Box Instantiation of lpm_counter
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY testCounter IS

PORT
(

clk: IN STD_LOGIC ;
count: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
END testCounter;

ARCHITECTURE top OF testCounter IS
component vhdlCount

PORT (
clock: IN STD_LOGIC ;
q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0)

);
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of vhdlCount: component is true;
BEGIN

vhdlCount_inst : vhdlCount PORT MAP (
clock => clk,
q => count

);
END top;

Other Synplify Software Attributes for Creating Black Boxes

The black box methodology does not allow the synthesis tool any
visibility into the function module. Thus, it does not take full advantage
of the synthesis tool’s timing-driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes. This can be done by
adding the syn_tpd, syn_tsu, and syn_tco attributes. Refer to
Example 7–15 for a Verilog HDL example.

Altera Corporation 7–37
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Example 7–15. Verilog HDL Example
module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tco1="clk->z[3:0]=4.0"

syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output[3:0]z;
input[3:0]d;
input[3:0]addr;
input we
input clk
endmodule

The following additional attributes are supported by the Synplify
software to communicate details about the characteristics of the black box
module within the HDL code:

■ syn_resources—Specifies the resources used in a particular black
box

■ black_box_pad_pin—Prevents mapping to I/O cells
■ black_box_tri_pin—Indicates a tri-stated signal

f For more information about applying these attributes, refer to the Tasks
and Tips chapter of the Synplify User Guide.

Inferring Altera Megafunctions from HDL Code

The Synplify software uses Behavior Extraction Synthesis Technology
(BEST) algorithms to infer high-level structures such as RAMs, ROMs,
operators, FSMs, and so forth. It then keeps the structures abstract for as
long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring
the appropriate Altera megafunction when a megafunction provides
optimal results. The following sections outline some of the
Synplify-specific details when inferring Altera megafunctions. The
Synplify software provides options to control inference of certain types of
megafunctions, which is also described in the following sections.

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

7–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Inferring Multipliers

Figure 7–2 shows the HDL Analyst view of an unsigned 8 × 8 multiplier
with two pipeline stages after synthesis as seen in HDL Analyst in the
Synplify software. This multiplier is converted into an lpm_mult
megafunction. For devices with DSP blocks, the software may implement
the lpm_mult function in a DSP block instead of regular logic,
depending on device utilization. For Stratix II and Stratix III devices, the
software maps directly to DSP block device atoms instead of instantiating
a megafunction in the .vqm file.

Figure 7–2. HDL Analyst View of lpm_mult Megafunction (Unsigned 8 × 8
Multiplier with Pipeline=2)

Resource Balancing
While mapping multipliers to DSP blocks, the Synplify software
performs resource balancing for optimum performance.

Altera devices have a fixed number of DSP blocks, which include a fixed
number of embedded multipliers. If the design uses more multipliers
than are available, the Synplify software automatically maps the extra
multipliers to logic elements (LEs), or adaptive logic modules (ALMs).

If a design uses more multipliers than are available in the DSP blocks, the
Synplify software maps the multipliers in the critical paths to DSP blocks.
Next, any wide multipliers, which may or may not be in the critical paths,
are mapped to DSP blocks. Smaller multipliers and multipliers that are
not in the critical paths may then be implemented in the logic (LEs or
ALMs). This ensures that the design fits successfully in the device.

Controlling the Inferring of DSP Blocks
Multipliers can be implemented in DSP blocks or in logic in Altera
devices that contain DSP blocks. You can control this implementation
through attribute settings in the Synplify software.

Altera Corporation 7–39
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Signal Level Attribute
You can control the implementation of individual multipliers by using
the syn_multstyle attribute as shown below:

<signal_name> /* synthesis syn_multstyle = "logic" */

where signal_name is the name of the signal.

1 This setting applies to wires only; it cannot be applied to
registers.

Table 7–4 shows the values for the signal level attribute in the Synplify
software that controls the implementation of the multipliers in the DSP
blocks or LEs.

Example 7–16 and Example 7–17 show simple Verilog HDL and VHDL
code using the syn_multstyle attribute.

Example 7–16. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
module mult(a,b,c,r,en);

input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp : c;
endmodule

Table 7–4. Attribute Settings for DSP Blocks in the Synplify Software

Attribute Name Value Description

syn_multstyle lpm_mult LPM Function inferred and multipliers implemented in
DSP blocks

syn_multstyle logic LPM function not inferred and multipliers implemented
LEs by the Synplify software

syn_multstyle block_mult DSP megafunction is inferred and multipliers are
mapped directly to DSP block device atoms (for
supported devices)

7–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 7–17. Signal Attributes for Controlling DSP Block Inference in VHDL Code
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity onereg is port (
r : out std_logic_vector(15 downto 0);
en : in std_logic;
a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(7 downto 0);
c : in std_logic_vector(15 downto 0)
);

end onereg;

architecture beh of onereg is
signal temp : std_logic_vector(15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of temp : signal is "logic";

begin
temp <= a * b;

r <= temp when en='1' else c;
end beh;

Inferring RAM

When a RAM block is inferred from an HDL design, the software uses an
Altera megafunction to target the device memory architecture. For
Stratix II and Stratix III devices, the software maps directly to memory
block device atoms instead of instantiating a megafunction in the VQM
file.

Follow the guidelines below for the Synplify software to successfully
infer RAM in a design:

■ The address line must be at least two bits wide.
■ Resets on the memory are not supported. Refer to the device family

documentation for information about whether read and write ports
must be synchronous.

■ Some Verilog HDL statements with blocking assignments may not
be mapped to RAM blocks, so avoid blocking statements when
modeling RAMs in Verilog HDL.

For certain device families, the syn_ramstyle attribute specifies the
implementation to use for an inferred RAM. You can apply
syn_ramstyle globally, to a module, or to a RAM instance, to specify
registers or block_ram values. To turn off RAM inference, set the
attribute value to registers.

Altera Corporation 7–41
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

When inferring RAM for certain Altera device families, the Synplify
software generates additional bypass logic. This logic is generated to
resolve a half-cycle read/write behavior difference between the RTL and
post-synthesis simulations. The RTL simulation shows the memory being
updated on the positive edge of the clock, and the post-synthesis
simulation shows the memory being updated on the negative edge. To
eliminate the bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle,
by which time the update has occurred; thus, eliminating the need for the
bypass logic.

For devices with TriMatrix memory blocks, you can disable the creation
of glue logic by setting the syn_ramstyle value to no_rw_check. Use
syn_ramstyle with a value of no_rw_check to disable the creation of
glue logic in dual-port mode.

Example 7–18 shows sample VHDL code for inferring dual-port RAM.

Example 7–18. VHDL Code for Inferred Dual-Port RAM
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr: IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we: IN STD_LOGIC;
clk: IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem: Mem_Type;
SIGNAL addr_reg: STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN
data_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN
mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;

END IF;
END PROCESS;

END ram_infer;

7–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 7–19 shows an example of the VHDL code preventing bypass
logic for inferring dual-port RAM. The extra latency behavior stems from
the inferring methodology and is not required when instantiating a
megafunction.

Example 7–19. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;

ENTITY dualport_ram IS
PORT (data_out: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

data_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
wr_addr, rd_addr : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
we : IN STD_LOGIC;
clk : IN STD_LOGIC);

END dualport_ram;

ARCHITECTURE ram_infer OF dualport_ram IS
TYPE Mem_Type IS ARRAY (127 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL mem : Mem_Type;
SIGNAL addr_reg : STD_LOGIC_VECTOR (6 DOWNTO 0);
SIGNAL tmp_out : STD_LOGIC_VECTOR(7 DOWNTO 0); --output register

BEGIN
tmp_out <= mem (CONV_INTEGER(rd_addr));
PROCESS (clk, we, data_in) BEGIN

IF (clk='1' AND clk'EVENT) THEN
IF (we='1') THEN
mem(CONV_INTEGER(wr_addr)) <= data_in;
END IF;
data_out <= tmp_out; --registers output preventing

 -- bypass logic generation.
END IF;

END PROCESS;
END ram_infer;

RAM Initialization

You can use Verilog system tasks $readmemb or $readmemh in your
HDL code to initialize RAM memories. The Synplify compiler
forward-annotates the initialization values in the .srs
(technology-independent RTL netlist) file and the mapper generates a
corresponding hexadecimal memory initialization (.hex) file. One HEX
file is created for each of the altsyncram megafunctions that are
inferred in the design. The HEX file is associated with the altsyncram
instance in the .vqm file using the init_file attribute.

Altera Corporation 7–43
October 2007

Guidelines for Altera Megafunctions and Architecture-Specific Features

Example 7–20 and Example 7–21 illustrate how RAM memories can be
initialized through HDL code, and how the corresponding HEX file is
generated using Verilog HDL.

Example 7–20. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL Code
initial
begin
 $readmemb("mem.ini", mem);
end

always @(posedge clk)
begin

raddr_reg <= raddr;
if(we)

begin
mem[waddr] <= data;

end
end

Example 7–21. Sample VQM Instance Containing Memory Initialization File from Example 7–20
altsyncram mem_hex(.wren_a(we), .wren_b(GND),...);

defparam mem_hex.lpm_type = "altsyncram";
defparam mem_hex.operation_mode = "Dual_Port";
...
defparam mem_hex.init_file = "mem_hex.hex";

Inferring ROM

When a ROM block is inferred from an HDL design, the software uses an
Altera megafunction to target the device memory architecture. For
Stratix II and Stratix III devices, the software maps directly to memory
block device atoms instead of instantiating a megafunction in the VQM
file. Follow the guidelines below for the Synplify software to successfully
infer ROM in a design:

■ The address line must be at least two bits wide.
■ ROM must be at least half full.
■ A CASE or IF statement must make 16 or more assignments using

constant values of the same width.

Inferring Shift Registers

The software infers shift registers for sequential shift components so that
they can be placed in dedicated memory blocks in supported device
architectures using the altshift_taps megafunction.

7–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If required, set the implementation style with the syn_srlstyle
attribute. If you do not want the components automatically mapped to
shift registers, set the value to registers. You can set the value globally
or on individual modules or registers.

For some designs, turning off shift register inference can improve the
design performance.

Incremental
Compilation and
Block-Based
Design

As designs become more complex and designers work in teams, a
block-based hierarchical or incremental design flow is often an effective
design approach. In an incremental compilation flow, you can make
changes to part of the design while maintaining the placement and
performance of unchanged parts of the design. Design iterations are
made dramatically faster by focusing new compilations on a particular
design partitions and merging results with previous compilation results
of other partitions. In a bottom-up or team-based approach, you can
perform optimization on individual subblocks and then preserve the
results before you integrate the blocks into a final design and optimize it
at the top level.

MultiPoint synthesis, which is available for certain device technologies in
the Synplify Pro software, provides an automated block-based
incremental synthesis flow. The MultiPoint feature manages a design
hierarchy to let you design incrementally and synthesize designs that
take too long for top-down synthesis of the entire project. MultiPoint
synthesis allows different netlist files to be created for different sections
of a design hierarchy, and supports Quartus II incremental compilation
and LogicLock design methodologies. It also ensures that only those
sections of a design that have been updated are resynthesized when the
design is compiled, reducing synthesis run time and preserving the
results for the unchanged blocks. You can change and resynthesize one
section of a design without affecting other sections of the design.

You can also partition your design and create different netlist files
manually with the Synplify software (basic Synplify and Synplify Pro) by
creating a separate project for the logic in each partition of the design.
Creating different netlist files for each partition of the design means that
each partition is independent of the others. When synthesizing the entire
project, only portions of a design that have been updated have to be
resynthesized when you compile the design. You can make changes and
resynthesize one partition of a design to create a new netlist file without
affecting the synthesis results and placement of other partitions.

Hierarchical design methodologies can improve the efficiency of your
design process, providing better design reuse opportunities and fewer
integration problems when working in a team environment. When you
use these incremental synthesis methodologies, you can take advantage

Altera Corporation 7–45
October 2007

Incremental Compilation and Block-Based Design

of the incremental compilation and methodologies in the Quartus II
software. You can perform placement and routing on only the changed
partitions of the design, reducing place-and-route time and preserving
your fitting results. Following the guidelines in this section can help you
achieve good results with these methodologies.

The following list shows the general top-down compilation flow when
using these features of the Quartus II software:

1. Create Verilog HDL or VHDL design files as in the regular design
flow.

2. Determine which hierarchical blocks are to be treated as separate
partitions in your design.

3. Set up your design using the MultiPoint feature or separate projects
so that a separate netlist file is created for each partition of the
design.

4. If using separate projects, disable I/O pad insertion in the
implementations for lower-level partitions.

5. Compile and technology-map each partition in the Synplify Pro or
Synplify software, making constraints as you would in the regular
design flow.

6. Import the VQM or EDIF netlist and the Tcl file for each partition
into the Quartus II software and set up the Quartus II project(s) to
use incremental compilation.

7. Compile your design in the Quartus II software and preserve the
compilation results using the post-fit netlist in incremental
compilation.

8. When you make design or synthesis optimization changes to part of
your design, resynthesize only the changed partition to generate a
new netlist and Tcl file. Do not regenerate netlist files for the
unchanged partitions.

9. Import the new netlist and Tcl file into the Quartus II software and
recompile the design in the Quartus II software using incremental
compilation.

f For more information about creating partitions and using the
incremental compilation in the Quartus II software, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

7–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Hierarchy and Design Considerations with Multiple VQM Files

To ensure the proper functioning of the synthesis flow, you can create
separate netlist files only for modules and entities. In addition, each
module or entity should have its own design file. If two different modules
are in the same design file but are defined as being part of different
partitions, you cannot maintain incremental compilation since both
partitions would have to be recompiled when you change one of the
modules.

Altera recommends that you register all inputs and outputs of each
partition. This makes logic synchronous and avoids any delay penalty on
signals that cross partition boundaries.

If you use boundary tri-states in a lower-level block, the Synplify
software pushes (or “bubbles”) the tri-states through the hierarchy to the
top level to make use of the tri-state drivers on output pins of Altera
devices. Because bubbling tri-states requires optimizing through
hierarchies, lower-level tri-states are not supported with a block-based
compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the
hierarchy.

Creating a Design with Separate Netlist Files

The first stage of a hierarchical or incremental design flow is to ensure
that different parts of your design do not affect each other. Ensure that
you have separate netlists for each partition in your design so that you
can take advantage of incremental compilation in the Quartus II software.
If the entire design is in one netlist file, changes in one partition may affect
other partitions because of possible node name changes when you
resynthesize the design.

You can generate multiple VQM files either by using the MultiPoint
synthesis flow and LogicLock attributes in the Synplify Pro software, or
by manually creating separate Synplify projects and creating a black box
for each block that you want to be considered as a separate design
partition.

In the MultiPoint synthesis flow (Synplify Pro only), you create multiple
VQMs from one easy-to-manage, top-level synthesis project. By using the
manual black box method (Synplify or Synplify Pro), you have multiple
synthesis projects, which may be required for certain team-based or
bottom-up designs where a single top-level project is not desired.

Altera Corporation 7–47
October 2007

Incremental Compilation and Block-Based Design

Once you have created multiple VQM files using one of these two
methods, you must create the appropriate Quartus II projects to
place-and-route the design.

Creating a Design with Multiple VQM Files Using Synplify Pro
MultiPoint Synthesis

This section describes how to generate multiple VQM files using the
Synplify Pro MultiPoint synthesis flow. You must first set up your
compile points, constraint files, and Synplify Pro options, then apply
Altera-specific attributes to write multiple VQM files and create
LogicLock region assignments.

Set Compile Points and Create Constraint Files

The MultiPoint flow lets you segment a design into smaller synthesis
units, called “Compile Points.” The synthesis software treats each
Compile Point as a partition for incremental mapping, which allows you
to isolate and work on individual Compile Point modules as independent
segments of the larger design without impacting other design modules.
A design can have any number of Compile Points, and Compile Points
can be nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be
another Compile Point or a top-level design. Each block created with a
Compile Point is unaffected by critical paths or constraints on its parent
or other blocks. A Compile Point is independent, with its own individual
constraints. During synthesis, any Compile Points that have not yet been
synthesized are synthesized before the top level. Nested Compile Points
are synthesized before the parent Compile Points in which they are
contained. When you apply the appropriate Synplify Pro LogicLock
constraints to a Compile Point module, then a separate netlist is created
for that Compile Point, isolating that logic from any other logic in the
design.

Figure 7–3 on page 7–48 shows an example of a design hierarchy that can
be split into multiple partitions. The top-level block of each partition can
be synthesized as a separate Compile Point.

7–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 7–3. Partitions in a Hierarchical Design

In this case, modules A, B, and F are Compile Points. The top-level
Compile Point consists of the top-level block in the design (that is, block
A in this example), including the logic that is not defined under another
Compile Point. In this example, the design for top-level Compile Point A
also includes the logic in one of its subblocks, C. Because block F is
defined as its own Compile Point, it is not treated as part of the top-level
Compile Point A. Another separate Compile Point B contains the logic in
blocks B, D, and E. One netlist is created for the top-level module A and
submodule C, another netlist is created for B and its submodules D and
E, while a third netlist is created for F.

Apply Compile Points to the module or architecture in the Synplify Pro
SCOPE spreadsheet or in the .sdc file. You cannot set a Compile Point in
the Verilog HDL or VHDL source code. You can set the constraints
manually using Tcl or by editing the .sdc file. You can also use the GUI
which provides two methods, manual or automated, as shown below.

Defining Compile Points Using Tcl or SDC
To set Compile Points using Tcl or an .sdc file, use the
define_compile_point command, as shown in Example 7–22.

Example 7–22. The define_compile_point Command
define_compile_point [-disable] [-comment <comment>] <objname> \
[-type <compile point type>]

In the syntax statement above, objname represents any module in the
design. Currently, locked is the only Compile Point type supported.

Partition Top

Partition B Partition F

D E

B

A

F

C

Altera Corporation 7–49
October 2007

Incremental Compilation and Block-Based Design

Each Compile Point has a set of constraint files that begin with the
define_current_design command to set up the SCOPE
environment, as shown below.

define_current_design {<my_module>}

Manually Defining Compile Points from the GUI
The manual method requires you to separately create constraint files for
the top-level and the lower-level Compile Points. To use the manual
method:

1. From the top level, select the Compile Points tab in the SCOPE
spreadsheet.

2. Select the modules that you want to define as Compile Points.

Currently, locked Compile Points are the only type supported. All
Compile Points must be defined from the top level because the
Compile Points tab is not available in the SCOPE spreadsheet from
lower level modules.

3. Manually create a constraint file for each module.

To ensure that changes to a Compile Point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

Automatically Defining Compile Points from the GUI
When you use the automated process, the lower-level constraint file is
created automatically. This eliminates the manual step necessary to set up
each Compile Point. To use the automated method, perform the
following steps:

1. On the File menu, select New. Click to create a new Constraint File,
or click the SCOPE icon in the tool bar.

2. From the Select File Type tab of the Create a New SCOPE File
dialog box, select Compile Point.

3. Select the module you want to designate as a Compile Point. The
software automatically sets the Compile Points in the top-level
constraint file and creates a lower-level constraint file for each
Compile Point.

7–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To ensure that changes to a Compile Point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

When using Compile Points with incremental compilation, keep the
following restrictions in mind:

■ To use Compile Points effectively, you must provide timing
constraints (timing budgeting) for each Compile Point; the more
accurate the constraints, the better your results are. Constraints are
not automatically budgeted, so manual time budgeting is essential.
Altera recommends that you register all inputs and outputs of each
partition. This avoids any logic delay penalty on signals that cross
partition boundaries.

■ When using the Synplify Pro attribute syn_useioff to pack
registers in the I/O Elements (IOEs) of Altera devices, these registers
must be in the top-level module, not a lower level. Otherwise, you
must allow the Quartus II software to perform I/O register packing
instead of the syn_useioff attribute. You can use the Fast Input
Register or Fast Output Register options, or set I/O timing
constraints and turn on Optimize I/O cell register placement for
timing on the Fitter Settings page of the Settings dialog box in the
Quartus II software.

■ There is no incremental synthesis support for top-level logic; any
logic in the top-level is resynthesized during every compilation in
the Synplify Pro software.

f For more information about Compile Points, refer to the Synplify Pro
User Guide and Reference Manual on the Synplicity web site at
www.synplicity.com.

Apply the LogicLock Attributes

To instruct the Synplify Pro software to create a separate VQM netlist file
for each Compile Point, you must indicate that the Compile Point is being
used with LogicLock regions in the incremental compilation or
LogicLock design methodology. Because separate netlist files are
required for incremental compilation, you must use the LogicLock
attributes if you plan to use the incremental compilation feature in the
Quartus II software. When you apply the appropriate LogicLock
attributes, the Synplify Pro software also writes out Tcl commands for the
Quartus II software to create a LogicLock region for each netlist.

LogicLock regions in the Quartus II software have size and location
properties. The region’s size is defined by the height and width of the
rectangular area. If the region is specified as auto-size, then the Quartus II

http://www.synplicity.com

Altera Corporation 7–51
October 2007

Incremental Compilation and Block-Based Design

software determines the appropriate size to fit the logic assigned to the
region. When you specify the size, you must include enough device
resources to accommodate the assigned logic. The location of a region is
defined by its origin, which is the position of its bottom-left corner or
top-left corner, depending on the target device family. In the Quartus II
software, this location can be specified as “locked” or “floating.” If the
location is floating, the Quartus II software determines the location
during its optimization process.

1 Floating locations are the only type currently supported in the
Synplify Pro software.

When you use incremental compilation in the Quartus II software, you
should lock down the size and location of the region in the Quartus II
software after the first compilation to achieve the best quality of results.

Table 7–5 shows the valid combinations of the LogicLock attributes.

You can apply these attributes to the top-level constraint file or to the
individual constraint files for each lower-level Compile Point. You can
use the Attribute tab of the SCOPE spreadsheet to set attributes.

Synplify Pro offers another attribute, syn_allowed_resources, which
restricts the number of resources for a given module. You can apply the
syn_allowed_resources attribute to any Compile Point view.

f For specific information about these attributes, refer to the Synplify Pro
online help or reference manual.

Creating a Quartus II Project for Multiple VQM Files

During compilation, the Synplify Pro software creates a <top-level
project>.tcl file that provides the Quartus II software with the appropriate
constraints and LogicLock assignments, creating a region for each VQM
file along with the information to set up a Quartus II project.

Table 7–5. LogicLock Location and Size Properties

altera_logiclock_location
Attribute

altera_logiclock_size
Attribute Description

Floating Auto The most flexible type of LogicLock constraint. Allows the
Quartus II software to choose the appropriate region size
and location.

Floating Fixed Assumes the size of LogicLock constraint area is already
optimal in the existing Quartus II project.

7–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The Tcl file contains the following commands for each LogicLock region.
Example 7–23 is for module A (instance u1) in the project named top
where the region name cpll_1 was selected by Synplify Pro for the
Compile Point.

Example 7–23. Commands for Each LogicLock Region in a Tcl File
set_global_assignment -section_id{taps_region} -name{LL_AUTO_SIZE}{ON}
set_global_assignment -section_id{taps_region} -name{LL_STATE}{FLOATING}
set_instance_assignment -section_id{taps_region} -to{|taps:u1} \
-name{LL_MEMBER_OF} {taps_region}

These commands create a LogicLock region with auto size and floating
origin properties. This flexible LogicLock region allows the Quartus II
Compiler to select the size and location of the region.

f For more information about Tcl commands, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

Depending on your design methodology, you can create one Quartus II
project for all netlists (a top-down placement and routing flow) or a
separate Quartus II project for each netlist (a bottom-up placement and
routing flow). In a top-down incremental compilation design flow, you
create design partition assignments and LogicLock floorplan location
assignments for each partition in the design within a single Quartus II
project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.

You may require a bottom-up design flow if each partition must be
optimized separately, such as in certain team-based design flows. To
perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a
top-level design using the incremental compilation export and import
features to maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

Creating a Single Quartus II Project for a Top-Down Incremental
Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify Pro
assignments for all partitions within the project. This method allows you
to import all the partitions into one Quartus II project and optimize all
modules within the project at once, taking advantage of the performance
preservation and compilation-time reduction incremental compilation
offers. Figure 7–4 shows a visual representation of the design flow for the
example design in Figure 7–3.

Altera Corporation 7–53
October 2007

Incremental Compilation and Block-Based Design

Figure 7–4. Design Flow Using Multiple VQM Files with One Quartus II Project

Creating Multiple Quartus II Projects for a Bottom-Up LogicLock
Design Flow
Generate multiple Quartus II projects, one for each partition and netlist in
the design. Each designer in the project can optimize their partition
separately within the Quartus II software and export the placement for
their partitions. Figure 7–5 shows a visual representation of the design
flow for the example design in Figure 7–3. The optimized sub-designs can
be brought into one top-level Quartus II project using incremental
compilation.

Figure 7–5. Design Flow Using Multiple VQM Files with Multiple Quartus II Projects

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to Import
Synplify Pro Assignments

Use f.tcl to Import
Synplify Pro
Assignments

Use b.tcl to Import
Synplify Pro

Assignments

7–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Generating a Design with Multiple VQM Files Using Black Boxes

This section describes how to manually generate multiple VQM files
using black boxes. This manual flow is supported in versions of the
Synplify software that do not include the MultiPoint Synthesis feature.

Manually Creating Multiple VQM Files Using Black Boxes

To create multiple VQM files manually in the Synplify software, create a
separate project for each low-level module and the top-level design that
you want to maintain as a separate VQM file. Implement black box
instantiations of lower-level partitions in your top-level project.

When synthesizing the projects for the lower-level modules, perform the
following steps:

1. In the Implementation Options dialog box, turn on Disable I/O
Insertion for the target technology.

2. Read the HDL files for the modules.

1 Modules may include black box instantiations of
lower-level modules that are also maintained as separate
VQM files.

3. Add constraints with the SCOPE constraint window.

4. Enter the clock frequency to ensure that the sub-design is correctly
optimized.

5. In the Attributes tab, set syn_netlist_hierarchy to 0.

When synthesizing the top-level design project, perform the following
steps:

1. Turn off Disable I/O Insertion for the target technology.

2. Read the HDL files for top-level designs.

3. Create black boxes using lower-level modules in the top-level
design.

4. Add constraints with the SCOPE constraint window.

5. Enter the clock frequency to ensure that the design is correctly
optimized.

Altera Corporation 7–55
October 2007

Incremental Compilation and Block-Based Design

6. In the Attributes tab, set syn_netlist_hierarchy to 0.

The following sections describe an example of black box implementation
to create separate VQM files. Figure 7–3 for an example of a design
hierarchy that is split into multiple partitions.

Figure 7–6. Partitions in a Hierarchical Design

In Figure 7–3, the partition top contains the top-level block in the design
(block A) and the logic that is not defined as part of another partition. In
this example, the partition for top-level block A also includes the logic in
one of its sub-blocks, C. Because block F is contained in its own partition,
it is not treated as part of the top-level partition A. Another separate
partition, B, contains the logic in blocks B, D, and E. In a team-based
design, different engineers may work on the logic in different partitions.
One netlist is created for the top-level module A and its submodule C,
another netlist is created for B and its submodules D and E, while a third
netlist is created for F. To create multiple VQM files for this design, follow
these steps:

1. Generate a VQM file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate a VQM file for module F. Use F.v/.vhd as the source files.

3. Generate a top-level VQM file for module A. Use A.v/.vhd and
C.v/.vhd as the source files. Ensure that you use black box modules
B and F, which were optimized separately in the previous steps.

Partition Top

Partition B Partition F

D E

B

A

F

C

7–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Creating Black Boxes in Verilog HDL
Any design block that is not defined in the project or included in the list
of files to be read for a project are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intend to create a
black box for the given module. In Verilog HDL, you must provide an
empty module declaration for the module that is treated as a black box.

Example 7–24 shows an example of the A.v top-level file. Follow the same
procedure below for lower-level files which also contain a black box for
any module beneath the current level hierarchy.

Example 7–24. Verilog HDL Black Box for Top-Level File A.v
module A (data_in, clk, e, ld, data_out);

input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
boxes.

module B (data_in, clk, ld, data_out) /* synthesis syn_black_box */ ;
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module F (d, clk, e, q) / *synthesis syn_black_box */ ;
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

Altera Corporation 7–57
October 2007

Incremental Compilation and Block-Based Design

Creating Black Boxes in VHDL
Any design block that is not defined in the project or included in the list
of files to be read for a project are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intend to treat the
given component as a black box. In VHDL, you need a component
declaration for the black box just like any other block in the design.

1 Although VHDL is not case-sensitive, VQM (a subset of
Verilog HDL) is case-sensitive. Entity names and their port
declarations are forwarded to the VQM. Black box names and
port declarations are also passed to the VQM. To prevent
case-based mismatches between VQM, use the same
capitalization for black box and entity declarations in VHDL
designs.

Example 7–25 shows an example of the A.vhd top-level file. Follow this
same procedure for any lower-level files that contain a black box for any
block beneath the current level of hierarchy.

Example 7–25. VHDL Black Box for Top-Level File A.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY synplify;
use synplify.attributes.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT F PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

attribute syn_black_box of B: component is true;
attribute syn_black_box of F: component is true;

-- Other component declarations in A.vhd go here

7–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN

U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

After you have completed the steps described in this section, you have a
netlist file for each partition of the design. These files are ready for use
with incremental compilation in the Quartus II software.

Creating a Quartus II Project for Multiple VQM Files

The Synplify software creates a Tcl file for each VQM file that provides
the Quartus II software with the appropriate constraints and information
to set up a project. For details about using the Tcl script generated by the
Synplify software to set up your Quartus II project and pass your
constraints, refer to “Running the Quartus II Software Manually Using
the Synplify-Generated Tcl Script” on page 7–19.

Depending on your design methodology, you can create one Quartus II
project for all netlists (a top-down placement and routing flow) or a
separate Quartus II project for each netlist (a bottom-up placement and
routing flow). In a top-down incremental compilation design flow, you
create design partition assignments and LogicLock floorplan location
assignments for each partition in the design within a single Quartus II
project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.
You may require a bottom-up design flow where each partition must be
optimized separately, such as in certain team-based design flows.

Altera Corporation 7–59
October 2007

Incremental Compilation and Block-Based Design

To perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a
top-level design using the incremental compilation export and import
features to maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

Creating Compile Points in a Single Quartus II Project for a
Top-Down Incremental Compilation Flow
Use the <top-level project>.tcl file that contains the Synplify assignments
for the top-level design. This method allows you to import all of the
partitions into one Quartus II project and optimize all modules within the
project at once, taking advantage of the performance preservation and
compilation time reduction offered by incremental compilation.
Figure 7–7 shows a visual representation of the design flow for the
example design in Figure 7–3.

All of the constraints from the top-level project are passed to the
Quartus II software in the top-level Tcl file, but any constraints made in
the lower-level projects within the Synplify software is not
forward-annotated. Enter these constraints manually in your Quartus II
project.

Figure 7–7. Design Flow Using Multiple VQM Files with One Quartus II Project

Creating Multiple Quartus II Projects for a Bottom-Up Design Flow
Use the Tcl file that is created for each VQM file by the Synplify software
for each Synplify Project. This method generates multiple Quartus II
projects, one for each block in the design. Each designer in the project can

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to import top-level
Synplify Pro assignment.

Enter any lower-level
asignments manually.

7–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

optimize their block separately within the Quartus II software and export
the placement of their blocks. Figure 7–8 shows a visual representation of
the design flow for the example in Figure 7–3 on page 7–48.

Designers should create a LogicLock region for each block; the top-level
designer should then import all the blocks and assignments into the top-
level project. This method allows each block in the design to be treated
separately; each block can then be imported into one top-level project.

Figure 7–8. Design Flow Using Multiple Synplify Projects and Multiple Quartus II Projects

Conclusion Advanced synthesis is an important part of the design flow. Taking
advantage of the Synplicity Synplify and Quartus II design flows allow
you to control how your design files are prepared for the Quartus II
place-and-route process, as well as improve performance and optimize a
design for use with Altera devices. Several of the methodologies outlined
in this chapter can help optimize a design to achieve performance goals
and save design time.

Quartus II Project Quartus II Project

a.vqm

b.vqm f.vqm

Quartus II Project

Use a.tcl to Import
Synplify Assignments

Use f.tcl to Import
Synplify Assignments

Use b.tcl to Import
Synplify Assignments

Altera Corporation 7–61
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the
Quartus II Handbook

■ Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Tasks & Tips chapter of the Synplify Software User Guide
■ Altera I/O Standards in the Synplify Reference Manual
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Synplify Pro User Guide and Reference Manual on the Synplicity web

site at www.synplicity.com/literature/index.html
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 7–6 shows the revision history for this chapter.

Table 7–6. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

The following changes were made to this document:
● Updated Synplicity version support
● Added information on how to set the correct Quartus II

version prior to compiling a MegaWizard-generated file

Updated chapter based on the
Synplicity functionality
supported with the Quartus II
software release, version 7.2

May 2007
v7.1.0

● Removed figure 7-2 (no longer applicable)
● Updated the section “Instantiating Altera

Megafunctions Using the MegaWizard Plug-In
Manager” to specify using the MegaWizard Plug-In
Manager-generated wrapper file only when using
Synplify software version 8.8

● Replaced references to “clear-box” methodologies with
information supporting Synthesis Area and Timing
Estimation Netlists

● Minor updates for the Quartus II software version 7.1.
● Added Referenced Documents section.

Updated chapter based on the
Synplify software, version 8.8
and the Quartus II software
release, version 7.1

March 2007
v7.0.0

● Added Cyclone III to list of devices supported
● Clarified that the Synplify software generates the .scf

file regardless of the device selected.

This chapter has been updated
to include Cyclone III support
for this release.

http://www./altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.synplicity.com/literature/pdf/synplify_ref_1001.pdf
http://www./altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www./altera.com/literature/hb/qts/qts_qii52003.pdf

7–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

November 2006
v6.1.0

● Chapter 9 was formally Chapter 8 in version 6.0.0.
● Added that SCF is generated to pass SDC constraints

for TimeQuest.
● Added timing constraint information when using

TimeQuest.
● Moved note about alt_pll megafunctions from clear box

section to black box section.
● Clarified that Synplify reads the alt_pll megafunction

black box file for Stratix and Cyclone series devices.

 Updated to include Stratix III
support and added information
on how to pass timing
constraint information for
TimeQuest.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Updated cross probing information.
● Added NativeLink® integration information.
● Added Synplify design flow support.
● Added Altera megafunction guidelines and

architecture-specific features.

—

December 2005
v5.1.1

Minor typographical corrections —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 8 was formerly chapter 9 in version 5.0.

—

May 2005
v5.0.0

Chapter 9 was formerly chapter 7 in version 4.2. —

December 2004
v2.1.0

● Chapter 8 was formerly Chapter 9 in version 4.1.
● Updated information.
● New functionality for Quartus II software version 4.2.
● Updated figure 8-1.

—

June 2004
v2.0.0

● Updates to tables, figures.
● New functionality for Quartus II software version 4.1.

—

February 2004
v1.0.0

Initial release. —

Table 7–6. Document Revision History (Continued)

Date and Version Changes Made Summary of Changes

Altera Corporation 8–1
October 2007

8. Quartus II Integrated
Synthesis

Introduction As programmable logic designs become more complex and require
increased performance, advanced synthesis has become an important
part of the design flow. The Quartus® II software includes advanced
integrated synthesis that fully supports VHDL and Verilog HDL, as well
as Altera®-specific design entry languages, and provides options to
control the synthesis process. With this synthesis support, the Quartus II
software provides a complete, easy-to-use solution.

This chapter documents the design flow and language support in the
Quartus II software. It explains how you can use incremental compilation
to reduce your compilation time, and how you can improve synthesis
results with Quartus II synthesis options and by controlling the inference
of architecture-specific megafunctions. This chapter also explains some of
the node-naming conventions used during synthesis to help you better
understand your synthesized design, and the messages issued during
synthesis to improve your HDL code. Scripting techniques for applying
all the options and settings described are also provided.

This chapter contains the following sections:

■ “Design Flow” on page 8–2
■ “Language Support” on page 8–5
■ “Incremental Synthesis and Incremental Compilation” on page 8–23
■ “Quartus II Synthesis Options” on page 8–24
■ “Analyzing Synthesis Results” on page 8–73
■ “Analyzing and Controlling Synthesis Messages” on page 8–74
■ “Node-Naming Conventions in Quartus II Integrated Synthesis” on

page 8–79
■ “Scripting Support” on page 8–86

This chapter provides examples of how to use attributes described within
the chapter, but does not cover specific coding examples.

f For examples of Verilog HDL and VHDL code synthesized for specific
logic functions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. For information about coding with
primitives that describe specific low-level functions in Altera devices,
refer to the Designing With Low-Level Primitives User Guide.

QII51008-7.2.0

8–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Design Flow The Quartus II Analysis and Synthesis process includes Quartus II
integrated synthesis, which fully supports Verilog HDL and VHDL
languages as well as Altera-specific languages, and supports major
features in the SystemVerilog language (refer to “Language Support” on
page 8–5 for details). This stage of the compilation flow performs logic
synthesis to optimize design logic, and performs technology mapping to
implement the design logic using device resources, such as logic elements
(LEs) or adaptive logic modules (ALMs) and other dedicated logic blocks.
This stage also generates the single project database that integrates all the
design files in a project (including any netlists from third-party synthesis
tools).

You can use the Analysis and Synthesis stage of the Quartus II
compilation to perform any of the following levels of analysis and
synthesis:

■ Analyze Current File—Parse the current design source file to check
for syntax errors. This command does not report on many semantic
errors that require further design synthesis. On the Processing menu,
click Analyze Current File.

■ Analysis & Elaboration—Check a design for syntax and semantic
errors and perform elaboration to identify the design hierarchy. On
the Processing menu, point to Start, then click Start Analysis &
Elaboration.

■ Analysis & Synthesis—Perform complete analysis and synthesis on
a design, including technology mapping. On the Processing menu,
point to Start, then click Start Analysis & Synthesis. This is the most
commonly used command and is part of the full compilation flow.

The Quartus II design and compilation flow using Quartus II integrated
synthesis is made up of the following steps:

1. Create a project in the Quartus II software, and specify the general
project information, including the top-level design entity name. On
the File menu, click New Project Wizard.

2. Create design files in the Quartus II software or with a text editor.

3. On the Project menu, click Add/Remove Files in Project and add all
design files to your Quartus II project using the Files page of the
Settings dialog box.

4. Specify compiler settings that control the compilation and
optimization of the design during synthesis and fitting. For
synthesis settings, refer to “Quartus II Synthesis Options” on
page 8–24. Add timing constraints to specify the timing
requirements.

Altera Corporation 8–3
October 2007

Design Flow

5. Compile the design in the Quartus II software. To synthesize the
design, on the Processing menu, point to Start, and click Start
Analysis & Synthesis.

1 On the Processing menu, click Start Compilation to run a
complete compilation flow including placement, routing,
creation of a programming file, and timing analysis.

6. After obtaining synthesis and place-and-route results that meet
your needs, program or configure the Altera device.

The software provides netlists that allow you to perform functional
simulation and gate-level timing simulation in the Quartus II simulator
or a third-party simulator, perform timing analysis in a third-party timing
analysis tool in addition to the TimeQuest Timing Analyzer or Classic
Timing Analyzer, and/or perform formal verification in a third-party
formal verification tool. The Quartus II software also provides many
additional analysis and debugging features.

f For more information about creating a project, compilation flow, and
other features in the Quartus II software, refer to the Quartus II Help.
For an overall summary of Quartus II features, refer to the Introduction to
the Quartus II Software.

8–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 8–1 shows the basic design flow using Quartus II integrated
synthesis.

Figure 8–1. Quartus II Design Flow Using Quartus II Integrated Synthesis

No

VHDLVerilog HDL AHDL BDF

Formal Verification
Using Source Code
as Golden Netlist

Gate-Level
Functional
Simulation

Post Synthesis
Simulation File

(.vho/.vo)

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Post
Place-and-Route
Simulation File

(.vho/.vo)

Formal Verification
Using VO as

Revised Netlist

Post
Place-and-Route

Formal Verification File
(.vo)

Internal
Synthesis
Netlist

Configuration/
Programming
Files (.sof/.pof)

Analysis & SynthesisConstraints
& Settings

Constraints
& Settings

Fitter Assembler Timing
Analyzer

Configure/Program Device

Altera Corporation 8–5
October 2007

Language Support

Language
Support

This section explains the Quartus II software’s integrated synthesis
support for HDL and schematic design entry, as well as graphical state
machine entry, and explains how to specify the Verilog or VHDL
language version used in your design. It also documents language
features such as Verilog macros, initial constructs and memory system
tasks, and VHDL libraries. “Design Libraries” on page 8–14 describes
how to compile and reference design units in different custom libraries
and “Using Parameters/Generics” on page 8–18 describes how to use
parameters or generics and how to pass them between different
languages.

To ensure that the software reads all associated project files, add each file
to your Quartus II project. To add files to your project in the Quartus II
GUI, on the Project menu, click Add/Remove Files In Project. Design
files can be added to the project in any order. You can mix all supported
languages and netlists generated by third-party synthesis tools in a single
Quartus II project.

Verilog HDL Support

The Quartus II Compiler’s analysis and synthesis module supports the
following Verilog HDL standards:

■ Verilog-1995 (IEEE Standard 1364-1995)
■ Verilog-2001 (IEEE Standard 1364-2001)
■ SystemVerilog-2005 (IEEE Standard 1800-2005) (not all constructs are

supported)

f For complete information about specific Verilog syntax features and
language constructs, refer to the Quartus II Help.

The Quartus II Compiler uses the Verilog-2001 standard by default for
files that have the extension .v, and the SystemVerilog standard for files
that have the extension .sv.

1 The Verilog HDL code samples provided in this document
follow the Verilog-2001 standard unless otherwise specified.

To specify a default Verilog HDL version for all files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select Verilog HDL Input.

8–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

3. On the Verilog HDL Input page, under Verilog version, select the
appropriate Verilog version, then click OK.

You can override the default Verilog HDL version for each Verilog design
file by performing the following steps:

1. On the Project menu, click Add/Remove Files in Project. The
Settings dialog box appears.

2. On the Files page, click on the appropriate file in the list and click
the Properties button.

3. In the HDL Version list, select SystemVerilog_2005, Verilog_2001,
or Verilog_1995 and click OK.

You can also control the Verilog HDL version inside a design file using the
VERILOG_INPUT_VERSION synthesis directive, as shown in
Example 8–1. This directive overrides the default HDL version and any
HDL version specified in the File Properties dialog box.

Example 8–1. Controlling the Verilog HDL Input Version with a Synthesis Directive
// synthesis VERILOG_INPUT_VERSION <language version>

The variable <language version> takes one of the following values:

■ VERILOG_1995
■ VERILOG_2001
■ SYSTEMVERILOG_2005

When the software reads a VERILOG_INPUT_VERSION synthesis
directive, the current language version changes as specified until the end
of the file, or until the next VERILOG_INPUT_VERSION directive is
reached.

1 You cannot change the language version in the middle of a
Verilog module.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8–29.

If you use scripts to add design files, you can use the -HDL_VERSION
command to specify the HDL version for each design file. Refer to
“Adding an HDL File to a Project and Setting the HDL Version” on
page 8–87.

Altera Corporation 8–7
October 2007

Language Support

The Quartus II software support for Verilog HDL is case-sensitive in
accordance with the Verilog HDL standard. The Quartus II software
supports the compiler directive `define, in accordance with the Verilog
HDL standard.

The Quartus II software supports the include compiler directive to
include files with absolute paths (with either “/” or “\” as the separator),
or relative paths (relative to project root, user libraries, or current file
location). When searching for a relative path, the Quartus II software
initially searches relative to the project directory. If the software cannot
find the file, it then searches relative to all user libraries, and finally
relative to the directory location of the current file.

Verilog-2001 Support

The Quartus II software does not support Verilog-2001 libraries and
configurations.

SystemVerilog Support

The Quartus II software supports the following SystemVerilog
constructs:

■ Parameterized interfaces, generic interfaces, and modport
constructs

■ Packages
■ Extern module declarations
■ Built-in data types logic, bit, byte, shortint, longint, int
■ Unsized integer literals ‘0, ‘1, ‘x, ‘z, ‘X, and ‘Z
■ Structure data types using struct
■ Ports and parameters with unrestricted data types
■ Unpacked and packed arrays (does not support packed arrays with

more than one dimension)
■ User-defined types using typedef
■ Global declarations of task/functions/parameters/types (does not

support global variables)
■ Coding constructs always_comb, always_latch, always_ff
■ Continuous assignments to nodes other than nets, and procedural

assignments to nodes other than reg
■ Enumeration methods First, Last, Next(n), Prev(n), Num,

and Name
■ Assignment operators +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=,

<<<=, and >>>=
■ Increment ++ and decrement --
■ Jump statements return, break, and continue
■ Enhanced for loop (declare loop variables inside initial condition)
■ Do-while loop

8–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

■ Assignment patterns
■ Keywords unique and priority in case statements
■ Default values for function/task arguments
■ Closing labels
■ Extensions to directives ‘define and ‘include
■ Expression size system function $bits
■ Array query system functions $dimensions,

$unpacked_dimensions, $left, $right, $high, $low,
$increment, $size

Quartus II integrated synthesis also parses, but otherwise ignores,
SystemVerilog assertions.

1 Designs written to comply with the Verilog-2001 standard may
not compile successfully using the SystemVerilog setting
because the SystemVerilog standard adds a number of new
reserved keywords. For a list of reserved words in each
language standard, refer to the Quartus II Help.

Initial Constructs and Memory System Tasks

The Quartus II software infers power-up conditions from Verilog
initial constructs. The software creates power-up settings for
variables, including RAM blocks. If the Quartus II software encounters
non-synthesizable constructs in an initial block, it generates an error.
To avoid such errors, enclose non-synthesizable constructs (such as those
intended only for simulation) in translate_off and translate_on
synthesis directives, as described in “Translate Off and On / Synthesis Off
and On” on page 8–65. Synthesis of initial constructs enables the
power-up state of the synthesized design to match, as closely as possible,
the power-up state of the original HDL code in simulation.

1 Initial blocks do not infer power-up conditions in some
third-party EDA synthesis tools. If converting between
synthesis tools, ensure that your power-up conditions are set
correctly.

Quartus II integrated synthesis supports the $readmemb and
$readmemh system tasks to initialize memories. Example 8–2 shows an
initial construct that initializes an inferred RAM with $readmemb.

Altera Corporation 8–9
October 2007

Language Support

Example 8–2. Verilog Example of Initializing RAM with the readmemb Command
reg [7:0] ram[0:15];
initial
begin
 $readmemb("ram.txt", ram);
end

When creating a text file to use for memory initialization, specify the
address using the format @<location> on a new line, then specify the
memory word such as 110101 or abcde on the next line. Example 8–3
shows a portion of a memory initialization file for the RAM in
Example 8–2.

Example 8–3. Text File Format for Initializing RAM with the readmemb Command
@0
00000000
@1
00000001
@2
00000010
…
@e
00001110
@f
00001111

Verilog HDL Macros

The Quartus II software fully supports Verilog HDL macros, which you
can define with the ̀ define compiler directive in your source code. You
can also define macros in the GUI or on the command line.

Setting a Verilog Macro Default Value in the GUI
To specify a macro in the GUI, on the Assignments menu, click Settings.
Under Category, expand Analysis & Synthesis Settings and click
Verilog HDL Input. Under Verilog HDL macro, type the macro name in
the Name box, the value in the Setting box, and click Add.

Setting a Verilog Macro Default Value on the Command Line
To set a default value for a Verilog macro on the command line, use the
--verilog_macro option, as shown in Example 8–4.

Example 8–4. Command Syntax for Specifying a Verilog Macro
quartus_map <Design name> --verilog_macro= "<Macro Name>=<Macro Setting>" r

8–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The command in Example 8–5 has the same effect as specifying
`define a 2 in the Verilog HDL source code.

Example 8–5. Specifying a Verilog Macro a = 2
quartus_map my_design --verilog_macro="a=2" r

To specify multiple macros, you can repeat the option more than once, as
in Example 8–6.

Example 8–6. Specifying Verilog Macros a = 2 and a = 3
quartus_map my_design --verilog_macro="a=2" --verilog_macro="b=3" r

VHDL Support

The Quartus II Compiler’s Analysis and Synthesis module supports the
following VHDL standards:

■ VHDL 1987 (IEEE Standard 1076-1987)
■ VHDL 1993 (IEEE Standard 1076-1993)

f For information about specific VHDL syntax features and language
constructs, refer to the Quartus II Help.

The Quartus II Compiler uses the VHDL 1993 standard by default for files
that have the extension .vhdl or .vhd.

1 The VHDL code samples provided in this document follow the
VHDL 1993 standard.

To specify a default VHDL version for all files, perform the following
steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select VHDL Input.

3. On the VHDL Input page, under VHDL version, select the
appropriate version, then click OK.

You can override the default VHDL version for each VHDL design file by
performing the following steps:

Altera Corporation 8–11
October 2007

Language Support

1. On the Project menu, click Add/Remove Files in Project. The
Settings dialog box appears.

2. On the Files page, click on the appropriate file in the list and click
Properties.

3. In the HDL version list, select VHDL93 or VHDL87 and click OK.

You can also specify the VHDL version for each design file using the
VHDL_INPUT_VERSION synthesis directive, as shown in Example 8–7.
This directive overrides the default HDL version and any HDL version
specified in the File Properties dialog box.

Example 8–7. Controlling the VHDL Input Version with a Synthesis Directive
--synthesis VHDL_INPUT_VERSION <language version>

The variable <language version> takes one of the following values:

■ VHDL87
■ VHDL93

When the software reads a VHDL_INPUT_VERSION synthesis directive, it
changes the current language version as specified until the end of the file,
or until it reaches the next VHDL_INPUT_VERSION directive.

1 You cannot change the language version in the middle of a
VHDL design unit.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8–29.

If you use scripts to add design files, you can use the —HDL_VERSION
command to specify the HDL version for each design file. Refer to
“Adding an HDL File to a Project and Setting the HDL Version” on
page 8–87.

The Quartus II software reads default values for registered signals
defined in the VHDL code and converts the default values into power-up
level settings. This enables the power-up state of the synthesized design
to match, as closely as possible, the power-up state of the original HDL
code in simulation.

8–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

VHDL Standard Libraries and Packages

The Quartus II software includes the standard IEEE libraries and a
number of vendor-specific VHDL libraries. For information about
organizing your own design units into custom libraries, refer to “Design
Libraries” on page 8–14.

The IEEE library includes the standard VHDL packages
std_logic_1164, numeric_std, numeric_bit, and math_real.
The STD library is part of the VHDL language standard and includes the
packages standard (included in every project by default) and textio.
For compatibility with older designs, the Quartus II software also
supports the following vendor-specific packages and libraries:

■ Synopsys packages such as std_logic_arith and
std_logic_unsigned in the IEEE library

■ Mentor Graphics® packages such as std_logic_arith in the
ARITHMETIC library

■ Altera primitive packages altera_primitives_components
(for primitives such as GLOBAL and DFFE) and maxplus2 (for legacy
support of MAX+PLUS® II primitives) in the ALTERA library

■ Altera megafunction packages altera_mf_components and
stratixgx_mf_components in the ALTERA_MF library (for
Altera-specific megafunctions including LCELL), and
lpm_components in the LPM library for library of parameterized
modules (LPM) functions.

f For a complete listing of library and package support, refer to the
Quartus II Help.

1 Beginning with the Quartus II software version 5.1, you should
import component declarations for Altera primitives such as
GLOBAL and DFFE from the
altera_primitives_components package and not the
altera_mf_components package.

AHDL Support

The Quartus II Compiler’s Analysis and Synthesis module fully supports
the Altera Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL
Include Files (.inc) into a Text Design File with an AHDL include
statement. Altera provides AHDL Include Files for all megafunctions
shipped with the Quartus II software.

Altera Corporation 8–13
October 2007

Language Support

f For information about specific AHDL syntax features and language
constructs, refer to the Quartus II Help.

1 The AHDL language does not support the synthesis directives
or attributes described in this chapter.

Schematic Design Entry Support

The Quartus II Compiler’s analysis and synthesis module fully supports
Block Design Files (.bdf) for schematic design entry.

You can use the Quartus II software’s Block Editor to create and edit Block
Design Files and open Graphic Design Files (.gdf) imported from the
MAX+PLUS II software. Use the Symbol Editor to create and edit Block
Symbol Files (.bsf) and open MAX+PLUS II Symbol Files (.sym). You can
read and edit these legacy MAX+PLUS II formats with the Quartus II
Block and Symbol Editors; however, the Quartus II software saves them
as .bdf or .bsf files.

f For information about creating and editing schematic designs, refer to
the Quartus II Help.

1 Schematic entry methods do not support the synthesis directives
or attributes described in this chapter.

State Machine Editor

The Quartus II software supports graphical state machine entry. To create
a new finite state machine (FSM) design, on the File menu, click New. On
the Device Design Files tab, choose State Machine Editor.

In the editor, you can use the State Machine Wizard to step you through
the state machine creation. Click the State Machine Wizard icon. Specify
the reset information, define the input ports, states, and transitions, and
then define the output ports and output conditions. Click Finish to create
the state machine diagram.

Alternately, create the state machine diagram in the editor GUI. Use the
icons or right-click menu options to insert new input and output signals
and create states in the schematic display. To specify transitions, select the
Transition Tool and click on the source state, then drag the mouse to the
destination state. Double-click on a transition to specify the transition
equation, using a syntax that conforms to Verilog HDL. Double-click on a
state to open the State Properties dialog box, where you can change the
state name, specify whether it acts as the reset state, and change the
incoming and outgoing transition equations.

8–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To view and edit state machine information in a table format, click the
State Machine Table icon.

The state machine diagram is saved as a State Machine File (.smf). When
you have finished defining the state machine logic, create a Verilog HDL
or VHDL design file by clicking the Generate HDL File icon. You can
then instantiate the state machine in your design using any design entry
language.

f For more information about creating and editing state machine
diagrams, refer to the Quartus II Help.

Design Libraries

By default, the Quartus II software compiles all design files into the work
library. If you do not specify a design library, or if a file refers to a library
that does not exist, or if the library does not contain a referenced design
unit, the software searches the work library. This behavior allows the
Quartus II software to compile most designs with minimal setup.
(Creating separate custom design libraries is optional.)

To compile your design files into specific libraries (for example, when you
have two or more functionally different design entities that share the
same name), you can specify a destination library for each design file in
various ways, as described in the following subsections:

■ “Specifying a Destination Library Name in the Settings Dialog Box”
on page 8–15

■ “Specifying a Destination Library Name in the Quartus II Settings
File or Using Tcl” on page 8–15

When the Quartus II Compiler analyzes the file, it stores the analyzed
design units in the file’s destination library.

1 Beginning with the Quartus II software version 6.1, a design can
contain two or more entities with the same name if they are
compiled into separate libraries.

When compiling a design instance, the Quartus II software initially
searches for the entity in the library associated with the instance (which
is the work library if no other library is specified). If the entity definition
is not found, the software searches for a unique entity definition in all
design libraries. If more than one entity with the same name is found, the
software generates an error. If your design uses multiple entities with the
same name, you must compile the entities into separate libraries.

Altera Corporation 8–15
October 2007

Language Support

In VHDL, there are several ways to associate an instance with a particular
entity, as described in “Mapping a VHDL Instance to an Entity in a
Specific Library” on page 8–16. In Verilog HDL, BDF, AHDL, as well as
VQM and EDIF netlists, use different libraries for each of the entities that
have the same name, and compile the instantiation into the same library
as the appropriate entity.

Specifying a Destination Library Name in the Settings Dialog Box

To specify a library name for one of your design files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. On the Files page of the Settings dialog box, select the file in the
File Name list.

3. Click Properties.

4. In the File Properties dialog box, select the type of design file from
the Type list.

5. Type the desired library name in the Library field.

6. Click OK.

Specifying a Destination Library Name in the Quartus II Settings File or
Using Tcl

You can specify the library name with the -library option to the
<language type>_FILE assignment in the Quartus II Settings File or with
Tcl commands.

For example, the following Quartus II Settings File or Tcl assignments
specify that the Quartus II software analyze my_file.vhd and store its
contents (design units) in the VHDL library my_lib, and analyze the
Verilog file my_header_file.h and store its contents in a library called
another_lib.

Example 8–8. Specifying a Destination Library Name
set_global_assignment –name VHDL_FILE my_file.vhd –library my_lib
set_global_assignment –name VERILOG_FILE my_header_file.h –library\
another_lib

For more information about Tcl scripting, refer to “Scripting Support” on
page 8–86.

8–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Specifying a Destination Library Name in a VHDL File

You can use the library synthesis directive to specify a library name in
your VHDL source file. This directive takes a single string argument: the
name of the destination library. Specify the library directive in a VHDL
comment prior to the context clause for a primary design unit (that is, a
package declaration, an entity declaration, or a configuration), using one
of the supported keywords for synthesis directives, that is, altera,
synthesis, pragma, synopsys, or exemplar.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 8–29.

The library directive overrides the default library destination work,
the library setting specified for the current file through the Settings
dialog box, any existing Quartus II Settings File setting, any setting made
through the Tcl interface, or any prior library directive in the current
file. The directive remains effective until the end of the file or the next
library synthesis directive.

Example 8–9 uses the library synthesis directive to create a library
called my_lib that contains the design unit my_entity.

Example 8–9. Using the library Synthesis Directive
-- synthesis library my_lib
library ieee;
use ieee.std_logic_1164.all;
entity my_entity(...)
end entity my_entity;

1 You can specify a single destination library for all the design
units in a given source file by specifying the library name in the
the Settings dialog box, editing the Quartus II Settings File, or
using the Tcl interface. Using the library directive to change
the destination VHDL library within a source file gives you the
option of organizing the design units in a single file into
different libraries, rather than just a single library.

The Quartus II software produces an error if you use the library directive
within a design unit.

Mapping a VHDL Instance to an Entity in a Specific Library

The VHDL language provides a number of ways to map or bind an
instance to an entity in a specific library, as described in the following
subsections.

Altera Corporation 8–17
October 2007

Language Support

Direct Entity Instantiation
In the direct entity instantiation method, the instantiation refers to an
entity in a specific library, as shown in Example 8–10.

Example 8–10. VHDL Example of Direct Entity Instantiation
entity entity1 is
port(...);
end entity entity1;

architecture arch of entity1 is
begin
 inst: entity lib1.foo
 port map(...);
end architecture arch;

Component Instantiation—Explicit Binding Indication
There is more than one mechanism for binding a component to an entity.
In an explicit binding indication, you bind a component instance to a
specific entity, as shown in Example 8–11.

Example 8–11. VHDL Example of Explicit Binding Instantiation
entity entity1 is
port(...);
end entity entity1;

package components is
 component entity1 is
 port map (...);
 end component entity1;
end package components;

entity top_entity is
port(...);
end entity top_entity;

use lib1.components.all;
architecture arch of top_entity is
-- Explicitly bind instance I1 to entity1 from lib1
for I1: entity1 use
 entity lib1.entity1
 port map(...);
begin
 I1: entity1 port map(...);
end architecture arch;

8–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Component Instantiation—Default Binding
If you do not provide an explicit binding indication, a component
instance is bound to the nearest visible entity with the same name. If no
such entity is visible in the current scope, the instance is bound to the
entity in the library in which the component was declared. For example,
if the component is declared in a package in library MY_LIB, an instance
of the component is bound to the entity in library MY_LIB. The portions
of code in Example 8–12 and 8–13 show this instantiation method.

Example 8–12. VHDL Example of Default Binding to the Entity in the Same Library as the Component
Declaration
use mylib.pkg.foo; -- import component declaration from package “pkg” in

-- library “mylib”
architecture rtl of top
...
begin
 -- This instance will be bound to entity “foo” in library “mylib”
 inst: foo
 port map(...);
end architecture rtl;

Example 8–13. VHDL Example of Default Binding to the Directly Visible Entity
use mylib.foo; -- make entity “foo” in library “mylib” directly visible
architecture rtl of top
 component foo is
 generic (…)
 port ();
 end component;
begin
 -- This instance will be bound to entity “foo” in library “mylib”
 inst: foo
 port map(...);
end architecture rtl;

Using Parameters/Generics

This section describes how parameters (called generics in VHDL) are
supported in the Quartus II software, and how you can pass these
parameters between different design languages.

You can enter default parameter values for your design in the Default
Parameters box in the Analysis & Synthesis Settings page of the
Settings dialog box. Default parameters allow you to specify the
parameter overrides for your top-level entity. In AHDL, parameters are
inherited, so any default parameters apply to all AHDL instances in the
design. You can also specify parameters for instantiated modules in a

Altera Corporation 8–19
October 2007

Language Support

Block Design File. To modify parameters on a BDF instance, double-click
on the parameter value box for the instance symbol, or right-click on the
symbol and choose Properties, then click the Parameters tab. For these
GUI-based entry methods, refer to “Setting Default Parameter Values and
BDF Instance Parameter Values” on page 8–19 for information about how
parameter values are interpreted, and for recommendations about the
format you should use.

You can specify parameters for instantiated modules in your design
source files, using the syntax provided for that language. Some designs
instantiate entities in a different language; for example, they may
instantiate a VHDL entity from a Verilog design file. You can pass
parameters or generics between VHDL, Verilog HDL, AHDL, and BDF
schematic entry, and from EDIF or VQM to any of these languages. In
most cases, you do not have to do anything special to pass parameters
from one language to another. However, in some cases you may have to
specify the type of the parameter you are passing. In those cases you
should follow certain guidelines to ensure that the parameter value is
interpreted correctly. Refer to “Passing Parameters Between Two Design
Languages” on page 8–20 for parameter type rules.

Setting Default Parameter Values and BDF Instance Parameter Values

Default parameter values and BDF instance parameter values do not have
an explicitly declared type. In most cases, the Quartus II software can
correctly infer the type from the value without ambiguity. For example,
“ABC” is interpreted as a string, 123 as an integer, and 15.4 as a
floating-point value. In other cases, such as when the instantiated
subdesign language is VHDL, the Quartus II software uses the type of the
parameter/generic in the instantiated entity to determine how to
interpret the value, so that a value of 123 is interpreted as a string if the
VHDL parameter is of type string. In addition, you can set the parameter
value in a format that is legal in the language of the instantiated entity. For
example, to pass an unsized bit literal value from BDF to System/Verilog,
you can use '1 as the parameter value, and to pass a 4-bit binary vector
from BDF to Verilog, you can use 4'b1111 as the parameter value.

In a few cases, the Quartus II software cannot infer the correct type of
parameter value. To avoid ambiguity, specify the parameter value in a
type-encoded format where the first or first and second character of the
parameter indicate the type of the parameter, and the rest of the string
indicates the value in a quoted sub-string. For example, to pass a binary
string 1010 from BDF to Verilog HDL, you cannot simply use the value
1001, because the Quartus II software interprets it as a decimal value.
You also cannot use the string "1001", because the Quartus II software
interprets it as an ASCII string. You must use the type-encoded string
B"1001" for the Quartus II software to interpret the parameter value

8–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

correctly. Table 8–1 provides a list of valid parameter strings and shows
how they are interpreted within the Quartus II software. Altera
recommends using the type-encoded format only when necessary to
resolve ambiguity.

Passing Parameters Between Two Design Languages

When passing a parameter between two different languages, a design
block that is higher in the design hierarchy instantiates a lower-level
subdesign block and provides parameter information. It is essential that
the parameter be correctly interpreted by the subdesign language (the
design entity that is instantiated). Based on the information provided by
the higher-level design and the value format, and sometimes by the
parameter type of the subdesign entity, the Quartus II software interprets
the type and value of the passed parameter.

When passing a parameter whose value is an enumerated type value or
literal from a language that does not support enumerated types to one
that does (for example from Verilog to VHDL), it is essential that the
enumeration literal is spelled correctly in the higher-level design. The
parameter value is passed as a string literal, and it is up to the language
of the lower-level design to correctly convert the string literal into the
correct enumeration literal.

Table 8–1. Valid Parameter Strings and How They are Interpreted

Parameter String Quartus II Parameter Type, Format, and Value

S"abc", s"abc" String value “abc”

"abc123", "123abc" String value abc123 or 123abc

F"12.3", f"12.3" Floating point number 12.3

-5.4 Floating point number -5.4

D"123", d"123" Decimal number 123

123, -123 Decimal number 123, -123

X"ff", H"ff" Hexadecimal value FF

Q"77", O"77" Octal value 77

B"1010", b"1010" Unsigned binary value 1010

SB"1010", sb"1010" Signed binary value 1010

R"1", R"0", R"X", R"Z", r"1", r"0", r"X", r"Z" Unsized bit literal

E"apple", e"apple" Enum type, value name is apple

P"1 unit" Physical literal, the value is (1, unit)

A(…), a(…) Array type or record type, whose content is
determined by the string (...)

Altera Corporation 8–21
October 2007

Language Support

If the lower-level language is SystemVerilog, it is essential that the enum
value is used in the correct case. In SystemVerilog, it is recommended that
two enumeration literals do not only differ in case. For example, enum
{item, ITEM} is not a good choice of item names because these names
can create confusion among users and it is more difficult to pass
parameters from case-insensitive HDLs, such as VHDL.

Arrays have different support in different design languages. For details
about the array parameter format, refer to the Parameter section in the
Analysis & Synthesis Report of a design that contains array parameters or
generics.

The following code shows examples of passing parameters from one
design entry language to a subdesign written in another language.
Example 8–14 shows a VHDL subdesign that is instantiated into a
top-level Verilog design in Example 8–15. Example 8–16 shows a Verilog
subdesign that is instantiated in a top-level VHDL design in
Example 8–17.

Example 8–14. VHDL Parameterized Subdesign Entity
type fruit is (apple, orange, grape);
entity vhdl_sub is
 generic (
 name : string := "default",
 width : integer := 8,
 number_string : string := "123",
 f : fruit := apple,
 binary_vector : std_logic_vector(3 downto 0) := "0101",
 signed_vector : signed (3 downto 0) := "1111");

Example 8–15. Verilog HDL Top-level Design Instantiating and Passing Parameters to VHDL Entity from
Example 8–14
vhdl_sub inst (...);
 defparam inst.name = "lower";
 defparam inst.width = 3;
 defparam inst.num_string = "321";
 defparam inst.f = "grape"; // Must exactly match enum value
 defparam inst.binary_vector = 4'b1010;

defparam inst.signed_vector = 4'sb1010;

8–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–16. Verilog HDL Parameterized Subdesign Module
module veri_sub (...)
parameter name = "default";
parameter width = 8;
parameter number_string = "123";
parameter binary_vector = 4'b0101;
parameter signed_vector = 4'sb1111;

Example 8–17. VHDL Top-level Design Instantiating and Passing Parameters to the Verilog Module from
Example 8–16
inst:veri_sub
 generic map (
 name => "lower",
 width => 3,
 number_string => "321"
 binary_vector = "1010"
 signed_vector = "1010")

To use an HDL subdesign such as the one shown in Example 8–16 in a
top-level BDF design, you must first generate a symbol for the HDL file,
as shown in Figure 8–2. Open the HDL file in the Quartus II software, and
then, on the File menu, point to Create/Update and click Create Symbol
Files for Current File.

To modify parameters on a BDF instance, double-click on the parameter
value box for the instance symbol, or right-click on the symbol and choose
Properties, then click the Parameters tab.

Figure 8–2. BDF Top-Level Design Instantiating and Passing Parameters to the
Verilog Module from Example 8–16.

Altera Corporation 8–23
October 2007

Incremental Synthesis and Incremental Compilation

Incremental
Synthesis and
Incremental
Compilation

The incremental compilation feature in the Quartus II software manages
a design hierarchy for incremental design by allowing you to divide the
design into multiple partitions. Incremental compilation ensures that
when a design is compiled, only those partitions of the design that have
been updated will be resynthesized, reducing compilation time and
runtime memory usage. This also means that node names are maintained
during synthesis for all registered and combinational nodes in
unchanged partitions.

You can use just incremental synthesis, or use the default full incremental
compilation flow in which you can also preserve the placement (and
optionally routing) information for unchanged partitions. This feature
allows you to preserve performance of unchanged blocks in your design
and reduces the time required for placement and routing, which
significantly reduces your design compilation time. Altera recommends
using the full incremental compilation feature even if you want to
preserve just the synthesis information. You can perform incremental
synthesis by using full incremental compilation with the Netlist Type for
all design partitions set to Post-Synthesis. Some Quartus II features, such
as formal verification and incremental SignalTap® II logic analysis,
require that the full incremental compilation feature be turned on.

f For information about using the recommended full incremental
compilation flow, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook. For information about the Incremental synthesis only option,
refer to the Quartus II Help.

Partitions for Preserving Hierarchical Boundaries

A design partition represents a portion of the design that you want to
synthesize and fit incrementally. Incremental compilation maintains the
hierarchical boundaries of design partitions, so you can use design
partitions if you need to preserve hierarchical boundaries through the
synthesis and fitting process. For example, if you are performing formal
verification, you must use partitions with the full incremental
compilation flow to ensure that no optimizations occur across specific
design hierarchies.

1 Beginning with the Quartus II software version 6.0, Altera
recommends that you use Design Partition assignments instead
of the Preserve Hierarchical Boundary logic option, which may
be removed in future versions of the Quartus II software.

8–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Quartus II
Synthesis
Options

The Quartus II software offers a number of options to help you control the
synthesis process and achieve the optimal results for your design.
“Setting Synthesis Options” on page 8–25 describes the Analysis &
Synthesis Settings page of the Settings dialog box, where you can set the
most common global settings and options, and defines the following
three types of synthesis options: Quartus II logic options, synthesis
attributes, and synthesis directives. The other subsections describe the
following common synthesis options in the Quartus II software, and
provide HDL examples of how to use each option where applicable:

■ Major Optimization Settings
● “Optimization Technique” on page 8–30
● “Speed Optimization Technique for Clock Domains” on

page 8–30
● “PowerPlay Power Optimization” on page 8–31
● “Restructure Multiplexers” on page 8–32

■ State Machine Settings and Enumerated Types
● “State Machine Processing” on page 8–34
● “Manually Specifying State Assignments Using the

syn_encoding Attribute” on page 8–35
● “Manually Specifying Enumerated Types Using the

enum_encoding Attribute” on page 8–38
● “Safe State Machines” on page 8–40

■ Register Power-Up Settings
● “Power-Up Level” on page 8–42
● “Power-Up Don’t Care” on page 8–43

■ Controlling, Preserving, Removing, and Duplicating Logic and
Registers
● “Remove Duplicate Registers” on page 8–44
● “Remove Redundant Logic Cells” on page 8–44
● “Preserve Registers” on page 8–44
● “Disable Register Merging/Don’t Merge Register” on page 8–45
● “Noprune Synthesis Attribute/Preserve Fan-out Free Register

Node” on page 8–46
● “Keep Combinational Node/Implement as Output of Logic

Cell” on page 8–47
● “Don't Retime, Disabling Synthesis Netlist Optimizations” on

page 8–48
● “Don't Replicate, Disabling Synthesis Netlist Optimizations” on

page 8–49
● “Maximum Fan-Out” on page 8–50
● “Controlling Clock Enable Signals with Auto Clock Enable

Replacement and direct_enable” on page 8–51

Altera Corporation 8–25
October 2007

Quartus II Synthesis Options

● To preserve design hierarchy, refer to “Partitions for Preserving
Hierarchical Boundaries” on page 8–23

■ Megafunction Inference Options
● “Megafunction Inference Control” on page 8–52
● “RAM Style and ROM Style—for Inferred Memory” on

page 8–55
● “Turning Off Add Pass-Through Logic to Inferred RAMs/

no_rw_check Attribute Setting” on page 8–57
● “RAM Initialization File—for Inferred Memory” on page 8–59
● “Multiplier Style—for Inferred Multipliers” on page 8–59

■ Controlling Synthesis with Other Synthesis Directives
● “Full Case” on page 8–62
● “Parallel Case” on page 8–63
● “Translate Off and On / Synthesis Off and On” on page 8–65
● “Ignore translate_off and synthesis_off Directives” on page 8–65
● “Read Comments as HDL” on page 8–66

■ Specifying I/O-Related Assignments
● “Use I/O Flipflops” on page 8–67
● “Specifying Pin Locations with chip_pin” on page 8–68

■ Setting Quartus II Logic Options in Your HDL Source Code
● “Using altera_attribute to Set Quartus II Logic Options” on

page 8–70

Setting Synthesis Options

You can set synthesis options in the Settings dialog box, or with logic
options in the Quartus II software, or you can use synthesis attributes and
directives within the HDL source code.

Analysis & Synthesis Settings Page of the Settings Dialog Box

On the Assignments menu, click Settings to open the Settings dialog box.
The Analysis & Synthesis Settings page allows you to set global
synthesis options that apply to the entire project. These options are
described in later subsections.

Quartus II Logic Options

Quartus II logic options control many aspects of the synthesis and
place-and-route process. To set logic options in the Quartus II graphical
user interface, on the Assignments menu, click Assignment Editor. You
can also use a corresponding Tcl command. Quartus II logic options allow

8–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

you to set instance or node-specific assignments without editing the
source HDL code. Logic options can be used with all design entry
languages supported by the Quartus II software.

f For more information about using the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

Synthesis Attributes

The Quartus II software supports synthesis attributes for Verilog HDL
and VHDL, also commonly called pragmas. These attributes are not
standard Verilog HDL or VHDL commands; synthesis tools use attributes
to control the synthesis process in a particular manner. Attributes always
apply to a specific design element, and are applied in the HDL source
code. Some synthesis attributes are also available as Quartus II logic
options via the Quartus II user interface or with Tcl. Each attribute
description in this chapter indicates whether there is a corresponding
setting or logic option that can be set in the user interface; some attributes
can be specified only with HDL synthesis attributes.

Attributes specified in your HDL code are not visible in the Assignment
Editor or in the Quartus II Settings File. Assignments or settings made
through the Quartus II user interface, the Quartus II Settings File, or the
Tcl interface take precedence over assignments or settings made with
synthesis attributes in your HDL code. The Quartus II software generates
warning messages if invalid attributes are found, but does not generate
an error or stop the compilation. This behavior is required because
attributes are specific to various design tools, and attributes not
recognized in the Quartus II software may be intended for a different
EDA tool. The Quartus II software lists the attributes specified in your
HDL code in the Source assignments table in the Analysis & Synthesis
report.

The Verilog-2001, SystemVerilog, and VHDL language definitions
provide specific syntax for specifying attributes, but in Verilog-1995 HDL,
you must embed attribute assignments in comments. You can enter
attributes in your code using the syntax in Examples 8–18, 8–19, and 8–20,
where <attribute>, <attribute type>, <value>, <object>, and <object type> are
variables, and the entry in brackets is optional. The examples in this
chapter demonstrate each syntax form.

1 Verilog HDL is case-sensitive; therefore, synthesis attributes are
also case-sensitive.

Altera Corporation 8–27
October 2007

Quartus II Synthesis Options

Example 8–18. Synthesis Attributes in Verilog-1995 HDL
// synthesis <attribute> [= <value>]

or
/* synthesis <attribute> [= <value>] */

Verilog-1995 comment-embedded attributes, as shown in Example 8–18,
must be used as a suffix to (that is, placed after) the declaration of an item
and must appear before the semicolon when one is required.

1 You cannot use the open one-line comment in Verilog HDL
when a semicolon is required at the end of the line, because it is
not clear to which HDL element the attribute applies. For
example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the attribute could
be read as part of the next line.

To apply multiple attributes to the same instance in Verilog-1995, separate
the attributes with spaces, as follows:

//synthesis <attribute1> [= <value>] <attribute2> [= <value>]

For example, to set the maxfan attribute to 16 (Refer to “Maximum Fan-
Out” on page 8–50 for details) and set the preserve attribute (refer to
“Preserve Registers” on page 8–44 for details) on a register called
my_reg, use the following syntax:

reg my_reg /* synthesis maxfan = 16 preserve */;

In addition to the synthesis keyword as shown above, the keywords
pragma, synopsys, and exemplar are supported for compatibility with
other synthesis tools. The keyword altera is also supported, which
allows you to add synthesis attributes that will be recognized only by
Quartus II integrated synthesis and not by other tools that recognize the
same synthesis attribute.

1 Because formal verification tools do not recognize the
exemplar, pragma, and altera keywords, avoid using these
attribute keywords when using formal verification.

Example 8–19. Synthesis Attributes in Verilog-2001 and SystemVerilog
(* <attribute> [= <value>] *)

8–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Verilog-2001 attributes, as shown in Example 8–19, must be used as a
prefix to (that is, placed before) a declaration, module item, statement, or
port connection, and used as a suffix to (that is, placed after) an operator
or a Verilog HDL function name in an expression.

1 Because formal verification tools do not recognize the syntax,
the Verilog-2001 attribute syntax is not supported when using
formal verification.

To apply multiple attributes to the same instance in Verilog-2001 or
SystemVerilog, separate the attributes with commas, as shown in the
following example:

(* <attribute1> [= <value1>], <attribute2> [= <value2>] *)

For example, to set the maxfan attribute to 16 (refer to“Maximum Fan-
Out” on page 8–50 for details) and set the preserve attribute (refer to
“Preserve Registers” on page 8–44 for details) on a register called
my_reg, use the following syntax:

(* preserve, maxfan = 16 *) reg my_reg;

Example 8–20. Synthesis Attributes in VHDL
attribute <attribute> : <attribute type> ;
attribute <attribute> of <object> : <object type> is <value>;

VHDL attributes, as shown in Example 8–20, declare the attribute type
and then apply it to a specific object. For VHDL designs, all supported
synthesis attributes are declared in the altera_syn_attributes
package in the Altera library. You can call this library from your VHDL
code to declare the synthesis attributes, as follows:

LIBRARY altera;
USE altera.altera_syn_attributes.all;

Altera Corporation 8–29
October 2007

Quartus II Synthesis Options

Synthesis Directives

The Quartus II software supports synthesis directives, also commonly
called compiler directives or pragmas. You can include synthesis
directives in Verilog HDL or VHDL code as comments. These directives
are not standard Verilog HDL or VHDL commands; synthesis tools use
directives to control the synthesis process in a particular manner.
Directives do not apply to a specific design node but change the behavior
of the synthesis tool from the point where they occur in the HDL source
code. Other tools, such as simulators, ignore these directives and treat
them as comments.

You can enter synthesis directives in your code using the syntax shown
in Example 8–21 and 8–22, where <directive> and <value> are variables,
and the entry in brackets is optional. Notice that for synthesis directives
there is no = sign before the value; this is different than the syntax for
synthesis attributes. The examples in this chapter demonstrate each
syntax form.

1 Verilog HDL is case-sensitive; therefore, all synthesis directives
are also case-sensitive.

Example 8–21. Synthesis Directives in Verilog HDL
// synthesis <directive> [<value>]

or
/* synthesis <directive> [<value>] */

Example 8–22. Synthesis Directives in VHDL
-- synthesis <directive> [<value>]

In addition to the synthesis keyword shown above, the pragma,
synopsys, and exemplar keywords are supported in both Verilog HDL
and VHDL for compatibility with other synthesis tools. The keyword
altera is also supported, which allows you to add synthesis directives
that will be recognized only by Quartus II integrated synthesis and not by
other tools that recognize the same synthesis directive.

1 Because formal verification tools ignore keywords exemplar,
pragma, and altera, avoid using these directive keywords
when you are using formal verification to prevent mismatches
with the Quartus II results.

8–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Optimization Technique

The Optimization Technique logic option specifies the goal for logic
optimization during compilation; that is, whether to attempt to achieve
maximum speed performance or minimum area usage, or a balance
between the two. Table 8–2 lists the settings for this logic option, which
you can apply only to a design entity. You can also set this logic option for
your whole project on the Analysis & Synthesis Settings page in the
Settings dialog box.

The default setting varies by device family, and is generally optimized for
the best area/speed trade-off. Results are design-dependent and vary
depending on which device family you use.

Speed Optimization Technique for Clock Domains

The Speed Optimization Technique for Clock Domains logic option
specifies that all combinational logic in or between the specified clock
domain(s) is optimized for speed.

When this option is set on a particular clock signal, all the logic in this
clock domain is optimized for speed during synthesis. The remainder of
the design in other clock domains is synthesized with the project-wide
Optimization Technique that is set in the Analysis & Synthesis Settings.
The option can also be set from one clock to another clock signal, in which
case the logic in paths from registers in the first clock domain to registers
in the second clock domain are synthesized for speed. The advantage of
using this option over the project-wide setting to optimize for speed is
that there is less penalty to the area of the design because a smaller part
of the circuit is optimized for speed. This may also have a positive effect
on clock speed. This option also has an advantage over setting the
Optimization Technique on a design entity because that option forces
the hierarchical blocks to be synthesized separately. Doing so may
increase area and decrease performance due to the lack of optimizations
across hierarchies. The Speed Optimization Technique for Clock

Table 8–2. Optimization Technique Settings

Setting Description

Area The Compiler makes the design as small as possible to minimize resource usage.

Speed The Compiler chooses a design implementation that has the fastest fMAX.

Balanced (1) The Compiler maps part of the design for area and part for speed, providing better area
utilization than optimizing for speed, with only a slightly slower fMAX than optimizing for speed.

Note to Table 8–2:
(1) The balanced optimization technique is not supported for all device families.

Altera Corporation 8–31
October 2007

Quartus II Synthesis Options

Domains option does not treat hierarchical entities separately, and can
optimize across hierarchical boundaries for logic within the same clock
domain.

This option is useful if you have one or more clock domains that do not
meet your timing requirements. When there are failing paths within a
clock domain, the option can be set on the clock of that clock domain.
When there are failing paths between clock domains, the option can be set
from one clock domain to the other clock domain.

This option is available for the following device families: Arria™ GX,
Stratix® series, Cyclone® series, HardCopy® II, HardCopy Stratix, and
MAX® II.

PowerPlay Power Optimization

This logic option controls the power-driven compilation setting of
Analysis and Synthesis and determines how aggressively Analysis and
Synthesis optimizes the design for power. On the Assignments menu,
click Settings, and under Category, click Analysis & Synthesis Settings.
This displays the Analysis & Synthesis Settings page. The following
three settings are available for the PowerPlay Power Optimization
option:

■ Off—Analysis and Synthesis does not perform any power
optimizations.

■ Normal Compilation—Analysis and Synthesis performs power
optimizations, without reducing design performance.

■ Extra Effort—Analysis and Synthesis performs additional power
optimizations, which may reduce design performance.

This logic option is available for the following device families: Arria GX,
Stratix series, Cyclone series, HardCopy II, and MAX II.

f For more information about optimizing your design for power
utilization, refer to the Power Optimization chapter in volume 2 of the
Quartus II Handbook. For information about analyzing your power
results, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

8–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Restructure Multiplexers

This option specifies whether the Quartus II software should extract and
optimize buses of multiplexers during synthesis.

This option is useful if your design contains buses of fragmented
multiplexers. This option restructures multiplexers more efficiently for
area, allowing the design to implement multiplexers with a reduced
number of LEs or ALMs. This option is available for the following device
families: Arria GX, Stratix series, Cyclone series, HardCopy II, and
MAX II.

The Restructure Multiplexers option works on entire trees of
multiplexers. Multiplexers may arise in different parts of the design
through Verilog HDL or VHDL constructs such as the “if,” “case,” or
“?:” statements. When multiplexers from one part of the design feed
multiplexers in another part of the design, trees of multiplexers are
formed. Multiplexer buses occur most often as a result of multiplexing
together vectors in Verilog HDL, or STD_LOGIC_VECTOR signals in
VHDL. The Restructure Multiplexers option identifies buses of
multiplexer trees that have a similar structure. When it is turned on, the
Restructure Multiplexers option optimizes the structure of each
multiplexer bus for the target device to reduce the overall amount of logic
used in the design.

Results of the multiplexer optimizations are design dependent, but area
reductions as high as 20% are possible. The option may negatively affect
your design’s fMAX.

Table 8–3 lists the settings for the logic option, which you can apply only
to a design entity. You can also specify this option on the Analysis &
Synthesis Settings page in the Settings dialog box for your whole
project.

Table 8–3. Restructure Multiplexers Settings

Setting Description

On Enables multiplexer restructuring to minimize your design area. This setting may reduce the
fM A X.

Off Disables multiplexer restructuring to avoid possible reductions in fM A X.

Auto (Default) Allows the Compiler to determine whether to enable the option based on your other Quartus II
synthesis settings. The option is On when the Optimization Technique option is set to Area
or Balanced, and Off when the Optimization Technique option is Speed. (Note that since the
default Optimization Technique is Balanced for many device families, including the Stratix
series, this option is turned on by default for those families.)

Altera Corporation 8–33
October 2007

Quartus II Synthesis Options

After you have compiled your design, you can view multiplexer
restructuring information in the Multiplexer Restructuring Statistics
report in the Multiplexer Statistics folder under Analysis & Synthesis
Optimization Results in the Analysis & Synthesis section of the
Compilation Report. Table 8–4 describes the information that is listed in
the Multiplexer Restructuring Statistics report table for each bus of
multiplexers.

For more information about optimizing for multiplexers, refer to the
Multiplexers section of the Design Recommendations for Altera Devices and
the Quartus II Design Assistant chapter in volume 1 of the Quartus II
Handbook.

Table 8–4. Multiplexer Information in the Multiplexer Restructuring Statistics Report

Heading Description

Multiplexer Inputs The number of different choices that are multiplexed together.

Bus Width The width of the bus in bits.

Baseline Area An estimate of how many logic cells are needed to implement the bus of
multiplexers (before any multiplexer restructuring takes place). This estimate can
be used to identify any large multiplexers in the design.

Area if Restructured An estimate of how many logic cells are needed to implement the bus of
multiplexers if Multiplexer Restructuring is applied.

Saving if Restructured An estimate of how many logic cells are saved if Multiplexer Restructuring is
applied.

Registered An indication of whether registers are present on the multiplexer outputs.
Multiplexer Restructuring uses the secondary control signals of a register (such
as synchronous clear and synchronous-load) to further reduce the amount of
logic needed to implement the bus of multiplexers.

Example Multiplexer Output The name of one of the multiplexers’ outputs. This name can help determine
where in the design the multiplexer bus originated.

8–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

State Machine Processing

This logic option specifies the processing style used to compile a state
machine. Table 8–5 lists the settings for this logic option, which you can
apply to a state machine name or to a design entity containing a state
machine. You can also set this option for your whole project on the
Analysis & Synthesis Settings page in the Settings dialog box.

The default state machine encoding, which is Auto, uses one-hot
encoding for FPGA devices and minimal-bits encoding for CPLDs. These
settings achieve the best results on average, but another encoding style
might be more appropriate for your design, so this option allows you to
control the state machine encoding.

f For guidelines to ensure that your state machine is inferred and encoded
correctly, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

For one-hot encoding, the Quartus II software does not guarantee that
each state has one bit set to one and all other bits to zero. Quartus II
integrated synthesis creates one-hot register encoding by using standard

Table 8–5. State Machine Processing Settings

Setting Description

Auto (Default) Allows the Compiler to choose what it determines to be the
best encoding for the state machine

Minimal Bits Uses the least number of bits to encode the state machine

One-Hot Encodes the state machine in the one-hot style. See the
example below for details.

User-Encoded Encodes the state machine in the manner specified by the
user

Sequential Uses a binary encoding in which the first enumeration literal
in the Enumeration Type has encoding 0, the second 1, and
so on.

Gray Uses an encoding in which the encodings for adjacent
enumeration literals differ by exactly one bit. An N-bit gray
code can represent 2N values.

Johnson Uses an encoding similar to a gray code, in which each state
only has one bit different from its neighboring states. Each
state is generated by shifting the previous state’s bits to the
right by 1; the most significant bit of each state is the negation
of the least significant bit of the previous state. An N-bit
Johnson code can represent at most 2N states but requires
less logic than a gray encoding.

Altera Corporation 8–35
October 2007

Quartus II Synthesis Options

one-hot encoding and then inverting the first bit. This results in an initial
state with all zero values, and the remaining states have two 1 values.
Quartus II integrated synthesis encodes the initial state with all zeros for
the state machine power-up because all device registers power up to a
low value. This encoding has the same properties as true one-hot
encoding: each state can be recognized by the value of one bit. For
example, in a one-hot-encoded state machine with five states including
an initial or reset state, the software uses the following register encoding:

State 0 0 0 0 0 0
State 1 0 0 0 1 1
State 2 0 0 1 0 1
State 3 0 1 0 0 1
State 4 1 0 0 0 1

If the State Machine Processing logic option is set to User-Encoded in a
Verilog HDL design, the software starts with the original design values
for the state constants. For example, a Verilog HDL design can contain a
declaration such as the following:

parameter S0 = 4'b1010, S1 = 4'b0101, ...

If the software infers states S0, S1,... it uses the encoding 4'b1010,
4'b0101,... . If necessary, the software inverts bits in a user-encoded
state machine to ensure that all bits of the reset state of the state machine
are zero.

To assign your own state encoding with the User-Encoded setting of the
State Machine Processing option in a VHDL design, you must apply
specific binary encoding to the elements of an enumerated type because
enumeration literals have no numeric values in VHDL. Use the
syn_encoding synthesis attribute to apply your encoding values. Refer
to “Manually Specifying State Assignments Using the syn_encoding
Attribute” for more information.

For information about the Safe State Machine option, refer to “Safe State
Machines” on page 8–40.

Manually Specifying State Assignments Using the syn_encoding
Attribute

The Quartus II software infers state machines from enumerated types and
automatically assigns state encoding based on “State Machine
Processing” on page 8–34. With this logic option, you can choose the
value User-Encoded to use the encoding from your HDL code. However,

8–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

in standard VHDL code, you cannot specify user encoding in the state
machine description because enumeration literals have no numeric
values in VHDL.

To assign your own state encoding for the User-Encoded State Machine
Processing setting, use the syn_encoding synthesis attribute to apply
specific binary encodings to the elements of an enumerated type or to
specify an encoding style. The Quartus II software can implement
Enumeration Types with the different encoding styles shown in
Table 8–6.

The syn_encoding attribute must follow the enumeration type
definition but precede its use.

In Example 8–23, the syn_encoding attribute associates a binary
encoding with the states in the enumerated type count_state. In this
example, the states are encoded with the following values: zero = “11”,
one = “01”, two = “10”, three = “00”.

Table 8–6. syn_encoding Attribute Values

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals
in the Enumeration Type. If there are fewer than five literals,
use the "sequential" encoding. If there are more than
five but fewer than 50 literals, use a "one-hot" encoding.
Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in
the Enumeration Type has encoding 0, the second 1, and so
on.

"gray" Use an encoding in which the encodings for adjacent
enumeration literals differ by exactly one bit. An N-bit gray
code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson
code can represent at most 2N states but requires less logic
than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the
number of enumeration literals in the Enumeration Type.

"compact" Use an encoding with the fewest bits.

Altera Corporation 8–37
October 2007

Quartus II Synthesis Options

Example 8–23. Specifying User Encoded States with the syn_encoding Attribute in VHDL
ARCHITECTURE rtl OF my_fsm IS

TYPE count_state is (zero, one, two, three);
ATTRIBUTE syn_encoding : STRING;
ATTRIBUTE syn_encoding OF count_state : TYPE IS "11 01 10 00";
SIGNAL present_state, next_state : count_state;

BEGIN

You can also use the syn_encoding attribute in Verilog HDL to direct
the synthesis tool to use the encoding from your HDL code, instead of
using the State Machine Processing option.

The syn_encoding value “user” instructs the Quartus II software to
encode each state with its corresponding value from the Verilog source
code. By changing the values of your state constants, you can change the
encoding of your state machine.

Example 8–24. Specifying User Encoded States with the syn_encoding Attribute in Verilog-2001
(* syn_encoding = "user" *) reg [1:0] state;
parameter init = 0, last = 3, next = 1, later = 2;
always @ (state) begin
 case (state)
 init:
 out = 2'b01;
 next:
 out = 2'b10;
 later:
 out = 2'b11;
 last:
 out = 2'b00;
 endcase
end

In Example 8–24, the states will be encoded as follows:

init = "00"
last = "11"
next = "01"
later = "10"

Without the syn_encoding attribute, the Quartus II software would
encode the state machine based on the current value of the State Machine
Processing logic option.

8–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If you are also specifying a safe state machine (as described in “Safe State
Machines” on page 8–40), separate the encoding style value in the
quotation marks with the safe value with a comma, as follows: “safe,
one-hot” or “safe, gray”.

Manually Specifying Enumerated Types Using the
enum_encoding Attribute

By default, the Quartus II software one-hot encodes all user-defined
Enumerated Types. With the enum_encoding attribute, you can specify
the logic encoding for an Enumerated Type and override the default
one-hot encoding to improve the logic efficiency.

1 If an Enumerated Type represents the states of a state machine,
using the enum_encoding attribute to specify a manual state
encoding prevents the Compiler from recognizing state
machines based on the Enumerated Type. Instead, the Compiler
processes these state machines as “regular” logic using the
encoding specified by the attribute, and they are not listed as
state machines in the Report window for the project. If you wish
to control the encoding for a recognized state machine, use the
State Machine Processing logic option and the syn_encoding
synthesis attribute.

To use the enum_encoding attribute in a VHDL design file, associate the
attribute with the Enumeration Type whose encoding you want to
control. The enum_encoding attribute must follow the Enumeration
Type Definition but precede its use. In addition, the attribute value must
be a string literal that specifies either an arbitrary user encoding or an
encoding style of "default", "sequential", "gray", "johnson", or
"one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings.
The list must contain as many encodings as there are enumeration literals
in your Enumeration Type. In addition, the encodings must all have the
same length, and each encoding must consist solely of values from the
std_ulogic type declared by the std_logic_1164 package in the
IEEE library. In the code fragment of Example 8–25, the
enum_encoding attribute specifies an arbitrary user encoding for the
Enumeration Type fruit.

Example 8–25. Specifying an Arbitrary User Encoding for Enumerated Type
type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "11 01 10 00";

Altera Corporation 8–39
October 2007

Quartus II Synthesis Options

In this example, the enumeration literals are encoded as:

apple = "11"
orange = "01"
pear = "10"
mango = "00"

You may wish to specify an encoding style, rather than a manual user
encoding, especially when the Enumeration Type has a large number of
enumeration literals. The Quartus II software can implement
Enumeration Types with the different encoding styles shown in
Table 8–7.

Observe that in Example 8–25, the enum_encoding attribute manually
specified a gray encoding for the Enumeration Type fruit. This example
could be written more concisely by specifying the "gray" encoding style
instead of a manual encoding, as shown in Example 8–26.

Example 8–26. Specifying the “gray” Encoding Style or Enumeration Type
type fruit is (apple, orange, pear, mango);
attribute enum_encoding : string;
attribute enum_encoding of fruit : type is "gray";

Table 8–7. enum_encoding Attribute Values

Attribute Value Description

"default" Use an encoding based on the number of enumeration literals
in the Enumeration Type. If there are fewer than five literals,
use the "sequential" encoding. If there are more than
five but fewer than 50 literals, use a "one-hot" encoding.
Otherwise, use a "gray" encoding.

"sequential" Use a binary encoding in which the first enumeration literal in
the Enumeration Type has encoding 0, the second 1, and so
on.

"gray" Use an encoding in which the encodings for adjacent
enumeration literals differ by exactly one bit. An N-bit gray
code can represent 2N values.

"johnson" Use an encoding similar to a gray code. An N-bit Johnson
code can represent at most 2N states but requires less logic
than a gray encoding.

"one-hot" The default encoding style requiring N bits, where N is the
number of enumeration literals in the Enumeration Type.

8–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Safe State Machines

The Safe State Machine option and corresponding syn_encoding
attribute value safe specify that the software should insert extra logic to
detect an illegal state and force the state machine’s transition to the reset
state.

It is possible for a finite state machine to enter an illegal state—meaning
the state registers contain a value that does not correspond to any defined
state. By default, the behavior of the state machine that enters an illegal
state is undefined. However, you can set the syn_encoding attribute to
safe or use the Safe State Machine logic option if you want the state
machine to recover deterministically from an illegal state. Use this option
if you have asynchronous inputs to your state machine. The most
common cause of this situation is a state machine that has control inputs
that come from another clock domain, such as the control logic for a
clock-crossing FIFO, because the state machine must have inputs from
another clock domain. An alternative is to add synchronizer registers to
the inputs.

It is important to note that the safe state machine value does not use any
user-defined default logic from your HDL code that corresponds to
unreachable states. Verilog HDL and VHDL allow you to explicitly
specify a behavior for all states in the state machine, including
unreachable states. However, synthesis tools detect if state machine logic
is unreachable and minimize or remove the logic. Any flag signals or logic
used in the design to indicate such an illegal state are also removed. If the
state machine is implemented as safe, the recovery logic forces its
transition from an illegal state to the reset state.

The Safe State Machine option can be set globally, or on individual state
machines. To set this option, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Analysis & Synthesis Settings. The
Analysis & Synthesis Settings page appears.

3. Click More Settings. The More Analysis & Synthesis Settings
dialog box appears.

4. In the Existing option settings list, select Safe State Machine.

5. Under Option, in the Setting list, select On.

6. Click OK.

Altera Corporation 8–41
October 2007

Quartus II Synthesis Options

7. Click OK to close the Settings dialog box.

You can also use the Assignment Editor to turn on the Safe State Machine
option for specific state machines.

You can set the syn_encoding safe attribute on a state machine in
HDL, as shown in Example 8–27, 8–28, and 8–29.

Example 8–27. Verilog HDL Example of a Safe State Machine Attribute
reg [2:0] my_fsm /* synthesis syn_encoding = "safe" */;

Example 8–28. Verilog-2001 Example of a Safe State Machine Attribute
(* syn_encoding = "safe" *) reg [2:0] my_fsm;

Example 8–29. VHDL Example of a Safe State Machine Attribute
ATTRIBUTE syn_encoding OF my_fsm : TYPE IS "safe";

If you are also specifying an encoding style (as described in “Manually
Specifying State Assignments Using the syn_encoding Attribute” on
page 8–35), separate the encoding style value in the quotation marks with
the safe value with a comma, as follows: "safe, one-hot" or "safe,
gray".

Safe state machine implementation can result in a noticeable area increase
for the design. Therefore, Altera recommends that you set this option
only on the critical state machines in the design where the safe mode is
required, such as a state machine that uses inputs from asynchronous
clock domains. You can also reduce the necessity of this option by
correctly synchronizing inputs coming from other clock domains.

Note that if the safe state machine assignment is made on an instance
that is not recognized as a state machine, or an entity that contains a state
machine, the software takes no action. You must restructure the code so
that the instance is recognized and properly inferred as a state machine.

f For guidelines to ensure that your state machine is inferred correctly,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

8–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Power-Up Level

This logic option causes a register (flipflop) to power up with the
specified logic level, either High (1) or Low (0). Registers in the device
core hardware power up to 0 in all Altera devices. For the register to
power up with a logic level High specified using this option, the
Compiler performs an optimization referred to as NOT-gate push back on
the register. NOT-gate push back adds an inverter to the input and the
output of the register so that the reset and power-up conditions will
appear to be high and the device operates as expected. The register itself
still powers up low, but the register output is inverted so the signal
arriving at all destinations is high. This option is available for all Altera
devices supported by the Quartus II software except MAX® 3000A and
MAX 7000S devices.

The Power-Up Level option supports wildcard characters, and you can
apply this option to any register, registered logic cell WYSIWYG
primitive, or to a design entity containing registers if you want to set the
power level for all registers in the design entity. If this option is assigned
to a registered logic cell WYSIWYG primitive, such as an atom primitive
from a third-party synthesis tool, you must turn on the Perform
WYSIWYG Primitive Resynthesis logic option for it to take effect. You
can also apply the option to a pin with the logic configurations described
in the following list:

■ If this option is turned on for an input pin, the option is transferred
automatically to the register that is driven by the pin if the following
conditions are present:
● There is no logic, other than inversion, between the pin and the

register
● The input pin drives the data input of the register
● The input pin does not fan-out to any other logic

■ If this option is turned on for an output or bidirectional pin, it is
transferred automatically to the register that feeds the pin, if the
following conditions are present:
● There is no logic, other than inversion, between the register and

the pin
● The register does not fan-out to any other logic

Inferred Power-Up Levels

Quartus II integrated synthesis reads default values for registered signals
defined in Verilog HDL and VHDL code, and converts the default values
into Power-Up Level settings. The software also synthesizes variables
that are assigned values in Verilog HDL initial blocks into power-up

Altera Corporation 8–43
October 2007

Quartus II Synthesis Options

conditions. Synthesis of these default and initial constructs enables the
design’s synthesized behavior to match, as closely as possible, the
power-up state of the HDL code during a functional simulation.

For example, the following register declarations all set a power-up level
of VCC or a logic value "1":

signal q : std_logic = '1'; -- power-up to VCC

reg q = 1'b1; // power-up to VCC

reg q;
initial begin q = 1'b1; end // power-up to VCC

f For more information about NOT gate push-back, the power-up states for
Altera devices, and how the power-up level is affected by set and reset
control signals, refer to Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

Power-Up Don’t Care

This logic option allows the compiler to optimize registers in the design
which do not have a defined power-up condition. This option is turned
on by default.

For example, your design may have a register with its D input tied to VCC,
and with no clear signal or other secondary signals. If this option is
enabled, the compiler can choose for the register to power up to VCC.
Therefore, the output of the register is always VCC. The compiler can
remove the register and connect its output to VCC. If you turn this option
off or if you set a Power-Up Level assignment of low for this register, the
register transitions from GND to VCC when the design starts up on the
first clock signal. Thus, the register is not stuck at VCC and cannot be
removed. Similarly, if the register has a clear signal, it will not be removed
because after the clear is asserted, the register will again transition to
GND and back to VCC.

If the Compiler performs a Power-Up Don’t Care optimization that
allows it to remove a register, it issues a message indicating it is doing so.

This project-wide option does not apply to registers that have the
Power-Up Level logic option set to either High or Low.

8–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Remove Duplicate Registers

If you turn on this logic option, the Compiler removes registers that are
identical to another register. If two registers generate the same logic, the
Compiler removes the second one, and the first one fans out to the second
one’s destinations. Also, if the deleted register has different logic option
assignments, the Compiler ignores them. This option is turned on by
default.

Typically, you should use this option only if you want to prevent the
Compiler from removing duplicate registers. That is, you should use this
option only with the Off setting. You can apply this option to an
individual register or a design entity that contains registers.

Remove Redundant Logic Cells

This logic option removes redundant LCELL primitives or WYSIWYG
cells. The option is off by default to preserve logic cells that have been
used intentionally. If you turn on this option, the Compiler optimizes a
circuit for area and speed. You can set this option globally or apply it to
individual nodes and entities. If you turn on the option at the global level,
you can use the keep attribute or Implement as Output of Logic Cell
logic option to preserve specific wire signals or nodes (refer to “Keep
Combinational Node/Implement as Output of Logic Cell” on page 8–47).

Preserve Registers

This attribute and logic option directs the Compiler not to minimize or
remove a specified register during synthesis optimizations or register
netlist optimizations. Optimizations can eliminate redundant registers
and registers with constant drivers; this option prevents a register from
being reduced to a constant or merged with a duplicate register. This
option can preserve a register so you can observe it during simulation or
with the SignalTap II logic analyzer. Additionally, it can preserve registers
if you are creating a preliminary version of the design in which secondary
signals are not specified. You can also use the attribute to preserve a
duplicate of an I/O register so that one copy can be placed in an I/O cell
and the second can be placed in the core. By default, the software may
remove one of the two duplicate registers. In this case, the preserve
attribute can be added to both registers to prevent this.

1 This option cannot preserve registers that have no fan-out. To
prevent the removal of registers with no fan-out, refer to
“Noprune Synthesis Attribute/Preserve Fan-out Free Register
Node” on page 8–46.

Altera Corporation 8–45
October 2007

Quartus II Synthesis Options

The Preserve Registers option prevents a register from being
inferred as a state machine.

You can set the Preserve Registers logic option in the Quartus II GUI or
you can set the preserve attribute in your HDL code, as shown in
Example 8–30, 8–31, and 8–32. In these examples, the my_reg register is
preserved.

1 In addition to preserve, the Quartus II software supports the
syn_preserve attribute name for compatibility with other
synthesis tools.

Example 8–30. Verilog HDL Example of a syn_preserve Attribute
reg my_reg /* synthesis syn_preserve = 1 */;

Example 8–31. Verilog-2001 Example of a syn_preserve Attribute
(* syn_preserve = 1 *) reg my_reg;

1 The " = 1" after the "preserve" in Example 8–30 and 8–31 is
optional, because the assignment uses a default value of 1 when
it is specified.

Example 8–32. VHDL Example of a preserve Attribute
signal my_reg : stdlogic;
attribute preserve : boolean;
attribute preserve of my_reg : signal is true;

Disable Register Merging/Don’t Merge Register

This logic option and attribute prevents the specified register from being
merged with other registers, and prevents other registers from being
merged with the specified register. When applied to a design entity, it
applies to all registers in the entity.

You can use this option to instruct the Compiler to correctly use your
timing constraints for the register during synthesis. For example, if the
register has a multicycle constraint, this option prevents the Compiler
from merging other registers into the specified register, avoiding
unintended timing effects and functional differences.

8–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

This option differs from the Preserve Register option because it does not
prevent a register with constant drivers or a redundant register from
being removed. In addition, this option prevents other registers from
merging with the specified register.

You can set the Disable Register Merging logic option in the Quartus II
GUI, or you can set the dont_merge attribute in your HDL code, as
shown in Example 8–33, 8–34, and 8–35. In these examples, the my_reg
register is prevented from merges.

Example 8–33. Verilog HDL Example of a dont_merge Attribute
reg my_reg /* synthesis dont_merge */;

Example 8–34. Verilog-2001 Example of a dont_merge Attribute
(* dont_merge *) reg my_reg;

Example 8–35. VHDL Example of a dont_merge Attribute
signal my_reg : stdlogic;
attribute dont_merge : boolean;
attribute dont_merge of my_reg : signal is true;

Noprune Synthesis Attribute/Preserve Fan-out Free Register
Node

This synthesis attribute and corresponding logic option direct the
Compiler to preserve a fan-out-free register through the entire
compilation flow. This is different from the Preserve Registers option,
which prevents a register from being reduced to a constant or merged
with a duplicate register. Standard synthesis optimizations remove nodes
that do not directly or indirectly feed a top-level output pin. This option
can retain a register so you can observe it in the Simulator or the
SignalTap II logic analyzer. Additionally, it can retain registers if you are
creating a preliminary version of the design in which the registers’
fan-out logic is not specified. This option is supported for inferred
registers in the following device families: Arria GX, Stratix series,
Cyclone series, and MAX II.

You can set the Preserve Fan-out Free Register Node logic option in the
Quartus II GUI, or you can set the noprune attribute in your HDL code,
as shown in Example 8–36, 8–37, and 8–38. In these examples, the my_reg
register is preserved.

Altera Corporation 8–47
October 2007

Quartus II Synthesis Options

1 You must use the noprune attribute instead of the logic option
if the register has no immediate fan-out in its module or entity.
If you do not use the synthesis attribute, registers with no
fan-out are removed (or “pruned”) during analysis and
elaboration before the logic synthesis stage applies any logic
options. If the register has no fan-out in the full design, but has
fan-out within its module or entity, you can use the logic option
to retain the register through compilation.

The attribute name syn_noprune is supported for
compatibility with other synthesis tools.

Example 8–36. Verilog HDL Example of a syn_noprune Attribute
reg my_reg /* synthesis syn_noprune */;

Example 8–37. Verilog-2001 Example of a noprune Attribute
(* noprune *) reg my_reg;

Example 8–38. VHDL Example of a noprune Attribute
signal my_reg : stdlogic;
attribute noprune: boolean;
attribute noprune of my_reg : signal is true;

Keep Combinational Node/Implement as Output of Logic Cell

This synthesis attribute and corresponding logic option direct the
Compiler to keep a wire or combinational node through logic synthesis
minimizations and netlist optimizations. A wire that has a keep attribute
or a node that has the Implement as Output of Logic Cell logic option
applied becomes the output of a logic cell in the final synthesis netlist, and
the name of the logic cell will be the same as the name of the wire or node.
You can use this directive to make combinational nodes visible to the
SignalTap II logic analyzer.

1 The option cannot keep nodes that have no fan-out. Node names
cannot be maintained for wires with tri-state drivers, or if the
signal feeds a top-level pin of the same name (in this case the
node name is changed to a name such as <net name>~buf0).

You can set the Implement as Output of Logic Cell logic option in the
Quartus II GUI, or you can set the keep attribute in your HDL code, as
shown in Example 8–39, 8–40, and 8–41. In these examples, the Compiler
maintains the node name my_wire.

8–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 In addition to keep, the Quartus II software supports the
syn_keep attribute name for compatibility with other synthesis
tools.

Example 8–39. Verilog HDL Example of a keep Attribute
wire my_wire /* synthesis keep = 1 */;

Example 8–40. Verilog-2001 Example of a keep Attribute
(* keep = 1 *) wire my_wire;

Example 8–41. VHDL Example of a syn_keep Attribute
signal my_wire: bit;
attribute syn_keep: boolean;
attribute syn_keep of my_wire: signal is true;

Don't Retime, Disabling Synthesis Netlist Optimizations

This attribute disables synthesis retiming optimizations on the specified
register. When applied to a design entity, it applies to all registers in the
entity.

You can use this option to turn off retiming optimizations and prevent
node name changes so that the Compiler can correctly use your timing
constraints for the register.

You can set the Netlist Optimizations logic option to Never Allow in the
Quartus II GUI to disable retiming along with other synthesis netlist
optimizations, or you can set the dont_retime attribute in your HDL
code, as shown in Example 8–42 and 8–43. In these examples, the my_reg
register is prevented from being retimed.

Example 8–42. Verilog HDL Example of a dont_retime Attribute
reg my_reg /* synthesis dont_retime */;

Example 8–43. Verilog-2001 Example of a dont_retime Attribute
(* dont_retime *) reg my_reg;

Altera Corporation 8–49
October 2007

Quartus II Synthesis Options

Example 8–44. VHDL Example of a dont_retime Attribute
signal my_reg : std_logic;
attribute dont_retime : boolean;
attribute dont_retime of my_reg : signal is true;

1 For compatibility with third-party synthesis tools, Quartus II
integrated synthesis also supports the attribute
syn_allow_retiming. To disable retiming, set
syn_allow_retiming to 0 (Verilog) or false (VHDL). This
attribute does not have any effect when set to 1 or true.

Don't Replicate, Disabling Synthesis Netlist Optimizations

This attribute disables synthesis replication optimizations on the
specified register. When applied to a design entity, it applies to all
registers in the entity.

You can use this option to turn off register replication (or duplication)
optimizations so that the Compiler can use your timing constraints for the
register.

You can set the Netlist Optimizations logic option to Never Allow in the
Quartus II GUI to disable replication along with other synthesis netlist
optimizations, or you can set the dont_replicate attribute in your
HDL code, as shown in Example 8–45 and 8–46. In these examples, the
my_reg register is prevented from being replicated.

Example 8–45. Verilog HDL Example of a dont_replicate Attribute
reg my_reg /* synthesis dont_replicate */;

Example 8–46. Verilog-2001 Example of a dont_replicate Attribute
(* dont_replicate *) reg my_reg;

Example 8–47. VHDL Example of a dont_replicate Attribute
signal my_reg : std_logic;
attribute dont_replicate : boolean;
attribute dont_replicate of my_reg : signal is true;

8–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 For compatibility with third-party synthesis tools, Quartus II
integrated synthesis also supports the attribute
syn_replicate. To disable replication, set syn_replicate
to 0 (Verilog) or false (VHDL). This attribute does not have
any effect when set to 1 or true.

Maximum Fan-Out

This attribute and logic option directs the Compiler to control the number
of destinations fed by a node. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the
maximum fan-out restriction. You can apply this option to a register or a
logic cell buffer, or to a design entity that contains these elements. You can
use this option to reduce the load of critical signals, which can improve
performance. You can use the option to instruct the Compiler to duplicate
(or replicate) a register that feeds nodes in different locations on the target
device. Duplicating the register may allow the Fitter to place these new
registers closer to their destination logic, minimizing routing delay.

This option is available for all devices supported in the Quartus II
software except MAX 3000, MAX 7000, FLEX 10K®, ACEX® 1K, and
Mercury™ devices. To turn off the option for a given node if the option is
set at a higher level of the design hierarchy, in the Netlist Optimizations
logic option, select Never Allow. If not disabled by the Netlist
Optimizations option, the maximum fan-out constraint is honored as
long as the following conditions are met:

■ The node is not part of a cascade, carry, or register cascade chain
■ The node does not feed itself
■ The node feeds other logic cells, DSP blocks, RAM blocks, and/or

pins through data, address, clock enable, etc, but not through any
asynchronous control ports (such as asynchronous clear)

The software does not create duplicate nodes in these cases either because
there is no clear way to duplicate the node, or, to avoid the possible
situation that small differences in timing could produce functional
differences in the implementation (in the third condition above where
asynchronous control signals are involved). If the constraint cannot be
applied because one of these conditions is not met, the Quartus II
software issues a message indicating that it ignored maximum fan-out
assignment. To instruct the software not to check the node’s destinations
for possible problems like the third condition, you can set the Netlist
Optimizations logic option to Always Allow for a given node.

Altera Corporation 8–51
October 2007

Quartus II Synthesis Options

1 If you have enabled any of the Quartus II netlist optimizations
that affect registers, add the preserve attribute to any registers
to which you have set a maxfan attribute. The preserve
attribute ensures that the registers are not affected by any of the
netlist optimization algorithms, such as register retiming.

f For details about netlist optimizations, refer to the Netlist Optimization
and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

You can set the Maximum Fan-Out logic option in the Quartus II GUI,
and this option supports wildcard characters. You can also set the
maxfan attribute in your HDL code, as shown in Example 8–48, 8–49,
and 8–50. In these examples, the Compiler duplicates the clk_gen
register, so its fan-out is not greater than 50.

1 In addition to maxfan, the Quartus II software supports the
syn_maxfan attribute name for compatibility with other
synthesis tools.

Example 8–48. Verilog HDL Example of a syn_maxfan Attribute
reg clk_gen /* synthesis syn_maxfan = 50 */;

Example 8–49. Verilog-2001 Example of a maxfan Attribute
(* maxfan = 50 *) reg clk_gen;

Example 8–50. VHDL Example of a maxfan Attribute
signal clk_gen : stdlogic;
attribute maxfan : signal ;
attribute maxfan of clk_gen : signal is 50;

Controlling Clock Enable Signals with Auto Clock Enable
Replacement and direct_enable

The Auto Clock Enable Replacement logic option allows the software to
find logic that feeds a register and move the logic to the register’s clock
enable input port. The option is on by default. You can set this option to
Off for individual registers or design entities to solve fitting or
performance issues with designs that have many clock enables. Turning
the option off prevents the software from using the register’s clock enable
port, and the software implements the clock enable functionality using
multiplexers in logic cells.

8–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

If specific logic is not automatically moved to a clock enable input with
the Auto Clock Enable Replacement logic option, you can instruct the
software to use a direct clock enable signal. Applying the
direct_enable attribute to a specific signal instructs the software to
use the clock enable port of a register to implement the signal. The
attribute ensures that the clock enable port is driven directly by the signal,
and the signal is not optimized or combined with any other logic.

Example 8–51, 8–52, and 8–53 show how to set this attribute to ensure that
the signal is preserved and used directly as a clock enable.

1 In addition to direct_enable, the Quartus II software
supports the syn_direct_enable attribute name for
compatibility with other synthesis tools.

Example 8–51. Verilog HDL Example of a direct_enable attribute
wire my_enable /* synthesis direct_enable = 1 */ ;

Example 8–52. Verilog-2001 Example of a syn_direct_enable attribute
(* syn_direct_enable *) wire my_enable;

Example 8–53. VHDL Example of a direct_enable attribute
attribute direct_enable: boolean;
attribute direct_enable of my_enable: signal is true;

Megafunction Inference Control

The Quartus II Compiler automatically recognizes certain types of HDL
code and infers the appropriate megafunction. The software uses the
Altera megafunction code when compiling your design, even when you
do not specifically instantiate the megafunction. The software infers
megafunctions to take advantage of logic that is optimized for Altera
devices. The area and performance of such logic may be better than the
results obtained by inferring generic logic from the same HDL code.

Additionally, you must use megafunctions to access certain
architecture-specific features, such as RAM, digital signal processing
(DSP) blocks, and shift registers, that generally provide improved
performance compared with basic logic cells.

f For details about coding style recommendations when targeting
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Altera Corporation 8–53
October 2007

Quartus II Synthesis Options

The Quartus II software provides options to control the inference of
certain types of megafunctions, as described in the following subsections.

Multiply-Accumulators and Multiply-Adders

Use the Auto DSP Block Replacement logic option to control DSP block
inference for multiply-accumulations and multiply-adders. This option is
turned on by default. To disable inference, turn off this option for your
whole project on the Analysis & Synthesis Settings page of the Settings
dialog box, or disable the option for a specific block with the Assignment
Editor.

1 Any registers that the software maps to the altmult_accum and
altmult_add megafunctions and places in DSP blocks are not
available in the Simulator because their node names do not exist
after synthesis.

Shift Registers

Use the Auto Shift Register Replacement logic option to control shift
register inference. This option is turned on by default. To disable
inference, turn off this option for your whole project on the Analysis &
Synthesis Settings page of the Settings dialog box, or for a specific block
with the Assignment Editor. The software may not infer small shift
registers because small shift registers typically do not benefit from
implementation in dedicated memory. However, you can use the Allow
Any Shift Register Size for Recognition logic option to instruct
synthesis to infer a shift register even when its size is considered too
small.

1 The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in the
Simulator because their node names do not exist after synthesis.

The Auto Shift Register Replacement logic option is turned off
automatically when a formal verification tool is selected in the
EDA Tool Settings. The software issues a warning and lists shift
registers that would have been inferred if no formal verification
tool was selected in the compilation report. To allow the use of a
megafunction for the shift register in the formal verification
flow, you can either instantiate a shift register explicitly using
the MegaWizard® Plug-in Manager or black box the shift
register in a separate entity/module.

8–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

RAM and ROM

Use the Auto RAM Replacement and Auto ROM Replacement logic
options to control RAM and ROM inference, respectively. These options
are turned on by default. To disable inference, turn off the appropriate
option for your whole project on the Analysis & Synthesis Settings page
of the Settings dialog box, or disable the option for a specific block with
the Assignment Editor.

1 Although inferred shift registers are implemented in RAM
blocks, you cannot turn off the Auto RAM replacement option to
disable shift register replacement. Use the Auto Shift Register
Replacement option (refer to “Shift Registers”).

The software may not infer very small RAM or ROM blocks because very
small memory blocks can typically be implemented more efficiently by
using the registers in the logic. However, you can use the Allow Any
RAM Size for Recognition and Allow Any ROM Size for Recognition
logic options to instruct synthesis to infer a memory block even when its
size is considered too small.

1 The Auto ROM Replacement logic option is automatically
turned off when a formal verification tool is selected in the EDA
Tool Settings page. A warning is issued and a report panel lists
ROMs that would have been inferred if no formal verification
tool was selected. To allow the use of a megafunction for the
shift register in the formal verification flow, you can either
instantiate a ROM explicitly using the MegaWizard Plug-In
Manager or create a black box for the ROM in a separate
entity/module.

Although formal verification tools do not support inferred RAM blocks,
because of the importance of inferring RAM in many designs, the Auto
RAM Replacement logic option remains on when a formal verification
tool is selected in the EDA Tool Settings page. The Quartus II software
automatically black boxes any module or entity that contains a RAM
block that is inferred. The software issues a warning and lists the
black box that is created in the compilation report. This block box allows
formal verification tools to proceed; however, the entire module or entity
containing the RAM cannot be verified in the tool. Altera recommends
that you explicitly instantiate RAM blocks in separate modules or entities
so that as much logic as possible can be verified by the formal verification
tool.

Altera Corporation 8–55
October 2007

Quartus II Synthesis Options

RAM to Logic Cell Conversion

The Auto RAM to Logic Cell Conversion option allows the Quartus II
integrated synthesis to convert RAM blocks that are small in size to logic
cells if the logic cell implementation is deemed to give better quality of
results. Only single-port or simple-dual port RAMs with no initialization
files can be converted to logic cells. This option is off by default. You can
set this option globally or apply it to individual RAM nodes.

For FLEX 10K, APEX, Arria GX, and the Stratix series of devices, the
software uses the following rules to determine whether a RAM should be
placed in logic cells or a dedicated RAM block:

■ If the number of words is less than 16, use a RAM block if the total
number of bits is greater than or equal to 64.

■ If the number of words is greater than or equal to 16, use a RAM
block if the total number of bits is greater than or equal to 32.

■ Otherwise, implement the RAM in logic cells.

For the Cyclone series of devices, the software uses the following rules:

■ If the number of words is greater than or equal to 64, use a RAM
block.

■ If the number of words is greater than or equal to 16 and less than 64,
use a RAM block if the total number of bits is greater than or equal to
128.

■ Otherwise, implement the RAM in logic cells.

RAM Style and ROM Style—for Inferred Memory

These attributes specify the implementation for an inferred RAM or ROM
block. You can specify the type of TriMatrix™ embedded memory block
to be used, or specify the use of standard logic cells (LEs or ALMs). The
attributes are supported only for device families with TriMatrix
embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The
values "M512", "M4K", "M-RAM", "MLAB", "M9K", and "M144K" (as
applicable for the target device family) indicate the type of memory block
to use for the inferred RAM or ROM. If you set the attribute to a block
type that does not exist in the target device family, the software generates
a warning and ignores the assignment. The value logic indicates that
the RAM or ROM should be implemented in regular logic rather than
dedicated memory blocks. You can set the attribute on a module or entity,
in which case it specifies the default implementation style for all inferred
memory blocks in the immediate hierarchy. You can also set the attribute

8–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

on a specific signal (VHDL) or variable (Verilog HDL) declaration, in
which case it specifies the preferred implementation style for that specific
memory, overriding the default implementation style.

1 If you specify a value of logic, the memory still appears as a
RAM or ROM block in the RTL Viewer, but it is converted to
regular logic during a later synthesis step.

In addition to ramstyle and romstyle, the Quartus II
software supports the syn_ramstyle attribute name for
compatibility with other synthesis tools.

Example 8–54, 8–55, and 8–56 specify that all memory in the module or
entity my_memory_blocks should be implemented using a specific type
of block.

Example 8–54. Verilog-1995 Example of Applying a romstyle Attribute to a Module Declaration
module my_memory_blocks (...) /* synthesis romstyle = "M4K" */

Example 8–55. Verilog-2001 Example of Applying a ramstyle Attribute to a Module Declaration
 (* ramstyle = "M512" *) module my_memory_blocks (...);

Example 8–56. VHDL Example of Applying a romstyle Attribute to an Architecture
architecture rtl of my_ my_memory_blocks is
attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

Example 8–57, 8–58, and 8–59 specify that the inferred memory my_ram
or my_rom should be implemented using regular logic instead of a
TriMatrix memory block.

Example 8–57. Verilog-1995 Example of Applying a syn_ramstyle Attribute to a Variable Declaration
reg [0:7] my_ram[0:63] /* synthesis syn_ramstyle = "logic" */;

Example 8–58. Verilog-2001 Example of Applying a romstyle Attribute to a Variable Declaration
(* romstyle = "logic" *) reg [0:7] my_rom[0:63];

Altera Corporation 8–57
October 2007

Quartus II Synthesis Options

Example 8–59. VHDL Example of Applying a ramstyle Attribute to a Signal Declaration
type memory_t is array (0 to 63) of std_logic_vector (0 to 7);
signal my_ram : memory_t;
attribute ramstyle : string;
attribute ramstyle of my_ram : signal is "logic";

Turning Off Add Pass-Through Logic to Inferred RAMs/
no_rw_check Attribute Setting

Setting the no_rw_check value for the ramstyle attribute, or turning
off the corresponding global logic option Add Pass-Through Logic to
Inferred RAMs indicates that your design does not depend on the
behavior of the inferred RAM when there are reads and writes to the same
address in the same clock cycle. If you specify the attribute or turn off the
logic option, the Quartus II software can choose a read-during-write
behavior instead of using the read-during-write behavior of your HDL
source code.

In some cases, an inferred RAM must be mapped into regular logic cells
because it has a read-during-write behavior that is not supported by the
TriMatrix memory blocks in your target device. In other cases, the
Quartus II software must insert extra logic to mimic read-during-write
behavior of the HDL source, increasing the area of your design and
potentially reducing its performance. In these cases, you can use the
attribute to specify that the software can implement the RAM directly in
a TriMatrix memory block without using logic. You can also use the
attribute to prevent a warning message for dual-clock RAMs in the case
that the inferred behavior in the device does not exactly match the
read-during-write conditions described in the HDL code.

f For more information about recommended styles for inferring RAM and
some of the issues involved with different read-during-write conditions,
refer to the Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

To set the Add Pass-Through Logic to Inferred RAMs logic option
through the Quartus II GUI, click More Settings on the Analysis &
Synthesis Settings page of the Settings dialog box. Example 8–60 and
8–61 use two addresses and normally require extra logic after the RAM to
ensure that the read-during-write conditions in the device match the
HDL code. If you don’t require a defined read-during-write condition in
your design, this extra logic is not required. With the no_rw_check
attribute, Quartus II integrated synthesis won’t generate the extra logic.

8–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–60. Verilog HDL Inferred RAM Using no_rw_check Attribute
module ram_infer (q, wa, ra, d, we, clk);

output [7:0] q;
input [7:0] d;
input [6:0] wa;
input [6:0] ra;
input we, clk;
reg [6:0] read_add;
(* ramstyle = "no_rw_check" *) reg [7:0] mem [127:0];
always @ (posedge clk) begin

if (we)
mem[wa] <= d;

read_add <= ra;
end
assign q = mem[read_add];

endmodule

Example 8–61. VHDL Inferred RAM Using no_rw_check Attribute
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (

clock: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
q: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY(0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ram_block: MEM;
ATTRIBUTE ramstyle : string;
ATTRIBUTE ramstyle of ram_block : signal is "no_rw_check";
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN

ram_block(write_address) <= data;
END IF;
read_address_reg <= read_address;

END IF;
END PROCESS;
q <= ram_block(read_address_reg);

END rtl;

Altera Corporation 8–59
October 2007

Quartus II Synthesis Options

RAM Initialization File—for Inferred Memory

The ram_init_file attribute specifies the initial contents of an inferred
memory in the form of a Memory Initialization File (.mif). The attribute
takes a string value containing the name of the RAM initialization file.

Example 8–62. Verilog-1995 Example of Applying a ram_init_file Attribute
reg [7:0] mem[0:255] /* synthesis ram_init_file
= " my_init_file.mif" */;

Example 8–63. Verilog-2001 Example of Applying a ram_init_file Attribute
(* ram_init_file = "my_init_file.mif" *) reg [7:0] mem[0:255];

Example 8–64. VHDL Example of Applying a ram_init_file Attribute
type mem_t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem_t;
attribute ram_init_file : string;
attribute ram_init_file of ram :
signal is "my_init_file.mif";

1 In VHDL, you can also initialize the contents of an inferred
memory by specifying a default value for the corresponding
signal. In Verilog HDL, you can use an initial block to specify the
memory contents. Quartus II integrated synthesis automatically
converts the default value into a MIF for the inferred RAM.

Multiplier Style—for Inferred Multipliers

The multstyle attribute specifies the implementation style for
multiplication operations (*) in your HDL source code. You can use this
attribute to specify whether you prefer the Compiler to implement a
multiplication operation in general logic or dedicated hardware, if
available in the target device.

The multstyle attribute takes a string value of "logic" or "dsp",
indicating a preferred implementation in logic or in dedicated hardware,
respectively. In Verilog HDL, apply the attribute to a module declaration,
a variable declaration, or a specific binary expression containing the
* operator. In VHDL, apply the synthesis attribute to a signal, variable,
entity, or architecture.

8–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Specifying a multstyle of "dsp" does not guarantee that the
Quartus II software can implement a multiplication in dedicated
DSP hardware. The final implementation depends on several
things, including the availability of dedicated hardware in the
target device, the size of the operands, and whether or not one
or both operands are constant.

In addition to multstyle, the Quartus II software supports the
syn_multstyle attribute name for compatibility with other
synthesis tools.

When applied to a Verilog HDL module declaration, the attribute
specifies the default implementation style for all instances of the
* operator in the module. For example, in the following code examples,
the multstyle attribute directs the Quartus II software to implement all
multiplications inside module my_module in dedicated multiplication
hardware.

Example 8–65. Verilog-1995 Example of Applying a multstyle Attribute to a Module Declaration
module my_module (...) /* synthesis multstyle = "dsp" */;

Example 8–66. Verilog-2001 Example of Applying a multstyle Attribute to a Module Declaration
(* multstyle = "dsp" *) module my_module(...);

When applied to a Verilog HDL variable declaration, the attribute
specifies the implementation style to be used for a multiplication operator
whose result is directly assigned to the variable. It overrides the
multstyle attribute associated with the enclosing module, if present. In
Example 8–67 and 8–68, the multstyle attribute applied to variable
result directs the Quartus II software to implement a * b in general
logic rather than dedicated hardware.

Example 8–67. Verilog-2001 Example of Applying a multstyle Attribute to a Variable Declaration
wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be

//directly assigned to result

Example 8–68. Verilog-1995 Example of Applying a multstyle Attribute to a Variable Declaration
wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be

//directly assigned to result

Altera Corporation 8–61
October 2007

Quartus II Synthesis Options

When applied directly to a binary expression containing the * operator,
the attribute specifies the implementation style for that specific operator
alone and overrides any multstyle attribute associated with the target
variable or enclosing module. In Example 8–69, the multstyle attribute
indicates that a * b should be implemented in dedicated hardware.

Example 8–69. Verilog-2001 Example of Applying a multstyle Attribute to a Binary Expression
wire [8:0] a, b;
wire [17:0] result;
assign result = a * (* multstyle = "dsp" *) b;

1 You cannot use Verilog-1995 attribute syntax to apply the
multstyle attribute to a binary expression.

When applied to a VHDL entity or architecture, the attribute specifies the
default implementation style for all instances of the * operator in the
entity or architecture. In Example 8–70, the multstyle attribute directs
the Quartus II software to use dedicated hardware, if possible, for all
multiplications inside architecture rtl of entity my_entity.

Example 8–70. VHDL Example of Applying a multstyle Attribute to an Architecture
architecture rtl of my_entity is

attribute multstyle : string;
attribute multstyle of rtl : architecture is "dsp";

begin

When applied to a VHDL signal or variable, the attribute specifies the
implementation style to be used for all instances of the * operator whose
result is directly assigned to the signal or variable. It overrides the
multstyle attribute associated with the enclosing entity or architecture,
if present. In Example 8–71, the multstyle attribute associated with
signal result directs the Quartus II software to implement a * b in
general logic rather than dedicated hardware.

Example 8–71. VHDL Example of Applying a multstyle Attribute to a Signal or Variable
signal a, b : unsigned(8 downto 0);
signal result : unsigned(17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

8–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Full Case

A Verilog HDL case statement is considered full when its case items cover
all possible binary values of the case expression or when a default case
statement is present. A full_case attribute attached to a case statement
header that is not full forces the unspecified states to be treated as a “don’t
care” value. VHDL case statements must be full, so the attribute does not
apply to VHDL.

f Using this attribute on a case statement that is not full avoids the latch
inference problems discussed in the Design Recommendations for Altera
Devices and the Quartus II Design Assistant chapter in volume 1 of the
Quartus II Handbook.

1 Latches have limited support in formal verification tools. It is
important to ensure that you do not infer latches
unintentionally, for example, through an incomplete case
statement when using formal verification. Formal verification
tools do support the full_case synthesis attribute (with
limited support for attribute syntax, as described in “Synthesis
Attributes” on page 8–26).

When you are using the full_case attribute, there is a potential cause
for a simulation mismatch between Verilog HDL functional and
post-Quartus II simulation because unknown case statement cases may
still function like latches during functional simulation. For example, a
simulation mismatch may occur with the code in Example 8–72 when
sel is 2'b11 because a functional HDL simulation output behaves like a
latch while the Quartus II simulation output behaves like “don’t care.”

1 Altera recommends making the case statement “full” in your
regular HDL code, instead of using the full_case attribute.

The case statement in Example 8–72 is not full because not all binary
values for sel are specified. Because the full_case attribute is used,
synthesis treats the output as “don’t care” when the sel input is 2'b11.

Altera Corporation 8–63
October 2007

Quartus II Synthesis Options

Example 8–72. Verilog HDL Example of a full_case Attribute
module full_case (a, sel, y);

input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full_case

2'b00: y=a[0];
2'b01: y=a[1];
2'b10: y=a[2];
endcase

endmodule

Verilog-2001 syntax also accepts the statements in Example 8–73 in the
case header instead of the comment form shown in Example 8–72.

Example 8–73. Verilog-2001 Syntax for the full_case Attribute
(* full_case *) case (sel)

Parallel Case

The parallel_case attribute indicates that a Verilog HDL case
statement should be considered parallel; that is, only one case item can be
matched at a time. Case items in Verilog HDL case statements may
overlap. To resolve multiple matching case items, the Verilog HDL
language defines a priority relationship among case items in which the
case statement always executes the first case item that matches the case
expression value. By default, the Quartus II software implements the
extra logic required to satisfy this priority relationship.

Attaching a parallel_case attribute to a case statement’s header
allows the Quartus II software to consider its case items as inherently
parallel; that is, at most one case item matches the case expression value.
Parallel case items reduce the complexity of the generated logic.

In VHDL, the individual choices in a case statement may not overlap, so
they are always parallel and this attribute does not apply.

Use this attribute only when the case statement is truly parallel. If you
use the attribute in any other situation, the generated logic will not match
the functional simulation behavior of the Verilog HDL.

8–64 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Altera recommends that you avoid using the parallel_case
attribute, due to the possibility of introducing mismatches
between Verilog HDL functional and post-Quartus II
simulation.

If you specify the supported Verilog HDL version as
SystemVerilog-2005 for your design, you can use the
SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation
mismatches.

The following example shows a casez statement with overlapping case
items. In functional HDL simulation, the three case items have a priority
order that depends on the bits in sel. For example, sel[2] takes priority
over sel[1], which takes priority over sel[0]. However, the
synthesized design may simulate differently because the
parallel_case attribute eliminates this priority order. If more than one
bit of sel is high, more than one output (a, b, or c) is high as well, a
situation that cannot occur in functional HDL simulation.

Example 8–74. Verilog HDL Example of a parallel_case Attribute
module parallel_case (sel, a, b, c);

input [2:0] sel;
output a, b, c;
reg a, b, c;
always @ (sel)
begin

{a, b, c} = 3'b0;
casez (sel) // synthesis parallel_case

3'b1??: a = 1'b1;
3'b?1?: b = 1'b1;
3'b??1: c = 1'b1;

endcase
end

endmodule

Verilog-2001 syntax also accepts the statements as shown in
Example 8–75 in the case (or casez) header instead of the comment
form, as shown in Example 8–74.

Example 8–75. Verilog-2001 Syntax
(* parallel_case *) casez (sel)

Altera Corporation 8–65
October 2007

Quartus II Synthesis Options

Translate Off and On / Synthesis Off and On

The translate_off and translate_on synthesis directives indicate
whether the Quartus II software or a third-party synthesis tool should
compile a portion of HDL code that is not relevant for synthesis. The
translate_off directive marks the beginning of code that the
synthesis tool should ignore; the translate_on directive indicates that
synthesis should resume. You can also use the synthesis_on and
synthesis_off directives as a synonym for translate on and off.

A common use of these directives is to indicate a portion of code that is
intended for simulation only. The synthesis tool reads synthesis-specific
directives and processes them during synthesis; however, third-party
simulation tools read the directives as comments and ignore them.
Example 8–76 and Example 8–77 show these directives.

Example 8–76. Verilog HDL Example of Translate Off and On
// synthesis translate_off
parameter tpd = 2; // Delay for simulation
#tpd;
// synthesis translate_on

Example 8–77. VHDL Example of Translate Off and On
-- synthesis translate_off
use std.textio.all;
-- synthesis translate_on

If you wish to ignore a portion of code in Quartus II integrated synthesis
only, you can use the Altera-specific attribute keyword altera. For
example, use the // altera translate_off and
// altera translate_on directives to direct Quartus II integrated
synthesis to ignore a portion of code that is intended only for other
synthesis tools.

Ignore translate_off and synthesis_off Directives

The Ignore translate_off and synthesis_off directives logic option
directs Quartus II integrated synthesis to ignore the translate_off
and synthesis_off directives described in the previous section. This
allows you to compile code that was previously intended to be ignored by
third-party synthesis tools, for example, megafunction declarations that
were treated as black boxes in other tools but can be compiled in the
Quartus II software. To set the Ignore translate_off and synthesis_off
directives logic option, click More Settings on the Analysis & Synthesis
Settings page of the Settings dialog box.

8–66 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Read Comments as HDL

The read_comments_as_HDL synthesis directive indicates that the
Quartus II software should compile a portion of HDL code that is
commented out. This directive allows you to comment out portions of
HDL source code that are not relevant for simulation, while instructing
the Quartus II software to read and synthesize that same source code.
Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting
the read_comments_as_HDL directive to off indicates the end of the
code.

1 You can use this directive with translate_off and
translate_on to create one HDL source file that includes both
a megafunction instantiation for synthesis and a behavioral
description for simulation.

Because formal verification tools do not recognize the
read_comments_as_HDL directive, it is not supported when
you are using formal verification.

In Example 8–78 and 8–79, the commented code enclosed by
read_comments_as_HDL is visible to the Quartus II Compiler and is
synthesized.

1 Because synthesis directives are case-sensitive in Verilog HDL,
you must match the case of the directive, as shown in the
following examples.

Example 8–78. Verilog HDL Example of Read Comments as HDL
// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 8–79. VHDL Example of Read Comments as HDL
-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

Altera Corporation 8–67
October 2007

Quartus II Synthesis Options

Use I/O Flipflops

This attribute directs the Quartus II software to implement input, output,
and output enable flipflops (or registers) in I/O cells that have fast, direct
connections to an I/O pin, when possible. Applying the useioff
synthesis attribute can improve I/O performance by minimizing setup,
clock-to-output, and clock-to-output enable times. This synthesis
attribute is supported using the Fast Input Register, Fast Output
Register, and Fast Output Enable Register logic options that can also be
set in the Assignment Editor.

f For more information about which device families support fast input,
output, and output enable registers, refer to the device family data sheet,
device handbook, or the Quartus II Help.

The useioff synthesis attribute takes a Boolean value and can only be
applied to the port declarations of a top-level Verilog HDL module or
VHDL entity (it is ignored if applied elsewhere). Setting the value to 1
(Verilog HDL) or TRUE (VHDL) instructs the Quartus II software to pack
registers into I/O cells. Setting the value to 0 (Verilog HDL) or FALSE
(VHDL) prevents register packing into I/O cells.

In Example 8–80 and 8–81, the useioff synthesis attribute directs the
Quartus II software to implement the registers a_reg, b_reg, and
o_reg in the I/O cells corresponding to the ports a, b, and o, respectively.

Example 8–80. Verilog HDL Example of the useioff Attribute
module top_level(clk, a, b, o);

 input clk;
input [1:0] a, b /* synthesis useioff = 1 */;
output [2:0] o /* synthesis useioff = 1 */;
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)
begin

a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end
assign o = o_reg;

endmodule

Verilog-2001 syntax also accepts the type of statements shown in
Example 8–81 and 8–82 instead of the comment form shown in
Example 8–80.

8–68 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–81. Verilog-2001 Syntax for the useioff Attribute
(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Example 8–82. VHDL Example of the useioff Attribute
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity useioff_example is

port (
clk : in std_logic;
a, b : in unsigned(1 downto 0);
o : out unsigned(1 downto 0));

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;

end useioff_example;
architecture rtl of useioff_example is

signal o_reg, a_reg, b_reg : unsigned(1 downto 0);
begin

process(clk)
begin

if (clk = '1' AND clk'event) then
a_reg <= a;
b_reg <= b;
o_reg <= a_reg + b_reg;

end if;
end process;
 o <= o_reg;
end rtl;

Specifying Pin Locations with chip_pin

This attribute enables you to assign pin locations in your HDL source. The
attribute can be used only on the ports of the top-level entity or module
in the design, and cannot be used to assign pin locations from entities at
lower levels of the design hierarchy. You may assign pins only to
single-bit or one-dimensional bus ports in your design.

For single-bit ports, the value of the chip_pin attribute is the name of
the pin on the target device, as specified by the device’s pin table.

Altera Corporation 8–69
October 2007

Quartus II Synthesis Options

1 In addition to chip_pin, the Quartus II software supports the
altera_chip_pin_lc attribute name for compatibility with
other synthesis tools. When using this attribute in other
synthesis tools, some older device families require an “@”
symbol in front of each pin assignment. In the Quartus II
software, the “@” is optional.

Example 8–83, 8–84, and 8–85 show different ways of assigning input pin
my_pin1 to Pin C1 and my_pin2 to Pin 4 on a different target device.

Example 8–83. Verilog-1995 Examples of Applying Chip Pin to a Single Pin
input my_pin1 /* synthesis chip_pin = "C1" */;
input my_pin2 /* synthesis altera_chip_pin_lc = "@4" */;

Example 8–84. Verilog-2001 Example of Applying Chip Pin to a Single Pin
(* chip_pin = "C1" *) input my_pin1;
(* altera_chip_pin_lc = "@4" *) input my_pin2;

Example 8–85. VHDL Example of Applying Chip Pin to a Single Pin
entity my_entity is
 port(my_pin1: in std_logic; my_pin2: in std_logic;…);
end my_entity;
attribute chip_pin : string;
attribute altera_chip_pin_lc : string;
attribute chip_pin of my_pin1 : signal is "C1";
attribute altera_chip_pin_lc of my_pin2 : signal is "@4"

For bus I/O ports, the value of the chip pin attribute is a
comma-delimited list of pin assignments. The order in which you declare
the port’s range determines the mapping of assignments to individual
bits in the port. To leave a particular bit unassigned, simply leave its
corresponding pin assignment blank.

Example 8–86 assigns my_pin[2] to Pin_4, my_pin[1] to Pin_5, and
my_pin[0] to Pin_6.

Example 8–86. Verilog-1995 Example of Applying Chip Pin to a Bus of Pins
input [2:0] my_pin /* synthesis chip_pin = "4, 5, 6" */;

Example 8–87 reverses the order of the signals in the bus, assigning
my_pin[0] to Pin_4 and my_pin[2] to Pin_6 but leaves my_pin[1]
unassigned.

8–70 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–87. Verilog-1995 Example of Applying Chip Pin to Part of a Bus
input [0:2] my_pin /* synthesis chip_pin = "4, ,6" */;

Example 8–88 assigns my_pin[2] to Pin 4 and my_pin[0] to Pin 6, but
leaves my_pin[1] unassigned.

Example 8–88. VHDL Example of Applying Chip Pin to Part of a Bus of Pins
entity my_entity is
 port(my_pin: in std_logic_vector(2 downto 0);…);
end my_entity;

attribute chip_pin of my_pin: signal is "4, , 6";

Using altera_attribute to Set Quartus II Logic Options

This attribute enables you to apply Quartus II options and assignments to
an object in your HDL source code. You can set this attribute on an entity,
architecture, instance, register, RAM block, or I/O pin. You cannot set it
on an arbitrary combinational node such as a net. With
altera_attribute, you can control synthesis options from your HDL
source even when the options lack a specific HDL synthesis attribute
(such as many of the logic options presented earlier in this chapter). You
can also use this attribute to pass entity-level settings and assignments to
phases of the Compiler flow beyond Analysis and Synthesis, such as
Fitting.

Assignments or settings made through the Quartus II user interface, the
Quartus II Settings File (.qsf) or the Tcl interface take precedence over
assignments or settings made with the altera_attribute synthesis
attribute in your HDL code.

The syntax for setting this attribute in HDL is the same as the syntax for
other synthesis attributes, as shown in “Synthesis Attributes” on
page 8–26.

The attribute value is a single string containing a list of Quartus II
Settings File variable assignments separated by semicolons, as shown in
the following example:

-name <variable_1> <value_1>;-name <variable_2> <value_2>[;…]

Altera Corporation 8–71
October 2007

Quartus II Synthesis Options

If the Quartus II option or assignment includes a target, source, and/or
section tag, use the following syntax for each Quartus II Settings File
variable assignment:

-name <variable> <value>
-from <source> -to <target> -section_id <section>

The syntax for the full attribute value, including the optional target,
source, and section tags for two different Quartus II Settings File
assignments is shown in the following example:

" -name <variable_1> <value_1> [-from <source_1>] [-to
<target_1>] [-section_id <section_1>]; -name <variable_2>
<value_2> [-from <source_2>] [-to <target_2>] [-section_id
<section_2>] "

If a variable’s assigned value is a string of text, you must use escaped
quotes around the value in Verilog HDL, or double-quotes in VHDL, as
in the following examples (using non-existent variable and value terms):

Verilog HDL

"VARIABLE_NAME \"STRING_VALUE\""

VHDL

"VARIABLE_NAME ""STRING_VALUE"""

To find the Quartus II Settings File variable name or value corresponding
to a specific Quartus II option or assignment, you can make the option
setting or assignment in the Quartus II user interface and then note the
changes in the QSF. You can also refer to the Quartus II Settings File
Reference Manual, which documents all variable names.

Example 8–89, 8–90, and 8–91 use altera_attribute to set the
power-up level of an inferred register. Note that for inferred instances,
you cannot apply the attribute to the instance directly, so you should
apply the attribute to one of the instance’s output nets. The Quartus II
software moves the attribute to the inferred instance automatically.

Example 8–89. Verilog-1995 Example of Applying Altera Attribute to an Instance
reg my_reg /* synthesis altera_attribute = "-name POWER_UP_LEVEL HIGH" */;

8–72 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 8–90. Verilog-2001 Example of Applying Altera Attribute to an Instance
(* altera_attribute = "-name POWER_UP_LEVEL HIGH" *) reg my_reg;

Example 8–91. VHDL Example of Applying Altera Attribute to an Instance
signal my_reg : std_logic;
attribute altera_attribute : string;
attribute altera_attribute of my_reg: signal is "-name POWER_UP_LEVEL
HIGH";

Example 8–92, 8–93, and 8–94 use the altera_attribute to disable the
Auto Shift Register Replacement synthesis option for an entity. To apply
the Altera Attribute to a VHDL entity, you must set the attribute on its
architecture rather than on the entity itself.

Example 8–92. Verilog-1995 Example of Applying Altera Attribute to an Entity
module my_entity(…) /* synthesis altera_attribute = "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF" */;

Example 8–93. Verilog-2001 Example of Applying Altera Attribute to an Entity
(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION OFF" *)
module my_entity(…) ;

Example 8–94. VHDL Example of Applying Altera Attribute to an Entity
entity my_entity is
-- Declare generics and ports
end my_entity;
architecture rtl of my_entity is
 attribute altera_attribute : string;
 -- Attribute set on architecture, not entity
 attribute altera_attribute of rtl: architecture is "-name
AUTO_SHIFT_REGISTER_RECOGNITION OFF";
begin
 -- The architecture body
end rtl;

You can also use altera_attribute for more complex assignments
involving more than one instance. In Example 8–95, 8–96, and 8–97, the
altera_attribute is used to cut all timing paths from reg1 to reg2,
equivalent to this Tcl or QSF command:

set_instance_assignment -name CUT ON -from reg1 -to reg2

Altera Corporation 8–73
October 2007

Analyzing Synthesis Results

Example 8–95. Verilog-1995 Example of Applying Altera Attribute with -to
reg reg2;
reg reg1 /* synthesis altera_attribute = "-name CUT ON -to reg2" */;

Example 8–96. Verilog-2001 Example of Applying Altera Attribute with -to
reg reg2;
(* altera_attribute = "-name CUT ON -to reg2" *) reg reg1;

Example 8–97. VHDL Example of Applying Altera Attribute with -to
signal reg1, reg2 : std_logic;
attribute altera_attribute: string;
attribute altera_attribute of reg1 : signal is "-name CUT ON -to reg2";

You may specify either the -to option or the -from option in a single
altera_attribute; integrated synthesis automatically sets the
remaining option to the target of the altera_attribute. You may also
specify wildcards for either option. For example, if you specify “*” for the
-to option instead of reg2 in these examples, the Quartus II software
cuts all timing paths from reg1 to every other register in this design
entity.

The altera_attribute can be used only for entity-level settings, and
the assignments (including wildcards) apply only to the current entity.

Analyzing
Synthesis
Results

After you have performed synthesis, you can check your synthesis results
in the Analysis and Synthesis Section of the Compilation Report and the
Project Navigator.

Analysis and Synthesis Section of the Compilation Report

The Compilation Report, which provides a summary of results for the
project, appears after a successful compilation, or you can choose it from
the Processing menu. After Analysis and Synthesis, before the Fitter
begins, the Summary information provides a summary of utilization
based on synthesis data, before Fitter optimizations have occurred.
Synthesis-specific information is listed in the Analysis & Synthesis
section.

There are various report sections under Analysis and Synthesis, including
a list of the source files read for the project, the resource utilization by
entity after synthesis, and information about state machines, latches,
optimization results, and parameter settings.

8–74 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f For more information about each report section, refer to the Quartus II
Help.

Project Navigator

The Hierarchy tab of the Project Navigator provides a summary of
resource information about the entities in the project. After Analysis and
Synthesis, before the Fitter begins, the Project Navigator provides a
summary of utilization based on synthesis data, before Fitter
optimizations have occurred.

If you hold your mouse pointer over one of the entities in the Hierarchy
tab, a tooltip appears that shows parameter information for each instance.

Analyzing and
Controlling
Synthesis
Messages

This section provides information about the messages generated during
synthesis, and how you can control which messages appear during
compilation.

Quartus II Messages

The messages that appear during Analysis and Synthesis describe many
of the optimizations that the software performs during the synthesis
stage, and provide information about how the design is interpreted. You
should always check the messages to analyze Critical Warnings and
Warnings, because these messages may relate to important design
problems. It is also useful to read the information messages Info and Extra
Info to get more information about how the software processes your
design.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display
messages grouped by type.

You can right-click on a message in the Messages window and get help on
the message, locate the source of the message in your design, and manage
messages.

You can use message suppression to reduce the number of messages
listed after a compilation by preventing individual messages and entire
categories of messages from being displayed. For example, if you review
a particular message and determine that it is not caused by something in
your design that should be changed or fixed, you can suppress the
message so it is not displayed during subsequent compilations. This
saves time because you see only new messages during subsequent
compilations.

Altera Corporation 8–75
October 2007

Analyzing and Controlling Synthesis Messages

You can right-click on an individual message in the Messages window
and choose commands in the Suppress submenu entry. Alternately, you
can open the Message Suppression Manager. To do so, right-click in the
Messages window and from the Suppress submenu item, click Message
Suppression Manager.

f For more information about messages and suppressing them, refer to the
Managing Quartus II Projects chapter in volume 2 of the Quartus II
Handbook.

VHDL and Verilog HDL Messages

The Quartus II software issues a variety of messages when it is analyzing
and elaborating the Verilog HDL and VHDL files in your design. These
HDL messages are a subset of all Quartus II messages that help you
identify potential problems early in the design process.

HDL messages fall into the following three categories:

■ Info message—Lists a property of your design.
■ Warning message—Indicates a potential problem in your design.

Potential problems come from a variety of sources, including typos,
inappropriate design practices, or the functional limitations of your
target device. Though HDL warning messages do not always
identify actual problems, you should always investigate code that
generates an HDL warning. Otherwise, the synthesized behavior of
your design might not match your original intent or its simulated
behavior.

■ Error message—Indicates an actual problem with your design. Your
HDL code may be invalid due to a syntax or semantic error, or it may
not be synthesizable as written. Consult the Help associated with
any HDL error messages for assistance in removing the error from
your design.

In Example 8–98, the sensitivity list contains multiple copies of the
variable i. While the Verilog HDL language does not prohibit duplicate
entries in a sensitivity list, it is clear that this design has a typo: Variable
j should be listed on the sensitivity list to avoid a possible
simulation/synthesis mismatch.

Example 8–98. Generating an HDL Warning Message
//dup.v
module dup(input i, input j, output reg o);
always @ (i or i)

o = i & j;
endmodule

8–76 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

When processing this HDL code, the Quartus II software generates the
following warning message:

Warning: (10276) Verilog HDL sensitivity list warning
at dup.v(2): sensitivity list contains multiple
entries for "i".

In Verilog HDL, variable names are case-sensitive, so the variables
my_reg and MY_REG in Example 8–99 are two different variables.
However, declaring variables whose names only differ in case may
confuse some users, especially those users who use VHDL, where
variables are not case-sensitive.

Example 8–99. Generating HDL Info Messages
// namecase.v
module namecase (input i, output o);

reg my_reg;
reg MY_REG;
assign o = i;

endmodule

When processing this HDL code, the Quartus II software generates the
following informational message:

Info: (10281) Verilog HDL information at
namecase.v(3): variable name "MY_REG" and variable
name "my_reg" should not differ only in case.

In addition, the Quartus II software generates additional HDL info
messages to inform you that neither my_reg or MY_REG are used in this
small design:

Info: (10035) Verilog HDL or VHDL information at
namecase.v(3): object "my_reg" declared but not used
Info: (10035) Verilog HDL or VHDL information at
namecase.v(4): object "MY_REG" declared but not used

The Quartus II software allows you to control how many HDL messages
you see during the analysis and elaboration of your design files. You can
set the HDL Message Level to enable or disable groups of HDL messages,
or you can enable or disable specific messages, as described in the
following sections.

For more information about synthesis directives and their syntax, refer to
“Synthesis Directives” on page 8–29.

Altera Corporation 8–77
October 2007

Analyzing and Controlling Synthesis Messages

Setting the HDL Message Level

The HDL Message Level specifies the types of messages that the
Quartus II software displays when it is analyzing and elaborating your
design files. Table 8–8 details the information about the HDL message
levels.

You should address all issues reported at the Level1 setting. The default
HDL message level is Level2.

To set the HDL Message Level in the user interface, on the Assignments
menu, click Settings; under Category, click Analysis & Synthesis
Settings. Set the HDL Message Level.

You can override this default setting in a source file with the
message_level synthesis directive, which takes the values level1,
level2, and level3, as shown in Example 8–100 and 8–101.

Example 8–100. Verilog HDL Examples of message_level Directive
// altera message_level level1

or
/* altera message_level level3 */

Example 8–101. VHDL Example of message_level Directive
-- altera message_level level2

Table 8–8. HDL Info Message Level

Level Purpose Description

Level1 Displays high-severity
messages only

If you want to see only those HDL messages that identify likely problems with
your design, select Level1. When Level1 is selected, the Quartus II software
issues a message only if there is a high probability that it points to an actual
problem with your design.

Level2 Displays high-severity
and medium-severity
messages

If you want to see additional HDL messages that identify possible problems
with your design, select Level2. This is the default setting.

Level3 Displays all messages,
including low-severity
messages

If you want to see all HDL info and warning messages, select Level3. This
level includes extra “LINT” messages that suggest changes to improve the
style of your HDL code or make it easier to understand.

8–78 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

A message_level synthesis directive remains effective until the end of
a file or until the next message_level directive. In VHDL, you can use
the message_level synthesis directive to set the HDL Message Level
for entities and architectures, but not for other design units. An HDL
Message Level for an entity applies to its architectures, unless overridden
by another message_level directive. In Verilog HDL, you can use the
message_level directive to set the HDL Message Level for a module.

Enabling or Disabling Specific HDL Messages by Module/Entity

You can enable or disable a specific HDL info or warning message with
its Message ID, which is displayed in parentheses at the beginning of the
message. Enabling or disabling a specific message overrides its HDL
Message Level. This method is different from the message suppression in
the Messages window because you can use this method to disable
messages for a specific module or entity. This method applies only the
HDL messages, and if you disable a message with this method, the
message is listed as a Suppressed message in the Quartus II GUI.

To disable specific HDL messages in the GUI, on the Assignments menu,
click Settings. Select Analysis & Synthesis Settings and click the
Advanced button next to the HDL Message Level setting. In the
Advanced Message Settings dialog box, add the Message IDs you wish
to enable or disable.

To enable or disable specific HDL messages in your HDL, use the
message_on and message_off synthesis directives. Both directives
take a space-separated list of Message IDs. You can enable or disable
messages with these synthesis directives immediately before Verilog
HDL modules, VHDL entities, or VHDL architectures. You cannot enable
or disable a message in the middle of an HDL construct.

A message enabled or disabled via a message_on or message_off
synthesis directive overrides its HDL Message Level or any
message_level synthesis directive. The message will remain disabled
until the end of the source file or until its status is changed by another
message_on or message_off directive.

Example 8–102. Verilog HDL message_off Directive for Message with ID 10000
// altera message_off 10000

or
/* altera message_off 10000 */

Example 8–103. VHDL message_off Directive for Message with ID 10000
-- altera message_off 10000

Altera Corporation 8–79
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

Node-Naming
Conventions in
Quartus II
Integrated
Synthesis

Being able to find the logic node names after synthesis can be useful
during verification or while debugging a design. This section provides an
overview of the conventions used by the Quartus II software when it
names the nodes created from your HDL design. The section focuses on
the conventions for Verilog HDL and VHDL code, but AHDL and BDFs
are discussed when appropriate.

Whenever possible, as described in this section, Quartus II integrated
synthesis uses wire or signal names from your source code to name nodes
such as LEs or ALMs. Some nodes, such as registers, have predictable
names that typically do not change when a design is resynthesized,
although certain optimizations can affect register names. The names of
other nodes, particularly LEs or ALMs that contain only combinational
logic, can change due to logic optimizations that the software performs.

This section discusses the following topics:

■ “Hierarchical Node-Naming Conventions” on page 8–79
■ “Node-Naming Conventions for Registers (DFF or D Flipflop

Atoms)” on page 8–80
■ “Register Changes During Synthesis” on page 8–81
■ “Preserving Register Names” on page 8–84
■ “Node-Naming Conventions for Combinational Logic Cells” on

page 8–84
■ “Preserving Combinational Logic Names” on page 8–86

Hierarchical Node-Naming Conventions

To make each name in the design unique, the Quartus II software adds
the hierarchy path to the beginning of each name. The “|” separator is
used to indicate a level of hierarchy. For each instance in the hierarchy, the
software adds the entity name and the instance name of that entity, using
the “:” separator between each entity name and its instance name. For
example, if a design instantiates entity A with the name my_A_inst, the
hierarchy path of that entity would be A:my_A_inst. The full name of
any node is obtained by starting with the hierarchical instance path;
followed by a “|”, and ending with the node name inside that entity,
using the following convention:

<entity 0>:<instance_name 0>|<entity 1>:
<instance_name 1>|...|<instance_name n>

For example, if entity A contains a register (DFF atom) called my_dff, its
full hierarchy name would be A:my_A_inst|my_dff.

8–80 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

On the Compilation Process Settings page of the Settings dialog box,
click More Settings and turn off Display entity name for node name to
instruct the Compiler to generate node names that do not contain the
name for each level of the hierarchy. With this option off, the node names
use the following convention:

<instance_name 0>|<instance_name 1>|...|<instance_name n>

Node-Naming Conventions for Registers (DFF or D Flipflop
Atoms)

In Verilog HDL and VHDL, inferred registers are named after the reg or
signal connected to the output.

Example 8–104 is a description of a register in Verilog HDL that creates a
DFF primitive called my_dff_out:

Example 8–104. Verilog HDL Register
wire dff_in, my_dff_out, clk;

always @ (posedge clk)
 my_dff_out <= dff_in;

Similarly, Example 8–105 is a description of a register in VHDL that
creates a DFF primitive called my_dff_out.

Example 8–105. VHDL Register
signal dff_in, my_dff_out, clk;
process (clk)
 begin
 if (rising_edge(clk)) then
 my_dff_out <= dff_in;
 end if;
end process;

In AHDL designs, DFF registers are declared explicitly rather than
inferred, so the software uses the user-declared name for the register.

For schematic designs using BDF, all elements are given a name when
they are instantiated in the design, so the software uses the user-defined
name for the register or DFF.

In the special case that a wire or signal (such as my_dff_out in the
preceding examples) is also an output pin of your top-level design, the
Quartus II software cannot use that name for the register (for example,

Altera Corporation 8–81
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

cannot use my_dff_out) because the software requires that all logic and
I/O cells have unique names. In this case, the Quartus II integrated
synthesis appends ~reg0 to the register name.

For example, the Verilog HDL code in Example 8–106 produces a register
called q~reg0:

Example 8–106. Verilog HDL Register Feeding Output Pin
module my_dff (input clk, input d, output q);
 always @ (posedge clk)
 q <= d;
endmodule

This situation occurs only for registers driving top-level pins. If a register
drives a port of a lower level of the hierarchy, the port is removed during
hierarchy flattening and the register retains its original name, in this
case, q.

Register Changes During Synthesis

On some occasions, you may not be able to find registers that you expect
to see in the synthesis netlist. Registers may be removed by logic
optimization, or their names may be changed due to synthesis
optimization. Common optimizations include inference of a state
machine, counter, adder-subtractor, or shift register from registers and
surrounding logic. Other common register changes occur when registers
are packed into dedicated hardware on the FPGA, such as a DSP block or
a RAM block.

This section describes the following factors that can affect register names:

■ “Synthesis and Fitting Optimizations” on page 8–82
■ “State Machines” on page 8–83
■ “Inferred Adder-Subtractors, Shift Registers, Memory, and DSP

Functions” on page 8–83
■ “Packed Input and Output Registers of RAM and DSP Blocks” on

page 8–83
■ “Preserving Register Names” on page 8–84
■ “Preserving Combinational Logic Names” on page 8–86

8–82 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Synthesis and Fitting Optimizations

Registers may be removed by synthesis logic optimization if they are not
connected to inputs or outputs in the design, or if the logic can be
simplified due to constant signal values. Register names may also be
changed due to synthesis optimizations, such as when duplicate registers
are merged together to reduce resource utilization.

NOT-gate push back optimizations may affect registers that use preset
signals. This type of optimization can impact your timing assignments
when registers are used as clock dividers. If this situation occurs in your
design, change the clock settings to work on the new register name.

Synthesis netlist optimizations often change node names because
registers may be combined or duplicated to optimize the design.

f For more information about the type of optimizations performed by
synthesis netlist optimizations, refer to the Netlist Optimization and
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

The Quartus II Compilation Report provides a list of registers that are
removed during synthesis optimizations, and a brief reason for the
removal. In the Analysis & Synthesis folder, open Optimization Results,
and then open Register Statistics, and click on the Registers Removed
During Synthesis report, and the Removed Registers Triggering
Further Register Optimizations report. The second report contains a list
of registers that are the cause of other registers being removed in the
design. It provides a brief reason for the removal, and a list of registers
that were removed due to the removal of the initial register.

Synthesis creates synonyms for registers duplicated with the Maximum
Fan-Out option (or maxfan attribute). Therefore, timing assignment
applied to nodes that are duplicated with this option are applied to the
new nodes as well.

The Quartus II Fitter can also change node names after synthesis (for
example, when the Fitter uses register packing to pack a register into an
I/O element, or when logic is modified by physical synthesis). The Fitter
creates synonyms for duplicated registers so that timing analysis can use
the existing node name when applying assignments.

You can instruct the Quartus II software to preserve certain nodes
throughout compilation so that you can use them for verification or
making assignments. For more information, refer to “Preserving Register
Names” on page 8–84.

Altera Corporation 8–83
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

State Machines

If a state machine is inferred from your HDL code, the registers that
represent the states are mapped into a new set of registers that implement
the state machine. Most commonly, the software converts the state
machine into a one-hot form where each state is represented by one
register. In this case, for Verilog HDL or VHDL designs, the registers are
named according to the name of the state register and the states, where
possible.

For example, consider a Verilog HDL state machine where the states are
parameter state0 = 1, state1 = 2, state2 = 3, and where the
state machine register is declared as reg [1:0] my_fsm. In this
example, the three one-hot state registers are named my_fsm.state0,
my_fsm.state1, and my_fsm.state2.

In AHDL, state machines are explicitly specified with a machine name.
State machine registers are given synthesized names based on the state
machine name but not the state names. For example, if a state machine is
called my_fsm and has four state bits, they may be synthesized with
names such as my_fsm~12, my_fsm~13, my_fsm~14, and my_fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions

The Quartus II software infers megafunctions from Verilog HDL and
VHDL code for logic that forms adder-subtractors, shift registers, RAM,
ROM, and arithmetic functions that can be placed in DSP blocks.

f For information about inferring megafunctions, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook.

Because adder-subtractors are part of a megafunction instead of generic
logic, the combinational logic exists in the design with different names.
For shift registers, memory, and DSP functions, the registers and logic are
typically implemented inside the dedicated RAM or DSP blocks in the
device. Thus, the registers are not visible as separate LEs or ALMs.

Packed Input and Output Registers of RAM and DSP Blocks

Registers can be packed into the input registers and output registers of
RAM and DSP blocks, so that they are not visible as separate registers in
LEs or ALMs.

f For information about packing registers into RAM and DSP
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

8–84 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Preserving Register Names

You may want to preserve certain register names for verification or
debugging, or to ensure that timing assignments are applied correctly.
Quartus II integrated synthesis preserves certain nodes automatically if
they are likely to be used in a timing constraint.

Use the preserve attribute to instruct the Compiler not to minimize or
remove a specified register during synthesis optimizations or register
netlist optimizations. Refer to “Preserve Registers” on page 8–44 for
details.

Use the noprune attribute to preserve a fan-out-free register through the
entire compilation flow. Refer to “Noprune Synthesis Attribute/Preserve
Fan-out Free Register Node” on page 8–46 for details.

Use synthesis attribute syn_dont_merge to make sure registers are not
merged with other registers, and other registers are not merged with it.
Refer to “Disable Register Merging/Don’t Merge Register” on page 8–45
for details.

Node-Naming Conventions for Combinational Logic Cells

Whenever possible for Verilog HDL, VHDL, and AHDL code, the
Quartus II software uses wire names that are the targets of assignments,
but may change the node names due to synthesis optimizations.

For example, consider the Verilog HDL code in Example 8–107.
Quartus II integrated synthesis uses the names c, d, e, and f for the
combinational logic cells that are produced.

Example 8–107. Naming Nodes for Combinational Logic Cells in Verilog HDL
wire c;
reg d, e, f;

assign c = a | b;
always @ (a or b)
 d = a & b;
always @ (a or b) begin : my_label
 e = a ^ b;
end

always @ (a or b)
 f = ~(a | b);

Altera Corporation 8–85
October 2007

Node-Naming Conventions in Quartus II Integrated Synthesis

For schematic designs using BDF, all elements are given a name when
they are instantiated in the design and the software uses the user-defined
name when possible.

1 Node naming conventions for schematic buses in the Quartus II
software version 7.2 and later are different than the
MAX+PLUS II software and older versions of the Quartus II
software. In most cases, the Quartus II software uses the
appropriate naming convention for the design source file. For
designs created using the Quartus II software version 7.1 or
earlier, it uses the MAX+PLUS II naming convention. For
designs created in the Quartus II software version 7.2 and later,
it uses the Quartus II naming convention that matches the
behavior of standard HDLs. In some cases, however, a design
may contain files created in various versions. To set an
assignment for a particular instance in the Assignment Editor,
enter the instance name in the To field, choose Block Design
Naming from the Assignment Name list, and set the value to
MaxPlusII or QuartusII.

If logic cells, such as those created in Example 8–107, are packed with
registers in device architectures such as the Stratix and Cyclone device
families, those names may not appear in the netlist after fitting. In other
devices, such as newer families in the Stratix and Cyclone series device
families, the register and combinational nodes are kept separate
throughout the compilation, so these names are more often maintained
through fitting.

When logic optimizations occur during synthesis, it is not always
possible to retain the initial names as described. In some cases,
synthesized names will be used, which are the wire names with a tilde (~)
and a number appended. For example, if a complex expression is
assigned to a wire w and that expression generates several logic cells,
those cells may have names such as w, w~1, w~2, and so on. Sometimes the
original wire name w is removed, and an arbitrary name such as rtl~123
is created. It is a goal of Quartus II integrated synthesis to retain user
names whenever possible. Any node name ending with ~<number> is a
name created during synthesis, which may change if the design is
changed and re-synthesized. Knowing these naming conventions can
help you understand your post-synthesis results and make it easier to
debug your design or make assignments.

The software maintains combinational clock logic by making sure nodes
that are likely to be a clock don’t get changed during synthesis. The
software also maintains (or “protects”) multiplexers in clock trees so that
the TimeQuest Timing Analyzer has information about which paths are
unate, to allow complete and correct analysis of combinational clocks.

8–86 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Multiplexers often occur in clock trees when the design selects between
different clocks. To help analysis of clock trees, the software ensures that
each multiplexer encountered in a clock tree is broken into 2:1
multiplexers, and each of those 2:1 multiplexers is mapped into one
look-up table (independent of the device family). This optimization
might result in a slight increase in area, and for some designs a decrease
in timing performance. You can turn off this multiplexer protection with
the option Clock MUX Protection under More Settings on the Analysis
& Synthesis page of the Settings dialog box. This option applies to
Arria GX devices, the Stratix and Cyclone series, and MAX II devices.

Preserving Combinational Logic Names

You may want to preserve certain combinational logic node names for
verification or debugging, or to ensure that timing assignments are
applied correctly.

Use the keep attribute to keep a wire name or combinational node name
through logic synthesis minimizations and netlist optimizations. Refer to
“Keep Combinational Node/Implement as Output of Logic Cell” on
page 8–47 for details.

For any internal node in your design clock network, use keep to protect
the name so that you can apply correct clock settings. Also, set the
attribute on combinational logic involved in cut assignments and
–through assignments.

1 Setting the keep attribute on combinational logic may increase
the area utilization and increase the delay of the final mapped
logic because it requires the insertion of extra combinational
logic. Use the attribute only when necessary.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information
in PDF form.

Altera Corporation 8–87
October 2007

Scripting Support

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an
instance, global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF Variable Name> <Value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF Variable Name> <Value>\
-to <Instance Name>

Adding an HDL File to a Project and Setting the HDL Version

Use the following Tcl assignments to add an HDL or schematic entry
design file to your project:

set_global_assignment –name VERILOG_FILE <file name>.<v|sv>
set_global_assignment –name SYSTEMVERILOG_FILE <file name>.sv
set_global_assignment –name VHDL_FILE <file name>.<vhd|vhdl>
set_global_assignment -name AHDL_FILE <file name>.tdf
set_global_assignment -name BDF_FILE <file name>.bdf

1 You can use any file extension for design files, as long as you
specify the correct language when adding the design file. For
example, you can use .h for Verilog header files.

To specify the Verilog HDL or VHDL version, use the following option at
the end of the VERILOG_FILE or VHDL_FILE command:

–HDL_VERSION <language version>

The variable <language version> takes one of the following values:

■ VERILOG_1995
■ VERILOG_2001
■ SYSTEMVERILOG_2005
■ VHDL87
■ VHDL93

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

8–88 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

For example, to add a Verilog HDL file called my_file that is written in
Verilog-1995, use the following command:

set_global_assignment –name VERILOG_FILE my_file.v –HDL_VERSION VERILOG_1995

Quartus II Synthesis Options

Table 8–9 lists the Quartus II Settings File variable names and applicable
values for the settings discussed in this chapter. The Quartus II Settings
File variable name is used in the Tcl assignment to make the setting along
with the appropriate value. The Type column indicates whether the
setting is supported as a Global setting, or an Instance setting, or both.

Table 8–9. Quartus II Synthesis Options (Part 1 of 2)

Setting Name Quartus II Settings File Variable Values Type

Allow Any RAM Size
for Recognition

ALLOW_ANY_RAM_SIZE_FOR_RECOGNITION ON, OFF Global,
Instance

Allow Any ROM
Size for Recognition

ALLOW_ANY_ROM_SIZE_FOR_RECOGNITION ON, OFF Global,
Instance

Allow Any Shift
Register Size for
Recognition

ALLOW_ANY_SHIFT_REGISTER_SIZE_FOR_
RECOGNITION

ON, OFF Global,
Instance

Auto DSP Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift-Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Block Design
Naming

BLOCK_DESIGN_NAMING AUTO,
MAXPLUSII,
QUARTUSII

Global,
Instance

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output Enable
Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast Output
Register

FAST_OUTPUT_REGISTER ON, OFF Instance

Implement as
Output of Logic Cell

IMPLEMENT_AS_OUTPUT_OF_LOGIC_CELL ON, OFF Instance

Disable Register
Merging

DONT_MERGE_REGISTER ON, OFF Instance

Altera Corporation 8–89
October 2007

Scripting Support

Assigning a Pin

Use the following Tcl command to assign a signal to a pin or device
location.

set_location_assignment -to <signal name> <location>

For example,
set_location_assignment -to data_input Pin_A3

Maximum Fan-Out MAX_FANOUT <Maximum Fan-Out
Value>

Instance

Optimization
Technique

<device family>_OPTIMIZATION_TECHNIQUE Area, Speed,
Balanced

Global,
Instance

PowerPlay Power
Optimization

OPTIMIZE_POWER_DURING_SYNTHESIS "NORMAL
COMPILATION",
"EXTRA EFFORT",
OFF

Global,
Instance

Power-Up Don’t
Care

ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Power-Up Level POWER_UP_LEVEL HIGH, LOW Instance

Preserve Registers PRESERVE_REGISTER ON, OFF Instance

Remove Duplicate
Logic

REMOVE_DUPLICATE_LOGIC ON, OFF Global,
Instance

Remove Duplicate
Registers

REMOVE_DUPLICATE_REGISTERS ON, OFF Global,
Instance

Remove Redundant
Logic Cells

REMOVE_REDUNDANT_LOGIC_CELLS ON, OFF Global

Restructure
Multiplexers

MUX_RESTRUCTURE On, Off, Auto Global,
Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Processing

STATE_MACHINE_PROCESSING AUTO, "MINIMAL
BITS", "ONE HOT",
"USER-ENCODED"

Global,
Instance

Table 8–9. Quartus II Synthesis Options (Part 2 of 2)

Setting Name Quartus II Settings File Variable Values Type

8–90 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Valid locations are pin location names. Some device families also support
edge and I/O bank locations. Edge locations are EDGE_BOTTOM,
EDGE_LEFT, EDGE_TOP, and EDGE_RIGHT. I/O bank locations include
IOBANK_1 to IOBANK_n, where n is the number of I/O banks in a
particular device.

Creating Design Partitions for Incremental Compilation

To create a partition, use the following command:

set_instance_assignment -name PARTITION_HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name, for
example: "ram:ram_unit|altsyncram:altsyncram_component"
(with quotation marks). For the top-level partition, you can use the
pipe (|) symbol to represent the top-level entity.

For more information about hierarchical naming conventions, refer to
“Node-Naming Conventions in Quartus II Integrated Synthesis” on
page 8–79.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters long. The name can consist only
of alpha-numeric characters, as well as pipe (|), colon (:), and
underscore (_) characters. Altera recommends enclosing the name in
double quotation marks (" ").

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored, and you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the db compilation database directory.

Altera Corporation 8–91
October 2007

Conclusion

Conclusion The Quartus II software includes complete Verilog HDL and VHDL
language support, as well as support for Altera-specific languages,
making it an easy-to-use, standalone solution for Altera designs. You can
use the synthesis options available in the software to help you improve
your synthesis results, giving you more control over the way your design
is synthesized. Use Quartus II reports and messages to analyze your
compilation results.

Referenced
Documents

This chapter references the following documents:

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Designing With Low-Level Primitives User Guide
■ Design Recommendations for Altera Devices and the Quartus II Design

Assistant chapter in volume 1 of the Quartus II Handbook
■ Introduction to the Quartus II Software
■ Managing Quartus II Projects chapter in volume 2 of the Quartus II

Handbook
■ Netlist Optimization and Physical Synthesis chapter in volume 2 of the

Quartus II Handbook
■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Scripting Reference Manual
■ Quartus II Settings File Reference Manual
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/ug/ug_low_level.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

8–92 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Document
Revision History

Table 8–10 shows the revision history for this chapter.

Table 8–10. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Added three new constructs to “SystemVerilog
Support” on page 8–7

● Added new section “State Machine Editor” on
page 8–13

● Renamed section as “Analyzing and Controlling
Synthesis Messages” on page 8–74 and added section
“Quartus II Messages” on page 8–74

● Other minor changes and text additions

Updated for Quartus II
software version 7.2.

May 2007
v7.1.0

● Updated language constraints supported in
“SystemVerilog Support” on page 8–7

● Updated “Incremental Synthesis and Incremental
Compilation” on page 8–23

● Removed Preserve Hierarchical Boundary section and
replaced it with updated section “Partitions for
Preserving Hierarchical Boundaries” on page 8–23

● Updated “Synthesis Attributes” on page 8–26
● Added “Disable Register Merging/Don’t Merge

Register” on page 8–45
● Added “Don't Retime, Disabling Synthesis Netlist

Optimizations” on page 8–48
● Added “Don't Replicate, Disabling Synthesis Netlist

Optimizations” on page 8–49
● Updated and added more description to “Node-Naming

Conventions in Quartus II Integrated Synthesis” on
page 8–79

● Added “Preserving Register Names” on page 8–84
● Added “Preserving Combinational Logic Names” on

page 8–86
● Updated “Adding an HDL File to a Project and Setting

the HDL Version” on page 8–88
● Updated Table 8–9 on page 8–89 to match the new

chapter content
● Added “Referenced Documents” on page 8–92
● Added Arria GX devices where appropriate

Updates made for new
attributes, options, and
language support in the
Quartus II software version 7.1
and Arria GX devices.

March 2007
v7.0.0

Updated date and revision for the Quartus II software
version 7.0.

—

Altera Corporation 8–93
October 2007

Document Revision History

November 2006
v6.1.0

● Added information on how to set the HDL version in
“Verilog HDL Support” on page 8–5 and “VHDL
Support” on page 8–10

● Updated the list of supported constructs in
“SystemVerilog Support” on page 8–7

● Added “Initial Constructs and Memory System Tasks”
on page 8–8

● Added “Design Libraries” on page 8–13 to include
information on libraries and duplicate entity names in all
languages

● Added “Using Parameters/Generics” on page 8–18
● Reorganized the options in the Quartus II Synthesis

Options section
● Added information about reset status to “State Machine

Processing” on page 8–33
● Added “Safe State Machines” on page 8–36
● Removed section on obsoleted logic option Remove

Duplicate Logic
● Added “Controlling Clock Enable Signals with Auto

Clock Enable Replacement & syn_direct_enable” on
page 8–46

● Added “RAM to Logic Cell Conversion” on page 8–49
● Added “Turning off Add Pass-Through Logic to Inferred

RAMs/ no_rw_check” on page 8–51
● Added synthesis_off and on directives to “Translate Off

and On / Synthesis Off and On” on page 8–59 and
“Ignore translate_off and synthesis_off Directives” on
page 8–60

● Updated options to include Stratix III in the Stratix series
of devices as required

This chapter has been updated
to include information about
additional functionality and
support for integrated
synthesis. The updates made
to this chapter describe new
and/or enhanced features to
language support, incremental
synthesis, and many of the
Quartus II synthesis options.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added language support.
● Added Quartus II Synthesis options.
● Added information on setting other Quartus II options in

HDL source code.

—

December 2005
v5.1.1

Minor typographic update. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 7 was formerly Chapter 8 in version 5.0.

—

May 2005
v5.0.0

● Chapter 8 was formerly Chapter 6 in version 4.2.
● Updated information.
● Updated figures.
● Restructured information.
● Renamed sections.
● New functionality for the Quartus II software 5.0.

—

December 2004
v3.0

● Chapter 7 was formerly Chapter 8 in version 4.1.
● Added documentation of incremental synthesis feature
● New functionality for the Quartus II software version 4.2

—

8–94 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

June 2004
v2.0

● Updates to tables, figures.
● New functionality for the Quartus II software version

4.1.

—

Feb. 2004
v1.0

Initial release. —

Altera Corporation 9–1
October 2007

9. Mentor Graphics
LeonardoSpectrum Support

Introduction As programmable logic devices (PLDs) become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. Combining HDL coding techniques,
Mentor Graphics LeonardoSpectrum™ software constraints, and
Quartus® II options provide the performance increase needed for today’s
system-on-a-programmable-chip (SOPC) designs.

The LeonardoSpectrum software is a mature synthesis tool supporting
legacy devices and many current devices. The LeonardoSpectrum
software version 2007a supports the Stratix® III, Stratix II, Stratix,
Stratix GX, Cyclone™ II, Cyclone, MAX® II, MAX series, APEX™ series,
FLEX® series, and ACEX® series device families. Altera® recommends
using the advanced Precision Synthesis software for new designs in new
device families.

f For more information about Precision RTL Synthesis, refer to the Mentor
Graphics Precision RTL Synthesis Support chapter in volume 1 of the
Quartus II Handbook.

This chapter documents key design methodologies and techniques for
achieving better performance in Altera devices using the
LeonardoSpectrum and Quartus II design flow.

1 This chapter assumes that you have set up, licensed, and are
familiar with the LeonardoSpectrum software.

f To obtain and license the LeonardoSpectrum software, refer to the
Mentor Graphics website at www.mentor.com. For information about
installing the LeonardoSpectrum software and setting up your working
environment, refer to the LeonardoSpectrum Installation Guide and the
LeonardoSpectrum User's Manual.

QII51010-7.2.0

9–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Design Flow Following are the basic steps in a LeonardoSpectrum-Quartus II design
flow:

1. Create Verilog HDL or VHDL design files in the LeonardoSpectrum
software or a text editor.

2. Import the Verilog HDL or VHDL design files into the
LeonardoSpectrum software for synthesis.

3. Select a target device and add timing constraints and compiler
directives to help optimize the design during synthesis.

4. Synthesize the project in the LeonardoSpectrum software.

5. Create a Quartus II project and import the technology-specific EDIF
Input File (.edf) netlist and the Tcl Script File (.tcl) generated by the
LeonardoSpectrum software into the Quartus II software for
placement and routing, and for performance evaluation.

6. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

Figure 9–1 shows the recommended design flow using the
LeonardoSpectrum and Quartus II software.

If your area and timing requirements are satisfied, use the programming
files generated from the Quartus II software to program or configure the
Altera device. As shown in Figure 9–1, if the area or timing requirements
are not met, change the constraints in the LeonardoSpectrum software
and re-run the synthesis. Repeat the process until the area and timing
requirements are met. You can also use other Quartus II software options
and techniques to meet the area and timing requirements.

Altera Corporation 9–3
October 2007

Design Flow

Figure 9–1. Recommended Design Flow Using LeonardoSpectrum and Quartus II Software

The LeonardoSpectrum software supports both VHDL and Verilog HDL
source files. With the appropriate license, it also supports mixed
synthesis, allowing a combination of VHDL and Verilog HDL source

No

Functional/RTL
Simulation

Yes

Timing & Area
Requirements

Satisfied?

Gate-Level Timing
Simulation

Post-Synthesis
Simulation Files

(.vho/.vo)

Forward Annotated
Timing Constraints
(.tcl/.acf)

Technology-
Specific Netlist

(.edf)

Gate-Level
Functional
Simulation

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/
Programming
Files (.sof/.pof)

LeonardoSpectrum Software

Quartus II Software

Constraints
& Settings

Constraints
& Settings

Program/Configure Device

Verilog
HDL
(.v)

VHDL
(.vhd)

9–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

files. After synthesis, the LeonardoSpectrum software produces several
intermediate and output files. Table 9–1 lists these file extensions with a
short description of each file.

1 Altera recommends that you do not use project directory names
that include spaces. Some file operations in the
LeonardoSpectrum software do not work correctly if the path
name contains spaces.

Specify timing constraints and compiler directives for the design in the
LeonardoSpectrum software, or in a constraint file (.ctr). Many of these
constraints are forward-annotated in the Tcl file for use by the Quartus II
software.

The LeonardoInsight™ Schematic Viewer is an add-on graphical tool for
schematic views of the technology-independent RTL netlist (.xdb) and
the technology-specific gate-level results. You can use the Schematic
Viewer to visually analyze and debug the design. It also supports cross
probing between the RTL and gate-level schematics, the design browser,
and the source code in the HDLInventor™ text editor.

Table 9–1. LeonardoSpectrum Intermediate and Output Files

File
Extension(s) File Description

.xdb Technology-independent register transfer level (RTL) netlist file that can only be read by the
LeonardoSpectrum software.

.edf Technology-specific output netlist in electronic design interchange format (EDIF).

.acf/.tcl (1) Forward-annotated constraint file containing constraints and assignments.

Note to Table 9–1:
(1) An assignment and configuration (.acf) file is created only for ACEX 1K, FLEX series, and MAX series devices. The

assignment and configuration file is generated for backward compatibility with the MAX+PLUS® II software. A
Tcl Script File (.tcl) is generated for the Quartus II software which also contains Tcl commands to create a
Quartus II project.

Altera Corporation 9–5
October 2007

Optimization Strategies

Optimization
Strategies

You can configure most general settings in the Quick Setup tab in the
LeonardoSpectrum user interface. Other Flow tabs provide additional
options, and some Flow tabs include multiple Power tabs (at the bottom
of the screen) with still more options. Advanced optimization options in
the LeonardoSpectrum software include timing-driven synthesis,
encoding style, resource sharing, and mapping I/O registers.

Timing-Driven Synthesis

The LeonardoSpectrum software supports timing-driven synthesis
through user-assigned timing constraints to optimize the performance of
the design. Setting constraints in the LeonardoSpectrum software are
straightforward. Constraints such as clock frequency can be specified
globally or for individual clock signals. The following sections describe
how to set the various types of timing constraints in the
LeonardoSpectrum software.

The timing constraints described in the “Global Power Tab” section are
set in the Constraints Flow tab. In this tab, there are Power tabs at the
bottom, such as Global and Clock, for setting various constraints.

Global Power Tab

The Global tab is the default Power tab in the Constraints Flow tab.
Specify the global clock frequency here. The Clock Frequency on the
Quick Setup tab is equivalent to the Registers to Registers delay setting.
You can also specify the following: Input Ports to Registers, Registers to
Output Ports, and Inputs to Outputs delays that correspond to global
tSU, tCO, and tPD requirements, respectively, in the Quartus II software.
The timing diagram on this tab reflects the settings you have made.

Clock Power Tab

You can set various constraints for each clock in your design. First, select
the clock name in the Clock(s) window. The clock names appear after the
design is read from the Input Flow tab. Configure settings for that
particular clock and click Apply. If necessary, you can also set the Duty
Cycle to a value other than the default 50%. The timing diagram shows
these settings.

If a clock has an Offset from the main clock, which is considered to be
time “0”, this constraint corresponds to the
OFFSET_FROM_BASE_CLOCK setting in the Quartus II software.

9–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can specify the pin number for the clock input pin in the
Pin Location field. This pin number is passed to the Quartus II software
for place-and-route, but does not affect synthesis in the
LeonardoSpectrum software.

Input and Output Power Tabs

Configure settings for individual input or output pins in the Input and
Output tabs. First, select a name in the Input Ports or Output Ports
window. The names appear after the design is read from the Input Flow
tab. Then make the setting for that pin as described below.

The Arrival Time setting indicates that the input signal arrives a specified
time after the rising clock edge (time “0”). This setting constrains the path
from the pin to the first register by including the arrival time in the total
delay, and corresponds to the EXTERNAL_INPUT_DELAY assignment in
the Quartus II software.

The Required Time setting indicates the maximum delay after time “0”
that the output signal should arrive at the output pin. This setting directly
constrains the register to output delay, and corresponds with the
EXTERNAL_OUTPUT_DELAY assignment in the Quartus II software.

Specify the pin number for the I/O pin in the Pin Location field. This pin
number is passed to the Quartus II software for place-and-route, but does
not affect synthesis in the LeonardoSpectrum software.

Other Constraints

The following sections describe other constraints that can be set with the
LeonardoSpectrum user interface.

Encoding Style

The LeonardoSpectrum software encodes state machines during the
synthesis process. To improve performance when coding state machines,
separate state machine logic from all arithmetic functions and data paths.
Once encoded, a design cannot be re-encoded later in the optimization
process. You must follow a particular VHDL or Verilog HDL coding style
for the LeonardoSpectrum software to identify the state machine.

Altera Corporation 9–7
October 2007

Optimization Strategies

Table 9–2 shows the state machine encoding styles supported by the
LeonardoSpectrum software.

The Encoding Style setting is created in the Input Flow tab. It instructs
the software to use a particular state machine encoding style for all state
machines. The default Auto selection implements binary or one-hot
encoding, depending on the size of enumerated types in the state
machine.

f To ensure proper recognition and improve performance when coding
state machines, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook for design guidelines.

Resource Sharing

You can also enable the Resource Sharing setting in the Input Flow tab.
This setting allows optimization to reduce device resources. You should
generally leave this setting turned on.

Mapping I/O Registers

The Map I/O Registers option is located in the Technology Flow tab. The
Map I/O Registers option applies to Altera FPGAs containing I/O cells
(IOCs) or I/O elements (IOE). If the option is turned on, input or output
registers are moved into the device’s I/O cells for faster setup or
clock-to-output times.

Table 9–2. State Machine Encoding Styles in the LeonardoSpectrum Software

Style Description

Binary Generates state machines with the fewest possible flipflops. Binary state machines are useful for
area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded
state machines tend to be glitchless.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines provide
the best performance and shortest clock-to-output delays. However, one-hot implementations
are usually larger than binary implementations.

Random Generates state machines using random state machine encoding. Only use random state
machine encoding when no other implementation achieves the desired results.

Auto (default) Implements binary or one-hot encoding, depending on the size of enumerated types in the state
machine.

9–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Timing Analysis
with the
Leonardo-
Spectrum
Software

The LeonardoSpectrum software reports successful synthesis with an
information message in the Transcript or Information window.
Estimated device usage and timing results are reported in the Device
Utilization section of this window. Figure 9–2 shows an example of a
LeonardoSpectrum compilation report.

Figure 9–2. LeonardoSpectrum Compilation Report

The LeonardoSpectrum software estimates the timing results based on
timing models. The LeonardoSpectrum software has no information
about how the design is placed and routed in the Quartus II software, so
it cannot report accurate routing delays. Additionally, if the design
includes any black-boxed Altera-specific functions, the
LeonardoSpectrum software does not report timing information for these
functions.

Final timing results are generated by the Quartus II software and are
reported separately in the Transcript or Information window if the Run
Integrated Place and Route option is turned on. Refer to “Integration
with the Quartus II Software” on page 9–10 for more information.

Altera Corporation 9–9
October 2007

Exporting Designs Using NativeLink Integration

Exporting
Designs Using
NativeLink
Integration

You can use NativeLink® integration to integrate the LeonardoSpectrum
software and the Quartus II software with a single GUI for both the
synthesis and place-and-route operations. NativeLink integration allows
you to run the Quartus II software from within the LeonardoSpectrum
software GUI, or to run the LeonardoSpectrum software from within the
Quartus II software GUI for device families supported in the Quartus II
software.

Generating Netlist Files

The LeonardoSpectrum software generates an EDIF netlist file readable
as an input file in the Quartus II software for place-and-route. Select the
EDIF file option name in the Output Flow tab. The EDIF netlist is also
generated if the Auto option is turned on in the Output Flow tab.

Including Design Files for Black-Boxed Modules

If the design has black-boxed megafunctions, be sure to include the
MegaWizard® Plug-In Manager-generated custom megafunction
variation design file in the Quartus II project directory, or add it to the list
of project files for place-and-route.

Passing Constraints with Scripts

The LeonardoSpectrum software can write out a Tcl file called
<project name>.tcl. This file contains commands to create a Quartus II
project along with constraints and other assignments. To output a Tcl
script, turn on the Write Vendor Constraint Files option in the Output
Flow tab.

To create and compile a Quartus II project using the Tcl file generated
from the LeonardoSpectrum software, perform the following steps in the
Quartus II software:

1. Place the EDIF netlist files and Tcl scripts in the same directory.

2. On the View menu, point to Utility, and click Tcl Console to open
the Quartus II Tcl Console.

3. Type source <path>/<project name>.tcl r, at a Tcl Console
command prompt.

4. On the File menu, click Open Project to open the new project. On
the Processing menu, click Start Compilation.

9–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Integration with the Quartus II Software

The Place And Route section in the Quick Setup tab allows you to
launch the Quartus II software from within the LeonardoSpectrum
software. Turn on the Run Integrated Place and Route option to start the
compilation using the Quartus II software to show the fitting and
performance results. You can also run the place-and-route software by
turning on the Run Quartus option on the Physical Flow tab and clicking
Run PR.

To use integrated place-and-route software, on the Options menu, point
to Place and Route Path and click Tools, and specify the location of the
Quartus II software executable file (browse to <Quartus II software
installation directory>/bin).

Guidelines for
Altera
Megafunctions
and LPM
Functions

Altera provides parameterizable megafunctions ranging from simple
arithmetic units, such as adders and counters, to advanced phase-locked
loop (PLL) blocks, multipliers, and memory structures. These functions
are performance-optimized for Altera devices. Megafunctions include
the library of parameterized modules (LPM), device-specific
megafunctions such as PLLs, LVDS, and digital signal processing (DSP)
blocks, intellectual property (IP) available as Altera
MegaCore® functions, and IP available through the Altera Megafunction
Partners Program (AMPPsm).

1 Some IP cores require that you synthesize them in the
LeonardoSpectrum software. Refer to the user guide for the
specific IP.

There are two methods for handling megafunctions in the
LeonardoSpectrum software: inference and instantiation.

The LeonardoSpectrum software supports inferring some of the Altera
megafunctions, such as multipliers, DSP functions, and RAM and ROM
blocks. The LeonardoSpectrum software supports all Altera
megafunctions through instantiation.

Instantiating Altera Megafunctions

There are two methods of instantiating Altera megafunctions in the
LeonardoSpectrum software. The first and least common method is to
directly instantiate the megafunction in the Verilog HDL or VHDL code.
The second method, to maintain target technology awareness, is to use
the MegaWizard Plug-In Manager in the Quartus II software to setup and
parameterize a megafunction variation. The megafunction wizard creates
a wrapper file that instantiates the megafunction. The advantage of using
the megafunction wizard in place of the instantiation method is the

Altera Corporation 9–11
October 2007

Guidelines for Altera Megafunctions and LPM Functions

megafunction wizard properly sets all the parameters and you do not
need the library support required in the direct instantiation method. This
is referred to as the black box methodology.

1 Altera recommends using the megafunction wizard to ensure
that the ports and parameters are set correctly.

f When directly instantiating megafunctions, see the Quartus II Help for a
list of the ports and parameters.

Inferring Altera Memory Elements

The LeonardoSpectrum software can infer memory blocks from
Verilog HDL or VHDL code. When the LeonardoSpectrum software
detects a RAM or ROM from the style of the RTL code at a
technology-independent level, it then maps the element to a generic
module in the RTL database. During the technology-mapping phase of
synthesis, the LeonardoSpectrum software maps the generic module to
the most optimal primitive memory cells, or Altera megafunction, for the
target Altera technology.

f For more information about inferring RAM and ROM megafunctions,
including examples of VHDL and Verilog HDL code, see the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Inferring RAM
The LeonardoSpectrum software supports RAM inference for various
device families. The restrictions for the LeonardoSpectrum software to
successfully infer RAM in a design are listed below:

■ The write process must be synchronous
■ The read process can be asynchronous or synchronous depending on

the target Altera architecture
■ Resets on the memory are not supported

Table 9–3 shows a summary of the minimum memory sizes and
minimum address widths for inferring RAM in various device families.

To disable RAM inference, set the extract_ram and infer_ram
variables to “false.” On the Tools menu, click Variable Editor to enter the
value “false” when synthesizing in the user interface with the Advanced
Flow tabs, or add the commands set extract_ram false and set
infer_ram false to your synthesis script.

9–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Inferring ROM
You can implement ROM behavior in HDL source code with CASE
statements or specify the ROM as a table. The LeonardoSpectrum
software infers both synchronous and asynchronous ROM depending on
the target Altera device. For example, memory for the Stratix series
devices must be synchronous to be inferred.

To disable ROM inference, set the extract_rom variable to “false.” To
enter the value “false” when synthesizing in the user interface with the
Advanced Flow tabs, on the Tools menu, click Variable Editor, or add the
commands set extract_rom false to your synthesis script.

Inferring Multipliers and DSP Functions

Some Altera devices include dedicated DSP blocks optimized for DSP
applications. The following Altera megafunctions are used with DSP
block modes:

■ lpm_mult
■ altmult_accum
■ altmult_add

You can instantiate these megafunctions in the design or have the
LeonardoSpectrum software infer the appropriate megafunction by
recognizing a multiplier, multiplier-accumulator (MAC), or
multiplier-adder in the design. The Quartus II software maps the
functions to the DSP blocks in the device during place-and-route.

f For more information about inferring multipliers and DSP functions,
including examples of VHDL and Verilog HDL code, refer to the
Recommended HDL Coding Styles chapter in volume 1 of The Quartus II
Handbook.

Table 9–3. Inferring RAM Summary

Stratix Series and Cyclone
Series

APEX Series, Excalibur and
Mercury

FLEX 10KE and
ACEX 1K

RAM primitive altsyncram altdpram altdpram

Minimum RAM size 2 bits 64 bits 128 bits

Minimum address width 1 bit 4 bits 5 bits

Altera Corporation 9–13
October 2007

Guidelines for Altera Megafunctions and LPM Functions

Simple Multipliers

The lpm_mult megafunction implements the DSP block in the simple
multiplier mode. The following functionality is supported in this mode:

■ The DSP block includes registers for the input and output stages, and
an intermediate pipeline stage

■ Signed and unsigned arithmetic is supported

Multiplier Accumulators

The altmult_accum megafunction implements the DSP block in the
multiply-accumulator mode. The following functionality is supported in
this mode:

■ The DSP block includes registers for the input and output stages, and
an intermediate pipeline stage

■ The output registers are required for the accumulator
■ The input and pipeline registers are optional
■ Signed and unsigned arithmetic is supported

1 If the design requires input registers to be used as shift registers,
use the black-boxing method to instantiate the
altmult_accum megafunction.

Multiplier Adders

The LeonardoSpectrum software can infer multiplier adders and map
them to either the two-multiplier adder mode or the four-multiplier
adder mode of the DSP blocks. The LeonardoSpectrum software maps
the HDL code to the correct altmult_add function.

The following functionality is supported in these modes:

■ The DSP block includes registers for the input and output stages and
an intermediate pipeline stage

■ Signed and unsigned arithmetic is supported, but support for the
Verilog HDL “signed” construct is limited

Controlling DSP Block Inference

In devices that include dedicated DSP blocks, multipliers,
multiply-accumulators, and multiply-adders can be implemented either
in DSP blocks or in logic. You can control this implementation through
attribute settings in the LeonardoSpectrum software.

9–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

As shown in Table 9–4, attribute settings in the LeonardoSpectrum
software control the implementation of the multipliers in DSP blocks or
logic at the signal block (or module), and project level.

Global Attribute

You can set the global attribute extract_mac to control the
implementation of multipliers in DSP blocks for the entire project. You
can set this attribute using the script interface. The script command is:

set extract_mac <value>

Module Level Attributes

You can control the implementation of multipliers inside a module or
component by setting attributes in the Verilog HDL source code. The
attribute used is extract_mac. Setting this attribute for a module affects
only the multipliers inside that module. The command is:

//synthesis attribute <module name> extract_mac <value>

Table 9–4. Attribute Settings for DSP Blocks in the LeonardoSpectrum Software Note (1)

Level Attribute Name Value Description

Global extract_mac (2) TRUE All multipliers in the project mapped to DSP blocks.

FALSE All multipliers in the project mapped to logic.

Module extract_mac (3) TRUE Multipliers inside the specified module mapped to DSP blocks.

FALSE Multipliers inside the specified module mapped to logic.

Signal dedicated_mult ON LPM inferred and multipliers implemented in DSP block.

OFF LPM inferred, but multipliers implemented in logic by the Quartus II
software.

LCELL LPM not inferred, and multipliers implemented in logic by the
LeonardoSpectrum software.

AUTO LPM inferred, but the Quartus II software automatically maps the
multipliers to either logic or DSP blocks based on the Quartus II
software place-and-route.

Notes to Table 9–4:
(1) The extract_mac attribute takes precedence over the dedicated_mult attribute.
(2) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for the entire project.
(3) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for all modules.

Altera Corporation 9–15
October 2007

Guidelines for Altera Megafunctions and LPM Functions

The Verilog HDL and VHDL codes samples shown in Examples 9–1
and 9–2 show how to use the extract_mac attribute.

Example 9–1. Using Module Level Attributes in Verilog HDL Code
module mult_add (dataa, datab, datac, datad, result);
//synthesis attribute mult_add extract_mac FALSE
// Port Declaration
input [15:0] dataa;
input [15:0] datab;
input [15:0] datac;
input [15:0] datad;

output [32:0] result;

// Wire Declaration
wire [31:0] mult0_result;
wire [31:0] mult1_result;

// Implementation
// Each of these can go into one of the 4 mults in a
// DSP block
assign mult0_result = dataa * `signed datab;
//synthesis attribute mult0_result preserve_signal TRUE

assign mult1_result = datac * datad;

// This adder can go into the one-level adder in a DSP
// block
assign result = (mult0_result + mult1_result);

endmodule

9–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 9–2. Using Module Level Attributes in VHDL Code
library ieee ;
USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

entity mult_acc is
 generic (size : integer := 4) ;
 port (
 a: in std_logic_vector (size-1 downto 0) ;
 b: in std_logic_vector (size-1 downto 0) ;
 clk : in std_logic;

accum_out: inout std_logic_vector (2*size downto 0)
) ;
 attribute extract_mac : boolean;
 attribute extract_mac of mult_acc : entity is FALSE;
end mult_acc;

architecture synthesis of mult_acc is
 signal a_int, b_int : signed (size-1 downto 0);
 signal pdt_int : signed (2*size-1 downto 0);
 signal adder_out : signed (2*size downto 0);

begin
 a_int <= signed (a);
 b_int <= signed (b);
 pdt_int <= a_int * b_int;
 adder_out <= pdt_int + signed(accum_out);
 process (clk)
 begin
 if (clk'event and clk = '1') then
 accum_out <= std_logic_vector (adder_out);
 end if;
 end process;
end synthesis ;

Signal Level Attributes

You can control the implementation of individual lpm_mult multipliers
by using the dedicated_mult attribute as shown below:

//synthesis attribute <signal_name> dedicated_mult <value>

1 The dedicated_mult attribute is only applicable to signals or
wires; it is not applicable to registers.

Altera Corporation 9–17
October 2007

Guidelines for Altera Megafunctions and LPM Functions

Table 9–5 shows the supported values for the dedicated_mult
attribute.

1 Some signals for which the dedicated_mult attribute is set
may get synthesized away by the LeonardoSpectrum software
due to design optimization. In such cases, if you want to force
the implementation, the signal is preserved from being
synthesized away by setting the preserve_signal attribute
to “true.”

The extract_mac attribute must be set to “false” for the
module or project level when using the dedicated_mult
attribute.

Examples 9–3 and 9–4 are samples of Verilog HDL and VHDL codes,
respectively, using the dedicated_mult attribute.

Table 9–5. Values for the dedicated_mult Attribute

Value Description

ON LPM inferred and multipliers implemented in DSP block.

OFF LPM inferred and multipliers synthesized, implemented in logic, and optimized by the Quartus II
software. (1)

LCELL LPM not inferred and multipliers synthesized, implemented in logic, and optimized by the
LeonardoSpectrum software. (1)

AUTO LPM inferred but the Quartus II software maps the multipliers automatically to either the DSP block or
logic based on resource availability.

Note to Table 9–5:
(1) Although both dedicated_mult=OFF and dedicated_mult=LCELLS result in logic implementations, the optimized

results in these two cases may differ.

9–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 9–3. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
module mult (AX, AY, BX, BY, m, n, o, p);
input [7:0] AX, AY, BX, BY;
output [15:0] m, n, o, p;
wire [15:0] m_i = AX * AY; // synthesis attribute m_i dedicated_mult ON
// synthesis attribute m_i preserve_signal TRUE
//Note that the preserve_signal attribute prevents
// signal m_i from getting synthesized away
wire [15:0] n_i = BX * BY; // synthesis attribute n_i dedicated_mult OFF
wire [15:0] o_i = AX * BY; // synthesis attribute o_i dedicated_mult AUTO
wire [15:0] p_i = BX * AY; // synthesis attribute p_i dedicated_mult LCELL
// since n_i , o_i , p_i signals are not preserved,
// they may be synthesized away based on the design
assign m = m_i;
assign n = n_i;
assign o = o_i;
assign p = p_i;
endmodule

Example 9–4. Signal Attributes for Controlling DSP Block Inference in VHDL Code
library ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_signed.all;

ENTITY mult is
PORT(AX,AY,BX,BY: IN

std_logic_vector (17 DOWNTO 0);
m,n,o,p: OUT

std_logic_vector (35 DOWNTO 0));
attribute dedicated_mult: string;
attribute preserve_signal : boolean
END mult;
ARCHITECTURE struct of mult is

signal m_i, n_i, o_i, p_i : unsigned (35 downto 0);
attribute dedicated_mult of m_i:signal is "ON";
attribute dedicated_mult of n_i:signal is "OFF";
attribute dedicated_mult of o_i:signal is "AUTO";
attribute dedicated_mult of p_i:signal is "LCELL";

begin

m_i <= unsigned (AX) * unsigned (AY);
n_i <= unsigned (BX) * unsigned (BY);
o_i <= unsigned (AX) * unsigned (BY);
p_i <= unsigned (BX) * unsigned (AY);

m <= std_logic_vector(m_i);
n <= std_logic_vector(n_i);
o <= std_logic_vector(o_i);
p <= std_logic_vector(p_i);
end struct;

Altera Corporation 9–19
October 2007

Block-Based Design with the Quartus II Software

Guidelines for Using DSP Blocks

In addition to the guidelines mentioned earlier in this section, use the
following guidelines while designing with DSP blocks in the
LeonardoSpectrum software:

■ To access all the control signals for the DSP block, such as sign A,
sign B, and dynamic addnsub, use the black-boxing technique.

■ While performing signed operations, ensure that the specified data
width of the output port matches the data width of the expected
result. Otherwise, the sign bit may be lost or data may be incorrect
because the sign is not extended.
For example, if the data widths of input A and B are width_a and
width_b, respectively, then the maximum data width of the result
can be (width_a + width_b +2) for the four-multipliers adder
mode. Thus, the data width of the output port should be less than or
equal to (width_a + width_b +2).

■ While using the accumulator, the data width of the output port
should be equal to or greater than (width_a + width_b). The
maximum width of the accumulator can be
(width_a + width_b + 16). Accumulators wider than this are
implemented in logic.

■ If the design uses more multipliers than are available in a particular
device, you may get a no fit error in the Quartus II software. In such
cases, use the attribute settings in the LeonardoSpectrum software to
control the mapping of multipliers in your design to DSP blocks or
logic.

Block-Based
Design with the
Quartus II
Software

The incremental compilation and LogicLockTM block-based design flows
enable users to design, optimize, and lock down a design one section at a
time. You can independently create and implement each logic module
into a hierarchical or team-based design. With this method, you can
preserve the performance of each module during system integration and
have more control over placement of your design. To maximize the
benefits of the incremental compilation or LogicLock design
methodology in the Quartus II software, you can partition a new design
into a hierarchy of netlist files during synthesis in the LeonardoSpectrum
software.

The LeonardoSpectrum software allows you to create different netlist
files for different sections of a design hierarchy. Different netlist files
mean that each section is independent of the others. When synthesizing
the entire project, only portions of a design that have been updated have
to be re-synthesized when you compile the design. You can make
changes, optimize, and re-synthesize your section of a design without
affecting other sections.

9–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f For more information about incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook. For more information
about the LogicLock feature, refer to the LogicLock Design Methodology
chapter in volume 2 of the Quartus II Handbook.

Hierarchy and Design Considerations

You must plan your design’s structure and partitioning carefully to use
incremental compilation and LogicLock features effectively. Optimal
hierarchical design practices include partitioning the blocks at functional
boundaries, registering the boundaries of each block, minimizing the I/O
between each block, separating timing-critical blocks, and keeping the
critical path within one hierarchical block.

f For more recommendations for hierarchical design partitioning, refer to
the Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbook.

To ensure the proper functioning of the synthesis tool, you can apply the
LogicLock option in the LeonardoSpectrum software only to modules,
entities, or netlist files. In addition, each module or entity should have its
own design file. If two different modules are in the same design file but
are defined as being part of different regions, it is difficult to maintain
incremental synthesis since both regions would have to be recompiled
when you change one of the modules or entities.

If you use boundary tri-states in a lower-level block, the
LeonardoSpectrum software pushes (or “bubbles”) the tri-states through
the hierarchy to the top-level to take advantage of the tri-state drivers on
the output pins of the Altera device. Because bubbling tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported
with a block-level design methodology. You should use tri-state drivers
only at the external output pins of the device and in the top-level block in
the hierarchy.

If the hierarchy is flattened during synthesis, logic is optimized across
boundaries, preventing you from making LogicLock assignments to the
flattened blocks. Altera recommends preserving the hierarchy when
compiling the design. In the Optimize command of your script, use the
Hierarchy Preserve command or in the user interface select Preserve in
the Hierarchy section on the Optimize Flow tab.

Altera Corporation 9–21
October 2007

Block-Based Design with the Quartus II Software

If you are compiling your design with a script, you can use an alternative
method for preventing optimization across boundaries. In this case, use
the Auto hierarchy setting and set the auto_dissolve attribute to false
on the instances or views that you want to preserve (that is, the modules
with LogicLock assignments) using the following syntax:

set_attribute -name auto_dissolve -value false
.work.<block1>.INTERFACE

This alternative method flattens your design according to the
auto_dissolve limits, but does not optimize across boundaries where
you apply the attribute as described.

f For more details on LeonardoSpectrum attributes and hierarchy levels,
refer to the LeonardoSpectrum documentation in the Help menu.

Creating a Design with Multiple EDIF Files

The first stage of a hierarchical design flow is to generate multiple EDIF
files, enabling you to take advantage of the incremental compilation
flows in the Quartus II software. If the whole design is in one EDIF file,
changes in one block affect other blocks because of possible node name
changes. You can generate multiple EDIF files either by using the
LogicLock option in the LeonardoSpectrum software, or by manually
black boxing each block that you want to be part of a LogicLock region.

Once you have created multiple EDIF files using one of these methods,
you must create the appropriate Quartus II project(s) to place-and-route
the design.

Generating Multiple EDIF Files Using the LogicLock Option

This section describes how to generate multiple EDIF files using the
LogicLock option in the LeonardoSpectrum software. When synthesizing
a top-level design that includes LogicLock regions, use the following
general steps:

1. Read in the Verilog HDL or VHDL source files.

2. Add LogicLock constraints.

3. Optimize and write output netlist files, or choose Run Flow.

9–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To set the correct constraints and compile the design, use the following
steps in the LeonardoSpectrum software:

1. Switch to the Advanced Flow tab instead of the Quick Setup tab
(Tools menu).

2. Set the target technology and speed grade for the device on the
Technology Flow tab.

3. Open the input source files on the Input Flow tab.

4. Click Read on the Input Flow tab to read the source files but not
begin optimization.

5. Select the Module Power tab located at the bottom of the
Constraints Flow tab.

6. Click on a module to be placed in a LogicLock region in the
Modules section.

7. Turn on the LogicLock option.

8. Type the desired LogicLock region name in the text field under the
LogicLock option.

9. Click Apply.

10. Repeat steps 6-9 for any other modules that you want to place in
LogicLock regions.

1 In some cases, you are prompted to save your LogicLock and
other non-global constraints in a Constraints File (.ctr) when you
click anywhere off the Constraints Flow tab. The default name
is <project name>.ctr. This file is added to your Input file list, and
must be manually included later if you recreate the project.

The command written into the LeonardoSpectrum Information
or Transcript Window is the Tcl command that gets written into
the CTR file. The format of the “path” for the module specified
in the command should be work.<module>.INTERFACE. To
ensure that you don’t see an optimized version of the module,
do not perform a Run Flow on the Quick Setup tab prior to
setting LogicLock constraints. Always use the Read command,
as described in step 4.

11. Continue making any other settings as required on the Constraints
tab.

Altera Corporation 9–23
October 2007

Block-Based Design with the Quartus II Software

12. Select Preserve in the Hierarchy section on the Optimize tab to
ensure that the hierarchy names are not flattened during
optimization.

13. Continue making any other settings as required on the Optimize
tab.

14. Run your synthesis flow using each Flow tab, or click Run Flow.

Synthesis creates an EDIF file for each module that has a LogicLock
assignment in the Constraints Flow tab. You can now use these files with
the incremental compilation flows in the Quartus II software.

1 You might occasionally see multiple EDIF files and LogicLock
commands for the same module. An “unfolded” version of a
module is created when you instantiate a module more than
once and the boundary conditions of the instances are different.
For example, if you apply a constant to one instance of the block,
it might be optimized to eliminate unneeded logic. In this case,
the LeonardoSpectrum software must create a separate module
for each instantiation (unfolding). If this unfolding occurs, you
see more than one EDIF file, and each EDIF file has a LogicLock
assignment to the same LogicLock region. When you import the
EDIF files to the Quartus II software, the EDIF files created from
the module are placed in different LogicLock regions. Any
optimizations performed in the Quartus II software using the
LogicLock methodology must be performed separately for each
EDIF netlist.

Creating a Quartus II Project for Multiple EDIF Files Including LogicLock
Regions

The LeonardoSpectrum software creates Tcl files that provide the
Quartus II software with the appropriate LogicLock assignments,
creating a region for each EDIF file along with the information to set up a
Quartus II project.

The Tcl file contains the commands shown in Example 9–5 for each
LogicLock region. This example is for module taps where the name
taps_region was typed as the LogicLock region name in the
Constraints Flow tab in the LeonardoSpectrum software.

9–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Example 9–5. Tcl File for Module Taps with taps_region as LogicLock Region Name
project add_assignment {taps} {taps_region} {} {}

{LL_AUTO_SIZE} {ON}
project add_assignment {taps} {taps_region} {} {}

{LL_STATE} {FLOATING}
project add_assignment {taps} {taps_region} {} {}

{LL_MEMBER_OF} {taps_region}

These commands create a LogicLock region with Auto-Size and
Floating-Origin properties. This flexible LogicLock region allows the
Quartus II Compiler to select the size and location of the region.

f For more information about Tcl commands, refer to the TCL Scripting
chapter in volume 2 of the Quartus II Handbook.

You can use the following methods to import the EDIF file and
corresponding Tcl file into the Quartus II software:

■ Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method allows you to generate
multiple Quartus II projects, one for each block in the design. Each
designer in the project can optimize their block separately in the
Quartus II software and preserve their results. Altera recommends
this method for bottom-up incremental and hierarchical design
methodologies because it allows each block in the design to be
treated separately. Each block can be brought into one top-level
project with the import function.

or

■ Use the <top-level project>.tcl file that contains the assignments for all
blocks in the project. This method allows the top-level designer to
import all the blocks into one Quartus II project. You can optimize all
modules in the project at once in a top-down design flow. If
additional optimization is required for individual blocks, each
designer can use their EDIF file to create a separate project at that
time. You would then have to add new assignments to the top-level
project using the import function.

In both methods, you can use the following steps to create the Quartus II
project, import the appropriate LogicLock assignments, and compile the
design:

1. Place the EDIF and Tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console
to open the Quartus II Tcl Console.

Altera Corporation 9–25
October 2007

Block-Based Design with the Quartus II Software

3. Type source <path>/<project name>.tcl r.

4. To open the new completed project, on the File menu, click Open
Project. Browse to and select the project name, and click Open.

f For more information about importing design using incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
For more information about importing LogicLock assignments, see the
LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Generating Multiple EDIF Files Using Black Boxes

This section describes how to manually generate multiple EDIF files
using the black-boxing technique. The manual flow, described below,
was supported in older versions of the LeonardoSpectrum software. The
manual flow is discussed here because some designers want more control
over the project for each submodule.

To create multiple EDIF files in the LeonardoSpectrum software, create a
separate project for each module and top-level design that you want to
maintain as a separate EDIF file. Implement black-box instantiations of
lower-level modules in your top-level project.

When synthesizing the projects for the lower-level modules and the
top-level design, use the following general guidelines.

For lower-level modules:

■ Turn off Map IO Registers for the target technology on the
Technology Flow tab.

■ Read the HDL files for the modules. Modules may include black-box
instantiations of lower-level modules that are also maintained as
separate EDIF files.

■ Add constraints.
■ Turn off Add I/O Pads on the Optimize Flow tab.

For the top-level design:

■ Turn on Map IO Registers if you want to implement input and/or
output registers in the IOEs for the target technology on the
Technology Flow tab.

■ Read the HDL files for the top-level design.
● Black-box lower-level modules in the top-level design

■ Add constraints (clock settings should be made at this time).

9–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

The following sections describe examples of black-box modules in a
block-based and team-based design flow.

In Figure 9–3, the top-level design A is assigned to one engineer
(designer 1), while two-engineers work on the lower levels of the design.
Designer 2 works on B and its submodules D and E, while designer 3
works on C and its submodule F.

Figure 9–3. Block-Based and Team-Based Design Example

One netlist is created for the top-level module A, another netlist is created
for B and its submodules D and E, while another netlist is created for C
and its submodule F. To create multiple EDIF files, perform the following
steps:

1. Generate an EDIF file for module C. Use C.v and F.v as the source
files.

2. Generate an EDIF file for module B. Use B.v, D.v, and E.v as the
source files.

3. Generate a top-level EDIF file A.v for module A. Ensure that your
black-box modules B and C were optimized separately in steps
1 and 2.

D

Designer 1

F

Designer 2 Designer 3

E

A

CB

Altera Corporation 9–27
October 2007

Block-Based Design with the Quartus II Software

Black Boxing in Verilog HDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
Verilog HDL, you must also provide an empty module declaration for the
module that you plan to treat as a black box.

Example 9–6 shows an example of the A.v top-level file. If any of your
lower-level files also contain a black-boxed lower-level file in the next
level of hierarchy, follow the same procedure.

Example 9–6. Verilog HDL Top-Level File Black-Boxing Example
module A (data_in,clk,e,ld,data_out);

input data_in, clk, e, ld;
output [15:0] data_out;

reg [15:0] cnt_out;
reg [15:0] reg_a_out;

B U1 (.data_in (data_in),.clk (clk), .e(e), .ld (ld),
.data_out(cnt_out));

C U2 (.d(cnt_out), .clk (clk), .e(e), .q (reg_out));
// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.
// These module declarations (including ports) are required for blackboxing.

module B (data_in,e,ld,data_out);
input data_in, clk, e, ld;
output [15:0] data_out;

endmodule

module C (d,clk,e,q);
input d, clk, e;
output [15:0] q;

endmodule

1 Previous versions of the LeonardoSpectrum software required
an attribute statement //exemplar attribute U1 NOOPT
TRUE, which instructs the software to treat the instance U1 as a
black box. This attribute is no longer required, although it is still
supported in the software.

9–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Black Boxing in VHDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
VHDL, you need a component declaration for the black box which is
normal for any other block in the design.

Example 9–7 shows an example of the A.vhd top-level file. If any of your
lower-level files also contain a black-boxed lower-level file in the next
level of hierarchy, follow the same procedure.

Altera Corporation 9–29
October 2007

Block-Based Design with the Quartus II Software

Example 9–7. VHDL Top-Level File Black-Boxing Example
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS

PORT (data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15

);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT(
data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
ld : IN STD_LOGIC;

data_out : OUT INTEGER RANGE 0 TO 15
);
END COMPONENT;

COMPONENT C PORT(
d : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15

);
END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;
signal reg_a_out : INTEGER RANGE 0 TO 15;
BEGIN
CNT : C
PORT MAP (

data_in => data_in,
clk => clk,
e => e,
ld => ld,
data_out => cnt_out

);

REG_A : D
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => reg_a_out

);

-- Any other code in A.vhd goes here

END a_arch;

9–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Previous versions of the LeonardoSpectrum software required
the attribute statement noopt of C: component is TRUE,
which instructed the software to treat the component C as a
black box. This attribute is no longer required, although it is still
supported in the software.

After you have completed the steps outlined in this section, you have a
different EDIF netlist file for each block of code. You can now use these
files for incremental compilation flows in the Quartus II software.

Creating a Quartus II Project for Multiple EDIF Files

The LeonardoSpectrum software creates a Tcl file for each EDIF file,
which provides the Quartus II software with the information to set up a
project.

As in the previous section, there are two different methods for bringing
each EDIF and corresponding Tcl file into the Quartus II software:

■ Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method generates multiple
Quartus II projects, one for each block in the design. Each designer in
the project can optimize their block separately in the Quartus II
software and preserve their results. Designers should create a
LogicLock region for each block; the top-level designer should then
import all the blocks and assignments into the top-level project.
Altera recommends this method for bottom-up incremental and
hierarchical design methodology because it allows each block in the
design to be treated separately; each block can be imported into one
top-level project.

or

■ Use the <top-level project>.tcl file that contains the information to set
up the top-level project. This method allows the top-level designer to
create LogicLock regions for each block and bring all the blocks into
one Quartus II project. Designers can optimize all modules in the
project at once in a top-down design flow. If additional optimization
is required for individual blocks, each designer can take their EDIF
file and create a separate Quartus II project at that time. New
assignments would then have to be added to the top-level project
manually or through the import function.

Altera Corporation 9–31
October 2007

Block-Based Design with the Quartus II Software

f For more information about importing designs using incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.
For more information about importing LogicLock regions, refer to the
LogicLock Design Methodology chapter in the volume 2 of the Quartus II
Handbook.

In both methods, you can use the following steps to create the Quartus II
project and compile the design:

1. Place the EDIF and Tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console.
The Quartus II Tcl Console is shown.

3. At a Tcl prompt, type source <path>/<project name>.tcl r.

4. On the File menu, click Open Project. In the New Project window,
browse to and select the project name. Click Open.

5. To create LogicLock assignments, on the Assignments menu, click
LogicLock Regions Window.

6. On the Processing menu, click Start Compilation.

Incremental Synthesis Flow

If you make changes to one or more submodules, you can manually
create new projects in the LeonardoSpectrum software to generate a new
EDIF netlist file when there are changes to the source files. Alternatively,
you can use incremental synthesis to generate a new netlist for the
changed submodule(s). To perform incremental synthesis in the
LeonardoSpectrum software, use the script described in this section to
reoptimize and generate a new EDIF netlist for only the affected modules
using the LeonardoSpectrum top-level project. This method applies only
when you are using the LogicLock option in the LeonardoSpectrum
software.

Modifications Required for the LogicLock_Incremental.tcl Script File

There are three sets of entries in the file that must be modified before
beginning incremental synthesis. The variables in the Tcl file are
surrounded by angle brackets (< >).

1. Add the list of source files that are included in the project. You can
enter the full path to the file or just the file name if the files are
located in the working directory.

9–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

2. Indicate which modules in the design have changed. These modules
are the EDIF files that are regenerated by the LeonardoSpectrum
software. These modules contain a LogicLock assignment in the
original compilation.

1 Obtain the LeonardoSpectrum software path for each
module by looking at the CTR file that contains the
LogicLock assignments from the original project. Each
LogicLock assignment is applied to a particular module in
the design.

3. Enter the target device family using the appropriate device
keyword. The device keyword is written into the Transcript or
Information window when you select a target Technology and click
Load Library or Apply on the Technology Flow tab in the graphical
user interface.

Example 9–8 shows the LogicLock_Incremental.tcl file for the
incremental synthesis flow. You must modify the Tcl file before you can
use it for your project.

Altera Corporation 9–33
October 2007

Block-Based Design with the Quartus II Software

Example 9–8. LogicLock_Interface.tcl Script File for Incremental Synthesis
##
LogicLock Incremental Synthesis Flow
##

You must indicate which modules have changed (based on the source files
that have changed) and provide the complete path to each module

You must also specify the list of design files and the target Altera
technology being used

Read the design source files.
read <list of design files separated by spaces (such as block1.v block2.v)>

Get the list of modified modules in bottom-up "depth first search" order
where the lower-level blocks are listed first (these should be modules
that had LogicLock assignments and separate EDIF netlist files in the
first pass and had their source code modified)

set list_of_modified_modules {.work.<block2>.INTERFACE .work.<block1>.INTERFACE}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module

Run optimization, preserving hierarchy. You must specify a technology.
optimize -ta <technology> -hierarchy preserve

Ensure that the lower-level module is not optimized again when
optimizing higher-level modules.
dont_touch $module

}

foreach module $list_of_modified_modules {
set err_rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module_name arch]
present_design $module
undont_touch $module
auto_write $module_name.edf
Ensure that the lower-level module is not written out in the EDIF file
of the higher-level module.
noopt $module

}

Running the Tcl Script File in LeonardoSpectrum

Once you have modified the Tcl script, as described in the “Modifications
Required for the LogicLock_Incremental.tcl Script File” on page 9–31,
you can compile your design using the script.

9–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can run the script in batch mode at the command line prompt using
the following command:

spectrum -file <Tcl_file> r
To run the script from the interface, on the File menu, click Run Script,
then browse to your Tcl file and click Open.

The LogicLock incremental design flow uses module-based design to
help you preserve performance of modules and have control over
placement. By tagging the modules that require separate EDIF files, you
can make multiple EDIF files for use with the Quartus II software from a
single LeonardoSpectrum software project.

Conclusion Advanced synthesis is an important part of the design flow. Taking
advantage of the Mentor Graphics LeonardoSpectrum software and the
Quartus II design flow allows you to control how your design files are
prepared for the Quartus II place-and-route process, as well as to
improve performance and optimize a design for use with Altera devices.
The methodologies outlined in this chapter can help optimize a design to
achieve performance goals and save design time.

Referenced
Documents

This chapter references the following documents:

■ Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbookk

■ LeonardoSpectrum Installation Guide and the LeonardoSpectrum User’s
Manual.

■ LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook

■ Mentor Graphics Precision RTL Synthesis Support chapter in volume 1
of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

■ TCL Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51011.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.mentor.com/
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52009.pdf

Altera Corporation 9–35
October 2007

Document Revision History

Document
Revision History

Table 9–6 shows the revision history of this chapter.

Table 9–6. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Stratix III device added.
● Reorganized “Referenced Documents” on page 9–34.

Version updated for
2007.

May 2007
v7.1.0

● Updated LeonardoSpectrum software version to 2006b
● Added “Referenced Documents” on page 9–34.

—

November 2006
v6.1.0

Added document revision history to chapter. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 10 was formerly chapter 11 in version 5.0.

—

May 2005
v5.0.0

Chapter 11 was formerly chapter 9 in version 4.2. —

December 2004
v2.1.0

● Chapter 10 was formerly Chapter 11 in version 4.1.
● Updated information.
● New functionality in Quartus II software version 4.2.
● Updated tables and figures.

—

June 2004
v2.0.0

● Updates to tables, and figures.
● New functionality for Quartus II software version 4.1.

—

Feb. 2004
v1.0.0

Initial release. —

9–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Altera Corporation 10–1
October 2007

10. Mentor Graphics
Precision RTL

Synthesis Support

Introduction As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. When integrated into the Quartus II®
design flow, Mentor Graphics® Precision RTL Synthesis can be used to
improve performance results for Altera® devices.

This chapter documents support for the Mentor Graphics Precision RTL
Synthesis software in the Quartus II software design flow, as well as key
design methodologies and techniques for improving your results for
Altera devices.

The topics discussed in this chapter include:

■ “Design Flow” on page 10–2
■ “Creating a Project and Compiling the Design” on page 10–6
■ “Mapping the Precision Synthesis Design” on page 10–7
■ “Synthesizing the Design and Evaluating the Results” on page 10–13
■ “Exporting Designs to the Quartus II Software Using NativeLink

Integration” on page 10–14
■ “Megafunctions and Architecture-Specific Features” on page 10–23
■ “Incremental Compilation and Block-Based Design” on page 10–32

This chapter assumes that you have installed and licensed the Precision
RTL Synthesis software and the Quartus II software.

f To obtain and license the Precision RTL Synthesis software, refer to the
Mentor Graphics web site at www.mentor.com. To install and run the
Precision RTL Synthesis software and to set up your work environment,
refer to the Precision RTL Synthesis User’s Manual in the Precision
Manuals Bookcase in the Help menu.

QII51011-7.2.0

http://www.mentor.com

10–2 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Device Family
Support

The following list shows the Altera device families supported by the
Mentor Graphics Precision RTL Synthesis software version 2007a when
used with the Quartus II software version 7.2:

■ Arria™ GX
■ Cyclone® III
■ Stratix® III
■ Stratix II, Stratix II GX, Hardcopy® II
■ Stratix, Stratix GX, HardCopy Stratix
■ Cyclone II
■ Cyclone
■ MAX® 3000A, MAX 7000, MAX 7000AE, MAX 7000B, MAX 7000E,

MAX 7000S, MAX II
■ ACEX® 1K
■ APEX™ 20K, APEX 20KC, APEX 20KE, APEX II
■ FLEX® 10K, FLEX 10KA, FLEX 10KB, FLEX 10KE, FLEX 6K

The Precision software also supports the following legacy devices that are
supported in the Quartus II software (as applicable to the specific license
requested at the support section of www.altera.com).

■ Excalibur™ ARM®

■ Mercury™

In addition, the Precision software supports the following legacy devices
that are supported in the Altera MAX+PLUS II software only:

■ MAX 9000
■ FLEX 8000

Design Flow The basic steps in a Quartus II design flow using the Precision RTL
Synthesis software includes:

1. Create Verilog HDL or VHDL design files in the Quartus II design
software, the Precision RTL Synthesis software, or with a text editor.

2. Create a project in the Precision RTL Synthesis software that
contains the HDL files for your design, select your target device,
and set global constraints.

3. Compile the project in the Precision RTL Synthesis software.

4. Add specific timing constraints, optimization attributes, and
compiler directives to optimize the design during synthesis.

http://www.altera.com

Altera Corporation 10–3
October 2007

Design Flow

1 For best results, Mentor Graphics recommends specifying
constraints that are as close as possible to actual operating
requirements. Properly setting clock and I/O constraints,
assigning clock domains, and indicating false and
multicycle paths guide the synthesis algorithms more
accurately toward a suitable solution in the shortest
synthesis time.

5. Synthesize the project in the Precision RTL Synthesis software. With
the design analysis capabilities and cross-probing of Precision RTL
Synthesis software, you can identify and improve circuit area and
performance issues using pre-layout timing estimates.

6. Create a Quartus II project and import the technology-specific EDIF
(.edf) netlist, the Quartus II design constraints file (.sdc) in Synopsys
Design Constraints (SDC) format (TimeQuest constraints if a
Stratix III, Arria GX, or Cyclone III device is selected), and the tool
command language (.tcl) file generated by the Precision RTL
Synthesis software into the Quartus II software for placement and
routing, and for performance evaluation using actual post-layout
timing data.

7. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

These steps are described in detail throughout this chapter. Figure 10–1
shows the Quartus II design flow using Precision RTL Synthesis as
described in the above steps.

10–4 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Figure 10–1. Design Flow Using the Precision RTL Synthesis Software and Quartus II Software

Notes to Figure 10–1:
(1) If a device other than Stratix III, Arria GX, or Cyclone III is selected, two .tcl files are generated. One file acts as a

Quartus II Project Configuration file, while the other file contains timing constraints for the Classic Timing
Analyzer. If a Stratix III, Arria GX, or Cyclone III device is selected, only the Quartus II Project Configuration .tcl
file is generated.

(2) This file is generated automatically only if a Stratix III, Arria GX, or Cyclone III device is selected.

Functional/RTL
Simulation

VHDL Verilog HDL

Constraints &
Settings

Constraints &
Settings

Precision RTL Synthesis

Gate-Level
Functional
Simulation

Gate-Level Timing
Simulation

Timing & Area
Requirements

Satisfied?

Forward-Annotated Project
Configurations & Timing Constraints
(.tcl/.acf) (1)

Technology-
Specific Netlist

(.edf)

Post-Synthesis
Simulation Files

(.vho/.vo)

Post Place-and-Route
Simulation File

(.vho/.vo)

Configuration/Programming Files
(.sof/.pof)

Yes

No

Program/Configure Device

Start Start

Quartus II Software

Quartus II Timing Constraints
 in SDC format (.sdc) (2)

Altera Corporation 10–5
October 2007

Design Flow

If your area or timing requirements are not met, you can change the
constraints and resynthesize the design in the Precision RTL Synthesis
software, or you can change constraints to optimize the design during
place-and-route in the Quartus II software. Repeat the process until the
area and timing requirements are met (Figure 10–1).

You can use other options and techniques in the Quartus II software to
meet area and timing requirements. One such option is the WYSIWYG
Primitive Resynthesis option, which can perform optimizations on your
EDIF netlist in the Quartus II software.

f For information about netlist optimizations, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook. For more recommendations about how to optimize your
design, refer to the Area and Timing Optimization chapter in volume 2 of
the Quartus II Handbook.

While simulation and analysis can be performed at various points in the
design process, final timing analysis should be performed after
placement and routing is complete.

During the synthesis process, the Precision RTL Synthesis software
produces several intermediate and output files. Table 10–1 lists these files
with a short description of each file type.

10–6 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Creating a
Project and
Compiling the
Design

After creating your design files, create a project in the Precision RTL
Synthesis software that contains the basic settings for compiling the
design.

Creating a Project

Set up your design files as follows:

1. In the Precision RTL Synthesis software, click the New Project icon
in the Design Bar on the left side of the GUI.

2. Set the Project Name and the Project Folder. The implementation
name of the design corresponds to this project name.

Table 10–1. Precision RTL Synthesis Software Intermediate and Output Files

File Extension(s) File Description

.psp Precision RTL Synthesis Software Project File

.xdb Mentor Graphics Design Database File

.rep (1) Synthesis Area and Timing Report File

.edf Technology-specific netlist in electronic design interchange format (EDIF)

.acf/.tcl (2) Forward-annotated constraints file containing constraints and assignments

.sdc (3) Quartus II timing constraints file in Synopsys Design Constraints format

Notes to Table 10–1:
(1) The timing report file includes performance estimates that are based on pre-place-and-route information. Use the

fMAX reported by the Quartus II software after place-and-route for accurate post-place-and-route timing
information. The area report file includes post-synthesis device resource utilization statistics that may differ from
the resource usage after place-and-route due to black-boxes or further optimizations performed during placement
and routing. Use the device utilization reported by the Quartus II software after place-and-route for final resource
utilization results. See “Synthesizing the Design and Evaluating the Results” on page 10–13 for details.

(2) An Assignment and Configuration File (.acf) file is created only for ACEX 1K, FLEX 10K, FLEX 10KA, FLEX 6000,
FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. The Assignment and Configuration File is generated
for backward compatibility with the MAX+PLUS® II software. Two .tcl files are generated, depending on the
device selected: <project name>.tcl and <project name>_pnr_constraints.tcl. The <project name>.tcl file is generated
regardless of device selected. It acts as the Quartus II Project Configuration file and is used to make basic project
assignments and to create and compile a Quartus II project for your EDIF netlist. If an Stratix III, Arria GX, or
Cyclone III device is selected, this file contains the command required to use the TimeQuest Timing Analyzer
instead of the Classic Timing Analyzer. The <project name>_pnr_constraints.tcl file is generated automatically only
if a device other than Stratix III, Arria GX, or Cyclone III is selected. It contains timing constraints called by <project
name>.tcl to perform placement and routing.

(3) This file is generated automatically only if a Stratix III, Arria GX, or Cyclone III device is selected, and has the
naming convention <project name>_pnr_constraints.sdc

Altera Corporation 10–7
October 2007

Mapping the Precision Synthesis Design

3. Add input files to the project with the Add Input Files icon in the
Design Bar. Precision RTL Synthesis software automatically detects
the top-level module/entity of the design. It uses the top-level
module/entity to name the current implementation directory, logs,
reports, and netlist files.

4. In the Design Bar, click the Setup Design icon.

5. To specify a target device family, expand the Altera entry, and
choose the target device and speed grade.

6. If desired, set a global design frequency and/or default input and
output delays. This constrains all clock paths and all I/O pins in
your design. Modify the settings for individual paths or pins that do
not require such a setting.

To generate additional netlist files (for example, an HDL netlist for
simulation), on the Tools menu, point to Set Options and Output and
select the desired output format. The Precision RTL Synthesis software
generates a separate file for each selected type of file: EDIF, Verilog HDL,
and VHDL.

Compiling the Design

To compile the design into a technology-independent implementation,
on the Design Bar, click the Compile icon.

Mapping the
Precision
Synthesis
Design

In the next steps, you set constraints and map the design to
technology-specific cells. The Precision RTL Synthesis software maps the
design by default to the fastest possible implementation that meets your
timing constraints. To accomplish this, you must specify timing
requirements for the automatically determined clock sources. With this
information, the Precision RTL Synthesis software performs static timing
analysis to determine the location of the critical timing paths. The
Precision RTL Synthesis software achieves the best results for your design
when you set as many realistic constraints as possible. Be sure to set
constraints for timing, mapping, false paths, multicycle paths, and others
that control the structure of the implemented design.

Mentor Graphics recommends creating a Synopsys Design Constraint file
(.sdc) and adding this file to the Constraint Files section of the Project
Files list. You can create this file with a text editor, by issuing command
line constraint parameters, or using the Precision RTL Synthesis software
to generate one automatically for you on the first synthesis run. To create
a constraint file with the user interface, set constraints on design objects
(such as clocks, design blocks, or pins) in the Design Hierarchy browser.

10–8 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

By default, the Precision RTL Synthesis software saves all timing
constraints and attributes in two files: precision_rtl.sdc and
precision_tech.sdc. The precision_rtl.sdc file contains constraints set on
the RTL-level database (after compilation) and the precision_tech.sdc file
contains constraints set on the gate-level database (after synthesis)
located in the current implementation directory.

You can also enter constraints at the command line. After adding
constraints at the command line, update the .sdc file with the update
constraint file command.

1 You can add constraints that change infrequently directly to the
HDL source files with HDL attributes or pragmas.

f For more details and examples, refer to the Attributes chapter in the
Precision Synthesis Reference Manual in the Precision Manual Bookcase in
the Help menu.

Setting Timing Constraints

Timing constraints, based on the industry-standard Synopsys Design
Constraint file format, help the Precision RTL Synthesis software to
deliver optimal results. Missing timing constraints can result in
incomplete timing analysis and may prevent timing errors from being
detected. Precision RTL Synthesis software provides constraint analysis
prior to synthesis to ensure that designs are fully and accurately
constrained. If a device other than Stratix III, Arria GX, or Cyclone III is
selected, all timing constraints are forward-annotated to the Quartus II
software using Tcl scripts for the Quartus II Classic Timing Analyzer. If a
Stratix III, Arria GX, or Cyclone III device is selected,
<project name>_pnr_constraints.sdc is generated that contains timing
constraints in SDC format. So, instead of using the Classic Timing
Analyzer, the Quartus II software uses the TimeQuest Timing Analyzer
for timing analysis.

1 Because the Synopsys Design Constraint file format requires
that timing constraints must be set relative to defined clocks,
you must specify your clock constraints before applying any
other timing constraints.

You also can use multicycle path and false path assignments to relax
requirements or exclude nodes from timing requirements. Doing so can
improve area utilization and allow the software optimizations to focus on
the most critical parts of the design.

Altera Corporation 10–9
October 2007

Mapping the Precision Synthesis Design

f For details about the syntax of Synopsys Design Constraint commands,
refer to the Precision RTL Synthesis Users Manual and the Precision
Synthesis Reference Manual available in the Precision Manual Bookcase in
the Help menu.

Setting Mapping Constraints

Mapping constraints affect how your design is mapped into the target
Altera device. You can set mapping constraints in the user interface, in
HDL code, or with the set_attribute command in the constraint file.

Assigning Pin Numbers and I/O Settings

The Precision RTL Synthesis software supports assigning device pin
numbers, I/O standards, drive strengths, and slew-rate settings to
top-level ports of the design. You can set these timing constraints with the
set_attribute command, the GUI, or by specifying synthesis attributes in
your HDL code. These constraints are written into the Tcl file that is read
by the Quartus II software during place-and-route and do not affect
synthesis.

You can use the set_attribute command in the Synopsys Design
Constraint file to specify pin number constraints, I/O standards, drive
strengths, and slow slew-rate settings. Table 10–2 outlines the format to
use for entries in the Synopsys Design Constraint file.

You can also specify these options in the GUI. To specify a pin number or
other I/O setting in the Precision RTL Synthesis GUI, follow these steps:

1. After compiling the design, expand the Ports entry in the Design
Hierarchy Browser.

2. Under Ports, expand the Inputs or Outputs entry.

Table 10–2. Constraint File Settings

Constraint Entry Format for Synopsys Design Constraint File

Pin number set_attribute -name PIN_NUMBER -value "<pin number>" -port <port name>

I/O standard set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <port name>

Drive
strength

set_attribute -name DRIVE -value "<drive strength in mA>" -port <port name>

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <port name>

10–10 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

1 You also can assign I/O settings by right-clicking the pin in
the Schematic Viewer.

3. Right-click the desired pin name and select the Set Input
Constraints option under Inputs or Set Output Constraints option
under Outputs.

4. Enter the desired pin number on the Altera device in the Pin
Number box (Port Constraints dialog box).

5. Select the I/O standard from the IO_STANDARD list.

6. For output pins, you can also select a drive strength setting and slew
rate setting using the DRIVE and SLOWSLEW lists.

You also can use synthesis attributes or pragmas in your HDL code to
make these assignments. Example 10–1 and Example 10–2 show code
samples that makes a pin assignment in your HDL code.

Example 10–1. Verilog HDL Pin Assignment
//pragma attribute clk pin_number P10;

Example 10–2. VHDL Pin Assignment
attribute pin_number : string
attribute pin_number of clk : signal is “P10”;

You can use the same syntax to assign the I/O standard using the
attribute IOSTANDARD, drive strength using the attribute DRIVE, and
slew rate using the attribute SLEW.

1 For more details about attributes and how to set these attributes
in your HDL code, refer to the Precision Synthesis Reference
Manual. To access this manual, in the Synplify software, click
Help and select Open Manuals Bookcase.

Assigning I/O Registers

The Precision RTL Synthesis software performs timing-driven I/O
register mapping by default. It moves registers into an I/O element (IOE)
when it does not negatively impact the register-to-register performance
of your design, based on the timing constraints.

Altera Corporation 10–11
October 2007

Mapping the Precision Synthesis Design

You can force a register to the device’s IOE using the Complex I/O
constraint. This option does not apply if you turn off I/O pad insertion.
Refer to “Disabling I/O Pad Insertion” on page 10–11 for more
information.

To force an I/O register into the device’s IOE using the GUI, follow these
steps:

1. After compiling the design, expand the Ports entry in the Design
Hierarchy browser.

2. Under Ports, expand the Inputs or Outputs entry, as desired.

3. Under Inputs or Outputs, right-click the desired pin name, point to
Map Input Register to IO or Map Output Register to IO for input
or output respectively, and click True.

1 You also can make the assignment by right-clicking on the pin
in the Schematic Viewer.

For the Stratix and Cyclone series, and MAX II device families, the
Precision RTL Synthesis software can move an internal register to an I/O
register without any restrictions on design hierarchy.

For more mature devices, the Precision RTL Synthesis software can move
an internal register to an I/O register only when the register exists in the
top level of the hierarchy. If the register is buried in the hierarchy, you
must flatten the hierarchy so that the buried registers are moved to the
top level of the design.

Disabling I/O Pad Insertion

The Precision RTL Synthesis software assigns I/O pad atoms (device
primitives used to represent the I/O pins and I/O registers) to all ports in
the top level of a design by default. In certain situations, you may not
want the software to add I/O pads to all I/O pins in the design. The
Quartus II software can compile a design without I/O pads; however,
including I/O pads provides the Precision RTL Synthesis software with
the most information about the top-level pins in the design.

10–12 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Preventing the Precision RTL Synthesis Software from Adding I/O Pads

If you are compiling a subdesign as a separate project, I/O pins cannot be
primary inputs or outputs of the device and therefore should not have an
I/O pad associated with them. To prevent the Precision RTL Synthesis
software from adding I/O pads, perform the following steps:

1. On the Tools menu, click Set Options.

2. On the Optimization page of the Options dialog box, turn off Add
IO Pads, then click Apply.

This procedure adds the following command to the project file:

setup_design -addio=false

Preventing the Precision RTL Synthesis Software from Adding an I/O Pad
on an Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a
black box, such as Double Data Rate (DDR) or a Phase-Locked Loop
(PLL), at the external ports of the design, follow these steps:

1. After compiling the design, in the Design Hierarchy browser,
expand the Ports entry by clicking the + icon.

2. Under Ports, expand the Inputs or Outputs entry.

3. Under Inputs or Outputs, right-click the desired pin name and click
Set Input Constraints.

4. In the Port Constraints dialog box for the selected pin name, turn
off Insert Pad.

1 You also can make the assignment by right-clicking on the pin
in the Schematic Viewer or by attaching the nopad attribute to
the port in the HDL source code.

Controlling Fan-Out on Data Nets

Fan-out is defined as the number of nodes driven by an instance or
top-level port. High fan-out nets can have significant delays which can
result in an unroutable net. On a critical path, high fan-out nets can cause
larger delay in a single net segment which can result in the timing
constraints not being met. To prevent this behavior, each device family
has a global fan-out value set in the Precision RTL Synthesis software

Altera Corporation 10–13
October 2007

Synthesizing the Design and Evaluating the Results

library. In addition, the Quartus II software automatically routes high
fan-out signals on global routing lines in the Altera device whenever
possible.

To eliminate routability and timing issues associated with high fan-out
nets, the Precision RTL Synthesis software also allows you to override the
library default value on a global or individual net basis. You can override
the library value by setting a max_fanout attribute on the net.

Synthesizing the
Design and
Evaluating the
Results

To synthesize the design for the target device, click on the Synthesize
icon in the Precision RTL Synthesis Design Bar. During synthesis, the
Precision RTL Synthesis software optimizes the compiled design, then
writes out netlists and reports to the implementation subdirectory of your
working directory after the implementation is saved, using the naming
convention:

<project name>_impl_<number>

After synthesis is complete, you can evaluate the results in terms of area
and timing. The Precision RTL Synthesis User’s Manual on the
Mentor Graphics web site describes different results that can be
evaluated in the software.

There are several schematic viewers available in the Precision RTL
Synthesis software: RTL schematic, Technology-mapped schematic, and
Critical Path schematic. These analysis tools allow you to quickly and
easily isolate the source of timing or area issues, and to make additional
constraint or code changes to optimize the design.

Obtaining Accurate Logic Utilization and Timing Analysis
Reports

Historically, designers have relied on post-synthesis logic utilization and
timing reports to determine how much logic their design requires, how
big a device they need, and how fast the design will run. However,
today’s FPGA devices provide a wide variety of advanced features in
addition to basic registers and look-up tables (LUTs). The Quartus II
software has advanced algorithms to take advantage of these features, as
well as optimization techniques to both increase performance and reduce
the amount of logic required for a given design. In addition, designs may
contain black boxes and functions that take advantage of specific device
features. Because of these advances, synthesis tool reports provide
post-synthesis area and timing estimates, but the place-and-route
software should be used to obtain final logic utilization and timing
reports.

10–14 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Exporting
Designs to the
Quartus II
Software Using
NativeLink
Integration

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools,
which allows you to run other EDA design entry/synthesis, simulation,
and timing analysis tools automatically from within the Quartus II
software.

After a design is synthesized in the Precision RTL Synthesis software, the
technology-mapped design is written to the current implementation
directory as an EDIF netlist file, along with a Quartus II Project
Configuration File and a place-and-route constraints file. You can use the
Project Configuration script, <project name>.tcl, to create and compile a
Quartus II project for your EDIF netlist. This script makes basic project
assignments, such as assigning the target device specified in the Precision
RTL Synthesis software. For the Quartus II Timing Analyzer, the Project
Configuration script calls the place-and-route constraints script,
<project name>_pnr_constraints.tcl, to make your timing constraints. If
you select an Arria GX, Stratix III, or Cyclone III device, the constraints
are written in SDC format to the <project name>_pnr_constraints.sdc file
by default and is used by the Fitter and the TimeQuest Timing Analyzer
in the Quartus II software.

If you want to use the Quartus II TimeQuest Timing Analyzer, use the
following Precision command before compilation:

setup_design -timequest_sdc

With this command, a file named <project name>_pnr_constraints.sdc is
generated after the synthesize command. You can also use the following
command to generate the SDC constraint file but not set up the entire
project to use TimeQuest:

report_constraints -timequest

The report_constraints - timequest command also generates
the file <project_name>_pnr_constraints.sdc

Running the Quartus II Software from within the Precision RTL
Software

Precision RTL Synthesis software also has a built-in place-and-route
environment that allows you to run the Quartus II Fitter and view the
results in the Precision RTL Synthesis GUI. This feature is useful when
performing an initial compilation of your design to view
post-place-and-route timing and device utilization results, but not all the
advanced Quartus II options that control the compilation process are
available.

Altera Corporation 10–15
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

After you specify an Altera device as the target, set the options for the
Quartus II software. On the Tools menu, click Set Options. On the
Integrated Place and Route page (under Quartus II Modular), specify the
path to the Quartus II executables in the Path to Quartus II installation tree
box.

To automate the place-and-route process, click the Run Quartus II icon in
the Quartus II Modular window of the Precision RTL Synthesis Toolbar.
The Quartus II software uses the current implementation directory as the
Quartus II project directory and runs a full compilation in the background
(that is, no user interface appears).

Two primary Precision RTL Synthesis software commands control the
place-and-route process. Place-and-route options are set by the
setup_place_and_route command. The process is started with the
place_and_route command.

Precision RTL Synthesis software versions 2004a and later support using
individual Quartus II executables, such as analysis and synthesis
(quartus_map), Fitter (quartus_fit), and the Classic Timing Analyzer
(quartus_tan) or the TimeQuest Timing Analyzer (quartus_sta) (only for
software version 2006a and later), for improved runtime and memory
utilization during place and route. This flow is referred to as the Quartus II
Modular flow option in Precision RTL Synthesis software and is compatible
with Quartus II software versions beginning with version 4.0. By default, the
Precision RTL Synthesis software generates this Quartus II Project
Configuration File (Tcl file) for Arria GX, Stratix series, MAX II, and
Cyclone series device families. When you use this flow, all timing constraints
that you set during synthesis are exported to the Quartus II place-and-route
constraints file <project name>_pnr_constraints.tcl, or
<project name>_pnr_constraints.sdc, depending on which Quartus II timing
analyzer the Precision RTL Synthesis software is targeting.

For other device families, the Precision RTL Synthesis software uses the
Quartus II flow option, which enables the Quartus II compilation flow that
existed in Precision RTL Synthesis software versions earlier than 2004a. The
Quartus II Project Configuration File (Tcl file) is written when using the
Quartus II flow option that includes supported timing constraints that you
specified during synthesis. This Tcl file is compatible with all versions of the
Quartus II software; however, the format and timing constraints do not take
full advantage of the features in the Quartus II software introduced with
version 4.0.

To force the use of a particular flow when it is not the default for a certain
device family, use the following command to set up the integrated
place-and-route flow:

10–16 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

setup_place_and_route -flow "<Altera Place-and-Route flow>"

Depending on the device family, you can use one of the following flow
options in the command above:

■ Quartus II Modular
■ Quartus II
■ MAX+PLUS II

For example, for the Stratix II or MAX II device families (which were not
supported in Quartus II software versions earlier than 4.0), you can use
only the Quartus II Modular flow. For the Stratix device family, you can
use either the Quartus II Modular or Quartus II flows. The FLEX 8000
device family, which is not supported in the Quartus II software, is
supported only by the MAX+PLUS II flow.

After the design is compiled in the Quartus II software from within the
Precision RTL Synthesis software, you can invoke the Quartus II GUI
manually and then open the project using the generated Quartus II
project file. You can view reports, run analysis tools, specify options, and
run the various processing flows available in the Quartus II software.

Running the Quartus II Software Manually Using the Precision
RTL Synthesis-Generated Tcl Script

You can use the Quartus II software separately from the Precision RTL
Synthesis software. To run the Tcl script generated by the Precision RTL
Synthesis software to set up your project and start a full compilation,
perform the following steps:

1. Ensure the EDIF, Tcl files, and SDC file (if using the TimeQuest
Timing Analyzer) are located in the same directory (by default, the
files should be located in the implementation directory).

2. In the Quartus II software, on the View menu, point to Utility
Windows and click Tcl Console.

3. At the Tcl Console command prompt, type the command:

source <path>/<project name>.tcl r
4. On the File menu, click Open Project. Browse to the project name,

and click Open.

5. Compile the project in the Quartus II software.

Altera Corporation 10–17
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Using Quartus II Software to Launch the Precision RTL Synthesis
Software

Using NativeLink integration, you can set up the Quartus II software to
run the Precision RTL Synthesis software. This feature allows you to use
the Precision RTL Synthesis software to synthesize a design as part of a
normal compilation.

f For detailed information about using NativeLink integration with the
Precision RTL Synthesis software, go to Specifying EDA Tool Settings in
the Quartus II Help index.

Passing Constraints to the Quartus II Software

The place-and-route constraints script forward-annotates timing
constraints that you made in the Precision RTL Synthesis software. This
integration allows you to enter these constraints once in the Precision
RTL Synthesis software, and then pass them automatically to the
Quartus II software.

1 All of the constraints you set in the Precision software are
mapped to the Quartus II software. For same constraint you set
in the Precision software, there may be a different command
mapped to the Quartus II software, depending on whether you
are using the TimeQuest Timing Analyzer or the Classic Timing
Analyzer.

f Refer to the introductory text in the section Exporting Designs to the
Quartus II Software Using NativeLink Integration on page 10–14 for
information on how to ensure Precision targets the TimeQuest Timing
Analyzer.

The following constraints are translated by the Precision RTL Synthesis
software and are applicable to the Classic Timing Analyzer and the
TimeQuest Timing Analyzer:

■ create_clock
■ set_input_delay
■ set_output_delay
■ set_max_delay
■ set_min_delay
■ set_false_path
■ set_multicycle_path

10–18 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

create_clock

You can specify a clock in the Precision RTL Synthesis software, as shown
in Example 10–3.

Example 10–3. Specifying a Clock using create_clock
create_clock -name <clock_name> -period <period in ns> -waveform {<edge_list>}
-domain <ClockDomain> <pin>

The period is specified in units of nanoseconds (ns). If no clock domain is
specified, the clock belongs to a default clock domain main. All clocks in
the same clock domain are treated as synchronous (related) clocks. If no
<clock_name> is provided, the default name virtual_default is used.
The <edge_list> sets the rise and fall edges of the clock signal over an
entire clock period. The first value in the list is a rising transition, typically
the first rising transition after time zero. The waveform can contain any
even number of alternating edges, and the edges listed should alternate
between rising and falling. The position of any edge can be equal to or
greater than zero but must be equal to or less than the clock period.

If -waveform <edge_list> is not specified, and -period <period_value>
is specified, the default waveform has a rising edge of 0.0 and a falling
edge of <period_value>/2.

The Precision RTL Synthesis software passes the clock definitions to the
Quartus II software with the create_base_clock command in the
place-and-route constraints file for the Classic Timing Analyzer. For the
TimeQuest Timing Analyzer, the clock constraint is mapped to the
TimeQuest create_clock setting in the Quartus II software.

The following list describes some differences in the clock properties
supported by the Precision RTL Synthesis software and the Quartus II
software:

■ The Quartus II software supports only clock waveforms with two
edges in a clock cycle. If the Precision RTL Synthesis software finds
a multi-edge clock, it issues an error message when you synthesize
your design in Precision RTL Synthesis software. This applies to both
the Quartus II TimeQuest Timing Analyzer and the Quartus II
Classic Timing Analyzer.

■ Clocks in the same clock -domain are annotated with the
create_relative_clock command to create related clocks for
the Quartus II Classic Timing Analyzer.

■ The Quartus II Classic Timing Analyzer assumes the first clock edge
to be at time 0.0. If the Precision RTL Synthesis software waveform
has a first transition at a time different than time zero (0.0), the

Altera Corporation 10–19
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

Precision RTL Synthesis software creates a base clock without any
target, then uses this to create a relative clock with an offset set to the
first clock edge.

set_input_delay

This port-specific input delay constraint is specified in the Precision RTL
Synthesis software, as shown in Example 10–4.

Example 10–4. Specifying set_input_delay
set_input_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise
-fall -add_delay

This constraint is mapped to the set_input_delay setting in the
Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are
assumed to be the reference clocks for this assignment. The input pin
name for the assignment can be an input pin name of a time group. The
software can use the option clock_fall to specify delay relative to the
falling edge of the clock.

1 Although the Precision RTL Synthesis software allows you to set
input delays on pins inside the design, these constraints are not
sent to the Quartus II software, and a message is displayed.

set_output_delay

This port-specific output delay constraint is specified in the Precision RTL
Synthesis software, as shown in Example 10–5.

Example 10–5. Using the set_output_delay Constraint
set_output_delay {<delay_value> <port_pin_list>} -clock <clock_name> -rise -fall
-add_delay

This constraint is mapped to the set_output_delay setting in the
Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are
assumed to be the reference clocks for this assignment. The output pin
name for the assignment can be an output pin name of a time group.

10–20 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

1 Although the Precision RTL Synthesis software allows you to set
output delays on pins inside the design, these constraints are not
sent to the Quartus II software.

set_max_delay

The total delay for a point-to-point timing path constraint is specified in
the Precision RTL Synthesis software, as shown in Example 10–6.

Example 10–6. Using the set_max_delay Constraint
set_max_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

This command specifies that the maximum required delay for any start
point in <from_node_list> to any endpoint in <to_node_list> must be less
than <delay_value>. Typically, this command is used to override the
default setup constraint for any path with a specific maximum time value
for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or
cells. The -from, and -to parameters specify the source (start point),
and the destination (endpoint) of the timing path respectively. The source
list (<from_node_list>) cannot include output ports, and the destination
list (<to_node_list>) cannot include input ports. If you include more than
one node on a list, you must enclose the nodes in quotes or in '{ }' braces.

If you specify a clock in the source list, you must specify a clock in the
destination list. Applying set_max_delay between clocks applies the
exception from all registers or ports driven by the source clock to all
registers or ports driven by the destination clock. Applying exceptions
between clocks is more efficient than applying them for specific node to
node, or node to clock paths. If you want to specify pin names in the list,
the source must be a clock pin, and the destination must be any non-clock
input pin to a register. Assignments from clock pins, or to and from cells,
apply to all registers in the cell or for those driven by the clock pin.

set_min_delay

The minimum delay for a point-to-point timing path constraint is
specified in the Precision RTL Synthesis software, as shown in
Example 10–7.

Example 10–7. Using the set_min_delay Constraint
set_min_delay -from {<from_node_list>} -to {<to_node_list>} <delay_value>

Altera Corporation 10–21
October 2007

Exporting Designs to the Quartus II Software Using NativeLink Integration

This command specifies that the minimum required delay for any start
point in <from_node_list> to any endpoint in <to_node_list> must be
greater than <delay_value>. Typically, you use this command to override
the default setup constraint for any path with a specific minimum time
value for the path.

The node lists can contain a collection of clocks, registers, ports, pins, or
cells. The -from, and -to specify the source (start point), and the
destination (endpoint) of the timing path respectively. The source list
(<from_node_list>) cannot include output ports, and the destination list
(<to_node_list>) cannot include input ports. If you include more than one
node to a list, you must enclose the nodes in quotes or in '{ }' braces.

If you specify a clock in the source list, you must specify a clock in the
destination list. Applying set_min_delay between clocks applies the
exception from all registers or ports driven by the source clock to all
registers or ports driven by the destination clock. Applying exceptions
between clocks is more efficient than applying them for specific node to
node, or node to clock paths. If you want to specify pin names in the list,
the source must be a clock pin, and the destination must be any non-clock
input pin to a register. Assignments from clock pins, or to and from cells,
apply to all registers in the cell or for those driven by the clock pin.

set_false_path

The false path constraint is specified in the Precision RTL Synthesis
software, as shown in Example 10–8.

Example 10–8. Using the set_false_path Constraint
set_false_path -to <to_node_list> -from <from_node_list> -reset_path

The node lists can be a list of clocks, ports, instances, and pins. Multiple
elements in the list can be represented using wildcards such as “*” and
“?.”

In place-and-route Tcl constraints file, this setting in the Precision RTL
Synthesis software is mapped to a set_timing_cut_assignment
setting for the Classic Timing Analyzer. For the TimeQuest Timing
Analyzer, this constraint is mapped to the set_false_path setting.

The node lists for this assignment represents top-level ports and/or nets
connected to instances (end points of timing assignments).

The Quartus II software supports setup, hold, rise, or fall options
for this assignment only if you are using the TimeQuest Timing Analyzer.

10–22 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

The Quartus II Classic Timing Analyzer does not support false paths with
the through path specification. Any setting in the Precision RTL
Synthesis software with a through specification can be mapped to a
setting in the Quartus II software only if you use the TimeQuest Timing
Analyzer.

For the Classic Timing Analyzer, if you use the from or to option
without using both options, the Precision RTL Synthesis command is
converted to a Quartus II command using wildcards. Table 10–3 lists
these set_false_path constraints in the Precision RTL Synthesis
software and the Quartus II software equivalent when the Classic Timing
Analyzer is used.

set_multicycle_path

This multi-cycle path constraint is specified in the Precision RTL
Synthesis software, as shown in Example 10–9.

Example 10–9. Using the set_multicycle_path Constraint
set_multicycle_path <multiplier_value> [-start] [-end] -to <to_node_list> -from
<from_node_list> -reset_path

The node lists can contain clocks, ports, instances, and pins. Multiple
elements in the list can be represented using wildcards such as “*” and
“?.” Paths without multicycle path definitions are identical to paths with
multipliers of 1. To add one additional cycle to the datapath, use a
multiplier value of 2. The option start is to indicate that source clock
cycles should be considered for the multiplier. The option end is to
indicate that destination clock cycles should be considered for the
multiplier. The default is to reference the end clock.

In the place-and-route Tcl constraints file, this setting in the Precision RTL
Synthesis software is mapped to a set_multicycle_assignment
setting for the Classic Timing Analyzer. For TimeQuest Timing Analyzer,
this constraint is mapped to the set_multicycle_path setting.

Table 10–3. set_false_path Constraints with the Classic Timing Analyzer

Precision RTL Synthesis Assignment Quartus II Equivalent

set_false_path -from <from_node_list> set_timing_cut_assignment -to {*} -from <node_list>

set_false_path -to <to_node_list> set_timing_cut_assignmet -to <node_list> -from {*}

Altera Corporation 10–23
October 2007

Megafunctions and Architecture-Specific Features

The node lists represent top-level ports and/or nets connected to
instances (end points of timing assignments). The node lists can contain
wildcards (such as ‘*’); the Quartus II software automatically expands all
wildcards.

For the Classic Timing Analyzer, if you use the from or to option
without using both options, the Precision RTL Synthesis command is
converted to a Quartus II command using wildcards. Table 10–4 lists the
set_multicycle_path constraints in the Precision RTL Synthesis
software and the Quartus II software equivalent, when the Classic
Timing Analyzer is used.

The Quartus II software supports the rise or fall options on this
assignment only if you use the TimeQuest Timing Analyzer.

The Quartus II Classic Timing Analyzer does not support multicycle path
with a through path specification. Any setting in Precision RTL
Synthesis software with a -through specification can be mapped to a
setting in the Quartus II software only if you use the TimeQuest Timing
Analyzer.

Megafunctions
and
Architecture-
Specific
Features

Altera provides parameterizable megafunctions including LPM,
device-specific Altera megafunctions, intellectual property (IP) available
as Altera MegaCore functions, and IP available through the Altera
Megafunction Partners Program (AMPPSM). You can use megafunctions
by instantiating them in your HDL code or inferring them from generic
HDL code.

f For more details about specific Altera megafunctions, refer to the
Quartus II Help. For more information about IP functions, consult the
appropriate IP documentation.

To instantiate a megafunction in your HDL code, you can use the
MegaWizard® Plug-In Manager to parameterize the function or you can
instantiate the function using the port and parameter definition. The

Table 10–4. set_multicycle_path Constraints for the Classic Timing Analyzer

Precision RTL Synthesis Assignment Quartus II Equivalent

set_multicycle_path -from
<from_node_list> <value>

set_multicycle_assignment -to {*} -from
<node_list> <value>

set_multicycle_path -to <to_node_list>
<value>

set_multicycle_assignmet -to <node_list> -
from {*} <value>

10–24 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

MegaWizard Plug-In Manager provides a graphical interface for
customizing and parameterizing any available megafunction for the
design. “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” on page 10–24 describes the MegaWizard flow with
the Precision RTL Synthesis software.

The Precision RTL Synthesis software automatically recognizes certain
types of HDL code and infers the appropriate megafunction when a
megafunction will provide optimal results. The Precision RTL Synthesis
software also provides options to control inference of certain types of
megafunctions, as described in “Inferring Altera Megafunctions from
HDL Code” on page 10–25.

f For a detailed information about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. This chapter also provides details
about using the MegaWizard Plug-In Manager in the Quartus II
software and explains the files generated by the wizard. In addition, the
chapter provides coding style recommendations and examples for
inferring megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction and to create a custom megafunction
variation, the MegaWizard creates either a VHDL or Verilog HDL
wrapper file.

Instantiating the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black-box methodology because the megafunction is
treated as a black box in the Precision RTL Synthesis software.

1 Beginning with Quartus II software version 7.1, there is an
option in the MegaWizard Plug-In Manager to create a netlist
for area and timing estimation instead of a wrapper file. This
option is not currently supported with the Precision RTL
Synthesis software, therefore you must use the megafunction
wrapper file as described in this section.

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for
Black-Box Megafunction Instantiation
The MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file <output file>_inst.v and a hollow-body black-box module
declaration <output file>_bb.v for use in your Precision RTL Synthesis
design. The instantiation template file helps to instantiate the
megafunction variation wrapper file, <output file>.v, in your top-level

Altera Corporation 10–25
October 2007

Megafunctions and Architecture-Specific Features

design. Add the hollow-body black-box module declaration
<output file>_bb.v to your Precision RTL Synthesis project to describe the
port connections of the black box.

Including the megafunction variation wrapper file <output file>.v in your
Precision RTL Synthesis project is optional, but you must add it to your
Quartus II project along with your Precision RTL synthesis-generated
EDIF netlist. Alternately, you can include the file in your Precision project
and then right-click on the file in the input file list, and select Properties.
In the input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is on, the Precision RTL
Synthesis software does not compile this file and the tool makes a copy of
the file in the appropriate directory so that the Quartus II software can
compile the design during placement and routing.

Using MegaWizard Plug-In Manager-Generated VHDL Files for
Black-Box Megafunction Instantiation
The MegaWizard Plug-In Manager generates a VHDL Component
declaration file <output file>.cmp and a VHDL Instantiation template file
<output file>_inst.vhd for use in your Precision RTL Synthesis design.
These files can help you instantiate the megafunction variation wrapper
file, <output file>.vhd, in your top-level design.

Including the megafunction variation wrapper file, <output file>.vhd, in
your Precision RTL synthesis project is optional, but you must add it to
your Quartus II project with your Precision RTL synthesis-generated
EDIF netlist. Alternately, you can include the file in your Precision project
and then right-click on the file in the input file list, and select Properties.
In the input file properties dialog box, turn on Exclude file from
Compile Phase and click OK. When this option is on, the Precision RTL
Synthesis software does not compile this file and the tool makes a copy of
the file in the appropriate directory so that the Quartus II software can
compile the design during placement and routing.

Inferring Altera Megafunctions from HDL Code

The Precision RTL Synthesis software automatically recognizes certain
types of HDL code and maps arithmetic and relational operators, and
memory (RAM and ROM), to efficient technology-specific
implementations. This allows for the use of technology-specific resources
to implement these structures by inferring the appropriate Altera
megafunction when a megafunction will provide optimal results. In some
cases, the Precision RTL Synthesis software has options that you can use
to disable or control inference.

10–26 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook, and the Precision
Synthesis Style Guide in the Precision RTL Synthesis Manuals Bookcase in
the Help menu.

Multipliers

The Precision RTL Synthesis software detects multipliers in HDL code
and maps them directly to device atoms to implement the multiplier in
the appropriate type of logic. The Precision RTL Synthesis software also
allows you to control the device resources that are used to implement
individual multipliers, as described in the following section.

Controlling DSP Block Inference for Multipliers
By default, the Precision RTL Synthesis software uses DSP blocks
available in the Stratix series of devices to implement multipliers. The
default setting is AUTO, to allow Precision RTL Synthesis software the
flexibility to choose between logic look-up tables (LUTs) and DSP blocks,
depending on the size of the multiplier. You can use the Precision RTL
Synthesis GUI or HDL attributes to direct the mapping to only logic
elements or to only DSP blocks. The options for multiplier mapping in the
Precision RTL Synthesis software are shown in Table 10–5.

Table 10–5. Options for dedicated_mult Parameter to Control Multiplier Implementation in Precision RTL
Synthesis

Value Description

ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.

OFF Use only logic (LUTs) to implement multipliers.

AUTO Use logic (LUTs) and DSP blocks to implement multipliers depending on the size of the
multipliers.

Altera Corporation 10–27
October 2007

Megafunctions and Architecture-Specific Features

Using the GUI

To set the Use Dedicated Multiplier option in the Precision RTL Synthesis
GUI, perform the following steps:

1. Compile the design.

2. In the Design Hierarchy browser, right-click the operator for the
desired multiplier and click Use Dedicated Multiplier.

Using Attributes

To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value from Table 10–5 on
page 10–26, as shown in Example 10–10 and Example 10–11.

Example 10–10. Setting the dedicated_mult Attribute in Verilog HDL
//synthesis attribute <signal name> dedicated_mult <value>

Example 10–11. Setting the dedicated_mult Attribute in VHDL
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE dedicated_mult OF <signal name>: SIGNAL IS <value>;

The dedicated_mult attribute can be applied to signals and wires; it
does not work when applied to a register. This attribute can be applied only
to simple multiplier code, such as a = b * c.

Some signals for which the dedicated_mult attribute is set may be
synthesized away by the Precision RTL Synthesis software because of
design optimization. In such cases, if you want to force the
implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE, as shown in Example 10–12 and
Example 10–13.

Example 10–12. Setting the preserve_signal Attribute in Verilog HDL
//synthesis attribute <signal name> preserve_signal TRUE

Example 10–13. Setting the preserve_signal Attribute in VHDL
ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE preserve_signal OF <signal name>: SIGNAL IS TRUE;

10–28 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Example 10–14 and Example 10–15 are examples in Verilog HDL and
VHDL of using the dedicated_mult attribute to implement the given
multiplier in regular logic in the Quartus II software.

Example 10–14. Verilog HDL Multiplier Implemented in Logic
module unsigned_mult (result, a, b);

output [15:0] result;
input [7:0] a;
input [7:0] b;
assign result = a * b; //synthesis attribute result dedicated_mult OFF

endmodule

Example 10–15. VHDL Multiplier Implemented in Logic
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY unsigned_mult IS
PORT(

a: IN std_logic_vector (7 DOWNTO 0);
b: IN std_logic_vector (7 DOWNTO 0);
result: OUT std_logic_vector (15 DOWNTO 0));

ATTRIBUTE dedicated_mult: STRING;
END unsigned_mult;

ARCHITECTURE rtl OF unsigned_mult IS
SIGNAL a_int, b_int: UNSIGNED (7 downto 0);
SIGNAL pdt_int: UNSIGNED (15 downto 0);

ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);
b_int <= UNSIGNED (b);
pdt_int <= a_int * b_int;
result <= std_logic_vector(pdt_int);

END rtl;

Multiplier-Accumulators and Multiplier-Adders

The Precision RTL Synthesis software detects multiply-accumulators or
multiply-adders in HDL code and infers an altmult_accum or
altmult_add megafunction so that the logic can be placed in DSP
blocks, or maps directly to device atoms to implement the multiplier in
the appropriate type of logic.

Altera Corporation 10–29
October 2007

Megafunctions and Architecture-Specific Features

1 The Precision RTL Synthesis software supports inference for
these functions only if the target device family has dedicated
DSP blocks.

The Precision RTL Synthesis software also allows you to control the
device resources used to implement multiply-accumulators or
multiply-adders in your project or in a particular module. Refer to the
“Controlling DSP Block Inference” on page 10–29 section for more
information.

f For more information about DSP blocks in Altera devices, refer to the
appropriate Altera device family handbook and device-specific
documentation. For details about which functions a given DSP block can
implement, refer to the DSP Solutions Center on the Altera web site at
www.altera.com.

f For more information about inferring Multiply-Accumulator and
Multiply-Adder megafunctions in HDL code, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook, and
the Precision Synthesis Style Guide in the Precision RTL Synthesis Manuals
Bookcase in the Help menu.

Controlling DSP Block Inference

By default, the Precision RTL Synthesis software infers the altmult_add
or altmult_accum megafunction as appropriate for your design. These
megafunctions allow the Quartus II software the flexibility to choose
regular logic or DSP blocks depending on the device utilization and the
size of the function.

You can use the extract_mac attribute to prevent the inference of an
altmult_add or altmult_accum megafunction in a certain module or
entity. The options for this attribute are shown in Table 10–6.

Table 10–6. Options for extract_mac Attribute Controlling DSP Implementation

Value Description

TRUE The altmult_add or altmult_accum megafunction is inferred

FALSE The altmult_add or altmult_accum megafunction is not inferred

http://www.altera.com
http://www.altera.com
http://www.altera.com

10–30 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

To control inference, use the extract_mac attribute with the
appropriate value from Table 10–6 on page 10–29 in your HDL code, as
shown in Example 10–16 and Example 10–17.

Example 10–16. Setting the extract_mac Attribute in Verilog HDL
//synthesis attribute <module name> extract_mac <value>

Example 10–17. Setting the extract_mac Attribute in VHDL
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

To control the implementation of the multiplier portion of a
multiply-accumulator or multiply-adder, you must use the
dedicated_mult attribute as described in “Controlling DSP Block
Inference” on page 10–29 (see this section for syntax details).

Example 10–18 and Example 10–19 use the extract_mac,
dedicated_mult, and preserve_signal attributes (in Verilog HDL
and VHDL) to implement the given DSP function in logic in the
Quartus II software.

Altera Corporation 10–31
October 2007

Megafunctions and Architecture-Specific Features

Example 10–18. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL
module unsig_altmult_accum1 (dataout, dataa, datab, clk, aclr, clken);

input [7:0] dataa, datab;
input clk, aclr, clken;
output [31:0] dataout;

reg [31:0] dataout;
wire [15:0] multa;
wire [31:0] adder_out;

assign multa = dataa * datab;

//synthesis attribute multa preserve_signal TRUE
//synthesis attribute multa dedicated_mult OFF
assign adder_out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin

if (aclr)
dataout <= 0;

else if (clken)
dataout <= adder_out;

end

//synthesis attribute unsig_altmult_accum1 extract_mac FALSE
endmodule

Example 10–19. Using extract_mac, dedicated_mult, and preserve_signal in VHDL
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_signed.all;

ENTITY signedmult_add IS
PORT(

a, b, c, d: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
result: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

);
ATTRIBUTE preserve_signal: BOOLEAN;
ATTRIBUTE dedicated_mult: STRING;
ATTRIBUTE extract_mac: BOOLEAN;
ATTRIBUTE extract_mac OF signedmult_add: ENTITY IS FALSE;

END signedmult_add;

ARCHITECTURE rtl OF signedmult_add IS
SIGNAL a_int, b_int, c_int, d_int : signed (7 DOWNTO 0);
SIGNAL pdt_int, pdt2_int : signed (15 DOWNTO 0);
SIGNAL result_int: signed (15 DOWNTO 0);

10–32 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

ATTRIBUTE preserve_signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt_int: SIGNAL IS "OFF";
ATTRIBUTE preserve_signal OF pdt2_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated_mult OF pdt2_int: SIGNAL IS "OFF";

BEGIN
a_int <= signed (a);
b_int <= signed (b);
c_int <= signed (c);
d_int <= signed (d);
pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
result <= STD_LOGIC_VECTOR(result_int);

END rtl;

RAM and ROM

The Precision RTL Synthesis software detects memory structures in HDL
code and converts them to an operator that infers an altsyncram or
lpm_ram_dp megafunction, depending on the device family. The
software then places these functions in memory blocks.

The software supports inference for these functions only if the target
device family has dedicated memory blocks.

f For more information about inferring RAM and ROM megafunctions in
HDL code, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style
Guide in the Precision RTL Synthesis Manuals Bookcase in the Help
menu.

Incremental
Compilation and
Block-Based
Design

As designs become more complex and designers work in teams, a
block-based hierarchical or incremental design flow is often an effective
design approach. In an incremental compilation flow, you can make
changes to a part of the design while maintaining the placement and
performance of unchanged parts of the design. Design iterations can be
made dramatically faster by focusing new compilations on particular
design partitions and merging results with the results of previous
compilations of other partitions. In a bottom-up or team-based approach,
you can perform optimization on individual blocks and then integrate
them into a final design and optimize it at the top level.

Using the Precision RTL Synthesis software, you can create different
netlist files for different partitions of a design hierarchy. This makes each
partition independent of the others for either a top-down or a bottom-up
incremental compilation flow. In either case, only the portions of a design

Altera Corporation 10–33
October 2007

Incremental Compilation and Block-Based Design

that have been updated must be recompiled during design iterations.
You can make changes and resynthesize one partition in a design to
create a new netlist without affecting the synthesis results or fitting of
other partitions. The following steps show the general top-down
compilation flow when using these features of the Quartus II software:

1. Create Verilog HDL or VHDL design files as you do in the regular
design flow.

2. Determine which hierarchical blocks you want to treat as separate
partitions in your design.

3. Create a project with multiple implementations (or create multiple
projects) in the Precision RTL Synthesis software, one for each
partition in the design.

4. Disable I/O pad insertion in the implementations for lower-level
partitions.

5. Compile and synthesize each implementation or each project in the
Precision RTL Synthesis software, and make constraints as in the
regular design flow.

6. Import the EDIF netlist and the Tcl file for each partition into the
Quartus II software and set up the Quartus II project(s) to use
incremental compilation.

7. Compile your design in the Quartus II software and preserve the
compilation results using the post-fit netlist type.

8. When you make design or synthesis optimization changes to part of
your design, resynthesize only the changed partition to generate the
new EDIF netlist and Tcl file. Do not resynthesize the
implementations or projects for the unchanged partitions.

9. Import the new EDIF netlist and Tcl file into the Quartus II software
and recompile the design in the Quartus II software using
incremental compilation.

f For more information about creating partitions and using the
incremental compilation in the Quartus II software, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

10–34 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Hierarchy and Design Considerations

To ensure the proper functioning of the synthesis flow, you can create
separate partitions only for modules, entities, or existing netlist files. In
addition, each module or entity must have its own design file. If two
different modules are in the same design file but are defined as being part
of different partitions, you cannot maintain incremental synthesis
because both regions must be recompiled when you change one of the
modules.

Altera recommends that you register all inputs and outputs of each
partition. This makes logic synchronous and avoids any delay penalty on
signals that cross partition boundaries.

If you use boundary tri-states in a lower level block, the Precision RTL
Synthesis software pushes the tri-states through the hierarchy to the top
level to make use of the tri-state drivers on output pins of Altera devices.
Because pushing tri-states requires optimizing through hierarchies, lower
level tri-states are not supported with a block-based compilation
methodology. You should use tri-state drivers only at the external output
pins of the device and in the top-level block in the hierarchy.

f For more tips on design partitioning, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

Creating a Design with Separate Netlist Files

The first step in a hierarchical or incremental design flow is to ensure that
different parts of your design do not affect each other. Ensure that you
have separate netlists for each partition in your design so that you can
take advantage of the incremental compilation design flow in the
Quartus II software. If the whole design is in one netlist file, changes in
one partition affect other partitions because of possible node name
changes when you resynthesize the design.

You can create different implementations for each partition in your
Precision RTL project, which allows you to switch between partitions
without leaving the current project file, or you can create a separate
project for each partition if you need separate projects for a bottom-up or
team-based design flow.

Create a separate implementation or a separate project for each lower
level module and for the top-level design that you want to maintain as a
separate EDIF netlist file. Implement black-box instantiations of lower
level modules in your top-level implementation or project.

Altera Corporation 10–35
October 2007

Incremental Compilation and Block-Based Design

f For more information about managing implementations and projects,
refer to the Precision RTL Synthesis User’s Manual in the Precision
Manuals Bookcase in the Help menu.

When synthesizing the implementations for lower level modules,
perform these steps:

1. On the Tools menu, turn off Add IO Pads on the Optimization
page under Set Options.

2. Read the HDL files for the modules.

1 Modules may include black-box instantiations of lower level
modules that are also maintained as separate EDIF files.

3. Add constraints for all partitions in the design.

When synthesizing the top-level design implementation, perform these
steps:

1. Read the HDL files for top-level designs.

2. Create black boxes for lower level modules in the top-level design.

3. Add constraints.

1 In a top-down incremental compilation flow, constraints made
on lower level modules are not passed to the Quartus II
software. Ensure that appropriate constraints are made in the
top-level Precision RTL Synthesis project, or in the Quartus II
project.

The following sections describe an example of implementing black boxes
to create separate EDIF netlists. Figure 10–2 shows an example of a design
hierarchy separated into various partitions.

10–36 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Figure 10–2. Partitions in a Hierarchical Design

In Figure 10–2, the top-level partition contains the top-level block in the
design (block A) and the logic that is not defined as part of another
partition. In this example, the partition for top-level block A also includes
the logic in the C subblock. Because block F is contained in its own
partition, it is not treated as part of the top-level partition A. Another
separate partition, B, contains the logic in blocks B, D, and E. In a
team-based design, different engineers may work on the logic in different
partitions. One netlist is created for the top-level module A and its
submodule C, another netlist is created for B and its submodules D and
E, while a third netlist is created for F. To create multiple EDIF netlist files
for this design, follow these steps:

1. Generate an EDIF file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate an EDIF file for module F. Use F.v/.vhd as the source file.

3. Generate a top-level EDIF file for module A. Use A.v/.vhd and
C.v/.vhd as the source files. Ensure that you create black boxes for
modules B and F, which were optimized separately in the previous
steps.

Altera Corporation 10–37
October 2007

Incremental Compilation and Block-Based Design

Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project or included in the list
of files to be read for a project is treated as a black box by the software. In
Verilog HDL, you must provide an empty module declaration for any
module that is treated as a black box.

A black-box example for top-level file A.v follows. Use this same
procedure for any lower level files, which also contain a black box for any
module beneath the current level of hierarchy.

Example 10–20. Verilog HDL Black Box for Top-Level File A.v
module A (data_in, clk, e, ld, data_out);

input data_in, clk, e, ld;
output [15:0] data_out;

wire [15:0] cnt_out;

B U1 (.data_in (data_in),.clk(clk), .ld (ld),.data_out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .q(data_out));

// Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.

module B (data_in, clk, ld, data_out);
input data_in, clk, ld;
output [15:0] data_out;

endmodule

module F (d, clk, e, q);
input [15:0] d;
input clk, e;
output [15:0] q;

endmodule

Creating Black Boxes in VHDL

Any design block that is not defined in the project or included in the list
of files to be read for a project is treated as a black box by the software. In
VHDL, you need a component declaration for the black box just like any
other block in the design.

10–38 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

A black box for the top-level file A.vhd is shown in the following
example. Follow this same procedure for any lower level files that also
contain a black box or for any block beneath the current level of hierarchy.

Example 10–21. VHDL Black Box for Top-Level File A.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;

clk, e, ld : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);

END A;

ARCHITECTURE a_arch OF A IS
COMPONENT B PORT(

data_in : IN INTEGER RANGE 0 TO 15;
clk, ld : IN STD_LOGIC;
d_out : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

COMPONENT F PORT(
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD_LOGIC;
q : OUT INTEGER RANGE 0 TO 15);

END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;

BEGIN
U1 : B
PORT MAP (

data_in => data_in,
clk => clk,
ld => ld,
d_out => cnt_out);

U2 : F
PORT MAP (

d => cnt_out,
clk => clk,
e => e,
q => data_out);

-- Any other code in A.vhd goes here

END a_arch;

Altera Corporation 10–39
October 2007

Incremental Compilation and Block-Based Design

After you complete the steps outlined in this section, you have different
EDIF netlist files for each partition of the design. These files are ready for
use in the incremental compilation or LogicLock design methodologies in
the Quartus II software.

Creating Quartus II Projects for Multiple EDIF Files

The Precision RTL Synthesis software creates a Tcl file for each EDIF file,
and provides the Quartus II software with the appropriate constraints
and information to set up a project. For details about using the Tcl script
generated by the Precision RTL software to set up your Quartus II project
and to pass your top-level constraints, refer to “Running the Quartus II
Software Manually Using the Precision RTL Synthesis-Generated Tcl
Script” on page 10–16.

Depending on your design methodology, you can create one Quartus II
project for all EDIF netlists (a top-down flow), or a separate Quartus II
project for each EDIF netlist (a bottom-up flow). In a top-down
compilation design flow, you create design partition assignments and
floorplan location assignments for each partition in the design within a
single Quartus II project. This methodology provides the best quality of
results and performance preservation during incremental changes to
your design. You may need to use a bottom-up design flow when each
partition must be optimized separately, such as in certain team-based
design flows.

To perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a
top-level design using the incremental compilation export and import
features to maintain placement results. Alternately, you can use the
LogicLock design methodology to import each lower-level partition and
maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

10–40 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Creating a Single Quartus II Project for a Top-Down Incremental
Compilation Flow

Use the <top-level project>.tcl file generated for the top-level partition to
create your Quartus II project and import all the netlists into this one
Quartus II project for an incremental compilation flow. You can optimize
all partitions within the single Quartus II project and take advantage of
the performance preservation and compilation time reduction that
incremental compilation provides. Figure 10–3 shows the design flow for
the example design in Figure 10–2 on page 10–36.

All the constraints from the top-level implementation are passed to the
Quartus II software in the top-level Tcl file, but any constraints made only
in the lower level implementations within the Precision RTL Synthesis
software are not forward-annotated. Enter these constraints manually in
your Quartus II project.

Figure 10–3. Design Flow Using Multiple EDIF Files with One Quartus II
Project

Altera Corporation 10–41
October 2007

Conclusion

Creating Multiple Quartus II Projects for a Bottom-Up Flow

Use the Tcl files generated by the Precision RTL Synthesis software for
each Precision RTL Synthesis software implementation or project to
generate multiple Quartus II projects, one for each partition in the design.
Each designer in the project can optimize their block separately in the
Quartus II software and export the placement of their blocks using the
incremental compilation or LogicLock design methodology. Designers
should create a LogicLock region for each block; the top-level designer
should then import all the blocks and assignments into the top-level
project. Figures 10–4 shows the design flow for the example design in
Figure 10–2 on page 10–36.

Figure 10–4. Design Flow: Using Multiple EDIF Files with Multiple Quartus II Projects

Conclusion Advanced synthesis is an important part of the design flow. The Mentor
Graphics Precision RTL Synthesis software and Quartus II design flow
allows you to control how to prepare your design files for the Quartus II
place-and-route process. This allows you to improve performance and
optimize a design for use with Altera devices. Several of the
methodologies outlined in this chapter can help you optimize a design to
achieve performance goals and decrease design time.

Quartus II Project Quartus II Project

a.edf

b.edf f.edf

Quartus II Project

Use a.tcl to import
Precision RTL synthesis
software assignments.

Use f.tcl to import
Precision RTL synthesis
software assignments.

Use b.tcl to import
Precision RTL synthesis

software assignments.

10–42 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Referenced
Documents

This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the
Quartus II Handbook

■ Precision RTL Synthesis User’s Manual in the Precision Manuals
Bookcase in the Help menu

■ Precision Synthesis Style Guide in the Precision RTL Synthesis
Manuals Bookcase in the Help menu

■ Precision Synthesis Reference Manual in the Precision Manuals
Bookcase in the Help menu

■ Specifying EDA Tool Settings in the Quartus II Help index
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook

Document
Revision History

Table 10–7 shows the revision history for this chapter.

Table 10–7. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October, 2007
v7.2.0

● Added Arria GX to the list of supported
devices

● Added set_max_delay constraint
● Added set_min_delay constraint

Updated document based on the
Quartus II software version 7.2

May 2007
v7.1.0

● Minor updates for the Quartus II software
version 7.1.

● Add “Referenced Documents” section

—

March 2007
v7.0.0

● Chapter 10 was formally Chapter 9 in
version 6.0.

● Added SDC support for Stratix III and
Cyclone III devices

Added information regarding SDC for
Stratix III and Cyclone III; updated
information about in Precision RTL
Synthesis software and its
compatibility with the Quartus II
software.

May 2006
v6.0.0

Minor updates for the Quartus II software
version 6.0. —

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf

Altera Corporation 10–43
October 2007

Document Revision History

October 2005
v5.1.0

● Updated for the Quartus II software
version 5.1.

● Chapter 9 was formerly Chapter 10 in
version 5.0.

—

May 2005
v5.0.0

Chapter 10 was formerly chapter 8 in version
4.2.

—

December 2004
v2.1

● Chapter 9 was formerly Chapter 10 in
version 4.1.

● Updates to tables and figures.
● New functionality for Quartus II software

version 4.2.

—

June 2004
v2.0

● Updates to tables and figures.
● New functionality for Quartus II software

version 4.1.
—

February 2004
v1.0

Initial release.
—

Table 10–7. Document Revision History (Continued)

Date and Document
Version Changes Made Summary of Changes

10–44 Altera Corporation
October 2007

Mentor Graphics Precision RTL Synthesis Support

Altera Corporation 11–1
October 2007 Preliminary

11. Synopsys Design
Compiler FPGA Support

Introduction Programmable logic device (PLD) designs have reached the complexity
and performance requirements of ASIC designs. As a result, advanced
synthesis has taken on a more important role in the design process. This
chapter documents the usage and design flow of the Synopsys Design
Compiler FPGA (DC FPGA) synthesis software with Altera® devices and
Quartus® II software. DC FPGA supports Stratix® II, Stratix, Stratix GX,
Cyclone® II, and Cyclone devices.

This chapter assumes that you have set up and licensed the DC FPGA
software and Altera Quartus II software.

This chapter is primarily intended for ASIC designers experienced with
the Design Compiler (DC) software who are now developing PLD
designs, and experienced PLD designers who would like an introduction
to the Synopsys DC FPGA software.

f To obtain the DC FPGA software, libraries, and instructions on general
product usage, go to the Synopsys website at
http://solvnet.synopsys.com/retrieve/012889.html

The following areas are covered in this chapter:

■ General design flow with the DC FPGA software and the Quartus II
software

■ Initialization procedure using the .synopsys_dc.setup file for
targeting Altera devices

■ Using Altera megafunctions with the DC FPGA software
■ Reading design files into the DC FPGA software
■ Applying synthesis and timing constraints
■ Reporting and saving design information
■ Exporting designs to the Quartus II software

QII51014-7.2.0

11–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Design Flow
Using the
DC FPGA
Software and the
Quartus II
Software

A high-level overview of the recommended design flow for using the
DC FPGA software with the Quartus II software is shown in Figure 11–1.

Figure 11–1. Design Flow Using the DC FPGA Software and the Quartus II
Software

Functional or
RTL Simulation

Constraints
& Settings

Constraints
& Settings

Quartus II
Software

Synopsys DC FPGA
Software

Technology-Specific
Netlist
(.vqm)

Forward Annotated
Timing Constraints
(.tcl)

Configuration/
Programming Files
(.sof/.pof)

No

Yes

Timing
& Area

Requirements
Satisfied?

Verilog
HDL
(.v)

VHDL
(.vhd)

Configure/Program Device

Altera Corporation 11–3
October 2007 Preliminary

Setup of the DC FPGA Software Environment for Altera Device Families

Setup of the
DC FPGA
Software
Environment for
Altera Device
Families

Altera recommends that you organize your project directory with several
subdirectories. A recommended project hierarchy is shown in
Figure 11–2.

Figure 11–2. Project Hierarchy

To use the DC FPGA software to synthesize HDL designs for use with the
Quartus II software, the required settings should be included in your
.synopsys_dc.setup initialization file. This file is used to define global
variables and direct the DC FPGA software to the proper libraries used
for synthesis, as well as set internal assignments for synthesizing designs
for Altera devices.

The .synopsys_dc.setup file can reside in any one of three locations and
be read by the DC FPGA software. The DC FPGA software automatically
reads the .synopsys_dc.setup file at startup in the following order of
precedence:

1. Current directory where you run the DC FPGA software shell.

2. Home directory.

3. The DC FPGA software installation directory.

The DC FPGA software has vendor-specific setup files for each of the
Altera logic families in the installation directory. These vendor-specific
setup files are found where you have installed the libraries
(<dcfpga_rootdir>/libraries/fpga/altera) and are named in the form
synopsys_dc_<logic family>.setup. For example, if you want to use the
default setup for synthesizing an Altera Stratix device, you must link to
or copy the synopsys_dc_stratix.setup to your home or current directory
and rename the file .synopsys_dc.setup.

Synopsys recommends using the vendor-specific setup files provided
with each release of the DC FPGA software to ensure that you have all the
correct settings and obtain the best quality results.

11–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Example 11–1 contains the recommended synthesis settings for the
Stratix II device architecture.

Example 11–1. Recommended Synthesis Settings for Stratix II Device Architecture
Setup file for Altera Stratixii
TCL style setup file but will work for original DC shell as well
Need to define the root location of the libraries by chaning the variable
$dcfpga_lib_path

set dcfpga_lib_path "<dcfpga_rootdir>/libraries/fpga/altera"

set search_path ". $dcfpga_lib_path $dcfpga_lib_path/STRATIXII $search_path"
set target_library "stratixii.db"
set synthetic_library "tmg.sldb altera_mf.sldb lpm.sldb"
set link_library "* stratixii.db tmg.sldb altera_mf.sldb lpm.sldb stratixii_mf.sldb"

set_fpga_defaults altera_stratixii

After generating your .synopsys_dc.setup file, run the DC FPGA
software in either the Tcl shell or in the Design Compiler software shell
without Tcl support. Run the DC FPGA software shell at a command
prompt by typing fpga_shell-t or fpga_shell -tcl for the Tcl
shell version of the DC FPGA software. Run the non-Tcl version of the
DC FPGA software with the fpga_shell command. Altera
recommends using the Tcl shell for all of your synthesis work.

If you have created a Tcl synthesis script for use in the DC FPGA software
and wish to run it immediately at startup, you can start the DC FPGA
software shell and run the script with the command shown in the
example below:

fpga_shell-t -f <path>/<script filename>.tcl r
Otherwise, you can run your scripts at any time at the fpga_shell-t>
prompt with the source command. An example is shown below:

source <path>/<script filename>.tcl r

Altera Corporation 11–5
October 2007 Preliminary

Megafunctions and Architecture-Specific Features

Megafunctions
and
Architecture-
Specific
Features

Altera provides parameterized megafunctions including library of
parameterized modules (LPMs), device-specific Altera megafunctions,
intellectual property (IP) available as Altera MegaCore® functions, and IP
available through the Altera Megafunction Partners Program (AMPP).
You can use megafunctions by instantiating them in your HDL code, or
by inferring them from your HDL code during synthesis in the DC FPGA
software.

f For more details on specific Altera megafunctions, refer to the Quartus II
Help.

The DC FPGA software automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. The DC FPGA software also provides options to
control inference of certain types of megafunctions, as described in the
section “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” on page 11–6.

f For a detailed discussion about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. This chapter also provides details
about using the MegaWizard® Plug-In Manager in the Quartus II
software and explains the files generated by the wizard. In addition, the
chapter provides coding style recommendations and examples for
inferring megafunctions in Altera devices.

If you instantiate a megafunction in your HDL code, you can use the
MegaWizard Plug-In Manager to parameterize the function, or you can
instantiate the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface in the
Quartus II software for customizing and parameterizing megafunctions.
“Instantiating Altera Megafunctions Using the MegaWizard Plug-In
Manager” on page 11–6 describes the MegaWizard Plug-In Manager flow
with the DC FPGA synthesis software.

11–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Instantiating
Altera
Megafunctions
Using the
MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction, the MegaWizard Plug-In Manager creates
a VHDL or Verilog HDL wrapper file that instantiates the megafunction
(a black box methodology). The MegaWizard can also generate a fully
elaborated netlist that is read by EDA synthesis tools, such as the DC
FPGA (a clear box methodology). Both clear box and black box
methodologies are described in the following sections.

Clear Box Methodology

You can use the MegaWizard Plug-In Manager to generate a fully
synthesizeable netlist. This flow is referred to as a clear box methodology
because starting in V-2005.06, the DC FPGA software can look into the
megafunction file. The clear box feature enables the synthesis tool to
report more accurate timing estimates and resource utilization, while
taking a better advantage of timing driven optimization than a black box
methodology.

This clear box feature is enabled by turning on the Generate clear box
netlist file instead of a default wrapper file (for use with supported
EDA synthesis tools only) option in the MegaWizard Plug-In Manager
for certain megafunctions. DC FPGA supports clear box megafunctions
for altmult_add, almult_accum, altsyncram and
altshift_taps. If the option does not appear, then clear box models
are not supported for the selected megafunction.

1 The library declarations in the MegaWizard generated VHDL
output files need to be manually commented out to work
properly with the DC FPGA.

Reading Megafunction Wizard-Generated Synthesizable Clear Box Netlist
Files for Megafunction Instantiation

The DC FPGA software analyzes and elaborates the Megafunction
Wizard-generated Verilog HDL <output file>.v or VHDL <output file>.vhd
netlist that contains the parameters needed by the Quartus II software to
properly configure and instantiate your megafunction. Analyze the clear
box netlist files along with the rest of the RTL files during synthesis in DC
FPGA. The resulting netlist contains all the primitives that are part of the
clear box netlist. There is no need to put the clear box netlist file in your
Quartus II project along with your DC FPGA generated netlist file.

Altera Corporation 11–7
October 2007 Preliminary

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager

Using the clear box Megafunction Wizard-generated netlist files provides
the DC FPGA software an understanding of their timing arcs and
resource usage. The DC FPGA software uses timing information to
optimize the surrounding circuits and resource data to better manage the
overall resource usage for the whole design. The DC FPGA software takes
the clear box netlist timing and area data into account when reporting the
timing and resource utilization for the device.

Advanced Clear Box Support for the Direct-Instantiated or Inferred Clear
Box Megafunctions

The DC FPGA provides advanced clear box support that enables a clear
box implementation for the direct-instantiated or inferred megafunctions
in your design. This methodology allows the DC FPGA to obtain the most
accurate interface timing and area data for the megafunctions. Therefore,
synthesis optimization is more effective, and timing and area reports are
more accurate.

The following describes the setup and usage model for this advanced
clear box support.

Design Compiler FPGA Setup
The advanced clear box flow will be enabled in the DC FPGA only when
the clearbox.sldb synthetic library is added to the synthetic_library
variable. For example:

set synthetic_library [concat clearbox.sldb $synthetic_library]
set link_library [concat clearbox.sldb $link_library]

Specify the path to the clear box loader (executable) in one of the
following ways:

■ Set the synlib_cbx_exec_path variable to the absolute path of
the clear box loader before the compile command:

set synlib_cbx_exec_path <Quartus II installation directory
/bin/clearbox>

■ Set the UNIX environment variable CLEARBOX_EXEC_PATH to the
absolute path of the clear box loader. For example:

setenv CLEARBOX_EXEC_PATH <Quartus II installation
directory /bin/clearbox>

By default, the advance clear box flow is turned off. To enable the clear
box advanced flow, add the following to your DC FPGA script. Set it
before the compile command:

set fpga_altera_clearbox_for_user_cells true

11–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

UNIX Environment Setting
For the DC FPGA to work with the clear box loader, the following setting
is necessary for the LD_LIBRARY_PATH environment variable. Assume
the QuartusII_Path used below is set to the Quartus II installation
directory.

On a Linux platform:

setenv LD_LIBRARY_PATH QuartusII_Path/linux:$LD_LIBRARY_PATH

On a Solaris platform:

setenv LD_LIBRARY_PATH QuartusII_Path/solaris:$LD_LIBRARY_PATH

Error Message
The only error message that you might encounter when trying to enable
the advanced clear box flow is: DCFPGA_UEGI-1

The DC FPGA reports this error when one of the following situations
occurs:

■ It cannot find the clear box loader path. For example, the defined
path is incorrect.

■ The Loader is not found in the specified path.
■ The Loader specified is not executable.

Sample Design Compiler FPGA Clear Box Setup Script
The TCL script shown in Example 11–2 is a DC FPGA clear box setup
script. Use it before compiling the design in DC FPGA.

Example 11–2. Sample Clear Box Setup Script
set QuartusII_Path /tools/altera/qii51
set_unix_variable CLEARBOX_EXEC_PATH $QuartusII_Path/bin/clearbox
set old_llp [get_unix_variable LD_LIBRARY_PATH]
set platform [sh uname]

if { $platform == "Linux" } {
 set_unix_variable LD_LIBRARY_PATH $QuartusII_Path/linux: old_llp
} else {
 # Assume, if not linux, it is solaris
 set_unix_variable LD_LIBRARY_PATH $QuartusII_Path/solaris: old_llp

set synthetic_library [concat clearbox.sldb $synthetic_library]
set link_library [concat clearbox.sldb $link_library]

set fpga_altera_clearbox_for_user_cells true

Altera Corporation 11–9
October 2007 Preliminary

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager

Black Box Methodology

Using the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black box methodology because the megafunction is
treated as a black box in the DCFPGA software. The black box wrapper
file is generated by default in the MegaWizard Plug-In Manager and is
available for all megafunctions. The black box methodology does not
allow the synthesis tool any visibility into the function module and
therefore, does not take full advantage of the synthesis tool’s timing
driven optimization.

There are two ways of instantiating Megafunction Wizard-generated
functions in your design hierarchy loaded in the DC FPGA software. You
can instantiate and compile the Verilog HDL or VHDL variation wrapper
file description of your megafunction in the DC FPGA software, or you
can instantiate a black box that just describes the ports of your
megafunction variation wrapper file.

1 The library declarations in the MegaWizard generated VHDL
output files need to be manually commented out to work
properly with the DC FPGA.

Reading Megafunction Wizard-generated Variation Wrapper Files

The DC FPGA software has the ability to analyze and elaborate the
Megafunction Wizard-generated Verilog HDL <output file>.v or VHDL
<output file>.vhd netlist that contains the parameters needed by the
Quartus II software to properly configure and instantiate your
megafunction. The DC FPGA software may take advantage of this
variation wrapper file during the optimization of your design to reduce
area utilization and improve path delays. DC FPGA also supports altpll
in a non-black box flow (that is, the DC FPGA can automatically derive
PLL output clocks when the user has specified only the PLL input clock).

Using the megafunction variation wrapper file <output file>.v or
<output file>.vhd in the DC FPGA software synthesis provides good
synthesis results for area estimates, but actual timing results are best
predicted after place-and-route inside the Quartus II software. However,
reading the megafunction variation wrapper allows the DC FPGA
software to provide better synthesis estimates over a black box
methodology.

11–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Using Megafunction Wizard-Generated Variation Wrapper Files in a Black
Box Methodology

Instantiating the megafunction wizard-generated wrapper file without
reading it in the DC FPGA software is referred to as a black box
methodology because the megafunction is treated as an unknown
container in the DC FPGA software.

The black box methodology does not allow synthesis software to have
any visibility into the module, thereby not taking full advantage of the
timing driven optimization of the DC FPGA software and preventing the
software from estimating logic resources for the black box design.

Using Megafunction Wizard-Generated Verilog HDL Files for Black
Box Megafunction Instantiation
By default, the MegaWizard Plug-In Manager generates the Verilog HDL
instantiation template file <output file>_inst.v and the black box module
declaration <output_file>_bb.v for use in your design in the DC FPGA
software. The instantiation template file helps to instantiate the
megafunction variation wrapper file, <output file>.v, in your top-level
design. Do not include the megafunction variation wrapper file in the
DC FPGA software project if you are following the black box
methodology. Instead, add the wrapper file and your generated Verilog
Quartus Mapping (.vqm) netlist in your Quartus II project. Add the
hollow body black box module declaration <output file>_bb.v to your
linked design files in the DC FPGA software to describe the port
connections of the black box.

Using Megafunction Wizard-Generated VHDL Files for Black Box
Megafunction Instantiation
By default, the MegaWizard Plug-In Manager generates a VHDL
component declaration file <output file>.cmp and a VHDL instantiation
template file <output file>_inst.vhd for use in your design. These files can
help you instantiate the megafunction variation wrapper file,
<output file>.vhd, in your top-level design. Do not include the
megafunction variation wrapper file in the DC FPGA software project.
Instead, add the wrapper file and your generated Verilog Quartus
Mapping netlist in your Quartus II project.

Altera Corporation 11–11
October 2007 Preliminary

Inferring Altera Megafunctions from HDL Code

1 The DC FPGA software supports direct instantiation of all LPMs
and megafunctions. For a complete list of all LPMs and
Megafunctions, refer to the following two files in your
Quartus II installation directory:

● <Quartus II installation directory>
/libraries/vhdl/lpm/lpm_pack.vhd

● <Quartus II installation directory>
/libraries/vhdl/altera_mf/altera_mf_components.vhd

DC FPGA supports direct instantiation of LPMs and megafunctions only.
These macro functions include all Altera IP cores and all components
listed in:

<Quartus II installation directory>/libraries/vhdl/
altera_mf_components.vhd or stratixgx_mf_components.vhd.

The following example is the usage model using the mypll for direct
instantiation:

1. During synthesis in DC FPGA, analyze the variation file
mypll.[v|vhd] along with the rest of the RTL files.

2. During place-and-route in the Quartus II software, simply run the
self-contained Verilog Quartus Mapping File. You do not need to
put the variation file in the Verilog Quartus Mapping directory.

The benefit of using the direct instantiation method is that the DC FPGA
is able to utilize the available clock enable pins of the LPMs and
megafunctions during the automatic gated-clock conversion process.

Inferring Altera
Megafunctions
from HDL Code

The DC FPGA software automatically recognizes certain types of HDL
code, and maps digital signal processing (DSP) functions and memory
(RAM and ROM) to efficient, technology-specific implementations. This
allows the use of technology-specific resources to implement these
structures by inferring the appropriate Altera megafunction when it
provides optimal results.

f For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Depending on the coding style, if you do not adhere to these
recommended HDL coding style guidelines, it is possible that the
DC FPGA software and Quartus II software will not take advantage of
the high performance DSP blocks and RAMs, and may instead

11–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

implement your logic using regular logic elements (LEs). This causes
your logic to consume more area in your device and may adversely affect
your design performance. Altera device families do not all share the same
resources, so your HDL coding style may cause your logic to be
implemented differently in each family. For example, Stratix devices
contain dedicated DSP blocks which Cyclone devices lack. In a Cyclone
device, multipliers are implemented in LEs.

Example 11–3 shows Verilog HDL code that infers a two-port RAM that
can be synthesized into an M512 RAM block of a Stratix device.

Example 11–3. Verilog HDL Code Inferring a Two-Port RAM
module example_ram (clk, we, rd_addr, wr_addr, data_in, data_out);
input clk, we;
input [15:0] data_in;
output [15:0] data_out;
input [7:0] rd_addr;
input [7:0] wr_addr;
reg [15:0] ram_data [7:0];
reg [15:0] data_out_reg;
always @ (posedge clk)
begin
if (we)
 ram_data[wr_addr] <= data_in;
data_out_reg <= ram_data[rd_addr];
end
assign data_out = data_out_reg;
endmodule

One of the strengths of the DC FPGA software is its gated clock
conversion feature. Inferring megafunctions in HDL takes advantage of
this feature. For gated clocks or clock enables designed outside of LPMs,
Altera-specific megafunctions, and registers, the DC FPGA software
merges the gated clock functions into these design elements using
dedicated clock enable functionality during synthesis. The DC FPGA
software reconfigures the megafunction block or register to synthesize
the clock enable control logic. This can save area in your design and
improve your design performance by reducing the gated clock path delay
and the amount of logic used to implement the design. An illustration of
this kind of gated clock optimization is shown in Figure 11–3.

Altera Corporation 11–13
October 2007 Preliminary

Reading Design Files into the DC FPGA Software

Figure 11–3. Gated Clock Optimization

The DC FPGA software does not perform gated clock optimization on
instantiated black box megafunctions or on instantiated megafunction
variation wrapper file. The DC FPGA software performs gated clock
optimization only on synthesizable inferred megafunctions.

Reading Design
Files into the
DC FPGA
Software

The process of reading design files into the DC FPGA software is a
two-step process where the DC FPGA software analyzes your HDL
design for syntax errors, then elaborates the specified design. The
elaboration process finds analyzed designs and instantiates them in the
elaborated design’s hierarchy. You must identify which supported
language the files are written in when reading designs into the DC FPGA
software. The supported HDL languages are listed in Table 11–1.

Table 11–1. Supported Design File Formats

Format Description Keyword Extension

Verilog HDL (Synopsys Presto HDL) Verilog hardware description language verilog .v

VHDL VHSIC hardware description language vhdl .vhd

.db Synopsys internal database format (1) db .db

EDIF Electronic design interchange format edif .edf

Note to Table 11–1:
(1) The Design Compiler DB format file requires additional license keys.

11–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

To set most of the required synthesis settings to generate an optimal
netlist, use the following command:

set_fpga_defaults <architecture_name>

For example:

set_fpga_defaults altera_stratixii

Use the following commands to analyze and elaborate HDL designs in
the DC FPGA software:

analyze -f <verilog|vhdl> <design file> r
elaborate <design name> r
Once a design is analyzed, it is stored in a Synopsys library format file in
your working directory for reuse. You need to re-analyze the design only
when you change the source HDL file. Elaboration is performed after you
have analyzed all of the subdesigns below your current design.

Another way to read your design is by using the read_file command.
This can be used to read in gate-level netlists that are already mapped to
a specific technology. The read_file command performs analysis and
elaboration on Verilog HDL and VHDL designs that are written in
register transfer level (RTL) format. The difference between the
read_file command and the analyze and elaborate combination is that
the read_file command elaborates every design read, which is
unnecessary. Only the top-level design must be elaborated. The
read_file command is useful if you have a previously synthesized
block of logic that you want to re-use in your design.

To use the read_file command for a specific language, type the
following command:

read_file -f <verilog|vhdl|db|edif> <design file> r
You can also read files in specific languages using the read_verilog,
read_vhdl, read_db, and read_edif commands.

Once you have read all of your design files, specify the design you want
to focus your work on with the current_design command. This is
usually the top module or entity in your design that you wish to compile
up to. To use this command, type the following:

current_design <design name> r

Altera Corporation 11–15
October 2007 Preliminary

Selecting a Target Device

You then need to build your design from all of the analyzed HDL files
with the link command. To use this command, type the following:

link r
After linking your designs successfully in the DC FPGA software, you
should specify the constraints you are applying to your design. In the
DC FPGA software, you have the capability of loading multiple levels of
hierarchy and synthesizing specific blocks in a bottom-up synthesis
methodology, or you can synthesize the entire design from the top-level
module in a top-down synthesis methodology.

You can switch the current focus of the DC FPGA software between the
designs loaded by using the current_design command. This changes
your current focus onto the design specified, and all subsequent
constraints and commands will apply to that design.

If you have read Quartus II megafunction wizard-generated designs or
third-party IP into the DC FPGA software, you can instruct the DC FPGA
software not to synthesize the IP. Use the set_dont_touch constraint
and apply it to each module of your design that you do not want
synthesized. To use this command, type the following:

set_dont_touch <design name> r
Using the set_dont_touch command can be helpful in a bottom-up
synthesis methodology, where you optimize designs at the lower levels
of your hierarchy first and do not allow the DC FPGA software to
resynthesize them later during the top-level integration. However,
depending on the design’s HDL coding, you might want to allow
top-level resynthesis to get further area reduction and improved path
delays. For best results, Altera recommends following the top-down
synthesis methodology and not using the set_dont_touch command
on lower level designs.

Selecting a
Target Device

If you do not select an Altera device, the DC FPGA software, by default,
synthesizes for the fastest speed grade of the logic family library that is
loaded in your .synopsys_dc.setup file. If you are targeting a specific
device of an Altera family, you must have the correct library linked, then
specify the device for synthesis with the set_fpga_target_device
command. To use this command, type the following:

set_fpga_target_device <device name> r

11–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can have the DC FPGA software produce a list of all available
devices in the linked library by adding the -show_all option to the
set_fpga_target_device command. An example of this list of
devices for the Stratix II library is shown in Example 11–4.

Example 11–4. List of Available Devices in the Linked Library Using the -show_all Option
Loading db file '/dc_fpga/libraries/fpga/altera/STRATIXII/stratixii.db'

 Valid device names are:

Part Pins FFs Speed Grades
--
AUTO * 0 0 FASTEST
EP2S15F484 484 12480 C4
EP2S15F672 672 12480 C4
EP2S30F484 484 27104 C4
EP2S30F672 672 27104 C4
EP2S60F484 484 48352 C4
EP2S60F672 672 48352 C4
EP2S60F1020 1020 48352 C4
EP2S90F1020 1020 72768 C4
EP2S90F1508 1508 72768 C4
EP2S130F1020 1020 106032 C4
EP2S130F1508 1508 106032 C4
EP2S180F1020 1020 143520 C4
EP2S180F1508 1508 143520 C4

 * Default part

For example, if you want to target the C4 speed grade device of the
Stratix II EP2S60F672 device, apply the following constraint:

set_fpga_target_device EP2S60F672C4

Timing and
Synthesis
Constraints

You must create timing and synthesis constraints for your design for the
DC FPGA software to optimize your design performance. The timing
constraints specify your desired clocks and their characteristics, input
and output delays, and timing exceptions such as false paths and multi-
cycle paths. The synthesis constraints define the device, the type of I/O
buffers that should be used for top-level ports, and the maximum register
fan-out threshold before buffer insertion is performed. Synopsys Design
Constraints (SDCs) are Tcl-format commands that are widely used in
many EDA software applications. The DC FPGA software supports the
same SDC commands that the full version of the Design Compiler
software supports. However, certain constraints that are used in ASIC
synthesis are not applicable to programmable logic synthesis, so the
DC FPGA software ignores them.

Altera Corporation 11–17
October 2007 Preliminary

Timing and Synthesis Constraints

The DC FPGA software supports the following constraints:

■ create_clock
■ set_max_delay
■ set_propagated_clock
■ set_input_delay
■ set_output_delay
■ set_multicycle_path
■ set_false_path
■ set_disable_timing
■ set_fpga_resource_limit
■ set_register_max_fanout
■ set_max_fanout
■ set_fpga_target_device

f For the syntax and full usage of these commands, refer to the Synopsys
DC FPGA User Guide.

1 For synthesis with the DC FPGA software, minimum timing
analysis is not necessary, as it primarily looks at setup timing
optimization to achieve the fastest clock frequency for your
design. Altera recommends adding additional minimum timing
constraints to your design inside the Quartus II software.

The DC FPGA forward annotates all the clock, timing exceptions, and
I/O delay constraints to Quartus II when the write_par_constraint
command is used in the DC FPGA. For more information about this
command, refer to “Exporting Designs to the Quartus II Software” on
page 11–22. Since the Quartus II software does not support the through
option for the timing exception constraints, the DC FPGA does not
forward annotate constraints that use the through option.

In the DC FPGA software, timing constraints applied to inferred RAM,
ROM, shift registers, and DSP MAC functions are obeyed. However,
these constraints are not forward-annotated to the Quartus II software
because these functions are inferred to Altera megafunctions. The
Quartus II software does not support timing constraints applied to
megafunctions. The workaround is to run the Verilog Quartus
Mapping/EDIF netlist through analysis and synthesis in the Quartus II
software (quartus_map). All megafunctions expand to atom primitives.
These atom primitives can be processed by the Quartus II software. You
can then apply constraints to the internal atoms of the megafunctions.

The timing reports generated from the DC FPGA software are
preliminary estimates of the path delays in your design, and accurate
timing is reported only after place-and-route is performed with the
Quartus II software.

11–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The DC FPGA software also performs cross-hierarchical boundary
optimization. Altera recommends running this command before a
compilation:

ungroup -small 500 r
This allows the DC FPGA software to potentially improve area reduction
and performance improvement by ungrouping smaller blocks of logic in
your design hierarchy and combining functions.

Compilation and
Synthesis

After applying timing and synthesis constraints, you can begin the
compilation and synthesis process. The compile command runs this
process within the DC FPGA software. To run a compilation, at the shell
prompt type:

compile r
The compilation process performs two kinds of optimization:

■ Architectural optimization focuses on the HDL description and
performs high-level synthesis tasks such as sharing resources and
sub-expressions, selecting Synopsys Design Ware implementations,
and re-ordering operators.

■ Gate-level optimization works on the generic netlist created by logic
synthesis and works to improve the mapping efficiency to save area
and improve performance by minimizing path delays.

Compilation can be done using a top-down synthesis methodology or a
bottom-up synthesis methodology. The top-down synthesis
methodology involves a single compilation of your entire design with the
focus on the top module or entity of your design. The bottom-up
synthesis methodology involves incremental compilation of major blocks
in your design hierarchy and top-level integration and optimization.
Either methodology can be applied when synthesizing for Altera devices.
For best results, Altera recommends following the top-down synthesis
methodology.

An example synthesis script that reads the design, applies timing
constraints, reports results, saves the synthesized netlist file in the Verilog
Quartus Mapping File format, and creates the Tcl scripts to work with the

Altera Corporation 11–19
October 2007 Preliminary

Compilation and Synthesis

Quartus II software is shown in Example 11–5. It uses the command
write_fpga, which is described in “write_fpga Command” on
page 11–22.

Example 11–5. Sample Synthesis Script
Setup output directories
set outdir ./design
file delete -force $outdir
file mkdir $outdir
set rptdir ./report
file delete -force $rptdir
file mkdir $rptdir
Enable Presto compiler for VHDL design files
set hdlin_enable_presto_for_vhdl TRUE
Setup libraries
define_design_lib work-path .$outdir/work
file mkdir $outdir/work
analyze -format verilog ./source/mult_box.v
analyze -format verilog ./source/mult_ram.v
analyze -format verilog ./source/top_module.v
elaborate top_module
link
current_design top_module
create_clock -period 5 [get_ports clk]
set_input_delay -max 2 -clock clk [get_ports {data_in_* mode_in}]
set_input_delay -min 0.5 -clock clk [get_ports {data_in_* mode_in}]
set_output_delay -max 2 -clock clk [get_ports {data_out ram_data_out_port}]
set_output_delay -min 0.5 -clock clk [get_ports {data_out ram_data_out_port}]
set_false_path -from [get_ports reset]
ungroup -small 500
compile
report_timing > $rptdir/top_module.log
report_fpga > $rptdir/top_module_fpga.log
write_fpga $outdir
quit

11–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Reporting
Design
Information

After compilation is complete, the DC FPGA software reports
information about your design. You can specify which kinds of reports
you want generated with the reporting commands shown in Table 11–2.

f For more information about the usage of these commands, refer to the
Synopsys DC FPGA User Guide.

Table 11–2. Reporting Commands

Object Command Description

Design report_design Reports design characteristics

report_area Reports design size and object counts

report_hierarchy Reports design hierarchy

report_resources Reports resource implementations

report_fpga Reports FPGA resource utilization statistics for the
design

Instances report_cell Displays information about instances

References report_reference Displays information about references

Ports report_port Displays information about ports

report_bus Displays information about bused ports

Nets report_net Reports net characteristics

report_bus Reports bused net characteristics

Clocks report_clock Displays information about clocks

Timing report_timing Checks the timing of the design

report_constraint Checks the design constraints

check_timing Checks for unconstrained timing paths and clock-gating
logic

report_design Shows operating conditions, timing ranges, internal input
and output, and disabled timing arcs

report_port Shows unconstrained input and output ports and port
loading

report_timing_requirements Shows all timing exceptions set on the design

report_clock Checks the clock definition and clock skew information

derive_clocks Checks internal clock and unused registers

report_path_group Shows all timing path groups in the design

Cell
Attributes

get_cells Shows all cell instances that have a specific attribute

Altera Corporation 11–21
October 2007 Preliminary

Saving Synthesis Results

The DC FPGA software only provides preliminary estimates of your
design’s timing delays because the timing of your design cannot be
accurately predicted until the Quartus II software has placed and routed
your design.

Saving
Synthesis
Results

After synthesis, the technology-mapped design can be saved to a file in
one of the following four formats: Verilog HDL, VHDL, Synopsys
internal DB, or EDIF.

The Quartus II software accepts an EDIF netlist or Verilog Quartus
Mapping netlist synthesized from the DC FPGA software. The default
output netlist from the DC FPGA software is Verilog Quartus Mapping.
The Verilog Quartus Mapping File format follows a subset of Verilog
HDL rules. You can use the same Verilog Quartus Mapping netlist format
with the Quartus II software and formal verification.

Use the write command to save your design work. The syntax for this
command is shown in Example 11–6.

Example 11–6. Syntax Using the write Command
write -format <verilog|db|edif> -output <file name> <design list>
[-hierarchy] r

The -hierarchy option causes the DC FPGA software to write all the
designs within the hierarchy of the current design. The DC FPGA default
flow to interface with Quartus II software uses the Verilog Quartus
Mapping netlist.

To generate a Verilog Quartus Mapping netlist, set the required settings
using the commands shown in Example 11–7.

Example 11–7. Generating a Verilog Quartus Mapping Netlist
define_name_rules ALTERA -remove_internal_net_bus
change_names -rules ALTERA -hier
change_names –rules verilog –hier
write -format verilog -hier -o <design_top>.vqm

The Synopsys internal DB format is useful when you have synthesized
your design and want to reuse it later in the DC FPGA software. The DB
file contains your constraints and synthesized design netlist, and loads
into the DC FPGA software faster than Verilog HDL or VHDL designs.

11–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can also write out your design constraints in Tcl format for export to
the Quartus II software with the write_par_constraint command or
by using the write_fpga command. These commands are explained in
“Exporting Designs to the Quartus II Software”.

Exporting
Designs to the
Quartus II
Software

The DC FPGA software can create two Tcl scripts that start the Quartus II
software, create your initial design project, apply the exported timing
constraints, and compile your design in the Quartus II software.

You can generate the two Tcl scripts by using write and
write_par_constraint command together, or by using the
write_fpga command alone.

write_fpga Command

The recommended method to export all of the place-and-route files from
the DC FPGA software is to use the write_fpga command. This
command is used after the compile. Example 11–8 shows how the
write_fpga command is used.

Example 11–8. Using the write_fpga Command after Compile
compile
write_fpga <outputdir>

The write _fpga command will do the following in one step:

Example 11–9. Using the write_fpga Command to Generate All Files
write -hier -f db -o $outputdir/top_module.db
write –hier –f edif –o $outputdir/top_module.edf
define_name_rules ALTERA -remove_internal_net_bus
change_names -rules ALTERA -hier
change_names –rules verilog –hier
write -format verilog -hier -o <design_top>.vqm
write_par_constraint $outputdir/top_module_quartus_setup.tcl

When you use the write_fpga command, it generates all files in the
current work directory or in the directory you specify (entering an output
directory is optional) and generates the output files based on the current
design file name.

Altera Corporation 11–23
October 2007 Preliminary

Using Tcl Scripts with Quartus II Software

write and write_par_constraint Commands

The write command is used to generate a post synthesis netlist for
place-and-route and formal verification. You should use a Verilog
Quartus Mapping formatting netlist to work with the Quartus II
software, beginning with the DC FPGA software, version 2005.09.
Example 11–10 uses the write and write_par_constraint commands to
generate the Verilog Quartus Mapping File and Tcl scripts:

Example 11–10. Using the write and write_par_constraint Commands
define_name_rules ALTERA -remove_internal_net_bus
change_names -rules ALTERA -hier
change_names –rules verilog –hier
write -format verilog -hier -o <design_top>.vqm

Tcl scripts that start the Quartus II software and forward annotate the
timing constraints can be generated using the write_par_constraint
command.

write_par_constraint <user-specified file name>.tcl r
This command generates both Tcl scripts in one operation. The first Tcl
script has the name you specify in the write_par_constraint
command. This script creates and compiles your Quartus II project. The
second script is automatically generated and named
<top_module>_const.tcl by default and contains your exported timing
constraints from the DC FPGA software. This constraint file is sourced by
the <user-specified file name>.tcl script and applies the timing constraints
used in the DC FPGA software to your project in the Quartus II software.

For example, if your design is called dma_controller, and you run the
command, write_par_constraint run_quartus.tcl, the
DC FPGA software produces two Tcl scripts called run_quartus.tcl
and dma_controller_const.tcl.

Using Tcl Scripts
with Quartus II
Software

To use this Tcl script in the Quartus II Tcl shell, type the following
command at a command prompt:

quartus_sh -t <user-specified file name>.tcl r
To run this Tcl script in the Quartus II software GUI, type the following
command at the Quartus II Tcl console prompt:

source <user-specified file name>.tcl r

11–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

The ability to run scripts in the Tcl console is useful when performing an
initial compilation of your design to view post place-and-route timing
and device utilization results, but the advanced Quartus II options that
control the compilation process are not available.

To create a Quartus II project without performing compilation
automatically, remove these lines from the script:

load_package flow
execute_flow -compile

Example 11–11. An Example Script
##
Generated by DC FPGA X-2005.09 on Wed Aug 10 04:20:01 2005
#
Description: This TCL script is generated by DC FPGA using
write_par_constraint command. It is used to create a new Quartus
II project, specify timing constraint assignments in Quartus II,
and run quartus_map, quartus_fit, quartus_tan, & quartus_asm.
#
Usage: To execute this TCL script in batch mode: quartus_sh -t turboTop.tcl
To execute this TCL script in Quartus II GUI: source turboTop.tcl
#
#
#************ WARNING ********** WARNING ***************************
#
Please ensure the P&R netlist name is represented correctly in this tcl file.
You may need to change the file_name variable to match your actual netlist
name.
#
##

Set the file_name and project_name variable
set file_name turboTop.vqm
set project_name turboTop

Close the project if open
if [is_project_open] {
 project_close
}

Create a new project
project_new -overwrite -family STRATIXII -part EP2S30F484C3 $project_name

Make global assignments
set_global_assignment -name TOP_LEVEL_ENTITY $project_name

##
if you are using Verilog P&R netlist, please comment out EDIF assignment
and uncomment the VERILOG assignment below.

#set_global_assignment -name EDIF_FILE $file_name
set_global_assignment -name VQM_FILE $file_name
##

Altera Corporation 11–25
October 2007 Preliminary

Place and Route with the Quartus II Software

set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON
#set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP OFF
set_global_assignment -name EDA_DESIGN_ENTRY_SYNTHESIS_TOOL -value "Design Compiler FPGA"
set_global_assignment -name EDA_INPUT_VCC_NAME -value VDD -section_id
eda_design_synthesis
set_global_assignment -name EDA_INPUT_GND_NAME -value GND -section_id
eda_design_synthesis
set_global_assignment -name EDA_LMF_FILE -value dc_fpga.lmf -section_id
eda_design_synthesis
set_global_assignment -name VERILOG_LMF_FILE dc_fpga.lmf
set_global_assignment -name FITTER_EFFORT "STANDARD FIT"

Source in the design timing constraint file
source $project_name_cons.tcl

The following runs quartus_map, quartus_fit, quartus_tan, & quartus_asm
load_package flow
execute_flow -compile
project_close

After synthesis in the DC FPGA software, the technology-mapped design
is written to the current project directory as an Verilog Quartus Mapping
netlist file. The project configuration script (<user-specified file name>.tcl)
is used to create and compile a Quartus II project containing your Verilog
Quartus Mapping netlist. The example script makes basic project
assignments such as assigning the target device as specified in the
DC FPGA software. The project configuration script calls the place-and-
route constraints script to make your timing constraints. The place-and-
route constraints script (<top module>_const.tcl) forward-annotates the
timing constraints that you made in the DC FPGA software, including
false path assignments, multi-cycle assignments, timing groups, and
related clocks. This integration means that you need to enter these
constraints only once, in the DC FPGA software, and they are passed
automatically to the Quartus II software.

Place and Route
with the
Quartus II
Software

After you have created your Quartus II project and successfully loaded
your Verilog Quartus Mapping netlist into the Quartus II project, you can
use the Quartus II software to perform place-and-route. The Synopsys
DC FPGA software uses only worst case timing delays and constraints,
and does not optimize minimum timing requirements. Altera
recommends that you add minimum timing constraints and perform
minimum timing analysis in the Quartus II software.

f For more information about these advance features, area optimization,
and timing closure, refer to the Quartus II Handbook.

11–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

You can use the Quartus II software to obtain accurate prediction of
post-conversion fMAX performance and power consumption
characteristics when migrating from a high-density FPGA to a
cost-optimized, high-volume structured ASIC such as a HardCopy
Stratix device.

The Quartus II software place-and-route algorithms can use register
packing, register retiming, automatic logic duplication, and what-you-
see-is-what-you-get (WYSIWYG) primitive re-synthesis technologies to
increase logic utilization in your device and to deliver superior fMAX
performance at extremely high logic utilization.

f For more information, refer to the Quartus II Support for HardCopy Series
Devices chapter in volume 1 of the Quartus II Handbook.

Formality
Software
Support

Beginning with version 4.2, the Quartus II software interfaces with the
Formality software from Synopsys. Formality software verifies logic
equivalency between the RTL and DC FPGA post-synthesis netlist, and
between the DC FPGA post-synthesis netlist and the Quartus II
post-place-and-route netlist. A synthesized verilog netlist generated by
the DC FPGA is required to use with formality flow. Formality supports
Stratix II, Stratix and Stratix GX device families.

f For more information about how to set the required synthesis settings to
generate a valid formal verification netlist and to use the Formality
software for equivalence checking, refer to the Synopsys Formality
Support chapter in volume 3 of the Quartus II Handbook.

Conclusion Large FPGA designs require advanced synthesis of their HDL code.
Taking advantage of the Synopsys DC FPGA software and the Quartus II
software allows you to develop high-performance designs while
occupying as little programmable logic resources as possible. The
DC FPGA software and Quartus II software combination is an excellent
solution for the high density designs using Altera FPGA devices.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Support for HardCopy Series Devices chapter in volume 1 of
the Quartus II Handbook

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

■ Synopsys DC FPGA User Guide
■ Synopsys Formality Support chapter in volume 3 of the Quartus II

Handbook

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53015.pdf
www.synopsys.com

Altera Corporation 11–27
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 11–3 shows the revision history for this chapter.

Table 11–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 11–26. Updated for the
Quartus II software

version 7.2.

May 2007
v7.1.0

Added Referenced Documents. —

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Added revision history to the chapter. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 11 was formerly chapter 13 in version 5.0.

—

May 2005
v5.0.0

Chapter 13 was formerly chapter 11 in version 4.2. —

December 2004
v1.1

● Chapter 12 was formerly Chapter 13 in version 4.1.
● Updated information.
● New functionary for Quartus II software version 4.2.
● Moved figure 12-3 within the chapter.

—

June 2004
v1.0

Initial release. —

11–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 1

Altera Corporation 12–1
October 2007

12. Analyzing Designs with
Quartus II Netlist Viewers

Introduction As FPGA designs grow in size and complexity, the ability to analyze how
your synthesis tool interprets your design becomes critical. Often, with
today’s advanced designs, several design engineers are involved in
coding and synthesizing different design blocks, making it difficult to
analyze and debug the design. The Quartus® II RTL Viewer, State
Machine Viewer, and Technology Map Viewer provide powerful ways to
view your initial and fully mapped synthesis results during the
debugging, optimization, or constraint entry process.

The first section in this chapter, “When to Use Viewers: Analyzing Design
Problems”, describes examples of using the viewers to analyze your
design at various stages of the design cycle. The sections following this
provide an introduction to the Quartus II design flow using the netlist
viewers, an overview of each viewer, and an explanation of the user
interface. These sections describe the following tasks:

■ How to navigate and filter schematics
■ How to probe to and from other windows within the Quartus II

software
■ How to view a timing path from the Timing Analyzer report

This chapter contains the following sections regarding the netlist viewers:

■ “Introduction to the User Interface” on page 12–7
■ “Navigating the Schematic View” on page 12–21
■ “Filtering in the Schematic View” on page 12–34
■ “Probing to Source Design File and Other Quartus II Windows” on

page 12–42
■ “Probing to the Viewers from Other Quartus II Windows” on

page 12–44
■ “Viewing a Timing Path” on page 12–45
■ “Other Features in the Schematic Viewer” on page 12–47

The final section, “Debugging HDL Code with the State Machine
Viewer”, provides a detailed example that uses the viewer to analyze a
design and quickly resolve a design problem.

QII51013-7.2.0

12–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

When to Use
Viewers:
Analyzing
Design
Problems

You can use the netlist viewers to analyze your design to determine how
it was interpreted by the Quartus II software. This section provides
simple examples of how to use the RTL viewers, State Machine, and
Technology Map Viewers to analyze problems encountered in the design
process.

The following sections contain information about how the netlist viewers
display your design:

■ “Quartus II Design Flow with Netlist Viewers”
■ “RTL Viewer Overview”
■ “State Machine Viewer Overview”
■ “Technology Map Viewer Overview”

Using the RTL Viewer is a good way to view your initial synthesis results
to determine whether you have created the desired logic, and that the
logic and connections have been interpreted correctly by the software.
You can use the RTL Viewer and the State Machine Viewer to visually
check your design before simulation or other verification processes.
Catching design errors at this early stage of the design process can save
you valuable time.

If you see unexpected behavior during verification, you can use the RTL
Viewer to trace through the netlist and ensure that the connections and
the logic in your design are as expected. You can also use the State
Machine Viewer to view state machine transitions and transition
equations. Viewing the design can help you find and analyze the source
of design problems. If your design looks correct in the RTL Viewer, you
know to focus your analysis on later stages of the design process and
investigate potential timing violations or issues in the verification flow
itself.

You can use the Technology Map Viewer to look at the results at the end
of synthesis and technology mapping by running the viewer after
performing Analysis and Synthesis. If you have compiled your design
through the Fitter stage, you can view your post-mapping netlist in the
Technology Map Viewer (Post-Mapping), and your post-fitting netlist in
the Technology Map Viewer. If you perform only Analysis and Synthesis,
both viewers display the same post-mapping netlist.

In addition, you can use the RTL Viewer or Technology Map Viewer to
locate the source of a particular signal, which can help you debug your
design. Use the navigation techniques described in this chapter to search
easily through the design. You can trace back from a point of interest to
find the source of the signal and ensure the connections are as expected.

Altera Corporation 12–3
October 2007

Quartus II Design Flow with Netlist Viewers

You can also use the Technology Map Viewer to help you locate
post-synthesis nodes in your netlist and make assignments when
optimizing your design. This functionality is useful, for example, when
making a multicycle clock timing assignment between two registers in
your design. Start at an I/O port and trace forward or backward through
the design and through levels of hierarchy to find nodes that interest you,
or locate a specific register by visually inspecting the schematic.

The RTL Viewer, State Machine Viewer, and Technology Map Viewer can
be used in many other ways throughout the design, debugging, and
optimization stages. Viewing the design netlist is a powerful way to
analyze design problems. This chapter shows how you can use the
various features of the netlist viewers to increase your productivity when
analyzing a design.

Quartus II
Design Flow
with Netlist
Viewers

The first time you open one of the netlist viewers after compiling the
design, a preprocessor stage runs automatically before the viewer opens.
If you close the viewer and open it again later without recompiling the
design, the viewer opens immediately without performing the
preprocessing stage. Figure 12–1 shows how the netlist viewers fit into
the basic Quartus II design flow.

Figure 12–1. Quartus II Design Flow Including the RTL Viewer and Technology Map Viewer

12–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Each viewer requires that your design has been compiled with the
minimum compilation stage listed below before the viewer can run the
preprocessor and open the design.

■ To open the RTL Viewer or State Machine Viewer, you must first
perform Analysis and Elaboration.

■ To open the Technology Map Viewer or the Technology Map Viewer
(Post-Mapping), you must first perform Analysis and Synthesis.

1 If you open one of the viewers without first compiling the
design with the appropriate minimum compilation stage, the
viewer does not appear. Instead, the Quartus II software issues
an error message instructing you to run the necessary
compilation stage and restart the viewer.

Both viewers display the results of the last successful compilation.
Therefore, if you make a design change that causes an error during
Analysis and Elaboration, you cannot view the netlist for the new design
files, but you can still see the results from the last successfully compiled
version of the design files. If you receive an error during compilation and
you have not yet successfully run the appropriate compilation stage for
your project, the viewer cannot be displayed; in this case, the Quartus II
software issues an error message when you try to open the viewer.

1 If the viewer window is open when you start a new compilation,
the viewer closes automatically. You must open the viewer
again to view the new design netlist after compilation completes
successfully.

RTL Viewer
Overview

The Quartus II RTL Viewer allows you to view a register transfer level
(RTL) graphical representation of your Quartus II integrated synthesis
results or your third-party netlist file within the Quartus II software.

You can view results after Analysis and Elaboration when your design
uses any supported Quartus II design entry method, including
Verilog HDL Design Files (.v), SystemVerilog Design Files (.sv), VHDL
Design Files (.vhd), AHDL Text Design Files (.tdf), schematic Block
Design Files (.bdf), or schematic Graphic Design Files (.gdf) imported
from the MAX+PLUS® II software. You can also view the hierarchy of
atom primitives (such as device logic cells and I/O ports) when your
design uses a synthesis tool to generate a Verilog Quartus Mapping File
(.vqm) or Electronic Design Interchange Format (.edf) netlist file. Refer to
Figure 12–1 for a flow diagram.

Altera Corporation 12–5
October 2007

RTL Viewer Overview

The Quartus II RTL Viewer displays a schematic view of the design
netlist after analysis and elaboration or netlist extraction is performed by
the Quartus II software, but before technology mapping and any
synthesis or fitter optimization algorithms occur. This view is not the final
design structure because optimizations have not yet occurred. This view
most closely represents your original source design. If you synthesized
your design using the Quartus II integrated synthesis, this view shows
how the Quartus II software interpreted your design files. If you are
using a third-party synthesis tool, this view shows the netlist written by
your synthesis tool.

When displaying your design, the RTL Viewer optimizes the netlist to
maximize readability in the following ways:

■ Logic with no fan-out (its outputs are unconnected) and logic with
no fan-in (its inputs are unconnected) are removed from the display.

■ Default connections such as VCC and GND are not shown.
■ Pins, nets, wires, module ports, and certain logic are grouped into

buses where appropriate.
■ Constant bus connections are grouped.
■ Values are displayed in hexadecimal format.
■ NOT gates are converted to bubble inversion symbols in the

schematic.
■ Chains of equivalent combinational gates are merged into a single

gate. For example, a 2-input AND gate feeding a 2-input AND gate is
converted to a single 3-input AND gate.

■ State machine logic is converted into a state diagram, state transition
table, and state encoding table, which are displayed in the State
Machine Viewer.

To run the RTL Viewer for a Quartus II project, first analyze the design to
generate an RTL netlist. To analyze the design and generate an RTL
netlist, on the Processing menu, point to Start and click Start Analysis &
Elaboration. You can also perform a full compilation on any process that
includes the initial Analysis and Elaboration stage of the Quartus II
compilation flow.

To run the viewer, on the Tools menu, point to Netlist Viewers and click
RTL Viewer, or select RTL Viewer from the Applications toolbar.

1 By default, the Applications toolbar does not display in the
Quartus II user interface. To add the toolbar, on the Tools menu,
click Customize. On the Customize dialog box, click the
Toolbars tab under Toolbars, and turn on Applications. Click
Close.

12–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can set the RTL Viewer preprocessing to run during a full
compilation, which means you can launch the RTL Viewer after Analysis
and Synthesis has completed, but while the Fitter is still running. In this
case, you do not have to wait for the Fitter to finish before viewing the
schematic. This technique is useful for a large design that requires a
substantial amount of time in the place-and-route stage.

To set the RTL Viewer preprocessing to run during compilation, on the
Assignments menu, click Settings. In the Category list, select
Compilation Process Settings and turn on Run RTL Viewer
preprocessing during compilation. By default, this option is turned off.

State Machine
Viewer Overview

The State Machine Viewer presents a high-level view of finite state
machines in your design. The State Machine Viewer provides a graphical
representation of the states and their related transitions, as well as a state
transition table that displays the condition equation for each of the state
transitions, and encoding information for each state.

To run the State Machine Viewer, on the Tools menu, point to Netlist
Viewers and click State Machine Viewer. To open the State Machine
Viewer for a particular state machine, double-click the state machine
instance in the RTL Viewer, or right-click the state machine instance, and
click Hierarchy Down.

Technology Map
Viewer Overview

The Quartus II Technology Map Viewer provides a technology-specific,
graphical representation of your design after Analysis and Synthesis or
after the Fitter has mapped your design into the target device. The
Technology Map Viewer shows the hierarchy of atom primitives (such as
device logic cells and I/O ports) in your design. For supported families,
you can also view the internal registers and look-up tables (LUTs) inside
logic cells (LCELLs) and registers in I/O atom primitives. Refer to
“Viewing Contents of Atom Primitives in the Technology Map Viewer”
on page 12–22 for details.

1 Where possible, the port names of each hierarchy are
maintained throughout synthesis. However, port names may
change or be removed from the design. For example, if a port is
unconnected or driven by GND or VCC, it is removed during
synthesis. When a port name is changed, the port is assigned a
related user logic name in the design, or a generic port name
such as IN1 or OUT1.

You can view your Quartus II technology-mapped results after synthesis,
fitting, or timing analysis. To run the Technology Map Viewer for a
Quartus II project, on the Processing menu, point to Start and click Start
Analysis & Synthesis to synthesize and map the design to the target

Altera Corporation 12–7
October 2007

Introduction to the User Interface

technology. At this stage, the Technology Map Viewer shows the same
post-mapping netlist as does the Technology Map Viewer
(Post-Mapping). You can also perform a full compilation, or any process
that includes the synthesis stage in the compilation flow.

If you have completed the Fitter stage, the Technology Map Viewer
shows the changes made to your netlist by the Fitter, such as physical
synthesis optimizations, while the Technology Map Viewer
(Post-Mapping) shows the post-mapping netlist. If you have completed
the Timing Analysis stage, you can locate timing paths from the Timing
Analyzer report in the Technology Map Viewer (refer to “Viewing a
Timing Path” on page 12–45 for details). Refer to Figure 12–1 on
page 12–3 for a flow diagram.

To run the Technology Map Viewer, on the Tools menu, point to Netlist
Viewers and click Technology Map Viewer, or select Technology Map
Viewer from the Applications toolbar.

To run the Technology Map Viewer (Post-Mapping), on the Tools menu,
point to Netlist Viewers and click Technology Map Viewer
(Post-Mapping).

Introduction to
the User
Interface

The RTL Viewer window and Technology Map Viewer window each
consist of two main parts: the schematic view and the hierarchy list.
Figure 12–2 shows the RTL Viewer window and indicates these two parts.
Both viewers also contain a toolbar that gives you tools to use in the
schematic view.

You can have only one RTL Viewer, one Technology Map Viewer, and
one State Machine Viewer window open at a time, although each window
can show multiple pages. The window for each viewer has characteristics
similar to other “child” windows in the Quartus II software; it can be
resized and moved, minimized or maximized, tiled or cascaded, and
moved in front of or behind other windows.

You can detach the window and move it outside the Quartus II main
interface. To detach a window, click the Detach Window icon on the
toolbar, or, on the Window menu, click Detach Window. To attach the
detached window back to the Quartus II main interface, click the Attach
Window icon on the toolbar, or, on the Window menu, click Attach
Window.

12–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–2. RTL Viewer Window and RTL Toolbar

Schematic View

The schematic view is shown on the right side of the RTL Viewer and
Technology Map Viewer. It contains a schematic representing the design
logic in the netlist. This view is the main screen for viewing your
gate-level netlist in the RTL Viewer and your technology-mapped netlist
in the Technology Map Viewer.

Schematic Symbols

The symbols for nodes in the schematic represent elements of your design
netlist. These elements include input and output ports, registers, logic
gates, Altera® primitives, high-level operators, and hierarchical instances.

Figure 12–3 shows an example of an RTL Viewer schematic for a 3-bit
synchronous loadable counter. Example 12–1 shows the Verilog HDL
code that produced this schematic. This example includes multiplexers
and a group of registers (Table 12–1 on page 12–10) in a bus along with an
ADDER operator (Table 12–3 on page 12–13) inferred by the counting
function in the HDL code.

The schematic in Figure 12–3 displays wire connections between nodes
with a thin black line, and bus connections with a thick black line.

Altera Corporation 12–9
October 2007

Introduction to the User Interface

Figure 12–3. Example Schematic Diagram in the RTL Viewer

Example 12–1. Code Sample for Counter Schematic Shown in Figure 12–3
module counter (input [2:0] data, input clk, input load, output [2:0] result);

reg [2:0] result_reg;
always @ (posedge clk)

if (load)
result_reg <= data;

else
result_reg <= result_reg + 1;

assign result = result_reg;
endmodule

Figure 12–4 shows a portion of the corresponding Technology Map
Viewer schematic with a compiled design that targets a Stratix® device.
In this schematic, you can see the LCELL (logic cell) device-specific
primitives that represent the counter function, labeled with their
post-synthesis node names. The REGOUT port represents the output of the
register in the LCELL, and the COMBOUT port represents the output of the
combinational logic in the LUT of the LCELL. The hexadecimal number
in parentheses below each LCELL primitive represents the LUT mask,
which is a hexadecimal representation of the logic function of the LCELL.

12–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–4. Example Schematic Diagram in the Technology Map Viewer

Table 12–1 lists and describes the primitives and basic symbols that you
can display in the schematic view of the RTL Viewer and Technology Map
Viewer. Table 12–3 on page 12–13 lists and describes the additional higher
level operator symbols used in the RTL Viewer schematic view.

1 The logic gates and operator primitives appear only in the RTL
Viewer. Logic in the Technology Map Viewer is represented by
atom primitives such as registers and LCELLs.

Table 12–1. Symbols in the Schematic View (Part 1 of 3)

Symbol Description

I/O Ports An input, output, or bidirectional port in the current level of hierarchy. A device input,
output, or bidirectional pin when viewing the top-level hierarchy. The symbol can
represent a bus. Only one wire is connected to the bidirectional symbol, representing
both the input and the output paths.

Input symbols appear on the left-most side of the schematic. Output and bidirectional
symbols appear on the right-most side of the schematic.

I/O Connectors An input or output connector, representing a net that comes from another page of the
same hierarchy (refer to “Partitioning the Schematic into Pages” on page 12–28). To
go to the page that contains the source or the destination, right-click on the net and
choose the page from the menu (refer to “Following Nets Across Schematic Pages”
on page 12–29).

Hierarchy Port Connector A connector representing a port relationship between two different hierarchies. A
connector indicates that a path passes through a port connector in a different level
of hierarchy.

Altera Corporation 12–11
October 2007

Introduction to the User Interface

OR, AND, XOR Gates An OR, AND, or XOR gate primitive (the number of ports can vary). A small circle
(bubble symbol) on an input or output port indicates the port is inverted.

MUX A multiplexer (MUX) primitive with a selector port that selects between port 0 and
port 1. A MUX with more than two inputs is displayed as an operator (refer to
“Operator Symbols in the RTL Viewer Schematic View” on page 12–13).

BUFFER A buffer primitive. The figure shows the tri-state buffer, with an inverted output enable
port. Other buffers without an enable port include LCELL, SOFT, CARRY, and
GLOBAL. The NOT gate and EXP expander buffers use this symbol without an enable
port and with an inverted output port.

CARRY_SUM A CARRY_SUM buffer primitive with the following ports:
● SI – SUM IN
● SO – SUM OUT
● CI – CARRY IN
● CO – CARRY OUT

LATCH A latch primitive with the following ports:
● D – data input
● ENA – enable input
● Q – data output
● PRE – preset
● CLR – clear

DFFE/DFFEA/DFFAES A DFFE (data flipflop with enable) primitive, with the same ports as a latch and a
clock trigger. The other flipflop primitives are similar:
● DFFEA (data flipflop with enable and asynchronous load) primitive with additional

ALOAD asynchronous load and ADATA data signals
● DFFEAS (data flipflop with enable and both synchronous and asynchronous

load), which has ASDATA as the secondary data port

Atom Primitive Primitives are low-level nodes that cannot be expanded to any lower hierarchy. The
symbol displays the port names, the primitive type, and its name. The blue shading
indicates an atom primitive in the Technology Map Viewer that allows you to view the
internal details of the primitive. Refer to “Viewing Contents of Atom Primitives in the
Technology Map Viewer” on page 12–22 for details.

Table 12–1. Symbols in the Schematic View (Part 2 of 3)

Symbol Description

12–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Other Primitive Any primitive that does not fall into the categories above. Primitives are low-level
nodes that cannot be expanded to any lower hierarchy. The symbol displays the port
names, the primitive or operator type, and its name.

The figure shows an LCELL WYSIWYG primitive, with DATAA to DATAD and
COMBOUT port connections. This type of LCELL primitive would be found in the
Technology Map Viewer for technology-specific atom primitives when the contents
of the atom primitive cannot be viewed. The RTL Viewer contains similar primitives
if the source design was a VQM or EDIF netlist.

Instance An instance in the design that does not correspond to a primitive or operator
(generally a user-defined hierarchy block), indicated by the double outline and green
shading. The symbol displays the instance name.

To open the schematic for the lower level hierarchy, right-click and choose the
appropriate command (refer to “Traversing and Viewing the Design Hierarchy” on
page 12–21).

Encrypted Instance A user-defined encrypted instance in the design, indicated by the double outline and
gray shading. The symbol displays the instance name. You cannot open the
schematic for the lower level hierarchy, because the source design is encrypted.

State Machine Instance A finite state machine instance in the design, indicated by the double outline and
yellow shading. Double-clicking this instance opens the State Machine Viewer. Refer
to “State Machine Viewer” on page 12–18 for more details.

RAM A synchronous memory instance with registered inputs and optionally registered
outputs, indicated by purple shading. The symbol shows the device family and the
type of TriMatrix memory block. This figure shows a true dual-port memory block in
a Stratix M-RAM block.

Logic Cloud A logic cloud is a group of combinational logic, indicated by a cloud symbol. Refer to
“Grouping Combinational Logic into Logic Clouds” on page 12–32 for more details.

Table 12–1. Symbols in the Schematic View (Part 3 of 3)

Symbol Description

Altera Corporation 12–13
October 2007

Introduction to the User Interface

Table 12–2 lists and describes the symbol used only in the State Machine
Viewer.

Table 12–3 lists and describes the additional higher level operator
symbols used in the RTL Viewer schematic view.

Table 12–2. Symbol Available Only in the State Machine Viewer

Symbol Description

State Node The node representing a state in a finite state machine. State transitions are indicated with
arcs between state nodes. The double circle border indicates the state connects to logic
outside the state machine, while a single circle border indicates the state node does not
feed outside logic.

Table 12–3. Operator Symbols in the RTL Viewer Schematic View (Part 1 of 2)

Symbol Description

An adder operator:
OUT = A + B

A multiplier operator:
OUT = A × B

A divider operator:
OUT = A / B

A left shift operator:
OUT = (A << COUNT)

12–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

A right shift operator:
OUT = (A >> COUNT)

A modulo operator:
OUT = (A % B)

A less than comparator:
OUT = (A <= B : A > B)

A multiplexer:
OUT = DATA [SEL]
The data range size is 2sel range size

A selector:
A multiplexer with one-hot select input and more than two input signals

A binary number decoder:
OUT = (binary_number (IN) == x)
for x = 0 to x = 2(n+1) - 1

Table 12–3. Operator Symbols in the RTL Viewer Schematic View (Part 2 of 2)

Symbol Description

Altera Corporation 12–15
October 2007

Introduction to the User Interface

Selecting an Item in the Schematic View

To select an item in the schematic view, ensure that the Selection Tool is
enabled in the viewer toolbar (this tool is enabled by default). Click on an
item in the schematic view to highlight it in red.

Select multiple items by pressing the Shift or Ctrl key while selecting with
your mouse. You can also select all nodes in a region by selecting a
rectangular box area with your mouse cursor when the Selection Tool is
enabled. To select nodes in a box, move your mouse to one corner of the
area you want to select, click the mouse button, and drag the mouse to the
opposite corner of the box, then release the mouse button. By default,
creating a box like this highlights and selects all nodes in the selected area
(instances, primitives, and pins), but not the nets. The Viewer Options
dialog box provides an option to select nets. To include nets, right-click in
the schematic and click Viewer Options. In the Net Selection section,
turn on the Select entire net when segment is selected option.

Items selected in the schematic view are automatically selected in the
hierarchy list (refer to the “Hierarchy List” on page 12–16). The list
expands automatically if required to show the selected entry. However,
the list does not collapse automatically when entries are not being used
or are deselected.

When you select a hierarchy box, node, or port in the schematic view, the
item is highlighted in red but none of the connecting nets are highlighted.
When you select a net (wire or bus) in the schematic view, all connected
nets are highlighted in red. The selected nets are highlighted across all
hierarchy levels and pages. Net selection can be useful when navigating
a netlist because you see the net highlighted when you traverse between
hierarchy levels or pages.

In some cases, when you select a net that connects to nets in other levels
of the hierarchy, these connected nets also are highlighted in the current
hierarchy. If you prefer that these nets not be highlighted, use the Viewer
Options dialog box option to highlight a net only if the net is in the
current hierarchy. Right-click in the schematic and click Viewer Options.
In the Net Selection section, turn on the Limit selections to current
hierarchy option.

Moving and Panning in the Schematic View

When the schematic view page is larger than the portion currently
displayed, you can use the scroll bars at the bottom and right side of the
schematic view to see other areas of the page.

12–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can also use the Hand Tool to “grab” the schematic page and drag it
in any direction. Enable the Hand Tool with the toolbar button. Click and
drag to move around the schematic view without using the scroll bars.

In addition to the scroll bars and Hand Tool, you can use the
middle-mouse/wheel button to move and pan in the schematic view.
Click the middle-mouse/wheel button once to enable the feature. Move
the mouse or scroll the wheel to move around the schematic view. Click
the middle-mouse/wheel button again to turn the feature off.

Hierarchy List

The hierarchy list is displayed on the left side of the viewer window. The
hierarchy list displays the entire netlist in a tree format based on the
hierarchical levels of the design. Within each level, similar elements are
grouped into sub-categories. Using the hierarchy list, you can traverse
through the design hierarchy to view the logic schematic for each level.
You can also select an element in the hierarchy list to be highlighted in the
schematic view.

1 Nodes inside atom primitives are not listed in the hierarchy list.

Altera Corporation 12–17
October 2007

Introduction to the User Interface

For each module in the design hierarchy, the hierarchy list displays the
applicable elements listed in Table 12–4. Click the + icon to expand an
element.

Selecting an Item in the Hierarchy List

When you click any item in the hierarchy list, the viewer performs the
following actions:

■ Searches for the item in the currently viewed pages, and displays the
page containing the selected item in the schematic view if it is not
currently displayed. (If you are currently viewing a filtered netlist,
for example, the relevant page within the filtered netlist is
displayed.)

■ If the selected item is not found in the currently viewed pages, the
entire design netlist is searched, and the item is displayed in a default
view.

■ Highlights the selected item in red in the schematic view.

When you double-click an instance in the hierarchy list, the viewer
displays the underlying implementation of the instance.

Table 12–4. Hierarchy List Elements

Elements Description

Instances Modules or instances in the design that can be expanded to lower hierarchy levels.

State Machines State machine instances in the design that can be viewed in the State Machine Viewer.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These include:
● Registers and gates that you can view in the RTL Viewer when using Quartus II integrated

synthesis
● Logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM

or EDIF from third-party synthesis software
In the Technology Map Viewer, you can view the internal implementation of certain atom
primitives, but you can not traverse into a lower level of hierarchy.

Pins The I/O ports in the current level of hierarchy.
● Pins are device I/O pins when viewing the top hierarchy level, and are I/O ports of the

design when viewing the lower levels.
● When a pin represents a bus or an array of pins, expand the pin entry in the list view to see

individual pin names.

Nets Nets or wires connecting the nodes. When a net represents a bus or array of nets, expand the
net entry in the tree to see individual net names.

Logic Clouds A group of related combinational logics of a particular source. You can automatically or
manually group combinational logics or ungroup logic clouds in your design.

12–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can select multiple items by pressing the Shift or Ctrl key while
selecting with your mouse. When you right-click an item in the hierarchy
list, you can navigate in the schematic view using the Filter and Locate
commands. Refer to “Filtering in the Schematic View” on page 12–34 and
“Probing to Source Design File and Other Quartus II Windows” on
page 12–42 for more information.

State Machine Viewer

The State Machine Viewer displays a graphical representation of the state
machines in your design. You can open the State Machine Viewer in any
of the following ways:

■ On the Tools menu, point to Netlist Viewers, and click State
Machine Viewer

■ Double-click on a state machine instance in the RTL Viewer
■ Right-click on a state machine instance in the RTL Viewer, and click

Hierarchy Down
■ Select a state machine instance in the RTL Viewer, and on the Project

menu, point to Hierarchy and click Down

Figure 12–5 shows an example of the State Machine Viewer for a simple
state machine. The State Machine toolbar on the left side of the viewer
provides tools you can use in the state diagram view.

Altera Corporation 12–19
October 2007

Introduction to the User Interface

Figure 12–5. State Machine in the State Machine Viewer

State Diagram View

The state diagram view is shown at the top of the State Machine Viewer
window. It contains a diagram of the states and state transitions.

The nodes that represent each state are arranged horizontally in the state
diagram view with the initial state (the state node that receives the reset
signal) in the left-most position. Nodes that connect to logic outside of the
state machine instance are represented by a double circle. The state
transition is represented by an arc with an arrow pointing in the direction
of the transition.

When you select a node in the state diagram view, if you turn on the
Highlight Fan-in or Highlight Fan-out command from the View menu
or the State Machine Viewer toolbar, the respective fan-in or fan-out
transitions from the node are highlighted in red.

12–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 An encrypted block with a state machine displays encoding
information in the state encoding table, but does not display a
state transition diagram or table.

State Transition Table

The state transition table on the Transitions tab at the bottom of the State
Machine Viewer window displays the condition equation for each state
transition. Each transition (each arc in the state diagram view) is
represented by a row in the table. The table has the following three
columns:

■ Source State—the name of the source state for the transition
■ Destination State—the name of the destination state for the

transition
■ Condition—the condition equation that causes the transition from

source state to destination state

To see all of the transitions to and from each state name, click the
appropriate column heading to sort on that column.

The text in each column is left-aligned by default; to change the alignment
and more easily see the relevant part of the text, right-click in the column
and click Align Right. To change back to left alignment, click Align Left.

You can click in any cell in the table to select it. To select all cells,
right-click in the cell and click Select All; or, on the Edit menu, click
Select All. To copy selected cells to the clipboard, right-click the cells and
click Copy Table; or, on the Edit menu, point to Copy and click Copy
Table. You can paste the table into any text editor as tab-separated
columns.

State Encoding Table

The state encoding table on the Encoding tab at the bottom of the State
Machine Viewer window displays the encoding information for each
state transition.

To view state encoding information in the State Machine Viewer, you
must have synthesized your design using Start Analysis & Synthesis. If
you have only elaborated your design using Start Analysis &
Elaboration, the encoding information is not displayed.

Altera Corporation 12–21
October 2007

Navigating the Schematic View

Selecting an Item in the State Machine Viewer

You can select and highlight each state node and transition in the State
Machine Viewer. To select a state transition, click the arc that represents
the transition.

When you select a state node, transition arc, or both in the state diagram
view, the matching state node and equation conditions in the state
transition table are highlighted. Conversely, when you select a state node,
equation condition, or both in the state transition table, the corresponding
state node and transition arc are highlighted in the state diagram view.

Switching Between State Machines

A design may contain multiple state machines. To choose which state
machine to view, use the State Machine selection box located at the top
of the State Machine Viewer. Click in the drop-down box and select the
desired state machine.

Navigating the
Schematic View

The previous sections provided an overview of the user interface for each
netlist viewer, and how to select an item in each viewer. This section
describes methods to navigate through the pages and hierarchy levels in
the schematic view of the RTL Viewer and Technology Map Viewer.

Traversing and Viewing the Design Hierarchy

You can open different hierarchy levels in the schematic view using the
hierarchy list (refer to “Hierarchy List” on page 12–16), or the Hierarchy
Up and Hierarchy Down commands in the schematic view.

Use the Hierarchy Down command to go down into, or expand an
instance’s hierarchy, and open a lower level schematic showing the
internal logic of the instance. Use the Hierarchy Up command to go up in
hierarchy, or collapse a lower level hierarchy, and open the parent higher
level hierarchy. When the Selection Tool is selected, the appropriate
option is available when your mouse pointer is located over an area of the
schematic view that has a corresponding lower or higher level hierarchy.

The mouse pointer changes as it moves over different areas of the
schematic to indicate whether you can move up, down, or both up and
down in the hierarchy (Figure 12–6). To open the next hierarchy level,
right-click in that area of the schematic, and click Hierarchy Down or
Hierarchy Up, as appropriate, or double-click in that area of the
schematic.

12–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–6. Mouse Pointers Indicate How to Traverse Hierarchy

Flattening the Design Hierarchy

You can flatten the design hierarchy to view the design without
hierarchical boundaries. To flatten the hierarchy from the current level
and all the lower level hierarchies of the current design hierarchy,
right-click in the schematic and click Flatten Netlist. To flatten the entire
design, choose Flatten Netlist from the top-level schematic of the design.

Viewing the Contents of a Design Hierarchy within the Current Schematic

You can use the Display Content and Hide Content commands to show
or hide a lower hierarchy level for a specific instance within the schematic
for the current hierarchy level.

To display the lower hierarchy netlist of an instance on the same
schematic as the remaining logic in the currently viewed netlist,
right-click the selected instance and click Display Content.

To hide all of the lower hierarchy logic of a hierarchy box into a closed
instance, right-click the selected instance and click Hide Content.

Viewing Contents of Atom Primitives in the Technology Map
Viewer

In the Technology Map Viewer, you can view the contents of certain
device atom primitives to see their underlying implementation details.
For logic cell (LCELL) atoms in the Stratix and Cyclone® series of devices
and in MAX® II devices, you can view the LUTs, registers, and logic gates.
For I/O atoms in the Stratix and Cyclone series of devices, and
HardCopy® II devices, you can view the registers and logic gates.

In addition, you can view the implementation of RAM and DSP blocks in
certain devices. You can view the implementation of RAM blocks in the
Stratix and Cyclone series of devices. You can view the implementation
of DSP blocks only in the Stratix series of devices.

Altera Corporation 12–23
October 2007

Navigating the Schematic View

If you can view the contents of an atom instance, it is blue in the schematic
view (Figure 12–7).

Figure 12–7. Instance That Can Be Expanded to View Internal Contents

To view the contents of one or more atom primitive instances, select the
desired atom instances. Right-click a selected instance and click Display
Content. You can also double-click on the desired atom instance to view
the contents. Figure 12–8 shows an expanded version of the instance in
Figure 12–7.

Figure 12–8. Internal Contents of the Atom Instance in Figure 12–7.

To hide the contents (and revert to the compact format), select and
right-click the atom instance(s), and click Hide Content.

1 In the schematic view, the internal details within an atom
instance can not be selected as individual nodes. Any mouse
action on any of the internal details is treated as a mouse action
on the atom instance.

12–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Viewing the Properties of Instances and Primitives

You can view the properties of an instance or a primitive using the
Properties dialog box. To view the properties of an instance or a primitive
in the RTL Viewer or the Technology Map Viewer, right-click the node
and click Properties.

The Properties dialog box contains the following information about the
selected node:

■ The parameter values of an instance.
■ The active level of the port (for example, active high or active low).

An active low port is denoted with an exclamation mark “!”.
■ The port’s constant value (for example, VCC or GND). Table 12–5

describes the possible value of a port.

In the look-up-table (LUT) of a logic cell (LCELL), the Properties dialog
box contains the following additional information:

■ The schematic of the LCELL.
■ The Truth Table representation of the LCELL.
■ The Karnaugh map representation of the LCELL.

Viewing LUT Representations in the Technology Map Viewer

You can view different representations of an LUT by right-clicking on the
selected LUT, and selecting Properties. This feature is only applicable for
the Stratix and Cyclone series of devices, and in MAX II devices. There
are three tabs in the Properties dialog box, which you can choose from to
view the LUT representations. The Schematic tab (see Figure 12–9) shows
you the equivalent gate representations of the LUT. The Truth Table tab
(see Figure 12–10) shows the truth table representations, and the
Karnaugh Map tab (see Figure 12–11) shows the Karnaugh map
representations of the LUT. The Karnaugh map supports up to 6 input
LUTs. For details on the Ports tab, see “Viewing the Properties of
Instances and Primitives”.

Table 12–5. Possible Port Values

Value Description

VCC The port is not connected and has VCC value (tied to VCC)

GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected The port is not connected and has no value (hanging)

Altera Corporation 12–25
October 2007

Navigating the Schematic View

Figure 12–9. Schematic Tab

Figure 12–10. Truth Table Tab

12–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–11. Karnaugh Map Tab

Zooming and Magnification

You can control the magnification of your schematic with the View menu,
the Zoom Tool in the toolbar, or the Ctrl key and mouse wheel button, as
described in this section.

The Fit in Window, Fit Selection in Window, Zoom In, Zoom Out, and
Zoom commands are available from the View menu, by right-clicking in
the schematic view and selecting Zoom, or from the Zoom toolbar. To
enable the zoom toolbar, on the Tools menu, click Customize. Click the
Toolbars tab and click Zoom to enable the toolbar.

By default, the viewer displays most pages sized to fit in the window. If
the schematic page is very large, the schematic is displayed at the
minimum zoom level, and the view is centered on the first node. Select
Zoom In to view the image at a larger size, and select Zoom Out to view
the image (when the entire image is not displayed) at a smaller size. The
Zoom command allows you to specify a magnification percentage (100%
is considered the normal size for the schematic symbols).

The Fit Selection in Window command zooms in on the selected nodes
in a schematic to fit within the window. Use the Selection Tool to select
one or more nodes (instances, primitives, pins, and nets), then select Fit
Selection in Window to enlarge the area covered by the selection. This

Altera Corporation 12–27
October 2007

Navigating the Schematic View

feature is helpful when you want to see a particular element in a large
schematic. After you select a node, you can easily zoom in to view the
particular node.

You can also use the Zoom Tool on the viewer toolbar to control
magnification in the schematic view. When you select the Zoom Tool in
the toolbar, clicking on the schematic zooms in and centers the view on
the location you clicked. Right-click on the schematic (or press the Shift
key or the Ctrl key and click) to zoom out and center the view on the
location you clicked. When you select the Zoom Tool, you can also zoom
in to a certain portion of the schematic by selecting a rectangular box area
with your mouse cursor. The schematic is enlarged to show the selected
area. To change the minimum and the maximum zoom level, on the Tools
menu, click Options. In the Options dialog box, in the Category list,
select Netlist Viewers, and set the desired minimum and maximum
zoom level.

By default, the viewers maintain the zoom level when filtering on the
schematic (refer to “Filtering in the Schematic View” on page 12–34). To
change the behavior so that the zoom level is always reset to “Fit in
Window,” on the Tools menu, click Options. In the Category list, select
Netlist Viewers, and turn off Maintain zoom level.

Schematic Debugging and Tracing Using the Bird's Eye View

Viewing the entire schematic can be useful when debugging and tracing
through a large netlist. The Quartus II software allows you to view the
entire schematic in a single window. The bird’s eye view is displayed in
a separate window that is linked directly to the netlist viewers. This
feature is available in the RTL, Technology Map, and Technology Map
(Post-Mapping) viewers.

The bird’s eye view shows the current area of interest. Select the desired
area by clicking and dragging the indicator or using the right-mouse
button to form a rectangular box around the desired area. You can also
click and drag the rectangular box to move around the schematic. To
open the bird’s eye view, on the View menu, click Bird’s Eye View, or
click on the Bird’s Eye View icon in the Viewer toolbar (Figure 12–12).

Figure 12–12. Bird’s Eye View Icon

Bird’s Eye
View icon

12–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Full Screen View

To set the viewer window to fill the whole screen, on the View menu,
click Full Screen, or click the Full Screen icon in the viewer toolbar, or
press Ctrl+Alt+Space. The keyboard shortcut toggles between the full
screen and standard screen views.

Partitioning the Schematic into Pages

For large design hierarchies, the RTL Viewer and Technology Map
Viewer partition your netlist into multiple pages in the schematic view.
To control how much of the design is visible on each page, on the Tools
menu, click Options. In the Category list, select Netlist Viewers, and set
the desired options under Display Settings.

The Nodes per page option specifies the number of nodes per partitioned
page. The default value is 50 nodes; the range is 1 to 1,000 nodes. The
Ports per page option specifies the number of ports (or pins) per
partitioned page. The default value is 1,000 ports (or pins); the range is 1
to 2,000 ports (or pins). The viewers partition your design into a new page
if either the node number or the port number exceeds the limit you have
specified. You may occasionally see the number of ports exceed the limit,
depending on the configuration of nodes on the page.

If the Display boundary around hierarchy levels option is turned on,
and the total number of nodes or ports within the hierarchy exceeds the
value of Nodes per page or Ports per page, the boundary is displayed as
a hierarchy port connector (refer to Table 12–1 on page 12–10). For more
information about the Display boundary around hierarchy levels
option, refer to “Filtering Across Hierarchies” on page 12–38.

When a hierarchy level is partitioned into multiple pages, the title bar for
the schematic window indicates which page is displayed and how many
total pages exist for this level of hierarchy (shown in the format:
Page <current page number> of <total number of pages>), as shown in
Figure 12–13.

Altera Corporation 12–29
October 2007

Navigating the Schematic View

Figure 12–13. RTL Viewer Title Bars Indicating Page Number Information

When you change the number of nodes or ports per page, the change
applies only to new pages that are shown or opened in the viewer. To
refresh the current page so that it displays the changed number of nodes
or ports, click the Refresh button in the toolbar.

Moving Between Schematic Pages

To move to another schematic page, on the View menu, click Previous
Page or Next Page, or click the Previous Page icon or the Next Page icon
in the viewer toolbar.

To go to a particular page of the schematic, on the Edit menu, click Go To,
or right-click in the schematic view, and click Go To. In the Page list,
select the desired page number. You can also go to a particular page by
selecting the desired page number from the drop down list on the top
right of the viewer window.

Moving Back and Forward Through Schematic Pages

To return to the previous view after changing the page view, click Back
on the View menu, or click the Back icon on the viewer toolbar. To go to
the next view, click Forward on the View menu, or click the Forward icon
on the viewer toolbar.

1 You can go Forward only if you have not made any changes to
the view since going Back. Use Back and Forward to switch
between page views. These commands do not undo an action
such as selecting a node.

Following Nets Across Schematic Pages

Input and output connectors indicate nodes that connect across pages of
the same hierarchy. Right-click on a connector to display a menu of
commands that trace the net through the pages of the hierarchy.

12–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 After you right-click to follow a connector port, the viewer
opens a new page, which centers the view on the particular
source or destination net using the same zoom factor used by the
previous page. To trace a specific net to the new page of the
hierarchy, Altera recommends that you first select the desired
net, which highlights it in red, before you right-click to traverse
pages.

Input Connectors
Figure 12–14 shows an example of the menu that appears when you
right-click an input connector. The From command opens the page
containing the source of the signal. The Related commands, if applicable,
open the specified page containing another connection fed by the same
source.

Figure 12–14. Input Connector Right Button Pop-Up Menu

Output Connectors
Figure 12–15 shows an example of the menu that appears when you
right-click an output connector. The To command opens the specified
page that contains a destination of the signal.

Altera Corporation 12–31
October 2007

Customizing the Schematic Display in the RTL Viewer

Figure 12–15. Output Connector Right Button Pop-Up Menu

Go to Net Driver

To locate the source of a particular net in the schematic view, select the
net to highlight it, right-click the selected net, point to Go to Net Driver,
and click Current page, Current hierarchy, or Across hierarchies. Refer
to Table 12–6 for details.

The schematic view opens the correct page of the schematic if needed,
and adjusts the centering of the page so that you can see the net source.
The schematic shows the default page for the net driver. The view is an
unfiltered view, so no filtering results are kept.

Customizing the
Schematic
Display in the
RTL Viewer

You can customize the schematic display for better viewing and to speed
up your debugging process. The options that control the schematic
display are available in the Customize View tab of the RTL/Technology
Map Viewer Options dialog box. To open the dialog box, right-click in
the schematic and click Viewer Options. You can turn on the options to
remove fan-out free nodes, simplify logic, group or ungroup related
nodes, and group combinational logic into a logic cloud.

Table 12–6. Go to Net Driver Commands

Command Action

Current page Locates the source or driver on the current page of the schematic only.

Current hierarchy Locates the source within the current level of hierarchy, even if the source is located on
another page of the netlist schematic.

Across hierarchies Locates the source across hierarchies until the software reaches the source at the top
hierarchy level.

12–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

You can also customize the schematic view in the RTL Viewer by clicking
Options on the Tools menu, in the Category list expand Netlist Viewers,
and selecting RTL Viewer. Set the desired customization for your
schematic display.

1 When the settings are changed, the list of previously viewed
pages is cleared. The settings are revision-specific, so different
revisions could have different settings.

To remove fan-out free registers from your schematic display, turn on
Remove registers without fan-out. By default, this option is turned on.

To remove all single-input nodes and merge a chain of equivalent
combinational gates that have direct connections (without inversion in
between) into a single multiple-input gate, turn on Show simplified
logic. By default, this option is turned on.

To group all related nodes into a single node, turn on Group all related
nodes. This option is turned on by default. You can manually group or
ungroup any nodes by right-clicking the selected nodes in the schematic
and selecting Group Related Nodes to group, or Ungroup Selected
Nodes to ungroup.

Grouping Combinational Logic into Logic Clouds

You can automatically group all combinational logic nodes in your
design into logic clouds by clicking Options on the Tools menu, in the
Category list expand Netlist Viewers, and select RTL Viewer. In the RTL
Viewer page, turn on Group combinational logic in logic cloud. You can
also set this option by right-clicking in the schematic and click Viewer
Options. In the RTL/Technology Map Viewer Options dialog box, click
on the Customize View tab. In the Customize Groups section, turn on the
Group combinational logic in logic cloud option. Figure 12–16 and
Figure 12–17 show the schematic before and after the combinational logic
grouping operation.

Altera Corporation 12–33
October 2007

Customizing the Schematic Display in the RTL Viewer

Figure 12–16. Schematic Before Combinational Logic Grouping

Figure 12–17. Schematic After Combinational Logic Grouping

12–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

To manually group combinational logic nodes into a logic cloud,
right-click the selected node or input port, and select Group Source Logic
into Logic Cloud. To manually ungroup logic cloud, right-click on the
selected logic cloud and select Ungroup Source Logic from Logic Cloud.
You can also manually ungroup a logic cloud by double-clicking on the
selected logic cloud. These options are not available if the nodes cannot
be grouped.

Filtering in the
Schematic View

Filtering allows you to filter out nodes and nets in your netlist to view
only the logic that interests you.

Filter your netlist by selecting hierarchy boxes, nodes, ports of a node,
net, or states in a state machine that are part of the path you want to see.
The following filter commands are available:

■ Sources—Displays the sources of the selection
■ Destinations—Displays the destinations of the selection
■ Sources & Destinations—Displays both the sources and

destinations of the selection
■ Selected Nodes and Nets—Displays only the selected nodes and

nets with the connections between them
■ Between Selected Nodes—Displays nodes and connections in the

path between the selected nodes
■ Bus Index—Displays the sources or destinations for one or more

indices of an output or input bus port

Select a hierarchy box, node, port, net, or state node, right-click in the
window, point to Filter and click the appropriate filter command. The
viewer generates a new page showing the netlist that remains after
filtering.

When filtering in a state diagram in the State Machine Viewer, sources
and destinations refer to the previous and next transition states or paths
between transition states in the state diagram. The transition table and
encoding table also reflect the filtering.

You can go back to the netlist page before it was filtered using the Back
command, described in “Moving Back and Forward Through Schematic
Pages” on page 12–29.

1 When viewing a filtered netlist, clicking an item in the hierarchy
list causes the schematic view to display an unfiltered view of
the appropriate hierarchy level. You cannot use the hierarchy
list to select items or navigate in a filtered netlist.

Altera Corporation 12–35
October 2007

Filtering in the Schematic View

Filter Sources Command

To filter out all but the source of the selected item, right click the item,
point to Filter and click Sources. The selected object type determines
what is displayed, as outlined in Table 12–7, and shown in Figure 12–18
on page 12–36.

Filter Destinations Command

To filter out all but the destinations of the selected node or port as
outlined in Table 12–8, and shown in Figure 12–18 on page 12–36,
right-click the node or port, point to Filter, and click Destinations.

Table 12–7. Selected Objects Determine Filter Sources Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the sources of the node’s input ports. For an example, refer to
Figure 12–18 on page 12–36.

Net Shows the sources that feed the net.

Input port of a node Shows only the input source nodes that feed this port.

Output port of a node Shows only the selected node.

State node in a state machine Shows the states that feed the selected state (previous transition states).

Table 12–8. Selected Objects Determine Filter Destinations Display

Selected Object Result Shown in Filtered Page

Node or hierarchy box Shows all the destinations of the node’s output ports. For an example, refer
to Figure 12–18 on page 12–36.

Net Shows the destinations fed by the net.

Input port of a node Shows only the selected node.

Output port of a node Shows only the fan-out destination nodes fed by this port.

State node in a state machine Shows the states that are fed by the selected states (next transition states).

12–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Filter Sources and Destinations Command

The Sources & Destinations command is a combination of the Sources
and Destinations filtering commands, in which the filtered page shows
both the sources and the destinations of the selected item. To select this
option, right-click on the desired object, point to Filter, and click
Sources & Destinations. Refer to the example in Figure 12–18.

Figure 12–18. Sources, Destinations, and Sources and Destinations Filtering for inst4

Filter Between Selected Nodes Command

To show the nodes in the path between two or more selected nodes or
hierarchy boxes, right-click, point to Filter, and click Between Selected
Nodes. For this option, selecting a port of a node is the same as selecting
the node. For an example, refer to Figure 12–19.

Figure 12–19. Between Selected Nodes Filtering Between inst2 and inst3

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

Sources & Destinations

Sources

Destinations

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

inst2
inst4pin_name3

pin_name4

pin_name3

pin_name4
inst2OUT1

inst4OUT1
inst3OUT1

pin_name5 pin_name6
instOUT1

inst3

inst
pin_name

pin_name2

pin_name5

pin_name

pin_name2

Between Selected Nodes

Altera Corporation 12–37
October 2007

Filtering in the Schematic View

Filter Selected Nodes and Nets Command

To create a filtered page that shows only the selected nodes, nets, or both,
and, if applicable, the connections between the selected nodes, nets, or
both, right-click, point to Filter, and click Selected Nodes & Nets.
Figure 12–20 shows a schematic with several nodes selected.

Figure 12–20. Using Selected Nodes and Nets to Select Nodes

Figure 12–21 shows the schematic after filtering has been performed. If
you select a net, the filtered page shows the immediate sources and
destinations of the selected net.

Figure 12–21. Selected Nodes and Nets Filtering on Figure 12–20 Schematic

Filter Bus Index Command

To show the path related to a specific index of a bus input or output port
in the RTL Viewer, right-click the port, point to Filter, and click Bus
Index. The Select Bus Index dialog box allows you to select the indices of
interest.

Filter Command Processing

The options to control filtering are available in the Tracing section of the
RTL/Technology Map Viewer Options dialog box. Right-click in the
schematic, and click Viewer Options to open the dialog box.

12–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

For all the filtering commands, the viewer stops tracing through the
netlist to obtain the filtered netlist when it reaches one of the following
objects:

■ A pin
■ A specified number of filtering levels, counting from the selected

node or port; the default value is 3

1 Specify the Number of filtering levels in the Tracing
section of the RTL/Technology Map Viewer Options
dialog box. The default value is 3 to ensure optimal
processing time when performing filtering, but you can
specify a value from 1 to 100.

■ A register (optional; turned on by default)

1 Turn the Stop filtering at register option on or off in the
Tracing section of the RTL/Technology Map Viewer
Options dialog box. Right-click in the schematic and click
Viewer Options to open the dialog box.

By default, the filtered schematic shows all possible connections between
the nodes shown in the schematic. To remove the connections that are not
directly part of the path that was traced to generate a filtered netlist, turn
off the Shows all connections between nodes option in the Tracing
section of the RTL/Technology Map Viewer Options dialog box.

Filtering Across Hierarchies

The filtering commands display nodes in all hierarchies by default. When
the filtered path passes through levels of hierarchy on the same schematic
page, green hierarchy boxes group the logic and show the hierarchy
boundaries. A green rectangular symbol appears on the border that
represents the port relationship between two different hierarchies
(Figure 12–22 and Figure 12–23).

The RTL/Technology Map Viewer Options dialog box provides an
option to control filtering if you prefer to filter only within the current
hierarchy. Right-click in the schematic, and click Viewer Options. In the
Tracing section, turn off the Filter across hierarchy option.

To disable the box hierarchy display, on the Tools menu, click Options.
In the Category list, select Netlist Viewers and turn off Display
boundary around hierarchy levels.

Altera Corporation 12–39
October 2007

Filtering in the Schematic View

1 Netlists of the same hierarchy that are displayed over more than
one page are not grouped with a box. Filtering and expanding
on a blue atom primitive does not trace the underlying netlist
even when Filter across hierarchy is enabled.

Figures 12–22 and 12–23 show examples of filtering across hierarchical
boundaries. Figure 12–22 shows an example after the Sources filter has
been applied to an input port of the taps instance, where the input port
of the lower level hierarchical block connects directly to an input pin of
the design. The name of the instance is indicated within the green border
and appears as a tooltip when you move your mouse pointer over the
instance.

Figure 12–22. Filtering Across Hierarchical Boundaries, Small Example

12–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–23 shows a larger example after the Sources filter has been
applied to an input port of an instance, in which the source comes from
input pins that are fed through another level of hierarchy.

Figure 12–23. Filtering Across Hierarchical Boundaries, Large Example

Expanding a Filtered Netlist

After a netlist is filtered, some ports may have no connections displayed
because their connections are not part of the main path through the
netlist. Two expansion features, immediate expansion and the Expand
command, allow you to add the fan-in or fan-out signals of these ports to
the schematic display of a filtered netlist.

You can immediately expand any port whose connections are not
displayed. When you double-click that port in the filtered schematic, one
level of logic is expanded.

To expand more than one level of logic, right-click the port and click the
Expand command. This command expands logic from the selected port
by the amount specified in the Viewer Options. To set these options,
right-click in the schematic view, and click Viewer Options. In the
Expansion section, set the Number of expansion levels option to specify
the number of levels to expand (the default value is 3 and the range is
1 to 100 levels). You can also set the Stop expanding at register option
(which is turned on by default) to specify whether netlist expansion
should stop when a register is reached.

Altera Corporation 12–41
October 2007

Filtering in the Schematic View

You can select multiple nodes to expand when using the Expand
command. If you select ports that are located on multiple schematic
pages, only the ports on the currently viewed page appear in the
expanded schematic.

In the State Machine Viewer, the Expand command has the following
three options:

■ Sources—Displays the states that feed the selected states (previous
transition states)

■ Destinations—Displays the states that are fed by the selected states
(next transition states)

■ Sources & Destinations—Displays both the previous and next
transition states

The state transition table and state encoding table also reflect the changes
to the filtering.

The expansion feature works across hierarchical boundaries if the filtered
page containing the port to be expanded was generated with the Filter
across hierarchy option turned on (refer to “Filtering in the Schematic
View” on page 12–34 for details on this option). When viewing timing
paths in the Technology Map Viewer, the Expand command always
works across hierarchical boundaries because filtering across hierarchy is
always turned on for these schematics (refer to “Viewing a Timing Path”
on page 12–45 for details on these schematics).

Reducing a Filtered Netlist

In some cases, removing logic from a filtered schematic or state diagram
makes the schematic view easier to read or minimizes distracting logic
that you do not need to view in the schematic.

To reduce elements in the filtered schematic or state diagram view,
right-click the node or nodes you want to remove and click Reduce.

12–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Probing to
Source Design
File and Other
Quartus II
Windows

The RTL, Technology Map, and State Machine Viewers let you
cross-probe from the viewer to the source design file and to various other
windows within the Quartus II software. You can select one or more
hierarchy boxes, nodes, nets, state nodes, or state transition arcs that
interest you in the viewer and locate the corresponding items in another
applicable Quartus II software window. You then can view and make
changes or assignments in the appropriate editor or floorplan.

To locate an item from the viewer in another window, right-click the items
of interest in the schematic or state diagram view, point to Locate, and
click the appropriate command. The following commands are available:

■ Locate in Assignment Editor
■ Locate in Pin Planner
■ Locate in Timing Closure Floorplan
■ Locate in Chip Planner
■ Locate in Resource Property Editor
■ Locate in RTL Viewer
■ Locate in Technology Map Viewer
■ Locate in Design File

The options available for locating depend on the type of node and
whether it exists after placement and routing. If a command is enabled in
the menu, then it is available for the selected node. You can use the Locate
in Assignment Editor command for all nodes, but assignments may be
ignored during placement and routing if they are applied to nodes that do
not exist after synthesis.

The viewer automatically opens another window for the appropriate
editor or floorplan, and highlights the selected node or net in the newly
opened window. You can switch back to the viewer by selecting it in the
Window menu or by closing, minimizing, or moving the new window.

1 When probing to a logic cloud in the RTL Viewer, a message box
appears that prompts you to ungroup the logic cloud or allow it
to remain grouped.

Moving Selected Nodes to Other Quartus II Windows

You can drag selected nodes from the netlist viewers to the Text Editor,
Block Editor, Pin Planner, SignalTap® II, and Waveform Editor windows
within the Quartus II software. Whenever you see the drag-and-drop
pointer on the selected node in the netlist viewers, it means that the node
can be dragged to other child windows within the Quartus II software.

Altera Corporation 12–43
October 2007

Probing to Source Design File and Other Quartus II Windows

Figure 12–24 shows the drag-and-drop pointer and an example of
dragging a node from the RTL Viewer to the SignalTap II Logic Analyzer.

Figure 12–24. Dragging a Node to the SignalTap II Logic Analyzer

12–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Probing to the
Viewers from
Other Quartus II
Windows

You can cross-probe to the RTL Viewer and Technology Map Viewer from
other windows within the Quartus II software. You can select one or more
nodes or nets in another window and locate them in one of the viewers.

You can locate nodes between the RTL, State Machine, and Technology
Map Viewers, and you can locate nodes in the RTL Viewer or Technology
Map Viewer from the following Quartus II software windows:

■ Project Navigator
■ Timing Closure Floorplan
■ Chip Planner
■ Resource Property Editor
■ Node Finder
■ Assignment Editor
■ Messages Window
■ Compilation Report
■ TimeQuest Timing Analyzer (only supports the Technology Map

Viewer)

To locate elements in the viewer from another Quartus II window, select
the node or nodes in the appropriate window; for example, select an
entity in the Entity list on the Hierarchy tab in the Project Navigator, or
select nodes in the Timing Closure Floorplan, or select node names in the
From or To column in the Assignment Editor. Next, right-click the
selected object, point to Locate, and click Locate in RTL Viewer or Locate
in Technology Map Viewer. After you choose this command, the viewer
window opens, or is brought to the foreground if the viewer window is
already open.

1 The first time the window opens after a compilation, the
preprocessor stage runs before the viewer window opens.

The viewer shows the selected nodes and, if applicable, the connections
between the nodes. The display is similar to what you see if you
right-click the object, point to Filter, and click Selected Nodes & Nets
using Filter Across Hierarchy. If the nodes cannot be found in the viewer,
a message box displays the message: “Can’t find requested location.”

Altera Corporation 12–45
October 2007

Viewing a Timing Path

Viewing a
Timing Path

To see a visual representation of a timing path, you can cross-probe from
the Timing Analysis section of the Compilation Report with the Classic
Timing Analyzer, or from a report panel in the TimeQuest Timing
Analyzer.

To take advantage of this feature, you must first successfully complete a
full compilation of your design, including the timing analyzer stage. To
access the timing analyzer report that contains the timing results for your
design, on the Processing menu, click Compilation Report. On the left
side of the Compilation Report, select Timing Analyzer or TimeQuest
Timing Analyzer. When you select a detailed report, the timing
information is listed in a table format on the right side of the Compilation
Report; each row of the table represents a timing path in the design. You
can also view timing paths in TimeQuest report panels. To view a
particular timing path in the Technology Map Viewer or the RTL Viewer,
highlight the appropriate row in the table, right-click, point to Locate, and
click Locate in Technology Map Viewer or Locate in RTL Viewer.

In the Technology Map Viewer, the schematic page displays the nodes
along the timing path with a summary of the total delay. If you locate
from the Classic Timing Analyzer, the timing path also includes timing
data representing the interconnect (IC) and cell delays associated with
each node. The delay for each node is shown in the following format:
<post-synthesis node name> (<IC delay> ns, <cell delay> ns). When you
locate the timing path from the TimeQuest Timing Analyzer to the
Technology Map Viewer, the interconnect and cell delay associated with
each node is not displayed.

Figure 12–25 shows a portion of a Classic Timing Analyzer timing path
represented in the Technology Map Viewer. The total delay for the entire
path through several levels of logic (only three levels are shown in
Figure 12–25) is 7.159 ns. The delays are indicated for each level of logic.
For example, the IC delay to the first LCELL primitive is 0.383 ns and the
cell delay through the LCELL is 0.075 ns. When the timing path passes
through a level of hierarchy, green hierarchy boxes group the logic and
show the hierarchical boundaries. A green rectangular symbol on the
border indicates the path passes between two different hierarchies.

12–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–25. Timing Path Schematic in the Technology Map Viewer

In the RTL Viewer, the schematic page displays the nodes in the path(s)
between the source and destination registers with a summary of the total
delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the
post-fitting nodes may not exist in the RTL Viewer netlist. Therefore, the
internal delay numbers are not displayed in the RTL Viewer as they are
in the Technology Map Viewer, and the timing path may not be displayed
exactly as it appears in the timing analysis report. If multiple paths exist
between the source and destination registers, the RTL Viewer may
display more than just the timing path. There are also some cases in
which the path cannot be displayed, such as paths through state
machines, encrypted intellectual property (IP), or registers that are
created during the fitter process. In cases where the timing path
displayed in the RTL Viewer might not be the correct path, the compiler
issues messages.

Altera Corporation 12–47
October 2007

Other Features in the Schematic Viewer

Other Features
in the Schematic
Viewer

This section describes other features in the schematic view that enhance
usability and help you analyze your design.

Tooltips

A tooltip is displayed whenever the mouse pointer is held over an
element in the schematic. The tooltip contains useful information about a
node, net, logic cloud, input port, and output port. Table 12–9 lists the
information contained in the tooltip for each type of node.

The tooltip information for an instance (the first row in Table 12–9)
includes a list of the primitives found within that level of hierarchy, and
the number of each primitive contained in the current instance. The
number includes all hierarchical blocks below the current instance in the
hierarchy. This information lets you estimate the size and complexity of a
hierarchical block without navigating into the block.

The tooltip information for atom primitives in the Technology Map
Viewer (the second row of Table 12–9) shows the equation for the design
atom. The equations are an expanded version of the equations you can
view in the Equations window in the Timing Closure Floorplan.
Advanced users can use these equations to analyze the design
implementation in detail.

f For details on understanding equations, refer to the Quartus II Help.

To copy tooltips into the clipboard for use in other applications,
right-click the desired node or netlist, and click Copy Tooltip.

To turn off tooltips or change the duration of time that a tooltip is
displayed in the view, on the Tools menu, click Options. In the Category
list, select Netlist Viewers and set the desired options under Tooltip
settings.

The Show names in tooltip for option specifies the number of seconds to
display the names of assigned nodes and pins in a tooltip when the
pointer is over the assigned nodes and pins. Selecting Unlimited displays
the tooltip as long as the pointer remains over the node or pin. Selecting 0
turns off tooltips. The default value is 5 seconds.

The Delay showing tooltip for option specifies the number of seconds
you must hold the mouse pointer over assigned nodes and pins before the
tooltip displays the names of the assigned nodes and pins. Selecting 0
displays the tooltip immediately when the pointer is over an assigned
node or pin. Selecting Unlimited prevents tooltips from being displayed.
The default value is 1 second.

12–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 12–9. Tooltip Information (Part 1 of 2)

Description and Tooltip Format Example Tooltips

Instance
Format: <instance name>, <instance type>

<primitive type>, <number of primitives>...
<primitive type>, <number of primitives>

Atom Primitive
Format: <instance name>, <primitive name> (<LUT Mask Value>)

{(r | c <Register or Combinational equation>)}
...

An r (as in the first example) represents the equation for a register,
and a c (as in the second example) represents the equation for
combinational logic.

Primitive
Format:<primitive name>, <primitive type>

Pin
Format: <pin name>, <pin type>

Connector
Format: <connector name>

Net
Format: <net name>, fan-out = <number of fan-out signals>

Output Port
Format: fan-out = <number of fan-out signals>

Altera Corporation 12–49
October 2007

Other Features in the Schematic Viewer

Input Port

The information displayed depends on the type of source net. The
examples of the tooltips shown represent the following types of source
nets:

(1) Single net

(2) Individual nets, part of the same bus net

(3) Combination of different bus nets

(4) Constant inputs

(5) Combination of single net and constant input

(6) Bus net

Source from—refers to the source net name that connects to the input
port.

Destination Index—refers to the bit(s) at the destination input port to
which the source net is connected (not applicable for single nets).

State Machine Node
Format: <node name>

State Machine Transition Arc
This information is displayed when you hold your mouse over the
arrow on the arc representing the transition between two states.
Format: (<equation for transition between states>)

Table 12–9. Tooltip Information (Part 2 of 2)

Description and Tooltip Format Example Tooltips

(1)

(2)

(3)

(4)

(5)

(6)

12–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Radial Menu

This user interface feature provides a quick method to perform some
shortcut commands in the schematic view. The commands are listed in an
octagon-shaped menu, and you can perform the commands via mouse
stroke.

To launch the Radial menu, hold down the CTRL key and right-click the
mouse anywhere in the schematic view. The Radial menu appears with
the mouse cursor always at the center point. To trigger the desired
command, you can do either of the following:

■ While holding the CTRL key, click the desired region/command in
the Radial menu to execute the command.

■ While holding the CTRl key, right-click and hold the mouse button,
drag the pointer onto the desired command, and then release to
execute the command.

However, if you release the CTRL key while performing either of the
above actions, the Radial menu disappears, without executing the
command.

Altera Corporation 12–51
October 2007

Other Features in the Schematic Viewer

Figure 12–26 shows the radial menu in action.

Figure 12–26. Radial Menu

Customizing the Radial Menu

You can customize all eight commands in the Radial menu. To customize
the radial menu, you first need to launch the RTL Viewer or the
Technology Map Viewer. Then on the Tools menu, click Customize RTL
Viewer, Customize Technology Map Viewer, or Customize
Technology Map Viewer (Post-Mapping) and click on the Shortcut
Commands tab. The Buttons section of the dialog box shows a list of
Netlist Viewer commands that you can choose. You can click on a
command to see its description in the Description section. To make the
desired command appear on the radial menu, drag-and-drop the
command onto the Radial menu diagram in the Shortcut Commands
Popup section. Repeated commands are allowed in the radial menu.

12–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–27 shows the Shortcut Commands tab for customizing the
radial menu.

Figure 12–27. Shortcut Command Tab

Rollover

You can highlight an element and view its name in your schematic using
the rollover feature. When you place your mouse pointer over an object,
the object is highlighted and the name is displayed (Figure 12–28). This
feature is enabled by default in the netlist viewers. To turn off the Rollover
feature, on the Tools menu, click Options. In the Options dialog box, in
the Category list, select Netlist Viewers and turn off Enable Rollover.

Altera Corporation 12–53
October 2007

Other Features in the Schematic Viewer

Figure 12–28. Rollover in the RTL Viewer and Technology Map Viewer

Displaying Net Names

To see the names of all the nets displayed in your schematic, on the Tools
menu, click Options. In the Category list, select Netlist Viewers and turn
on Show Net Name under Display Settings. This option is disabled by
default. If you turn on this option, the schematic view refreshes
automatically to display the net names.

Displaying Node Names

In some designs, nodes have long names that overlap the ports of other
symbols in the schematic. To remove the node names from the schematic,
on the Tools menu, click Options. In the Category list, select Netlist
Viewers and turn off Show node name under Display Settings. This
option is turned on by default.

Find Command

To open the Find dialog box shown in Figure 12–29, on the Edit menu,
click Find, or click the Find icon in the viewer toolbar, or right-click in the
schematic view, and click Find.

12–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–29. Find Dialog Box

You can choose to search only instances (nodes) in the design, or to also
search pins and nets. By default, only instances are searched.

When you click Find, the viewer selects and highlights the first item
found, opens the appropriate page of the schematic, if necessary, and
centers the page so that the node is visible in the viewable area (but does
not zoom in to the node). To find the next matching node, click Find Next.
When the node that you search for is part of a logic cloud, the logic cloud
that contains the node is highlighted. A message box appears that
prompts you to ungroup the logic cloud or allow it to remain grouped.

You can use the options in the Advanced settings section to control the
scope of the results found during a search and how they are displayed in
the viewer. The default selection, Search entire design, searches for the
item in all design elements across the entire design. To search only in the
pages of the currently displayed netlist, such as a schematic showing
filtering results, choose Limit search to schematic view.

To display the results in a new page, select Search entire design and
display in search page. This command searches all design elements
across the entire design, and displays the results on a separate page
dedicated to search results. You can also append new search results to an
existing search page with the Append results to current search page
command. The appended items appear in the same relative position as
they do in the full schematic. You can use this method to find and select
two objects that are not on the same page and display them on the same
page after performing the Find command.

Altera Corporation 12–55
October 2007

Other Features in the Schematic Viewer

f Refer to “Finding Nodes in the RTL Viewer and Technology Map
Viewer” in the Quartus II Help for more details about using the Find
dialog box.

Exporting and Copying a Schematic Image

You can export the RTL Viewer or Technology Map Viewer schematic
view in JPEG File Interchange Format (.jpg) or Windows Bitmap (.bmp)
file format, which allows you to include the schematic in project
documentation or share it with other project members. To export the
schematic view, on the File menu, click Export. In the Export dialog box,
type a file name and location, and select the desired file type. The default
file name is based on the current instance name and the default file type
is JPEG Interchange Format (.jpg). However, for pages that use filtering,
expanding, or reducing operations, the default name is
Filter<number of export operation>.jpg. Nodes grouped as logic clouds are
not shown in the exported or copied schematic image.

You can copy the whole image or only a portion of the image. To copy the
full image, on the Edit menu, point to Copy and click Full Image. To copy
a portion of the image, on the Edit menu, point to Copy and click Partial
Image. The cursor changes to a plus sign to indicate that you can draw a
box shape. Drag the cursor around the portion of the schematic you want
to copy. When you release the mouse button, the partial image is copied
to the clipboard.

1 Occasionally, due to the design size and objects selected, an
image is too large to copy to the clipboard. In this case, the
Quartus II software displays an error message.

To export or copy a schematic that is too large to copy in one
piece, first split the design into multiple pages to export or to
copy smaller portions of the design. For information about how
to control how much of your design is shown on each schematic
page, refer to “Partitioning the Schematic into Pages” on
page 12–28. As an alterative, use the Partial Image feature to
copy a portion of the image.

The Copy feature is not available on UNIX platforms.

Printing

To print your schematic page, on the File menu, click Print. You can print
each schematic page onto one full page, or you can print the selected parts
of your schematic onto one page with the Selection option. Refer to
“Partitioning the Schematic into Pages” on page 12–28 to control how
much of your design is shown on each schematic page.

12–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

1 Before printing, you can modify the page orientation. On the
File menu, click Page Setup. Change the page orientation from
Portrait to Landscape, or to the setting that best fits your design.
You can also adjust the page margins in the Page Setup dialog
box.

The hierarchy list in the viewers and the table view of the State
Machine Viewer cannot be printed. You can use the State
Machine Viewer Copy command to copy the table to a text
editor and print from the text editor.

Debugging HDL
Code with the
State Machine
Viewer

This section provides an example of using the State Machine Viewer to
help debug HDL code. This example shows how you can use the various
features in the netlist viewers to help solve design problems.

Simulation of State Machine Gives Unexpected Results

This section presents a design scenario in which you compiled your
design and performed a simulation in the Quartus II Simulator. The
simulation result is shown in Figure 12–30 and has unexpected undefined
states.

Figure 12–30. Simulation Result Showing Undefined States

To analyze the state machine design in the State Machine Viewer, follow
these steps:

1. Open the State Machine Viewer for the state machine of interest.
You can do this in any of the following ways:

Altera Corporation 12–57
October 2007

Debugging HDL Code with the State Machine Viewer

● On the Tools menu, point to Netlist Viewers and click State
Machine Viewer. In the State Machine selection box, choose the
state machine that you want to view.

● On the Tools menu, point to Netlist Viewers, and click RTL
Viewer. Browse to the hierarchy block that contains the state
machine definition and double-click the yellow state machine
instance to open the State Machine Viewer (Figure 12–31).You
can open the State Machine Viewer using either of two methods:

• In the schematic view, double-click an instance in the
hierarchy to open the lower level hierarchy. You can
traverse through the schematic hierarchy in this way to
open the schematic page that contains the state machine
(Figure 12–31).

Figure 12–31. State Machine Instance in RTL Viewer Schematic View

• In the hierarchy list, click the + symbol next to Instances to
open a list of the instances in that hierarchy level of the
design. You can traverse down the hierarchy tree in this
way to find the instance that contains the state machine.
Click on the name of the state machine in the State
Machines folder (Figure 12–32) to open the appropriate
schematic in the schematic view (Figure 12–31).

12–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 12–32. State Machine Instance in RTL Viewer Hierarchy List

The State Machine Viewer opens (Figure 12–33).

Figure 12–33. State Machine Viewer Showing Incorrect Transitions

2. You can analyze this state machine instance using the state machine
diagram, transition table, and encoding table. Clearly something is
wrong with the state machine because every state has a transition to
every other state. After inspecting the state machine behavior, you
determine that in this scenario, the designer forgot to create default
assignments for the next state (that is, next_state =
current_state if the conditions are not met).

Altera Corporation 12–59
October 2007

Debugging HDL Code with the State Machine Viewer

3. After fixing the error in the HDL code, recompile the design and
repeat steps 1-2 to view the new state machine diagram and
transition table (shown in Figure 12–34) and check that the state
transitions now occur correctly.

Figure 12–34. State Machine Viewer Showing Correct Transitions

4. Perform a new simulation, as shown in Figure 12–35, and verify that
the state machine now performs as expected.

Figure 12–35. Simulation Result Showing Correct States

12–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Conclusion The Quartus II RTL Viewer, State Machine Viewer, and Technology Map
Viewer allow you to explore and analyze your initial synthesis netlist,
post-synthesis netlist, or post-fitting and physical synthesis netlist. The
viewers provide a number of features in the hierarchy list and schematic
view to help you quickly trace through your netlist and find specific
hierarchies or nodes of interest. These capabilities can help you debug,
optimize, or constrain your design more efficiently to increase your
productivity.

Document
Revision History

Table 12–10 shows the revision history for this chapter.

Table 12–10. Document Revision History (Part 1 of 2)

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

No changes to content. Updated for Quartus II software
version 7.2.

May 2007
v7.1.0

● Renamed “Viewing the Properties of Instances and
Primitives” on page 12–24

● Added “Viewing LUT Representations in the
Technology Map Viewer” on page 12–24

● Renamed and updated “Customizing the Schematic
Display in the RTL Viewer” on page 12–31

● Added “Grouping Combinational Logic into Logic
Clouds” on page 12–32

● Added “Radial Menu” on page 12–50
● Updated Table 12–1
● Updated Table 12–4
● Updated Table 12–8
● Updated Figure 12–7
● Updated Figure 12–8

Chapter updated for Quartus II
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only.
No other changes made to chapter.

—

November 2006
v6.1.0

Chapter 13 was formerly Chapter 12 in version 6.0.0.
Updated for the Quartus II software version 6.1.0:
● Added information about the Technology Map

Viewer (Post-Mapping)
● Can run the RTL Viewer as part of compilation flow,

rather than wait for the Fitter to complete before
viewing the netlist

● Customized the schematic display for better viewing
and to speed up the debugging process

● Added support for Stratix III devices

With the addition of the Technology
Map Viewer (Post-Mapping), you
can view both the post-mapping
and post-fitting netlists at the same
time. Other changes also speed up
the debugging process.

Altera Corporation 12–61
October 2007

Document Revision History

May 2006
v6.0.0

● Name changed to Analyzing Designs with the
Quartus II Netlist Viewers.

● Updated for the Quartus II software version 6.0:
● Updated GUI information.

—

December 2005
v5.1.1

Updated for version 5.1, including viewing inside device
atoms, filter on bus index, display timing path in the RTL
Viewer, state machine access from Tools menu, locate
from state machines, and state encoding table.

—

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 12 was formerly chapter 14 in version 5.0.

—

May 2005
v5.0.0

Chapter 14 was formerly chapter 12 in version 4.2. —

December 2004
v2.1

● Chapter 13 was formerly Chapter 14 in version 4.1.
● Updates to tables and figures.
● New functionality for Quartus II software version 4.2.

—

June 2004
v 2.0

● Updates to tables, and figures.
● New functionality for Quartus II software version 4.1.

—

February 2004
v1.0

Initial release. —

Table 12–10. Document Revision History (Part 2 of 2)

Date and
Document

Version
Changes Made Summary of Changes

12–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 2: Design Implementation

and Optimization

QII5V2-7.2

http://www.altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates .. xv

About this Handbook .. xvii
How to Contact Altera ... xvii
Third-Party Software Product Information .. xvii
Typographic Conventions .. xviii

Section I. Scripting and Constraint Entry

Chapter 1. Assignment Editor
Introduction .. 1–1
Using the Assignment Editor ... 1–1

Category, Node Filter, Information and Edit Bars .. 1–2
Viewing and Saving Assignments in the Assignment Editor ... 1–6

Assignment Editor Features ... 1–7
Using the Enhanced Spreadsheet Interface .. 1–8
Dynamic Syntax Checking .. 1–9
Node Filter Bar .. 1–10
Using Assignment Groups .. 1–11
Customizable Columns ... 1–12
Tcl Interface ... 1–13

Assigning Pin Locations Using the Assignment Editor ... 1–14
Creating Timing Constraints Using the Assignment Editor ... 1–14
Exporting and Importing Assignments .. 1–15

Exporting Assignments ... 1–16
Exporting Pin Assignments .. 1–16
Importing Assignments ... 1–18

Conclusion .. 1–20
Referenced Documents ... 1–20
Document Revision History ... 1–21

Chapter 2. Command-Line Scripting
Introduction .. 2–1
The Benefits of Command-Line Executables ... 2–1
Introductory Example ... 2–2
Command-Line Executables .. 2–3

Command-Line Scripting Help .. 2–6
Command-Line Option Details .. 2–7

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Option Precedence ... 2–8
Design Flow .. 2–11

Compilation with quartus_sh --flow ... 2–11
Text-Based Report Files ... 2–12
Makefile Implementation .. 2–13

Command-Line Scripting Examples ... 2–16
Create a Project and Apply Constraints .. 2–16
Check Design File Syntax .. 2–18
Create a Project and Synthesize a Netlist Using Netlist Optimizations 2–19
Archive and Restore Projects .. 2–19
Perform I/O Assignment Analysis .. 2–20
Update Memory Contents without Recompiling .. 2–20
Fit a Design as Quickly as Possible .. 2–21
Fit a Design Using Multiple Seeds ... 2–21
The QFlow Script .. 2–23

Referenced Documents ... 2–23
Document Revision History ... 2–24

Chapter 3. Tcl Scripting
Introduction .. 3–1

What is Tcl? ... 3–2
Quartus II Tcl Packages .. 3–2

Loading Packages ... 3–5
Quartus II Tcl API Help .. 3–5
Executables Supporting Tcl .. 3–9

Command-Line Options: -t, -s, and --tcl_eval .. 3–10
Using the Quartus II Tcl Console Window .. 3–11

End-to-End Design Flows ... 3–12
Creating Projects and Making Assignments ... 3–13

EDA Tool Assignments ... 3–14
Using LogicLock Regions .. 3–18

Compiling Designs .. 3–21
Reporting .. 3–22

Creating CSV Files for Excel ... 3–24
Timing Analysis ... 3–25

Classic Timing Analysis .. 3–26
TimeQuest Timing Analysis ... 3–29

Automating Script Execution ... 3–30
Making the Assignment .. 3–31
Script Execution .. 3–31
Execution Example ... 3–32
Controlling Processing .. 3–33
Displaying Messages ... 3–33

Other Scripting Features ... 3–33
Natural Bus Naming .. 3–33
Using Collection Commands .. 3–34
Using the post_message Command .. 3–35

Altera Corporation v
Preliminary

Contents

Accessing Command-Line Arguments ... 3–36
Using the Quartus II Tcl Shell in Interactive Mode .. 3–39
Quartus II Legacy Tcl Support ... 3–42
Tcl Scripting Basics .. 3–42

Hello World Example .. 3–42
Variables .. 3–43
Substitutions .. 3–43
Arithmetic .. 3–44
Lists .. 3–44
Arrays ... 3–45
Control Structures .. 3–46
Procedures ... 3–47
File I/O .. 3–48
Syntax and Comments ... 3–49
External References .. 3–50

Referenced Documents ... 3–50
Document Revision History ... 3–51

Chapter 4. Managing Quartus II Projects
Introduction .. 4–1
Creating a New Project ... 4–2
Using Revisions With Your Design .. 4–3

Creating and Deleting Revisions ... 4–3
Comparing Revisions .. 4–6

Creating Different Versions of Your Design .. 4–7
Archiving Projects with the Quartus II Archive Project Feature ... 4–8

Version-Compatible Databases ... 4–10
Quartus II Project Platform Migration .. 4–11

Filenames and Hierarchy .. 4–11
Search Path Precedence Rules .. 4–15
Quartus II-Generated Files for Third-Party EDA Tools ... 4–15
Migrating Database Files ... 4–15

Working with Messages ... 4–16
Messages Window ... 4–17
Hiding Messages .. 4–18

Message Suppression .. 4–19
Message Suppression Methods .. 4–21
Details and Limitations ... 4–21
Message Suppression Manager .. 4–22

Quartus II Settings File ... 4–25
Format Preservation ... 4–25

Quartus II Default Settings File ... 4–26
Scripting Support ... 4–26

Managing Revisions ... 4–27
Archiving Projects with a Tcl Command or at the Command Prompt 4–28
Restoring Archived Projects ... 4–28
Importing and Exporting Version-Compatible Databases ... 4–28

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Specifying Libraries Using Scripts ... 4–29
Conclusion .. 4–30
Referenced Documents ... 4–30
Document Revision History ... 4–31

Section II. I/O and PCB Tools

Chapter 5. I/O Management
Introduction .. 5–1
Understanding Altera FPGA Pin Terminology ... 5–2

Package Pins .. 5–2
Pads .. 5–3
I/O Banks .. 5–4
VREF Groups .. 5–6

Importing and Exporting Pin Assignments ... 5–6
CSV File ... 5–6
Quartus II Settings Files (QSFs) .. 5–7
Tcl Script .. 5–7
FPGA Xchange File .. 5–8
PIN File .. 5–9
Create a Megafunction or IP MegaCore Variation from the Pin Planner 5–14
Import a Megafunction or IP MegaCore Variation from the Pin Planner 5–14
Create a Top-Level Design File for I/O Analysis .. 5–15

Creating Pin-Related Assignments ... 5–21
Using the Pin Planner .. 5–22
Assignment Editor ... 5–57
Tcl Scripts .. 5–61
Chip Planner or Timing Closure Floorplan .. 5–62
Synthesis Attributes ... 5–63

Validating Pin Assignments ... 5–65
Using the Live I/O Check Feature to Validate Pin Assignments ... 5–65
Using I/O Assignment Analysis to Validate Pin Assignments .. 5–67

Incorporating PCB Design Tools ... 5–87
Advanced I/O Timing .. 5–87

I/O Timing and Power with Capacitive Loading ... 5–88
Enabling and Configuring Advanced I/O Timing ... 5–90

Conclusion .. 5–98
Referenced Documents ... 5–98
Document Revision History ... 5–99

Chapter 6. Mentor Graphics PCB Design Tools Support
Introduction .. 6–1
FPGA-to-PCB Design Flow .. 6–2
Setting Up the Quartus II Software ... 6–5

Generating Pin-Out Files ... 6–7
Generating FPGA Xchange Files .. 6–7

Altera Corporation vii
Preliminary

Contents

Creating a Backup Quartus II Settings File .. 6–8
FPGA-to-Board Integration with the I/O Designer Software ... 6–8

I/O Designer Database Wizard .. 6–10
Updating Pin Assignments from the Quartus II Software ... 6–17
Sending Pin Assignment Changes to the Quartus II Software .. 6–20
Generating Symbols for the DxDesigner Software ... 6–22
Scripting Support ... 6–28

FPGA-to-Board Integration with the DxDesigner Software ... 6–30
DxDesigner Project Settings .. 6–30
DxDesigner Symbol Wizard ... 6–32

Conclusion .. 6–35
Referenced Documents ... 6–36
Document Revision History ... 6–36

Chapter 7. Cadence PCB Design Tools Support
Introduction .. 7–1
Product Comparison ... 7–2
FPGA-to-PCB Design Flow .. 7–3
Setting Up the Quartus II Software ... 7–5

Generating Pin-Out Files ... 7–6
FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software 7–6

Symbol Creation ... 7–6
Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software 7–17

FPGA-to-Board Integration with Allegro Design Entry CIS ... 7–18
Allegro Design Entry CIS Project Creation .. 7–19
Generate Part .. 7–19
Split Part .. 7–22
Instantiate Symbol in Design Entry CIS Schematic ... 7–24
Altera Libraries for Design Entry CIS ... 7–25

Conclusion .. 7–27
Referenced Document ... 7–27
Document Revision History ... 7–28

Section III. Area, Timing and Power Optimization

Chapter 8. Area and Timing Optimization
Introduction .. 8–1

Optimizing Your Design ... 8–2
Initial Compilation: Required Settings ... 8–3

Device Settings .. 8–3
I/O Assignments .. 8–4
Timing Requirement Settings ... 8–4
Device Migration Settings ... 8–7
Partitions and Floorplan Assignments for Incremental Compilation 8–7

Initial Compilation: Optional Settings .. 8–8

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Design Assistant ... 8–9
Smart Compilation Setting .. 8–9
Early Timing Estimation ... 8–9
Optimize Hold Timing .. 8–10
Asynchronous Control Signal Recovery/Removal Analysis .. 8–11
Limit to One Fitting Attempt .. 8–12
Optimize Fast Corner Timing ... 8–12
Fitter Effort Setting ... 8–13

Design Analysis ... 8–14
Error and Warning Messages ... 8–15
Ignored Timing Assignments ... 8–15
Resource Utilization ... 8–15
I/O Timing (Including tPD) ... 8–16
Register-to-Register Timing .. 8–19
Global Routing Resources ... 8–23
Compilation Time .. 8–24

Resource Utilization Optimization Techniques (LUT-Based Devices) .. 8–25
Using the Resource Optimization Advisor .. 8–25
Resolving Resource Utilization Issues Summary .. 8–26
I/O Pin Utilization or Placement ... 8–26
Logic Utilization or Placement ... 8–27
Routing .. 8–38

Timing Optimization Techniques (LUT-Based Devices) ... 8–42
Timing Optimization Advisor .. 8–42
I/O Timing Optimization ... 8–43
Register-to-Register Timing Optimization Techniques (LUT-Based Devices) 8–52
LogicLock Assignments .. 8–63
Location Assignments and Back-Annotation ... 8–67

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs) 8–71
Use Dedicated Inputs for Global Control Signals ... 8–71
Reserve Device Resources ... 8–72
Pin Assignment Guidelines and Procedures .. 8–72
Resolving Resource Utilization Problems .. 8–75

Timing Optimization Techniques (Macrocell-Based CPLDs) ... 8–79
Improving Setup Time ... 8–80
Improving Clock-to-Output Time ... 8–80
Improving Propagation Delay (tPD) ... 8–82
Improving Maximum Frequency (fMAX) .. 8–82
Optimizing Source Code—Pipelining for Complex Register Logic 8–83

Compilation-Time Optimization Techniques .. 8–86
Incremental Compilation .. 8–86
Use Multiple Processors for Parallel Compilation .. 8–87
Reduce Synthesis Time and Synthesis Netlist Optimization Time ... 8–88
Check Early Timing Estimation before Fitting .. 8–89
Reduce Placement Time .. 8–89
Reduce Routing Time .. 8–92

Other Optimizing Resources .. 8–93
Design Space Explorer ... 8–93

Altera Corporation ix
Preliminary

Contents

Power Optimization Advisor ... 8–93
Scripting Support ... 8–94

Initial Compilation Settings .. 8–95
Resource Utilization Optimization Techniques (LUT-Based Devices) 8–96
I/O Timing Optimization Techniques (LUT-Based Devices) .. 8–97
Register-to-Register Timing Optimization Techniques (LUT-Based Devices) 8–97

Conclusion .. 8–98
Referenced Documents ... 8–99
Document Revision History ... 8–100

Chapter 9. Power Optimization
Introduction .. 9–1
Power Dissipation ... 9–2
Design Space Explorer .. 9–3
Power-Driven Compilation .. 9–5

Power-Driven Fitter ... 9–11
Recommended Flow for Power-Driven Compilation .. 9–15

Area-Driven Synthesis ... 9–15
Gate-Level Register Retiming ... 9–17

Design Guidelines ... 9–20
Clock Power Management .. 9–20
Reducing Memory Power Consumption .. 9–23
Pipelining and Retiming ... 9–26
Architectural Optimization ... 9–29
I/O Power Guidelines ... 9–33
Power Optimization Advisor ... 9–35
Conclusion ... 9–38

Referenced Documents ... 9–39
Document Revision History ... 9–40

Chapter 10. Analyzing and Optimizing the Design Floorplan
Introduction .. 10–1
Chip Planner Overview .. 10–2

Starting Chip Planner .. 10–3
Chip Planner Toolbar ... 10–3
Chip Planner Tasks and Layers .. 10–4

LogicLock Regions ... 10–6
Creating LogicLock Regions ... 10–7
Placing LogicLock Regions ... 10–8
Placing Device Features into LogicLock Regions .. 10–8
LogicLock Regions Window ... 10–8
Excluded Resources ... 10–10
Hierarchical (Parent and Child) LogicLock Regions .. 10–10

Using LogicLock Regions in the Chip Planner ... 10–11
Assigning LogicLock Region Content ... 10–11
Creating LogicLock Regions with the Chip Planner ... 10–12
Viewing Connections Between LogicLock Regions in the Chip Planner 10–12

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Design Analysis Using the Chip Planner ... 10–13
Chip Planner Floorplan Views ... 10–13
Viewing Architecture-Specific Design Information .. 10–19
Viewing Critical Paths ... 10–20
Viewing Physical Timing Estimates .. 10–22
Viewing Routing Congestion ... 10–23
Viewing I/O Banks .. 10–24
Generating Fan-In and Fan-Out Connections .. 10–26
Generating Immediate Fan-In and Fan-Out Connections .. 10–26
Highlight Routing .. 10–28
Show Delays .. 10–29
Exploring Paths in the Chip Planner ... 10–30
Viewing Assignments in the Chip Planner .. 10–32
Viewing Routing Channels for a Path in the Chip Planner ... 10–33
Cell Delay Table .. 10–34
Viewing High and Low Power Tiles in Stratix III Devices in the Chip Planner 10–35

Timing Closure Floorplan Overview .. 10–36
Design Analysis Using the Timing Closure Floorplan .. 10–38

Timing Closure Floorplan Views ... 10–38
Viewing Assignments .. 10–40
Viewing Critical Paths ... 10–42
Physical Timing Estimates .. 10–44
Viewing Routing Congestion ... 10–47
Timing Closure Floorplan View ... 10–48
LogicLock Regions in the Timing Closure Floorplan ... 10–49
Analyzing LogicLock Region Connectivity Using the Timing Closure Floorplan 10–50
Additional Quartus II LogicLock Design Features ... 10–52

Using LogicLock Methodology for Older Device Families ... 10–57
The Quartus II LogicLock Methodology .. 10–58
Improving Design Performance ... 10–59
LogicLock Restrictions ... 10–59
Preserving Timing Results Using the LogicLock Flow ... 10–60
Importing and Exporting LogicLock Regions .. 10–61
Back-Annotating Routing Information ... 10–65
Back-Annotating LogicLock Regions .. 10–65
Exporting Back-Annotated Routing in LogicLock Regions ... 10–66
Importing Back-Annotated Routing in LogicLock Regions ... 10–67

Scripting Support ... 10–67
Initializing and Uninitializing a LogicLock Region .. 10–68
Creating or Modifying LogicLock Regions .. 10–68
Obtaining LogicLock Region Properties ... 10–69
Assigning LogicLock Region Content ... 10–69
Prevent Further Netlist Optimization ... 10–69
Save a Node-Level Netlist for the Entire Design into a Persistent Source File 10–70
Exporting LogicLock Regions .. 10–70
Importing LogicLock Regions .. 10–70
Setting LogicLock Assignment Priority .. 10–71

Altera Corporation xi
Preliminary

Contents

Assigning Virtual Pins ... 10–71
Back-Annotating LogicLock Regions .. 10–71

Conclusion .. 10–72
Referenced Documents ... 10–73
Document Revision History ... 10–73

Chapter 11. Netlist Optimizations and Physical Synthesis
Introduction .. 11–1
Synthesis Netlist Optimizations .. 11–3

WYSIWYG Primitive Resynthesis .. 11–3
Gate-Level Register Retiming ... 11–5
Preserving Synthesis Netlist Optimization Results ... 11–10

Physical Synthesis Optimizations ... 11–11
Automatic Asynchronous Signal Pipelining .. 11–13
Physical Synthesis for Combinational Logic .. 11–14
Physical Synthesis for Registers—Register Duplication ... 11–15
Physical Synthesis for Registers—Register Retiming ... 11–16
Preserving Your Physical Synthesis Results .. 11–17

Applying Netlist Optimization Options .. 11–19
Scripting Support ... 11–20

Synthesis Netlist Optimizations ... 11–20
Physical Synthesis Optimizations .. 11–21
Incremental Compilation .. 11–22
Back-Annotating Assignments ... 11–22

Conclusion .. 11–23
Referenced Documents ... 11–23
Document Revision History ... 11–23

Chapter 12. Design Space Explorer
Introduction .. 12–1

DSE Concepts .. 12–1
DSE Exploration ... 12–2

General Description ... 12–2
Timing Analyzer Support ... 12–4

DSE Flow ... 12–5
DSE Support for Altera Device Families .. 12–6
DSE Project Settings .. 12–7

Setting Up the DSE Work Environment ... 12–7
Specifying the Revision ... 12–7
Setting the Initial Seed ... 12–7
Restructuring LogicLock Regions .. 12–7
Quartus II Integrated Synthesis ... 12–9

Performing an Advanced Search in Design Space Explorer ... 12–9
Exploration Space ... 12–10
Optimization Goal .. 12–13
Quality of Fit (QoF) .. 12–14
Search Method .. 12–15

xii Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

DSE Flow Options ... 12–15
Create a Revision from a DSE Point .. 12–15
Change Decision Column ... 12–16
Stop Flow When Zero Failing Paths are Achieved .. 12–17
Continue Exploration Even If Base Compilation Fails ... 12–17
Run Quartus II PowerPlay Power Analyzer During Exploration ... 12–17
Archive All Compilations ... 12–18
Stop Flow After Time ... 12–18
Save Exploration Space to File .. 12–18
Ignore SignalTap and SignalProbe Settings ... 12–18
Skip Base Analysis and Compilation If Possible ... 12–18
Lower Priority of Compilation Threads .. 12–19
DSE Configuration File .. 12–19

DSE Advanced Information ... 12–20
Computer Load Sharing in DSE Using Distributed Exploration .. 12–20
Concurrent Local Compilations ... 12–22
Creating Custom Spaces for DSE ... 12–22

Referenced Documents ... 12–27
Document Revision History ... 12–27

Chapter 13. Synplicity Amplify Physical Synthesis Support
Introduction .. 13–1
Software Requirements ... 13–1
Amplify Physical Synthesis Concepts .. 13–2
Amplify-to-Quartus II Flow ... 13–3

Initial Pass: No Physical Constraints ... 13–3
Iterative Passes: Optimizing the Critical Paths .. 13–5

Using the Amplify Physical Optimizer Floorplans .. 13–6
Multiplexers .. 13–7
Independent Paths ... 13–9
Feedback Paths ... 13–9
Starting and Ending Points ... 13–9
Utilization .. 13–11
Detailed Floorplans .. 13–11
Forward Annotating Amplify Physical Optimizer Constraints into the Quartus II Software
... 13–12
Altera Megafunctions Using the MegaWizard Plug-In Manager with the Amplify Software
... 13–13

Conclusion .. 13–14
Referenced Documents ... 13–14
Document Revision History ... 13–15

Altera Corporation xiii
Preliminary

Contents

Section IV. Engineering Change Management

Chapter 14. Engineering Change Management with the Chip Planner
Introduction .. 14–1
Engineering Change Orders ... 14–2

Performance .. 14–2
Compilation Time .. 14–3
Verification .. 14–3
Documentation ... 14–4

ECO Design Flow .. 14–5
The Chip Planner Overview .. 14–6

Opening the Chip Planner .. 14–7
The Chip Planner Toolbar ... 14–7
The Chip Planner Tasks and Layers .. 14–8
The Chip Planner Floorplan Views ... 14–9
First-Level View ... 14–10
Second-Level View ... 14–11
Third-Level View ... 14–12
Bird’s Eye View .. 14–13

Performing ECOs with the Chip Planner (Floorplan View) ... 14–15
Creating Atoms ... 14–15
Deleting Atoms ... 14–20
Moving Atoms .. 14–20
Check and Save Netlist changes ... 14–21

Resource Property Editor ... 14–21
Logic Element ... 14–21
Adaptive Logic Module .. 14–25
FPGA I/O Elements ... 14–27
FPGA RAM Blocks ... 14–33
FPGA DSP Blocks ... 14–34

Change Manager .. 14–36
Complex Changes in the Change Manager .. 14–37
Managing SignalProbe Signals ... 14–38
Exporting Changes ... 14–38

Using Incremental Compilation in the ECO Flow .. 14–38
ECO Flow with No Quartus II Incremental Compilation .. 14–40

Scripting Support ... 14–40
Common ECO Applications .. 14–40

Adjust the Drive Strength of an I/O Using the Chip Planner ... 14–41
Modifying the PLL Properties Using the Chip Planner ... 14–42
PLL Properties .. 14–43
Performing Static Timing Analysis .. 14–46
Generating a Programming File ... 14–46

Conclusion .. 14–46
Referenced Documents ... 14–47
Document Revision History ... 14–47

xiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 1

Altera Corporation xv
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 2, were revised on the following dates. Where
chapters are available separately, part numbers are listed.

Chapter 1. Assignment Editor
Revised: October 2007
Part number: QII52001-7.2.0

Chapter 2. Command-Line Scripting
Revised: October 2007
Part number: QII52002-7.2.0

Chapter 3. Tcl Scripting
Revised: October 2007
Part number: QII52003-7.2.0

Chapter 4. Managing Quartus II Projects
Revised: October 2007
Part number: QII52012-7.2.0

Chapter 5. I/O Management
Revised: October 2007
Part number: QII52013-7.2.0

Chapter 6. Mentor Graphics PCB Design Tools Support
Revised: October 2007
Part number: QII52015-7.2.0

Chapter 7. Cadence PCB Design Tools Support
Revised: October 2007
Part number: QII52014-7.2.0

Chapter 8. Area and Timing Optimization
Revised: October 2007
Part number: QII52005-7.2.0

Chapter 9. Power Optimization
Revised: October 2007
Part number: QII52016-7.2.0

xvi Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 2

Chapter 10. Analyzing and Optimizing the Design Floorplan
Revised: October 2007
Part number: QII52006-7.2.0

Chapter 11. Netlist Optimizations and Physical Synthesis
Revised: October 2007
Part number: QII52007-7.2.0

Chapter 12. Design Space Explorer
Revised: October 2007
Part number: QII52008-7.2.0

Chapter 13. Synplicity Amplify Physical Synthesis Support
Revised: October 2007
Part number: QII52011-7.2.0

Chapter 14. Engineering Change Management with the Chip Planner
Revised: October 2007
Part number: QII52017-7.2.0

Altera Corporation xvii
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 7.2.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Third-Party
Software
Product
Information

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its use
in the Quartus II 7.2 software release. To the extent that the software products
described in this handbook are derived from third-party software, no third
party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT
TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Information Type Contact (1)

Technical support www.altera.com/mysupport

Technical training www.altera.com/training
custrain@altera.com

Product literature www.altera.com/literature

Altera literature services literature@altera.com (1)

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature/
ftp://ftp.altera.com

xviii Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 2

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

v, —, N/A Used in table cells to indicate the following: v indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that
the table cell entry is not applicable to the item of interest.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic.

Altera Corporation Section I–i

Section I. Scripting and
Constraint Entry

As a result of the increasing complexity of today’s FPGA designs and the
demand for higher performance, designers must make a large number of
complex timing and logic constraints to meet their performance
requirements. Once you have created a project and your design, you can
use the Quartus® II software Assignment Editor and other GUI features
to specify your initial design constraints, such as pin assignments, device
options, logic options, and timing constraints.

This section describes how to enter constraints in the Quartus II software,
how to take advantage of Quartus II modular executables, and how to
develop and run tool command language (Tcl) scripts to perform a wide
range of functions, and how to manage the Quartus II project for your
design.

This section includes the following chapters:

■ Chapter 1, Assignment Editor
■ Chapter 2, Command-Line Scripting
■ Chapter 3, Tcl Scripting
■ Chapter 4, Managing Quartus II Projects

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation

Scripting and Constraint Entry Quartus II Handbook, Volume 2

Altera Corporation 1–1
October 2007 Preliminary

1. Assignment Editor

Introduction The complexity of today’s FPGA designs is compounded by the
increasing density and associated pin counts of current FPGAs. It
requires that you make a large number of pin assignments that include
the pin locations and I/O standards to successfully implement a complex
design in the latest generation of FPGAs.

To facilitate the process of entering these assignments, Altera® has
developed an intuitive, spreadsheet interface called the Assignment
Editor. The Assignment Editor is designed to make the process of
creating, changing, and managing a large number of assignments as easy
as possible.

This chapter discusses the following topics:

■ “Using the Assignment Editor”
■ “Assignment Editor Features” on page 1–7
■ “Assigning Pin Locations Using the Assignment Editor” on

page 1–14
■ “Creating Timing Constraints Using the Assignment Editor” on

page 1–14
■ “Exporting and Importing Assignments” on page 1–15

Using the
Assignment
Editor

You can use the Assignment Editor throughout the design cycle. Before
board layout begins, you can make pin assignments with the Assignment
Editor. Throughout the design cycle, use the Assignment Editor to help
achieve your design performance requirements by making timing
assignments. You can also use the Assignment Editor to view, filter, and
sort assignments based on node names or assignment type.

The Assignment Editor is a resizable window. This scalability makes it
easy to view or edit your assignments right next to your design files. To
open the Assignment Editor, click the Assignment Editor icon in the
toolbar, or on the Assignments menu, click Assignment Editor.

1 You can also launch the Assignment Editor by pressing
Ctrl+Shift+A.

QII52001-7.2.0

1–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Category, Node Filter, Information and Edit Bars

The Assignment Editor window is divided into four bars and a
spreadsheet (Figure 1–1).

Figure 1–1. The Assignment Editor Window

You can hide all four bars in the View menu if desired, and you can
collapse the Category, Node Filter, and Information bars. Table 1–1
provides a brief description of each bar.

Category Bar

The Category bar lists all assignment categories available for the selected
device. You can use the Category bar to select a particular assignment
type and to filter out all other assignments. Selecting an assignment
category from the Category list changes the spreadsheet to show only
applicable options and values. To search for a particular type of
assignment, use the Category bar to filter out all other assignments.

Table 1–1. Assignment Editor Bar Descriptions

Bar Name Description

Category Lists the type of available assignments.

Node Filter Lists a selection of design nodes to be viewed or assigned.

Information Displays a description of the currently selected cell.

Edit Allows you to edit the text in the currently selected cell(s).

Altera Corporation 1–3
October 2007 Preliminary

Using the Assignment Editor

To view all tSU assignments in your project, select tsu in the Category list
(Figure 1–2).

Figure 1–2. tSU Selected in the Category List

If you select All in the Category bar (Figure 1–3), the Assignment Editor
displays all assignments.

Figure 1–3. All Selected in the Category List

1–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

When you collapse the Category bar, four shortcut buttons are displayed
allowing you to select from various preset categories (Figure 1–4).

Figure 1–4. Category Bar

Use the Pin category to create pin location assignments. The Pin category
displays additional information about each FPGA pin including its I/O
Bank number, VREF group number, corresponding pad number, and
primary and secondary functions.

When entering a pin number, the Assignment Editor auto completes the
pin number. For example, instead of typing Pin_AA3, you can type AA3
and let the Assignment Editor auto complete the pin number to
Pin_AA3. You can also choose a pin location from the pins list by double
clicking the cell in the location column. All occupied pin locations are
shown in italics.

Node Filter Bar

When Show assignments for specific nodes is turned on, the
spreadsheet shows only assignments for nodes matching the selected
node name filters in the Node Filter bar. You can selectively enable
individual node name filters listed in the Node Filter bar. You can create
a new node name filter by selecting a node name with the Node Finder or
typing a new node name filter. The Assignment Editor automatically
inserts a spreadsheet row and pre-populates the To field with the node
name filter. You can easily add an assignment to the matching nodes by
entering it in the new row. Rows with incomplete assignments are shown
in dark red. When you choose Save on the File menu, and there are
incomplete assignments, a prompt gives you the choice to save and lose
incomplete assignments, or cancel the save.

Altera Corporation 1–5
October 2007 Preliminary

Using the Assignment Editor

As shown in Figure 1–5, when all the bits of the d input bus are enabled
in the Node Filter bar, all unrelated assignments are filtered out.

1 In the Node Filter bar, selecting a d input bus only highlights the
row. If you want to enable the bus, you must turn on the bus.

Figure 1–5. Using the Node Filter Bar in the Assignment Editor

Information Bar

The Information bar provides a brief description of the currently selected
cell and what information you should enter into the cell. For example, the
Information bar describes if it is correct to enter a node name, or a
number value into a cell. If the selected cell is a logic option, then the
Information bar shows a description of that option.

f For more information on logic options, refer to the Quartus® II Help.

Edit Bar

The Edit bar is an efficient way to enter a value into one or more
spreadsheet cells.

1–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

To change the contents of multiple cells at the same time, select the cells
in the spreadsheet (Figure 1–6), then type the new value into the Edit box
in the Edit bar, and click Accept (Figure 1–7).

Figure 1–6. Edit Bar Selection

Figure 1–7. Edit Bar Change

Viewing and Saving Assignments in the Assignment Editor

Although the Assignment Editor is the most common method of entering
and modifying assignments, there are other methods you can use to make
and edit assignments. For this reason, you can refresh the Assignment
Editor after you add, remove, or change an assignment outside the
Assignment Editor.

Altera Corporation 1–7
October 2007 Preliminary

Assignment Editor Features

By default, all assignments made in the Quartus II software are first
stored into memory, then to the Quartus II Setting File (.qsf) on the disk
after you start a processing task, or if you save or close your project.
Saving assignments to memory avoids reading and writing to your disk
drive and improves the performance of the software.

After making assignments in the Assignment Editor, on the File menu,
click Save to save your assignments and update the Quartus II Settings
File outside the Assignment Editor.

Starting with the Quartus II software version 5.1, you can force all
assignments to be written to a disk drive. This is performed by turning off
Update assignments to disk during design processing only in the
Processing page of the Options settings dialog box on the Tools menu.

f For more information on how the Quartus II software writes to the
Quartus II Settings File, refer to the Managing Quartus II Projects chapter
in volume 2 of the Quartus II Handbook.

You can refresh the Assignment Editor window by clicking Refresh from
the View menu. If you make an assignment in the Quartus II software,
such as in the Tcl console or in the Pin Planner, the Assignment Editor
reloads the new assignments from memory. If you directly modify the
Quartus II Settings File outside the Assignment Editor, click Refresh on
the View menu to view the assignments.

1 If the Quartus II Settings File is edited while the project is open,
go to the File menu and click Save Project to ensure that you are
editing the latest Quartus II Settings File.

Each time the Assignment Editor is refreshed, the following message
displays in the Message window:

Info: Assignments reloaded -- assignments updated outside Assignment Editor

Assignment
Editor Features

You can open the Assignment Editor from many locations in the
Quartus II software, including the Text Editor, the Node Finder, the
Timing Closure Floorplan, the Pin Planner, the Compilation Report, and
the Messages window. For example, you can highlight a node name in
your design file and open the Assignment Editor with the node name
populated.

You can also open other windows from the Assignment Editor. From a
node listed in the Assignment Editor spreadsheet, you can locate the node
in any of the following windows: Pin Planner, Timing Closure Floorplan,
Chip Planner, Block Editor, or Text Editor.

1–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Using the Enhanced Spreadsheet Interface

One of the key features of the Assignment Editor is the spreadsheet
interface. With the spreadsheet interface, you can sort columns, use
pull-down list boxes, and copy and paste multiple cells into the
Assignment Editor. As you enter an assignment, the font color of the row
changes to indicate the status of the assignment. Refer to “Dynamic
Syntax Checking” on page 1–9 for more information.

There are many ways to select or enter nodes into the spreadsheet
including: the Node Finder, the Node Filter bar, the Edit bar, or by
directly typing the node name into the cell in the spreadsheet. A node
type icon is shown beside each node name and node name filter to
identify its type. The node type icon identifies the entry as an input,
output, bidirectional pin, a register, combinational logic, or an
assignment group (Figure 1–8). The node type icon appears as an asterisk
for node names and node name filters that use a wildcard character
(* or ?).

Figure 1–8. Node Type Icon Displayed Beside Each Node Name in the Spreadsheet

The Assignment Editor supports wildcards in the following types of
assignments:

■ All timing assignments
■ Point-to-point global signal assignments (applicable to Stratix® II

and Stratix devices)
■ Point-to-point or pad-to-core delay chain assignments
■ All assignments that support wild cards are shown in the drop list

under the Assignment Name column of the Assignment Editor with
“(Accepts wildcards/groups)” displayed beside it

The spreadsheet also supports customizable columns that allow you to
show, hide, and arrange columns. For more information, refer to
“Customizable Columns” on page 1–12.

When making pin location assignments, the background color of the cells
coordinates with the color of the I/O bank shown in the Pin Planner
(Figure 1–9).

Altera Corporation 1–9
October 2007 Preliminary

Assignment Editor Features

Figure 1–9. Cells Coordinates with the Color of the I/O Bank

Dynamic Syntax Checking

As you enter your assignments, the Assignment Editor performs simple
legality and syntax checks. This checking is not as thorough as the checks
performed during compilation, but it rejects incorrect settings. For
example, the Assignment Editor does not allow assignment of a pin name
to a no-connect pin. In this case, the assignment is not accepted and you
must enter a different pin location.

The color of the text in each row indicates if the assignment is incomplete,
incorrect, or disabled (Table 1–2). To customize the colors in the
Assignment Editor, on the Tools menu, click Options.

Table 1–2. Description of the Text Color in the Spreadsheet

Text Color Description

Green A new assignment can be created.

Yellow The assignment contains warnings, such as an unknown node
name.

Dark Red The assignment is incomplete.

Bright Red The assignment has an error, such as an illegal value.

Light Gray The assignment is disabled.

1–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Node Filter Bar

The Node Filter bar provides flexibility in how you view and make your
settings. The Node Filter bar contains a list of node filters. To create a new
entry, use the Node Finder or manually type the node name.
Double-click an empty row in the Node Filter list, click on the arrow, and
click Node Finder (Figure 1–10) to open the Node Finder dialog box.

Figure 1–10. Node Finder Option

Altera Corporation 1–11
October 2007 Preliminary

Assignment Editor Features

In the Node Filter bar, you can turn each filter on or off. To turn off the
Node Filter bar, turn off Show assignments for specific nodes. The
wildcards (* and ?) are used to filter for a selection of all the design nodes
with one entry in the Node Filter. For example, you can enter d* into the
Node Filter list to view all assignments for d[0], d[1], d[2], and d[3]
(Figure 1–11).

Figure 1–11. Using the Node Filter Bar with Wildcards

Using Assignment Groups

An assignment group is a collection of design nodes grouped together
and represented as a single unit for the purpose of making assignments
to the collection. Using assignment groups with the Assignment Editor
provides the flexibility required for making complex fitting or timing
assignments to a large number of nodes.

To create an assignment group, on the Assignments menu, click
Assignment (Time) Groups. The Assignment Groups dialog box is
shown. You can add or delete members of each assignment group with
wild cards in the Node Finder (Figure 1–12).

f For more information on using Assignment Groups for timing analysis,
refer to the Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

1–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 1–12. Assignment Groups Dialog Box

There are cases when wildcards are not flexible enough to select a large
number of nodes that have similar node names. You can use assignment
groups to combine wildcards, which select a large number of nodes, and
use exceptions to remove nodes that you did not intend to select.
Although settings may not always display correctly when you have
wildcards or assignment groups, the Fitter always recognizes
assignments created with wildcards and assignment groups when the
design is compiled.

Customizable Columns

To provide more control over the display of information in the
spreadsheet, the Assignment Editor supports customizable columns.

You can move columns, sort them in ascending or descending order,
show or hide individual columns, and align the content of the column
left, center, or right for improved readability.

When the Quartus II software starts for the first time, you see a
pre-selected set of columns. For example, when the Quartus II software is
first started, the Comment column is hidden. To show or hide any of the
available columns, on the View menu, click Customize Columns. When
you restart the Quartus II software, your column settings are maintained.

Altera Corporation 1–13
October 2007 Preliminary

Assignment Editor Features

Depending on the category selected, there are many different hidden
columns you can display. For example, with the Pins category selected,
there are many columns that are not shown by default, such as VREF
group, pad number, output pin load, toggle rate, timing requirements,
and fast input and output register options.

You can use the Comments column to document the purpose of a pin or
to explain why you applied a timing or logic constraint. You can use the
Enabled column to disable any assignment without deleting it. This
feature is useful when performing multiple compilations with different
timing constraints or logic optimizations.

1 Even though you can make many pin-related assignments with
the Pin category selected, only the pin location assignment is
disabled when you disable a row using the Enabled column.

Tcl Interface

Whether you use the Assignment Editor or another feature to create your
design assignments, you can export them to a Tcl file. You can then use
the Tcl file to reapply the settings or to archive your assignments. On the
File menu, click Export to export your assignments (currently displayed
in the spreadsheet of the Assignment Editor) to a Tcl script.

1 On the Project menu, click Generate TCL File for Project to
generate a Tcl script file that sets up your design and applies all
the assignments.

In addition, as you use the Assignment Editor to enter assignments, the
equivalent Tcl commands are shown in the System Message window. You
can reference these Tcl commands to create customized Tcl scripts
(Figure 1–13). To copy a Tcl command from the Messages window,
right-click the message and click Copy.

Figure 1–13. Equivalent Tcl Commands Displayed in the Messages Window

1–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

f For more information on Tcl scripting with the Quartus II software, refer
to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

Assigning Pin
Locations Using
the Assignment
Editor

There are two methods for making pin assignments with the Assignment
Editor. The first approach involves choosing a design node name for each
device pin location. It is important to understand the properties of each
pin on the FPGA device before you assign a design node to the location.
For example, when following pin placement guidelines, you need to
know which I/O bank or VREF group each pin belongs to.

On the Assignments menu, click Assignment Editor. To view all pin
numbers in the targeted package, click the Pin category. On the View
menu, click Show All Assignable Pin Numbers. You can customize the
columns shown in the Assignment Editor to display property
information about each pin including their pad numbers, as well as
primary and secondary functions.

f For more information on pin placement guidelines, refer to the Selectable
I/O Standards chapters in the appropriate device handbook.

The second approach involves choosing a pin location for each pin in
your design. To view all pin numbers in the targeted package, open the
Assignment Editor, click the Pin category, and on the View menu, click
Show All Known Pin Names. For each pin name, select a pin location.

f For more information about creating pin assignments, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

Creating Timing
Constraints
Using the
Assignment
Editor

Accurate timing constraints guide the place-and-route engine in the
Quartus II software to help optimize your design into the FPGA. After
completing a place-and-route, perform a static timing analysis using the
Quartus II Classic Timing Analyzer or the Quartus II TimeQuest Timing
Analyzer to analyze slack and critical paths in your design.

If you are using the Quartus II Classic Timing Analyzer, create timing
constraints using the Assignment Editor. On the Assignments menu,
click Assignment Editor. In the Category list, select Timing, and make
timing assignments in the spreadsheet section of the Assignment Editor.

f For more information on the Quartus II Classic Timing Analyzer, refer to
the Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

If you are using the Quartus II TimeQuest Timing Analyzer, the
TimeQuest Timing Analyzer uses timing assignments from a Synopsys
Design Constraint (.sdc) file.

Altera Corporation 1–15
October 2007 Preliminary

Exporting and Importing Assignments

f For information on converting the timing assignments in your Quartus
Settings File to an Synopsys Design Constraint file, refer to the Switching
to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Exporting and
Importing
Assignments

Designs that use the LogicLock™ hierarchal design methodology use the
Import Assignment command to import assignments into the current
project. You can also use the Export Assignments command to save all
the assignments in your project to a file to be used for archiving or to
transfer assignments from one project to another.

On the Assignments menu, click Export Assignments or Import
Assignments to do the following:

■ Export your Quartus II assignments to a Quartus II Settings File.
■ Import assignments from a Quartus II Entity Settings File (.esf), a

MAX+PLUS® II Assignment and Configuration File (.acf), or a
Comma Separated Value (.csv) file.

In addition to the Export Assignments and Import Assignments dialog
boxes, the Export command on the File menu allows you to export your
assignments to a Tcl Script (.tcl) file.

1 When applicable, the Export command exports the contents of
the active window in the Quartus II software to another file
format.

You can use these file formats for many different aspects of your project.
For example, you can use a Comma Separated Value file for
documentation purposes, or to transfer pin-related information to board
layout tools. The Tcl file makes it easy to apply assignments in a scripted
design flow. The LogicLock design flow uses the Quartus II Settings File
to transfer your LogicLock region settings.

1–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Exporting Assignments

You can use the Export Assignments dialog box to export your
Quartus II software assignments into a Quartus II Settings File, generate
a node-level netlist file, and export back-annotated routing information
as a Routing Constraints File (.rcf) (Figure 1–14).

Figure 1–14. Export Assignments Dialog Box

On the Assignments menu, click Export Assignments to open the Export
Assignments dialog box. The LogicLock design flow also uses this dialog
box to export LogicLock regions.

f For more information on using the Export Assignments dialog box to
export LogicLock regions, refer to the LogicLock Design Methodology
chapter in volume 2 of the Quartus II Handbook.

On the File menu, click Export to export all assignments to a Tcl file or
export a set of assignments to a Comma Separated Value file. When you
export assignments to a Tcl file, only user-created assignments are
written to the Tcl script file; default assignments are not exported.

When assignments are exported to a Comma Separated Value file, only
the assignments displayed in the current view of the Assignment Editor
are exported.

Exporting Pin Assignments

To export your pin assignments to a Comma Separated Value file, you
can open the Assignment Editor and select Pin from the Category bar.
The Pin category displays detailed properties about each pin similar to
that of the device pin-out files in addition to the pin name and pin
number. On the File menu, click Export, and select Comma Separated
Value File from the Save as type list.

Altera Corporation 1–17
October 2007 Preliminary

Exporting and Importing Assignments

The first uncommented row of the Comma Separated Value file is a list of
the column headings displayed in the Assignment Editor separated by
commas. Each row below the header row represents the rows in the
spreadsheet of the Assignment Editor (Figure 1–15). On the View menu,
click Customize Columns to add and remove columns that are displayed
in the spreadsheet. You can view and make edits to the Comma Separated
Value file with Excel or other spreadsheet tools. If you intend to import
the Comma Separated Value file back into the Quartus II software, the
column headings must remain unedited and in the same order.

f For more information on exporting pin assignments, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

Figure 1–15. Assignment Editor With Category Set to Pin

1–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

The following code is an example of an exported Comma Separated
Value file from the Assignment Editor:

Note: The column header names should not be changed if you wish to import this .csv file
into the Quartus II software.

To,Location,I/O Bank,I/O Standard,General Function,Special Function,Reserved,Enabled
clk,PIN_N20,1,LVTTL,Dedicated Clock,"CLK3p, Input",,Yes
clkx2,PIN_M21,2,LVTTL,Dedicated Clock,"CLK1p, Input",,Yes
d[0],PIN_E9,4,LVTTL,Column I/O,DQSn5T,,Yes
d[1],PIN_D8,4,LVTTL,Column I/O,DQS5T/DQ0T,,Yes
d[2],PIN_G9,4,LVTTL,Column I/O,,,Yes
d[3],PIN_E8,4,LVTTL,Column I/O,DQ5T,,Yes
d[4],PIN_F2,5,LVTTL,Row I/O,DIFFIO_RX22n,,Yes
d[5],PIN_G4,5,LVTTL,Row I/O,DIFFIO_TX22n,,Yes
d[6],PIN_D1,5,LVTTL,Row I/O,DIFFIO_RX20p,,Yes
d[7],PIN_F8,4,LVTTL,Column I/O,,,Yes

Importing Assignments

The Import Assignments dialog box allows you to import Quartus II
assignments from a Quartus II Settings File, a Quartus II Entity Settings
File, a MAX+PLUS II Assignment Configuration File, or a Comma
Separated Value (Figure 1–16).

To import assignments from any of the supported assignment files,
perform the following steps:

1. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box is shown (Figure 1–16).

Figure 1–16. Import Assignments Dialog Box

2. In the File name text-entry box, type the file name, or browse to the
assignment file. The Select File dialog box is shown.

3. In the Select File dialog box, select the file, and click Open.

4. Click OK.

Altera Corporation 1–19
October 2007 Preliminary

Exporting and Importing Assignments

1 When you import a Comma Separated Value file, the first
uncommented row of the file must be in the exact format as
it was when exported.

When using the LogicLock flow methodology to import assignments,
perform the following steps:

1. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box appears (Figure 1–16).

2. Turn on Use LogicLock Import File Assignments, and click
LogicLock Import File Assignments.

3. When the LogicLock Import File Assignments dialog box opens,
select the assignments to import and click OK.

f For more information on using the Import Assignments dialog box to
import LogicLock regions, refer to the LogicLock Design Methodology
chapter in volume 2 of the Quartus II Handbook.

You can create a backup copy of your assignments before importing new
assignments by turning on the Copy existing assignments into
<revision name>.qsf.bak before importing option.

When importing assignments from a file, you can choose which
assignment categories to import by following these steps:

1. Click Categories in the Import Assignments dialog box.

2. Turn on the categories you want to import from the Assignment
categories list (Figure 1–17).

To select specific types of assignments to import, click Advanced in the
Import Assignments dialog box. The Advanced Import Settings dialog
box appears. You can choose to import instance, entity, or global
assignments, and select various assignment types to import.

f For more information on these options, refer to the Quartus II Help.

1–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 1–17. Assignment Categories Dialog Box

Conclusion As FPGAs continue to increase in density and pin count, it is essential to
be able to quickly create and view design assignments. The Assignment
Editor provides an intuitive and effective way of making assignments.
With the spreadsheet interface and the Category, Node Filter,
Information, and Edit bars, the Assignment Editor provides an efficient
assignment entry solution for FPGA designers.

Referenced
Documents

This chapter references the following documents:

■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ LogicLock Design Methodology chapter in volume 2 of the Quartus II

Handbook
■ Managing Quartus II Projects chapter in volume 2 of the Quartus II

Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Selectable I/O Standards chapters in the appropriate device handbook
■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in

volume 3 of the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/lit-index.html
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Altera Corporation 1–21
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 1–3 shows the revision history for this chapter.

Table 1–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 1–20. Updated for the
Quartus II software

version 7.2.

May 2007
v7.1.0

Added Referenced Documents. Updated the title of the
referenced document

Quartus II Project
Management to

Managing Quartus II
Projects.

March 2007 v7.0.0 Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Added revision history to document. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0.
● Added Quartus II Classic Timing Analyzer and Quartus II

TimeQuest Timing Analyzer information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0. —

May 2005
v5.0.0

● Updated for the Quartus II software version 5.0.0.
● General formatting and editing updates.
● Updated 2 graphics and references to reflect changes in the

Quartus II software version 5.0.0

—

December 2004
v2.1

● Updated for Quartus II software version 4.2:
● General formatting and editing updates.
● Updated information about refreshing the Assignment Editor.
● Updated figures.
● Added information about how to make selections to the

Assignment Editor window.
● Added Time Groups reference.
● Reworded description of Customizable Columns.
● Added new section Creating Pin Locations Using the

Assignment Editor.
● Added new description to Exporting and Importing

Assignments.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality in the Quartus II software version 4.1.

—

February 2004
v1.0

Initial release. —

1–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Altera Corporation 2–1
October 2007

2. Command-Line Scripting

Introduction FPGA design software that easily integrates into your design flow saves
time and improves productivity. The Altera® Quartus® II software
provides you with a command-line executable for each step of the FPGA
design flow to make the design process customizable and flexible.

The benefits provided by command-line executables include:

■ Command-line control over each step of the design flow
■ Easy integration with scripted design flows including makefiles
■ Reduced memory requirements
■ Improved performance

The command-line executables are also completely compatible with the
Quartus II GUI, allowing you to use the exact combination of tools that
you prefer.

This chapter describes how to take advantage of Quartus II
command-line executables, and provides several examples of scripts that
automate different segments of the FPGA design flow.

The Benefits of
Command-Line
Executables

The Quartus II command-line executables provide command-line control
over each step of the design flow. Each executable includes options to
control commonly used software settings. Each executable also provides
detailed, built-in help describing its function, available options, and
settings.

Command-line executables allow for easy integration with scripted
design flows. It is simple to create scripts in any language with a series of
commands. These scripts can be batch-processed, allowing for
integration with distributed computing in server farms. You can also
integrate the Quartus II command-line executables in makefile-based
design flows. All of these features enhance the ease of integration
between the Quartus II software and other EDA synthesis, simulation,
and verification software.

Command-line executables add integration and scripting flexibility
without sacrificing the ease-of-use of the Quartus II GUI. You can use the
Quartus II GUI and command-line executables at different stages in the
design flow. For example, you might use the Quartus II GUI to edit the

QII52002-7.2.0

2–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

floorplan for the design, use the command-line executables to perform
place-and-route, and return to the Quartus II GUI to perform debugging
with the Chip Editor.

Command-line executables reduce the amount of memory required
during each step in the design flow. Because each executable targets only
one step in the design flow, it is relatively compact, both in file size and
the amount of memory used when running. This memory reduction
improves performance, and is particularly beneficial in design
environments where computer networks or workstations are heavily
used with reduced memory.

Introductory
Example

The following introduction to design flow with command-line
executables shows how to create a project, fit the design, perform timing
analysis, and generate programming files.

The tutorial design included with the Quartus II software is used to
demonstrate this functionality. If installed, the tutorial design is found in
the <Quartus II directory>/qdesigns/fir_filter directory.

Before making changes, copy the tutorial directory and type the four
commands shown in Example 2–1 at a command prompt in the new
project directory:

1 The <Quartus II directory>/quartus/bin directory must be in
your PATH environment variable.

Example 2–1. Introductory Example
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_asm filtref r
quartus_tan filtref r

The quartus_map filtref --source=filtref.bdf --family=CYCLONE
command creates a new Quartus II project called filtref with the
filtref.bdf file as the top-level file. It targets the Cyclone® device family
and performs logic synthesis and technology mapping on the design files.

The quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns
command performs fitting on the filtref project. This command specifies
an EP1C12Q240C6 device and the Fitter attempts to meet a global fMAX
requirement of 80 MHz and a global tSU requirement of 8 ns.

The quartus_asm filtref command creates programming files for the
filtref project.

Altera Corporation 2–3
October 2007

Command-Line Executables

The quartus_tan filtref command performs timing analysis on the filtref
project to determine whether the design meets the timing requirements
that were specified to the quartus_fit executable.

You can put the four commands from Example 2–1 into a batch file or
script file, and run them. For example, you can create a simple UNIX shell
script called compile.sh, which includes the code shown in Example 2–2.

Example 2–2. UNIX Shell Script: compile.sh
#!/bin/sh
PROJECT=filtref
TOP_LEVEL_FILE=filtref.bdf
FAMILY=Cyclone
PART=EP1C12Q240C6
FMAX=80MHz
quartus_map $PROJECT --source=$TOP_LEVEL_FILE --family=$FAMILY
quartus_fit $PROJECT --part=$PART --fmax=$FMAX
quartus_asm $PROJECT
quartus_tan $PROJECT

Edit the script as necessary and compile your project.

Command-Line
Executables

Table 2–1 details the command-line executables and their respective
descriptions.

Table 2–1. Quartus II Command-Line Executables and Descriptions (Part 1 of 4)

Executable Description

Analysis and Synthesis
quartus_map

Quartus II Analysis and Synthesis builds a single project database that
integrates all the design files in a design entity or project hierarchy, performs
logic synthesis to minimize the logic of the design, and performs technology
mapping to implement the design logic using device resources such as logic
elements.

Fitter
quartus_fit

The Quartus II Fitter performs place-and-route by fitting the logic of a design
into a device. The Fitter selects appropriate interconnection paths, pin
assignments, and logic cell assignments.

Quartus II Analysis and Synthesis must be run successfully before running the
Fitter.

2–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Assembler
quartus_asm

The Quartus II Assembler generates a device programming image, in the form
of one or more of the following from a successful fit (that is, place-and-route).
● Programmer Object Files (.pof)
● SRAM Object Files (.sof)
● Hexadecimal (Intel-Format) Output Files (.hexout)
● Tabular Text Files (.ttf)
● Raw Binary Files (.rbf)

The .pof and .sof files are then processed by the Quartus II Programmer and
downloaded to the device with the MasterBlasterTM or the ByteBlasterTM II
download cable, or the Altera Programming Unit (APU). The Hexadecimal
(Intel-Format) Output Files, Tabular Text Files, and Raw Binary Files can be
used by other programming hardware manufacturers that provide support for
Altera devices.

The Quartus II Fitter must be run successfully before running the Assembler.

Classic Timing Analyzer
quartus_tan

The Quartus II Classic Timing Analyzer computes delays for the given design
and device, and annotates them on the netlist. Then, the Classic Timing
Analyzer performs timing analysis, allowing you to analyze the performance of
all logic in your design. The quartus_tan executable includes Tcl support.

Quartus II Analysis and Synthesis or the Fitter must be run successfully before
running the Classic Timing Analyzer.

TimeQuest Timing Analyzer
quartus_sta

The Quartus II TimeQuest Timing Analyzer computes delays for the given
design and device, and annotates them on the netlist. Then, the TimeQuest
Timing Analyzer performs timing analysis, allowing you to analyze the
performance of all logic in your design. The quartus_sta executable includes
Tcl support and SDC support.

Quartus II Analysis and Synthesis or the Fitter must be run successfully before
running the TimeQuest Timing Analyzer.

Design Assistant
quartus_drc

The Quartus II Design Assistant checks the reliability of a design based on a
set of design rules. The Design Assistant is especially useful for checking the
reliability of a design before converting the design for HardCopy® devices. The
Design Assistant supports designs that target any Altera device supported by
the Quartus II software, except MAX® 3000 and MAX 7000 devices.

Quartus II Analysis and Synthesis or the Fitter must be run successfully before
running the Design Assistant.

Compiler Database Interface
quartus_cdb

The Quartus II Compiler Database Interface generates incremental netlists for
use with LogicLockTM back-annotation, or back-annotates device and resource
assignments to preserve the fit for future compilations. The quartus_cdb
executable includes Tcl support.

Analysis and Synthesis must be run successfully before running the Compiler
Database Interface.

Table 2–1. Quartus II Command-Line Executables and Descriptions (Part 2 of 4)

Executable Description

Altera Corporation 2–5
October 2007

Command-Line Executables

EDA Netlist Writer
quartus_eda

The Quartus II EDA Netlist Writer generates netlist and other output files for
use with other EDA tools.

Analysis and Synthesis, the Fitter, or Timing Analyzer must be run successfully
before running the EDA Netlist Writer, depending on the arguments used.

Simulator
quartus_sim

The Quartus II Simulator tests and debugs the logical operation and internal
timing of the design entities in a project. The Simulator can perform two types
of simulation: functional simulation and timing simulation. The quartus_sim
executable includes Tcl support.

Quartus II Analysis and Synthesis must be run successfully before running a
functional simulation.

The Timing Analyzer must be run successfully before running a timing
simulation.

Power Analyzer
quartus_pow

The Quartus II PowerPlay Power Analyzer estimates the thermal dynamic
power and the thermal static power consumed by the design. For newer
families such as Stratix® II and MAX II, the power drawn from each power
supply is also estimated.

Quartus II Analysis and Synthesis or the Fitter must be run successfully before
running the PowerPlay Power Analyzer.

Programmer
quartus_pgm

The Quartus II Programmer programs Altera devices. The Programmer uses
one of the supported file formats:
● Programmer Object Files (.pof)
● SRAM Object Files (.sof)
● Jam File (.jam)
● Jam Byte-Code File (.jbc)

Make sure you specify a valid programming mode, programming cable, and
operation for a specified device.

Convert Programming File
quartus_cpf

The Quartus II Convert Programming File module converts one programing file
format to a different possible format.

Make sure you specify valid options and an input programming file to generate
the new requested programming file format.

Quartus Shell
quartus_sh

The Quartus II Shell acts as a simple Quartus II Tcl interpreter. The Shell has
a smaller memory footprint than the other command-line executables that
support Tcl. The Shell may be started as an interactive Tcl interpreter (shell),
used to run a Tcl script, or used as a quick Tcl command evaluator, evaluating
the remaining command-line arguments as one or more Tcl commands.

Table 2–1. Quartus II Command-Line Executables and Descriptions (Part 3 of 4)

Executable Description

2–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Command-Line Scripting Help

Help on command-line executables is available through different
methods. You can access help built in to the executables with
command-line options. You can use the Quartus II Command-Line and
Tcl API Help browser for an easy graphical view of the help information.
Additionally, you can refer to the Scripting Reference Manual on the
Quartus II literature page on Altera’s website, which has the same
information in PDF format.

To use the Quartus II Command-Line and Tcl API Help browser, type the
following:

quartus_sh --qhelp r

This command starts the Quartus II Command-Line and Tcl API Help
browser, a viewer for information about the Quartus II Command-Line
executables and Tcl API (Figure 2–1).

Use the -h option with any of the Quartus II Command-Line executables
to get a description and list of supported options. Use the
--help=<option name> option for detailed information about each
option.

TimeQuest Timing Analyzer
GUI
quartus_staw

This executable opens the Quartus II TimeQuest Timing Analyzer GUI. This is
helpful because you don’t have to open the entire Quartus II GUI for certain
operations.

Programmer GUI
quartus_pgmw

This executable opens up the programmer—a GUI to the quartus_pgm
executable. This is helpful because users don’t have to open the entire
Quartus II GUI for certain operations

Table 2–1. Quartus II Command-Line Executables and Descriptions (Part 4 of 4)

Executable Description

Altera Corporation 2–7
October 2007

Command-Line Executables

Figure 2–1. Quartus II Command-Line and Tcl API Help Browser

Command-Line Option Details

Command-line options are provided for many common global project
settings and performing common tasks. You can use either of two
methods to make assignments to an individual entity. If the project exists,
open the project in the Quartus II GUI, change the assignment, and close
the project. The changed assignment is updated in the Quartus II Settings
File. Any command-line executables that are run after this update use the
updated assignment. Refer to “Option Precedence” on page 2–8 for more

2–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

information. You can also make assignments using the Quartus II Tcl
scripting API. If you want to completely script the creation of a Quartus II
project, choose this method.

f Refer to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook.
Scripting information for all Quartus II project settings and assignments
is located in the QSF Reference Manual.

Option Precedence

If you use command-line executables, you should be aware of the
precedence of various project assignments and how to control the
precedence. Assignments for a particular project exist in the Quartus II
Settings File for the project. Assignments for a project can also be made
with command-line options, as described earlier in this document. Project
assignments are reflected in compiler database files that hold
intermediate compilation results and reflect assignments made in the
previous project compilation.

All command-line options override any conflicting assignments found in
the Quartus II Settings File or the compiler database files. There are two
command-line options to specify whether Quartus II Settings File or
compiler database files take precedence for any assignments not specified
as command-line options.

1 Any assignment not specified as a command-line option or
found in the Quartus II Settings File or compiler database file is
set to its default value.

The file precedence command-line options are
--read_settings_files and --write_settings_files.

By default, the --read_settings_files and
--write_settings_files options are turned on. Turning on the
--read_settings_files option causes a command-line executable to
read assignments from the Quartus II Settings File instead of from the
compiler database files. Turning on the --write_settings_files
option causes a command-line executable to update the Quartus II
Settings File to reflect any specified options, as happens when closing a
project in the Quartus II GUI.

Altera Corporation 2–9
October 2007

Command-Line Executables

Table 2–2 lists the precedence for reading assignments depending on the
value of the --read_settings_files option.

Table 2–3 lists the locations to which assignments are written, depending
on the value of the --write_settings_files command-line option.

Example 2–3 assumes that a project named fir_filter exists, and that the
analysis and synthesis step has been performed (using the quartus_map
executable).

Example 2–3. Write Settings Files
quartus_fit fir_filter --fmax=80MHz r
quartus_tan fir_filter r
quartus_tan fir_filter --fmax=100MHz --tao=timing_result-100.tao

--write_settings_files=off r

The first command, quartus_fit fir_filter --fmax=80MHz, runs the
quartus_fit executable and specifies a global fMAX requirement of
80 MHz.

The second command, quartus_tan fir_filter, runs Quartus II timing
analysis for the results of the previous fit.

Table 2–2. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--read_settings_files = on (default) 1. Command-line options
2. Quartus II Settings File
3. Project database (db directory, if it exists)
4. Quartus II software defaults

--read_settings_files = off 1. Command-line options
2. Project database (db directory, if it exists)
3. Quartus II software defaults

Table 2–3. Location for Writing Assignments

Option Specified Location for Writing Assignments

--write_settings_files = on (Default) Quartus II Settings File and compiler database

--write_settings_files = off Compiler database

2–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The third command reruns Quartus II timing analysis with a global fMAX
requirement of 100 MHz and saves the result in a file called
timing_result-100.tao. By specifying the
--write_settings_files=off option, the command-line executable
does not update the Quartus II Settings File to reflect the changed fMAX
requirement. The compiler database files reflect the changed fMAX
requirement. If the --write_settings_files=off option is not
specified, the command-line executable updates the Quartus II Settings
File to reflect the 100-MHz global fMAX requirement.

Use the options --read_settings_files=off and
--write_settings_files=off (where appropriate) to optimize the
way that the Quartus II software reads and updates settings files.
Example 2–4 shows how to avoid unnecessary reading and writing.

Example 2–4. Avoiding Unnecessary Reading and Writing
quartus_map filtref --source=filtref

--part=ep1s10f780c5 r
quartus_fit filtref --fmax=100MHz

--read_settings_files=off r
quartus_tan filtref --read_settings_files=off

--write_settings_files=off r
quartus_asm filtref --read_settings_files=off

--write_settings_files=off r

The quartus_tan and quartus_asm executables do not read or write
settings files because they do not change any settings in the project.

Altera Corporation 2–11
October 2007

Design Flow

Design Flow Figure 2–2 shows a typical design flow.

Figure 2–2. Typical Design Flow

Compilation with quartus_sh --flow

Use the quartus_sh executable with the --flow option to perform a
complete compilation flow with a single command. (For information
about specialized flows, type quartus_sh --help=flow r at a
command prompt.) The --flow option supports the smart recompile
feature and efficiently sets command-line arguments for each executable
in the flow.

1 If you used the quartus_cmd executable to perform
command-line compilations in earlier versions of the Quartus II
software, you should use the quartus_sh --flow command
beginning with the Quartus II software version 3.0.

Design Entry
(TDF, BDF, VQM, Verilog HDL,

VHDL, EDIF Netlist files)
Quartus II Shell

Synthesis

Fitter Power Analyzer

Timing Analysis

Assembler

Programmer

SimulatorNetlist Writers

VO, VHO Files

2–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The following example runs compilation, timing analysis, and programming
file generation with a single command:

quartus_sh --flow compile filtref r

Text-Based Report Files

Each command-line executable creates a text report file when it is run. These
files report success or failure, and contain information about the processing
performed by the executable.

Report file names contain the revision name and the short-form name of the
executable that generated the report file: <revision>.<executable>.rpt. For
example, using the quartus_fit executable to place and route a project with the
revision name design_top generates a report file named design_top.fit.rpt.
Similarly, using the quartus_tan executable to perform timing analysis on a
project with the revision name fir_filter generates a report file named
fir_filter.tan.rpt.

As an alternative to parsing text-based report files, you can use the Tcl
package called ::quartus::report. For more information about this package,
refer to “Command-Line Scripting Help” on page 2–6.

You can use Quartus II command-line executables in scripts that control a
design flow that uses other software in addition to the Quartus II software. For
example, if your design flow uses other synthesis or simulation software, and
you can run the other software at a system command prompt, you can include
it in a single script. The Quartus II command-line executables include options
for common global project settings and operations, but you must use a Tcl
script or the Quartus II GUI to set up a new project and apply individual
constraints, such as pin location assignments and timing requirements.
Command-line executables are very useful for working with existing projects,
for making common global settings, and for performing common operations.
For more flexibility in a flow, use a Tcl script, which makes it easier to pass
data between different stages of the design flow and have more control during
the flow.

f For more information about Tcl scripts, refer to the Tcl Scripting chapter in
volume 2 of the Quartus II Handbook, or the Quartus II Scripting Reference
Manual.

For example, your script could run other synthesis software, then
place-and-route the design in the Quartus II software, then generate output
netlists for other simulation software. Example 2–5 shows how to do this with
a UNIX shell script for a design that targets a Cyclone II device.

Altera Corporation 2–13
October 2007

Design Flow

Example 2–5. Script for End-to-End Flow
#!/bin/sh
Run synthesis first.
This example assumes you use Synplify software
synplify -batch synthesize.tcl

If your Quartus II project exists already, you can just
recompile the design.
You can also use the script described in a later example to
create a new project from scratch
quartus_sh --flow compile myproject

Use the quartus_tan executable to do best and worst case
timing analysis
quartus_tan myproject --tao=worst_case
quartus_tan myproject --fast_model --tao=best_case

Use the quartus_eda executable to write out a gate-level
Verilog simulation netlist for ModelSim
quartus_eda my_project --simulation --tool=modelsim
 --format=verilog

Perform the simulation with the ModelSim software
vlib cycloneii_ver
vlog -work cycloneii_ver c:/quartusii/eda/sim_lib/cycloneii_atoms.v
vlib work
vlog -work work my_project.vo
vsim -L cycloneii_ver -t 1ps work.my_project

Makefile Implementation

You can also use the Quartus II command-line executables in conjunction
with the make utility to automatically update files when other files they
depend on change. The file dependencies and commands used to update
files are specified in a text file called a makefile.

To facilitate easier development of efficient makefiles, the following
“smart action” scripting command is provided with the Quartus II
software:

quartus_sh --determine_smart_action r
Because assignments for a Quartus II project are stored in the Quartus II
Settings File (.qsf), including it in every rule results in unnecessary
processing steps. For example, updating a setting related to
programming file generation (which requires re-running only
quartus_asm) modifies the Quartus II Settings File, requiring a complete
recompilation if the Quartus II Settings File is included in every rule.

2–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The smart action command determines the earliest command-line
executable in the compilation flow that must be run based on the current
Quartus II Settings File, and generates a change file corresponding to that
executable. For a given command-line executable named
quartus_<executable>, the change file is named with the format
<executable>.chg. For example, if quartus_map must be re-run, the smart
action command creates or updates a file named map.chg. Thus, rather
than including the Quartus II Settings File in each makefile rule, include
only the appropriate change file.

Example 2–6 uses change files and the smart action command. You can
copy and modify it for your own use. A copy of this example is included
in the help for the makefile option, which is available by typing:

quartus_sh --help=makefiles r

Altera Corporation 2–15
October 2007

Design Flow

Example 2–6. Sample Makefile
###
Project Configuration:

Specify the name of the design (project), the Quartus II Settings
File (.qsf), and the list of source files used.
###

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v time_cnt.v
ASSIGNMENT_FILES = chiptrip.qpf chiptrip.qsf

###
Main Targets
#
all: build everything
clean: remove output files and database
###

all: smart.log $(PROJECT).asm.rpt $(PROJECT).tan.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.eqn *.pin *.sof *.pof db

map: smart.log $(PROJECT).map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT).asm.rpt
tan: smart.log $(PROJECT).tan.rpt
smart: smart.log

###
Executable Configuration
###

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =
TAN_ARGS =

###
Target implementations
###

STAMP = echo done >

$(PROJECT).map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

$(PROJECT).fit.rpt: fit.chg $(PROJECT).map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)

2–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

$(STAMP) asm.chg
$(STAMP) tan.chg

$(PROJECT).asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $(ASM_ARGS) $(PROJECT)

$(PROJECT).tan.rpt: tan.chg $(PROJECT).fit.rpt
quartus_tan $(TAN_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT_FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log

###
Project initialization
###

$(ASSIGNMENT_FILES):
quartus_sh --prepare $(PROJECT)

map.chg:
$(STAMP) map.chg

fit.chg:
$(STAMP) fit.chg

tan.chg:
$(STAMP) tan.chg

asm.chg:
$(STAMP) asm.chg

A Tcl script is provided with the Quartus II software to create or modify
files that can be specified as dependencies in the make rules, assisting you
in makefile development. Complete information about this Tcl script and
how to integrate it with makefiles is available by running the following
command:

quartus_sh --help=determine_smart_action r

Command-Line
Scripting
Examples

This section of the chapter presents various examples of command-line
executable use.

Create a Project and Apply Constraints

The command-line executables include options for common global
project settings and commands. To apply constraints such as pin
locations and timing assignments, run a Tcl script with the constraints in
it. You can write a Tcl constraint file from scratch, or generate one for an
existing project. From the Project menu, click Generate Tcl File for
Project.

Altera Corporation 2–17
October 2007

Command-Line Scripting Examples

Example 2–7 creates a project with a Tcl script and applies project
constraints using the tutorial design files in the <Quartus II installation
directory>/qdesigns/fir_filter/ directory.

Example 2–7. Tcl Script to Create Project and Apply Constraints
project_new filtref -overwrite
Assign family, device, and top-level file
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C12Q240C6
set_global_assignment -name BDF_FILE filtref.bdf
Assign pins
set_location_assignment -to clk Pin_28
set_location_assignment -to clkx2 Pin_29
set_location_assignment -to d[0] Pin_139
set_location_assignment -to d[1] Pin_140
Other pin assignments could follow
Create timing assignments
create_base_clock -fmax "100 MHz" -target clk clocka
create_relative_clock -base_clock clocka -divide 2 \

-offset "500 ps" -target clkx2 clockb
set_multicycle_assignment -from clk -to clkx2 2
Other timing assignments could follow
project_close

Save the script in a file called setup_proj.tcl and type the commands
illustrated in Example 2–8 at a command prompt to create the design,
apply constraints, compile the design, and perform fast-corner and slow-
corner timing analysis. Timing analysis results are saved in two files.

Example 2–8. Script to Create and Compile a Project
quartus_sh -t setup_proj.tcl r
quartus_map filtref r
quartus_fit filtref r
quartus_asm filtref r
quartus_tan filtref --fast_model --tao=min.tao

--export_settings=off r
quartus_tan filtref --tao=max.tao
--export_settings=off r

You can use the following two commands to create the design, apply
constraints, and compile the design:

quartus_sh -t setup_proj.tcl r
quartus_sh --flow compile filtref r

2–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The quartus_sh --flow compile command performs a full compilation,
and is equivalent to clicking the Start Compilation button in the toolbar.

Check Design File Syntax

The UNIX shell script example shown in Example 2–9 assumes that the
Quartus II software fir_filter tutorial project exists in the current
directory. (You can find the fir_filter project in the <Quartus II
directory>/qdesigns/fir_filter directory unless the Quartus II software
tutorial files are not installed.)

The --analyze_file option performs a syntax check on each file. The
script checks the exit code of the quartus_map executable to determine
whether there is an error during the syntax check. Files with syntax errors
are added to the FILES_WITH_ERRORS variable, and when all files are
checked, the script prints a message indicating syntax errors. When
options are not specified, the executable uses the project database values.
If not specified in the project database, the executable uses the Quartus II
software default values. For example, the fir_filter project is set to target
the Cyclone device family, so it is not necessary to specify the --family
option.

Example 2–9. Shell Script to Check Design File Syntax
#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
 # Perform a syntax check on the specified file

quartus_map fir_filter --analyze_file=$filename
If the exit code is non-zero, the file has a syntax error
if [$? -ne 0]
then

FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
fi

done
if [-z "$FILES_WITH_ERRORS"]
then

echo "All files passed the syntax check"
exit 0

else
echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

fi

Altera Corporation 2–19
October 2007

Command-Line Scripting Examples

Create a Project and Synthesize a Netlist Using Netlist
Optimizations

This example creates a new Quartus II project with a file top.edf as the
top-level entity. The --enable_register_retiming=on and
--enable_wysiwyg_resynthesis=on options allow the technology
mapper to optimize the design using gate-level register retiming and
technology remapping.

f For more details about register retiming, WYSIWYG primitive
resynthesis, and other netlist optimization options, refer to the
Quartus II Help.

The --part option tells the technology mapper to target an
EP20K600EBC652-1X device. To create the project and synthesize it using
the netlist optimizations described above, type the command shown in
Example 2–10 at a command prompt.

Example 2–10. Creating a Project and Synthesizing a Netlist Using Netlist Optimizations
quartus_map top --source=top.edf --enable_register_retiming=on

--enable_wysiwyg_resynthesis=on --part=EP20K600EBC652-1X r

Archive and Restore Projects

You can archive or restore a Quartus II project with a single command.
This makes it easy to take snapshots of projects when you use batch files
or shell scripts for compilation and project management. Use the
--archive or --restore options for quartus_sh as appropriate. Type
the command shown in Example 2–11 at a system command prompt to
archive your project.

Example 2–11. Archiving a Project
quartus_sh --archive <project name> r

The archive file is automatically named <project name>.qar. If you want to
use a different name, rename the archive after it has been created. This
command overwrites any existing archive with the same name.

To restore a project archive, type the command shown in Example 2–12 at
a system command prompt:

Example 2–12. Restoring a Project Archive
quartus_sh --restore <archive name> r

2–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The command restores the project archive to the current directory and
overwrites existing files.

Perform I/O Assignment Analysis

You can perform I/O assignment analysis with a single command. I/O
assignment analysis checks pin assignments to ensure they do not violate
board layout guidelines. I/O assignment analysis does not require a
complete place and route, so it is a quick way to ensure your pin
assignments are correct. The command shown in Example 2–13 performs
I/O assignment analysis for the specified project and revision.

Example 2–13. Performing I/O Assignment Analysis
quartus_fit --check_ios <project name> --rev=<revision name> r

Update Memory Contents without Recompiling

You can use two simple commands to update the contents of memory
blocks in your design without recompiling. Use the quartus_cdb
executable with the --update_mif option to update memory contents
from Memory Initialization Files or Hexadecimal (Intel-Format) Files.
Then re-run the assembler with the quartus_asm executable to regenerate
the SOF, POF, and any other programming files.

Example 2–14 shows these two commands.

Example 2–14. Commands to Update Memory Contents without Recompiling
quartus_cdb --update_mif <project name> [--rev=<revision name>]r
quartus_asm <project name> [--rev=<revision name>]r

Example 2–15 shows the commands for a DOS batch file for this example.
You can paste the following lines into a DOS batch file called
update_memory.bat.

Example 2–15. Batch file to Update Memory Contents without Recompiling
quartus_cdb --update_mif %1 --rev=%2
quartus_asm %1 --rev=%2

Type the following command at a system command prompt:

update_memory.bat <project name> <revision name> r

Altera Corporation 2–21
October 2007

Command-Line Scripting Examples

Fit a Design as Quickly as Possible

This example assumes that a project called top exists in the current
directory, and that the name of the top-level entity is top. The
--effort=fast option causes the Fitter to use the fast fit algorithm to
increase compilation speed, possibly at the expense of reduced fMAX
performance. The --one_fit_attempt=on option restricts the Fitter to
only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type
command shown in Example 2–16 at a command prompt.

Example 2–16. Fitting a Project Quickly
quartus_fit top --effort=fast --one_fit_attempt=on r

Fit a Design Using Multiple Seeds

This shell script example assumes that the Quartus II software tutorial
project called fir_filter exists in the current directory (defined in the file
fir_filter.qpf). If the tutorial files are installed on your system, this project
exists in the <Quartus II directory>/qdesigns<quartus_version_number>
/fir_filter directory. Because the top-level entity in the project does not
have the same name as the project, you must specify the revision name
for the top-level entity with the --rev option. The --seed option
specifies the seeds to use for fitting.

A seed is a parameter that affects the random initial placement of the
Quartus II Fitter. Varying the seed can result in better performance for
some designs.

After each fitting attempt, the script creates new directories for the results
of each fitting attempt and copies the complete project to the new
directory so that the results are available for viewing and debugging after
the script has completed.

2–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Example 2–17 is designed for use on UNIX systems using sh (the shell).

Example 2–17. Shell Script to Fit a Design Using Multiple Seeds
#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
 quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
 if [$? -eq 0]
 then

mkdir ../fir_filter-seed_$seed
mkdir ../fir_filter-seed_$seed/db
cp * ../fir_filter-seed_$seed
cp db/* ../fir_filter-seed_$seed/db

 else
ERROR_SEEDS="$ERROR_SEEDS $seed"

 fi
done
if [-z "$ERROR_SEEDS"]
then
 echo "Seed sweeping was successful"
 exit 0
else
 echo "There were errors with the following seed(s)"
 echo $ERROR_SEEDS
 exit 1
fi

1 Use the Design Space Explorer included with the Quartus II
software (DSE) script (by typing quartus_sh --dse r at a
command prompt) to improve design performance by
performing automated seed sweeping.

f For more information about the DSE, type
quartus_sh --help=dse r at the command prompt, or refer to the
Design Space Explorer chapter in volume 2 of the Quartus II Handbook, or
see the Quartus II Help.

Altera Corporation 2–23
October 2007

Referenced Documents

The QFlow Script

A Tcl/Tk-based graphical interface called QFlow is included with the
command-line executables. You can use the QFlow interface to open
projects, launch some of the command-line executables, view report files,
and make some global project assignments. The QFlow interface can run
the following command-line executables:

■ quartus_map (Analysis and Synthesis)
■ quartus_fit (Fitter)
■ quartus_tan (Timing Analysis)
■ quartus_asm (Assembler)
■ quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the
Quartus II software.

Start QFlow by typing the following command at a command prompt:
quartus_sh -g r . Figure 2–3 shows the QFlow interface.

Figure 2–3. QFlow Interface

1 The QFlow script is located in the
<Quartus II directory>/common/tcl/apps/qflow/ directory.

Referenced
Documents

This chapter references the following documents:

■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

2–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Document
Revision History

Table 2–4 shows the revision history for this document.

Table 2–4. Document Revision History

Date / Version Changes Made Summary of Changes

October 2007
v7.2.0

Added “Referenced Documents” on page 2–23. Updated for the Quartus II
software version 7.2.

May 2007
v7.1.0

Updated Quartus II software 7.1 revision, including making
very minor updates to:
● “Introductory Example” on page 2–2
● Part of the running text on page 2–17
● Updated screenshot for Figure 2–1 on page 2–7

Updated Quartus II software
7.1 release.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter. —

November 2006
v6.1.0

Added revision history for this document.
—

May 2006 v6.0.0 Added the Quartus II TimeQuest Timing Analyzer feature. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0.
—

May 2005 v5.0.0 Updated for the Quartus II software version 5.0.0. —

Dec. 2004 v2.1 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.2.

—

June 2004 v2.0 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.1.

—

Feb. 2004 v1.0 Initial release. —

Altera Corporation 3–1
October 2007

3. Tcl Scripting

Introduction Developing and running tool command language (Tcl) scripts to control
the Altera® Quartus® II software allows you to perform a wide range of
functions, such as compiling a design or writing procedures to automate
common tasks.

You can use Tcl scripts to manage a Quartus II project, make assignments,
define design constraints, make device assignments, run compilations,
perform timing analysis, import LogicLock™ region assignments, use the
Quartus II Chip Editor, and access reports. You can automate your
Quartus II assignments using Tcl scripts so that you do not have to create
them individually. Tcl scripts also facilitate project or assignment
migration. For example, when using the same prototype or development
board for different projects, you can automate reassignment of pin
locations in each new project. The Quartus II software can also generate a
Tcl script based on all the current assignments in the project, which aids
in switching assignments to another project.

The Quartus II software Tcl commands follow the EDA industry Tcl
application programming interface (API) standards for using
command-line options to specify arguments. This simplifies learning and
using Tcl commands. If you encounter an error using a command
argument, the Tcl interpreter gives help information showing correct
usage.

This chapter includes sample Tcl scripts for automating the Quartus II
software. You can modify these example scripts for use with your own
designs. You can find more Tcl scripts in the Design Examples section of
the Support area of Altera’s website.

This chapter includes the following topics:

■ “Introduction”
■ “Quartus II Tcl Packages” on page 3–2
■ “Quartus II Tcl API Help” on page 3–5
■ “Executables Supporting Tcl” on page 3–9
■ “End-to-End Design Flows” on page 3–12
■ “Creating Projects and Making Assignments” on page 3–13
■ “Compiling Designs” on page 3–21
■ “Reporting” on page 3–22
■ “Timing Analysis” on page 3–25
■ “Automating Script Execution” on page 3–30

QII52003-7.2.0

3–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

■ “Other Scripting Features” on page 3–33
■ “Using the Quartus II Tcl Shell in Interactive Mode” on page 3–39
■ “Quartus II Legacy Tcl Support” on page 3–42
■ “Tcl Scripting Basics” on page 3–42

What is Tcl?

Tcl (pronounced “tickle”) is a popular scripting language that is similar
to many shell scripting and high-level programming languages. It
provides support for control structures, variables, network socket access,
and APIs. Tcl is the EDA industry-standard scripting language used by
Synopsys, Mentor Graphics®, Synplicity, and Altera software. It allows
you to create custom commands and works seamlessly across most
development platforms. For a list of recommended literature on Tcl, refer
to “External References” on page 3–50.

You can create your own procedures by writing scripts containing basic
Tcl commands, user-defined procedures, and Quartus II API functions.
You can then automate your design flow, run the Quartus II software in
batch mode, or execute the individual Tcl commands interactively in the
Quartus II Tcl interactive shell.

If you're unfamiliar with Tcl scripting, or are a Tcl beginner, refer to the
“Tcl Scripting Basics” on page 3–42 for an introduction to Tcl scripting.

The Quartus II software, beginning with version 4.1, supports Tcl/Tk
version 8.4, supplied by the Tcl DeveloperXchange at tcl.activestate.com.

Quartus II Tcl
Packages

The Quartus II Tcl commands are grouped in packages by function.
Table 3–1 describes each Tcl package.

Table 3–1. Tcl Packages (Part 1 of 2)

Package Name Package Description

advanced_timing Traverse the timing netlist and get information about timing nodes

backannotate Back annotate assignments

chip_planner Identify and modify resource usage and routing with the Chip Editor

database_manager Manage version-compatible database files

device Get device and family information from the device database

flow Compile a project, run command-line executables and other common flows

insystem_memory_edit Read and edit memory contents in Altera devices

jtag Control the jtag chain

Altera Corporation 3–3
October 2007

Quartus II Tcl Packages

By default, only the minimum number of packages is loaded
automatically with each Quartus II executable. This keeps the memory
requirement for each executable as low as possible. Because the minimum
number of packages is automatically loaded, you must load other
packages before you can run commands in those packages.

Table 3–2 lists the Quartus II Tcl packages available with Quartus II
executables and indicates whether a package is loaded by default () or
is available to be loaded as necessary (). A clear circle () means that the
package is not available in that executable.

logic_analyzer_interface Query and modify the logic analyzer interface output pin state

logiclock Create and manage LogicLock regions

misc Perform miscellaneous tasks

project Create and manage projects and revisions, make any project assignments
including timing assignments

report Get information from report tables, create custom reports

sdc Specifies constraints and exceptions to the TimeQuest Analyzer

simulator Configure and perform simulations

sta Contains the set of Tcl functions for obtaining advanced information from the
Quartus II TimeQuest Timing Analyzer

stp Run the SignalTap® II logic analyzer

timing Annotate timing netlist with delay information, compute and report timing paths

timing_assignment Contains the set of Tcl functions for making project-wide timing assignments,
including clock assignments; all Tcl commands designed to process Quartus II
Classic Timing Analyzer assignments have been moved to this package

timing_report List timing paths

sdc_ext Altera-specific SDC commands

Table 3–1. Tcl Packages (Part 2 of 2)

Package Name Package Description

Table 3–2. Tcl Package Availability by Quartus II Executable (Part 1 of 2)

Packages
Quartus II Executable

Quartus_sh Quartus_tan Quartus_cdb Quartus_sim Quartus_stp Quartus_sta
Quartus_staw Tcl Console

advanced_timing

backannotate

3–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

chip_planner

device

flow

insystem_memory_edit

jtag

logic_analyzer_
interface

logiclock

misc

old_api

project

report

sdc

sdc_ext

simulator

sta

stp

timing

timing_assignment

timing_report

Notes to Table 3–2:
(1) A dark circle () indicates that the package is loaded automatically.

(2) A half-circle () means that the package is available but not loaded automatically.

(3) A white circle () means that the package is not available for that executable.

Table 3–2. Tcl Package Availability by Quartus II Executable (Part 2 of 2)

Packages
Quartus II Executable

Quartus_sh Quartus_tan Quartus_cdb Quartus_sim Quartus_stp Quartus_sta
Quartus_staw Tcl Console

Altera Corporation 3–5
October 2007

Quartus II Tcl API Help

Because different packages are available in different executables, you
must run your scripts with executables that include the packages you use
in the scripts. For example, if you use commands in the timing package,
you must use the quartus_tan executable to run the script because the
quartus_tan executable is the only one with support for the timing
package.

Loading Packages

To load a Quartus II Tcl package, use the load_package command as
follows:

load_package [-version <version number>] <package name>

This command is similar to the package require Tcl command (described
in Table 3–3 on page 3–6), but you can easily alternate between different
versions of a Quartus II Tcl package with the load_package command.

f For additional information about these and other Quartus II
command-line executables, refer to the Command-Line Scripting chapter
in volume 2 of the Quartus II Handbook.

Quartus II Tcl
API Help

Access the Quartus II Tcl API Help reference by typing the following
command at a system command prompt:

quartus_sh --qhelp r
This command runs the Quartus II Command-Line and Tcl API help
browser, which documents all commands and options in the Quartus II
Tcl API. It includes detailed descriptions and examples for each
command.

In addition, the information in the Tcl API help is available in the
Quartus II Scripting Reference Manual, which is available in PDF on the
Quartus II Literature page on the Altera website.

Quartus II Tcl help allows easy access to information about the Quartus II
Tcl commands. To access the help information, type help at a Tcl
prompt, as shown in Example 3–1.

3–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Example 3–1. Help Output
tcl> help

Available Quartus II Tcl Packages:

Loaded Not Loaded
---------------------------- -----------------------
::quartus::misc ::quartus::device
::quartus::old_api ::quartus::backannotate
::quartus::project ::quartus::flow
::quartus::timing_assignment ::quartus::logiclock
::quartus::timing_report ::quartus::report

* Type "help -tcl"
 to get an overview on Quartus II Tcl usages.

Using the -tcl option with help displays an introduction to the
Quartus II Tcl API that focuses on how to get help for Tcl commands
(short help and long help) and Tcl packages.

f The Tcl API help is also available in Quartus II online help. Search for
the command or package name to find details about that command or
package.

Table 3–3 summarizes the help options available in the Tcl environment.

Table 3–3. Help Options Available in the Quartus II Tcl Environment (Part 1 of 3)

Help Command Description

help To view a list of available Quartus II Tcl packages, loaded and not loaded.

help -tcl To view a list of commands used to load Tcl packages and access
command-line help.

Altera Corporation 3–7
October 2007

Quartus II Tcl API Help

help -pkg <package_name>
[-version <version number>]

To view help for a specified Quartus II package that includes the list of
available Tcl commands. For convenience, you can omit the
::quartus:: package prefix, and type
help -pkg <package name> r.
If you do not specify the -version option, help for the currently loaded
package is displayed by default. If the package for which you want help is
not loaded, help for the latest version of the package is displayed by
default.

Examples:
help -pkg ::quartus::p r
help -pkg ::quartus::project r
help -pkg project rhelp -pkg project -version 1.0 r

<command_name> -h
or
<command_name> -help

To view short help for a Quartus II Tcl command for which the package is
loaded.

Examples:
project_open -h r
project_open -help r

package require
::quartus::<package name>
[<version>]

To load a Quartus II Tcl package with the specified version. If <version> is
not specified, the latest version of the package is loaded by default.

Example:
package require ::quartus::project 1.0 r
This command is similar to the load_package command.
The advantage of using load_package is that you can alternate freely
between different versions of the same package.
Type <package name> [-version <version number>]r to load a
Quartus II Tcl package with the specified version. If the -version
option is not specified, the latest version of the package is loaded by
default.

Example:
load_package ::quartus::project -version 1.0 r

Table 3–3. Help Options Available in the Quartus II Tcl Environment (Part 2 of 3)

Help Command Description

3–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

help -cmd <command name>
[-version <version number>]
or
<command name> -long_help

To view long help for a Quartus II Tcl command. Only
<command name> -long_help requires that the associated Tcl
package is loaded.
If you do not specify the -version option, help for the currently loaded
package is displayed by default.
If the package for which you want help is not loaded, help for the latest
version of the package is displayed by default.

Examples:
project_open -long_help r
help -cmd project_open r
help -cmd project_open -version 1.0 r

help -examples To view examples of Quartus II Tcl usage.

help -quartus To view help on the predefined global Tcl array that can be accessed to
view information about the Quartus II executable that is currently running.

quartus_sh --qhelp To launch the Tk viewer for Quartus II command-line help and display help
for the command-line executables and Tcl API packages.

For more information about this utility, refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook.

Table 3–3. Help Options Available in the Quartus II Tcl Environment (Part 3 of 3)

Help Command Description

Altera Corporation 3–9
October 2007

Executables Supporting Tcl

Executables
Supporting Tcl

Some of the Quartus II command-line executables support Tcl scripting
(refer to Table 3–4). Each executable supports different sets of Tcl
packages. Refer to Table 3–4 to determine the appropriate executable to
run your script.

The quartus_tan and quartus_cdb executables support supersets of the
packages supported by the quartus_sh executable. Use the quartus_sh
executable if you run Tcl scripts with only project management and
assignment commands, or if you need a Quartus II command-line
executable with a small memory footprint.

f For more information about these command-line executables, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

Table 3–4. Command-line Executables Supporting Tcl Scripting

Executable Name Executable Description

quartus_sh The Quartus II Shell is a simple Tcl scripting shell, useful
for making assignments, general reporting, and compiling.

quartus_tan Use the Quartus II Classic Timing Analyzer to perform
simple timing reporting and advanced timing analysis.

quartus_cdb The Quartus II Compiler Database supports back
annotation, LogicLock region operations, and Chip Editor
functions.

quartus_sim The Quartus II Simulator supports the automation of
design simulation.

quartus_sta
quartus_staw

The Quartus II TimeQuest Timing Analyzer supports SDC
terminology for constraint entry and reporting.

quartus_stp The Quartus II SignalTap II executable supports in-
system debugging tools.

3–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Command-Line Options: -t, -s, and --tcl_eval

Table 3–5 lists three command-line options you can use with executables
that support Tcl.

Run a Tcl Script

Running an executable with the -t option runs the specified Tcl script.
You can also specify arguments to the script. Access the arguments
through the argv variable, or use a package such as cmdline, which
supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the
<Quartus II directory>/common/tcl/packages directory.

For example, to run a script called myscript.tcl with one argument,
Stratix, type the following command at a system command prompt:

quartus_sh -t myscript.tcl Stratix r
1 Beginning with version 4.1, the Quartus II software supports the

argv variable. In previous software versions, script arguments
are accessed in the quartus(args) global variable.

Refer to “Accessing Command-Line Arguments” on page 3–36 for more
information.

Interactive Shell Mode

Running an executable with the -s option starts an interactive Tcl shell
that displays a tcl> prompt. For example, type quartus_tan -s r at
a system command prompt to open the Quartus II Classic Timing

Table 3–5. Command-Line Options Supporting Tcl Scripting

Command-Line Option Description

-t <script file> [<script args>] Run the specified Tcl script with optional arguments.

-s Open the executable in the interactive Tcl shell mode.

--tcl_eval <tcl command> Evaluate the remaining command-line arguments as Tcl commands. For
example, the following command displays help for the project package:
quartus_sh --tcl_eval help -pkg project

Altera Corporation 3–11
October 2007

Executables Supporting Tcl

Analyzer executable in interactive shell mode. Commands you type in
the Tcl shell are interpreted when you press Enter. You can run a Tcl
script in the interactive shell with the following command:

source <script name> r
If a command is not recognized by the shell, it is assumed to be an
external command and executed with the exec command.

Evaluate as Tcl

Running an executable with the --tcl_eval option causes the
executable to immediately evaluate the remaining command-line
arguments as Tcl commands. This can be useful if you want to run simple
Tcl commands from other scripting languages.

For example, the following command runs the Tcl command that prints
out the commands available in the project package.

quartus_sh --tcl_eval help -pkg project r

Using the Quartus II Tcl Console Window

You can run Tcl commands directly in the Quartus II Tcl Console
window. On the View menu, click Utility Windows. By default, the Tcl
Console window is docked in the bottom-right corner of the Quartus II
GUI. Everything typed in the Tcl Console is interpreted by the Quartus II
Tcl shell.

1 The Quartus II Tcl Console window supports the Tcl API used
in the Quartus II software version 3.0 and earlier for backward
compatibility with older designs and EDA tools.

Tcl messages appear in the System tab (Messages window). Errors and
messages written to stdout and stderr also are shown in the
Quartus II Tcl Console window.

3–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Note that you can do limited timing analysis in the Tcl console in the
Quartus II GUI. With the timing_report package, you can use the
list_path command to get details on paths listed in the timing report.
However, if you want to get information about timing paths that are not
listed in the timing report, you must use the quartus_tan executable in
shell mode or run a script that reports on the paths in which you are
interested.

If your design uses the Quartus II TimeQuest Timing Analyzer, you
should perform scripted timing analysis in the TimeQuest Tcl console.

As Table 3–2 shows, the Tcl console in the Quartus II GUI does not
include support for every package, so you cannot run scripts that use
commands in packages that are not supported.

End-to-End
Design Flows

You can use Tcl scripts to control all aspects of the design flow, including
controlling other software if it includes a scripting interface.

Typically, EDA tools include their own script interpreters that extend
core language functionality with tool-specific commands. For example,
the Quartus II Tcl interpreter supports all core Tcl commands, and adds
numerous commands specific to the Quartus II software. You can include
commands in one Tcl script to run another script, which allows you to
combine or chain together scripts to control different tools. Because
scripts for different tools must be executed with different Tcl interpreters,
it is difficult to pass information between the scripts unless one script
writes information into a file and another script reads it.

Within the Quartus II software, you can perform many different
operations in a design flow (such as synthesis, fitting, and timing
analysis) from a single script, making it easy to maintain global state
information and pass data between the operations. However, there are
some limitations on the operations you can perform in a single script due
to the various packages supported by each executable. For example, you
cannot write a single script that performs simulation with commands in
the simulator package while using commands in the advanced_timing
package; those two packages are not available in the same executable. In
a case where you wanted to include Tcl simulation and advanced timing
analysis commands, you must write two scripts.

There are no limitations on running flows from any executable. Flows
include operations found in the Start section of the Processing menu in
the Quartus II GUI, and are also documented with the execute_flow Tcl
command. If you can make settings in the Quartus II software and run a
flow to get your desired result, you can make the same settings and run
the same flow in any command-line executable.

Altera Corporation 3–13
October 2007

Creating Projects and Making Assignments

To revisit the example with simulation and timing analysis, you could
write one script that includes settings that configure a simulation, with
settings that configure timing analysis. Then, run the simulation and
timing analysis flows with the execute_flow command.

Configuring a simulation includes specifying settings such as name and
location of the stimulus file, the duration of the simulation, whether to
perform glitch detection or not, and more. Configuring timing analysis
includes specifying settings such as the required clock frequency, the
number of paths to report, and which timing model to use. You can make
the settings, then run the flows with the execute_flow command, in any
Quartus II command-line executable.

Creating
Projects and
Making
Assignments

One benefit of the Tcl scripting API is that it is easy to create a script that
makes all the assignments for an existing project. You can use the script
at any time to restore your project settings to a known state. From the
Project menu, click Generate Tcl File for Project to automatically
generate a Tcl file with all of your assignments. You can source this file to
recreate your project, and you can edit the file to add other commands,
such as compiling the design. The file is a good starting point to learn
about project management commands and assignment commands.

1 Refer to “Interactive Shell Mode” on page 3–10 for information
about sourcing a script. Scripting information for all Quartus II
project settings and assignments is located in the QSF Reference
Manual.

Example 3–2 shows how to create a project, make assignments, and
compile the project. It uses the fir_filter tutorial design files.

3–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Example 3–2. Create and Compile a Project
load_package flow

Create the project and overwrite any settings
files that exist
project_new fir_filter -revision filtref -overwrite
Set the device, the name of the top-level BDF,
and the name of the top level entity
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name BDF_FILE filtref.bdf
set_global_assignment -name TOP_LEVEL_ENTITY filtref
Add other pin assignments here
set_location_assignment -to clk Pin_G1
Create a base clock and a derived clock
create_base_clock -fmax "100 MHz" -target clk clocka
create_relative_clock -base_clock clocka -divide 2 \

-offset "500 ps" -target clkx2 clockb
Create a multicycle assignment of 2 between
the two clock domains in the design.
set_multicycle_assignment -from clk -to clkx2 2
execute_flow -compile
project_close

1 The assignments created or modified while a project is open are
not committed to the Quartus II settings files unless you
explicitly call export_assignments or project_close (unless
-dont_export_assignments is specified). In some cases,
such as when running execute_flow, the Quartus II software
automatically commits the changes.

HardCopy Device Design

f For information about using a scripted design flow for HardCopy II
designs, refer to the Script-Based Design for HardCopy Devices chapter of
the HardCopy Handbook. It contains sample scripts and recommendations
to make your HardCopy II design flow easy.

A separate chapter in the HardCopy Handbook called Timing Constraints for
HardCopy II Devices also contains information about script-based design
for HardCopy II devices, with an emphasis on timing constraints.

EDA Tool Assignments

You can target EDA tools for a project in the Quartus II software in Tcl
with the set_global_assignment Tcl command. To use the default tool
settings for each EDA tool, you need only specify the EDA tool to be used.
The EDA interfaces available for the Quartus II software cover design

Altera Corporation 3–15
October 2007

Creating Projects and Making Assignments

entry, simulation, timing analysis, and board design tools. More
advanced EDA tools such as those for formal verification and resynthesis
are supported by their own global assignment.

By default, the EDA interface options are set to <none>. Table 3–6 lists
the EDA interface options available in the Quartus II software. Enclose
interface assignment options that contain spaces in quotation marks.

Table 3–6. EDA Interface Options in the Quartus II Software (Part 1 of 2)

Option Acceptable Values

Design Entry
(EDA_DESIGN_ENTRY_SYNTHESIS_TOOL)

● Design Architect
● Design Compiler
● FPGA Compiler
● FPGA Compiler II
● FPGA Compiler II Altera Edition
● FPGA Express
● LeonardoSpectrum™
● LeonardoSpectrum-Altera (Level 1)
● Synplify
● Synplify Pro
● ViewDraw
● Precision Synthesis
● Custom

Simulation
(EDA_SIMULATION_TOOL)

● ModelSim (VHDL output from the Quartus II software)
● ModelSim (Verilog HDL output from the Quartus II

software)
● ModelSim-Altera (VHDL output from the Quartus II

software)
● ModelSim-Altera (Verilog HDL output from the Quartus II

software)
● SpeedWave
● VCS
● Verilog-XL
● VSS
● NC-Verilog (Verilog HDL output from the Quartus II

software)
● NC-VHDL (VHDL output from the Quartus II software)
● Scirocco (VHDL output from the Quartus II software)
● Custom Verilog HDL
● Custom VHDL

Timing Analysis
(EDA_TIMING_ANALYSIS_TOOL)

● PrimeTime (VHDL output from the Quartus II software)
● PrimeTime (Verilog HDL output from the Quartus II

software)
● Stamp (board model)
● Custom Verilog HDL
● Custom VHDL

3–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

For example, to generate an NC-Sim Verilog simulation output file,
EDA_SIMULATION_TOOL should be set to target NC-Sim Verilog as the
desired output, as shown in Example 3–3.

Example 3–3.
set_global_assignment -name eda_simulation_tool \
"NcSim (Verilog HDL output from Quartus II)"

f For information about using third-party simulation tools, refer to
volume 3 of the Quartus II Handbook.

Example 3–4 shows compilation of the fir_filter design files,
generating a VHDL Output (.vho) file output for NC-Sim Verilog
simulation.

Board level tools
(EDA_BOARD_DESIGN_TOOL)

● Signal Integrity (IBIS)
● Symbol Generation (ViewDraw)

Formal Verification
(EDA_FORMAL_VERIFICATION_TOOL)

● Conformal LEC

Resynthesis
(EDA_RESYNTHESIS_TOOL)

● PALACE
● Amplify

Table 3–6. EDA Interface Options in the Quartus II Software (Part 2 of 2)

Option Acceptable Values

Altera Corporation 3–17
October 2007

Creating Projects and Making Assignments

Example 3–4. Simple Design with .vho Output
This script works with the quartus_sh executable
Set the project name to filtref
set project_name filtref

Open the Project. If it does not already exist, create it
if [catch {project_open $project_name}] {project_new \ $project_name}

Set Family
set_global_assignment -name family APEX 20KE

Set Device
set_global_assignment -name device ep20k100eqc208-1

Optimize for speed
set_global_assignment -name optimization_technique speed

Turn-on Fastfit fitter option to reduce compile times
set_global_assignment -name fast_fit_compilation on

Generate a NC-Sim Verilog simulation Netlist
set_global_assignment -name eda_simulation_tool "NcSim\
(Verilog HDL output from Quartus II)"

Create an FMAX=50MHz assignment called clk1 to pin clk
create_base_clock -fmax 50MHz -target clk clk1

Create a pin assignment on pin clk
set_location -to clk Pin_134

Compilation option 1
Always write the assignments to the constraint files before
doing a system call. Else, stand-alone files will not pick up
the assignments
#export_assignments
#qexec quartus_map <project_name>
#qexec quartus_fit <project_name>
#qexec quartus_asm <project_name>
#qexec quartus_tan <project_name>
#qexec quartus_eda <project_name>

Compilation option 2 (better)
Using the ::quartus::flow package, and execute_flow command will
export_assignments automatically and be equivalent to the steps
outlined in compilation option 1
load_package flow
execute_flow -compile

Close Project
project_close

3–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Custom options are available to target other EDA tools. For custom EDA
configurations, you can change the individual EDA interface options by
making additional assignments.

f For a complete list of each EDA setting line available, refer to the
Quartus II Help.

Using LogicLock Regions

You can use Tcl commands to work with LogicLock™ regions. The
following examples show how to export and import LogicLock regions
for use in other designs. The examples use the files in the LogicLock
tutorial design.

f For additional information about the LogicLock design methodology,
see the Analyzing and Optimizing the Design Floorplan chapter in volume 2
of the Quartus II Handbook.

To compile a design and export LogicLock regions, follow these steps:

1. Create a project and add assignments.

2. Assign virtual pins.

3. Create a LogicLock region.

4. Assign a design entity to the region.

5. Compile the project.

6. Back-annotate the region.

7. Export the region.

Altera Corporation 3–19
October 2007

Creating Projects and Making Assignments

Example 3–5 shows a script that creates a project called lockmult, and
makes all the required assignments to compile the project. Next, the script
compiles the project, back-annotates the design, and exports the
LogicLock region. The script uses a procedure called
assign_virtual_pins, which is described after the example. Use the
quartus_cdb executable to run this script.

Example 3–5. LogicLock Export Script
load_package flow
load_package logiclock
load_package backannotate

project_new lockmult -overwrite
set_global_assignment -name BDF_FILE pipemult.bdf
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
set_global_assignment -name TOP_LEVEL_ENTITY pipemult

These two assignments cause the Quartus II software
to generate a VQM file for the logic in the LogicLock
region. The VQM file is imported into the top-level
design.
set_global_assignment -name \

LOGICLOCK_INCREMENTAL_COMPILE_FILE pipemult.vqm
set_global_assignment -name \

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON

create_base_clock -fmax 200MHz -target clk clk_200
assign_virtual_pins { clk }
#Prepare LogicLock data structures before
#LogicLock-related commands.
initialize_logiclock

Create a region named lockmult and assign pipemult
to it.
The region is auto-sized and floating.
set_logiclock -region lockmult -auto_size true \
-floating true
set_logiclock_contents -region lockmult -to pipemult
execute_flow -compile

Back annotate the LogicLock Region and export a QSF
logiclock_back_annotate -region lockmult -lock
logiclock_export -file_name pipemult.qsf

uninitialize_logiclock
project_close

3–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The assign_virtual_pins command is a procedure that makes virtual pin
assignments to all bottom-level design pins, except for signals specified
as arguments to the procedure. The procedure is defined in Example 3–6.

Example 3–6. assign_virtual_pins Procedure
proc assign_virtual_pins { skips } {

Analysis and elaboration must be run first to get the pin names
execute_flow -analysis_and_elaboration

Get all pin names as a collection.

set name_ids [get_names -filter * -node_type pin]
foreach_in_collection name_id $name_ids {

Get the hierarchical path name of the pin.
set hname [get_name_info -info full_path $name_id]
#Skip the virtual pin assignment if the
#pin is in the list of signals to be skipped.
if {[lsearch -exact $skips $hname] == -1} {

post_message "Setting VIRTUAL_PIN on $hname"
set_instance_assignment -to $hname -name VIRTUAL_PIN ON

} else {
post_message "Skipping VIRTUAL_PIN for $hname"

}
}

}

When the script runs, it generates a netlist file named pipemult.vqm, and
a Quartus II Settings File named pipemult.qsf, which contains the
back-annotated assignments. You can then import the LogicLock region
in another design. This example uses the top-level design in the topmult
directory.

To import it four times in the top-level LogicLock tutorial design, follow
these steps:

1. Create the top-level project.

2. Add assignments.

3. Elaborate the design.

4. Import the LogicLock constraints.

5. Compile the project.

Altera Corporation 3–21
October 2007

Compiling Designs

Example 3–7 shows a script that demonstrates the previous steps.

Example 3–7. LogicLock Import Script
load_package flow
load_package logiclock

project_new topmult -overwrite
set_global_assignment -name BDF_FILE topmult.bdf
set_global_assignment -name VQM_FILE pipemult.vqm
set_global_assignment -name FAMILY Cyclone
set_global_assignment -name DEVICE EP1C6F256C6
create_base_clock -fmax 200MHz -target clk clk_200

The LogicLock region will be used four times
in the top-level design. These assignments
specify that the back-annotated assignments in
the QSF will be applied to the four entities
in the top-level design.
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst1
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst2
set_instance_assignment -name LL_IMPORT_FILE pipemult.qsf \

-to pipemult:inst3

execute_flow -analysis_and_elaboration
initialize_logiclock
logiclock_import
uninitialize_logiclock
execute_flow -compile
project_close

f For additional information about the LogicLock design methodology,
refer to the Analyzing and Optimizing the Design Floorplan chapter in
volume 2 of the Quartus II Handbook.

Compiling
Designs

You can run the Quartus II command-line executables from Tcl scripts.
Use the included flow package to run various Quartus II compilation
flows, or run each executable directly.

The flow Package

The flow package includes two commands for running Quartus II
command-line executables, either individually or together in standard
compilation sequence. The execute_module command allows you to run

3–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

an individual Quartus II command-line executable. The execute_flow
command allows you to run some or all of the modules in commonly-
used combinations.

Altera recommends using the flow package instead of using system calls
to run compiler executables.

Another way to run a Quartus II command-line executable from the Tcl
environment is by using the qexec Tcl command, a Quartus II
implementation of the Tcl exec command. For example, to run the
Quartus II technology mapper on a given project, type:

qexec "quartus_map <project_name>" r
When you use the qexec command to compile a design, assignments
made in the Tcl script (or from the Tcl shell) are not exported to the project
database and settings file before compilation. Use the
export_assignments command or compile the project with commands in
the flow package to ensure assignments are exported to the project
database and settings file.

1 You should use the qexec command to make system calls.

You can also run executables directly in a Tcl shell, using the same syntax
as at the system command prompt. For example, to run the Quartus II
technology mapper on a given project, type the following at the Tcl shell
prompt:

quartus_map <project_name> r

Reporting Once compilation finishes, it is sometimes necessary to extract
information from the report to evaluate the results. For example, you may
need to know how many device resources the design uses, or whether it
meets your performance requirements. The Quartus II Tcl API provides
easy access to report data so you don't have to write scripts to parse the
text report files.

Use the commands that access report data one row at a time, or one cell
at a time. If you know the exact cell or cells you want to access, use the
get_report_panel_data command and specify the row and column names
(or x and y coordinates) and the name of the appropriate report panel.
You may often search for data in a report panel. To do this, use a loop that
reads the report one row at a time with the get_report_panel_row
command.

Altera Corporation 3–23
October 2007

Reporting

Column headings in report panels are in row 0. If you use a loop that
reads the report one row at a time, you can start with row 1 to skip the
row with column headings. The get_number_of_rows command returns
the number of rows in the report panel, including the column heading
row. Because the number of rows includes the column heading row, your
loop should continue as long as the loop index is less than the number of
rows, as illustrated in the following example.

Report panels are hierarchically arranged, and each level of hierarchy is
denoted by the string “||“ in the panel name. For example, the name of
the Fitter Settings report panel is Fitter||Fitter Settings because it is in
the Fitter folder. Panels at the highest hierarchy level do not use the “||”
string. For example, the Flow Settings report panel is named Flow
Settings.

Example 3–8 shows code that prints a list of all report panel names in
your project.

Example 3–8. Print All Report Panel Names
set panel_names [get_report_panel_names]
foreach panel_name $panel_names {
 post_message "$panel_name"
}

Example 3–9 prints the number of failing paths in each clock domain in
your design. It uses a loop to access each row of the Timing Analyzer
Summary report panel. Clock domains are listed in the column named
Type with the format Clock Setup:'<clock name>'. Other summary
information is listed in the Type column as well. If the Type column
matches the pattern “Clock Setup*”, the script prints the number of
failing paths listed in the column named Failed Paths.

3–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Example 3–9. Print Number of Failing Paths per Clock
load_package report
project_open my-project
load_report
set report_panel_name "Timing Analyzer||Timing Analyzer Summary"
set num_rows [get_number_of_rows -name $report_panel_name]

Get the column indices for the Type and Failed Paths columns
set type_column [get_report_panel_column_index -name \

$report_panel_name "Type"]
set failed_paths_column [get_report_panel_column_index -name \

$report_panel_name "Failed Paths"]

Go through each line in the report panel
for {set i 1} {$i < $num_rows} {incr i} {

Get the row of data, then the type of summary
information in the row, and the number of failed paths
set report_row [get_report_panel_row -name \
$report_panel_name -row $i]
set row_type [lindex $report_row $type_column]
set failed_paths [lindex $report_row $failed_paths_column]
if { [string match "Clock Setup*" $row_type] } {

puts "$row_type has $failed_paths failing paths"
}

}
unload_report

Creating CSV Files for Excel

The Microsoft Excel software is sometimes used to view or manipulate
timing analysis results. You can create a CSV file to import into Excel with
data from any Quartus II report. Example 3–10 shows a simple way to
create a CSV file with data from a timing analysis panel in the report. You
could modify the script to use command-line arguments to pass in the
name of the project, report panel, and output file to use.

Altera Corporation 3–25
October 2007

Timing Analysis

Example 3–10. Create CSV Files from Reports
load_package report
project_open my-project

load_report

This is the name of the report panel to save as a CSV file
set panel_name "Timing Analyzer||Clock Setup: 'clk'"
set csv_file "output.csv"

set fh [open $csv_file w]
set num_rows [get_number_of_rows -name $panel_name]

Go through all the rows in the report file, including the
row with headings, and write out the comma-separated data
for { set i 0 } { $i < $num_rows } { incr i } {

set row_data [get_report_panel_row -name $panel_name \
-row $i]

puts $fh [join $row_data ","]
}

close $fh
unload_report

Short Option Names

Beginning with version 6.0 of the Quartus II software, you can use short
versions of command options, as long as they distinguish between the
command's options. For example, the project_open command supports
two options: -current_revision and -revision. You can use any of
the following shortened versions of the -revision option: -r, -re,
-rev, -revi, -revis, and -revisio. You can use an option as short as
-r because no other option starts with the same letters as revision.
However, the report_timing command includes the options -recovery
and -removal. You cannot use -r or -re to shorten either of those
options, because they do not uniquely distinguish between either option.
You could use -rec or -rem.

Timing Analysis The Quartus II software includes comprehensive Tcl APIs for both the
Classic and TimeQuest analyzers. This section includes simple and
advanced script examples for the Classic analyzer and introductory
scripting information about the TimeQuest Tcl API.

3–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Classic Timing Analysis

The following example script uses the quartus_tan executable to perform
a timing analysis on the fir_filter tutorial design.

The fir_filter design is a two-clock design that requires a base clock and
a relative clock relationship for timing analysis. This script first does an
analysis of the two-clock relationship and checks for tSU slack between
clk and clkx2. The first pass of timing analysis discovers a negative
slack for one of the clocks. The second part of the script adds a multicycle
assignment from clk to clkx2 and re-analyzes the design as a
multi-clock, multicycle design.

The script does not recompile the design with the new timing
assignments, and timing-driven compilation is not used in the synthesis
and placement of this design. New timing assignments are added only for
the timing analyzer to analyze the design with the create_timing_netlist
and report_timing Tcl commands.

1 You must compile the project before running the script example
shown in Example 3–11.

Example 3–11. Classic Timing Analysis
This Tcl file is to be used with quartus_tan.exe
This Tcl file will do the Quartus II tutorial fir_filter design
timing analysis portion by making a global timing assignment and
creating multi-clock assignments and run timing analysis
for a multi-clock, multi-cycle design
set the project_name to fir_filter
set the revision_name to filtref
set project_name fir_filter
set revision_name filtref

open the project
project_name is the project name
project_open -revision $revision_name $project_name;

Doing TAN tutorial steps this section re-runs the timing
analysis module with multi-clock and multi-cycle settings
#------ Make timing assignments ------#

#Specifying a global FMAX requirement (tan tutorial)
set_global_assignment -name FMAX_REQUIREMENT 45.0MHz
set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK ON

create a base reference clock "clocka" and specifies the
following:
BASED_ON_CLOCK_SETTINGS = clocka;
INCLUDE_EXTERNAL_PIN_DELAYS_IN_FMAX_CALCULATIONS = OFF;
FMAX_REQUIREMENT = 50MHZ;
DUTY_CYCLE = 50;
Assigns the reference clocka to the pin "clk"
create_base_clock -fmax 50MHZ -duty_cycle 50 clocka -target clk

Altera Corporation 3–27
October 2007

Timing Analysis

creates a relative clock "clockb" based on reference clock
"clocka" with the following settings:
BASED_ON_CLOCK_SETTINGS = clocka;
MULTIPLY_BASE_CLOCK_PERIOD_BY = 1;
DIVIDE_BASE_CLOCK_PERIOD_BY = 2;clock period is half the base clk
DUTY_CYCLE = 50;
OFFSET_FROM_BASE_CLOCK = 500ps;The offset is .5 ns (or 500 ps)
INVERT_BASE_CLOCK = OFF;
Assigns the reference clock to pin "clkx2"
create_relative_clock -base_clock clocka -duty_cycle 50\
-divide 2 -offset 500ps -target clkx2 clockb

create new timing netlist based on new timing settings
create_timing_netlist

does an analysis for clkx2
Limits path listing to 1 path
Does clock setup analysis for clkx2
report_timing -npaths 1 -clock_setup -file setup_multiclock.tao

The output file will show a negative slack for clkx2 when only
specifying a multi-clock design. The negative slack was created
by the 500 ps offset from the base clock

removes old timing netlist to allow for creation of a new timing
netlist for analysis by report_timing
delete_timing_netlist

adding a multi-cycle setting corrects the negative slack by adding a
multicycle assignment to clkx2 to allow for more set-up time
set_multicycle_assignment 2 -from clk -to clkx2

create a new timing netlist based on additional timing
assignments create_timing_netlist

outputs the result to a file for clkx2 only
report_timing -npaths 1 -clock_setup -clock_filter clkx2 \
 -file clkx2_setup_multicycle.tao
The new output file will show a positive slack for the clkx2
project_close

Advanced Classic Timing Analysis

There may be times when the commands available for timing analysis
reporting do not provide access to specific data you need. The
advanced_timing package provides commands to access the data
structures representing the timing netlist for your design. These
commands provide low-level details about timing delays, node fan-in
and fan-out, and timing data. Writing procedures to traverse the timing
netlist and extract information gives you the most control to get exactly
the data you need.

3–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The timing netlist is represented with a graph, which is a collection of
nodes and edges. Nodes represent elements in your design such as
registers, combinational nodes, pins, and clocks. Edges connect the nodes
and represent the connections between the logic in your design. Edges
and nodes have unique positive integer IDs that identify them in the
timing netlist. All the commands for getting information about the timing
netlist use node and edge IDs instead of text-based names.

As an example of how to use the advanced_timing package,
Example 3–12 shows one way to show the register-to-pin delays from all
registers that drive the pins of an output bus. Specify the name of an
output bus (for example, address), and the script prints out the names
of all registers driving the pins of the bus and the delays from registers to
pins.

Example 3–12. Report Register-to-Pin Delays
load_package advanced_timing
package require cmdline

This procedure returns a list of IDs for pins with names
that match the bus name passed in
proc find { bus_name } {

set to_return [list]

foreach_in_collection node_id [get_timing_nodes -type pin] {
set node_name [get_timing_node_info -info name $node_id]
if { [string match $bus_name* $node_name] } {

lappend to_return $node_id
}

}
return $to_return

}

Required arguments for the script are the name of the project and
revision, as well as the name of the bus to analyze
set options {\

{ "project.arg" "" "Project name" } \
{ "revision.arg" "" "Revision name" } \
{ "bus_name.arg" "" "Name of the bus to get timing data for" } \

}
array set opts [::cmdline::getoptions quartus(args) $options]

project_open $opts(project) -revision $opts(revision)

The timing netlist must be created before accessing it.
create_timing_netlist

This creates a data structure with additional timing data
create_p2p_delays

Walk through each pin in the specified bus
foreach pin_id [find $opts(bus_name)] {

set pin_name [get_timing_node_info -info name $pin_id]

Altera Corporation 3–29
October 2007

Timing Analysis

puts "$pin_name source registers and delays"
The get_delays_from_keepers command returns a list of all the
non-combinational nodes in the design that fan in to the
specified timing node, with the associated delays.
foreach data [get_delays_from_keepers $pin_id] {

set source_node [lindex $data 0]
set max_delay [lindex $data 1]
set source_node_name \

[get_timing_node_info -info name $source_node]
puts " $source_node_name $max_delay"

}
}
project_close

Type the command shown in Example 3–13 at a system command prompt
to run this script.

Example 3–13.
quartus_tan -t script.tcl -project fir_filter

-revision filtref -bus_name yn_out r

TimeQuest Timing Analysis

The Quartus II TimeQuest Timing Analyzer includes support for SDC
commands in the ::quartus::sdc package.

f Refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus II Handbook for detailed information about how to perform
timing analysis with the Quartus II TimeQuest Timing Analyzer.

TimeQuest Scripting

In versions of the Quartus II software before 6.0, the ::quartus::project Tcl
package contained the following SDC-like commands for making timing
assignments:

■ create_base_clock
■ create_relative_clock
■ get_clocks
■ set_clock_latency
■ set_clock_uncertainty
■ set_input_delay
■ set_multicycle_assignment
■ set_output_delay
■ set_timing_cut_assignment

3–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

These commands are not SDC-compliant. Beginning with version 6.0,
these commands are in a new package named
::quartus::timing_assignment. To ensure backwards compatibility with
existing Tcl scripts, the ::quartus::timing_assignment package is loaded
by default in the following executables:

■ quartus
■ quartus_sh
■ quartus_cdb
■ quartus_sim
■ quartus_stp
■ quartus_tan

The ::quartus::timing_assignment package is not loaded by default in the
quartus_sta executable. The ::quartus::sdc Tcl package includes
SDC-compliant versions of the commands listed above. The package is
available only in the quartus_sta executable, and it is loaded by default.

Automating
Script Execution

Beginning with version 4.0 of the Quartus II software, you can configure
scripts to run automatically at various points during compilation. Use
this capability to automatically run scripts that perform custom
reporting, make specific assignments, and perform many other tasks.

The following three global assignments control when a script is run
automatically:

■ PRE_FLOW_SCRIPT_FILE —before a flow starts
■ POST_MODULE_SCRIPT_FILE —after a module finishes
■ POST_FLOW_SCRIPT_FILE —after a flow finishes

The POST_FLOW_SCRIPT_FILE and POST_MODULE_SCRIPT_FILE
assignments are supported beginning in version 4.0, and the
PRE_FLOW_SCRIPT_FILE assignment is supported beginning in
version 4.1.

A module is a Quartus II executable that performs one step in a flow. For
example, two modules are Analysis and Synthesis (quartus_map) and
timing analysis (quartus_tan).

A flow is a series of modules that the Quartus II software runs with
predefined options. For example, compiling a design is a flow that
typically consists of the following steps (performed by the indicated
module):

1. Analysis and synthesis (quartus_map)

2. Fitter (quartus_fit)

Altera Corporation 3–31
October 2007

Automating Script Execution

3. Assembler (quartus_asm)

4. Timing Analyzer (quartus_tan)

Other flows are described in the help for the execute_flow Tcl command.
In addition, many commands in the Processing menu of the Quartus II
GUI correspond to this design flow.

Making the Assignment

To make an assignment to automatically run a script, add an assignment
with the following form to your project's Quartus II Settings File:

set_global_assignment -name <assignment name> \
<executable>:<script name>

The assignment name is one of the following:

■ PRE_FLOW_SCRIPT_FILE
■ POST_MODULE_SCRIPT_FILE
■ POST_FLOW_SCRIPT_FILE

The executable is the name of a Quartus II command-line executable that
includes a Tcl interpreter.

■ quartus_cdb
■ quartus_sh
■ quartus_sim
■ quartus_sta
■ quartus_stp
■ quartus_tan

The script name is the name of your Tcl script.

Script Execution

The Quartus II software runs the scripts as shown in Example 3–14.

Example 3–14.
<executable> -t <script name> <flow or module name> <project name> <revision name>

The first argument passed in the argv variable (or quartus(args)
variable) is the name of the flow or module being executed, depending on
the assignment you use. The second argument is the name of the project,
and the third argument is the name of the revision.

3–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

When you use the POST_MODULE_SCRIPT_FILE assignment, the
specified script is automatically run after every executable in a flow. You
can use a string comparison with the module name (the first argument
passed in to the script) to isolate script processing to certain modules.

Execution Example

Example 3–15 illustrates how automatic script execution works in a
complete flow, assuming you have a project called top with a current
revision called rev_1, and you have the following assignments in the
Quartus II Settings File for your project.

Example 3–15.
set_global_assignment -name PRE_FLOW_SCRIPT_FILE quartus_sh:first.tcl
set_global_assignment -name POST_MODULE_SCRIPT_FILE quartus_sh:next.tcl
set_global_assignment -name POST_FLOW_SCRIPT_FILE quartus_sh:last.tcl

When you compile your project, the PRE_FLOW_SCRIPT_FILE
assignment causes the following command to be run before compilation
begins:

quartus_sh -t first.tcl compile top rev_1

Next, the Quartus II software starts compilation with analysis and
synthesis, performed by the quartus_map executable. After the analysis
and synthesis finishes, the POST_MODULE_SCRIPT_FILE assignment
causes the following command to be run:

quartus_sh -t next.tcl quartus_map top rev_1

Then, the Quartus II software continues compilation with the Fitter,
performed by the quartus_fit executable. After the Fitter finishes, the
POST_MODULE_SCRIPT_FILE assignment runs the following
command:

quartus_sh -t next.tcl quartus_fit top rev_1

Corresponding commands are run after the other stages of the
compilation. Finally, after the compilation is over, the
POST_FLOW_SCRIPT_FILE assignment runs the following command:

quartus_sh -t last.tcl compile top rev_1

Altera Corporation 3–33
October 2007

Other Scripting Features

Controlling Processing

The POST_MODULE_SCRIPT_FILE assignment causes a script to run
after every module. Because the same script is run after every module,
you may need to include some conditional statements that restrict
processing in your script to certain modules.

For example, if you want a script to run only after timing analysis, you
should include a conditional test like the one shown in Example 3–16. It
checks the flow or module name passed as the first argument to the script
and executes code when the module is quartus_tan.

Example 3–16. Restrict Processing to a Single Module
set module [lindex $quartus(args) 0]

if [string match "quartus_tan" $module] {

Include commands here that are run
after timing analysis
Use the post-message command to display
messages
post_message "Running after timing analysis"

}

Displaying Messages

Because of the way the Quartus II software runs the scripts automatically,
you must use the post_message command to display messages, instead
of the puts command. This requirement applies only to scripts that are
run by the three assignments listed in “Automating Script Execution” on
page 3–30.

1 Refer to “Using the post_message Command” on page 3–35 for
more information about this command.

Other Scripting
Features

The Quartus II Tcl API includes other general-purpose commands and
features described in this section.

Natural Bus Naming

Beginning with version 4.2, the Quartus II software supports natural bus
naming. Natural bus naming means that square brackets used to specify
bus indexes in hardware description languages do not have to be escaped
to prevent Tcl from interpreting them as commands. For example, one

3–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

signal in a bus named address can be identified as address[0] instead
of address\[0\]. You can take advantage of natural bus naming when
making assignments, as in Example 3–17.

Example 3–17. Natural Bus Naming
set_location_assignment -to address[10] Pin_M20

The Quartus II software defaults to natural bus naming. You can turn off
natural bus naming with the disable_natural_bus_naming command.
For more information about natural bus naming, type
enable_natural_bus_naming -h r at a Quartus II Tcl prompt.

Using Collection Commands

Some Quartus II Tcl functions return very large sets of data that would be
inefficient as Tcl lists. These data structures are referred to as collections
and the Quartus II Tcl API uses a collection ID to access the collection.
There are two Quartus II Tcl commands for working with collections,
foreach_in_collection and get_collection_size. Use the set command to
assign a collection ID to a variable.

f For information about which Quartus II Tcl commands return collection
IDs, see the Quartus II Help and search for the foreach_in_collection
command.

The foreach_in_collection Command

The foreach_in_collection command is similar to the foreach Tcl
command. Use it to iterate through all elements in a collection.
Example 3–18 prints all instance assignments in an open project.

Example 3–18. Using Collection Commands
set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {

Information about each assignment is
returned in a list. For information
about the list elements, refer to Help
for the get-all-instance-assignments command.
set to [lindex $asgn 2]
set name [lindex $asgn 3]
set value [lindex $asgn 4]
puts "Assignment to $to: $name = $value"

}

Altera Corporation 3–35
October 2007

Other Scripting Features

The get_collection_size Command

Use the get_collection_size command to get the number of elements in a
collection. Example 3–19 prints the number of global assignments in an
open project.

Example 3–19. get_collection_size Command
set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

Using the post_message Command

To print messages that are formatted like Quartus II software messages,
use the post_message command. Messages printed by the post_message
command appear in the System tab of the Messages window in the
Quartus II GUI, and are written to standard at when scripts are run.
Arguments for the post_message command include an optional message
type and a required message string.

The message type can be one of the following:

■ info (default)
■ extra_info
■ warning
■ critical_warning
■ error

If you do not specify a type, Quartus II software defaults to info.

When you are using the Quartus II software in Windows, you can color
code messages displayed at the system command prompt with the
post_message command. Add the following line to your quartus2.ini
file:

DISPLAY_COMMAND_LINE_MESSAGES_IN_COLOR = on

Example 3–20 shows how to use the post_message command.

Example 3–20. post_message command
post_message -type warning "Design has gated clocks"

3–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Accessing Command-Line Arguments

Many Tcl scripts are designed to accept command-line arguments, such
as the name of a project or revision. The global variable quartus(args)
is a list of the arguments typed on the command-line following the name
of the Tcl script. Example 3–21 shows code that prints all of the arguments
in the quartus(args) variable.

Example 3–21. Simple Command-Line Argument Access
set i 0
foreach arg $quartus(args) {

puts "The value at index $i is $arg"
incr i

}

If you copy the script in the previous example to a file named
print_args.tcl, it displays the following output when you type the
command shown in Example 3–22 at a command prompt.

Example 3–22. Passing Command-Line Arguments to Scripts
quartus_sh -t print_args.tcl my_project 100MHz r
The value at index 0 is <my_project>
The value at index 1 is 100MHz

Beginning with version 4.1, the Quartus II software supports the Tcl
variables argv, argc, and argv0 for command-line argument access.
Table 3–7 shows equivalent information for earlier versions of the
software.

Table 3–7. Quartus II Support for Tcl Variables

Beginning with Version 4.1 Equivalent Support in Previous Software
Versions

argc llength $quartus(args)

argv quartus(args)

argv0 info nameofexecutable

Altera Corporation 3–37
October 2007

Other Scripting Features

Using the cmdline Package

You can use the cmdline package included with the Quartus II software
for more robust and self-documenting command-line argument passing.
The cmdline package supports command-line arguments with the form
-<option> <value>.

Example 3–23 uses the cmdline package.

Example 3–23. cmdline Package
package require cmdline
variable ::argv0 $::quartus(args)
set options {\

{ "project.arg" "" "Project name" } \
{ "frequency.arg" "" "Frequency" } \

}
set usage "You need to specify options and values"

array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

If you save those commands in a Tcl script called print_cmd_args.tcl you
see the following output when you type the command shown in
Example 3–24 at a command prompt.

Example 3–24. Passing Command-Line Arguments for Scripts
quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHz r
The project name is <my_project>
The frequency is 100MHz

3–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Virtually all Quartus II Tcl scripts must open a project. Example 3–25
opens a project, and you can optionally specify a revision name. The
example checks whether the specified project exists. If it does, the
example opens the current revision, or the revision you specify.

Example 3–25. Full-Featured Method to Open Projects
package require cmdline
variable ::argv0 $::quartus(args)
set options { \
{ "project.arg" "" "Project Name" } \
{ "revision.arg" "" "Revision Name" } \
}
array set optshash [::cmdline::getoptions ::argv0 $options]

Ensure the project exists before trying to open it
if {[project_exists $optshash(project)]} {

if {[string equal "" $optshash(revision)]} {

There is no revision name specified, so default
to the current revision
project_open $optshash(project) -current_revision

} else {

There is a revision name specified, so open the
project with that revision
project_open $optshash(project) -revision \

$optshash(revision)
}

} else {
puts "Project $optshash(project) does not exist"
exit 1

}
The rest of your script goes here

If you do not require this flexibility or error checking, you can use just the
project_open command, as shown in Example 3–26.

Example 3–26. Simple Method to Open Projects
set proj_name [lindex $argv 0]
project_open $proj_name

f For more information about the cmdline package, refer to the
documentation for the package at <Quartus II installation directory>
/common/tcl/packages.

Altera Corporation 3–39
October 2007

Using the Quartus II Tcl Shell in Interactive Mode

Using the
Quartus II Tcl
Shell in
Interactive Mode

This section presents an example of using the quartus_sh interactive shell
to make some project assignments and compile the finite impulse
response (FIR) filter tutorial project. This example assumes that you
already have the FIR filter tutorial design files in a project directory.

To begin, run the interactive Tcl shell. The command and initial output
are shown in Example 3–27.

Example 3–27. Interactive Tcl Shell
tcl> quartus_sh -s
tcl> Info: ***
Info: Running Quartus II Shell
 Info: Version 7.1 Full Version
 Info: Copyright (C) 1991-2007 Altera Corporation. All rights reserved.
 Info: Your use of Altera Corporation's design tools, logic functions
 Info: and other software and tools, and its AMPP partner logic
 Info: functions, and any output files any of the foregoing
 Info: (including device programming or simulation files), and any
 Info: associated documentation or information are expressly subject
 Info: to the terms and conditions of the Altera Program License
 Info: Subscription Agreement, Altera MegaCore Function License
 Info: Agreement, or other applicable license agreement, including,
 Info: without limitation, that your use is for the sole purpose of
 Info: programming logic devices manufactured by Altera and sold by
 Info: Altera or its authorized distributors. Please refer to the
 Info: applicable agreement for further details.
 Info: Processing started: Wed Apr 04 12:24:13 2007
Info: ***
Info: The Quartus II Shell supports all TCL commands in addition
Info: to Quartus II Tcl commands. All unrecognized commands are
Info: assumed to be external and are run using Tcl's "exec"
Info: command.
Info: - Type "exit" to exit.
Info: - Type "help" to view a list of Quartus II Tcl packages.
Info: - Type "help <package name>" to view a list of Tcl commands
Info: available for the specified Quartus II Tcl package.
Info: - Type "help -tcl" to get an overview on Quartus II Tcl usages.
Info: ***

tcl>

Create a new project called fir_filter, with a revision called filtref by
typing the following command at a Tcl prompt:

project_new -revision filtref fir_filter r
1 If the project file and project name are the same, the Quartus II

software gives the revision the same name as the project.

Because the revision named filtref matches the top-level file, all design
files are automatically picked up from the hierarchy tree.

3–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Next, set a global assignment for the device with the following command:

set_global_assignment -name family Cyclone r
f To learn more about assignment names that you can use with the -name

option, refer to the Quartus II Help.

1 For assignment values that contain spaces, the value should be
enclosed in quotation marks.

To quickly compile a design, use the ::quartus::flow package, which
properly exports the new project assignments and compiles the design
using the proper sequence of the command-line executables. First, load
the package:

load_package flow r
It returns the following:

1.0

For additional help on the ::quartus::flow package, view the
command-line help at the Tcl prompt by typing:

help -pkg ::quartus::flow r
Example 3–28 shows an alternative command and the resulting output.

Example 3–28. Help Output
tcl> help -pkg flow
--

Tcl Package and Version:

::quartus::flow 1.0

Description:

 This package contains the set of Tcl functions
 for running flows or command-line executables.

Tcl Commands:

 execute_flow
 execute_module
--

Altera Corporation 3–41
October 2007

Using the Quartus II Tcl Shell in Interactive Mode

This help display gives information about the flow package and the
commands that are available with the package.To learn about the options
available for the execute_flow Tcl command, type the following
command at a Tcl prompt:

execute_flow -h r
To view additional information and example usage type the following
command at a Tcl prompt:

execute_flow -long_help r
or

help -cmd execute_flow r
To perform a full compilation of the FIR filter design, use the
execute_flow command with the -compile option, as shown in
Example 3–29.

Example 3–29.
tcl> execute_flow -compile r
Info:***
Info: Running Quartus II Analysis & Synthesis
Info: Version 6.0 SJ Full Version
Info: Processing started: Tues Apr 04 09:30:47 2006
Info: Command: quartus_map --import_settings_files=on --
export_settings_files=of fir_filter -c filtref
.
.
.
Info: Writing report file filtref.tan.rpt
tcl>

This script compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm, and
quartus_tan. This sequence of events is the same as selecting Start
Compilation from the Processing menu in the Quartus II GUI.

When you are finished with a project, close it using the project_close
command as shown in Example 3–30.

Example 3–30.
project_close r

Then, to exit the interactive Tcl shell, type exit r at a Tcl prompt.

3–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Quartus II
Legacy Tcl
Support

Beginning with the Quartus II software version 3.0, command-line
executables do not support the Tcl commands used in previous versions
of the Quartus II software. These commands are supported in the GUI
with the Quartus II Tcl console or by using the quartus_cmd executable
at the system command prompt. If you source Tcl scripts developed for
an earlier version of the Quartus II software using either of these
methods, the project assignments are ported to the project database and
settings file. You can then use the command-line executables to process
the resulting project. This may be necessary if you create a Tcl file using
EDA tools that do not generate Tcl scripts for the most recent version of
the Quartus II software.

1 You should create all new projects and Tcl scripts with the latest
version of the Quartus II Tcl API.

Tcl Scripting
Basics

The core Tcl commands support variables, control structures, and
procedures. Additionally, there are commands for accessing the file
system and network sockets, and running other programs. You can create
platform-independent graphical interfaces with the Tk widget set.

Tcl commands are executed immediately as they are typed in an
interactive Tcl shell. You can also create scripts (including this chapter’s
examples) as files and run them with a Tcl interpreter. A Tcl script does
not need any special headers.

To start an interactive Tcl interpreter, type quartus_sh -s r at a
command prompt. The commands you type are executed immediately at
the interpreter prompt. If you save a series of Tcl commands in a file, you
can run it with a Tcl interpreter. To run a script named myscript.tcl, type
quartus_sh -t myscript.tcl r at a command prompt.

Hello World Example

The following shows the basic “Hello world” example in Tcl:

puts "Hello world"

Use double quotation marks to group the words hello and world as
one argument. Double quotation marks allow substitutions to occur in
the group. Substitutions can be simple variable substitutions, or the result
of running a nested command, described in “Substitutions” on page 3–43.
Use curly braces {} for grouping when you want to prevent
substitutions.

Altera Corporation 3–43
October 2007

Tcl Scripting Basics

Variables

Use the set command to assign a value to a variable. You do not have to
declare a variable before using it. Tcl variable names are case-sensitive.
Example 3–31 assigns the value 1 to the variable named a.

Example 3–31. Assigning Variables
set a 1

To access the contents of a variable, use a dollar sign before the variable
name. Example 3–32 prints "Hello world" in a different way.

Example 3–32. Accessing Variables
set a Hello
set b world
puts "$a $b"

Substitutions

Tcl performs three types of substitution:

■ Variable value substitution
■ Nested command substitution
■ Backslash substitution

Variable Value Substitution

Variable value substitution, as shown in Example 3–32, refers to accessing
the value stored in a variable by using a dollar sign (“$”) before the
variable name.

Nested Command Substitution

Nested command substitution refers to how the Tcl interpreter evaluates
Tcl code in square brackets. The Tcl interpreter evaluates nested
commands, starting with the innermost nested command, and
commands nested at the same level from left to right. Each nested
command result is substituted in the outer command. Example 3–33 sets
a to the length of the string foo.

Example 3–33. Command Substitution
set a [string length foo]

3–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Backlash Substitution

Backslash substitution allows you to quote reserved characters in Tcl,
such as dollar signs (“$”) and braces (“[]”). You can also specify other
special ASCII characters like tabs and new lines with backslash
substitutions. The backslash character is the Tcl line continuation
character, used when a Tcl command wraps to more than one line.
Example 3–34 shows how to use the backslash character for line
continuation.

Example 3–34. Backslash Substitution
set this_is_a_long_variable_name [string length "Hello \

world."]

Arithmetic

Use the expr command to perform arithmetic calculations. Using curly
braces (“{ }”) to group the arguments of this command makes
arithmetic calculations more efficient and preserves numeric precision.
Example 3–35 sets b to the sum of the value in the variable a and the
square root of 2.

Example 3–35. Arithmetic with the expr Command
set a 5
set b [expr { $a + sqrt(2) }]

Tcl also supports boolean operators such as && (AND), || (OR), ! (NOT),
and comparison operators such as < (less than), > (greater than), and ==
(equal to).

Lists

A Tcl list is a series of values. Supported list operations include creating
lists, appending lists, extracting list elements, computing the length of a
list, sorting a list, and more. Example 3–36 sets a to a list with three
numbers in it.

Example 3–36. Creating Simple Lists
set a { 1 2 3 }

Altera Corporation 3–45
October 2007

Tcl Scripting Basics

You can use the lindex command to extract information at a specific
index in a list. Indexes are zero-based. You can use the index end to
specify the last element in the list, or the index end-<n> to count from the
end of the list. Example 3–37 prints the second element (at index 1) in the
list stored in a.

Example 3–37. Accessing List Elements
puts [lindex $a 1]

The llength command returns the length of a list. Example 3–38 prints the
length of the list stored in a.

Example 3–38. List Length
puts [llength $a]

The lappend command appends elements to a list. If a list does not
already exist, the list you specify is created. The list variable name is not
specified with a dollar sign. Example 3–39 appends some elements to the
list stored in a.

Example 3–39. Appending to a List
lappend a 4 5 6

Arrays

Arrays are similar to lists except that they use a string-based index. Tcl
arrays are implemented as hash tables. You can create arrays by setting
each element individually or by using the array set command. To set an
element with an index of Mon to a value of Monday in an array called
days, use the following command:

set days(Mon) Monday

The array set command requires a list of index/value pairs. This
example sets the array called days:

array set days { Sun Sunday Mon Monday Tue Tuesday \
Wed Wednesday Thu Thursday Fri Friday Sat Saturday }

3–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Example 3–40 shows how to access the value for a particular index.

Example 3–40. Accessing Array Elements
set day_abbreviation Mon
puts $days($day_abbreviation)

Use the array names command to get a list of all the indexes in a
particular array. The index values are not returned in any specified order.
Example 3–41 shows one way to iterate over all the values in an array.

Example 3–41. Iterating Over Arrays
foreach day [array names days] {

puts "The abbreviation $day corresponds to the day \
name $days($day)"
}

Arrays are a very flexible way of storing information in a Tcl script and
are a good way to build complex data structures.

Control Structures

Tcl supports common control structures, including if-then-else
conditions and for, foreach, and while loops. The position of the curly
braces as shown in the following examples ensures the control structure
commands are executed efficiently and correctly. Example 3–42 prints
whether the value of variable a positive, negative, or zero.

Example 3–42. If-Then-Else Structure
if { $a > 0 } {

puts "The value is positive"
} elseif { $a < 0 } {

puts "The value is negative"
} else {

puts "The value is zero"
}

Example 3–43 uses a for loop to print each element in a list.

Example 3–43. For Loop
set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {

puts "The list element at index $i is [lindex $a $i]"
}

Altera Corporation 3–47
October 2007

Tcl Scripting Basics

Example 3–44 uses a foreach loop to print each element in a list.

Example 3–44. foreach Loop
set a { 1 2 3 }
foreach element $a {

puts "The list element is $element"
}

Example 3–45 uses a while loop to print each element in a list.

Example 3–45. while Loop
set a { 1 2 3 }
set i 0
while { $i < [llength $a] } {

puts "The list element at index $i is [lindex $a $i]"
incr i

}

You do not need to use the expr command in boolean expressions in
control structure commands because they invoke the expr command
automatically.

Procedures

Use the proc command to define a Tcl procedure (known as a subroutine
or function in other scripting and programming languages). The scope of
variables in a procedure is local to the procedure. If the procedure returns
a value, use the return command to return the value from the procedure.
Example 3–46 defines a procedure that multiplies two numbers and
returns the result.

Example 3–46. Simple Procedure
proc multiply { x y } {

set product [expr { $x * $y }]
return $product

}

3–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Example 3–47 shows how to use the multiply procedure in your code.
You must define a procedure before your script calls it, as shown below.

Example 3–47. Using a Procedure
proc multiply { x y } {

set product [expr { $x * $y }]
return $product

}
set a 1
set b 2
puts [multiply $a $b]

You should define procedures near the beginning of a script. If you want
to access global variables in a procedure, use the global command in each
procedure that uses a global variable. Example 3–48 defines a procedure
that prints an element in a global list of numbers, then calls the procedure.

Example 3–48. Accessing Global Variables
proc print_global_list_element { i } {

global my_data
puts "The list element at index $i is [lindex $my_data $i]"

}
set my_data { 1 2 3}
print_global_list_element 0

File I/O

Tcl includes commands to read from and write to files. You must open a
file before you can read from or write to it, and close it when the read and
write operations are done. To open a file, use the open command; to close
a file, use the close command. When you open a file, specify its name and
the mode in which to open it. If you do not specify a mode, Tcl defaults to
read mode. To write to a file, specify w for write mode as shown in
Example 3–49.

Example 3–49. Open a File for Writing
set output [open myfile.txt w]

Tcl supports other modes, including appending to existing files and
reading from and writing to the same file.

The open command returns a file handle to use for read or write access.
You can use the puts command to write to a file by specifying a
filehandle, as shown in Example 3–50.

Altera Corporation 3–49
October 2007

Tcl Scripting Basics

Example 3–50. Write to a File
set output [open myfile.txt w]
puts $output "This text is written to the file."
close $output

You can read a file one line at a time with the gets command.
Example 3–51 uses the gets command to read each line of the file and then
prints it out with its line number.

Example 3–51. Read from a File
set input [open myfile.txt]
set line_num 1
while { [gets $input line] >= 0 } {

Process the line of text here
puts "$line_num: $line"
incr line_num

}
close $input

Syntax and Comments

Arguments to Tcl commands are separated by white space, and Tcl
commands are terminated by a newline character or a semicolon. As
shown in “Substitutions” on page 3–43, you must use backslashes when
a Tcl command extends more than one line.

Tcl uses the hash or pound character (#) to begin comments. The
character must begin a comment. If you prefer to include comments on
the same line as a command, be sure to terminate the command with a
semicolon before the # character. Example 3–52 is a valid line of code that
includes a set command and a comment.

Example 3–52. Comments
set a 1;# Initializes a

Without the semicolon, it would be an invalid command because the set
command would not terminate until the new line after the comment.

3–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The Tcl interpreter counts curly braces inside comments, which can lead
to errors that are difficult to track down. Example 3–53 causes an error
because of unbalanced curly braces.

Example 3–53. Unbalanced Braces in Comments
if { $x > 0 } {
if { $y > 0 } {

code here
}

External References

f For more information about using Tcl, refer to the following sources:

■ Practical Programming in Tcl and Tk, Brent B. Welch
■ Tcl and the TK Toolkit, John Ousterhout
■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison
■ Quartus II Tcl example scripts at

http://www.altera.com/support/examples/tcl/tcl.html
■ Tcl Developer Xchange at http://tcl.activestate.com/

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Script-Based Design for HardCopy Devices chapter of the HardCopy
Handbook

■ Volume 3: Verification of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/hrd/hc_h51025.pdf
http://www.altera.com/literature/quartus2/lit-qts-verification.jsp
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Altera Corporation 3–51
October 2007

Document Revision History

Document
Revision History

Table 3–8 shows the revision history for this document.

Table 3–8. Document Revision History

Date / Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 3–50. Updated for the Quartus II
software version 7.2.

May 2007
v7.1.0

Updated for the Quartus II software version 7.1 release,
including:
● Added sdc_ext information in Table 3-1
● Added quartus_staw information in Table 3-2
● Added Referenced Documents
● Added a mini-TOC in the Introduction.

Minor updates for the Quartus II
software version 7.1 release.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November 2006
v6.1.0

Added revision history to the document.
—

May 2006 v6.0.0 Updated for the Quartus II software version 6.0.0.
● Reorganized content.
● Added the Quartus II TimeQuest Timing Analyzer

feature.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0.
—

August 2005
v5.0.1

Minor text changes.
—

May 2005 v5.0.0 Updated for the Quartus II software version 5.0.0. —

Dec. 2004 v2.1 ● Updates to tables and figures.
● New functionality in the Quartus II software version 4.2.

—

Aug. 2004 v2.1 ● Minor typographical corrections
● Enhancements to example scripts.

—

June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software version 4.1.

—

Feb. 2004 v1.0 Initial release. —

3–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Altera Corporation 4–1
October 2007

4. Managing Quartus II
Projects

Introduction FPGA designs once required just one or two engineers, but today’s larger
and more sophisticated FPGA designs are often developed by several
engineers and are constantly changing throughout the project. To ensure
efficient design coordination, designers must track their project changes.

To help designers manage their FPGA designs, the Quartus® II software
provides the following capabilities:

■ Creating revisions
■ Copying and archiving projects
■ Making a version-compatible database
■ Controlling message suppression

In the Quartus II software, a revision is one set of assignments and
settings. A project typically has multiple revisions, with each revision
having its own set of assignments and settings. Creating multiple
revisions allows you to change assignments and settings while
preserving the previous results.

A version is a Quartus II project that includes one set of design files and
one or more revisions (assignments and settings for your project).
Creating multiple versions with the Copy Project feature allows you to
edit a copy of your design files while preserving the original functionality
of your design.

The Quartus II Version-Compatible Database feature allows Quartus II
databases to be compatible across different versions of the Quartus II
software, which saves valuable design time by avoiding unnecessary
compilations (Figure 4–1). This chapter also discusses how to migrate
your projects from one computing platform to another as well as message
suppression.

QII52012-7.2.0

4–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 4–1. Quartus II Version-Compatible Database Structure

Creating a New
Project

A Quartus II project contains all of the design files, settings files, and
other files necessary for the successful compilation of your design. These
files include two Quartus II settings files:

■ Quartus II Project File (.qpf) containing the name of your project and
all revisions of your project, described in “Using Revisions With Your
Design” on page 4–3.

■ Quartus II Settings File (.qsf) containing all assignments applied to
your design including assignments to help fit your design and meet
performance requirements. For more information on the Quartus II
Settings File, refer to “Quartus II Settings File” on page 4–25.

To start a new Quartus II project, use the New Project Wizard. From the
File menu, click the New Project Wizard, and add the following project
information:

■ Project name and directory
■ Name of the top-level design entity
■ Project files and user libraries
■ Target device family and device
■ EDA tool settings

1 For more information on user libraries, refer to “Specifying
Libraries” on page 4–13 and “Specifying Libraries Using
Scripts” on page 4–29.

Version 1

Revision A

Revision B

Version 2

Revision A

Revision B

Quartus II Project

Altera Corporation 4–3
October 2007

Using Revisions With Your Design

Using Revisions
With Your
Design

The Revisions feature allows you to create a new set of assignments and
settings for your design without losing your previous assignments and
settings. This feature allows you to explore different assignments and
settings for your design and then compare the results. You can use the
Revisions feature in the following ways:

■ Create a unique revision which is not based on a previous revision.
Creating a unique revision lets you optimize a design for different
fundamental reasons such as to optimize by area in one revision,
then optimize for fMAX in another revision. When you create a unique
revision (a revision that is not based on an existing revision), all
default settings are turned on.

■ Create a revision based on an existing revision, but try new settings
and assignments in the new revision. A new revision already
includes all the assignments and settings applied in the previous
revision. If you are not satisfied with the results in the new revision,
you can revert to the original revision. You can compare revisions
manually or with the Compare feature.

Creating and Deleting Revisions

All Quartus II assignments and settings are stored in the Quartus II
Settings File. Each time you create a new revision of a project, the
Quartus II software creates a new Quartus II Settings File and adds the
name of the new revision to the list of revisions in the Quartus II Settings
File.

1 The name of a new Quartus II Settings File matches the revision
name.

You can manage revisions with the Revisions dialog box, which allows
you to set the current revision, as well as create, delete, and compare
revisions in a project.

Creating a Revision

To create a revision, follow these steps:

1. If you have not already done so, create a new project or open an
existing project. On the File menu, click New Project Wizard or
Open Project.

2. On the Project menu, click Revisions.

3. To base the new revision on an existing revision for the current
design, select the existing revision in the Revisions list.

4–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

4. Click Create (Figure 4–2).

Figure 4–2. Revisions Dialog Box

5. In the Create Revision dialog box (Figure 4–3), type the name of the
new revision in the Revisions name box.

6. To base the new revision on an existing revision for the current
design, if you did not select the correct revision in Step 3, select the
revision in the Based on revision list (Figure 4–3).

or

To create a unique revision that is not based on an existing revision
of the current design, select the “blank entry” in the Based on
revision list.

Altera Corporation 4–5
October 2007

Using Revisions With Your Design

Figure 4–3. Create Revision Dialog Box

7. Optionally, edit the description of the revision in the Description
box (Figure 4–3).

8. Turn off the Copy database option if you do not want the new
revision to contain the database information from the existing
revision. The Copy database option is on by default.

1 Copying the database allows you to view the results from
the previous compilation while you are making changes to
the settings of the new revision.

9. If you do not want to use the new revision immediately, turn off Set
as current revision. The Set as current revision option is on by
default.

10. Click OK.

Delete a Revision

To delete a revision, follow these steps:

1. If you have not already done so, open an existing project by clicking
Open Project on the File menu and selecting a Quartus II Project
File.

2. On the Project menu, click Revisions.

4–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

3. In the Revisions list, select the revision you want to delete and click
Delete.

1 You cannot delete the current revision when it is active; you
must first open another revision. For example, if revision A
is currently active, you need to create (if the revision does
not exist) and open revision B before you delete revision A.

Comparing Revisions

You can compare the results of multiple revisions side by side with the
Compare Revisions dialog box.

1. On the Project menu, click Revisions.

2. In the Revisions dialog box, click Compare to compare all revisions
in a single window.

The Compare Revisions dialog box (Figure 4–4) compares the results of
each revision in three assignment categories: Analysis & Synthesis, Fitter,
and Timing Analyzer.

Figure 4–4. Compare Revisions Dialog Box

Altera Corporation 4–7
October 2007

Creating Different Versions of Your Design

In addition to viewing the results of each revision, you also can show the
assignments for each revision. Click the Assignments tab in the Compare
Revisions dialog box to view all assignments applied to each revision
(Figure 4–4). To export both Results and Assignments for your revisions,
click on Export. When the dialog box appears, enter the name of the
Comma-Separated Value (.csv) file into which the software will export
the data when you click OK. Gain better understanding of how different
optimization options affect your design by viewing the results of each
revision and their assignments.

Creating
Different
Versions of Your
Design

Managing different versions of design files in a large project can become
difficult. To assist in this task, the Quartus II software provides utilities to
copy and save different versions of your project. Creating a version of
your project includes copying all your design files, your Quartus II
settings file, and all your associated revisions (all assignments and
settings).

To create a new version of your project with the Quartus II software,
create a copy of your project and edit your design files. An example is if
you have a design that is compatible with a 32-bit data bus and you
require a new version of the design to interface with a 64-bit data bus. To
solve this problem, create a new version of your project and edit the new
version of the design files by performing the following steps:

1. On the Project menu, click Copy Project. The Copy Project dialog
box appears (Figure 4–5).

Figure 4–5. Copy Project Dialog Box

2. Specify the path to your new project in the Destination directory
box.

3. Type the new project name in the New project name box.

4. To open the new project immediately, turn on
Open new project. This option closes the current project option.

5. Click OK.

4–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

When creating a new version of your project with an Electronic Data
Interchange Format (EDIF) or Verilog Quartus Mapping (.vqm) netlist
from a third-party EDA synthesis tool, create a copy of your project and
then replace the previous netlist file with the newly generated netlist file.
On the Project menu, click Copy Project to create a copy of your design.
On the Project menu, click the Add/Remove Files command to add and
remove design files, if necessary.

Archiving Projects with the Quartus II Archive Project Feature

A single project can contain hundreds of files in many directories, which
can make transferring a project between engineers difficult. You can use
the Quartus II Archive Project feature to create a single compressed
Quartus II Archive File (.qar) of your project containing all your design,
project, and settings files. The Quartus II Archive File contains all the
files, including the Quartus II Default Settings File (.qdf), required to
perform a full compilation to restore the original results. The Quartus II
Default Settings File contains all the project and assignment default
settings from the current version of the Quartus II software. It is
necessary to archive the Default Settings File to preserve your results
when you restore the archive in a different version of the Quartus II
software. For more information on the Quartus II Default Settings File,
refer to “Quartus II Default Settings File” on page 4–26.

With the archive file generated by the Archive Project feature
(Figure 4–6), you can easily share projects between engineers.

Figure 4–6. Archive Project Dialog Box

Altera Corporation 4–9
October 2007

Creating Different Versions of Your Design

Archive a Project

To archive a project, perform these steps:

1. Create a new project or open an existing project. On the File menu,
click New Project Wizard or Open Project.

2. On the Processing menu, point to Start and click Start Analysis &
Elaboration.

1 Altera® recommends that you perform analysis and elaboration
before archiving a project to ensure that all design files are
located and archived.

3. On the Project menu, click Archive Project. The Archive Project
dialog box appears (Figure 4–6).

4. Under Archive file name, type the file name of the Quartus II
Archive File you want to archive, or click Browse to select a
Quartus II Archive File name.

5. Turn on Archive current active revision only to archive the
currently active revision. If you do not turn on this option, all
revisions within the project are included in the project archive.

6. Under Include the following optional database files, select one of
the following items:

a. Select No database files included to exclude both compilation
and simulation database files and version-compatible database
files from the archive.

b. Select Compilation and simulation database files to include
the compilation and simulation database files in the archive.

c. Select Version-compatible database files to include the
version-compatible database files in the archive.

d. Select Include both kinds of database files to include both
compilation and simulation database files and
version-compatible database files in the archive.

7. Turn on Include functions from system libraries to include
functions from system libraries in the archive.

8. Click Add/Remove Files to add or remove files from the archive.

9. Click OK.

4–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Restore an Archived Project

To restore an archived project, perform the following steps:

1. On the Project menu, click Restore Archived Project.

2. In the Archive file name box, type the file name of the Quartus II
Archive File you wish to restore, or click Browse to select a
Quartus II Archive File.

3. In the Destination folder box, specify the directory path into which
you will restore the contents of the Quartus II Archive File, or
browse to a directory.

4. Click Show log to view the Quartus II Archive Log File (.qarlog) for
the project you are restoring from the Quartus II Archive File.

5. Click OK.

6. If you did not include the compilation and simulation database files
in the project archive (Figure 4–6), you must recompile the project.

Version-
Compatible
Databases

Prior to the Quartus II software version 4.1, compilation databases were
locked to the current version of the Quartus II software. With the
introduction of the Version-Compatible Database feature in the
Quartus II software version 4.1, you can export a version-compatible
database and import it into a later version. For example, using one set of
design files, you can export a database generated from the Quartus II
software version 4.1 and import it into the Quartus II software version 5.1
and later without recompiling your design. Using this feature eliminates
unnecessary compilation time.

Migrate to a New Version

To migrate a design from one Quartus II software version to a newer
version, perform the following steps:

1. On the File menu, open the older version of the Quartus II software
project by clicking Open Project.

2. On the Project menu, click Copy Project to make a new copy of the
project. The copied project will open in the older version.

3. On the Project menu, click Export Database. By default, the
database is exported to the export_db directory of the copied
project. If desired, a new directory can be created.

Altera Corporation 4–11
October 2007

Quartus II Project Platform Migration

4. Open the copied project from the new version of the Quartus II
software. The Quartus II software deletes the existing database but
not the exported database.

5. On the Project menu, click Import Database. By default, the
directory of the database you just exported is selected.

Save the Database in a Version-Compatible Format

To save the database in a version-compatible format during every
compilation, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
displays.

2. In the Category list, select the Compilation Process page. The
Compilation Process page displays.

3. Turn on the Export version-compatible database option.

4. Browse to the directory where you want to save the database.

5. Click OK.

Quartus II
Project Platform
Migration

When moving your project from one computing platform to another, you
must think about the following cross-platform issues:

■ Filenames and Hierarchy
■ Specifying Libraries
■ Quartus II Search Path Precedence Rules
■ Quartus II-Generated Files for Third-Party EDA Tools
■ Migrating Database Files

Filenames and Hierarchy

To ensure migration across platforms, you must consider a few basic
differences between operating systems when naming source files,
especially when interacting with these from the system-command
prompt or a Tcl script:

■ Some operating system file systems are case-sensitive. When writing
scripts, ensure you specify paths exactly, even if the current
operating system is not case-sensitive. For best results, use lowercase
letters when naming files.

■ Use a character set common to all the used platforms.

4–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

■ You do not have to convert the forward-slash / and back-slash \
path separators in the Quartus Settings File because the Quartus II
software changes all back-slash \ path separators to forward-slashes
/.

■ Observe the shortest file name length limit of the different operating
systems you are using.

You can specify files and directories inside a Quartus II project as paths
relative to the project directory. For instance, for a project titled
foo_design with a directory structure shown in Figure 4–7, specify the
source files as: top.v, foo_folder/foo1.v, foo_folder/foo2.v, and
foo_folder/bar_folder/bar1.vhdl.

Figure 4–7. All-Inclusive Project Directory Structure

If the Quartus II Settings File is in a directory that is separate from the
source files, you can specify paths using the following options:

■ Relative paths
■ Absolute paths
■ Libraries

Relative Paths

If the source files are very near the Quartus II project directory, you can
express relative paths using the .. notation. For example, given the
directory structure shown in Figure 4–8, you can specify top.v as
../source/top.v and foo1.v as ../source/foo_folder/foo1.v.

foo_design

foo1.v

bar_folder

bar1.vhdl

foo_design.qsf

top.v

foo_folder

foo2.v

Altera Corporation 4–13
October 2007

Quartus II Project Platform Migration

Figure 4–8. Quartus II Project Directory Separate from Design Files

1 When you copy a directory structure to a different platform,
ensure that any subdirectories are in the same hierarchical
structure and relative path as in the original platform.

Specifying Libraries

You also can specify the directory (or directories) containing source files
as a library that the Quartus II software searches when you compile your
project. A Quartus II library is a directory containing design files used by
your Quartus II project. You can specify the following two kinds of
libraries in the Quartus II software:

■ User libraries, which apply to a specific project
■ Global libraries, which all projects use

Use the procedures in this section to specify user or global libraries.

foo_design

foo_design.qsf

top.v

foo1.v

bar_folder

bar1.vhdl

quartus

source

foo_folder

foo2.v

4–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

All files in the directories specified as libraries are relative to the libraries.
For example, if you want to include the file /user_lib1/foo1.v and the
user_lib1 directory is specified as a user library in the project, the foo1.v
file can be specified in the Quartus II Settings File as foo1.v. The
Quartus II software searches directories that are specified as libraries and
finds the file.

Specifying User Libraries

To specify user libraries from the GUI: from the Assignments menu, click
Settings, and select User Libraries (Current Project). Type the name of
the directory in the Library name box, or browse to it. User libraries are
stored in the Quartus II Settings File of the current revision.

Specifying Global Libraries

Specify global libraries from the GUI: On the Tools menu, click Options,
and select Global User Libraries (All Project). Type the name of the
directory in the Library name box, or browse to it. Global libraries are
stored in the quartus2.ini file. The Quartus II software searches for the
quartus2.ini file in the following order:

■ USERPROFILE, for example,
C:\Documents and Settings\<user name>

■ Directory specified by the TMP environmental variable
■ Directory specified by TEMP environmental variable
■ Root directory, for example, C:

For UNIX and Linux users, the file is created in the altera.quartus
directory under the <home> directory, if the altera.quartus directory
exists. If the altera.quartus directory does not exist, the file is created in
the <home> directory.

1 Whenever you specify a directory name in the GUI or in Tcl, the
name you use is maintained verbatim in the Quartus II Settings
File rather than resolved to an absolute path.

If the directory is outside of the project directory, the path returned in the
dialog box is an absolute path, and you can use the Browse button in
either the Settings dialog box or the Options dialog box to select a
directory. However, you can change this absolute path to a relative path
by editing the absolute path displayed in the Library name field to create
a relative path before you click Add to put the directory in the Libraries
list.

Altera Corporation 4–15
October 2007

Quartus II Project Platform Migration

When copying projects that specify user libraries, you must either copy
your user library files along with the project directory or ensure that your
user library files exist in the target platform.

Search Path Precedence Rules

If two files have the same file name, the file found is determined by the
Quartus II software’s search path precedence rules. The Quartus II
software resolves relative paths by searching for the file in the following
directories and order:

1. The project directory, which is the directory containing the
Quartus II Settings File.

2. The project’s database (db) directory.

3. User libraries are searched in the order specified by the
USER_LIBRARIES setting of the Quartus II Settings File for the
current revision.

4. Global user libraries are searched in the order specified by the
USER_LIBRARIES setting on the Global User Libraries page in the
Options dialog box.

5. The Quartus II software libraries directory.

1 For more information on libraries, refer to “Specifying
Libraries Using Scripts” on page 4–29.

Quartus II-Generated Files for Third-Party EDA Tools

When you copy your project to another platform, regenerate any
Quartus II software-generated files for use by other EDA tools, using the
GUI or the quartus_eda executable.

Migrating Database Files

There is nothing inherent in the file format and syntax of exported
version-compatible database files that might cause problems for
migrating the files to other platforms. However, the contents of the
database can cause problems for platform migration. For example, use of
absolute paths in version-compatible database files generated by the
Quartus II software can cause problems for migration. Altera
recommends that you change absolute paths to relative paths before
migrating files whenever possible.

4–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Working with
Messages

The Quartus II software generates various types of messages, including
Information, Warning, and Error messages. Some messages include
information on software status during a compilation and alert you to
possible problems with your design. Messages are displayed in the
Messages window in the Quartus II GUI (Figure 4–9), and written to
standard out and when you use command-line executables. In both cases,
messages are written to Quartus II report files.

Figure 4–9. Viewing Quartus II Messages

You can right-click on a message in the Message window and get help on
the message, locate the source of the message of your design, and manage
messages.

Messages provide useful information if you take time to review them
after each compilation. However, it can be tedious if there are thousands
of them. Beginning with version 5.1 and later, the Quartus II software
includes new features to help you manage messages.

Altera Corporation 4–17
October 2007

Working with Messages

Messages Window

By default, the Messages window displays eight message tabs
(Table 4–1), which makes it easy to review all messages of a certain type.

The Info, Extra Info, Warning, Critical Warning, and Error tabs display
messages grouped by type. Warning messages are shown with all other
types of messages in the Processing message window; all warning
messages also appear in the Warning message tab.

You can control which tabs are displayed by right-clicking in the
Messages window and choosing options from the right button pop-up
menu, and with the options in the Display Message tabs section of the
Messages page in the Options dialog box of the Tools menu (Figure 4–10).

Table 4–1. Quartus II Message Tabs

Message Tab Description

System Displays messages that are unrelated to processing your design. For example, messages
generated during programming are displayed in the System tab.

Processing Displays messages that are generated when the Quartus II software processes your most
recent compilation, simulation, or software build; timing analysis messages appear as part
of the compilation messages.

Info Displays general informational messages during a compilation, simulation, or software
build. For example: legal and compilation-success messages.

Extra Info Displays detailed informational messages about the operations for designers. For
example: extra fitting information messages.

Warning Displays strong warning messages generated during a compilation, simulation, or
software build. For example: detection of signal promotion to global and high fan-out nets.

Critical Warning Displays critical warning messages generated during a compilation, simulation, or
software build. For example: detection of combinational feedback loops, gated clocks, or
register duplication.

Error Displays processing and compilation error messages generated during a compilation,
simulation, or software build. Error messages can sometimes stop processing and cannot
be disabled.

Suppressed Displays suppressed messages during the last processing operation.

4–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 4–10. Message Tab Options

The Suppressed tab shows messages suppressed during the last
processing operation. You can also prevent the Suppressed tab from
being displayed with an option in the Display Message tabs section of
the Messages pane in the Options dialog box of the Tools menu.

Hiding Messages

In the Messages window, you can hide all messages of a particular type.
For example, to hide Info messages, follow these steps:

1. On the Processing tab, right-click in the Processing message
window, and click the Hide option (Figure 4–11).

2. Select the Info message type.

Altera Corporation 4–19
October 2007

Message Suppression

Figure 4–11. Hiding Messages from the Processing Tab

All messages of the specified types are removed from the list of messages
in the Processing tab, although they are still included in the separate tabs
corresponding to the message type. For example, if you hide Info
messages, no Info messages are shown in the Processing message
window, but all the Info messages are shown in the Info messages
window.

Message
Suppression

Message suppression is a new feature in version 5.1 or later of the
Quartus II software. You can use message suppression to reduce the
number of messages to be reviewed after a compilation by preventing
individual messages and entire categories of messages from being
displayed. For example, if you review a particular message and
determine that it is not caused by something in your design that should
be changed or fixed, you can suppress the message so it is not displayed
during subsequent compilations. This saves time because you see only
new messages during subsequent compilations.

Every time you add a message to be suppressed, a suppression rule is
created. Suppressing exact selected messages adds patterns that are exact
strings to the suppression rules. Suppressing all similar messages adds
patterns with wildcards to the suppression rules.

Furthermore, you can suppress all messages of a particular type in a
particular stage of the compilation flow. On the Tools menu, click
Options, and click Suppression from under the Messages section
(Figure 4–12).

4–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 4–12. Controlling Suppression Messages

Suppressing individual messages is controlled in two locations in the
Quartus II GUI. You can right-click on a message in the Messages
window and choose commands in the Suppress sub-menu entry. To open
the Message Suppression Manager, right-click in the Messages window.
From the Suppress sub-menu item, click Message Suppression Manager
(Figure 4–13).

Figure 4–13. Message Suppression Manager

Refer to “Message Suppression Manager” on page 4–22 for further
information.

Altera Corporation 4–21
October 2007

Message Suppression

Message Suppression Methods

There are two methods you can use to create suppression rules: Suppress
Exact Selected Messages and Suppress All Similar Messages. If you
suppress a message with the exact selected messages option, only
messages matching the exact text will be suppressed during subsequent
compilations. The All Similar Messages option behaves like a wildcard
pattern on variable fields in messages.

For an example of suppressing all similar messages, consider the
following message:

Info: Found 1 design units, including 1 entities, in source file mult.v.

This type of message is common during synthesis and is displayed for
each source file that is processed, with varying information about the
number of design units, entities, and source file name.

Help for this message shows it is in the form Found <number> design
units, including <number> entities, in source file <name>. Choosing to
suppress all similar messages effectively replaces the variable parts of
that message (<number>, <number>, and <name>) with wildcards,
resulting in the following suppression rule:

Info: Found * design units, including * entities, in source file *.

As a result, all similar messages (ones that match the pattern) are
suppressed.

Details and Limitations

The following limitations apply to which messages can be suppressed
and how they can be suppressed:

■ You cannot suppress error messages or messages with information
about Altera legal agreements.

■ Suppressing a message also suppresses all its submessages, if there
are any.

■ Suppressing a submessage causes matching submessages to be
suppressed only if the parent messages are the same.

■ You cannot create your own custom wildcards to suppress messages.
■ You must use the Quartus II GUI to manage message suppression,

including choosing messages to suppress. These messages are
suppressed during compilation in the GUI and when using
command-line executables.

4–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

■ Messages are suppressed on a per-revision basis, not for an entire
project. Information about which messages to suppress is stored in a
file called <revision>.srf. If you create a revision based on a revision
for which messages are suppressed, the suppression rules file is
copied to the new revision. You cannot make all revisions in one
project use the same suppression rules file.

■ You cannot remove messages or modify message suppression rules
while a compilation is running.

Message Suppression Manager

You can use the Message Suppression Manager to view and suppress
messages, view and delete suppression rules, and view suppressed
messages.

Open the Message Suppression Manager by clicking the Processing tab.
Right-click anywhere in the Messages window and click Message
Suppression Manager from the Suppression sub-menu. The Message
Suppression Manager has three tabs labeled Suppressible Messages,
Suppression Rules, and Suppressed Messages (Figure 4–14).

Figure 4–14. Message Suppression Manager Window

Altera Corporation 4–23
October 2007

Message Suppression

Suppressible Messages

Messages that are listed in the Suppressible Messages tab are messages
that were not suppressed during the last compilation. These messages
can be suppressed. The Select All Similar Messages option in the right
click menu selects messages according to the example described in the
“Message Suppression Methods” on page 4–21. You can select all similar
messages to see which messages are suppressed if you choose to suppress
all similar messages.

Suppression Rules

Items listed in the Suppression Rules tab are the patterns that the
Quartus II software uses to determine whether to suppress a message.
Messages matching any of the items listed in the Suppression Rules tab
are suppressed during compilations (Figure 4–15).

Figure 4–15. Message Suppression Manager

An entry in the Suppression Rules tab that includes a message with
submessages indicates the submessage is suppressed only when all its
parent messages match.

You can stop suppressing messages by deleting the suppression rules
that match them (causing them to be suppressed). Merely deleting
suppression rules does not cause the formerly suppressed messages to be
added to the messages generated during the previous compilation; you
must recompile the design for the changed suppression rules to take
effect.

4–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Suppressed Messages

Messages listed in the Suppressed Messages tab are divided in two
sub-tabs:

■ Messages Suppressed During Previous Compilation
■ Messages to Suppress During Next Compilation

The messages listed in the Messages Suppressed During Previous
Compilation sub-tab are all the suppressed messages from the previous
compilation (Figure 4–16).

Figure 4–16. Messages Suppressed During Previous Compilation

‘

These messages are also listed in the Suppressed tab in the Messages
window. Messages listed in the Messages to Suppress During Next
Compilation are messages that will be suppressed during the next
compilation that match suppression rules created after the last
compilation finished.

In addition to appearing in the Suppressed tab in the Messages window,
suppressed messages are included in a Suppressed Messages entry in the
Quartus II compilation report, viewable in the GUI. Suppressed messages
are not included in the <revision>.<module>.rpt text files; they are written
to a separate text report file called <revision name>.<module>.smsg.

Altera Corporation 4–25
October 2007

Quartus II Settings File

Quartus II
Settings File

All assignments made in the Quartus II software are stored as Tcl
commands in the Quartus II Settings File. The Quartus II Settings File is a
text based file containing Tcl commands and comments. The Quartus II
Settings File is not a Tcl script and does not support the full Tcl scripting
language.

As you make assignments in the Quartus II software, the assignments are
either stored temporarily in memory or written out to the Quartus II
Settings File. This is determined by the Update assignments to disk
during design processing only option, which is located in the Tools
menu under Options on the Processing page. If the option is turned on,
then all assignments are stored in memory and are written to the Quartus
II Settings File when a compilation has started or when you save or close
the project. By saving assignments to memory, the performance of the
software is improved because it avoids unnecessary reading and writing
to the Quartus II Settings File on the disk. This performance improvement
is seen more dramatically when the project files are stored on a remote
data disk.

Beginning with the Quartus II software version 5.1, you can add lines of
comments into the Quartus II Settings File, such as are shown in the
following example:

Assignments for input pin clk
Clk is being driven by FPGA 1
set_location_assignment PIN_6 -to clk
set_instance_assignment -name IO_STANDARD "2.5 V" -to clk

Sourcing other Quartus II Settings Files is supported using the following
Tcl command:

source <filename>.qsf

Format Preservation

Beginning with the Quartus II software version 5.1, the Quartus II
software maintains the order of assignments within the Quartus II
Settings File. When you make new assignments, they are appended to the
end of the Quartus II Settings File. If you modify an assignment, the
corresponding line in the Quartus II Settings File is modified and the
order of assignments in the Quartus II Settings File is maintained except
when you add and remove project source files, or when you add, remove,
and exclude members from an assignment group. In these cases, all
assignments are moved to the end of the Quartus II Settings File. For
example, if you add a new design file into the project, the list of all your
design files is removed from its current location in the file and moved to
the end of the Quartus II Settings File.

4–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

1 The header that is located at the beginning of the Quartus II
Settings File is written only if the Quartus II Settings File is
newly created.

The Quartus II software preserves all spaces and tabs for all unmodified
assignments and comments. When you make a new assignment or
modify an existing assignment, the assignment is written using the
default formatting.

Quartus II
Default Settings
File

The Quartus II Default Settings File contains all the project and
assignment default settings from the current version of the Quartus II
software. The Quartus II Default Settings File, located in the win directory
of the Quartus II installation path, is used to ensure consistent results
when defaults are changed between versions of the Quartus II software.

The Quartus II software reads assignments from various files and stores
the assignments in memory. The Quartus II software reads settings files
in the following order shown below, so that assignments in subsequent
files take precedence over earlier ones:

1. assignment_defaults.qdf from <Quartus II Installation
directory>/win

2. assignment_defaults.qdf from project directory

3. <revision name>_assignment_defaults.qdf from project directory

4. <revision name>.qsf from project directory

As each new file is read, if an existing assignment from a previous file
matches (following rules of case sensitivity, multi-value fields as well as
other rules), then the old value is removed and replaced by the new. For
example, if the first file has a non multi-valued assignment A=1, and the
second file has A=2, then the assignment A=1, stored in memory, is
replaced by A=2.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp

Altera Corporation 4–27
October 2007

Scripting Support

The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Managing Revisions

You can use the following commands to create and manage revisions. For
more information about managing revisions, including creating and
deleting revisions, setting the current revision, and getting a list of
revisions, refer to “Creating and Deleting Revisions” on page 4–3.

Creating Revisions

The following Tcl command creates a new revision called speed_ch,
based on a revision called chiptrip and sets the new revision as the
current revision. The –based_on and –set_current options are optional.

create_revision speed_ch -based_on chiptrip -set_current

Setting the Current Revision

Use the following Tcl command to specify the current revision:

set_current_revision <revision name>

Getting a List of Revisions

Use the following Tcl command to get a list of revisions in the opened
project:

get_project_revisions

Deleting Revisions

Use the following Tcl command to delete a revision:

delete_revision <revision name>

4–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Archiving Projects with a Tcl Command or at the Command
Prompt

You can archive projects with a Tcl command or with a command run at
the system command prompt.

The following Tcl command creates a project archive with the default
settings and overwrites the specified archived file if it already exists:

project_archive archive.qar -overwrite

Type the following command at a command prompt to create a project
archive called top:

quartus_sh --archive top r

Restoring Archived Projects

You can restore archived projects with a Tcl command or with a
command run at a command prompt. For more information about
restoring archived projects, refer to “Restore an Archived Project” on
page 4–10.

The following Tcl command restores the project archive named
archive.qar in the restored subdirectory and overwrites existing files:

project_restore archive.qar -destination restored -overwrite

Type the following command at a command prompt to restore a project
archive:

quartus_sh --restore archive.qar r

Importing and Exporting Version-Compatible Databases

You can import and export version-compatible databases with either a
Tcl command or a command run at a command prompt. For more
information about importing and exporting version-compatible
databases, refer to “Version-Compatible Databases” on page 4–10.

1 The flow and database_manager packages contain
commands to manage version-compatible databases.

Altera Corporation 4–29
October 2007

Scripting Support

Use the following Tcl commands from the database_manager package
to import or export version-compatible databases.

export_database <directory>
import_database <directory>

Use the following Tcl commands from the flow package to import or
export version-compatible databases. If you use the flow package, you
must specify the database directory variable name.

set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>
execute_flow –flow export_database
execute_flow –flow import_database

Add the following Tcl commands to automatically generate
version-compatible databases after every compilation:

set_global_assignment \
-name AUTO_EXPORT_VER_COMPATIBLE_DB ON
set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>

The quartus_cdb and the quartus_sh executables provide commands to
manage version-compatible databases:

quartus_cdb <project> -c <revision> \
--export_database=<directory> r
quartus_cdb <project> -c <revision> \
--import_database=<directory>r
quartus_sh –flow export_database <project> -c \
<revision> r
quartus_sh –flow import_database <project> -c \
<revision> r

Specifying Libraries Using Scripts

In Tcl, use commands in the ::quartus::project package to specify
user libraries. To specify user libraries, use the set_global_assignment
command. To specify global libraries use the set_user_option command.
The following examples show typical usage of the
set_global_assignment and set_user_option commands:

set_global_assignment -name USER_LIBRARIES \
"../other_dir/library1"
set_user_option -name USER_LIBRARIES \
"../an_other_dir/library2"

4–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

To report any user libraries specified for a project and any global libraries
specified for the current installation of the Quartus II software, use the
get_global_assignment and get_user_option Tcl commands. The
following Tcl script outputs the user paths and global libraries for an
open Quartus II project:

get_global_assignment -name USER_LIBRARIES
get_user_option -name USER_LIBRARIES

Conclusion Designers often try different settings and versions of their designs
throughout the development process. Quartus II project revisions
facilitate the creation and management of different assignments and
settings.

In addition, understanding how to smoothly migrate your projects from
one computing platform to another, controlling messages, and reducing
compilation time is important as well. The Quartus II software facilitates
efficient management of your design to accommodate today’s more
sophisticated FPGA designs.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Quartus II Settings File Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Altera Corporation 4–31
October 2007

Document Revision History

Document
Revision History

Table 4–2 shows the revision history for this chapter.

Table 4–2. Document Revision History

Date and
Document Version Changes Made Summary of

Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 4–30. —

May 2007
v7.1.0

No changes made to content. —

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

No changes made. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1.0. —

May 2005
v5.0.0

Updated for the Quartus II software version 5.0.0. —

December 2004
v1.1

Updated for Quartus II software version 4.2:
● General formatting and editing updates.
● Added new figures.
● Added new introduction to To Delete a Revision That is a

Design’s Current Revision.
● Added new section To Delete a Revision That is not a Design’s

Current Revision.
● Updated figures.
● Added new information about displaying assignments for multiple

revisions.
● Updated Archive a Project.
● Updated Restore an Archived Project.
● Version-Compatible Databases describes migration to Quartus II

software version 4.2.
● Corrected Tcl commands.

—

June 2004 v1.0 Initial release. —

4–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Altera Corporation Section II–i
Preliminary

Section II. I/O and PCB
Tools

This section provides an overview of the I/O planning process, Altera’s
FPGA pin terminology, as well as the various methods for importing,
exporting, creating, and validating pin-related assignments using
Quartus® II software. This section also describes the design flow that
includes making and analyzing pin assignments using the Start I/O
Assignment Analysis command in the Quartus II software, during and
after the development of your HDL design. It also describes interfaces
with third-party PCB design tools

This section includes the following chapters:

■ Chapter 5, I/O Management
■ Chapter 6, Mentor Graphics PCB Design Tools Support
■ Chapter 7, Cadence PCB Design Tools Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation
Preliminary

I/O and PCB Tools Quartus II Handbook, Volume 2

Altera Corporation 5–1
October 2007 Preliminary

5. I/O Management

Introduction The process of managing I/Os for current leading FPGA devices involves
more than just fitting design pins into a package. The increasing
complexity of I/O standards and pin placement guidelines are just some
of the factors that influence pin-related assignments. The I/O capabilities
of the FPGA device and board layout guidelines influence pin location
and other types of assignments for each of your design pins. Therefore, it
is necessary to begin I/O planning and printed circuit board (PCB)
development even before starting the FPGA design.

This chapter provides an overview of the I/O planning process, FPGA
pin terminology and the various methods for importing, exporting,
creating, and validating pin-related assignments.

f For guidelines on PCB designs for Altera® high-speed FPGAs, refer to
AN 315: Guidelines for Designing High-Speed FPGA PCBs.

This chapter contains the following topics:

■ “Understanding Altera FPGA Pin Terminology” on page 5–2
■ “Importing and Exporting Pin Assignments” on page 5–6
■ “I/O Planning Overview” on page 5–10
■ “Early I/O Planning Using the Pin Planner” on page 5–13
■ “Creating Pin-Related Assignments” on page 5–21
■ “Using the Live I/O Check Feature to Validate Pin Assignments” on

page 5–65
■ “Using I/O Assignment Analysis to Validate Pin Assignments” on

page 5–67
■ “Incorporating PCB Design Tools” on page 5–87
■ “Advanced I/O Timing” on page 5–87

QII52013-7.2.0

5–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Understanding
Altera FPGA Pin
Terminology

Altera FPGA devices are available in a variety of packages to meet all of
your complex design needs. To describe Altera FPGA pin terminology,
this chapter uses a wirebond ball grid array (BGA) package in its
examples. On the top surface of the silicon die, there is a ring of bond pads
that connect to the I/O pins of the silicon. In a wirebond BGA package,
the device is placed in the package and copper wires connect the bond
pads to the solder balls of the package. Figure 5–1 shows a cross section
of a wirebond BGA package.

f For a list of all BGA packages available for each Altera FPGA device,
refer to the Altera Device Package Information Datasheet.

Figure 5–1. Wire Bond BGA

Package Pins

The pins of a BGA package are small solder balls arranged in a grid
pattern on the bottom of the package. In the Quartus® II software, the
package pins are represented as pin numbers. The pin numbers are
determined by their locations using a coordinate system with letters and
numbers identifying the row and column of the pins, respectively.

The upper-most row of pins is labeled “A” and continues alphabetically
as you move downward (Figure 5–2). The left-most column of pins is
labeled “1” and continues with increments of 1 as you move to the right.
For example, pin number “B4” represents row “B” and column “4.”

Figure 5–2. Row and Column Labeling

Solder Ball Layer

Package

Wire Silicon Die Bond Pad

1 2 3 4 5 6 7 ...

...

A
B
C
D
E
F
G

Altera
Device Package

(Top View)

Column

Row

Altera Corporation 5–3
October 2007 Preliminary

Understanding Altera FPGA Pin Terminology

The letters I, O, Q, S, X, and Z are never used in pin numbers. If there are
more rows than letters of the alphabet, then the alphabet is repeated,
prefixed with the letter “A.”

f For more information about the pin numbers for your Altera device,
refer to the device pin-out information available on the Altera website at
www.altera.com.

Pads

Package pins are connected to pads located on the perimeter of the top
metal layer of the silicon die (Figure 5–1). Each pad is identified by a
pad ID, which is numbered starting at 0, incrementing by 1 in a
counterclockwise direction (Figure 5–3).

Figure 5–3. Pad Number Ordering

To prevent signal integrity issues, the Quartus II software uses pin
placement rules to validate your pin placements and pin-related
assignments. It is important that you understand which pad locations
your pins were assigned, because some pin placement rules describe pad
placement restrictions. For example, in certain devices, there is a
restriction on the number of I/O pins supported by a VREF pad to ensure
signal integrity. There are also restrictions on the number of pads
between single-ended input or output pins and a differential pin. The
Quartus II software performs pin placement analysis, and if pins are not
placed according to pin placement rules, the design compilation fails and
the Quartus II software reports an error.

f For more information about pin placement guidelines, refer to the
Selectable I/O Standards chapter in volume 1 of the appropriate device
handbook.

29 28 27 ...

...

0

1

2

3

Altera
Silicon Die

5–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

I/O Banks

I/O pins are organized into I/O banks designed to facilitate the various
supported I/O standards. Each I/O bank is numbered and has its own
voltage source pins, called VCCIO, to offer the highest I/O performance.
Depending on the device and I/O standards for the pins within the I/O
bank, the specified voltage of the VCCIO pin is between 1.5 V and 3.3 V.
Each I/O bank can support multiple pins with different I/O standards
that share the same VCCIO.

It is important to refer to the appropriate device handbook to determine
the capabilities of each I/O bank. For example, the pins in the I/O banks
on the left and right side of a Stratix® II device support high-speed I/O
standards such as LVDS, whereas the pins on the top and bottom I/O
banks support all single-ended I/O standards, including data strobe
signaling (DQS) (Figure 5–4). Pins belonging to the same I/O bank must
use the same VCCIO signal.

Altera Corporation 5–5
October 2007 Preliminary

Understanding Altera FPGA Pin Terminology

Figure 5–4. Stratix II I/O Banks Notes (1), (2), (3), (4)

Notes to Figure 5–4:
(1) This figure shows a top view of the silicon die which corresponds to a reverse view for flip chip packages. It is a

graphical representation only.
(2) Depending on the size of the device, different device members have a different number of VREF groups. Refer to the

pin list and the Quartus II software for exact locations.
(3) Banks 9 through 12 are enhanced phase locked loop (PLL) external clock output banks.
(4) Horizontal I/O banks feature SERDES and DPA circuitry for high speed differential I/O standards. For more

information about differential I/O standards, refer to the High-Speed Differential I/O Interfaces with DPA in Stratix II
and Stratix II GX Devices chapter in volume 2 of the Stratix II Device Handbook.

Bank 3 Bank 4Bank 11 Bank 9

PLL11 PLL5

PLL7

PLL1

PLL2

PLL4

PLL3

PLL10

I/O banks 3, 4, 9 & 11 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 9 & 11.

I/O banks 7, 8, 10 & 12 support all
single-ended I/O standards for both

input and output operations. All
differential I/O standards are

supported for both input and output
operations at I/O banks 10 & 12.

I/O banks 1, 2, 5 & 6 support LVTTL, LVCMOS,
2.5-V, 1.8-V, 1.5-V, SSTL-2, SSTL-18 Class I, LVDS,

HyperTransport, differential SSTL-2 and differential
SSTL-18 Class I standards for both input and output

operations. HSTL, SSTL-18 Class II, differential

HSTL and differential SSTL-18 Class II standards are
only supported for input operations.

VREF0B3 VREF1B3 VREF2B3 VREF3B3 VREF4B3 VREF0B4 VREF1B4 VREF2B4 VREF3B4 VREF4B4

Bank 8 Bank 7Bank 12 Bank 10

PLL12 PLL6

PLL8 PLL9
VREF4B8 VREF3B8 VREF2B8 VREF1B8 VREF0B8 VREF4B7 VREF3B7 VREF2B7 VREF1B7 VREF0B7

V
R

E
F

3
B

2
V

R
E

F
2

B
2

V
R

E
F

1
B

2
V

R
E

F
0

B
2

B
a

nk
 2

V
R

E
F

3
B

1
V

R
E

F
2

B
1

V
R

E
F

1
B

1
V

R
E

F
0

B
1

B
an

k
1

V
R

E
F

1
B

5
V

R
E

F
2

B
5

V
R

E
F

3
B

5
V

R
E

F
4

B
5

B
a

nk
 5

V
R

E
F

1
B

6
V

R
E

F
2

B
6

V
R

E
F

3
B

6
V

R
E

F
4

B
6

B
an

k
6

V
R

E
F

4
B

2

V
R

E
F

0
B

5

V
R

E
F

4
B

1

V
R

E
F

0
B

6

DQS4T DQS3T DQS2T DQS1T DQS0T

DQS4B DQS3B DQS2B DQS1B DQS0BDQS8B DQS7B DQS6B DQS5B

DQS8T DQS7T DQS6T DQS5T

This I/O bank supports
LVDS, HyperTransport and

LVPECL standards for input
clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

This I/O bank supports
LVDS, HyperTransport and

LVPECL standards for input
clock operations.

Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

This I/O bank supports

LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and
differential SSTL standards

are supported for both input
and output operations.

This I/O bank supports
LVDS, HyperTransport and
LVPECL standards for input

clock operations.
Differential HSTL and

differential SSTL standards
are supported for both input

and output operations.

5–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

VREF Groups

A VREF group is a group of pins that includes one dedicated VREF pin as
required by voltage-referenced I/O standards. A VREF group is made up
of a small number of pins, as compared to the I/O bank, to maintain the
signal integrity of the VREF pin. One or more VREF groups exist in an I/O
bank. The pins in a VREF group share the same VCCIO and VREF voltages.

f For more information about I/O banks, VREF groups, and supported
I/O standards, refer to the Architecture and Selectable I/O Standards
chapters in the appropriate device handbook.

Importing and
Exporting Pin
Assignments

You can transfer pin-related assignments between the Quartus II
software and other tools by importing and exporting these assignments
in the following file formats: Comma Separated Value (.csv) file,
Quartus II Settings File (.qsf), Tool command language (Tcl), FPGA
Xchange (.fx) file, and Pin-Out (.pin) file (export only).

CSV File

You can transfer pin-related assignments as a CSV file. This file consists
of a row of column headings followed by rows of comma-separated data.
The row of column headings in the exported file is in the same order and
format as the columns displayed in the Pin category in the Assignment
Editor or in the All Pins List in the Pin Planner when the export is
performed. Do not modify the row of column headings if you plan to
import the CSV file later.

To import a CSV file into your project, on the Assignment menu, click
Import Assignments and browse to the file.

You can export pin-related assignments from the Quartus II Pin Planner
or the Assignment Editor. To export your pin-related assignments to a
CSV file, on the Assignment menu, click Pin Planner or Assignment
Editor. For the Pin Planner, make sure the All Pins List is visible. If the list
is not visible, on the View menu, click All Pins List. For the Assignment
Editor, from the Category list, select the Pin category. Then, to create the
CSV file, on the File menu, click Export.

1 The All Pins List in the Quartus II Pin Planner, the Pin category
in the Quartus II Assignment Editor, and the device PIN files all
display detailed properties about each pin of the device, in
addition to the pin name and pin number. The device PIN files
are available on the Altera web site at www.altera.com.

Altera Corporation 5–7
October 2007 Preliminary

Importing and Exporting Pin Assignments

f For more information about importing and exporting CSV files and the
Assignment Editor, refer to the Assignment Editor chapter in volume 2 of
the Quartus II Handbook.

Quartus II Settings Files (QSFs)

You can transfer pin-related assignments as a QSF. The pin-related
assignments are stored as Tcl commands in the QSF.

To import a QSF, on the Assignments menu, click Import Assignments
and browse to the file, or source the file in the Tcl console. To export a
QSF, on the Assignments menu, click Export Assignments, type in a file
name, and click OK.

f For more information about QSFs, refer to the Managing Quartus II
Projects chapter in volume 2 of the Quartus II Handbook.

Tcl Script

To import the pin-related assignments from a Tcl script, source the Tcl
script in the Tcl console or run the Tcl script with the quartus_sh
executable. For example, type the following command at a system
command prompt:

quartus_sh -t my_pins.tcl r
You can export pin-related assignments from the Quartus II Pin Planner
or the Assignment Editor. To export pin-related assignments as a Tcl
script, on the Assignments menu, click Pin Planner or Assignment
Editor. For the Pin Planner, make sure the All Pins List is visible. If the list
is not visible, on the View menu, click All Pins List. For the Assignment
Editor, select the Pin category from the Category list. Then, to create the
Tcl file, on the File menu, click Export. In the Export dialog box, type in a
file name, select Tcl Script File (*.tcl), and click OK. All pin-related
assignments displayed in the All Pins List of the Pin Planner and the
spreadsheet of the Assignment Editor are saved as Tcl commands in the
Tcl script.

For more information about the All Pins List in the Pin Planner, refer to
“Using the Pin Planner” on page 5–22.

f For more information about Quartus II scripting support including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in volume 2 of the Quartus II Handbook.

http://www/literature/hb/qts/qts_qii52001.pdf

5–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

FPGA Xchange File

An FPGA Xchange file contains device and pin-related information that
allows you to transfer information between the Quartus II software and
your PCB schematic or design tool. For example, to transfer pin
information from the Mentor Graphics I/O Designer software to the
Quartus II software to validate pin assignment changes using the I/O
Assignment Analyzer, use an FPGA Xchange file.

To import an FPGA Xchange file into the Quartus II software, perform
the following steps:

1. On the Assignments menu, click Import Assignments.

2. In the File name box, click the browse button and click FPGA
Xchange Files (*.fx) in the Files of type list.

3. Browse to and select the FPGA Xchange file and click Open.

4. Click OK.

To generate an FPGA Xchange file in the Quartus II software, perform the
following steps:

1. Perform an I/O Assignment Analysis or a full compilation in the
Quartus II software.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. Select Board-Level. The Board-Level page appears.

4. Under Board-level symbol, in the Format list, select FPGA
Xchange.

5. Set the Output directory to the location where you want to save the
file. The default output file path is
<project directory>/symbols/fpgaxchange.

6. Click OK.

7. On the Processing menu, point to Start and click Start EDA Netlist
Writer.

The output directory you selected is created when you generate the FPGA
Xchange file using the Quartus II software.

Altera Corporation 5–9
October 2007 Preliminary

Importing and Exporting Pin Assignments

PIN File

A PIN file is an ASCII text file containing pin location results and other
pin information. To generate a PIN file for your project, you must
successfully perform an I/O Assignment Analysis or full compilation.

Use the PIN file to understand which signals should be connected to
which pins, or to transfer your project’s pin information into third-party
PCB tools for board development. Figure 5–5 shows an example PIN file,
and Table 5–1 describes the columns in a PIN file.

Figure 5–5. Example of a PIN File

f For more information about Pin Name/Usage, refer to the Device
Pin-Out for the targeted device, available on the Altera website at
www.altera.com.

f For more information about using Cadence PCB tools with the
Quartus II software, refer to the Cadence PCB Design Tools Support
chapter in volume 2 of the Quartus II Handbook. For more information
about using the Mentor Graphics PCB tools with the Quartus II software,
refer to the Mentor Graphics PCB Design Tools Support chapter in volume 2
of the Quartus II Handbook.

Pin Name/Usage Location Dir. I/O Standard Voltage I/O Bank User Assignment

VCCA_PLL1 9 power 1.5V
clk 10 input LVTTL 1 N

Table 5–1. PIN File Header Description

Column Name Description

Pin Name/Usage The name of a design pin, ground, or power

Location The pin number of the location on the device package

Dir The direction of the pin

I/O Standard The name of the I/O standard to which the pin is configured

Voltage The voltage level that is required to be connected to this pin

I/O Bank The I/O bank number that the pin belongs to

User Assignment Y or N indicating if the location assignment for the design pin was user assigned (Y) or
assigned by the Fitter (N)

5–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

I/O Planning
Overview

I/O planning includes importing any existing pin assignments,
optionally using the early pin planning flow, creating and editing pin-
related assignments and validating them against pin placement rules.
The I/O planning process ensures a successful fit in your Altera FPGA
device. The Quartus® II software includes the Pin Planner and I/O
Assignment Analysis to assist you in I/O planning.

The method you use to create your pin assignments depends on your
requirements. If your PCB is partially designed, create your FPGA
assignments in your PCB tool and import them into the Quartus II
software for validation (Figure 5–6).

1 Currently, only the Mentor Graphics® I/O Designer PCB tool is
supported in this reverse I/O planning flow.

Figure 5–6. I/O Planning Flow Using an FPGA Xchange File from a PCB Tool

f For more information about board layout and I/O pin assignment
import and export, refer to the Cadence PCB Design Tools Support and the
Mentor Graphics PCB Design Tools Support chapters in volume 2 of the
Quartus II Handbook.

If you have not designed the PCB yet, create and validate your I/O
assignments in the Quartus II software, then export them to the PCB tool
(Figure 5–7). This is the recommended design flow for creating I/O
assignments for an FPGA design.

Create &
Modify Pin

Assignments

PCB Tool

I/O Assignment Analysis

Validate?

Altera
Quartus II Software

Import Pin Assignments
Design Files
(if available)

Yes

No

Analysis & Synthesis

Pins have been Validated

FPGA Xchange
File

.fx

Altera Corporation 5–11
October 2007 Preliminary

Importing and Exporting Pin Assignments

Figure 5–7. Quartus II Software I/O Planning Flow

The preferred method for validating pin-related assignments is to
perform a full compilation. If design files are not available, create a top-
level netlist wrapper file while making pin assignments and creating
custom megafunctions (Figure 5–8). With the wrapper file, you can use
the I/O Assignment Analysis to validate your I/O assignments early in
the FPGA design process.

For more details about this early I/O planning design flow, refer to
“Using I/O Assignment Analysis to Validate Pin Assignments” on
page 5–67.

Pin-Out File

.pin

I/O Assignment Analysis

Import Pin
Assignment

Analysis & Synthesis

Quartus II
Settings File

Create and Modify Pin-Related Assignments

Validate
Assignments

FPGA Xchange
File

Yes

No

PCB ToolAltera Quartus II Software

Assignment
Editor

Pin Planner
(Recommended)

Tcl
Timing
Closure

Floorplan
Editor

Synthesis
Attributes

Design Files (if Available)

Export Pin Assignments .fx

.qsf

Pins have been
Validated

5–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–8. Early I/O Planning Using the Pin Planner

Make Changes as Needed

In Pin Planner, Create, Import, or
Edit Megafunctions or

IP MegaCores

Start I/O Assignment Analysis

Create a Quartus II Project

Continue Design

Yes

NoAssignments
Correct?

Configure Megafunction or
IP MegaCore Nodes
and/or User Nodes

Assign External Nodes to Device Pins
in Pin Planner

Create Top-Level Design File

Use Assignments in Existing
Project or Create the Rest of a New
Project Based on the Assignments

Altera Corporation 5–13
October 2007 Preliminary

Importing and Exporting Pin Assignments

Early I/O
Planning Using
the Pin Planner

It may be difficult to plan your I/Os early in the design cycle because the
design files, including the top-level design, may not be available yet.
However, the interfaces between your FPGA and other devices are
typically determined and documented in the design specifications. By
adding the bus or memory interfaces needed to connect your FPGA with
these other devices in the Pin Planner, you can plan your FPGA I/Os
efficiently without design files.

The Pin Planner can interface with the MegaWizard® Plug-in Manager,
allowing you to create or import custom megafunctions and
intellectual-property (IP) cores. You can add many types of interfaces,
including megafunctions such as altpll and altddio, and IP MegaCores
such as PCI Compiler, QDR II, and Rapid IO. Adding the interface
information while planning your I/Os allows you to assign each required
pin without manually creating each pin individually in the Pin Planner.
Furthermore, you can add and configure your own user ports that are
top-level ports in your design.

1 Any IP megafunction that has a pin planning file (.ppf) can be
imported to the Pin Planner. For details about creating a specific
megafunction, refer to the user guide for that megafunction on
the User Guides literature page of the Altera website at
www.altera.com.

Reading in the pin planning files and defining the top-level ports
automatically populates the All Pins list and the Groups list in the Pin
Planner with all the external pins of your megafunctions and IP
MegaCores. For more information about the All Pins list and the Groups
list, refer to “Using the Pin Planner” on page 5–22.

You can then make I/O pin assignments for all the external pins of your
interfaces, create the required top-level wrapper file, and validate the
assignments. Figure 5–8 on page 5–12 shows a flow diagram for this type
of early I/O planning flow.

After you complete and validate the I/O assignments, you can proceed
with your design in any of the following ways:

■ Transfer the assignments to an existing project that includes design
files, making sure the pin names match the design.

■ Continue working with this early I/O project, adding design files to
work with the planned I/O assignments.

■ Create a revision of your existing design that uses the wrapper file
and verified I/O assignments and decide later whether to integrate
them with your project.

http://www.altera.com/literature/lit-ug.jsp
http://www.altera.com/literature/lit-ug.jsp
http://www.altera.com/literature/lit-ug.jsp

5–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

f For information about revisions in the Quartus II software, refer to the
Quartus II Help.

Create a Megafunction or IP MegaCore Variation from the Pin
Planner

You can create or customize some megafunction variations from within
the Pin Planner. To create a megafunction or IP MegaCore variation from
the Pin Planner, perform the following steps:

1. In the Pin Planner, right-click anywhere in the Groups List or All
Pins List.

2. On the shortcut (right-click) menu, click Create/Import
Megafunction. The Create/Import Megafunction dialog box
appears. You can also open this dialog box from the Edit menu or
directly from the Toolbar.

3. To create a new megafunction, select Create a new custom
megafunction and click OK. The MegaWizard Plug-In Manager
dialog box appears.

4. In the list of all of the supported megafunctions and IP MegaCores,
select the megafunction or IP MegaCore you want to create, and
complete the MegaWizard Plug-In pages.

5. After you complete the wizard, a new group, based on the file name
you provided, is created and all the I/O names, directions, and I/O
standards are listed as members of the group in the Groups List.
Make pin location assignments for the group or for each individual
pin.

f For more information about a particular megafunction, refer to the
appropriate megafunction user guide, available on the User Guides
literature page of the Altera website at www.altera.com.

Import a Megafunction or IP MegaCore Variation from the Pin
Planner

To import a megafunction variation to the Pin Planner, perform the
following steps:

1. In the Pin Planner, right-click anywhere in the Groups List or All
Pins List.

Altera Corporation 5–15
October 2007 Preliminary

Importing and Exporting Pin Assignments

2. On the right-click menu, click Create/Import Megafunction. The
Create/Import Megafunction dialog box appears. You can also
open this dialog box from the Edit menu.

3. Select Import an existing custom megafunction and click the
browse button. Select the Pin Planner File (.ppf) that was generated
along with your megafunction variation or your IP MegaCore files.

4. In the Instance name box, type in an instance name and click OK.

1 To avoid pin name conflicts when there is more than one
instance of a megafunction or IP MegaCore, the instance
name is appended to the beginning of each pin name.

When the wizard is complete, a new group based on the file name you
provided is created, and all the I/Os that are used externally are listed as
members of the group. Make pin location assignments for the group or
for each individual pin.

Create a Top-Level Design File for I/O Analysis

You can create a top-level design file after you add or modify user ports,
megafunction nodes, or IP MegaCore nodes in your project with the Pin
Planner. Even before the internal logic is defined, the top-level design file
enables you to validate your I/O assignments and provides a base on
which to build the rest of your design. Before you create a top-level
design file, you must first configure the user ports, megafunction nodes,
and IP MegaCore nodes created in the Pin Planner for integration with
each other and the rest of the design.

Configure Megafunction Nodes

After creating or importing custom megafunctions or IP MegaCores in
the Pin Planner, you must configure how they will be connected to each
other. You do this by specifying matching node names for selected ports
of the megafunctions or IP MegaCores.

1 In this section, ports and port names refer to the generic port
names of megafunctions and IP MegaCores in the MegaWizard
Plug-In Manager. Node names refer to the unique names
assigned to ports when the megafunction or IP MegaCore is
created based on the instance name given when the
MegaWizard Plug-In Manager is started. By default, node
names are the original port names prefixed with
<instance name>_.

5–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

To configure your custom megafunctions and IP MegaCores for creating
a top-level design file, on the Edit menu of the Package View, click Set Up
Top-Level Design File. The Set Up Top-Level Design File dialog box
appears (Figure 5–9).

Figure 5–9. Set Up Top-Level Design File Dialog Box

Click the name of a megafunction or IP MegaCore in the list on the left.
The list on the right contains all the ports for the selected megafunction.

The columns in the Set Up Top-Level Design File dialog box provide
information about megafunctions created in or imported to the Pin
Planner and allow you to make adjustments to connect megafunctions
together. The Direction column indicates the direction of the port or port
group as defined by the megafunction. The direction of a port cannot be
changed.

The Type column indicates whether a port is available externally to the
device. By default, all ports on all megafunctions created through the Pin
Planner are of the External type, meaning they appear in the Groups List
and All Pins List and can be assigned to I/O pins. You can change the port
type by double-clicking the cell in the Type column for a port and
selecting Internal or External from the list. Any ports on any
megafunction connected to a port that has its type changed have their
type changed to match automatically. This prevents internal and external
megafunction ports from being connected to each other accidentally.
Internal ports do not appear in the Groups List or All Pins List. If all the
ports of a megafunction are internal, the megafunction does not appear in
the Groups List.

Altera Corporation 5–17
October 2007 Preliminary

Importing and Exporting Pin Assignments

The Node Name column is used to assign node names or device pins to
ports. To connect a port to an existing location, double-click the cell in the
Node Name column and select an existing node or device pin. To rename
the selected port, enter a new node name in the Node Name column. This
procedure only changes the name as it appears as a group member in the
Groups List. To connect ports to each other, enter a node name that
matches the node name of the ports of other megafunctions or an existing
node.

Figure 5–10 shows an example of the port names of the megafunction
named “output”. When the port types and node names for both the input
and output megafunctions are configured as in the two figures, they
create a circuit similar to the one shown in Figure 5–11. In this way, you
can connect megafunctions to each other and to other nodes in the design,
improving the thoroughness of an I/O assignment analysis. This is
especially useful for clock networks that are typically attached to multiple
megafunctions or IP MegaCores.

Figure 5–10. Port Names of the Megafunction Named “Output”

5–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–11. Schematic Representing Connections between Input and Output Megafunctions

Note to Figure 5–11:
(1) Gray pins indicate internal nodes of the design.

To edit the megafunction or IP MegaCore you created in the Pin Planner,
select it in the Groups List. On the Edit menu, click Edit Megafunction to
reopen the MegaWizard Plug-In Manager and make changes as
necessary. If you make changes to a megafunction, you must import it
again and reconfigure its node connections in the Set Up Top-Level
Design File dialog box.

1 If you edit the megafunction outside of the Pin Planner, you
must reimport its .ppf file to the Pin Planner.

Configure User Nodes for Creating a Top-Level Design File

Besides importing, creating, and configuring megafunctions for your
project, you can also add your own nodes as top-level ports in your
design. After you add user nodes, you can connect them to pins of the
device. Creating and configuring user nodes early in the design cycle
enables you to do early I/O analysis of these connections. Eventually,
your user nodes will be connected to the internal logic of your design. In
the Set-Up Top Level Design File dialog box, click User Nodes and enter
new node information (Figure 5–12).

ddio
input

ddio
output

power up
low

power up
low

output

input

inst7

inst8

INPUTinput_data[7:0]

INPUTclk

INPUToutput_datain_h[7..0]

INPUToutput_datain_i[7..0]

INPUTinput_aclr

OUTPUT

OUTPUT

input_dataout_h[7..0]

input_dataout_i[7..0]

OUTPUT
 output_dataout[7:0]

datain[7..0]

inclock

aclr

datain_h[7..0]

datain_i[7..0]

outclock

aclr

dataout_h[7..0]

dataout_i[7..0]

dataout[7..0]

Altera Corporation 5–19
October 2007 Preliminary

Importing and Exporting Pin Assignments

Figure 5–12. User Nodes

Each user node is associated with a node name and a direction. The
direction is input, output, bidirectional, or unknown. If you do not select
a direction, the node’s direction is unknown. When you enter new node
names in this window, the All Pins List and Groups List in the Pin
Planner are also updated.

To create a new node, double-click in the <<new node>> row and enter
the new node’s name. If you have an existing top-level file, the ports of
the top-level design file are always shown as existing user nodes
(Figure 5–12). If you have no top-level design file, the newly created user
nodes appear under the User Nodes list. The user nodes are also
displayed when you configure node names for megafunctions. For
example, to connect a user node named “reset” to a megafunction’s reset
input port, in the Node Name column, select “reset” to make this
connection, as shown in Figure 5–13.

5–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–13. Connecting a User Node to a Megafunction Port

Create a Top-Level Design File

After you configure the user nodes, megafunctions, and IP MegaCores
created in the Pin Planner, you can create a top-level design file in an
HDL format. Use this file as the basis for the rest of your project, or use it
to validate the I/O assignments already made.

To generate a top-level design file, right-click in the Package View and
click Create Top-Level Design File. You can also generate a top-level file
on the File menu by pointing to Create/Update and clicking Create
Top-Level Design File From Pin Planner. The Create Top-Level Design
File dialog box appears. Enter a name and select an HDL format (Verilog
or VHDL). If the file already exists, you can choose to create a backup of
the original file.

The top-level HDL file contains the external nodes of the megafunction
and all other top-level user ports. The Pin Planner makes virtual pin
assignments to internal nodes, so internal nodes are not assigned to
device pins during compilation. If you use this top-level file as the basis
for your project, internal megafunction ports must be connected to
internal logic.

1 The top-level design file must be updated whenever changes are
made to the design’s top-level ports, including any node
changes made in the Set Up Top-Level Design File dialog box.

Altera Corporation 5–21
October 2007 Preliminary

Creating Pin-Related Assignments

Creating
Pin-Related
Assignments

A pin-related assignment is any assignment applied to a pin. For
example, a pin-related assignment is a pin location assignment that
assigns a design pin to a pin number (location) on the targeted device.
Other pin-related assignments include assigning an I/O standard or
current drive strength to a pin.

You can make pin-related assignments at any time during the design
cycle, even before any design files have been developed. The accuracy
and completeness of the pin-related assignments determines the accuracy
of the I/O assignment analysis. If you do not have design files, create
reserved pins to temporarily represent your top-level design I/O pins
until the I/O pins are defined in your design files. If you do not have
design files in your project, create an empty Verilog HDL or VHDL file
with all the ports of the design defined.

Reserved pins are intended for future use but do not currently perform a
function in your design. Reserved pins require a unique pin name and a
pin location. Using reserved pins as place holders for future design pins
increases the accuracy of the I/O assignment analysis.

The Quartus II software offers many tools and features for creating
reserved pins and other pin-related assignments (Table 5–2). Each tool
and feature is described in more detail in the following sections.

Table 5–2. Overview of Quartus II Tools and Features to Create Pin-Related Assignments (Part 1 of 2)

Feature Overview

Pin Planner ● Make pin location assignments to one or more node names by dragging and dropping
unassigned pins into the Package View

● Edit pin location assignments for one or more node names by dragging and dropping
groups of pins within the Package View

● Visually analyze pin resources in the Package View
● Display I/O banks and VREF groups
● View the function of package pins using the pin legend
● Make correct pin location decisions by referring to the Pad View window
● Create, import, and edit megafunctions and IP MegaCores for early I/O planning
● Generate a top-level wrapper file without design files based on early I/O assignments
● Configure board trace models of selected pins for use in “board-aware” signal integrity

reports generated with the Enable Advanced I/O Timing option

Assignment
Editor

● Create and edit all types of pin-related assignments
● Create and edit multiple assignments simultaneously with the Edit bar
● Create pin assignments efficiently by viewing the different font styles used to display

assigned and unassigned node names, as well as occupied and available pin locations
● Provides user-selectable information about each pin, including the pad number, the tCO

requirement, and the tH requirement

5–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Using the Pin Planner

The Pin Planner is the main interface for creating and editing pin-related
assignments. Use the Pin Planner Package View to make pin location and
other assignments using a device package view instead of pin numbers.
With the Pin Planner, you can identify I/O banks, VREF groups, and
differential pin pairings to help you through the I/O planning process.

When planning your I/Os, it can be cumbersome to try to correlate pin
numbers with their relative location on the package and their pin
properties. The Pin Planner provides an intuitive graphical
representation of the targeted device, also known as the Package View,
that makes it easy to plan your I/Os, create reserved pins, and make pin
location assignments. When deciding on a pin location, use the Pin
Planner to gather information about available resources, as well as the
functionality of each individual pin, I/O bank, and VREF group. You can
assign locations to design pins by dragging and dropping each pin into
the Package View.

1 Maintaining good signal integrity (SI) requires that you follow
pad distance and pin placement rules. Complementing the Pin
Planner is the Pad View window, which displays the pads in
order around the silicon die.

The Pin Planner includes the following sections (refer to Figures 5–14
through 5–19):

■ “Groups List” on page 5–24
■ “All Pins List” on page 5–27
■ “Pad View Window” on page 5–30
■ “Package View” on page 5–31
■ “Pin Migration View” on page 5–34

Tcl ● Create any pin-related assignments for multiple pins
● Store and reapply all pin-related assignments with Tcl scripts
● Make assignments from the command line

Chip Planner
or Timing
Closure
Floorplan

● Create and change pin locations by dragging and dropping pins into the floorplan
● Make correct pin location decisions by referring to the pad ID number and spacing
● Display I/O banks, VREF groups, and differential pin pairing information

Synthesis
Attributes

● Embed pin-related assignments using attributes in the design files to pass assignments to
the Quartus II software

Table 5–2. Overview of Quartus II Tools and Features to Create Pin-Related Assignments (Part 2 of 2)

Feature Overview

Altera Corporation 5–23
October 2007 Preliminary

Creating Pin-Related Assignments

■ “Using the Pin Finder to Find Compatible Pin Locations” on
page 5–36

■ “Creating Reserved Pin Assignments” on page 5–38
■ “Creating Pin Location Assignments” on page 5–39
■ “Changing Pin Locations” on page 5–46
■ “Show I/O Banks” on page 5–47
■ “Show VREF Groups” on page 5–49
■ “Show Edges” on page 5–51
■ “Show DQ/DQS Pins” on page 5–53
■ “Displaying and Accepting Fitter Placements” on page 5–54

Figure 5–14. Pin Planner

The Pin Planner feature supports cross-probing that allows you to select
a pin in one view while simultaneously highlighting the pin in all of the
different views. For example, if you select a pin in the Package View of
the Pin Planner, the corresponding pad in the Pad View window is
highlighted. If the pin has an assigned node name, the node name in the
All Pins List and the Groups List is highlighted.

All Pins List

Groups List
Package View

Information Bar

5–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

The Pin Planner and the Assignment Editor get their I/O Bank colors
from Timing Closure Floorplan colors, which you can customize by
performing the following steps:

1. On Tools menu, click Options. The Options dialog box appears.

2. In the Category list, under Timing Closure Floorplan, select Colors.
The Colors page appears.

3. Make your color selections and click OK.

Groups List

The Groups List displays all of the buses from the top-level ports of your
design and all the assignment groups in your project (Figure 5–15). Filter
the group names displayed by typing in a wild card filter into the Named
list. The Groups List allows you to create your own custom groups of pins
and make location assignments to groups by dragging them into the
Package View of the Pin Planner.

1 In the Groups List, all members of an assignment group are
displayed, regardless of whether the member is a pin or an
internal node.

The background color of pin locations in the Groups List easily identifies
which pins belong to which I/O banks. The colors match the I/O bank
colors in the Package View when Show I/O Banks is enabled. You can
turn off the colors in both the Groups List and the All Pins List. On the
Tools menu, click Options. In the Category list, select Pin Planner, and
turn off Show I/O bank color in lists.

You can create and organize custom groups and group members in the
Assignment Groups dialog box or directly in the Groups List in the Pin
Planner. To open the Assignment Groups dialog box, on the
Assignments menu, click Assignment (Time) Groups.

Altera Corporation 5–25
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–15. Groups List

To add a new group to the Groups List without opening the Assignment
Groups dialog box, perform the following steps:

1. In the Groups List, in the Node Name column, double-click
<<new node>>.

2. Type the group name.

3. Press Enter. The Add Members dialog box appears.

4. Type node names, wild cards, and assignment groups in the
Members box, or browse to and select the node names from the
Node Finder dialog box.

5. Click OK.

f For more information about using Assignment Groups, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

You can also create a new group by selecting one or more node names
within the Groups List or All Pins List. Right-click one of the selected
node names, and on the right-click menu, click Add to Group.

As you plan your I/O placement, you may decide to add and remove
members from a group.

To add a member to a custom group in the Groups List without opening
the Assignment Groups dialog box, perform the following steps:

5–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1. Right-click a group name in the Groups List and click Add
Members.

2. Type in the name of the member or click the browse button to select
one or more nodes from the Node Finder dialog box.

To remove a member from a group in the Groups List, perform the
following steps:

1. Expand the group from which you want to remove a member.

2. Select one or more members that you want to remove.

3. Right-click the selected members, point to Edit and click Delete.

The Groups List provides many columns, some for information purposes
and others to make assignments. You can edit the following columns
only:

■ Node Name
■ Location
■ I/O Standard
■ Reserved
■ Enable

Make changes to any of the values in these columns to adjust pin-related
assignments. Other columns provide useful information during
I/O planning, including the I/O Bank number, the VREF group, and the
direction. To show or hide a column, right-click the column and click
Customize Columns. You can also reorder and sort the columns from
this menu.

1 If an assignment group contains pins with different directions,
the direction of the assignment group is a bidir group.

You can edit the columns in the Groups List in the same manner as a
spreadsheet. You can copy and paste the Location, I/O Standard, and
Reserved assignments to other rows in the list within the same column.
You can also use Auto Fill to copy these assignments to other rows
quickly.

To automatically fill a block of rows, set the desired assignment in one
row and select the assignment’s cell. Place the cursor over the lower right-
hand corner of the cell until it changes to a cross with the word FILL
(Figure 5–16). Click and drag up or down the column to select which cells
to fill. When all the desired cells are selected, release the mouse button.
The selected assignment is copied to all of the selected cells.

Altera Corporation 5–27
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–16. Auto Fill the Groups List

All Pins List

The All Pins List displays all of the pins in your design, including
user-created pins (Figure 5–17). The All Pins list does not display buses;
instead, it displays each individual pin of the bus. The background color
of pin locations in the All Pins List easily identifies which pins belong to
which I/O banks. The colors match the I/O bank colors in the Package
View when Show I/O Banks is turned on. You can turn off the colors in
both the All Pins List and the Groups List. On the Tools menu, click
Options. In the Category list, select Pin Planner, and turn off Show I/O
bank color in lists.

You must perform Analysis and Elaboration successfully to display pins
in your design in the All Pins List. Individual user-reserved pins and
nodes with pin-related assignments are always shown in the All Pins List.

5–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–17. All Pins List

You can filter the list of pins in the All Pins List based on their node names
by typing in a portion of the pin name in combination with wild card
characters in the Named list. You can also filter the list of pins in the All
Pins List based on the pins’ attributes by selecting from the Filter list.

To create your own custom filter in the Filter list, specify a set of
conditions from the following list:

■ Assigned or unassigned
■ Current strength
■ Direction
■ Edge location
■ I/O Bank location
■ I/O Standard
■ VREF Group

To create a new filter in the All Pins List, in the Filter list in the All Pins
List, select <<new filter>>. The Customize Filter dialog box appears
(Figure 5–18).

Altera Corporation 5–29
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–18. Customize Filter Dialog Box

To create a custom filter for the All Pins List, perform the following steps:

1. In the Customize Filter dialog box, click New. The New Filter
dialog box appears.

2. Enter the name of your custom filter in the Filter name text box.

3. You can base your new custom filter on existing filters by selecting
from the Based on Filter list. If you do not want to base your custom
filter on any other filter, select Pins: all from the Based on Filter list.

4. Click OK.

5. Add as many conditions as you require to the Query list. To add a
condition, double-click <<new condition>> and select a condition
from the Condition list. Select a value for the condition by
double-clicking the cell next to your selected condition under the
Value column.

1 To remove a condition from your filter, right-click the condition
in the Query list and select Delete.

After specifying your conditions, the pins meeting the specified
conditions are the only pins shown in the All Pins list. If the set of
conditions contains a condition with more than one value, then the pins
displayed must meet at least one of the values for that multiple-value
condition.

5–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

To edit an existing custom filter, select <<new filter>> from the Filter list
in the All Pins List. In the Customize Filter dialog box, select the custom
filter you want to edit from the Filter list and add and remove conditions
to the Query list.

Pins generated from a compilation or from a bus group are not editable.
All other user-created pins are editable.

The All Pins List provides many columns, some for information purposes
and others to make assignments. To show or hide a column, right-click
the column heading and select Customize Columns. In addition, you can
reorder and sort the columns from this menu.

You can edit the columns in the Groups List in the same manner as a
spreadsheet. You can copy and paste assignments to other rows in the list
within the same column. You can also use Auto Fill to quickly copy these
assignments to other rows. To automatically fill a block of rows, set the
desired assignment in one row and select the assignment’s cell. Place the
cursor over the lower right-hand corner of the cell until it changes to a
cross with the word FILL as shown with the Groups List in Figure 5–16
on page 5–27. Click and drag up or down the column to select which cells
to fill. When all the desired cells are selected, release the mouse button.
The selected assignment is copied to all the selected cells.

Pad View Window

To maintain good signal integrity in designs, use the Pad View window
to guide your pin placement decisions. Each device family is
accompanied with pin placement rules, including pad spacing between
various pin types.

f For more information about pin placement rules, refer to the appropriate
device handbook.

Edit or make pin assignments in the Pad View window by dragging and
dropping a design pin into an available pad location.

When you drag and drop a design pin into an available pad location, the
corresponding pin number of the pad is assigned to the design pin. To
assign a pad number to the design pin, perform the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. Click Pin Planner and turn on Create pad assignment in the Pad
View window.

Altera Corporation 5–31
October 2007 Preliminary

Creating Pin-Related Assignments

The column and row numbering around the Pad View window helps
identify which pad row or pad column each pad is located. This is useful
when the pin placement guidelines for your targeted device refer to pad
rows and columns.

Since the Pad View window is a view of the I/O ring of the silicon within
the package, flip chip packages appear inverted. Notice the reversed
ALTERA logo in Figure 5–19. To understand the correlation between the
package pins and the pads on the silicon die, the Pad View window and
Package View are closely integrated together. When a pad is selected, the
corresponding pin in the Package View is highlighted. Similarly, when a
pin is selected in the Package View, the corresponding pad is highlighted
in the Pad View window.

Figure 5–19. Pad View Window of a Stratix II Flip-Chip Device

Package View

The Package View in the Pin Planner uses annotated pin symbols in
different shapes and colors as visual representations of pins of the actual
package (Figure 5–14 on page 5–23). The Package View eliminates the
need to cross-reference each pin number with its physical location on the
package described in the device package datasheet. When making pin
location assignments in the Package View, switch between the different
views to help you decide on a pin location. The different views in the
Package View include I/O banks, VREF groups, Edges, DQ/DQS pins,

5–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

and differential pin pairs. For more information about the different views
in the Package View, refer to the section in this chapter about the specific
view you want to use. The sections are listed on page page 5–23.

The Pin Legend window provides a quick reference to the meanings of
the pin symbol shapes, notations, and colors in the Package View. To
view the Pin Legend window, on the View menu, click Pin Legend
Window (Figure 5–20). You can also open the Pin Legend window from
the Pin Planner toolbar or from the right-click menu in the Package View.

Figure 5–20. Pin Legend Window

Planning your FPGA I/O assignments with your board design is
necessary. If your FPGA device is oriented differently than in the Package
View and Pad View window of the Pin Planner, rotate the Package View.

To rotate the Package View, on the View menu, point to Show and click
Rotate Left 90° or Rotate Right 90° until your FPGA is shown in the
desired orientation in the Package View. The red dot in the Package View

Altera Corporation 5–33
October 2007 Preliminary

Creating Pin-Related Assignments

indicates the location of the first pin. For example, the red circle identifies
where Pin A1 is located on a BGA package and where Pin 1 is located on
a TQFP package.

You can also print the Package View with the pin names and pin types
visible (Figure 5–21). To show the pin name (if available) or pin type for
each pin in the Package View, on the View menu, click Show Node
Names and Show Pin Types.

Figure 5–21. Package View with Show Node Names and Show Pin Types

To view pin resource usage, on the View menu, click Resources Window.
The Resources dialog box appears (Figure 5–22).

1 For more detailed information about resources, view the
Resource section of the Compilation Report.

5–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–22. Resources Window

If a HardCopy® II companion device is selected, the Pin Planner shows
the Package View for the Stratix II device. To ensure correct pin migration
between Stratix II and HardCopy II devices, run the I/O Assignment
Analysis command or the Fitter.

Pin Migration View

The Pin Migration View in the Pin Planner shows the pins that change
function in a migration device if you select one or more migration devices
for your project. You can see changes for a pin by checking the Show
migration differences box in the migration view. On the View menu,
click Pin Migration View to open the Pin Migration View window. A pin
is also highlighted in other views of the Pin Planner when you select any
pin in the Pin Migration View.

The migration view provides detailed information about the pins which
are affected in the migrated device. To select migration devices, perform
the following steps:

1. On the Assignments menu, click Device. The Settings dialog box
appears.

2. Click Migration Devices. The Migration Devices dialog box
appears.

3. Make your migration device selections and click OK.

The Pin Migration View helps you identify the difference in pins that can
exist between migration devices. For example, in Figure 5–23, the
highlighted pin AC24 existed in the original EP2S30 device selected, but
does not exist in one of the migration devices. Therefore, the migration
result is a No Connect (NC). If you select your migration devices after you
have successfully compiled a design and these migration devices have
certain differences, an error occurs if you try to recompile your design.

Altera Corporation 5–35
October 2007 Preliminary

Creating Pin-Related Assignments

For example, if you have a pin assignment in the original design, it might
not be present in a migration device. You would have a successful fit if
you had no migration devices selected. But if you select a migration
device or devices for which the pin assignment cannot be honored
because the pin does not exist in that device, an error occurs when you try
to recompile. Therefore, Altera recommends you choose the supported
migration devices early in the design planning process. When you select
migration devices early in the design process, only the pins that exist in
all migration devices are available in the Pin Planner and the Assignment
Editor.

Additional differences may exist between migration devices, as shown in
Figure 5–23.

Figure 5–23. Pin Migration View

Notice that for PIN_AC23, the Migration Result for Pin Function is not an
NC but a voltage reference VREFB1N2. This is because it is an NC in one
of the migration devices, but a VREFB1N2 in the other migration device.
In this type of result, VREF standards have a higher priority than an NC

5–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

and the result is VREFB1N2. You might not be making use of that pin for
a port connection in your design, but you need to tie the VREF standard
to supported standards on the actual board for the migration device.

If a migration device is selected, the Pin Planner shows only pins that are
available for migration. Selecting a migration device allows you to either
vertically migrate to a different density while using the same package, or
migrate between packages with different densities and ball counts.

f For more information about migration, refer to AN90: SameFrame
Pin-Out Design for FineLine BGA Packages. For more information about
designing for HardCopy II devices, refer to the Quartus II Support for
HardCopy Series Devices chapter in volume 1 of the Quartus II Handbook.

Using the Pin Finder to Find Compatible Pin Locations

As FPGA pin-counts and I/O capabilities continue to increase, it becomes
more difficult to understand the capabilities of each I/O pin and to
correctly assign your design I/Os. To help you address this problem, the
Pin Planner highlights all pins that match the list of conditions that you
enter. To enter your conditions, perform the following steps with the Pin
Planner open:

1. On the View menu, click Pin Finder. The Pin Finder window
appears (Figure 5–24).

Altera Corporation 5–37
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–24. Pin Finder Window

2. In the Pin Finder window, create a list of conditions in the Query
list.

To add a condition to the Query list, double-click <<new
condition>>, and select a condition from the list. Double-click the
cell next to the new condition and select a desired value. For
example, if you want to highlight all available pins that support the
SSTL-2 Class II I/O standard, create an assignment condition and an
I/O standard condition as shown in Figure 5–24.

If the same condition type occurs more than once in the list, the Pin
Finder searches for results that match any of its specified values. If
you add more than one condition type, the Pin Finder searches for
results that match all of the specified conditions.

3. In the Pin Finder window, click Find/Highlight. All of the pins that
meet the specified conditions are highlighted in the Package View
and in the Pad View window.

At the same time, the Results list in the Pin Finder window displays
a summary of the number of pins in each I/O Bank that meet the
specified conditions.

5–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Creating Reserved Pin Assignments

You can make reserved pin assignments to act as place holders for future
design pins in the Package View or in the All Pins List. To create a
reserved pin in the Package View, right-click an available pin, point to
Reserve and click one of the available configurations.

When you reserve a pin from the Package View, the name of the reserved
pin is set to user_reserve_<number> by default, and the pin symbol is
filled with a dark purple color. The number increments by 1 for each
additional reserved pin.

Alternately, you can reserve a pin in the All Pins List by performing the
following steps:

1. Type the pin name into an empty cell in the Node Name column.
The pin name must not already exist in your design.

2. Select a pin configuration from the Reserved list (Figure 5–25).

The following configurations are available:

● Bidirectional
● Input tri-stated
● Output driving an unspecified signal
● Output driving ground
● Output driving VCC
● SignalProbe output

Figure 5–25. Reserving a Pin in the All Pins List in the Pin Planner

Release reserved pins by selecting the blank entry from the Reserved
list.

1 The Direction column is a read-only column and changes
direction depending on the reserved selection.

Altera Corporation 5–39
October 2007 Preliminary

Creating Pin-Related Assignments

Creating Pin Location Assignments

You can create pin locations assignments for one or more pins with the
following methods:

■ Assigning a location for unassigned pins
■ Assigning a location for differential pins
■ Assigning an unassigned pin to a pin location

You can disable or prevent any of these assignments using the Enable
column in either the Groups List or the All Pins List. The Enable column
is a special column that allows you to disable only the location
assignment for a selected pin. Change the value of the cell in the Enable
column for a selected pin from Yes to No by double-clicking the cell and
selecting No from the list. A disabled pin only prevents location
assignments when signals are assigned using drag and drop as described
below. You can still make assignments directly in the Location columns
in both the Groups List and All Pins List. To enable the location
assignment again, change the Enable column back to Yes.

Assigning Locations for Unassigned Pins
To assign locations for all of your design pins, perform the following
steps:

1. On the Edit menu, select an assignment direction.

You can assign several pins simultaneously by choosing an
assignment direction (Table 5–3). When assigning an entire bus,
assignments are made in order from the most significant bit (MSB) to
the least significant bit (LSB).

Table 5–3. Multiple Pins

Assignment Pin Group

Assign Down From the selected group of unassigned design pins, assign the pins downwards starting
from the selected pin.

Assign Up From the selected group of unassigned design pins, assign the pins upwards starting from
the selected pin.

Assign Right From the selected group of unassigned design pins, assign the pins from left to right
starting from the selected pin.

Assign Left From the selected group of unassigned design pins, assign the pins from right to left
starting from the selected pin.

Assign One by One Select a pin location for each of the design pins selected from the Unassigned Pins list.

5–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 If there is an unassignable location in the path of the selected
assignment direction, pins are assigned as far in the assignment
direction as possible. Assign the rest of the pins in a separate
location.

2. In the Filter list, select Pins: unassigned.

3. In the All Pins List, select one or more unassigned node names, or in
the Groups List, select one or more buses.

You can click on multiple node names using the control and shift
keys. When you click on a pin or bus in the All Pins List or Groups
List, the node name is highlighted and a crossing arrow displays
above the cursor. Drag the selected cells into the Package View
(Figure 5–26).

Figure 5–26. Drag Node Name in the Groups List

4. Drag and drop the selected pins or buses from the All Pins or
Groups List to a location in the Package View.

Before you drag and drop your pins, you can optionally use the Pin
Finder to locate pin locations that support your selected pins. When
creating a query in the Pin Finder, add an Assignment condition and set
it to Unassigned.

If you don’t use the Pin Finder, you can drop pins directly into any of the
following locations in the Pin Planner Package View: an available user
I/O pin, I/O Bank, VREF Group, or Edge. On the View menu, you can
display either I/O banks, VREF groups, or edges by going to the Show

Altera Corporation 5–41
October 2007 Preliminary

Creating Pin-Related Assignments

submenu and toggling between Show I/O Banks, Show VREF Groups,
and Show Edges. You can also toggle between these views from the Pin
Planner toolbar or from the right-click menu in the Package View.

Available single-ended user I/O pins are represented by empty circles in
the Package View. The letter inside the circle provides information about
the user I/O pin. Negative and positive differential pins are shaped like
hexagons and contain the letters “n” and “p”, respectively. For a
complete listing of I/O pin shapes, notations, and colors, from the View
menu, toolbar, or Package View right-click menu, open the Pin Legend
window.

In the Package View, I/O banks are displayed as rectangles labeled
IOBANK_<number> (Figure 5–31 on page 5–48). In each I/O bank, there
are one or more VREF groups. VREF groups are displayed as rectangles
labeled VREFGROUP_B<I/O Bank number>_N<index> (Figure 5–33 on
page 5–50).

Edge locations are displayed as rectangles labeled EDGE_<direction>. To
make an edge assignment, drag and drop pins into one of the four edges,
EDGE_TOP, EDGE_BOTTOM, EDGE_LEFT, or EDGE_RIGHT.

1 You can drag and drop pins from the Node Finder dialog box or
from the Block Diagram/Schematic File into the Package View.

Click on the New Node button () in the All Pins List to jump directly
to the new node row without scrolling all the way down. When you click
on the Location Assignment cell in the All Pins List, a drop-down combo
box with all the assignable pins is opened (Figure 5–27).

Figure 5–27. Combo Box in the Pin Planner

The combo box shown in Figure 5–27 displays each row in a color
matching its I/O bank color. In the combo box, each pin location row
displays the location assignment column, its I/O bank column, and its
special function column. While making assignments for a node, if you

5–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

double click the Edit field in the All Pins List, a pull-down box appears
with all the possible values for the assignment.Choose a value and click
the green check button () to make the assignment or click the red cross
button () to cancel the assignments change.

Assigning a Location for Differential Pins
To identify and assign differential pins using the Pin Planner, perform the
following steps:

1. On the View menu, click Show Differential Pin Pair Connections.

A red line connects the positive and negative pins of the differential
pin pairing. The positive and negative pins are labeled in the Package
View with the letters “p” and “n”, respectively (Figure 5–28).

2. Use the tool tips to identify LVDS-compatible pin locations by
holding the mouse pointer over a differential pin in the Package
View (Figure 5–28).

Figure 5–28. Tool Tip of a Differential Pin

The tool tip shows the design pin name and pin number, as well as
its general and special functions.

The tool tip for differential receiver and transmitter channel pins that
are also available as user I/O is shown in the following format:

<design pin name> @ PIN_<Package Pin Number> (<Row|Column>
I/O, DIFFIO_<RX/TX><differential pin pair number><p|n>)

The tool tip for dual-purpose LVDS I/O channel pins is shown in the
following format:

<design pin name> @ PIN_<Package Pin Number> (<Row|Column>
I/O, LVDS<differential pin pair number><p|n>)

Altera Corporation 5–43
October 2007 Preliminary

Creating Pin-Related Assignments

3. From the All Pins List or Groups List, click on the differential pin.

4. From the All Pins List or Groups List, drag and drop the selected
pin to a differential positive pin location in the Package View.

1 Optionally, before you drag and drop your pins, you can
use the Pin Finder to locate pin locations that support your
selected pins. When creating a query in the Pin Finder, add
an assignment condition set to Unassigned and an I/O
standard condition set to your differential I/O standard.

The unassigned differential pin that you drag to the Package View
represents the positive pin of the differential pair. The Fitter
recognizes the negative pin of the differential pair automatically and
creates it in the PIN file.

1 If you assign a differential pin to a pin location, the negative
pin becomes unassignable. The Quartus II software
recognizes the negative pin as part of the differential pin
pair assignment. However, the assignment is not entered in
the QSF.

If you have a single-ended clock that feeds a PLL, assign the
pin only to the positive clock pin in the targeted device.
Single-ended pins that feed a PLL and are assigned to the
negative clock pin in the targeted device cause the design to
fail to fit.

f For more information about the general and special functions displayed
by the tool tip, refer to the Device Pin-Outs available at www.altera.com.

Assigning an Unassigned Pin to a Pin Location
Use the following steps to select a pin location and assign a design pin to
that location:

1. In the Package View, select an available pin location.

2. On the View menu, click Pin Properties. The Pin Properties dialog
box appears (Figure 5–29).

5–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–29. Pin Properties Dialog Box

You can use the Pin Properties dialog box to create pin location and
I/O standard assignments. The Pin Properties dialog box also
displays the properties of the pin location, including the pad ID
(Table 5–4). The pad ID is important information when following pin
spacing guidelines. Adjacent pin numbers do not always represent
adjacent pads on the die. Use the Pad View window to help correlate
pad location and the distance between your user I/O pins and VREF
pins.

3. Select a pin from the Node Name list.

4. To assign or change the I/O standard, select an I/O standard from
the I/O standard list.

5. Click OK.

f For more information about pin placement, refer to the appropriate
device handbook.

Altera Corporation 5–45
October 2007 Preliminary

Creating Pin-Related Assignments

Table 5–4 provides a description of each field in the Pin Properties dialog
box.

1 You can also open the Pin Properties dialog box by
double-clicking on a pin in the Package View of the Pin Planner,
or by right-clicking the pin in the Package View of the Pin
Planner, and clicking Pin Properties.

Error Checking Capability
The Pin Planner has basic pin placement checking capability, preventing
pin placements that violate the fitting rules. The following checks are
performed by the Pin Planner as you make pin-related assignments:

■ An I/O bank or VREF group is an unassignable location if there are
no available pins in the I/O bank or VREF group.

■ The negative pin of a differential pair is unassignable if the positive
pin of the differential pair has been assigned with a node name with
a differential I/O standard.

■ Dedicated input pins (for example, dedicated clock pins) are an
unassignable location if you attempt to assign an output or
bidirectional node name.

■ Pin locations that do not support the I/O standard assigned to the
selected node name become unassignable.

■ All nodes in the same VREF group must have the same VREF
voltage. Apply this only to HSTL- and SSTL-type I/O standards.

Table 5–4. Pin Properties

Pin Property Description

Pin Number Pin number used in the package (1)

Node Name Node name assigned to the pin location

I/O Standard I/O standard assigned to the pin name and location

Reserved If reserved, determines how to reserve this pin

I/O Bank I/O bank number of the pin

General Function General function of the pin (row/column I/O, dedicated clock pin VCC, GND)

Special Function Special function of the pin (LVDS, PLL)

Pad ID Pad number connected to pin

VREF Pad ID The pad ID for the VREF pin used for voltage referenced I/O standards

Note to Table 5–4:
(1) For more information about how pin numbers are derived, refer to the device pin-out on the Altera website,

www.altera.com.

http://www.altera.com/literature/lit-dp.jsp

5–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 To perform a more comprehensive check on your pin
placements, perform I/O assignment analysis.

For more information about assignment analysis, refer to “Using I/O
Assignment Analysis to Validate Pin Assignments” on page 5–67.

To display live information about the warnings and errors in your
pin-related assignments, enable the live I/O check feature in the
Quartus II software. For more information about the live I/O check
feature, refer to the section “Using the Live I/O Check Feature to Validate
Pin Assignments” on page 5–65.

After creating a pin location, the Location, I/O Bank, and VREF Group
columns are populated in both the All Pins List and the Groups List. In
the Package View, the occupied pins are filled with a dark brown color.

Changing Pin Locations

The Pin Planner allows you to change the location of multiple pins
simultaneously. To change pin locations, select one or more pins in the
Package View or Pad View window, and drag the pins to a new location.

You can change pin locations more quickly and easily if you understand
which user I/O pins are available and where they are, physically, on the
device. For example, in the Package View, you can move a column of pins
closer to the edge of the device for easier PCB routing (Figure 5–30). In
this example, you are moving multiple I/O pins to the area closest to the
edge of the I/O bank. To change pin locations, perform the following
steps:

1. In the Package View, select multiple pins by holding down the left
mouse button and dragging over the pins you want to move
(Figure 5–30, step A).

2. Drag the group of pins to the area of placement (Figure 5–30,
step B).

3. Drop the pins into the area closest to the edge of the I/O bank
(Figure 5–30, step C).

Altera Corporation 5–47
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–30. Changing the Locations for a Group of Pins

Show I/O Banks

When you turn on Show I/O Banks in the View menu, in the Show
submenu, or on the right-click menu in the Package View, the Package
View groups I/O pins that share the same VCCIO pin using different
colors (Figure 5–31). When planning your I/O pins, it is important to
guide your pin placement decisions by placing pins with compatible I/O
standards into the same I/O bank. For example, you cannot place an
LVTTL pin with an I/O standard of LVTTL in the same bank as another
pin with an I/O standard of 1.5 V HSTL Class I.

f For more information about compatible I/O standards, refer to the
appropriate device handbook.

Step A Step B Step C

5–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–31. Package View with I/O Banks

When you turn on Show I/O Banks, the Package View allows you to view
the properties of each I/O bank. Select an I/O bank in the Package View.
On the View menu, click I/O Bank Properties. The I/O Bank Properties
dialog box appears (Figure 5–32). The I/O Bank Properties dialog box
lists all node names assigned to that I/O bank.

To view all node names that are assigned within the I/O bank, click Show
Details in the I/O Bank Properties dialog box. You can also assign the
VCCIO for the I/O bank by selecting a voltage from the I/O bank VCCIO
list.

Altera Corporation 5–49
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–32. I/O Bank Properties

Under Resource Usage, the total number of pins in the I/O banks is
displayed, including assignable and unassignable pins, as well as the
total number of available assignable pins. Adjust the intensity of colors of
the I/O banks in the Package View by performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select Pin Planner. The Pin Planner page
appears.

3. Under I/O banks color setting, adjust the I/O bank color intensity
using the slide bar.

4. Click OK.

Show VREF Groups

You can use different colors to indicate different groups of I/O pins
sharing the same VCCIO and VREF pins in the package view
(Figure 5–33). When planning your I/O pins, it is important to place pins
with compatible voltage-referenced I/O standards in the same I/O bank.
To guide your pin placement decisions by placing compatible I/O
standards requiring VREF pins into the same VREF group, on the View
menu, point to Show and click Show VREF Groups. For example, pins
with I/O standards SSTL-18 Class II and 1.8V-HSTL Class II are

5–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

compatible and can be placed into the same VREF group. It is also
important to be aware of the number and direction of pins within a VREF
group for simultaneous switching noise (SSN) analysis.

f For more information about compatible I/O standards, refer to the
appropriate device handbook.

Figure 5–33. Package View with VREF Groups

When you turn on Show VREF Groups, the Package View allows you to
show the properties of each VREF group. Select a VREF group in the
Package View, and on the View menu, click VREF Group Properties. The
VREF Group Properties dialog box appears (Figure 5–34).

In the VREF Group Properties dialog box, all node names assigned to the
VREF group are listed. Click Show Details to view node names that are
assigned to pin numbers within the VREF group.

Any design pins that are assigned to the VREF group and not to a pin
number are listed in the Assignments list. The Resource usage section
describes the total number of pins in the VREF group and the total
number of available assignable pins. It also keeps a running tally of the
input, output, and bidirectional pins.

Altera Corporation 5–51
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–34. VREF Group Properties

Show Edges

You can use different colors to indicate the four edges of the package in
the Package View (Figure 5–35). To do this, on the View menu, point to
show and click Show Edges, or from the right-click menu, click Show
Edges. If the exact location of a pin is not a priority when planning your
I/O pins, use an Edge assignment.

5–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–35. Package View with Edges

When you turn on Show Edges, the Package View allows you to show the
properties of each Edge. Select an Edge in the Package View. On the View
menu, click Edge Properties. The Edge Properties dialog box appears.

In the Edge Properties dialog box, all node names assigned to the Edge
are listed (Figure 5–36). To view all node names assigned to a pin number
within an Edge, in the Edge Properties dialog box, click Show Details.

Altera Corporation 5–53
October 2007 Preliminary

Creating Pin-Related Assignments

Figure 5–36. Edge Properties

Show DQ/DQS Pins

You can use different colors to highlight groups of DQ and DQS pins in
the Package View(Figure 5–37). To do this, on the View menu, point to
Show and click Show DQ/DQS Pins, or from the right-click menu, click
Show DQ/DQS Pins. Highlighting these DQ/DQS groups easily
identifies which DQ pins are associated with a specific DQS strobe pin.
Select between the following DQ/DQS modes:

■ ×4 Mode
■ ×8/×9 Mode
■ ×16/×18 Mode
■ ×32/×36 Mode

5–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–37. DQ/DQS Pins (1)

Note to Figure 5–37:
(1) This DQ/DQS view shows an ×8 mode.

For example, when implementing DDR II in a Stratix II device, there are
dedicated pins designed specifically to be used as DQ and DQS pins.

f For information about using the altdq and altdqs megafunctions to
configure DQ and DQS pins, refer to the altdq & altdqs Megafunction User
Guide.

Displaying and Accepting Fitter Placements

In addition to the Show I/O Banks, the Show VREF Groups, and the
Show Edge views, you can also show pins placed by the Fitter. To display
these pins, on the View menu, or in the Pin Planner toolbar, or on the
right-click menu in the Package View, point to Show and click Show
Fitter Placements.

Altera Corporation 5–55
October 2007 Preliminary

Creating Pin-Related Assignments

The Fitter provides optimal placement to unassigned pins based on
design constraints when you perform a compilation or an I/O
Assignment Analysis. When you choose Show Fitter Placements, the
Fitter-placed pins are shown as green-filled pins in the Package View.
You can create a copy of the Fitter placements in your project QSF using
the Back-Annote Assignments command.

To create assignments for all Fitter-placed pins into your project QSF,
perform the following steps:

1. On the Processing menu, click Start Compilation, or on the
Processing menu, point to Start and click I/O Assignment Analysis.

2. On the Assignments menu, click Pin Planner. The Pin Planner
appears.

3. On the View menu, point to Show and click Show Fitter
Placements. You can also access this command from the Pin Planner
toolbar or on the right-click menu in the Package View.

4. Review the Fitter placements.

5. To create location assignments for these Fitter placements, perform
the following steps:

a. On the Assignments menu, click Back-Annotate Assignments.
The Back-Annotate Assignments dialog box appears.

b. Select Pin & device assignments (Figure 5–38).

c. Click OK.

5–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–38. Back-Annotate Assignments Dialog Box

To create assignments for a selection of the Fitter-placed pins, perform the
following steps:

1. On the Processing menu, click Start Compilation, or on the
Processing menu, point to Start, and click I/O Assignment
Analysis.

2. On the Assignments menu, click Pin Planner.

3. On the View menu, point to Show and click Show Fitter
Placements, and review the placements.

4. In the Pin Planner, select one or more Fitter-placed pins for which
you want to create assignments.

5. Right-click one of the selected pins, and click Back Annotate.

6. On the File menu, click Save Project. The Assignments are written
to the QSF.

f For more information about how the Quartus II software writes and
updates the QSF, refer to the Managing Quartus II Projects chapter in
volume 2 of the Quartus II Handbook.

Altera Corporation 5–57
October 2007 Preliminary

Creating Pin-Related Assignments

Altera recommends you use the Pin Planner to create and edit pin-related
assignments. However, you may find some of the other tools provided
for use with the Quartus II software to be useful for working with
pin-related assignments. The following sections describe these tools.

Assignment Editor

The Assignment Editor provides a spreadsheet-like interface that allows
you to create and change all pin-related assignments.

Two methods are available for making pin assignments with the
Assignment Editor. The first involves selecting from all assignable pin
numbers of the device and assigning a pin name from your design to this
location.

The second involves selecting from all pin names in your design and
assigning a device pin number to the design pin name. In either method,
take advantage of row background coloring (pin numbers within the
same I/O bank have a common background color), auto fill node names,
and pin numbers to assist in making your assignments.

Setting Pin Locations from the Device Pin Number List

It is important to understand the properties of a pin location before
assigning that location to a pin in your design. For example, you must
know which I/O bank or VREF group the pin belongs to when following
pin placement guidelines.

f For more information about pin placement guidelines, refer to the
appropriate device handbook.

Before creating pin-related assignments, perform analysis and
elaboration or analysis and synthesis on your design to create a database
of your design pin names. Then perform the following steps:

1. To open the Assignment Editor, on the Assignments menu, click
Assignment Editor.

2. In the Category list, select Pin.

Creating pin assignments can be difficult when you need to check
which I/O bank the pin belongs to or which VREF pad the pin uses.
By selecting the Pin category, more pin-related information is visible
in the spreadsheet to help you create pin location assignments.

5–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 The Assignment Editor does not show assignments to
individual nodes made with wildcards or assignment
groups.

3. On the View menu, click Show All Assignable Pin Numbers.

1 You can also view all assignable pins in the All Pins List in the
Pin Planner. Right-click anywhere in the Groups List or All Pins
List, and click Show Assignable Pins. When the All Pins List
filter is set to Pins: unassigned or Pins: all, a list of all assignable
pin numbers for the targeted device is shown in the Location
column (Figure 5–39).

Figure 5–39. Assignment Editor with Show All Assignable Pin Numbers

4. Find a pin number in the spreadsheet. In the same row, double-click
the cell in the To column. Type the pin name or select a pin from the
pull-down list. If analysis and elaboration has been performed, your
design pins are listed in the pull-down list.

1 As you type in a pin name, the Assignment Editor
automatically completes the field by looking up the pin
names stored in the database created from the initial
analysis and elaboration. Pin names already assigned to a
pin location are shown in italics.

Altera Corporation 5–59
October 2007 Preliminary

Creating Pin-Related Assignments

Setting Pin Locations from the Design Signal Name List

It is important to understand the properties of a pin location before
assigning that location to a pin in your design. For example, you must
know which I/O bank or VREF group the pin belongs to when following
pin placement guidelines.

f For more information about pin placement guidelines, refer to the
appropriate device handbook.

To set the pin locations from the design pin name list, perform the
following steps:

1. To open the Assignment Editor, on the Assignments menu, click
Assignment Editor.

2. In the Category list, select Pin.

Creating pin assignments can be difficult when you have to check
which I/O bank the pin belongs to, or which VREF pad the pin uses.
By selecting the Pin category, more pin-related information is visible
in the spreadsheet to help you create pin location assignments.

1 The Assignment Editor does not show assignments to
nodes made with wildcards or assignment groups.

3. On the View menu, click Show All Known Pin Names.

A list of all pin names in your design is shown in the To column
(Figure 5–40).

5–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–40. Assignment Editor with Show All Known Pin Names

1 To list a selection of pin names from your design into the
spreadsheet of the Assignment Editor, type the pin names with
or without wild cards into the Node Filter bar. This is effective
when you want to assign common pin-related assignments to a
selection of pins in your design.

f For more information about using the Node Filter bar, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 5–61
October 2007 Preliminary

Creating Pin-Related Assignments

4. Find a pin name in the spreadsheet, and double-click the cell in the
same row of the Location column. Select a pin number from the
pull-down list which contains all assignable pin numbers in the
selected device. You can also start typing the pin number and let the
Assignment Editor automatically complete it for you. Instead of
typing PIN_AA3, type AA3 and let the Assignment Editor auto
complete the pin number to PIN_AA3.

1 Pin locations that already have a pin name assignment appear in
the Assignment Editor in italics.

f For more information about using the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

Tcl Scripts

Tcl scripting allows you to write scripts to create pin-related assignments.
To run a Tcl script with your project, type the following command at a
system prompt:

quartus_sh -t my_tcl_script.tcl r
You can also type individual Tcl commands into the Tcl console window.
To use the Tcl console, on the View menu, point to Utility Windows and
click Tcl Console. In the Tcl Console window, type your Tcl commands.
The following example shows a list of Tcl commands that creates
pin-related assignments to the input pin address[10].

Example 5–1. Tcl Commands to Create Pin-Related Assignments

set_location_assignment PIN M20 -to address[10] -comment"Address pin to Second FPGA"
set_instance_assignment -name IO_STANDARD "2.5 V" -to address[10]
set_instance_assignment -name CURRENT_STRENGTH_NEW "MAXIMUM CURRENT" -to address[10]

When you make an assignment in the Assignment Editor or the Pin
Planner, display the equivalent Tcl command in the Messages window by
performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select Assignment Editor. The Assignment
Editor page opens.

3. Turn on Echo Tcl Commands.

4. Click OK.

5–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

f For more information about using Tcl scripts to create pin-related
assignments, refer to the Tcl Scripting chapter in volume 2 of the
Quartus II Handbook.

Chip Planner or Timing Closure Floorplan

The floorplan of the device shows the pins in the same order as the pads
of the device. Understanding the relative distance between a pad and
related logic can help you meet your timing requirements.

f You can view the floorplan of the device in the Chip Planner or the
Timing Closure Floorplan. For more information about supported
device families in the Chip Planner or the Timing Closure Floorplan,
refer to the Engineering Change Management with the Chip Planner chapter
in volume 2 of the Quartus II Handbook.

Use either tool to find the distances between user I/O pads and VCC,
GND, and VREF pads to avoid signal integrity issues (Figure 5–41).

f For more information about pin placement guidelines, refer to the
Selectable I/O Standards chapter of the appropriate device handbook.

Figure 5–41. Timing Closure Floorplan of EP1C6F256I7

Altera Corporation 5–63
October 2007 Preliminary

Creating Pin-Related Assignments

You can create a pin location assignment by selecting a pin and selecting
a desired location. To do this, perform the following steps:

1. To open the Timing Closure Floorplan, on the Assignment menu,
click Timing Closure Floorplan. To open the Chip Planner, on the
Tools menu, click Chip Planner (Floorplan & Chip Editor).

2. On the View Chip Planner, point to Utility Windows and click Node
Finder. The Node Finder dialog box appears.

3. In the Filter list, select Pins: all and click List to see all the nodes in
the design.

4. Select a node from the Nodes Found list and drag the selection into
a pin location in the floorplan.

f For more information about using the Timing Closure Floorplan, refer to
the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook.

Synthesis Attributes

Synthesis attributes allow you to embed assignments in your HDL code.
The Quartus II software reads these synthesis attributes and translates
them into assignments. The Quartus II integrated synthesis supports
chip_pin, useioff, and altera_attribute synthesis attributes.

f For more information about integrated synthesis, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

For synthesis attribute support by third-party synthesis tools, contact
your vendor.

5–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

chip_pin and useioff

You can use the chip_pin and useioff synthesis attributes to embed
pin location and fast output/input register assignments, respectively. For
all other assignments, including pin-related assignments, use the
altera_attribute synthesis attribute as discussed in
“altera_attribute”.

Synthesis attributes translated into assignments are stored in the database
and take precedence over other assignments in the QSF. Example 5–2 and
Example 5–3 embed a location and fast input assignment into both a
Verilog HDL and VHDL design file using the chip_pin and useioff
synthesis attributes.

Example 5–2. Verilog HDL Example
input my_pin1 /* synthesis chip_pin = "C1" useioff = 1 */;

Example 5–3. VHDL Example
entity my_entity is

port(
my_pin1: in std_logic

);
end my_entity;

architecture rtl of my_entity is
attribute useioff : boolean;
attribute useioff of my_pin1 : signal is true;
attribute chip_pin : string;
attribute chip_pin of my_pin1 : signal is "C1";
begin -- The architecture body
end rtl;

altera_attribute

To create other pin-related assignments, use the altera_attribute
attribute. The altera_attribute attribute is understood only by the
Quartus II integrated synthesis and supports all types of instance
assignments. Example 5–4 and Example 5–5 use altera_attribute to
embed the fast input register and I/O standard assignments into both a
Verilog HDL and a VHDL design file.

Example 5–4. Verilog HDL Example
input my_pin1 /* synthesis altera_attribute = "-name FAST_INPUT_REGISTER
ON; -name IO_STANDARD \"2.5 V\" " */ ;

Altera Corporation 5–65
October 2007 Preliminary

Validating Pin Assignments

Example 5–5. VHDL Example
entity my_entity is

port(
my_pin1: in std_logic

);
end my_entity;
architecture rtl of my_entity is
begin

attribute altera_attribute : string;
attribute altera_attribute of my_pin1: signal is "-name FAST_INPUT_REGISTER
ON;
-- The architecture body
end rtl;

f For detailed information about synthesis attributes and their usage
syntax, refer to the Quartus II Integrated Synthesis chapter in volume 1 of
the Quartus II Handbook.

Validating Pin
Assignments

You must validate all pin-related assignments in your design. You can
enable the live I/O check feature and use I/O Assignment Analysis to
validate pin-related assignments against the predefined I/O rules
encoded in the Quartus II software. To fully validate these assignments
against all the I/O timing checks, you must perform full compilation.

Using the Live I/O Check Feature to Validate Pin Assignments

In the Quartus II software version 7.2 and later, the live I/O check feature
provides live I/O rules checking capability. When the live I/O check
feature is enabled, pin-related assignment error and warning messages
appear immediately in the Quartus II messages window as you create
pin-related assignments in the Pin Planner.

The Quartus II software includes built-in I/O rules to guide you in pin
placement. The Quartus II software checks your pin-related assignments
against these rules at various stages of the design flow. With the live I/O
check feature, your pin-related assignments are checked immediately
against a subset of these rules. This feature enhances your productivity by
showing you warnings and errors as you create pin-related assignments,
before you proceed to the next step in your design flow.

The most basic I/O rules are the I/O buffer rules. The I/O buffer rules
checked by the live I/O Check feature include:

■ VCCIO voltage compatibility rules
■ VREF Voltage compatibility rules

5–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

■ Electromigration (current density rules)
■ Simultaneous Switching Output (SSO) rules
■ I/O properties compatibility rules such as drive strength

compatibility, I/O standard compatibility, PCI_IO clamp diode
compatibility, I/O direction compatibility

An additional category of I/O rules is the set of I/O system rules. These
rules can be checked only after you generate a synthesized (mappped)
netlist of your design. The I/O system rules are checked when you
perform I/O assignment analysis as described in “Using I/O Assignment
Analysis to Validate Pin Assignments” on page 5–67.

You can enable or disable the live I/O check feature at any time. By
default, the live I/O check feature is turned off.

To enable or disable the live I/O check feature in the Quartus II user
interface:

1. Verify the Pin Planner tool in the Quartus II software is active.

2. In the Quartus II Processing menu, select Enable Live I/O Check, or,
in the Pin Planner, click on the Live I/O Check icon.

While the live I/O check feature is enabled, the Quartus II software
immediately checks whether your new pin-related assignments and
revisions pass the basic I/O buffer rules. The detailed messages are
printed in the messages window of the Quartus II software. The Live I/O
Check Status window displays the total numbers of errors and warnings
while you create and edit pin-related assignments. To open the Live I/O
Check Status window, shown in Figure 5–42, in the Quartus II View
menu, click on Live I/O Check Status.

f For details about a specific message, refer to the Quartus II Help.

Altera Corporation 5–67
October 2007 Preliminary

Validating Pin Assignments

Figure 5–42. Live I/O Check Status Window in the Quartus II Software

Though the live I/O check feature checks all the basic I/O buffer rules,
you must use I/O assignment analysis to validate your pin-related
assignments against the complete set of I/O system rules. All rules
including the basic I/O buffer rules and I/O system rules can be found in
Table 5–5 on page 5–83 and Table 5–6 on page 5–84.

Using I/O Assignment Analysis to Validate Pin Assignments

This section describes a design flow that includes making and analyzing
pin assignments with the Start I/O Assignment Analysis command in
the Quartus II software during and after the development of your HDL
design.

The Start I/O Assignment Analysis command allows you to check your
I/O assignments early in the design process. With this command, you can
check the legality of pin assignments before, during, or after you compile
your design. If design files are available, you can use this command to
perform more thorough legality checks on your design’s I/O pins and
surrounding logic. These checks include proper reference voltage pin
usage, valid pin location assignments, and acceptable mixed I/O
standards.

1 The Start I/O Assignment Analysis command can be used for
designs that target Stratix series, Cyclone® series, and MAX® II
device families.

5–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

I/O Assignment Analysis Design Flows

The I/O assignment analysis design flows depend on whether your
project contains design files. The following examples show two different
circumstances in which I/O assignment analysis can be used:

■ Use the flow shown in Figure 5–43 on page 5–69 if the board layout
must be complete before starting the FPGA design. This flow does
not require design files and checks the legality of your pin
assignments.

■ With a complete design, use the flow shown in Figure 5–45 on
page 5–72. This flow thoroughly checks the legality of your pin
assignments against any design files provided.

Each flow involves creating pin assignments, running the analysis, and
reviewing the report file.

You should run the analysis each time you add or modify a pin-related
assignment. You can use the Start I/O Assignment Analysis command
frequently because it completes quickly.

The analysis checks pin assignments and surrounding logic for illegal
assignments and violations of board layout rules. For example, the
analysis checks whether your pin location supports the assigned I/O
standard, current strength, supported VREF voltages, and whether a PCI
diode is permitted.

Along with the pin-related assignments, the Start I/O Assignment
Analysis command also checks blocks that directly feed or are fed by
resources such as a PLLs, LVDS, or gigabit transceiver blocks.

I/O Assignment Analysis without Design Files
During the early stages of developing an FPGA device, board layout
engineers may request preliminary or final pin-outs. It is time consuming
to manually check whether the pin-outs violate any design rules. Instead,
use the Start I/O Assignment Analysis command to quickly perform
basic checks on the legality of your pin assignments.

1 Without a complete design, the analysis performs limited checks
and cannot guarantee that your assignments do not violate
design rules.

The I/O Assignment Analysis command can perform limited checks on
pin assignments made in a Quartus II project that has a device specified,
but may not yet include any HDL design files. For example, you can
create a Quartus II project with only a target device specified and create
pin-related assignments based on circuit board layout considerations that

Altera Corporation 5–69
October 2007 Preliminary

Validating Pin Assignments

are already determined. Even though the Quartus II project does not yet
contain any design files, you can reserve input and output pins and make
pin-related assignments for each pin using the Pin Planner or Assignment
Editor. After you assign an I/O standard to each reserved pin, run the
I/O Assignment Analysis to ensure that there are no I/O standard
conflicts in each I/O bank. Figure 5–43 shows the work flow for assigning
and analyzing pin-outs without design files.

Figure 5–43. Assigning and Analyzing Pin-Outs without Design Files

To assign and analyze pin-outs using the Start I/O Assignment Analysis
command without design files, perform the following steps:

1. In the Quartus II software, create a project.

2. Use the Pin Planner, Assignment Editor, or a Tcl script to create pin
locations and related assignments. For the I/O assignment analysis
to determine the type of pin, you must reserve your I/O pins. For
information about reserving pins in the Pin Planner, refer to
“Creating Reserved Pin Assignments” on page 5–38. For
information about reserving pins in the Assignment Editor, refer to
“Reserving Pins” on page 5–75.

1 If you make pin-related assignments in the Mentor
Graphics I/O Designer software, you can import an FPGA
Xchange file into the Quartus II software.

Modify and Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the Quartus II

Settings File)

Start I/O Assignment Analysis

Create a Quartus II Project

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

5–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

3. To start the analysis, on the Processing menu, point to Start and
click Start I/O Assignment Analysis.

1 For information about using a Tcl script or command
prompt to start the analysis, refer to “Scripting Support” on
page 5–85.

4. View the messages in the Compilation Report window, Fitter report
file (<project name>.fit.rpt), or in the Messages window.

5. Correct any errors and violations reported by the I/O assignment
analysis.

Repeat steps 1 through 5 until all of the errors are corrected.

I/O Assignment Analysis with Design Files
During a full compilation, the Quartus II software does not report illegal
pin assignments until the Fitter stage. To validate pin assignments
sooner, run the Start I/O Assignment Analysis command after
performing analysis and synthesis and before performing a full
compilation. Typically, the analysis runs quickly. Figure 5–44 shows the
benefits of using the Start I/O Assignment Analysis command.

Figure 5–44. Saving Compilation Time with the Start I/O Assignment Analysis Command

The rules that are checked by the I/O assignment analysis depend on the
completeness of the design. With a complete design, the Start I/O
Assignment Analysis command thoroughly checks the legality of all
pin-related assignments. With a partial design, which can be just the

Errors
Reported
and Fixed

I/O
Assignment
Analysis

First Full Compilation

First Full Compilation

Second Full Compilation

Errors Reported and Fixed

Without
Start I/O Assignment Analysis

Command

With
Start I/O Assignment Analysis

Command

Compilation Time

Altera Corporation 5–71
October 2007 Preliminary

Validating Pin Assignments

top-level wrapper file, the Start I/O Assignment Analysis command
checks the legality of those pin-related assignments for which it has
enough information.

For example, you might assign a clock to a user I/O pin instead of
assigning it to a dedicated clock pin, or design the clock to drive a PLL
that has not yet been instantiated in the design. Because the
Start I/O Assignment Analysis command does not account for the logic
that the pin drives, it is not able to check that only a dedicated clock input
pin can drive the clock port of a PLL.

To obtain better coverage, analyze as much of the design as possible,
especially logic that connects to pins. For example, if your design includes
PLLs or LVDS blocks, you should include these MegaWizard Plug-In
Manager-generated files in your project for analysis (Figure 5–45).

5–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–45. Assigning and Analyzing Pin-Outs with Design Files

Modify & Correct Illegal
Assignments Found in Report File

Create Pin-Related Assignments
(Stored in the Quartus II Settings File)

Start I/O Assignment Analysis

Back-Annotate I/O Assignment
Analysis Pin Placements

Perform Analysis & Synthesis
to Create a Mapped Netlist

Open a Quartus II Project or Design File

Pin-Related Assignments Complete

Yes

NoAssignments
Correct?

Quartus II Project & Design Files

QPF EDF VQM V VHD BDF TDF

Altera Corporation 5–73
October 2007 Preliminary

Validating Pin Assignments

To assign and analyze pin-outs using the Start I/O Assignment Analysis
command with design files, perform the following steps:

1. Create a project including your design files.

2. Create pin-related assignments with the Pin Planner or Assignment
Editor.

1 You can also create pin-related assignments by importing
them from a CSV or FPGA Xchange file, executing Tcl
commands, or editing the QSF directly. On the Processing
menu, point to Start and click Start Analysis & Synthesis
to generate an internal mapped netlist.

For information about using a Tcl script or the command
prompt to start the analysis, refer to “Scripting Support” on
page 5–85.

3. On the Processing menu, point to Start and click Start I/O
Assignment Analysis to start the analysis.

4. View the messages in the Compilation Report or in the Messages
window.

5. Use the Pin Planner or Assignment Editor to correct any errors and
violations reported.

6. Use the Start I/O Assignment Analysis command until all errors
are corrected.

Using Output Enable Group Logic Option Assignments with I/O
Assignment Analysis
Each device has a certain number of VREF pins, and each VREF pin
supports a certain number of I/O pins. Check the device pin-outs to
locate the VREF pins and their associated I/O pins. A VREF pin and its
supported I/O pins are called a VREF bank. The VREF pins are only used
for VREF I/O standards; for example, SSTL and HSTL input pins. VREF
outputs do not require the VREF pin. When a voltage-referenced input is
present in a VREF bank, only a certain number of outputs can be present
in that VREF bank. For the Stratix II flip chip package, only 20 outputs can
be present in a VREF bank when a VREF I/O standard input is present in
that bank.

For interfaces that use bidirectional VREF I/O pins, the VREF restriction
must be met when the pins are driving in either direction. If a set of
bidirectional signals are controlled by different output enables, the I/O
Assignment Analysis command treats these as independent output

5–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

enables. Use the output enable group logic option assignment to treat the
set of bidirectional signals as a single output enable. This is important in
the case of external memory interfaces.

For example, in the case of a DDR2 interface in a Stratix II device, a
Stratix II device can have 30 pins in a VREF group. Each byte lane for a ×8
DDR2 interfaces has 1 DQS pin and 8 DQ pins, for a total of 9 pins per byte
lane. DDR2 uses SSTL18 as its I/O standard, which is a VREF I/O
standard. In typical interfaces, each byte lane has its own output enable.
In this example, the DDR2 interface has 4 byte lanes. Using 30 I/O pins in
a VREF group, there are 3 byte lanes, and an extra byte lane that supports
the 3 remaining pins. If you do not use the output enable group logic
option assignment, the I/O Assignment Analysis command analyzes
each byte lane as an independent group driven by a unique output
enable. With this arrangement, the worst-case scenario is when the 3 pins
are inputs, and the other 27 pins are outputs. In this case, the 27 output
pins violate the 20-output pin limit.

In a DDR2 interface, all DQS and DQ pins are always driven in the same
direction. Therefore, the I/O Assignment Analysis reports an error that is
not applicable to your design. Assigning an output enable group logic
option assignment to the DQS and DQ pins forces the I/O Assignment
Analyzer to check these pins as a group driven by a common output
enable. When using the output enable group logic option assignment, the
DQS and DQ pins are checked as all input pins or all output pins. This does
not violate the rules described in Table 5–5 on page 5–83 and Table 5–6 on
page 5–84.

The value for the output enable group logic option assignment should be
an integer value. All sets of signals that are driving in the same direction
should be given the same integer value. The output enable group logic
option assignment can also be used with pins that are driven only at
certain times. For example, the data mask signal in DDR2 interfaces is an
output signal, but it is driven only when the DDR2 is writing
(bidirectional signals are outputs). Therefore, an output enable group
logic option assignment should assign to the data mask the same value as
to the DQ and DQS signals.

Output enable groups can also be used on VREF input pins. If the VREF
input pins are not active during the time the outputs are driving, add the
VREF input pins to the output enable group. This procedure removes the
VREF input pins from the VREF analysis. For example, the QVLD signal
for RLDRAM II is only active during a read. During a write, the QVLD pin
is not active and so it does not count as an active VREF input pin within
the VREF group. The QVLD pins can be placed in the same output enable
group as the RLDRAM II data pins.

Altera Corporation 5–75
October 2007 Preliminary

Validating Pin Assignments

Inputs for I/O Assignment Analysis

The Start I/O Assignment Analysis command reads the following
inputs:

■ Internal mapped netlist
■ Quartus II Settings File (QSF)

The internal mapped netlist is used when you have a partial or complete
design. The QSF is always used to read all pin-related assignments for
analysis.

Generating a Mapped Netlist
The Start I/O Assignment Analysis command uses a mapped netlist, if
available, to identify the pin type and the surrounding logic. The mapped
netlist is stored internally in the Quartus II software database.

To generate a mapped netlist, on the Processing menu, point to Start and
click Start Analysis & Synthesis.

To use the quartus_map executable to run analysis and synthesis, type
the following command at a system command prompt:

quartus_map <project name> r

Creating Pin-Related Assignments
The I/O Assignment Analysis command reads a QSF containing all of
your pin-related assignments. These pin-related assignments include pin
settings such as I/O standards, drive strength, and location assignments.
The following sections highlight some of the location assignments you
can make.

Reserving Pins
If you do not have any design files, you can still reserve pin locations and
create pin-related assignments. Reserving pins is necessary so that the
Start I/O Assignment Analysis command has information about the pin
and the pin type (input, output, or bidirectional) to correctly analyze the
pins.

To reserve a pin, on the Assignments menu, click Assignment Editor. In
the Category list, click Pin to open the Pin assignment category.
Double-click the cell in the Reserved column that corresponds to the pin
that you want to reserve. Use the drop-down arrow to select from the
reserve pin options (Figure 5–46).

5–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–46. Reserving an Input Pin with the Assignment Editor

f For more information about using the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

You can also reserve pins using the Pin Planner. For more information
about the Pin Planner, refer to “Creating Reserved Pin Assignments” on
page 5–38.

Location Assignments
You can create the following types of location assignments for your
design and its reserved pins:

■ Pin number
■ I/O bank
■ VREF group
■ Edge

1 I/O bank, VREF group, and Edge location assignments are
supported only for Stratix and Cyclone series device families.

You can assign a location to your pins using the Pin Planner or the
Assignment Editor. To make a pin location assignment using the
Assignment Editor, on the Assignments menu, click Assignment Editor
and select the Pin category from the Category list. Type the pin name and
select a location from the Location list.

It is common to place a group of pins (or bus) with compatible I/O
standards in the same I/O bank or VREF group. For example, two buses
with two compatible I/O standards, such as 2.5 V and SSTL-II, can be
placed in the same I/O bank.

An easy way to place large buses that exceed the pins available in a
particular I/O bank is to use edge location assignments. Edge location
assignments improve the circuit board routing ability of large buses,
because they are close together near an edge. Figure 5–47 shows the
Altera device package edges.

Altera Corporation 5–77
October 2007 Preliminary

Validating Pin Assignments

Figure 5–47. Die View and Package View of the Four Edges on an Altera Device

Suggested and Partial Placement
The Start I/O Assignment Analysis command automatically assigns
suggested pin locations to unassigned pins in your design so it can
perform pin legality checks. For example, if you assign an edge location
to a group of LVDS pins, the I/O Assignment Analysis command assigns
pin locations for each LVDS pin in the specified edge location and then
performs legality checks.

To accept these suggested pin locations, on the Assignments menu, click
Back-Annotate Assignments, select Pin & device assignments, and click
OK. Back-annotation saves your pin and device assignments in the QSF.

Understanding the I/O Assignment Analysis Report and Messages

The Start I/O Assignment Analysis command generates detailed
analysis reports and a PIN file. The detailed messages in the reports help
you quickly understand and resolve pin assignment errors. Each message
includes a related node name and a description of the problem.

Top Edge

Silicon Die View

Bottom Edge

Left Edge Right Edge Right Edge

Top Edge

Package View (Top)

Bottom Edge

Left Edge

5–78 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

To view the report file, on the Project menu, click Compilation Report.
The Fitter section of the Compilation Report contains the following
sections:

■ Summary
■ Settings
■ Resource Section
■ I/O Rules Section
■ Device Options
■ Advanced Fitter Data
■ Pin-Out File
■ Fitter Messages

The Resource Section categorizes the pins as Input Pins, Output Pins, and
Bidir Pins. View the utilization of each I/O bank in your device in the I/O
Bank Usage section (Figure 5–48).

Figure 5–48. I/O Bank Usage Summary in the I/O Assignment Analysis Report

Altera Corporation 5–79
October 2007 Preliminary

Validating Pin Assignments

The I/O Rules Section includes detailed information about the I/O rules
tested during I/O Assignment Analysis, in three sub-reports. The I/O
Rules Summary report provides a quick summary of the number of I/O
rules tested and how many applicable rules passed, how many failed, and
how many were unchecked because of other failing rules (Figure 5–49).

Figure 5–49. I/O Rules Summary Report

5–80 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

The I/O Rules Details report provides detailed information on all I/O
rules. Applicable rules indicate whether they passed, failed, or could not
be checked (Figure 5–50). All rules are given a level of severity from Low
to Critical to indicate their level of importance for an effective analysis.

Figure 5–50. I/O Rules Details Report

Altera Corporation 5–81
October 2007 Preliminary

Validating Pin Assignments

The I/O Rules Matrix shows how each I/O rule was tested on each pin in
the design (Figure 5–51). Applicable rules that could be checked either
pass or fail for each pin.

To find and make pin assignment adjustments on a pin that fails an I/O
rule, right-click the pin name. Point to Locate, and select a location where
the pin exists, such as the Pin Planner. Make appropriate changes to fix
the pin assignments and rerun I/O Assignment Analysis. Check the
resulting I/O Rules Matrix to verify that your changes fixed the problem
and allowed the failing pin assignment to pass. To rerun I/O rule
analysis, on the Processing menu, point to Start and click Start I/O
Assignment Analysis.

Figure 5–51. I/O Rules Matrix

The Fitter Messages page stores all messages including errors, warnings,
and information messages.

You can view the detailed messages in the Fitter Messages page in the
compilation report and in the Processing tab in the Messages window. To
open the Messages window, on the View menu, point to Utility windows
and click Messages.

Use the Location box to help resolve the error messages. Select from the
Location list, and click Locate.

5–82 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–52 shows an example of error messages reported by I/O
assignment analysis.

Figure 5–52. Error Message Report by I/O Assignment Analysis

The Fitter messages can also be seen in the Package View (Figure 5–53).
Right click in the Package View and click Show Fitter Placements to see
the failing pins. The failing pins are shown with a cross sign as shown in
Figure 5–53 and a tool tip is displayed when the mouse cursor is pointed
over the failing pin. The tooltip displays the failed I/O rules.

Figure 5–53. Tool Tip

Altera Corporation 5–83
October 2007 Preliminary

Validating Pin Assignments

You can correct the I/O assignment analysis failure shown for the pin in
Figure 5–52 and Figure 5–53 easily by setting the proper current drive
strength for the I/O standard assigned for that pin. Current drive
strength can be set in Assignment editor using the “Current Drive
Strength” Assignment.

f For more information about the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

The effectiveness of the I/O Assignment Analysis is relative to the
completeness of your pin-related assignments and design. To ensure
your design functions correctly, include all pin-related assignments and
as many design files as possible in your Quartus II project.

Table 5–5 on page 5–83 and Table 5–6 on page 5–84 list a subset of the I/O
rule checks performed when you run an I/O Assignment Analysis with
and without design files.

f For more detailed information about each I/O rule, refer to the
appropriate device handbook.

Table 5–5. Examples of I/O Rule Checks (Part 1 of 2) Note (1)

Rule Description Device
Families

HDL
Required?

I/O bank capacity Checks the number of pins assigned to an I/O bank
against the number of pins allowed in the I/O bank.

All No

I/O bank VCCIO voltage
compatibility

Checks that no more than one VCCIO is required for the
pins assigned to the I/O bank.

All No

I/O bank VREF voltage
compatibility

Checks that no more than one VREF is required for the
pins assigned to the I/O bank.

All No

I/O standard and location
conflicts

Checks whether the pin location supports the assigned I/O
standard.

All No

I/O standard and signal
direction conflicts

Checks whether the pin location supports the assigned I/O
standard and direction. For example, certain I/O standards
on a particular pin location can only support output pins.

All No

Differential I/O standards
cannot have open drain
turned on

Checks that open drain is turned off for all pins with a
differential I/O standard.

All No

I/O standard and drive
strength conflicts

Checks whether the drive strength assignments are within
the specifications of the I/O standard.

All No

Drive strength and location
conflicts

Checks whether the pin location supports the assigned
drive strength.

All No

BUSHOLD and location
conflicts

Checks whether the pin location supports BUSHOLD. For
example, dedicated clock pins do not support BUSHOLD.

All No

5–84 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

WEAK_PULLUP and
location conflicts

Checks whether the pin location supports WEAK_PULLUP
(for example, dedicated clock pins do not support
WEAK_PULLUP)

All No

Electromigration check Checks whether combined drive strength of consecutive
pads exceeds a certain limit. For example, the total current
drive for 10 consecutive pads on a Stratix II device cannot
exceed 200 mA.

All No

PCI_IO clamp diode,
location, and I/O standard
conflicts

Checks whether the pin location along with the I/O
standard assigned supports PCI_IO clamp diode.

All No

SERDES and I/O pin
location compatibility check

Checks that all pins connected to a SERDES in your
design are assigned to dedicated SERDES pin locations.

All Yes

PLL and I/O pin location
compatibility check

Checks whether pins connected to a PLL are assigned to
the dedicated PLL pin locations.

All Yes

Note to Table 5–5:
(1) The supported device families are: Arria™ GX, Stratix III, Stratix II, Stratix II GX, Stratix, Stratix GX, Cyclone® III,

Cyclone II, Cyclone, HardCopy, and MAX II devices.

Table 5–6. SSN-Related Rules (Part 1 of 2)

Rule Description
Device

Families
(1)

HDL
Required?

I/O bank can not have single-ended I/O
when DPA exists

Checks that no single-ended I/O pin exists in
the same I/O bank as a DPA.

Stratix II
Stratix GX

No

A PLL I/O bank does not support both
a single-ended I/O and a differential
signal simultaneously

Checks that there are no single-ended I/O
pins present in the PLL I/O Bank when a
differential signal exists.

Stratix II No

Single-ended output is required to be a
certain distance away from a
differential I/O pin

Checks whether single-ended output pins are
a certain distance away from a differential I/O
pin.

All No

Single-ended output has to be a certain
distance away from a VREF pad

Checks whether single-ended output pins are
a certain distance away from a VREF pad.

Cyclone II
Cyclone

No

Single-ended input is required to be a
certain distance away from a
differential I/O pin

Checks whether single-ended input pins are a
certain distance away from a differential I/O
pin.

Cyclone II
Cyclone

No

Table 5–5. Examples of I/O Rule Checks (Part 2 of 2) Note (1)

Rule Description Device
Families

HDL
Required?

Altera Corporation 5–85
October 2007 Preliminary

Validating Pin Assignments

Scripting Support

A Tcl script allows you to run procedures and determine settings
described in this chapter. You can also run some of these procedures at a
command prompt.

For detailed information about specific scripting command options and
Tcl API packages, type the following command at a system command
prompt to run the Quartus II Command-Line and Tcl API Help browser:

quartus_sh --qhelp r
f For more information about Quartus II scripting support, including

examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in volume 2 of the Quartus II Handbook.

Running the I/O Assignment Analysis
You can run the I/O Assignment Analysis with a Tcl command or with a
command run at a command prompt. For more information about
running the I/O Assignment Analysis, refer to “Understanding the I/O
Assignment Analysis Report and Messages” on page 5–77.

Enter the following in a Tcl console or script:

execute_flow -check_ios

Type the following at a (non-Tcl) system command prompt:

quartus_fit <project-name> --check_ios r

Too many outputs or bidirectional pins
in a VREFGROUP when a VREF is used

Checks that there are no more than a certain
number of outputs or bidirectional pins in a
VREFGROUP when a VREF is used.

All No

Too many outputs in a VREFGROUP Checks whether too many outputs are in a
VREFGROUP.

All No

Note to Table 5–6:
(1) “All” includes the following device families: Arria GX, Stratix III, Stratix II, Stratix II GX, Stratix, Stratix GX,

Cyclone III, Cyclone II, Cyclone, HardCopy, and MAX II devices.

Table 5–6. SSN-Related Rules (Part 2 of 2)

Rule Description
Device

Families
(1)

HDL
Required?

5–86 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Generating a Mapped Netlist
You can generate a mapped netlist with a Tcl command or with a
command-line command. For more information about generating a
mapped netlist, refer to “Generating a Mapped Netlist” on page 5–75.

Enter the following in the Tcl console or in a script:

execute_module -tool map

The execute_module command is in the flow package.

Type the following at a system command prompt:

quartus_map <project name>r

Reserving Pins
Use the following Tcl command to reserve a pin. For more information
about reserving pins, refer to “Reserving Pins” on page 5–75.

set_instance_assignment -name RESERVE_PIN <value> -to <signal name>

Valid values are:

■ "AS BIDIRECTIONAL"
■ "AS INPUT TRI-STATED"
■ "AS OUTPUT DRIVING AN UNSPECIFIED SIGNAL"
■ "AS OUTPUT DRIVING GROUND"
■ "AS SIGNALPROBE OUTPUT"

Include the quotes when specifying the value.

Location Assignments
Use the following Tcl command to assign a signal to a pin or device
location. For more information about location assignments, refer to
“Location Assignments” on page 5–76.

set_location_assignment <location> -to <signal name>

Valid locations are pin location names, such as PIN_A3. The Stratix and
Cyclone series of devices also support edge and I/O bank locations. Edge
locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP, and EDGE_RIGHT.
I/O bank locations include IOBANK_1 up to IOBANK_n, in which n is the
number of I/O banks in a particular device.

Altera Corporation 5–87
October 2007 Preliminary

Incorporating PCB Design Tools

1 In Stratix III devices only, I/O bank names have the form
IOBANK_nx where n is a number and x is the letter A, B, or C.
Though I/O banks may share the same number with different
letters, such as 1A and 1C, they are separate banks and not
related to each other.

f For more information, refer to the Stratix III Device
Handbook.

Incorporating
PCB Design
Tools

Signal and pin assignments are initially made by the FPGA or ASIC
designer, and it is up to the board designer to transfer these assignments
to the symbols used in their system circuit schematics and board layout
correctly. As the board design progresses, pin reassignments may be
requested or required to optimize the layout. These reassignments must
in turn be relayed to the FPGA designer, so that the new assignments can
be validated with the I/O Assignment Analyzer and processed through
an updated place-and-route of the FPGA.

The Quartus II software interacts with board layout tools by importing
and exporting pin information files, including the QSF, the PIN file, and
the FPGA Xchange file.

f For more information about incorporating PCB design tools, refer to the
Cadence PCB Design Tools Support and the Mentor Graphics PCB Design
Tools Support chapters in volume 2 of the Quartus II Handbook.

Advanced I/O
Timing

As part of I/O planning, especially with high-speed designs, you should
take board-level signal integrity and timing into account. When adding
an FPGA device with high-speed interfaces to a board design, the quality
of the signal at the far end of the board route, as well as the propagation
delay in getting there, is vital for proper system operation.

The Quartus II software provides features to take these factors into
consideration, making the software “board-aware.” The Quartus II
software can take into account board routing and external devices to
generate advanced timing reports and board simulation modeling files.
The Quartus II software supports three different methods of analysis:

■ I/O timing using a default or user-specified capacitive load with no
signal integrity analysis (default)

■ The Quartus II Advanced I/O Timing option utilizing a user-defined
board trace model to produce enhanced timing reports from
accurate, “board-aware” simulation models

■ Full board routing simulation in third-party tools using
Altera-provided or generated IBIS or HSPICE I/O models

5–88 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 I/O timing using a default or user-specified capacitive load is
not supported for Stratix III and Cyclone III devices. Use the
Advanced I/O Timing option for Stratix III and Cyclone III
devices.

In the first method, timing reports created by the Quartus II TimeQuest
Timing Analyzer and the Quartus II Classic Timing Analyzer measure
tCO to an I/O pin using a default or user-specified value for a capacitive
load.

The second method, the Quartus II Advanced I/O Timing option, lets
you configure a complete board trace model for each I/O standard or pin
used in your design. With Advanced I/O Timing turned on, the
Quartus II TimeQuest Timing Analyzer uses the results of simulations of
the I/O buffer, package, and board trace model to generate more accurate
I/O delays and extra reports to give insight into signal behavior at the
system level. You can use these advanced timing reports as a guide to
make changes to your I/O assignments and board design to improve
timing and signal integrity.

This section details the first and second methods. The third method of
analysis, the creation of simulation model files for use by third-party
board simulation tools, is achieved with the IBIS and HSPICE Writers.
The IBIS and HSPICE Writers in the Quartus II software can export
accurate simulation models for use in applications such as Mentor
Graphics HyperLynx and Synopsys HSPICE.

f For information about creating IBIS and HSPICE models with the
Quartus II software and integrating those models into HyperLynx and
HSPICE simulations, refer to the Signal Integrity Analysis with Third Party
Tools chapter in volume 3 of the Quartus II Handbook.

I/O Timing and Power with Capacitive Loading

When calculating tCO and power for output and bidirectional pins, the
Quartus II TimeQuest Timing Analyzer, the Quartus II Classic Timing
Analyzer, and power analysis use a bulk capacitive load. This is the
default method for these pins. You can adjust the value of the capacitive
load per I/O standard to get tCO and power measurements that more
accurately reflect the behavior of the output or bidirectional net on your
PCB. Input pins ignore this setting. To adjust the value of the capacitive
load, on the Assignments menu, click Device. Click Device & Pin
Options, and click the Capacitive Loading tab (Figure 5–54).

Altera Corporation 5–89
October 2007 Preliminary

Advanced I/O Timing

Figure 5–54. Capacitive Tab of the Device and Pin Options Dialog Box

All of the available I/O standards for your selected device are listed with
their default loading values in picofarads (pF). Adjust the loading values
as desired for the I/O standards used in your design. Power and tCO
measurements in the Compilation Report are adjusted based on the
settings.

1 You can also adjust the load on any individual pin in the Groups
List or All Pins List in the Pin Planner by adding the Output Pin
Load column. Right-click anywhere in either list and select
Customize Columns. Select Output Pin Load from the list of
available custom columns, and add it to the list of visible
columns. You can customize the load for individual pins or
multiple pins with different I/O standards.

f For more information about capacitive loading, the devices that support
it, and how tCO and power are adjusted based on the setting, refer to the
Quartus II Help.

5–90 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Enabling and Configuring Advanced I/O Timing

With the Quartus II Advanced I/O Timing turned on, you can expand
upon the basic timing and power measurements made with the
Capacitive Loading settings. Advanced I/O Timing gives you the ability
to fully define not only the capacitive load, but also any termination
components and trace impedances in the board routing for any output
pin or bidirectional pin in output mode. You can configure an overall
board trace model for each I/O standard as well as customize the model
for specific pins using a graphical interface.

When the Enable Advanced I/O Timing option is turned on, the board
trace model replaces the Capacitive Loading tab settings because the load
is included in the model. For timing measurements, the entire board trace
model is taken into account when calculating I/O delays. For power
measurements, an effective capacitive load is used based on the sum of
the capacitive elements in the model. This includes the Near capacitance,
Far capacitance, and Transmission line distributed capacitance
elements of the model.

1 For Stratix III and Cyclone III devices, Advanced I/O Timing is
the only way to measure I/O timing. Advanced I/O Timing is
currently supported for Stratix II devices also. All other devices
use Capacitive Loading for I/O tCO and power measurements.
Check the Altera website at www.altera.com to determine
which devices are supported in newer versions of the Quartus II
software.

Before you configure a board trace model for Advanced I/O Timing, you
must select a device from a supported device family for your design and
you must turn on the Advanced I/O Timing option. To select a device
that supports Advanced I/O Timing, on the Assignments menu, click
Device to open the Settings dialog box (Figure 5–55). From the Family
list, select the supported device. You can set the other controls under
Show in ‘Available devices list’ to filter the Available devices list and to
select any migration devices. Under the Available devices list, select a
device. All devices in each supported family work with Advanced I/O
Timing.

http://www.altera.com/literature

Altera Corporation 5–91
October 2007 Preliminary

Advanced I/O Timing

Figure 5–55. Device Page of the Settings Dialog Box

Turn on Enable Advanced I/O Timing. If the Settings dialog box is not
currently open, on the Assignments menu, click Settings. In the Category
list, click the “+” icon to expand Timing Analysis Settings. Select
TimeQuest Timing Analyzer. The TimeQuest Timing Analysis page
appears. Turn on Enable Advanced I/O Timing.

For Stratix III and Cyclone III devices, the Advanced I/O Timing option
is turned on by default and is always performed when you run the
Quartus II TimeQuest Timing Analyzer.

f For more information on the Quartus II TimeQuest Timing Analyzer,
refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus II Handbook.

5–92 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Define Overall Board Trace Models

You can now define an overall board trace model for each I/O standard
in your design. This is the default model for all pins that use a particular
I/O standard. After configuring the overall board trace model, customize
the model for specific pins using the Board Trace Model view in the Pin
Planner.

With the Settings dialog box open, in the Category list, click Device.
Click Device & Pin Options and click the Board Trace Model tab
(Figure 5–56).

Figure 5–56. Board Trace Model Tab of the Device and Pin Options Dialog Box

1 You can still click the Capacitive Loading tab. However,
because you can configure all capacitive loading settings as part
of the board trace model, the tab indicates that you must use the
settings in the Board Trace Model tab.

All of the I/O standards available to the device are listed. Select any I/O
standard from the list. The Board trace model list displays the names and
values of all configurable components of the board trace for the selected

Altera Corporation 5–93
October 2007 Preliminary

Advanced I/O Timing

I/O standard. Components of the model are initially set to short, open, or
a numeric value depending on the component. The default settings for
components in the model for each I/O standard are device-specific and
match the default test model used for calculating delay when the Enable
Advanced I/O Timing option is turned off. In this way, default delay
measurements are the same whether or not the Enable Advanced I/O
Timing option is used.

f For information about the default models used for measuring I/O delay,
refer to the DC & Switching Characteristics chapter in the relevant device
handbook.

All of the component values listed in Figure 5–56 are adjustable. For
differential I/O standards, the component values you set are used for
both the positive and negative signals of a differential pair. An additional
component, Far differential resistance, is also included. To reset
individual settings to their defaults, leave the setting blank. If you want
all the settings for an I/O standard to revert to their original settings, click
Reset. Click OK to close the Device & Pin Options dialog box. Click OK
again to close the Settings dialog box.

1 Any component value changes made in the Board Trace Model
tab for a particular I/O standard are reflected in the Board Trace
Model view in the Pin Planner of all pins assigned with the same
I/O standard (described in “Customize the Board Trace Model
in the Pin Planner”). However, custom component value
changes made to selected pins in the Board Trace Model view in
the Pin Planner take priority and are not affected by changes
made to an I/O standard in the Board Trace Model tab.

Customize the Board Trace Model in the Pin Planner

In addition to the views available in the Package View in the Pin Planner,
you can also view a graphical representation of the board trace model you
have configured using the Board Trace Model view. To open the Board
Trace Model view, right-click on an output or bidirectional pin in the
Groups List, the All Pins List, or the Package View and click Board Trace
Model. The Board Trace Model view opens in a floating window
(Figure 5–57).

5–94 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 5–57. Board Trace Model View

For differential signals, the Board Trace Model view displays the routing
and components for both the positive and negative signals of the
differential pair (Figure 5–58).

Altera Corporation 5–95
October 2007 Preliminary

Advanced I/O Timing

Figure 5–58. Differential Board Trace Model View

1 Any changes made to the Board Trace Model view for a
differential signal pair must be performed on the positive signal
of the pair. The settings must match between the positive and
negative signals of a differential pair, so the changes are
automatically reflected in the settings for the negative signal.

Double-click a component value to edit it. For numerical values, use
standard unit prefixes such as p, n, and k to represent pico, nano, and kilo,
respectively. To short across a series component or have an open circuit
for a parallel component, double-click the component value and select
short or open from the list.

f For more details about configuring component values for a board trace
model, including a complete list of the supported unit prefixes, refer to
the Quartus II Help.

To view a display of the model for a particular pin, in the Package View,
Groups List, or All Pins List, click on the pin. This changes the Board
Trace Model view to display the model of the pin. To select multiple pins
that share the same I/O standard, open the Board Trace Model view, and
edit the model for all of the selected pins. If an input pin or multiple pins

5–96 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

with different I/O standards are selected, the Board Trace Model view
window indicates that it cannot display the model for the selected pin or
pins.

The components in the Board Trace Model view correspond to the
components listed in the Board Trace Model tab directly, and the settings
match initially. You can click and edit any value in the Board Trace Model
view to customize the model for the selected pin or pins. Changes made
in the Board Trace Model view do not affect the settings in the Board
Trace Model tab.

To configure board trace models for the pins in your design efficiently
with these two methods of entry, define the model for each I/O standard
in the Board Trace Model tab. With the overall model defined, use the
Board Trace Model view in the Pin Planner to customize individual pins
as needed. These customizations take priority over the settings in the
Board Trace Model tab on a per pin and per model component basis, so
they will not affect the settings on any other pin.

Create Signal Integrity Result Reports

After you have turned on Enable Advanced I/O Timing and configured
board trace models for the pins you want to analyze, compile your project
or run the Quartus II TimeQuest Timing Analyzer after a full
compilation. The Enable Advanced I/O Timing option creates signal
integrity sub-reports under TimeQuest Timing Analyzer in the
Compilation Report window.

The Board Trace Model Assignments report (Figure 5–59) summarizes
the board trace model component settings for each output and
bidirectional signal.

Figure 5–59. Board Trace Model Assignments Report

Altera Corporation 5–97
October 2007 Preliminary

Advanced I/O Timing

The Signal Integrity Metrics subfolder contains detailed reports listing all
of the metrics calculated by the Advanced I/O Timing option
(Figure 5–60).

Figure 5–60. Example of Slow-Corner Signal Integrity Metrics Report

The Slow- and Fast-Corner Signal Integrity Metrics reports are generated
by the Enable Advanced I/O Timing option. They list, in tabular format,
all of the signal integrity metrics calculated by the Enable Advanced I/O
Timing option, based on the board trace model settings for each output
or bidirectional pin. The reports contain many metrics, including
measurements at both the FPGA and at the far-end load of board delay,
steady state voltages, and rise and fall times.

The slow- or fast-corner reports are generated depending on the Timing
Netlist option in the Quartus II TimeQuest Timing Analyzer. To select
whether to create a slow- or a fast-corner report, in the TimeQuest Timing
Analyzer on the Netlist menu, click Create Timing Netlist. Under Delay
model, select Slow corner or Fast corner to create reports of that type.

For complete descriptions of all of the metrics calculated when the Enable
Advanced I/O Timing option is turned on and diagrams illustrating the
metrics on output waveforms, refer to the Quartus II Help. For more
information about board level signal integrity and tips on how to
improve signal integrity in your high-speed designs, refer to the Altera
Signal Integrity Center.

f For information about the configuration and use of the Quartus II
TimeQuest Timing Analyzer, refer to the Quartus II Help or the Timing
Analysis section in volume 3 of the Quartus II Handbook.

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

5–98 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Conclusion The Quartus II software provides many tools and features to help you
with the I/O planning process. The I/O assignment analysis process
offers the ability to validate pin assignments in all design stages, even
before the development of the design. The ability to import and export
assignments between the Quartus II software and other PCB tools also
enables you to make iterative changes efficiently. Finally, the ability to
enter a board trace model and create advanced timing reports based on
how I/O signals are routed on a board truly makes the Quartus II
software “board-aware.”

Referenced
Documents

The following documents were referenced in this chapter:

■ AN90: SameFrame Pin-Out Design for FineLine BGA Packages
■ AN 315: Guidelines for Designing High-Speed FPGA PCBs
■ altdq & altdqs Megafunction User Guide
■ Altera Device Package Information Datasheet
■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of

the Quartus II Handbook
■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Cadence PCB Design Tools Support chapter in volume 2 of the

Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ DC & Switching Characteristics chapter in volume 1 of the Stratix II

Device Handbook
■ Engineering Change Management with the Chip Planner chapter in

volume 2 of the Quartus II Handbook
■ Managing Quartus II Projects chapter in volume 2 of the Quartus II

Handbook
■ Mentor Graphics PCB Design Tools Support chapter in volume 2 of the

Quartus II Handbook
■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
■ Quartus II Support for HardCopy Series Devices chapter in volume 1 of

the Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of

Quartus II Handbook
■ Signal Integrity Analysis with Third Party Tools chapter in volume 3 of

the Quartus II Handbook
■ Stratix III Device Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Timing Analysis section in volume 3 of the Quartus II Handbook

http://www/literature/ug/ug_altdq_dqs.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www/literature/hb/qts/qts_qii5v3_02.pdf
http://www/literature/hb/qts/qts_qii53020.pdf
http://www/literature/hb/qts/qts_qii52001.pdf
http://www/literature/hb/qts/qts_qii52017.pdf
http://www/literature/hb/qts/qts_qii52006.pdf
http://www/literature/hb/qts/qts_qii52014.pdf
http://www/literature/hb/qts/qts_qii52015.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www/literature/hb/qts/qts_qii52012.pdf
http://www/literature/hb/qts/qts_qii51008.pdf
http://www/literature/hb/stx2/stx2_sii51005.pdf
http://www/literature/an/an315.pdf
http://www.altera.com/literature/ds/dspkg.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/an/an090.pdf

Altera Corporation 5–99
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 5–7 shows the revision history for this chapter.

Table 5–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Updated for the Quartus II software v7.2, including:
● Added “Using the Live I/O Check Feature to Validate Pin

Assignments” on page 5–65 about the new live I/O check
feature.

Updated
documentation to
reflect the new live I/O
check feature in the
Quartus II 7.2 software.

May 2007
v7.1.0

● Updated I/O Planning Overview section.
● Updated Tcl Scripts on page 5–61.
● Updated Chip Planner or Timing Closure Floorplan on

page 5–62.
● Updated Using the Pin Planner on page 5–22.
● Added Pin Migration View on page 5–34.
● Updated Show I/O Banks on page 5–47.
● Updated Using I/O Assignment Analysis to Validate Pin

Assignments on page 5–67.
● Added Configure User Nodes for Creating a Top-Level

Design File on page 5–18.
● Updated Document Revision History on page 5–99.

Updated
documentation to
reflect updates for the
Quartus II 7.1 software.
Updated figures.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

● Updated text and graphics to reflect GUI changes.
● Added information about setting up and creating a top-level

design file from megafunctions and IP MegaCores created in
the Pin Planner.

● Added spreadsheet functionality information to lists in the Pin
Planner.

● Added descriptions of new reports generated by I/O
Assignment Analysis.

● Added information the Advanced I/O Timing option, including
the configuration of board trace models.

—

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0.
● Updated text and graphics to reflect the GUI changes.
● Added pin filtering information.
● Added pin assignments and Pad View window information.
● Added Package View information.

—

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.0.
● I/O Assignment Analysis material incorporated into chapter.

—

May 2005
v5.0.0

Initial release. —

5–100 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Altera Corporation 6–1
October 2007

6. Mentor Graphics PCB
Design Tools Support

Introduction With today’s large, high-pin-count and high-speed FPGA devices, good
and correct printed circuit board (PCB) design practices are more
essential than ever for ensuring correct system operation. Typically, the
PCB design takes place concurrently with the design and programming
of the FPGA. Signal and pin assignments are initially made by the FPGA
or ASIC designer, and the board designer must correctly transfer these
assignments to the symbols used in their system circuit schematics and
board layout. As the board design progresses, pin reassignments may be
needed to optimize the PCB layout. These reassignments must in turn be
relayed back to the FPGA designer so that the new assignments can be
processed through an updated placement and routing of the FPGA
design.

Mentor Graphics® provides tools to support this type of design flow. This
chapter discusses how the Quartus® II software interacts with the Mentor
Graphics I/O Designer software and the DxDesigner software to provide
a completely cyclical FPGA-to-board integration design workflow. This
chapter covers the following topics:

■ General design flow between the Quartus II software, the Mentor
Graphics I/O Designer software, and the DxDesigner software

■ Setting up the Quartus II software to create the design flow files
■ Creating an I/O Designer database project to incorporate the

Quartus II software signal and pin assignment data
■ Updating signal and pin assignment changes between the

I/O Designer software and the Quartus II software
■ Generating symbols in the I/O Designer software
■ Creating symbols in the DxDesigner software from the Quartus II

software output files without the use of the I/O Designer software

This chapter is intended primarily for board design and layout engineers
who want to start the FPGA board integration while the FPGA is still in
the design phase. Optionally, the board designer can plan the FPGA
pinout and routing requirements in the Mentor Graphics tools and pass
the information back to the Quartus II software for place-and-route. In
addition, part librarians benefit from learning how to take output from
the Quartus II software and use it to create new library parts and
symbols.

QII52015-7.2.0

6–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

The procedures in this chapter require the following software:

■ The Quartus II software version 5.1 or higher
■ DxDesigner software version 2004 or higher

Mentor Graphics I/O Designer software is optional.

f To obtain and license the Mentor Graphics tools and obtain product
information, support, and training, go to the Mentor Graphics website at
www.mentor.com.

FPGA-to-PCB
Design Flow

In the examples in this section, you create a design flow integrating an
Altera® FPGA design from the Quartus II software, and a circuit
schematic in the DxDesigner software. Figure 6–1 shows the design flow
with and without the I/O Designer software.

Altera Corporation 6–3
October 2007

FPGA-to-PCB Design Flow

Figure 6–1. Design Flow with and without the I/O Designer Software

Note to Figure 6–1:
(1) The Quartus II software generates the FPGA Xchange file in the output directory you specify in the Board-Level

Assignment Settings. However, the Quartus II software and the I/O Designer software can import pin assignments
from an FPGA Xchange file located in any directory. Altera recommends that you work with a backup of the FPGA
Xchange file to prevent overwriting existing assignments or importing invalid assignments.

No

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File

Compile and Run
EDA Netlist Writer

Start FPGA Design Start PCB Design

End

Quartus II Software

Using I/O
Designer?

Import Pin
Assignments

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

Board Layout Tool

Back-Annotate
Changes

.fx

.pin

Yes

(1)

Layout & Route
FPGA

Changes?

Yes

No

6–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

The following tasks, which are described in this chapter, describe how to
proceed through the design flow shown in Figure 6–1:

■ Set up the board-level assignment settings to generate an FPGA
Xchange file (.fx) for symbol generation in the Quartus II software

■ Compile the design and generate the FPGA Xchange file and the
Pin-Out file (.pin), which are located in the Quartus II project
directory

■ Create a board design using the DxDesigner software together with
the I/O Designer software, which involves the following steps:
● Create a new I/O Designer database based on the FPGA

Xchange file and the Pin-Out file
● Make adjustments to signal and pin assignments in the

I/O Designer software
● Regenerate the FPGA Xchange file in the I/O Designer software

to reflect the I/O Designer software changes in the Quartus II
software

● Generate a single or fractured symbol for use in the DxDesigner
software

● Add the symbol to the sym directory of a DxDesigner project, or
specify a new DxDesigner project with the new symbol

● Instantiate the symbol in your DxDesigner schematic and export
the design to the board layout tool

● Back-annotate pin changes created in the board layout tool to
the DxDesigner software and back to the I/O Designer software
and the Quartus II software

■ Create a board design using the DxDesigner software without the
I/O Designer software, which involves the following steps:
● Create a new DxBoardLink symbol using the Symbol Wizard

and reference the Pin-Out file output from the Quartus II
software in an existing DxDesigner project

● Instantiate the symbol in your DxDesigner schematic and pass
the design to a board layout tool

The I/O Designer software allows you to take advantage of the full FPGA
symbol design, creation, editing, and back-annotation flow supported by
Mentor Graphics tools.

1 Symbols can be updated with design changes at any point with
or without the I/O Designer software. However, if symbols are
changed in the DxDesigner software, the I/O Designer software
does not see the changes. If you change symbols using the
DxDesigner software, you must reimport the symbols into
I/O Designer to avoid overwriting your symbol changes.

Altera Corporation 6–5
October 2007

Setting Up the Quartus II Software

Setting Up the
Quartus II
Software

You can transfer pin and signal assignments from the Quartus II software
to the Mentor Graphics tools by generating two output files, a Pin-Out file
(.pin) and an FPGA Xchange file (.fx) (Figure 6–2).

Figure 6–2. Pin-Out Files and FPGA Xchange Files Note (1)

Note to Figure 6–2:
(1) Refer to Figure 6–1 for the full design flow, which includes the I/O Designer

software, the DxDesigner software, and the board layout tool flowchart details.

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

.pin

6–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

The two output files, the Pin-Out file and the FPGA Xchange file, are
described in Table 6–1.

Table 6–1. Pin Assignment Output File Format Comparison

File Format Description

Pin-Out file
(.pin) (1)

An output file generated by the Quartus II Fitter. The file cannot be imported into the Quartus II
software to change pin assignments. The file contains a complete list of the device pins including
any unused I/O pins, and provides the following basic information fields for each assigned pin on
a device:
● Pin signal name/usage
● Pin number
● Signal direction
● I/O standard
● Voltage
● I/O Bank
● User or Fitter assigned

FPGA
Xchange
file (.fx)
(1),(2)

An input/output file generated by the Quartus II software and the I/O Designer software that can be
imported and exported from both programs. Industry standard with room for future changes and
additions. The FPGA Xchange file generated by the Quartus II software lists only assigned pins.
The file provides the following advanced information fields for each pin on a device:
● Pin number
● I/O Bank
● Signal name
● Signal direction
● I/O standard
● Drive strength (mA)
● Termination enabling
● Slew rate
● IOB Delay
● Swap group
● Differential pair type

When generated by the I/O Designer software, all pins, including unused pins, are listed and the
following fields are added:
● Swap group
● Differential pair type
● Device pin name
● Pin set
● Pin set position
● Pin set group
● Super pin set group
● Super pin set position

Notes to Table 6–1:
(1) For additional information about these file formats, refer to the Quartus II Help.
(2) For additional information about the information fields added by the Mentor Graphics software, refer to the

Mentor Graphics website at www.mentor.com.

Altera Corporation 6–7
October 2007

Setting Up the Quartus II Software

The I/O Designer software can also read from or update a Quartus II
Settings File (.qsf). The Quartus II Settings File is used in the design flow
in a similar manner to the FPGA Xchange file, but does not transfer pin
swap group information between the I/O Designer software and the
Quartus II software.

1 The Quartus II Settings File also contains additional important
information about your project that is not used by the I/O
Designer software. Because of this, Altera recommends that you
use the FPGA Xchange file instead of the Quartus II Settings File
for this design flow

f For more information about the Quartus II Settings File, refer to the
Quartus II Settings File Reference Manual.

Generating Pin-Out Files

The Quartus II Fitter generates the Pin-Out file whenever you perform a
full compilation or I/O Assignment Analysis on your design. The file is
generated and placed in your design directory and your file is named
<project name>.pin. The Mentor Graphics tools do not alter this file. The
Quartus II software cannot import assignments from an existing Pin-Out
file.

Generating FPGA Xchange Files

The FPGA Xchange file is not created automatically. To set up the
Quartus II software to create the FPGA Xchange file, follow these steps:

1. Start the Quartus II software. On the Assignments menu, click
Settings. The Settings dialog box appears.

2. Under EDA Tool Settings, click Board-Level. In the Board-Level
Symbol Format list, choose FPGA Xchange.

3. Set the Output directory to the location where you want to save the
file. The default output file path is
<project directory>/symbols/fpgaxchange. Click OK.

4. On the Processing menu, point to Start and click Start EDA Netlist
Writer.

The output directory you selected is created when you generate the FPGA
Xchange file.

6–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

c Both the Quartus II software and the I/O Designer software can
export and import an FPGA Xchange file. It is therefore possible
to overwrite the FPGA Xchange file and import incorrect
assignments into one or both programs. To prevent this
occurrence from happening, make a backup copy of the file
before importing, and import the copy instead of the file
generated by the Quartus II software. In addition, assignments
in the Quartus II software can be protected by following the
steps in “Protecting Assignments in the Quartus II Software” on
page 6–22.

Creating a Backup Quartus II Settings File

To create a backup Quartus II Settings File, perform the following steps:

1. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box appears.

2. In the Import Assignments dialog box, browse to your project and
turn on Copy existing assignments into <project name>.qsf.bak.

3. Click OK.

Following these steps automatically creates a backup Quartus II Settings
File of your current pin assignments.

f For more information about pin and signal assignment transfer, and files
the Quartus II software can import and export, refer to the
I/O Management chapter in volume 2 of the Quartus II Handbook.

FPGA-to-Board
Integration with
the I/O Designer
Software

The Mentor Graphics I/O Designer software allows you to integrate your
FPGA and PCB designs. Pin and signal assignment changes can be made
anywhere in the design flow, typically using either the Quartus II Pin
Planner or the I/O Designer software. The I/O Designer software
facilitates moving these changes, as well as synthesis, placement, and
routing changes, between the Quartus II software, an external synthesis
tool (if used), and a schematic capture tool such as the DxDesigner
software.

This section describes how to use the I/O Designer software to transfer
pin and signal assignment information to and from the Quartus II
software with the FPGA Xchange file, and how to create symbols for the
DxDesigner software.

Figure 6–3 shows the design flow using the I/O Designer software.

Altera Corporation 6–9
October 2007

FPGA-to-Board Integration with the I/O Designer Software

Figure 6–3. Design Flow Using the I/O Designer Software Note (1)

Notes to Figure 6–3:
(1) Refer to Figure 6–1 for the full design flow including the Quartus II software

flowchart details.
(2) These are DxDesigner software-specific steps in the design flow and are not part

of the I/O Designer flow.

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

DxDesigner

Instantiate Symbol
in Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.fx

.pin

(2)

(2)

End

Board Layout Tool

Back-Annotate
Changes

Layout and Route
FPGA

Changes?

Yes

No

6–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

f For more information about the I/O Designer software, and to obtain
usage, support, and product updates, use the Help menu in the
I/O Designer software or refer to the Mentor Graphics website at
www.mentor.com.

I/O Designer Database Wizard

All I/O Designer project information is stored in an I/O Designer
Database (.fpc) file. You can create a new database that incorporates the
FPGA Xchange file and Pin-Out file information generated by the
Quartus II software by using the I/O Designer Database Wizard. You can
also create a new, empty database and manually add the assignment
information. If there is no signal or pin assignment information currently
available, you can create an empty database that contains only a selection
of the target device. This is useful if you know the signals in your design
and the pins you want to assign. You can transfer this information at a
later time to the Quartus II software for place-and-route.

It is possible to create an I/O Designer database with only one type of file
or the other. However, if only a Pin-Out file is used, any I/O assignment
changes made in the I/O Designer software cannot be imported back into
the Quartus II software without first generating an FPGA Xchange file. If
only an FPGA Xchange file is used to create the I/O Designer database,
the database may not contain a complete picture of all of the I/O
assignment information available. The FPGA Xchange file generated by
the Quartus II software only lists pins with assigned signals. Since the
Pin-Out file lists all device pins—whether signals are assigned to them or
not—its use, along with the FPGA Xchange file, produces the most
complete set of information for creating the I/O Designer Database.

To create a new I/O Designer database using the Database Wizard,
perform the following steps:

1 If you skip a step in this process, you can complete the skipped
step later, filling in the appropriate information. To return to a
skipped step, on the Properties menu, click File.

1. Start the I/O Designer software. The Welcome to I/O Designer
dialog box appears (Figure 6–4). Select Wizard to create new
database and click OK.

1 If the Welcome to I/O Designer dialog box is not shown
because it was disabled, you can access the Wizard through
the menus. To access the Wizard on the File menu, click
Database Wizard.

Altera Corporation 6–11
October 2007

FPGA-to-Board Integration with the I/O Designer Software

Figure 6–4. I/O Designer Welcome Dialog Box

2. Click Next. The Define HDL source file page opens (Figure 6–5).

Figure 6–5. Database Wizard HDL File Page

6–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

f For more information about creating and using HDL files in the
Quartus II software, refer to the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook, or refer to the I/O Designer
Help.

1 If no HDL files are available, or if your signal and pin
assignments are already contained in the FPGA Xchange
file, you do not have to complete step 3 and can proceed to
step 4.

3. If you have created a Verilog HDL or VHDL file in your Quartus II
software design, you can enter a top-level Verilog HDL or VHDL
file. Adding a file allows you to create functional blocks or get signal
names from your design. All physical pin assignments must be
created in I/O Designer if no FPGA Xchange file or Pin-Out file is
used. Click Next. The Database Name page is shown.

4. In the Database Name window, enter your database file name. Click
Next. The Database Location window is shown.

5. Enter a path to the new database or an existing one in the Location
field, or browse to a database location. Click Next. The FPGA flow
page is shown (Figure 6–6).

Figure 6–6. Database Wizard Vendor and Device Page

6. In the Vendor menu, click Altera.

7. In the Tool/Library menu, click Quartus II 5.0, or a later version of
the Quartus II software.

Altera Corporation 6–13
October 2007

FPGA-to-Board Integration with the I/O Designer Software

8. Select the appropriate device family, device, package, and speed
(if applicable), from the corresponding menus. Click Next. The
Place and route page is shown (Figure 6–7).

1 The Quartus II software version selections in the
Tool/Library menu may not reflect the version of the
Quartus II software currently installed on your system even
if you are using the most current version of the
I/O Designer software. The version number selection in
this window is used in the I/O Designer software to
identify the devices that were available or obsolete in that
particular version of the Quartus II software. If you are
unsure of the version to select, use the most recent version
listed in the menu. If the device you are targeting does not
appear in the device menu after making this selection, the
device may be new and not yet added to the I/O Designer
software. For I/O Designer software updates, contact
Mentor Graphics or refer to their website at
www.mentor.com.

Figure 6–7. Database Wizard Place and Route Page

9. In the FPGAX file name field, type or browse to the backup copy of
the FPGA Xchange file generated by the Quartus II software.

6–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

10. In the Pin report file name field, type or browse to the Pin-Out file
generated by the Quartus II software. Click Next.

In addition, you can select a Quartus II Settings File for update. The
I/O Designer software can update the pin assignment information in
the Quartus II Settings File without affecting any other information
contained in the file.

1 You can select a Pin-Out file without selecting an FPGA
Xchange file for import. The I/O Designer software does
not generate a Pin-Out file. To transfer assignment
information to the Quartus II software, select an additional
file and file type. Altera recommends selecting an FPGA
Xchange file in addition to a Pin-Out file for transferring all
of the assignment information contained within both types
of files.

1 In some versions of the I/O Designer software, the
standard file picker may incorrectly look for a Pin-Out file
instead of an FPGA Xchange file. In this case, select All
Files (*.*) from the Save as type list and select the file from
the list.

11. The Synthesis page displays. On the Synthesis page, you can
specify an external synthesis tool and a synthesis constraints file for
use with the tool. If you do not use an external synthesis tool, click
Next.

f For more information about third-party synthesis tools, refer to
volume 3 of the Quartus II Handbook.

12. The PCB Flow page is shown (Figure 6–8). On the PCB Flow page,
you can select an existing schematic project or create a new project
as a destination for symbol information.

● To select an existing project, select Choose existing project and
click Browse after the Project Path field. The Select project
dialog box appears. Select the project.

● To create a new project, in the Select project dialog box, select
Create new empty project. Enter the project file name in the
Name field and browse to the location where you want to save
the file (Figure 6–9). Click OK.

Altera Corporation 6–15
October 2007

FPGA-to-Board Integration with the I/O Designer Software

Figure 6–8. PCB Flow Page

Figure 6–9. Select Project Dialog Box

6–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

If you have not specified a design tool for sending symbol
information to in I/O Designer, click Advanced in the PCB Flow
page and select your design tool. If the DxDesigner software is
selected, you have the option of specifying a Hierarchical Occurrence
Attributes (.oat) file to import into the I/O Designer software
(Figure 6–8). Click Next, then click Finish to create the database.

1 In I/O Designer version 2005 or later, the Update Wizard (refer
to Figure 6–13 on page 6–20) is shown when you finish creating
the database using the database wizard. Use the Update Wizard
to confirm creation of the I/O Designer database using the
selected FPGA Xchange and Pin-Out files.

Use the I/O Designer software and your newly created database to make
pin assignment changes, create pin swap groups, or adjust signal and pin
properties in the I/O Designer GUI (Figure 6–10).

Figure 6–10. I/O Designer Main Window

Altera Corporation 6–17
October 2007

FPGA-to-Board Integration with the I/O Designer Software

f For more information about using the I/O Designer software and the
DxDesigner software, refer to the Mentor Graphics website at
www.mentor.com or refer to the I/O Designer software or the
DxDesigner Help.

Updating Pin Assignments from the Quartus II Software

As the design process continues, the FPGA designer may need to make
changes to the logic design in the Quartus II software that place signals
on different pins after the design is recompiled, or manually by using the
Quartus II Pin Planner. These types of changes must be carried forward
to the circuit schematic and board layout tools to ensure that signals are
connected to the correct pins on the FPGA. Updating the FPGA Xchange
file and the Pin-Out file in the Quartus II software facilitates this flow
(Figure 6–11).

Figure 6–11. Updating the I/O Designer Pin Assignments in the Design Flow
Note (1)

Note to Figure 6–11:
(1) Refer to Figure 6–1 for the full design flow, which includes the Quartus II software,

the DxDesigner software, and the board layout tool flowchart details.

To update the FPGA Xchange file and the Pin-Out file in the Quartus II
software after making changes to the design, run a full compilation, or on
the Start menu, point to Processing and click Start EDA Netlist Writer.
The FPGA Xchange file in your selected output directory and the Pin-Out
file in your project directory are updated. You must rerun the
I/O Assignment Analyzer whenever you make I/O changes in the
Quartus II software. To rerun the I/O Assignment Analyzer, on the
Processing menu, click Start Compilation, or to run a full compilation, on
the Processing menu, point to Start and click Start I/O Assignment
Analysis.

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

.fx

.pin

6–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

f Refer to the I/O Management chapter in volume 2 of the Quartus II
Handbook for more information about setting up the FPGA Xchange file
and running the I/O Assignment Analyzer.

c If your I/O Designer database points to the FPGA Xchange file
generated by the Quartus II software instead of a backup copy
of the file, updating the file in the Quartus II software overwrites
any changes made to the file by the I/O Designer software. If
there are I/O Designer assignments in the FPGA Xchange file
that you want to preserve, create a backup copy of the file before
updating it in the Quartus II software, and verify that your
I/O Designer database points to the backup copy. To point to
the backup copy, perform the steps in the following section.

Whenever the FPGA Xchange file or the Pin-Out file is updated in the
Quartus II software, the changes can be imported into the I/O Designer
database. You must set up the locations for the files in the I/O Designer
software.

Altera Corporation 6–19
October 2007

FPGA-to-Board Integration with the I/O Designer Software

1. To set up the file locations if they are not already set, on the File
menu, click Properties. The project Properties dialog box appears
(Figure 6–12).

Figure 6–12. Project Properties Dialog Box

2. Under FPGA Xchange, click Browse to select the FPGA Xchange file
name and file location.

3. To specify a Pin report file, under Place and Route, click Browse to
select the Pin-Out file name and file location.

Once you have set up these file locations, the I/O Designer software
monitors these files for changes. If the FPGA Xchange file or Pin-Out file
changes during the design flow, three indicators flash red in the lower
right-hand corner of the I/O Designer main window (see Figure 6–10 on
page 6–16). You can continue working or click on the indicators to open
the I/O Designer Update Wizard. If you have made changes to your
design in the Quartus II software that result in an updated FPGA
Xchange file or Pin-Out file and the update indicators do not flash or you
have previously canceled an indicated update, manually open the
Update Wizard. To open the Wizard, on the File menu, click Update.

6–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

1 In versions of the I/O Designer software before version 2005,
instead of using flashing indicators, the I/O Designer software
displays a dialog box asking if you want to open the Update
Wizard.

The I/O Designer Update Wizard lists the updated files associated with
the database (Figure 6–13).

Figure 6–13. Update Wizard Dialog Box

The paths to the updated files have yellow exclamation points and the
Status column shows Not updated, indicating that the database has not
yet been updated with the newer information contained in the files. A
checkmark to the left of any updated file indicates that the file will update
the database. Turn on any files you want to use to update the
I/O Designer database, and click Next. If you are not satisfied with the
database update, on the Edit menu, click Undo.

1 You can update the I/O Designer database using both the FPGA
Xchange file and the Pin-Out file at the same time. Turning on
both the FPGA Xchange file and the Pin-Out file for update
causes the Update Wizard to provide options for using
assignments from one file or the other exclusively or merging
the assignments contained in both files into the I/O Designer
database. Versions of the I/O Designer software older than
version 2005 simply merge assignments contained in multiple
files.

Sending Pin Assignment Changes to the Quartus II Software

In the same way that the FPGA designer can make adjustments that affect
the PCB design, the board designer can make changes to optimize signal
routing and layout that must be applied to the FPGA. The FPGA designer
can take these required changes back into the Quartus II software to refit
the logic to match the adjustments to the pinout. The I/O Designer
software can accommodate this reverse flow as shown in Figure 6–14.

Altera Corporation 6–21
October 2007

FPGA-to-Board Integration with the I/O Designer Software

Figure 6–14. Updating the Quartus II Pin Assignments in the Reverse Design
Flow

Notes to Figure 6–14:
(1) These are software-specific steps in the design flow and are not necessary for the

reverse flow steps of the design.
(2) Refer to Figure 6–1 for the full design flow, which includes the complete

I/O Designer software, the DxDesigner software, and the board layout tool
flowchart details.

Pin assignment changes are made directly in the I/O Designer software,
or the software automatically updates changes made in a board layout
tool that are back-annotated to a schematic entry program such as the
DxDesigner software. You must update the FPGA Xchange file to reflect
these updates in the Quartus II software. To perform this update in the
I/O Designer software, on the Generate menu, click FPGA Xchange File.

c If your I/O Designer database points to the FPGA Xchange file
generated by the Quartus II software instead of a backup copy,
updating the file from the I/O Designer software overwrites
any changes that may have been made to the file by the
Quartus II software. If there are assignments from the Quartus II
software in the file that you want to preserve, make a backup
copy of the file before updating it in the I/O Designer software,
and verify that your I/O Designer database points to the backup
copy. To point to the backup copy, perform the steps in
“Updating Pin Assignments from the Quartus II Software” on
page 6–17.

(2)

I/O Designer

Regenerate FPGA
Xchange File

Create or Change
Pin Assignments

Create or Update
I/O Designer

Database (.fpc)

Generate Symbol

Create or Change
Pin Assignments

Run I/O Assignment
Analysis

Set Up to Generate
FPGA Xchange File

Compile and Run
EDA Netlist Writer

Start FPGA Design
Quartus II Software

Import Pin
Assignments

.fx

(1) (1)

6–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

After the FPGA Xchange file is updated, you must import it into the
Quartus II software. To import the file, perform the following steps:

1. Start the Quartus II software and open your project.

2. On the Assignments menu, click Import Assignments.

3. In the File name box, click Browse and from the Files of type list,
select FPGA Xchange Files (*.fx).

3. Select the FPGA Xchange file and click Open.

4. Click OK.

c Both the Quartus II software and the I/O Designer software can
export and import an FPGA Xchange file. It is therefore possible
to overwrite the FPGA Xchange file and import incorrect
assignments into one or both programs. To prevent this
occurrence from happening, make a backup copy of the file
before importing, and import the copy instead of the file
generated by the Quartus II software. In addition, assignments
in the Quartus II software can be protected by following the
steps in “Protecting Assignments in the Quartus II Software”.

Protecting Assignments in the Quartus II Software

To protect assignments in the Quartus II software, use the following
steps:

1. Start the Quartus II software.

2. On the Assignments menu, click Import Assignments. The Import
Assignments dialog box appears.

3. Turn on Copy existing assignments into <project name>.qsf.bak
before importing before importing the FPGA Xchange file. This
action automatically creates a backup Quartus II constraints file that
contain all of your current pin assignments.

Generating Symbols for the DxDesigner Software

Along with circuit simulation, circuit board schematic creation is one of
the first tasks required in the design of a new PCB. Schematics are
required to understand how the PCB will work, and to generate a netlist
that is passed to a board layout tool for board design and routing. The
I/O Designer software provides the ability to create schematic symbols
based on the FPGA design exported from the Quartus II software.

Altera Corporation 6–23
October 2007

FPGA-to-Board Integration with the I/O Designer Software

Most FPGA devices contain hundreds of pins, requiring large schematic
symbols that may not fit on a single schematic page. Symbol designs in
the I/O Designer software can be split or fractured into a number of
functional blocks, allowing multiple part fractures on the same schematic
page or across multiple pages. In the DxDesigner software, these part
fractures are joined together with the use of the HETERO attribute.

The I/O Designer software can generate symbols for use in a number of
Mentor Graphics schematic entry tools, and can import changes
back-annotated by board layout tools to update the database and feed
updates back to the Quartus II software using the FPGA Xchange file.
This section discusses symbol creation specifically for the DxDesigner
software.

Schematic symbols are created in the I/O Designer software in the
following ways:

■ Manually
■ Using the I/O Symbol Wizard
■ Importing previously created symbols from the DxDesigner

software

The I/O Designer Symbol Wizard can be used as a design base that
allows you to quickly create a symbol for manual editing at a later time.
If you have already created symbols in a DxDesigner project and want to
apply a different FPGA design to them, you can manually import these
symbols from the DxDesigner project. To import the symbols, open the
I/O Designer software, and on the File menu, click Import Symbol.

f For more information about importing symbols from the DxDesigner
software into an I/O Designer database, refer to the I/O Designer Help.

Symbols created in the I/O Designer software are either functional,
physical (PCB), or a combination of functional and physical. A functional
symbol is based on signals imported into the database, usually from
Verilog HDL or VHDL files. No physical device pins must be associated
with the signals to generate a functional symbol. This section focuses on
board-level PCB symbols with signals directly mapped to physical device
pins through assignments in either the Quartus II Pin Planner or in the
I/O Designer database.

f For information about manually creating symbols, importing symbols,
and editing symbols in the I/O Designer software, as well as the
different types of symbols the software can generate, refer to the
I/O Designer Help.

6–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

Setting Up the I/O Designer Software to Work with the DxDesigner
Software

If you created your I/O Designer database using the Database Wizard,
you may already be set up to export symbols to a DxDesigner project. To
verify this, or to manually set up the I/O Designer software to work with
the DxDesigner software, you must set the path to the DxDesigner
executable, set the export type to DxDesigner, and set the path to a
DxDesigner project directory.

To set these options, perform the following steps:

1. Start the I/O Designer software.

2. On the Tools menu, click Preferences. The Preferences dialog box
appears.

3. Click Paths, double-click on the DxDesigner executable file path
field, and click Browse to select the location of the DxDesigner
application (Figure 6–15).

4. Click Apply.

Figure 6–15. Path Preferences Dialog Box

Altera Corporation 6–25
October 2007

FPGA-to-Board Integration with the I/O Designer Software

5. Click Symbol Editor and click Export. In the Export type menu,
under General, select DxDesigner/PADS-Designer (Figure 6–16).

6. Click Apply and click OK.

Figure 6–16. Symbol Editor Export Preferences

7. On the File menu, click Properties. The project Properties dialog
box appears.

8. Click the PCB Flow tab and click Path to a DxDesigner project
directory.

9. Click OK.

If you did not create a new DxDesigner project in the Database Wizard
and you do not already have a DxDesigner project, you must create a new
database using the DxDesigner software, and point the I/O Designer
software to this new project.

f For information about creating and working with DxDesigner projects,
refer to the DxDesigner Help.

6–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

Create Symbols with the Symbol Wizard

FPGA symbols based on Altera devices can be created, fractured, and
edited using the I/O Designer Symbol Wizard. To create a symbol based
on a selected Altera FPGA device:

1. Start the I/O Designer software.

2. Click Symbol Wizard in the toolbar, or on the Symbol menu, click
Symbol Wizard. The Symbol Wizard (1 of 6) page is shown
(Figure 6–17).

Figure 6–17. Symbol Wizard

3. On the first Symbol Wizard page, in the Symbol name field, enter
the symbol name. The DEVICE and PKG_TYPE fields are
populated with the device and package information automatically.
Under Symbol type, click PCB. Under Use signals, click All.

4. Click Next. The Symbol Wizard (2 of 6) page is shown.

Altera Corporation 6–27
October 2007

FPGA-to-Board Integration with the I/O Designer Software

1 If the DEVICE and PKG_TYPE fields are blank or
incorrect, cancel the Symbol Wizard and select the correct
device information. On the File menu, click Properties. In
the Properties window, click the FPGA Flow tab and enter
the correct device information.

5. On page 2 of the Symbol Wizard, select fracturing options for your
symbol. If you are using the Symbol Wizard to edit a previously
created fractured symbol, you must turn on Reuse existing
fractures so that your current fractures are not altered. Select other
options on this page as appropriate for your symbol.

6. Click Next. The Symbol Wizard (3 of 6) page is shown.

7. Additional fracturing options are available on page 3 of the Symbol
Wizard. After selecting the desired options, click Next. The Symbol
Wizard (4 of 6) page is shown.

8. On page 4 of the Symbol Wizard, select the options for how the
symbols will look. Select the desired options and click Next. The
Symbol Wizard (5 of 6) page is shown.

9. On page 5 of the Symbol Wizard, define what information will be
labeled for the entire symbol and for individual pins. Select the
desired options and click Next. The Symbol Wizard (6 of 6) page is
shown.

10. On the final page of the Symbol Wizard, add additional signals and
pins that have not already been placed in the symbol. Click Finish
when you complete your selections.

Your symbol is complete. You can view your symbol and any fractures
you created using the Symbol Editor (Figure 6–18). You can edit parts of
the symbol, delete fractures, or rerun the Symbol Wizard.

6–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

Figure 6–18. The I/O Designer Symbol Editor

If assignments in the I/O Designer database are updated, the symbols
created in the I/O Designer software automatically reflect these changes.
Assignment changes can be made within the I/O Designer software, with
an updated FPGA Xchange file from the Quartus II software, or from a
back-annotated change in your board layout tool.

Export Symbols to the DxDesigner Software

After you have completed your symbols, export the symbols to your
DxDesigner project. To generate all the fractures of a symbol, on the
Generate menu, click All Symbols. To generate a symbol for the currently
displayed symbol in Symbol Editor, click Current Symbol Only. Each
symbol in the database is saved as a separate file in the /sym directory in
your DxDesigner project. The symbols can be instantiated in your
DxDesigner schematics.

f For more information about working with DxDesigner projects, refer to
the DxDesigner Help.

Scripting Support

The I/O Designer software features a command line Tcl interpreter. All
commands issued through the GUI in the I/O Designer software are
translated into Tcl commands that are run by the tool. You can view the
generated Tcl commands and run scripts, or enter individual commands
in the I/O Designer Console window.

Altera Corporation 6–29
October 2007

FPGA-to-Board Integration with the I/O Designer Software

The following section includes commands that perform some of the
operations described in this chapter.

If you want to change the FPGA Xchange file from which the
I/O Designer software updates assignments, type the following
command at an I/O Designer Tcl prompt:

set_fpga_xchange_file <file name>

After the FPGA Xchange file is specified, use the following command to
update the I/O Designer database with assignment updates made in the
Quartus II software:

update_from_fpga_xchange_file

Use the following command to update the FPGA Xchange file with
changes made to the assignments in the I/O Designer software for
transfer back into the Quartus II software:

generate_fpga_xchange_file

If you want to import assignment data from a Pin-Out file created by the
Quartus II software, use the following command:

set_pin_report_file -quartus_pin <file name>

Run the I/O Designer Symbol Wizard with the following command:

symbolwizard

Set the DxDesigner project directory path where symbols are saved with
the following command:

set_dx_designer_project -path <path>

f For more information about Tcl scripting and Tcl scripting with the
Quartus II software, refer to the Tcl Scripting chapter in volume 2 of the
Quartus II Handbook. For more information about the Tcl scripting
capabilities of the I/O Designer software as well as a list of all the
commands available, refer to the I/O Designer Help.

6–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

FPGA-to-Board
Integration with
the DxDesigner
Software

The Mentor Graphics DxDesigner software is a design entry tool for
schematic capture. You can use it to create flat circuit schematics for all
types of PCB design. You can also use the DxDesigner software to create
hierarchical schematics that facilitate design reuse and a team-based
design. You can use the DxDesigner software in the design flow alone or
in conjunction with the I/O Designer software. However, if you use the
DxDesigner software without the I/O Designer software, the design flow
is one-way, using only the Pin-Out file generated by the Quartus II
software.

Signal and pin assignment changes can be made only in the Quartus II
software and are reflected in updated symbols in a DxDesigner
schematic. You cannot back-annotate changes made in a board layout tool
or in a DxDesigner symbol to the Quartus II software. Figure 6–19 shows
the design flow when the I/O Designer software is not used.

Figure 6–19. Design Flow Without the I/O Designer Software Note (1)

Note to Figure 6–19:
(1) Refer to Figure 6–1 for the full design flow, which includes the Quartus II software,

the I/O Designer software, and the board layout tool flowchart details.

f For more information about the DxDesigner software, including usage,
support, training, and product updates, refer to the Mentor Graphics
web page at www.mentor.com, or choose Schematic Design Help Topics
in the DxDesigner Help.

DxDesigner Project Settings

New projects in the DxDesigner software are already set up to create
FPGA symbols by default. However, for complete support and
compatibility with the I/O Designer software, if it is used with the
DxDesigner software, you should enable the DxBoardLink Flow options.

DxDesigner

Instantiate in
Schematic

Generate Symbol

Create New or Open
Existing Project

Forward to Board
Layout Tool

.pin

Altera Corporation 6–31
October 2007

FPGA-to-Board Integration with the DxDesigner Software

You can enable the DxBoardLink flow design configuration while
creating a new DxDesigner project or after a project is created.

To enable the DxBoardLink flow design configuration when creating a
new DxDesigner project, perform the following steps:

1. Start the DxDesigner software.

2. On the File menu, click New and click the Project tab. The New
dialog box appears (Figure 6–20).

Figure 6–20. New Project Dialog Box

3. Click More. Turn on DxBoardLink (Figure 6–20).

6–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

1 To enable the DxBoardLink Flow design configuration in
an existing project, click Design Configurations in the
Design Configuration toolbar and turn on DxBoardLink
(Figure 6–21).

Figure 6–21. DxBoardLink Design Configuration

DxDesigner Symbol Wizard

In addition to circuit simulation, circuit board schematic creation is one
of the first tasks required in the design of a new PCB. Schematics are
required to understand how the PCB will work, and to generate a netlist
that is passed on to a board layout tool for board stackup design and
routing.

You can create schematic symbols using the DxDesigner software based
on FPGA designs exported from the Quartus II software through the
Pin-Out file for instantiation in DxDesigner schematic design files. Most
FPGA devices are physically large with hundreds of pins, requiring large
schematic symbols that may not fit on a single schematic page. You can
split or fracture symbols created in the DxDesigner software into a
number of functional blocks, allowing multiple part fractures on the same
schematic page or across multiple pages. In the DxDesigner software,
these part fractures are joined together with the use of the HETERO
attribute.

You can create schematic symbols in the DxDesigner software manually
or with the Symbol Wizard. The DxDesigner Symbol Wizard is similar to
the I/O Designer Symbol Wizard, but with fewer fracturing options.

Altera Corporation 6–33
October 2007

FPGA-to-Board Integration with the DxDesigner Software

FPGA symbols based on Altera devices can be created, fractured, and
edited using the DxDesigner Symbol Wizard. To start the Symbol
Wizard, perform the following steps:

1. Start the DxDesigner software.

2. Click Symbol Wizard in the toolbar, or on the File menu, click New.
The New window is shown. Click the File tab and create a new file
of type Symbol Wizard.

3. Enter the new symbol name in the name field and click OK. The
Symbol Wizard page is shown (Figure 6–22).

Figure 6–22. Wizard Task Selection

4. On the Wizard Task Selection page, choose to create a new symbol
or modify an existing symbol. If you are modifying an existing
symbol, specify the library path or alias, and select the existing
symbol. If you are creating a new symbol, select DxBoardLink for
the symbol source. The DxDesigner block type defaults to Module

6–34 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

because the FPGA design does not have an underlying DxDesigner
schematic. Define whether or not to fracture the symbol. After
making your selections, click Next. The New Symbol and Library
Name page is shown.

5. On the New Symbol and Library Name page, enter a name for the
symbol, an overall part name for all of the symbol fractures, and a
library name for the new library created for this symbol. By default,
the part and library names are the same as the symbol name. Click
Next. The Symbol Parameters page is shown.

6. On the Symbol Parameters page, decide how the generated symbol
will look and how it will match up with the grid you have set in
your DxDesigner project schematic. After making your selections,
click Next. The DxBoardLink Pin List Import page is shown
(Figure 6–23).

Figure 6–23. DxBoardLink Pin List Import

Altera Corporation 6–35
October 2007

Conclusion

7. On the DxBoardLink Pin List Import page, in the FPGA vendor
list, select Altera Quartus. In the Pin-Out file to import field, browse
to and select the Pin-Out file from your Quartus II design project
directory. Additionally, select choices from the Fracturing Scheme
options, Bus pin options, and Power pin options. After you make
your selections, click Next. The Symbol Attributes page is shown.

8. On the Symbol Attributes page, select to create or modify symbol
attributes for use in the DxDesigner software. After you make your
selections, click Next. The Pin Settings page is shown.

9. On the Pin Settings page, make any final adjustments to pin and
label location and information. Each tabbed spreadsheet represents
a fracture of your symbol. After you make your selections, click
Save Symbol.

After you save the symbol, you can examine and place any fracture of the
symbol in your schematic. When you are finished with the Symbol
Wizard, all the fractures you created are saved as separate files in the
library you specified or created in the /sym directory in your DxDesigner
project. You can add the symbols to your schematics or you can edit the
symbols manually or with the Symbol Wizard.

1 Symbols created in the DxDesigner software can be edited and
updated with newer versions of the Pin-Out file generated by
the Quartus II software. However, symbol fracturing is fixed,
and the symbol cannot be fractured again. To create new
fractures for your design, create a new symbol in the Symbol
Wizard, and follow the steps in “DxDesigner Symbol Wizard”
on page 6–32.

f For more information about creating, editing, and instantiating
component symbols in DxDesigner, choose Schematic Design Help
Topics from the Help menu in the DxDesigner software.

Conclusion Transferring a complex, high-pin-count FPGA design to a PCB for
prototyping or manufacturing is a daunting process that can lead to
errors in the PCB netlist or design, especially when multiple engineers are
working on different parts of the project. The design workflow available
when the Quartus II software is used in conjunction with the Mentor
Graphics toolset assists the FPGA designer and the board designer in
preventing errors and focusing their attention on the design.

6–36 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

Referenced
Documents

This chapter references the following documents:

■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Volume 3: Verification of the Quartus II Handbook

Document
Revision History

Table 6–2 shows the revision history for this chapter.

Table 6–2. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 6–36 —

May 2007
v7.1.0

● Removed table (6-2) listing of unsupported devices.
● Added Referenced Documents.

—

March 2007
v7.0.0

Updated revision and publish date only. —

November 2006
v6.1.0

Added revision history to the document. —

May 2006
v6.0.0

Was chapter 7 in v5.1.
Minor updates for the Quartus II software version 6.0.0.

—

November 2005
v5.1.1

Corrected text in steps 3 and 4 on page 11. —

October 2005
v5.1.0

Initial release. —

http://www.altera.com/literature/quartus2/lit-qts-verification.jsp
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

Altera Corporation 7–1
October 2007 Preliminary

7. Cadence PCB Design
Tools Support

Introduction With today’s large, high-pin-count and high-speed FPGA devices, good
printed circuit board (PCB) design practices are more essential than ever
to ensure the correct operation of your system. Typically, the PCB design
takes place concurrently with the design and programming of the FPGA.
Signal and pin assignments are initially made by the FPGA or ASIC
designer, and it is up to the board designer to correctly transfer these
assignments to the symbols used in their system circuit schematics and
board layout. As the board design progresses, pin reassignments may be
requested or required to optimize the layout. These reassignments must
in turn be relayed to the FPGA designer so that the new assignments can
be processed through the FPGA using updated place-and-route.

Cadence provides tools to support this type of design flow. This chapter
addresses how the Quartus® II software interacts with the Cadence
Allegro Design Entry HDL software and the Allegro Design Entry CIS
(Component Information System) software (also known as OrCAD
Capture CIS) to provide a complete FPGA-to-board integration design
workflow. This chapter provides information about the following topics:

■ Cadence tool description, history, and comparison
■ The general design flow between the Quartus II software and the

Cadence Allegro Design Entry HDL software and the Cadence
Allegro Design Entry CIS software

■ Generating schematic symbols from your FPGA design for use in the
Cadence Allegro Design Entry HDL software

■ Updating Design Entry HDL symbols when signal and pin
assignment changes are made in the Quartus II software

■ Creating schematic symbols in the Cadence Allegro Design Entry
CIS software from your FPGA design

■ Updating symbols in the Cadence Allegro Design Entry CIS software
when signal and pin assignment changes are made in the Quartus II
software

■ Using Altera®-provided device libraries in the Cadence Allegro
Design Entry CIS software

This chapter is intended primarily for board design and layout engineers
who want to begin the FPGA board integration process while the FPGA
is still in the design phase. In addition, part librarians benefit from
learning how to take output from the Quartus II software and use it to
create new library parts and symbols.

QII52014-7.2.0

7–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

The instructions in this chapter require the following software:

■ The Quartus II software version 5.1 or later
■ The Cadence Allegro Design Entry HDL or the Cadence Allegro

Design Entry CIS software version 15.2 or later
■ If you are using the OrCAD Capture software, you must have

version 10.3 or later (CIS is optional)

1 Because the Cadence Allegro Design Entry CIS software is based
on OrCAD Capture, these programs are very similar. For this
reason, this chapter refers to the Allegro Design Entry CIS
software in directions; however, these directions also apply to
OrCAD Capture unless otherwise noted.

f To obtain and license the Cadence tools described in this chapter, and for
product information, support, and training, refer to the Cadence
website, www.cadence.com. For information about OrCAD Capture and
the CIS option, refer to the OrCAD website, www.orcad.com. For
Cadence and OrCAD support and training, refer to the EMA Design
Automation website, www.ema-eda.com.

Product
Comparison

The design tools described in this chapter have similar functionality, but
there are differences in their use as well as where to access product
information. Table 7–1 lists the products described in this chapter and
provides information about changes, product information, and support.

Table 7–1. Cadence and OrCAD Product Comparison

Cadence Allegro Design
Entry HDL

Cadence Allegro Design Entry
CIS OrCAD Capture CIS

Former Name Concept HDL Expert Capture CIS Studio N/A

History

More commonly known by its
former name, Cadence
renamed all board design
tools in 2004 under the
Allegro name.

Based directly on OrCAD
Capture CIS, this tool is still
developed by OrCAD but sold
and marketed by Cadence.
EMA provides support and
training.

The basis for Design Entry CIS
is still developed by OrCAD for
continued use by existing
OrCAD customers. EMA now
provides support and training
for all OrCAD products.

Vendor
Design Flow

Cadence Allegro 600 series,
formerly known as Expert
Series, for high-end,
high-speed design.

Cadence Allegro 200 series,
formerly known as Studio
Series, for small- to
medium-level design.

N/A

Information
and Support

www.cadence.com
www.ema-eda.com

www.cadence.com
www.ema-eda.com
www.orcad.com

www.ema-eda.com
www.orcad.com

Altera Corporation 7–3
October 2007 Preliminary

FPGA-to-PCB Design Flow

FPGA-to-PCB
Design Flow

In the examples in this section, you create a design flow integrating an
Altera FPGA design from the Quartus II software through a circuit
schematic in the Allegro Design Entry HDL software (Figure 7–1) or the
Allegro Design Entry CIS software (Figure 7–2).

Figure 7–1. Design Flow with the Allegro Design Entry HDL Software

Project Manager

Create or Open a Project

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Part Developer

Start FPGA Design
Start PCB Design

(Allegro Design Entry HDL)

End

Quartus II Software

.pin

Import or Update Pin
Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

7–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 7–2. Design Flow with the Allegro Design Entry CIS Software

The basic steps in a complete design flow to integrate an Altera FPGA
design starting in the Quartus II software through to a circuit schematic
in Design Entry HDL or Design Entry CIS are as follows:

■ Start the Quartus II software.
■ In the Quartus II software, compile your design to generate a

Pin-Out (.pin) file to transfer assignments to the Cadence tool.
■ If you are using the Cadence Allegro Design Entry HDL software for

your schematic design:
● Open an existing project or create a new project in the Allegro

Project Manager.
● Construct a new symbol or update an existing symbol using the

Allegro PCB Librarian Part Developer.
● With the Part Developer, edit your symbol or fracture it into

smaller parts, if desired.
● Instantiate the symbol in your Design Entry HDL software

schematic and transfer the design to your board layout tool.

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus II Software

End

.pin

Instantiate Symbol in Schematic

Generate or Update Part

Create or Open Project

Forward to Board Layout Tool

Edit or Fracture Symbol

Board Layout Tool

Layout & Route FPGA

Start FPGA Design
Start PCB Design

(Allegro Design Entry CIS)

Altera Corporation 7–5
October 2007 Preliminary

Setting Up the Quartus II Software

■ If you are using the Cadence Allegro Design Entry CIS software for
your schematic design, perform the following steps:
● Generate a new part within an existing or new Allegro Design

Entry CIS project, referencing the Pin-Out file output from the
Quartus II software. You can update an existing symbol with a
new Pin-Out file.

● Split the symbol into smaller parts as desired.
● Instantiate the symbol in your Design Entry CIS schematic and

transfer the design to your board layout tool.

Figures 7–1 and 7–2 show the possible design flows, depending on your
tool choice. The Cadence PCB Librarian Expert license is required to use
the PCB Librarian Part Developer to create FPGA symbols. You can
update symbols with changes made to the FPGA design at any point
using any of these tools.

Setting Up the
Quartus II
Software

You can transfer pin and signal assignments from the Quartus II software
to the Cadence design tools by generating the Quartus II project Pin-Out
file. The Pin-Out file is an output file generated by the Quartus II Fitter
that contains pin assignment information. Use the Quartus II Pin Planner
or Assignment Editor to set and change the assignments contained in the
Pin-Out file. This file cannot be used to import pin assignment changes
into the Quartus II software. Use it only to transfer assignments for use
with the Cadence design tools.

The Pin-Out file lists all used and unused pins on your selected Altera
device. It also provides the following basic information fields for each
assigned pin on a device:

■ Pin signal name and usage
■ Pin number
■ Signal direction
■ I/O standard
■ Voltage
■ I/O bank
■ User or Fitter-assigned

f For information about using the Quartus II Pin Planner to create or
change pin assignment details, refer to the I/O Management chapter in
volume 2 of the Quartus II Handbook.

7–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Generating Pin-Out Files

The Quartus II software automatically generates the Pin-Out file when
your FPGA design is fully compiled or when you start I/O Assignment
Analysis. To start I/O Assignment Analysis, on the Processing menu,
point to Start and click Start I/O Assignment Analysis. The file is output
by the Quartus II Fitter. The file is generated and placed in your
Quartus II design directory with the name <project name>.pin. The
Cadence design tools do not generate or change this file.

f For more information about pin and signal assignment transfer and the
files that the Quartus II software can import and export, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

FPGA-to-Board
Integration with
the Cadence
Allegro Design
Entry HDL
Software

The Cadence Allegro Design Entry HDL software is Cadence’s high-end
schematic capture tool (part of the Cadence 600 series design flow). Use
this software to create flat circuit schematics for all types of PCB design.
The Cadence Allegro Design Entry HDL software can also create
hierarchical schematics to facilitate design reuse and team-based design.
With the Cadence Allegro Design Entry HDL software, the design flow
from FPGA-to-board is one-way, using only the Pin-Out file generated by
the Quartus II software. Signal and pin assignment changes can only be
made in the Quartus II software and are reflected in updated symbols in
a Design Entry HDL project.

1 Routing or pin assignment changes made in a board layout tool
or a Design Entry HDL symbol cannot be back-annotated to the
Quartus II software.

Figure 7–1 shows the design flow with the Cadence Allegro Design Entry
HDL software.

f For more information about the Cadence Allegro Design Entry HDL
software and the Part Developer, including licensing, support, usage,
training, and product updates, refer to the Help in the software or refer
to the Cadence webpage at www.cadence.com.

Symbol Creation

In addition to circuit simulation, circuit board schematic creation is one
of the first tasks required in the design of a new PCB. Schematics are
required to understand how the PCB works, and to generate a netlist that
is passed on to a board layout tool for board design and routing. The
Allegro PCB Librarian Part Developer provides the ability to create
schematic symbols based on FPGA designs exported from the Quartus II
software.

Altera Corporation 7–7
October 2007 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

Create symbols for Design Entry HDL with the Allegro PCB Librarian
Part Developer available in the Allegro Project Manager. The Part
Developer is the recommended method for importing FPGA designs into
the Cadence Allegro Design Entry HDL software.

You must have a PCB Librarian Expert license from Cadence to run the
Part Developer. The Part Developer provides a graphical interface with
many options for creating, editing, fracturing, and updating symbols. If
you do not use the Part Developer, you must create and edit symbols
manually in the Symbol Schematic View in the Cadence Allegro Design
Entry HDL software.

1 If you do not have a PCB Librarian Expert license, you can still
automatically create FPGA symbols using the programmable IC
(PIC) design flow found in the Allegro Project Manager. For
more information about using the PIC design flow, refer to the
Help in the Cadence design tools, or go to the Cadence website
at www.cadence.com.

Before you create a symbol from an FPGA design, you must open or
create a Design Entry HDL design project. You can do this with the
Allegro Project Manager, the main interface to all of the Cadence tools.

To open an existing design in the Allegro Project Manager, on the File
menu, click Open and select the main design file for your project (found
in your Allegro Design Entry HDL project directory and called
<project directory>.cpm).

To create a new project, on the File menu, point to New and click New
Design. The New Project Wizard appears. Use the wizard to name your
new project, set the file location, and define associated part libraries.

Allegro PCB Librarian Part Developer

Create, fracture, and edit schematic symbols for your FPGA designs in
Altera devices using the Part Developer. Most FPGA devices are
physically large with hundreds of pins, requiring large schematic
symbols that may not fit on a single schematic page. Symbols designed in
the Part Developer can be split or fractured into a number of functional
blocks called slots, allowing multiple smaller part fractures to exist on the
same schematic page or across multiple pages. Figure 7–3 highlights how
the Part Developer fits into the design flow.

7–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 7–3. Part Developer in the Design Flow

Notes to Figure 7–3:
(1) Refer to Figure 7–1 for the full design flow flowchart details.
(2) Grayed out steps are not part of the FPGA Symbol creation or update process.

Run the Part Developer from the Project Manager (Figure 7–4). To start
the Part Developer in the Project Manager, on the Flows menu, click
Library Management. Click Part Developer to start the tool.

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Synbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(1)

(2)

Altera Corporation 7–9
October 2007 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

Figure 7–4. Invoking the Part Developer from the Project Manager

Import and Export Wizard
Once you are in the Part Developer, you can use the Import and Export
Wizard to import your pin assignments from the Quartus II software. To
access the Wizard, perform the following steps:

1. On the File menu, click Import and Export. The Import and Export
Wizard appears (Figure 7–5).

7–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 7–5. Import and Export Wizard

2. Select Import FPGA. Click Next. The Select Source page appears
(Figure 7–6).

Figure 7–6. Select Source Page

Altera Corporation 7–11
October 2007 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

3. In the Vendor list, select Altera. In the PnR Tool list, select
quartusII. To specify the Pin-Out file in the PR File field, select the
Pin-Out file in your Quartus II project directory. Click Simulation
Options if you want to select simulation input files. Click Next. The
Select Destination page is shown (Figure 7–7).

Figure 7–7. Select Destination Page

4. To create a new component in a library, click Generate Custom
Component. To base your symbol on an existing component, click
Use standard component.

1 You may want to do this if you previously created generic
symbols for an FPGA device. You can place your pin and
signal assignments from the Quartus II software on this
symbol and reuse the symbol as a base any time you have a
new FPGA design.

In the Library list, select an existing library. You can now select from
the cells contained in the selected library. Each cell represents all of
the symbol versions and part fractures for that particular part. In the
Cell list, select the existing cell to use as a base for your part. In the
Destination Library list, select a destination library for the
component. Click Next. A preview of your import data is shown
(Figure 7–8).

7–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 7–8. Preview of Import Data Window

5. Review the assignments you are importing into the Part Developer
based on the data in the Pin-Out file. The location of each pin is not
included in the information in this window, but inputs are placed
on the left side of the created symbol, outputs on the right, power
pins on the top, and ground pins on the bottom. Make any desired
changes. When you have completed your changes, click Finish to
create the symbol. The Part Developer main screen is shown.

1 If the Part Developer is not set up to point to your PCB Librarian
Expert license file, an error message displays in red at the
bottom of the message text window of the Part Developer when
you select the Import and Export command. To point to your
PCB Librarian Expert license, on the File menu, click Change
Product and select the correct product license.

f For more information about licensing and obtaining licensing support,
contact Cadence or refer to their website at www.cadence.com.

Edit and Fracture Symbol
After you save your new symbol in the Part Developer software, you can
edit the symbol graphics, fracture the symbol into multiple slots, and add
or change package or symbol properties. These actions are available from
the Part Developer main window.

Altera Corporation 7–13
October 2007 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

The Part Developer Symbol Editor contains many graphical tools to edit
the graphics of a particular symbol. Select the symbol in the cell hierarchy
to edit the symbol graphics. The Symbol Pins tab is shown. Edit the
preview graphic of the symbol in the Symbol Pins tab.

Fracturing a Part Developer package into separate symbol slots is
especially useful for FPGA designs. A single symbol for most FPGA
packages may be too large for a single schematic page. Splitting the part
into separate slots allows you to organize parts of the symbol by function,
creating cleaner circuit schematics. For example, you could create one slot
for an I/O symbol, a second slot for a JTAG symbol, and a third slot for a
power/ground symbol.

Figure 7–9 shows a part fractured into separate slots.

Figure 7–9. Splitting a Symbol into Multiple Slots Notes (1), (2)

Notes to Figure 7–9:
(1) Figure 7–9 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings.

Symbols created for other devices or other configuration modes may have different sets of configuration pins, but
can be fractured in a similar manner.

(2) Symbol fractures are referred to in different ways in each of the tools described in this chapter. Refer to Table 7–2 for
the specific tool naming conventions.

(3) The power/ground slot shows only a representation of power and ground pins. In actuality, the device contains a
high number of power and ground pins.

newt

reset

d[7..0] yn_out[7..0]

Version 1

filtref

filtref

filtref

Version 2 Version 3

clk

clkx2

yvalid

follow
V

C
C

IN
T

VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

7–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 While the Part Developer software refers to symbol fractures as
slots, the other tools described in this chapter use different
names to refer to symbol fractures. Table 7–2 lists the symbol
fracture naming conventions for each of the tools addressed in
this chapter.

To fracture a part into separate slots, or modify the slot locations of pins
on parts that are already fractured in the Part Developer, perform the
following steps:

1. Start the Cadence Allegro Design Project Manager.

2. On the Flows menu, click Library Management. The Library
Management design flow is shown. Click Part Developer. The Part
Developer launches.

3. Click on the name of the package you want to change in the cell
hierarchy. The Package Pin tab appears.

4. Click Functions/Slots. If you are not creating new slots but want to
change the slot location of some pins, proceed to step 5. If you are
creating new slots, click Add. A dialog box appears, allowing you to
add extra symbol slots. Set the number of extra slots you want to
add to the existing symbol, not the total number of desired slots for
the part. Click OK.

5. Click Distribute Pins. Set the slot where each pin should reside. Use
the checkboxes in each column to move pins from one slot to
another. You can use the standard cut, copy, and paste keyboard
commands on selected groups of checkboxes to move multiple pins
from one slot to another. Click OK.

6. After distributing the pins, click the Package Pin tab and click
Generate Symbol(s). the Generate Symbols dialog box appears.

7. Select whether to create a new symbol or modify an existing symbol
in each slot. Click OK.

Table 7–2. Symbol Fracture Naming

Allegro PCB Librarian
Part Developer Software

Allegro Design Entry
HDL Software

Allegro Design Entry
CIS Software

During symbol generation Slots N/A Sections

During symbol schematic
instantiation

N/A Versions Parts

Altera Corporation 7–15
October 2007 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

The newly generated or modified slot symbols display as separate
symbols in the cell hierarchy. Each of these symbols can be edited
individually.

c The Part Developer lets you remap pin assignments in the
Package Pin tab of the main Part Developer window. If signals
are remapped to different pins in the Part Developer, the
changes are reflected only in regenerated symbols for use in
your schematics. You cannot transfer pin assignment changes to
the Quartus II software from the Part Developer, which creates
a potential mismatch of the schematic symbols and assignments
in the FPGA design. If pin assignment changes are necessary,
make the changes in the Quartus II Pin Planner instead of the
Part Developer, and update the symbol as described in the
following sections.

f For more information about creating, editing, and organizing
component symbols with the Allegro PCB Librarian Part Developer,
refer to the Part Developer Help.

Update FPGA Symbol
As the design process continues, you may need to make changes to the
logic design in the Quartus II software, placing signals on different pins
after the design is recompiled, or use the Quartus II Pin Planner to make
changes manually. The board designer may request such changes to
improve the board routing and layout. These types of changes must be
carried forward to the circuit schematic and board layout tools to ensure
signals are connected to the correct pins on the FPGA. Updating the
Pin-Out file in the Quartus II software facilitates this flow. Figure 7–10
shows this part of the design flow.

7–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 7–10. Updating the FPGA Symbol in the Design Flow

Notes to Figure 7–10:
(1) Refer to Figure 7–1 for the full design flow flowchart details.
(2) Grayed out steps are not part of the FPGA Symbol update process.

Once the Pin-Out file has been updated, perform the following steps to
update the symbol using the Allegro PCB Librarian Part Developer:

1. On the File menu, click Import and Export. The Import and Export
Wizard appears.

2. In the list of actions to perform, select Import ECO - FPGA. Click
Next. The Select Source Page is shown.

3. Select the updated source of the FPGA assignment information. In
the Vendor list, select Altera. In the PnR Tool list, select quartusII.
In the PR File field, click browse to specify the updated Pin-Out file
in your Quartus II project directory. Click Next. The Select
Destination window is shown.

4. Select the source component and a destination cell for the updated
symbol. To create a new component based on the updated pin
assignment data, select Generate Custom Component. This
replaces the cell listed under the Specify Library and Cell name
header with a new, non-fractured cell. Any symbol edits or fractures

Part Developer

End

.pin
Import or Update Pin

Assignments

Create or Update FPGA Symbol

Edit or Fracture Symbol

Design Entry HDL

Instantiate Symbol in Schematic

Forward to Board Layout Tool

Board Layout Tool

Layout & Route FPGA

(1)

(2)

Altera Corporation 7–17
October 2007 Preliminary

FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software

are lost. You can preserve these edits by selecting Use standard
component and select the existing library and cell. Select the
destination library for the component and click Next. The Preview
of Import Data page is shown.

5. Make any additional changes to your symbol. Click Next. A list of
ECO messages displays summarizing what changes will be made to
the cell. To accept the changes and update the cell, click Finish.

6. The main Part Developer window is shown. You can edit, fracture,
and generate the updated symbols as usual from this window.

1 If the Part Developer is not set up to point to your PCB Librarian
Expert license file, an error message displays in red at the
bottom of the message text window of the Part Developer when
you select the Import and Export command. To point to your
PCB Librarian Expert license, on the File menu, click Change
Product, and select the correct product license. For more
information about licensing and obtaining licensing support,
contact Cadence or refer to their website at www.cadence.com.

Instantiating the Symbol in the Cadence Allegro Design Entry
HDL Software

Once the new symbol is saved in the Part Developer, instantiate the
symbol in your Design Entry HDL schematic.

1. In the Allegro Project Manager, switch to the board design flow.

2. On the Flows menu, click Board Design.

3. Click Design Entry to start the Design Entry HDL software.

4. To add the newly created symbol to your schematic, right-click in
the main schematic window and choose Add Component, or on the
Component menu, click Add. The Add Component dialog box
appears.

5. Select the new symbol library location, and select the name of the
cell you created from the list of cells.

The symbol is now “attached” to your cursor for placement in the
schematic. If you fractured the symbol into slots, right-click the symbol
and choose Version to select one of the slots for placement in the
schematic.

7–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

f For more information about the Cadence Allegro Design Entry HDL
software, including licensing, support, usage, training, and product
updates, refer to the Help in the software or go to the Cadence website at
www.cadence.com.

FPGA-to-Board
Integration with
Allegro Design
Entry CIS

The Cadence Allegro Design Entry CIS software is Cadence’s mid-level
schematic capture tool (part of the Cadence 200 series design flow based
on OrCAD Capture CIS). Use this software to create flat circuit
schematics for all types of PCB design. You can also create hierarchical
schematics to facilitate design reuse and team-based design using this
software. With the Cadence Allegro Design Entry CIS software, the
design flow from FPGA-to-board is unidirectional using only the Pin-Out
file generated by the Quartus II software. Signal and pin assignment
changes can only be made in the Quartus II software and are reflected in
updated symbols in a Design Entry CIS schematic project.

1 Routing or pin assignment changes made in a board layout tool
or a Design Entry CIS symbol cannot be back-annotated to the
Quartus II software. Figure 7–11 shows the design flow with the
Cadence Allegro Design Entry CIS software.

Figure 7–11. Design Flow with the Cadence Allegro Design Entry CIS Software

Run Full
Compilation

Run I/O Assignment
Analysis

Create or Change
Pin Assignments

Design Entry CISQuartus II Software

End

.pin

Instantiate Symbol in Schematic

Generate or Update Part

Create or Open Project

Forward to Board Layout Tool

Edit or Fracture Symbol

Board Layout Tool

Layout & Route FPGA

Start FPGA Design
Start PCB Design

(Allegro Design Entry CIS)

Altera Corporation 7–19
October 2007 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

f For more information about the Cadence Allegro Design Entry CIS
software, including licensing, support, usage, training, and product
updates, refer to the Help in the software, go to the Cadence website at
www.cadence.com, or go to the EMA Design Automation website at
www.ema-eda.com.

Allegro Design Entry CIS Project Creation

The Cadence Allegro Design Entry CIS software has built-in support for
creating schematic symbols using pin assignment information imported
from the Quartus II software.

If you have not already created a new project in the Cadence Allegro
Design Entry CIS software, perform the following steps to create a new
project:

1. On the File menu, point to New and click Project. The New Project
Wizard starts.

When you create a new project, you can select the PC Board Wizard,
the Programmable Logic Wizard, or a blank schematic.

2. Select the PC Board Wizard to create a project where you can select
which part libraries to use, or select a blank schematic.

The Programmable Logic Wizard is used only to build an FPGA logic
design in the Cadence Allegro Design Entry CIS software, which is
unnecessary when using the Quartus II software.

No other special configuration for your project is required. Your new
project is created in the specified location and initially consists of two
files: the OrCAD Capture Project (.opj) file and the Schematic Design
(.dsn) file.

Generate Part

After you create a new project or open an existing project in the Allegro
Design Entry CIS software, you can generate a new schematic symbol
based on your Quartus II FPGA design. You can also update an existing
symbol if your Pin-Out file has been updated in the Quartus II software.
The Cadence Allegro Design Entry CIS software stores component
symbols in OrCAD Library (.olb) files. When a symbol is placed in a
library attached to a project, it is immediately available for instantiation
in the project schematic.

7–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

You can add symbols to an existing library or you can create a new library
specifically for the symbols generated from your FPGA designs. To create
a new library, perform the following steps:

1. On the File menu, point to New and click Library in the Cadence
Allegro Design Entry CIS software to create a default library named
library1.olb. This library appears in the Library folder in the Project
Manager window of the Cadence Allegro Design Entry CIS
software.

2. Right-click the new library and choose Save As to specify a desired
name and location for the library. The library file is not created until
you save the new library.

You can now create a new symbol to represent your FPGA design in your
schematic. To generate a schematic symbol, perform the following steps:

1. Start the Cadence Allegro Design Entry CIS software.

2. On the Tools menu, click Generate Part. The Generate Part dialog
box appears (Figure 7–12).

Figure 7–12. Generate Part Dialog Box

Altera Corporation 7–21
October 2007 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

3. In the Netlist/source file type field, click Browse to specify the
Pin-Out file from your Quartus II design.

4. In the Netlist/source file type list, select Altera Pin File.

5. Enter the new part name.

6. Specify the Destination part library for the symbol. If you do not
select an existing library for the part, a new library is created with a
default name that matches the name of your Design Entry CIS
project.

7. Select Create new part if you are creating a brand new symbol for
this design. Select Update pins on existing part in library if you
updated your Pin-Out file in the Quartus II software and want to
transfer any assignment changes to an existing symbol.

8. Select any other desired options and set Implementation type to
<none>. The symbol is for a primitive library part based only on the
Pin-Out file and does not need a special implementation. Click OK.

9. Review the Undo warning and click Yes to complete the symbol
generation.

The symbol is generated and placed in the selected library or in a new
library found in the Outputs folder of the design in the Project Manager
window (Figure 7–13). Double-click the name of the new symbol to see its
graphical representation and edit it manually using the tools available in
the Cadence Allegro Design Entry CIS software.

Figure 7–13. Project Manager Window

7–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

f For more information about creating and editing symbols in the Allegro
Design Entry CIS software, refer to the Help in the software.

Split Part

Once a new symbol is saved in a project’s library, you can fracture the
symbol into multiple parts called sections. Fracturing a part into separate
sections is especially useful for FPGA designs. A single symbol for most
FPGA packages may be too large for a single schematic page. Splitting the
part into separate sections allows you to organize parts of the symbol by
function, creating cleaner circuit schematics. For example, you could
create one slot for an I/O symbol, a second slot for a JTAG symbol, and a
third slot for a power/ground symbol.

Figure 7–14 shows a part fractured into separate sections.

Figure 7–14. Splitting a Symbol into Multiple Sections Notes (1), (2)

Notes to Figure 7–14:
(1) Figure 7–14 represents a Cyclone device with JTAG or passive serial (PS) mode configuration option settings.

Symbols created for other devices or other configuration modes may have different sets of configuration pins, but
can be fractured in a similar manner.

(2) Symbol fractures are referred to in different ways in each of the tools described in this chapter. Refer to Table 7–2 for
the specific tool naming conventions.

(3) The power/ground section shows only a representation of power and ground pins. In actuality, the device contains
a high number of power and ground pins.

newt

reset

d[7..0] yn_out[7..0]

Version 1

filtref

filtref

filtref

Version 2 Version 3

clk

clkx2

yvalid

follow

V
C

C
IN

T
VCCA_PLL1
VCCA_PLL2

GNDA_PLL1
GNDA_PLL2
GNDG_PLL1
GNDG_PLL2

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

TDI
TMS

TDO

NCEO

TCK

MSEL0
MSEL1

NCONFIG
NCE

DCLK
DATA0

NCSO

NSTATUS
ASDO

CONF_DONE

V
C

C
IO

1

V
C

C
IO

2

V
C

C
IO

3

V
C

C
IO

4

Altera Corporation 7–23
October 2007 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

1 While symbol generation in the Design Entry CIS software
refers to symbol fractures as sections, the other tools described
in this chapter use different names to refer to symbol fractures.
Refer to Table 7–2 on page 7–14 for the symbol fracture naming
conventions for each of the tools addressed in this chapter.

To split a part into sections, select the part in its library in the Project
Manager window of Design Entry CIS. On the Tools menu, click Split
Part or right-click the part and choose Split Part. The Split Part Section
Input Spreadsheet is shown (Figure 7–15).

Figure 7–15. Split Part Section Input Spreadsheet

Each row in the spreadsheet represents a pin in the symbol. The
spreadsheet column labeled Section indicates the section of the symbol to
which each pin is assigned. By default, all pins in a new symbol are
located in section 1. Change the values in this column to assign pins to
different, new sections of the symbol. You can also specify the side of a
section on which the pin will reside by changing the values in the
Location column. When you are finished, click Split. A new symbol
appears in the same library as the original with the name
<original part name>_Split1.

7–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

View and edit each section individually. To view the new sections of the
part, double-click the part. The Part Symbol Editor window is shown. The
first section of the part is displayed for editing. On the View menu, click
Package to view thumbnails of all the part sections. Double-click a
thumbnail to edit that section of the symbol.

f For more information about splitting parts into sections and editing
symbol sections in the Cadence Allegro Design Entry CIS software, refer
to the Help in the software.

Instantiate Symbol in Design Entry CIS Schematic

After a new symbol is saved in a library in your Design Entry CIS project,
you can instantiate it on a page in your schematic. Open a schematic page
in the Project Manager window of the Cadence Allegro Design Entry CIS
software. On the schematic page, to add the newly created symbol to your
schematic, on the Place menu, click Part. The Place Part dialog box
appears (Figure 7–16).

Figure 7–16. Place Part Dialog Box

Altera Corporation 7–25
October 2007 Preliminary

FPGA-to-Board Integration with Allegro Design Entry CIS

Select the new symbol library location and the newly created part name.
If you select a part that is split into sections, you can select the section to
place from the Part pop-up menu. Click OK. The symbol is now attached
to your cursor for placement in the schematic. Click on the schematic
page to place the symbol.

f For more information about using the Cadence Allegro Design Entry CIS
software, refer to the Help in the software.

Altera Libraries for Design Entry CIS

Altera provides downloadable OrCAD Library Files for many of its
device packages. You can add these libraries to your Design Entry CIS
project and update the symbols with the pin assignments contained in the
Pin-Out file generated by the Quartus II software. This allows you to use
the downloaded library symbols as a base for creating custom schematic
symbols with your pin assignments that you can edit or fracture as
desired. This can increase productivity by reducing the amount of time it
takes to create and edit a new symbol.

To use the Altera-provided libraries with your Design Entry CIS project,
perform the following steps:

1. Download the library of your target device from the Download
Center page found through the Support page on the Altera website
at www.altera.com.

2. Make a copy of the appropriate OrCAD Library file so that the
original symbols are not altered. Place the copy in a convenient
location such as your Design Entry CIS project directory.

3. In the Project Manager window of the Cadence Allegro Design
Entry CIS software, click once on the Library folder to select it. On
the Edit menu, click Project or right-click the Library folder and
choose Add File to select the copy of the downloaded OrCAD
Library file and add it to your project. The new library is added to
the list of part libraries for your project.

4. On the Tools menu, click Generate Part. The Generate Part dialog
box appears (Figure 7–17).

7–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 7–17. Generate Part Dialog Box

5. In the Netlist/source file type field, click Browse to specify the
Pin-Out file in your Quartus II design.

6. From the Netlist/source file type list, select Altera Pin File.

7. For the part name, enter the name of the target device the same as it
appears in the downloaded library file. For example, if you are
using a device from the CYCLONE06.OLB library, set the part name
to match one of the devices in this library such as ep1c6f256. You
can rename the symbol later in the Project Manager window after
the part is updated.

8. Set the Destination part library to the copy of the downloaded
library you added to the project.

9. Select Update pins on existing part in library. Click OK, then click
Yes.

The symbol is updated with your pin assignments. Double-click the
symbol in the Project Manager window to view and edit the symbol. On
the View menu, click Package if you want to view and edit other sections

Altera Corporation 7–27
October 2007 Preliminary

Conclusion

of the symbol. If the symbol in the downloaded library is already
fractured into sections, as some of the larger packages are, you can edit
each section but you cannot further fracture the part. Generate a new part
without using the downloaded part library if you require additional
sections.

f For more information about creating, editing, and fracturing symbols in
the Cadence Allegro Design Entry CIS software, refer to the Help in the
software.

Conclusion Transferring a complex, high-pin-count FPGA design to a PCB for
prototyping or manufacturing is a daunting process that can lead to
errors in the PCB netlist or design, especially when different engineers are
working on different parts of the project. The design workflow available
when the Quartus II software is used with tools from Cadence assists the
FPGA designer and the board designer in preventing such errors and
focusing all attention on the design.

Referenced
Document

This chapter references the I/O Management chapter in volume 2 of the
Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

7–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Document
Revision History

Table 7–3 shows the revision history for this chapter.

Table 7–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

No changes to the chapter. —

May 2007
v7.1.0

Added Referenced Document on page 7–27. —

March 2007
v7.0.0

Updated revision and publish date only. —

November 2006
v6.1.0

Added revision history to the document. —

May 2006
v6.0.0

Was chapter 6 in v5.1.
Minor updates for the Quartus II software version 6.0.0.

—

November 2005
v5.1.1

Realigned figures 6-9 and 6-14. —

October 2005
v5.1.0

Initial release. —

Altera Corporation Section III–i

Section III. Area, Timing
and Power Optimization

Techniques for achieving the highest design performance are important
when designing for programmable logic devices (PLDs), especially
higher density FPGAs. The Altera® Quartus® II software offers a number
of features to help you optimize your design. The software also includes
advanced tools that allow for detailed analysis of your design, including
fully integrated floorplan tools that allow you to easily determine and
locate critical paths in the targeted device floorplan. This section explains
how to use these tools and options to enhance your FPGA design analysis
flow.

This section includes the following chapters:

■ Chapter 8, Area and Timing Optimization
■ Chapter 9, Power Optimization
■ Chapter 10, Analyzing and Optimizing the Design Floorplan
■ Chapter 11, Netlist Optimizations and Physical Synthesis
■ Chapter 12, Design Space Explorer
■ Chapter 13, Synplicity Amplify Physical Synthesis Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation

Area, Timing and Power Optimization Quartus II Handbook, Volume 2

Altera Corporation 8–1
October 2007
Altera Corporation 8–1
October 2007

8. Area and Timing
Optimization

Introduction Good optimization techniques are essential for achieving the highest
possible quality of results when designing for programmable logic
devices (PLDs). The optimization features available in the Quartus® II
software are designed to allow you to meet design requirements by
applying these techniques at multiple points in the design process.

This chapter explains techniques to reduce resource usage, improve
timing performance, and reduce compilation times when designing for
Altera® devices. It also explains how and when to use some of the features
described in other chapters of the Quartus II Handbook. This introduction
describes the various stages in a design optimization process, and points
you to the appropriate sections in the chapter for area, timing, or
compilation time optimization.

Topics in this chapter include:

■ “Initial Compilation: Required Settings” on page 8–3
■ “Initial Compilation: Optional Settings” on page 8–8
■ “Design Analysis” on page 8–14
■ “Resource Utilization Optimization Techniques (LUT-Based

Devices)” on page 8–25
■ “Timing Optimization Techniques (LUT-Based Devices)” on

page 8–42
■ “Resource Utilization Optimization Techniques (Macrocell-Based

CPLDs)” on page 8–71
■ “Timing Optimization Techniques (Macrocell-Based CPLDs)” on

page 8–79
■ “Compilation-Time Optimization Techniques” on page 8–86
■ “Other Optimizing Resources” on page 8–93
■ “Scripting Support” on page 8–94

The applicability of these techniques varies from design to design.
Applying each technique does not always improve design results.
Settings and options in the Quartus II software have default values that
generally provide the best trade-off between compilation time, resource
utilization, and timing performance. You can adjust these settings to
determine whether other settings provide better results for your design.

When using advanced optimization settings and tools, it is important to
benchmark their effect on your quality of results and to use them only if
they improve results for your design.

QII52005-7.2.0

8–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Use the optimization flow described in this chapter to explore various
compiler settings and determine the techniques that provide the best
results.

Optimizing Your Design

The first stage in the optimization process is to perform an initial
compilation to view the quality of results for your design. “Initial
Compilation: Required Settings” on page 8–3 provides guidelines on
some of the settings and assignments that are recommended for your
initial compilation. “Initial Compilation: Optional Settings” on page 8–8
gives you a set of settings that you may have to turn on based on your
design requirements. “Design Analysis” on page 8–14 explains how to
analyze the compilation results.

1 The incremental compilation methodology can be used as a part
of the optimization process. Even though incremental
compilation alone may not reduce the resource usage, it can be
used as a tool for timing preservation and compilation time
reduction when used in conjunction with other techniques.
Incremental compilation can be used as a tool to attain timing
closure.

f For more details about the incremental compilation methodology with
the Quartus II software, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

After you have analyzed the compilation results, perform the
optimization stages in the recommended order, as described in this
chapter.

For LUT-based devices (FPGAs and MAX® II CPLDs), perform
optimizations in the following order:

1. If your design does not fit, refer to “Resource Utilization
Optimization Techniques (LUT-Based Devices)” on page 8–25
before trying to optimize I/O timing or register-to-register timing.

2. If your design does not meet the required I/O timing performance,
refer to “I/O Timing Optimization Techniques (LUT-Based
Devices)” on page 8–97 before trying to optimize register-to-register
timing.

3. If your design does not meet the required slack on any of the clock
domains in the design, refer to “Register-to-Register Timing
Optimization Techniques (LUT-Based Devices)” on page 8–52.

Altera Corporation 8–3
October 2007

Initial Compilation: Required Settings

Altera Corporation 8–3
October 2007

Initial Compilation: Required Settings

For macrocell-based devices (MAX 7000 and MAX 3000 CPLDs), perform
optimizations in the following order:

1. If your design does not fit, refer to “Resource Utilization
Optimization Techniques (Macrocell-Based CPLDs)” on page 8–71
before trying to optimize I/O timing or register-to-register timing.

2. If your timing performance requirements are not met, refer to
“Timing Optimization Techniques (Macrocell-Based CPLDs)” on
page 8–79.

For device-independent techniques to reduce compilation time, refer to
“Compilation-Time Optimization Techniques” on page 8–86.

You can use all these techniques in the GUI or with Tcl commands. For
more information about scripting techniques, refer to “Scripting
Support” on page 8–94.

Initial
Compilation:
Required
Settings

This section describes the basic assignments and settings for your initial
compilation. Ensure that you check all the following suggested
compilation assignments before compiling the design in the Quartus II
software. Significantly different compilation results can occur depending
on the assignments you have set.

The following settings are required:

■ “Device Settings” on page 8–3
■ “I/O Assignments” on page 8–4
■ “Timing Requirement Settings” on page 8–4
■ “Device Migration Settings” on page 8–7
■ “Partitions and Floorplan Assignments for Incremental

Compilation” on page 8–7

Device Settings

Assigning a specific device determines the timing model that the
Quartus II software uses during compilation. Choose the correct speed
grade to obtain accurate results and the best optimization. The device size
and the package determine the device pin-out and how many resources
are available in the device.

To choose the target device, on the Assignments menu, click Device.

8–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

In a Tcl script, use the following command to set the device.

set_global_ssignment -name DEVICE <device>

I/O Assignments

The I/O standards and drive strengths specified for a design affect I/O
timing. Specify I/O assignments so that the Quartus II software uses
accurate I/O timing delays in timing analysis and Fitter optimizations.

The Quartus II software can choose pin locations automatically for best
quality of results. If your pin locations are not fixed due to printed circuit
board (PCB) layout requirements, leave pin locations unconstrained to
achieve the best results. If your pin locations are already fixed, make pin
assignments to constrain the compilation appropriately. “Resource
Utilization Optimization Techniques (Macrocell-Based CPLDs)” on
page 8–71 includes recommendations for making pin assignments that
can have a larger effect on your quality of results in smaller
macrocell-based architectures.

Use the Assignment Editor and Pin Planner to assign I/O standards and
pin locations.

f For more information about I/O standards and pin constraints, refer to
the appropriate handbook. For information about planning and checking
I/O assignments, refer to the I/O Management chapter in volume 2 of the
Quartus II Handbook. For information about using the Assignment Editor,
refer to the Assignment Editor chapter in volume 2 of the Quartus II
Handbook.

Timing Requirement Settings

An important step in the optimal quality of results, especially for
high-performance FPGA designs, is to make comprehensive timing
requirement settings. It is important to apply these settings for the
following reasons:

■ Correct timing assignments allow the software to work hardest to
optimize the performance of the timing-critical parts of the design,
and make trade-offs for performance. This optimization can also
save area or power utilization in non-critical parts of the design.

■ If enabled, the Quartus II software performs physical synthesis
optimizations based on timing requirements (refer to “Synthesis
Netlist Optimizations and Physical Synthesis Optimizations” on
page 8–54 for more information).

Altera Corporation 8–5
October 2007

Initial Compilation: Required Settings

Altera Corporation 8–5
October 2007

Initial Compilation: Required Settings

■ Depending on the Fitter Effort setting, the Quartus II Fitter may
reduce runtime considerably if your timing requirements are being
met. For a full description of the different effort levels, refer to “Fitter
Effort Setting” on page 8–13.

As a general rule, do not over-constrain the software by applying timing
requirements that are higher than your design requirements. Use your
real design requirements to get the best results. Power utilization may
also be larger in an over-constrained design, when the software balances
power and performance during compilation.

1 In some designs with multiple clocks, it may be possible to
improve the timing performance on one clock domain while
reducing the performance on other clock domains by over-
constraining the most important clock. If you use this technique,
ensure that any performance improvements that you see are real
gains by performing a sweep over multiple seeds. For more
information, refer to “Fitter Seed” on page 8–62.

When you are over-constraining one of the clocks, Altera recommends
that you use the Auto Fit option rather than the Standard Fit option in the
Fitter settings. This helps to reduce the compilation time.

The Auto Fit option may increase the number of routing wires used. This
can lead to an increase in the dynamic power, when compared to using
the Standard Fit option, unless Extra effort PowerPlay power
optimization is also enabled. When you turn on Extra effort PowerPlay
power optimization, Auto Fit continues to optimize for reduction of wire
usage even after meeting the register-to-register requirement. There is no
adverse effect on the dynamic power consumption. If dynamic power
consumption is a concern, make sure to set the PowerPlay power
optimization to Extra effort in both the Analysis and Synthesis settings
and the Fitter settings.

f For more details, refer to the Power Driven Compilation section in the
Power Optimization chapter of the Quartus II Handbook.

■ The Timing Analyzer (Classic or TimeQuest) checks your design
against the timing assignments. The compilation report and timing
analysis reporting commands show whether timing requirements
are met, and provide detailed timing information about paths that
violate timing requirements.

To make clock assignments for the Quartus II Classic Timing Analyzer, on
the Assignments menu, click Timing Analysis Settings. Select the
Classic Timing Analyzer Settings page. Use the Delay requirements,
Minimum delay requirements, and Clock Settings boxes to make global

8–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

settings, or to apply settings to individual clocks, click Individual Clocks
(recommended for multiple-clock designs). Create the clock setting, and
apply it to the appropriate clock node in the design. The Timing Wizard
can also step you through the process of making individual clock
constraints for the Quartus II Classic Timing Analyzer. To run the Timing
Wizard, on the Assignments menu, click Timing Wizard.

To make clock and timing assignments for the Quartus II TimeQuest
Timing Analyzer, create a Synopsys Design Constraint (.sdc) file that
contains all of your constraints. You can also create constraints in the
TimeQuest GUI. Use the write_sdc command, or, in the TimeQuest
Timing Analyzer, on the Constraints menu, click Write SDC File to write
your constraints to an SDC file. You can add an SDC file to your project
on the TimeQuest Timing Analyzer page under Timing Analysis
Settings.

Ensure that every clock signal has an accurate clock setting assignment. If
clocks come from a common oscillator, they may be considered related.
Ensure that all related or derived clocks are set up correctly in the
assignments. All I/O pins that require I/O timing optimization must
have settings. You should also specify minimum timing constraints as
applicable. If there is more than one clock or there are different I/O
requirements for different pins, make multiple clock settings and
individual I/O assignments instead of using the global settings.

Make any complex timing assignments required in the design, including
any cut-timing and multicycle path assignments. Common situations for
these types of assignments include reset or static control signals, cases in
which it is not important how long it takes a signal to reach a destination,
and paths that can operate in more than one clock cycle. These
assignments allow the Quartus II software to make appropriate trade-offs
between timing paths, and can enable the Compiler to improve timing
performance in other parts of the design. Specify these settings in the
Assignment Editor.

f For more information about timing assignments and timing analysis,
refer to the Quartus II Classic Timing Analyzer and the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II
Handbook.

Altera Corporation 8–7
October 2007

Initial Compilation: Required Settings

Altera Corporation 8–7
October 2007

Initial Compilation: Required Settings

Timing Constraint Check—Report Unconstrained Paths

To ensure that all constraints or assignments have been applied to design
nodes, you can report all unconstrained paths in your design.

While using the Quartus II TimeQuest Timing Analyzer, you can report
all the unconstrained paths in your design with the Report Unconstrained
Paths command (report_ucp) in the Task pane.

If you are using the Quartus II Classic Timing Analyzer, on the
Assignments menu, click Timing Analysis Settings. In the Settings
dialog box, under Timing Analysis Settings, select Classic Timing
Analyzer Settings. Click More Settings. The More Timing Settings
dialog box appears. From the Existing option settings list, select Report
Unconstrained Paths. From the Setting drop-down list, select On.

Device Migration Settings

If you anticipate a change to the target device later in the design cycle
either because of changes in the design or other considerations, plan for
it at the beginning of your design cycle. Whenever you select a target
device in the Settings page from the Assignments menu, you can also list
any other compatible devices you can migrate to by clicking on the
Migration Devices tab in the Settings page. If you plan to move your
design to a HardCopy device, make sure to select the device from the
pull-down menu under the Companion device tab in the Settings page.

Selecting the migration device and companion device early in the design
cycle helps you to minimize changes to the design at a later stage.

Partitions and Floorplan Assignments for Incremental
Compilation

The Quartus II incremental compilation feature enables hierarchical and
team-based design flows in which you compile parts of your design while
other parts of the design remain unchanged, or import parts of your
design from separate Quartus II projects.

Using the incremental compilation methodology with a good
partitioning of the design can often help to achieve timing closure.
Creating LogicLock regions and using incremental compilation can help
you achieve timing closure block by block, preserve the timing
performance between iterations, and therefore help achieve timing
closure for the entire design.

8–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Using incremental compilation also helps reduce compilation times. You
can analyze the critical paths in the Chip Planner, then make changes in
the floorplan to meet timing requirements with the Incremental Design
methodology.

For information about using the incremental compilation feature to
reduce your compilation time, refer to “Incremental Compilation” on
page 8–86.

If you want to take advantage of this feature for a team-based design flow,
to reduce your compilation times, or to improve the timing performance
of your design during iterative compilation runs, make meaningful
design partitions as well as create a floorplan for your design partitions.
Assignments can negatively affect a design’s quality of results if you do
not follow Altera's recommendations. Good assignments can improve
your quality of results.

1 If you plan to use incremental compilation, you must create a
floorplan for your design. If you are not using incremental
compilation, this step is optional.

f For guidelines about how to create partition and floorplan assignments
for your design, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Initial
Compilation:
Optional
Settings

This section describes the settings that are optional, but which may be
helpful for compiling your design. You can selectively set all the optional
settings that help to improve performance (if required) and reduce
compilation time. These settings vary between designs, and there is no
standard set that applies to all designs. Significantly different compilation
results can occur depending on the assignments you have set.

The following settings are optional:

■ “Design Assistant” on page 8–9
■ “Smart Compilation Setting” on page 8–9
■ “Early Timing Estimation” on page 8–9
■ “Optimize Hold Timing” on page 8–10
■ “Asynchronous Control Signal Recovery/Removal Analysis” on

page 8–11
■ “Limit to One Fitting Attempt” on page 8–12

Altera Corporation 8–9
October 2007

Initial Compilation: Optional Settings

Altera Corporation 8–9
October 2007

Initial Compilation: Optional Settings

Design Assistant

You can run the Design Assistant to analyze the post-fitting results of
your design during a full compilation. The Design Assistant checks rules
related to areas such as gated clocks, reset signals, asynchronous design
practices, and signal race conditions. This is especially useful during the
early stages of your design, so that you can work on any areas of concern
in your design before proceeding with design optimization.

On the Assignments menu, click Settings. In the Category list, select
Design Assistant and turn on Run Design Assistant during
compilation.

You can also specify which rules you want the Design Assistant to apply
when analyzing and generating messages for a design.

f For more information about the rules in the design assistant, refer to the
Design Recommendations for Altera Devices and the Quartus II Design
Assistant chapter in volume 1 of the Quartus II Handbook.

Smart Compilation Setting

Smart compilation can reduce compilation time by skipping compiler
stages that are not needed to recompile the design. This is especially
useful when you perform multiple compilation iterations during the
optimization phase of the design process. However, smart compilation
uses more disk space. To turn on smart compilation, on the Assignments
menu, click Settings. In the Category list, select Compilation Process
Settings and turn on Use Smart Compilation.

1 This feature skips entire compiler stages (such as Analysis and
Synthesis) when they are not needed. This feature is different
from incremental compilation, which you can use to compile
parts of your design while preserving results for unchanged
parts. For information about using the incremental compilation
feature to reduce your compilation time, refer to “Incremental
Compilation” on page 8–86.

Early Timing Estimation

The Quartus II software provides an Early Timing Estimation feature that
estimates your design’s timing results before the software performs full
placement and routing. On the Processing menu, point to Start, and click
Start Early Timing Estimate to generate initial compilation results after
you have run analysis and synthesis. When you want a quick estimate of
a design’s performance before proceeding with further design or
synthesis tasks, this command can save significant compilation time.

8–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Using this feature provides a timing estimate up to 45× faster than
running a full compilation, and the fit is not fully optimized or routed.
Therefore, the timing report is only an estimate. On average, the
estimated delays are within 11% of those achieved by a full compilation
compared to the final timing results.

You can specify what type of delay estimates to use with this feature. On
the Assignments menu, click Settings. In the Category list, select
Compilation Process Settings, and select Early Timing Estimate. On the
Early Timing Estimate page, the following options are available:

■ The Realistic option, which is the default, generates delay estimates
that will likely be close to the results of a full compilation.

■ The Optimistic option uses delay estimates that are lower than those
likely to be achieved by a full compilation, which results in an
optimistic performance estimate.

■ The Pessimistic option uses delay estimates that are higher than
those likely to be achieved by a full compilation, which results in a
pessimistic performance estimate.

All three options offer the same reduction in compilation time.

You can use the Chip Planner or the Timing Closure Floorplan (for older
devices) to view the placement estimate created by this feature to identify
critical paths in the design. Then, if necessary, you can add or modify
floorplan constraints such as LogicLock™ regions, or make other changes
to the design. You can then rerun the Early Timing Estimator to quickly
assess the impact of any floorplan assignments or logic changes, enabling
you to try different design variations and find the best solution.

Optimize Hold Timing

The Optimize Hold Timing option directs the Quartus II software to
optimize minimum delay timing constraints. This option is available only
for the ArriaTM GX devices, Stratix® series of devices, Cyclone® series of
devices, and MAX II devices. When you turn on this option, the
Quartus II software adds delay to connections to guarantee that the
minimum delay requirements are satisfied.

In the Fitter Settings panel, if you choose I/O Paths and Minimum TPD
Paths (the default choice if you turn on Optimize Hold Timing), the
Fitter works to meet the following criteria:

■ Hold times (tH) from device input pins to registers
■ Minimum delays from I/O pins to I/O registers or from I/O

registers to I/O pins
■ Minimum clock-to-out time (tCO) from registers to output pins

Altera Corporation 8–11
October 2007

Initial Compilation: Optional Settings

Altera Corporation 8–11
October 2007

Initial Compilation: Optional Settings

If you select All paths, the Fitter also works to meet hold requirements
from registers to registers, as in Figure 8–1, where a derived clock
generated with logic causes a hold time problem on another register.
However, if your design has internal hold time violations between
registers, Altera recommends that you correct the problems by making
changes to your design, such as using a clock enable signal instead of a
derived or gated clock.

Figure 8–1. Optimize Hold Timing Option Fixing an Internal Hold Time
Violation

f For design practices that can help eliminate internal hold time violations,
refer to the Design Recommendations for Altera Devices and the Quartus II
Design Assistant chapter in volume 1 of the Quartus II Handbook.

Asynchronous Control Signal Recovery/Removal Analysis

This option determines whether you want the software to analyze the
results of recovery and removal checks for paths that end at an
asynchronous clear, preset, or load signal of a register. Recovery time is
the minimum length of time an asynchronous control signal, for example,
clear and preset, must be stable before the active clock edge. Removal
time is the minimum time an asynchronous control signal must be stable
after the active clock edge. Recovery and removal requirements are
similar to setup and hold time requirements, respectively.

When using the Quartus II Classic Timing Analyzer for timing analysis,
Recovery/Removal analysis is turned off by default. Turning on the
option adds additional constraints during placement and routing which
can increase compilation time and reduce performance. If this analysis is
required, on the Assignments menu, click Settings. In the Category list,
select Timing Requirements & Options, then click More Settings. Turn
on Enable Recovery/Removal analysis. By running the
Recovery/Removal analysis, you can make sure that no timing failures
are related to the asynchronous control signals in your design.

8–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

When using TimeQuest for timing analysis, Recovery/Removal analysis
and optimization are always performed during placement and routing.
You can use the create_timing_summary Tcl command to report the
recovery and removal analysis. The slack for Removal/Recovery is
determined in a similar way to Setup and Hold checks.

f For more details about Recovery/Removal analysis with the TimeQuest
Timing Analyzer, refer to The Quartus II TimeQuest Timing Analyzer
chapter in volume 3 of the Quartus II Handbook.

For designs containing FIFOs, Altera recommends turning on
Recovery/Removal analysis. Recovery/Removal analysis helps to
analyze corner-case conditions to achieve better functional coverage.

Limit to One Fitting Attempt

A design may fail to fit for several reasons, such as logic overuse or illegal
assignments. For most of these failures, the Quartus II software informs
you of the problem. However, if the design uses too much routing, the
Quartus II software makes up to two additional attempts to fit your
design, each time trying harder than the last to reduce routing resource
utilization. Each of these fit attempts takes significantly longer than the
previous attempt.

However, for large designs, you may not wish to wait for all three
attempts, and would rather receive an error message earlier. This would
allow you to take corrective action sooner.

To have the software indicate whether the design fails to fit after the first
attempt, in the Fitter settings, check Limit to One Fitting Attempt.

Refer to “Routing” on page 8–38 for instructions about how to lower the
design’s routing utilization, so your design may be made to fit into the
target device if it fails to fit due to the lack of routing resources.

Optimize Fast Corner Timing

Historically, FPGA timing analysis has been performed using only
worst-case delays, which are described in the slow corner timing model.
However, due to process variation and changes in the operating
conditions, delays on some paths can be significantly smaller than those
in the slow corner timing model. This can result in hold time violations
on those paths, and in rare cases, additional setup time violations.

Altera Corporation 8–13
October 2007

Initial Compilation: Optional Settings

Altera Corporation 8–13
October 2007

Initial Compilation: Optional Settings

By default, the Fitter optimizes constraints using only the slow corner
timing model. You can turn on the Optimize Fast Corner Timing setting
to instruct the Fitter to also optimize constraints using the fast corner
timing model to avoid the possible timing violations described above.

To turn on the Optimize Fast Corner Timing setting, from the
Assignments menu, click Settings. In the Category list, select Fitter
Settings and turn on Optimize Fast Corner Timing. Using the two
different timing models can be important to account for process, voltage,
and temperature variations for each device. Turning this option on
increases compilation time by approximately 10%.

For designs with DDR interfaces (that interface to external memories),
make sure you turn on the Optimize Fast Corner Timing switch, so that
your timing analysis results are accurate.

Fitter Effort Setting

On the Assignments menu, click Settings. In the Category list, select
Fitter Settings. The Fitter effort settings are Auto Fit, Standard Fit, and
Fast Fit. The default setting depends on the device family specified.

Auto Fit

The Auto Fit option (available only for Arria GX devices, the Stratix and
Cyclone series of devices, and MAX II devices) focuses full Fitter effort on
those aspects of the design that require further optimization. Auto Fit can
significantly reduce compilation time relative to Standard Fit if your
design has some easy-to-meet timing requirements, low routing resource
utilization, or both. However, those designs that require full optimization
generally receive the same effort as is achieved by selecting Standard Fit.
Auto Fit is the default Fitter effort setting for all devices for which this
option is available.

If you want the Fitter to attempt to exceed the timing requirements by a
certain margin instead of simply meeting them, specify a minimum slack
in the Desired worst-case slack box.

1 Specifying a minimum slack does not guarantee that the Fitter
achieves the slack requirement; it only guarantees that the Fitter
applies full optimization unless the target slack is exceeded.

There may be cases in which your design has one or two clock
domains on which you want to maximize the slack, while on the
other clock domains you want to meet the timing without any
requirement of maximizing the slack. Over-constraining the

8–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

clock on which you need to maximize the slack, while using the
Auto Fit option, increases the chances that the Fitter is able to
meet this requirement.

The Auto Fit option also causes the Quartus II Fitter to optimize for
shorter compilation times instead of maximum performance if the design
includes no timing assignments. For designs with no timing assignments,
the resulting fMAX is, on average 10% lower than that achieved using the
Standard Fit option. If your design has aggressive timing requirements or
is hard to route, the placement does not stop early, and the compilation
time is the same as using the Standard Fit option. For designs with no
timing requirements or easily achieved timing requirements, you can
achieve an average compilation time reduction of 40% by using the Auto
Fit option.

Standard Fit

Use the Standard Fit option to exceed specified timing requirements and
achieve the best possible timing results and lowest routing resource
utilization for your design. However, this setting usually increases
compilation time relative to Auto Fit, because it applies full optimization,
regardless of the design requirement.

Fast Fit

The Fast Fit option reduces the amount of optimization effort for each
algorithm employed during fitting. This option reduces the compilation
time by about 50%, resulting in a fit that has, on average, 10% lower fMAX
than that achieved using the Standard Fit setting. For a small fraction of
hard-to-fit circuits, the reduced optimization that results from using the
Fast Fit option can cause the first fitting attempt to fail due to routing
problems, resulting in multiple fitting attempts and increased
compilation time.

You can also set the Fitter Effort using the following Tcl command in your
script:

set_global_assignment -name FITTER_EFFORT <value>

In this case, <value> can be AUTO_FIT, FAST_FIT, or STANDARD_FIT.

Design Analysis The initial compilation establishes whether the design achieves a
successful fit and meets the specified performance. This section describes
how to analyze your design results in the Quartus II software. After
design analysis, proceed to optimization as described in “Optimizing
Your Design” on page 8–2.

Altera Corporation 8–15
October 2007

Design Analysis

Altera Corporation 8–15
October 2007

Design Analysis

Error and Warning Messages

After your initial compilation, it is important to evaluate all error and
warning messages to see if any design or setting changes are required. If
needed, make these changes and recompile the design before proceeding
with design optimization.

To suppress messages that you have evaluated and that can be ignored,
right-click on the message in the Messages window and click Suppress.

f For more information about message suppression, refer to the Message
Suppression section in the Managing Quartus II Projects chapter in
volume 2 of the Quartus II Handbook.

Ignored Timing Assignments

You can use the Ignored Timings Assignments page in the Compilation
Report to view any assignments that were ignored by the Quartus II
Classic Timing Analyzer during the previous compilation. The Quartus II
Classic Timing Analyzer ignores assignments that are invalid, conflict
with other assignments, or become obsolete through the use of other
assignments. If any assignments are ignored, analyze why they were
ignored. If necessary, correct the assignments and recompile the design
before proceeding with design optimization.

If you are using TimeQuest for timing analysis, you can use the following
command to generate a listing of ignored timing constraints:

report_sdc -ignored -panel_name "Ignored Constraints"

f For more information about the report_sdc command and its options,
refer to The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus II Handbook.

Resource Utilization

Determining device utilization is important regardless of whether a
successful fit is achieved. If your compilation results in a no-fit error,
resource utilization information is important for analyzing the fitting
problems in your design. If your fitting is successful, review the resource
utilization information to determine whether the future addition of extra
logic or other design changes may introduce fitting difficulties.

To determine resource usage, refer to the Flow Summary section of the
Compilation Report. This section reports how many resources are used,
including pins, memory bits, digital signal processing (DSP) block 9-bit
elements (for Arria GX, Stratix, and Stratix II devices) or 18-bit elements

8–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

(for Stratix III devices), and phase-locked loops (PLLs). The Flow
Summary indicates whether the design exceeds the available device
resources. More detailed information is available by viewing the reports
under Resource Section in the Fitter section of the Compilation Report.

1 For Arria GX, Stratix II, and Stratix III devices, a device with low
utilization does not have the lowest adaptive logic module
(ALM) utilization possible. For these devices, the Fitter uses
adaptive look-up tables (ALUTs) in different ALMs—even when
the logic can be placed within one ALM—to achieve the best
timing and routability results. In achieving these results, the
Fitter may spread logic throughout the device. As the device fills
up, the Fitter automatically searches for logic functions with
common inputs to place in one ALM. The number of partnered
ALUTs and packed registers also increases. Therefore, a design
that is reported as close to 100% full might still have space for
extra logic if logic and registers can be packed together more
aggressively.

If resource usage is reported as less than 100% and a successful fit cannot
be achieved, either there are not enough routing resources or some
assignments are illegal. In either case, a message appears in the
Processing tab of the Messages window describing the problem.

If the Fitter finishes very quickly compared to Fitter runs on similar
designs, then a resource might be over-utilized or there might be an
illegal assignment. If the Quartus II software seems to run for an
excessively long time compared to runs on similar designs, then a legal
placement or route probably cannot be found. Look for errors and
warnings that indicate these types of problems.

Refer to “Limit to One Fitting Attempt” on page 8–12 for more
information about how to get a quick error message on hard-to-fit
designs.

You can use the Chip Planner or the Timing Closure Floorplan (for older
devices) to find areas of the device that have routing congestion.

f For details about using the Chip Planner and the Timing Closure
Floorplan tools, refer to the Analyzing and Optimizing the Design Floorplan
chapter in volume 2 of the Quartus II Handbook.

I/O Timing (Including tPD)

The Quartus II TimeQuest Timing Analyzer supports the Synopsys
Design Constraints (SDC) format for constraining your design. When
using TimeQuest for timing analysis, use the set_input_delay

Altera Corporation 8–17
October 2007

Design Analysis

Altera Corporation 8–17
October 2007

Design Analysis

constraint to specify the data arrival time at an input port with respect to
a given clock. For output ports, use the set_output_delay command
with respect to a given clock. You can use the report_timing Tcl
command to generate the required I/O timing reports.

f The rest of this section refers to timing settings and analysis in the
Quartus II Classic Timing Analyzer. For more details about equivalent
settings and analysis in the Quartus II TimeQuest Timing Analyzer, refer
to The Quartus II TimeQuest Timing Analyzer and Switching to the
Quartus II TimeQuest Timing Analyzer chapters in volume 3 of the
Quartus II Handbook.

If you are using the Quartus II Classic Timing Analyzer, from the
Compilation Report, select the Timing Analyzer to determine whether or
not I/O timing has been met. The tSU, tH, and tCO reports list the I/O
paths, together with the required timing number if you have specified a
timing requirement, the actual timing number for the timing as reported
by the Quartus II software, and the slack (the difference between your
requirement and the actual number). If you have any point-to-point
propagation delay (tPD) assignments, the tPD report lists the
corresponding paths.

The I/O paths that do not meet the required timing performance are
reported as having negative slack and are displayed in red (Figure 8–2).
In cases when you do not make an explicit I/O timing assignment to an
I/O pin, the Quartus II timing analysis software still reports the Actual
number, which is the timing number that must be met for that timing
parameter when the device runs in your system.

8–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 8–2. I/O Timing Analyzer Report

To analyze the reasons why your timing requirements are not met,
right-click an entry in the report and click List Paths (Figure 8–2). A
message listing the paths appears in the System tab of the Messages

window. To expand a selection, click the icon at the beginning of the
line (Figure 8–3). This is a good method to determine where the greatest
delay is located along the path.

The List Paths report lists the slack time and how that slack time was
calculated. By expanding the various entries, you can see the incremental
delay through each node in the path as well as the total delay. The
incremental delay is the sum of the interconnect delay (IC) and the cell
delay (CELL) through the logic.

Figure 8–3. I/O Slack Report

Altera Corporation 8–19
October 2007

Design Analysis

Altera Corporation 8–19
October 2007

Design Analysis

To analyze I/O timing, right-click on an I/O entry in the report, point to
Locate, and click Locate in Chip Planner or Timing Closure Floorplan
(for older devices) to highlight the I/O path on the floorplan. Negative
slack indicates paths that failed to meet their timing requirements. Other
options allow you to see all the intermediate nodes (combinational logic
cells) on a path and the delay for each level of logic, or to see the fan-in
and fan-out of a selected node.

f For more information about how timing numbers are calculated, refer to
the Quartus II Classic Timing Analyzer chapter or the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Register-to-Register Timing

If you are using TimeQuest for timing analysis, analyze the path between
any two registers by using the appropriate constraints. Use the
report_timing command to generate the required timing reports for
any register-to-register path. Your design meets timing requirements
when you do not have negative slack on any register-to-register path on
any of the clock domains.

Timing Analysis with the Classic Timing Analyzer

If you are using the Quartus II Classic Timing Analyzer, in the
Compilation Report window, use the Timing Analyzer section to
determine whether register-to-register timing requirements are met. The
Clock Setup folder displays you figures for the actual register-to-register
for each clock as reported by the Quartus II software, and the slack
delays. The paths that do not meet timing requirements are shown with a
negative slack and appear in red (Figure 8–4).

8–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 8–4. fMAX Timing Analysis Report

To analyze why your timing requirements were not met, right-click on an
entry in the report and click List Paths (Figure 8–4). A message listing the
paths appears in the System tab of the Messages window. To expand a
selection. The expanded report for the path appears (Figure 8–5). Click
the icon at the beginning of the line. Use this method to determine
where the greatest delay is located along the path.

The List Paths report shows the slack time and how that slack time was
calculated. By expanding the various entries, you can see the incremental
delay through each node in the path as well as the total delay. The
incremental delay is the sum of the interconnect delay (IC) and the cell
delay (CELL) through the logic.

Altera Corporation 8–21
October 2007

Design Analysis

Altera Corporation 8–21
October 2007

Design Analysis

Figure 8–5. fMAX Slack Report

To visually analyze register-to-register timing paths, right-click on a path,
point to Locate, and click Locate in Chip Planner. For older devices, such
as APEX, ACEX, FLEX 10K and MAX 7000 devices, click Locate in
Timing Closure Floorplan to perform this analysis. The Chip Planner or
Timing Closure Floorplan appears with the path highlighted. Use the
Critical Path Settings to select which failing paths to show. To turn
critical paths on or off, use the Show Critical Paths command.

f For more information about how timing analysis results are calculated,
refer to the Quartus II Classic Timing Analyzer or the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

You also can see the logic in a particular path by cross-probing to the RTL
Viewer or Technology Map Viewer. These viewers allow you to see a
gate-level or technology-mapped representation of your design netlist. To
locate a timing path in one of the viewers, right-click on a path in the
report, point to Locate, and click Locate in RTL Viewer or Locate in
Technology Map Viewer. When you locate a timing path in the
Technology Map Viewer, the annotated schematic displays the same
delay information that is shown when you use the List Paths command.

8–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

f For more information about the netlist viewers, refer to the Analyzing
Designs with Quartus II Netlist Viewers chapter in volume 1 of the
Quartus II Handbook.

Tips for Analyzing Failing Paths

When you are analyzing clock path failures, focus on improving the paths
that show the worst slack. The Fitter works hardest on paths with the least
slack. If you fix these paths, the Fitter may be able to improve the other
failing timing paths in the design.

Check for particular nodes that appear in many failing paths. Look for
paths that have common source registers, destination registers, or
common intermediate combinational nodes. In some cases, the registers
may not be identical, but are part of the same bus. In the timing analysis
report panels, clicking on the From or To column headings can be helpful
to sort the paths by the source or destination registers. Clicking first on
From, then on To, uses the To register as the primary sort and From as the
secondary sort. If you see common nodes, these nodes indicate areas of
your design that might be improved through source code changes or
Quartus II optimization settings. Constraining the placement for just one
of the paths might decrease the timing performance for other paths by
moving the common node further away in the device.

Tips for Analyzing Failing Clock Paths that Cross Clock Domains

When analyzing clock path failures, check whether these paths cross
between two clock domains. This is the case if the From Clock and
To Clock in the timing analysis report are different. There can also be
paths that involve a different clock in the middle of the path, even if the
source and destination register clock are the same. To analyze these paths
in more detail, right-click on the entry in the report and click List Paths.

Expand the List Paths entry in the Messages window and analyze the
largest register-to-register requirement. Evaluate the setup relationship
between the source and destination (launch edge and latch edge) to
determine if that is reducing the available setup time. For example, the
path may go from a rising edge to a falling edge, which reduces the setup
relationship by one half clock cycle.

Check if the PLL phase shift is reducing the setup requirement. You may
be able to adjust this using PLL parameters and settings.

Altera Corporation 8–23
October 2007

Design Analysis

Altera Corporation 8–23
October 2007

Design Analysis

Check if the PLL compensation delay is reducing the setup relationship.
If you are using the Quartus II Classic Timing Analyzer, you can direct the
software to analyze this delay as clock skew by enabling Clock Latency
analysis. On the Assignments menu, click Settings and choose Timing
Requirements & Options. Click More Settings and turn on Enable
Clock Latency. Typically, you must enable this option if your design
results in timing violations for paths that pass between PLL clock
domains. The Quartus II TimeQuest Timing Analyzer performs this
analysis by default.

Paths that cross clock domains are generally protected with
synchronization logic (for example, FIFOs or double-data
synchronization registers) to allow asynchronous interaction between the
two clock domains. In such cases, you can ignore the timing paths
between registers in the two clock domains while running timing
analysis, even if the clocks are related.

The Fitter attempts to optimize all failing timing paths. If there are paths
that can be ignored for optimization and timing analysis, but the paths do
not have constraints that instruct the Fitter to ignore them, then the Fitter
tries to optimize those paths as well. In some cases, optimizing
unnecessary paths can prevent the Fitter from meeting the timing
requirements on timing paths that are critical to the design. It is beneficial
to specify all paths that can be ignored, so the Fitter can put more effort
into the paths that must meet their timing requirements instead of
optimizing paths that may be ignored.

f For more details about how to ignore timing paths that cross clock
domains, refer to the Quartus II Classic Timing Analyzer chapter or the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II handbook.

Evaluate the clock skew between the source clock and the destination
clock to determine if that is reducing the available setup time. You can
check the shortest and longest clock path reports to see what is causing
the clock skew. Avoid using combinational logic in clock paths because it
contributes to clock skew. Differences in the logic or in its routing
between the source and destination can cause clock skew problems and
result in warnings during compilation.

Global Routing Resources

Global routing resources are designed to distribute high-fan-out,
low-skew signals (such as clocks) without consuming regular routing
resources. Depending on the device, these resources may span the entire
chip, or some smaller portion, such as a quadrant. The Quartus II

8–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

software attempts to assign signals to global routing resources
automatically, but you may be able to make more suitable assignments
manually.

f Refer to the relevant device handbook for details about the number and
types of global routing resources available.

Check the global signal utilization in your design to ensure that
appropriate signals have been placed on global routing resources. In the
Compilation Report, open the Fitter report and click the Resource
Section. Analyze the Global & Other Fast Signals and Non-Global High
Fan-out Signals reports to determine whether any changes are required.

You may be able to reduce clock skew for high fan-out signals by placing
them on global routing resources. Conversely, you can reduce the
insertion delay of low fan-out signals by removing them from global
routing resources. Doing so can improve clock enable timing and control
signal recovery/removal timing, but increases clock skew. You can also
use the Global Signal setting in the Assignment Editor to control global
routing resources.

Compilation Time

In long compilations, most of the time is spent in the Analysis & Synthesis
and Fitter modules. Analysis & Synthesis includes synthesis netlist
optimizations, if you have turned on those options. The Fitter includes
two steps, placement and routing, and also includes physical synthesis if
you turned on that option. The Flow Elapsed Time section of the
Compilation Report shows how much time is spent running the Analysis
& Synthesis and Fitter modules. The Fitter Messages report in the Fitter
section of the Compilation Report shows specifically how much time was
spent in placement and how much time was spent in routing.

1 The applicable messages are indicated as shown in the following
example, with each time component in two-digit format:

Info: Fitter placement operations ending:
elapsed time = <days:hours:mins:secs>
Info: Fitter routing operations ending: elapsed
time = <days:hours:mins:secs>

Note that “days” are not shown if the time is less than one day.

While the Fitter is running (including Placement and Routing), hourly
info messages similar to the one below are displayed every hour to
indicate Fitter operations are progressing normally.

Altera Corporation 8–25
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–25
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Info: Placement optimizations have been running for x
hour(s)

In this case, x indicates the number of hours the process has been running.

Placement is the process of finding optimum locations for the logic in
your design. Routing is the process of connecting the nets between the
logic in your design. There are many possible placements for the logic in
a design, and finding better placements typically takes more compilation
time. Good logic placement allows you to more easily meet your timing
requirements and makes the design easier to route.

The elapsed time summary in the flow report indicates the percentage of
time spent in each executable using parallel compilation; the metric is the
average number of processors used. For example, if 50% of a compilation
(by runtime) used four processors and the other 50% used one processor,
this value would be .

Resource
Utilization
Optimization
Techniques
(LUT-Based
Devices)

After design analysis, the next stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to I/O timing
optimization or register-to-register timing optimization. Ensure that you
have already set the basic constraints described in “Initial Compilation:
Required Settings” on page 8–3 before proceeding with the resource
utilization optimizations discussed in this section. If a design does not fit
into a specified device, use the techniques in this section to achieve a
successful fit. After you optimize resource utilization and your design fits
in the desired target device, optimize I/O timing as described in “I/O
Timing Optimization Techniques (LUT-Based Devices)” on page 8–97.
These tips are valid for all FPGA families and the MAX II family of
CPLDs.

Using the Resource Optimization Advisor

The Resource Optimization Advisor provides guidance in determining
settings that optimize the resource usage. To run the Resource
Optimization Advisor, on the Tools menu, point to Advisors, and click
Resource Optimization Advisor.

The Resource Optimization Advisor provides step-by-step advice about
how to optimize the resource usage (logic element, memory block, DSP
block, I/O, and routing) of your design. Some of the recommendations in
these categories may contradict each other. Altera recommends
evaluating the options, and choosing the settings that best suit your
requirements.

0.5 4 0.5 1×+× 2.5=

8–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Resolving Resource Utilization Issues Summary

Resource utilization issues can be divided into the following three
categories:

■ Issues relating to I/O pin utilization or placement, including
dedicated I/O blocks such as PLLs or LVDS transceivers (“I/O Pin
Utilization or Placement” on page 8–26).

■ Issues relating to logic utilization or placement, including logic cells
containing registers and look-up tables as well as dedicated logic
such as memory blocks and DSP blocks (“Logic Utilization or
Placement” on page 8–27).

■ Issues relating to routing (“Routing” on page 8–38).

I/O Pin Utilization or Placement

Use the suggestions in the following sections to help you resolve I/O
resource problems.

Use I/O Assignment Analysis

On the Processing menu, point to Start and click Start I/O Assignment
Analysis to help with pin placement. The Start I/O Assignment Analysis
command allows you to check your I/O assignments early in the design
process. You can use this command to check the legality of pin
assignments before, during, or after compilation of your design. If design
files are available, you can use this command to perform more thorough
legality checks on your design’s I/O pins and surrounding logic. These
checks include proper reference voltage pin usage, valid pin location
assignments, and acceptable mixed I/O standards.

Common issues with I/O placement relate to the fact that differential
standards have specific pin pairings, and certain I/O standards may be
supported only on certain I/O banks.

If your compilation or I/O assignment analysis results in specific errors
relating to I/O pins, follow the recommendations in the error message.
Right-click on the message in the Messages window and click Help to
open the Quartus II Help topic for this message.

Modify Pin Assignments or Choose a Larger Package

If a design that has pin assignments fails to fit, compile the design without
the pin assignments to determine whether a fit is possible for the design
in the specified device and package. You can use this approach if a
Quartus II error message indicates fitting problems due to pin
assignments.

Altera Corporation 8–27
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–27
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

If the design fits when all pin assignments are ignored or when several
pin assignments are ignored or moved, you may have to modify the pin
assignments for the design or choose a larger package.

If the design fails to fit because of lack of available I/Os, a successful fit
can often be obtained by using a larger device package (which can be the
same device density) that has more available user I/O pins.

f For more information about I/O assignment analysis, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Logic Utilization or Placement

Use the suggestions in the following subsections to help you resolve logic
resource problems, including logic cells containing registers and lookup
tables (LUTs) as well as dedicated logic such as memory blocks and DSP
blocks.

Optimize Synthesis for Area, Not Speed

If your design fails to fit because it uses too much logic, resynthesize the
design to improve the area utilization. First, ensure that you have set your
device and timing constraints correctly in your synthesis tool.
Particularly when the area utilization of the design is a concern, ensure
that you do not over-constrain the timing requirements for the design.
Synthesis tools generally try to meet the specified requirements, which
can result in higher device resource usage if the constraints are too
aggressive.

If resource utilization is an important concern, some synthesis tools offer
an easy way to optimize for area instead of speed. If you are using
Quartus II integrated synthesis, choose Balanced or Area for the
Optimization Technique. You can also specify this logic option for
specific modules in your design with the Assignment Editor in cases
where you want to reduce area using the Area setting (potentially at the
expense of register-to-register timing performance) while leaving the
default Optimization Technique setting at Balanced (for the best
trade-off between area and speed for certain device families) or Speed.
You can also use the Speed Optimization Technique for Clock Domains
logic option to specify that all combinational logic in or between the
specified clock domain(s) is optimized for speed.

In some synthesis tools, not specifying an fMAX requirement may result in
less resource utilization.

8–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

1 In the Quartus II software, the Balanced setting typically
produces utilization results that are very similar to those
produced by the Area setting, with better performance results.
The Area setting may give better results in some unusual cases.

f For information about setting timing requirements and synthesis options
in Quartus II integrated synthesis and other synthesis tools, refer to the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook, or your synthesis software’s documentation.

The Quartus II software provides additional attributes and options that
can help improve the quality of your synthesis results.

Restructure Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexed logic, you can achieve a more
efficient implementation in your Altera device.

The Quartus II software provides the Restructure Multiplexers logic
option, which can extract and optimize buses of multiplexers during
synthesis. This option is available on the Analysis & Synthesis Settings
page of the Settings dialog box and is useful if your design contains buses
of fragmented multiplexers. This option restructures multiplexers more
efficiently for area, allowing the design to implement multiplexers with a
reduced number of LEs or ALMs. Using the Restructure Multiplexers
logic option can reduce your design’s register-to-register timing
performance. This option is turned on automatically when you set the
Quartus II Analysis & Synthesis Optimization Technique option to
Area or Balanced. To change the default setting, on the Assignments
menu, click Settings. In the Category list, select Analysis & Synthesis
Settings, and click the appropriate option from the Restructure
Multiplexers list to set the option globally.

f For design guidelines to achieve optimal resource utilization for
multiplexer designs, refer to the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook. For more information about the
Restructure Multiplexers option in the Quartus II software, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Altera Corporation 8–29
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–29
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Perform WYSIWYG Resynthesis with Balanced or Area Setting

If you use another EDA synthesis tool and want to determine if the
Quartus II software can remap the circuit to use fewer LEs or ALMs,
follow these steps:

1. On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn on Perform WYSIWYG
primitive resynthesis (using optimization techniques specified in
Analysis & Synthesis settings) on the Synthesis Netlist
Optimizations page. Or, on the Assignments menu, click
Assignment Editor, and apply the Perform WYSIWYG Primitive
Resynthesis logic option to a specific module in your design.

2. On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and choose Balanced or Area under
Optimization Technique. Or, on the Assignments menu, click
Assignment Editor. Set the Optimization Technique to Balanced or
Area for a specific module in your design.

3. Recompile the design.

1 The Balanced setting typically produces utilization results that
are very similar to the Area setting, with better performance
results. The Area setting may give better results in some unusual
cases. Performing WYSIWYG resynthesis for area in this way
typically reduces register-to-register timing performance.

Use Register Packing

The Auto Packed Registers option implements the functions of two cells
into one logic cell by combining the register of one cell in which only the
register is used with the LUT of another cell in which only the LUT is
used. Figure 8–6 shows register packing and the gain of one logic cell in
the design.

8–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 8–6. Register Packing

Registers can also be packed into DSP blocks (Figure 8–7).

Figure 8–7. Register Packing in DSP Blocks

Altera Corporation 8–31
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–31
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

The following list shows the most common cases in which register
packing helps to optimize a design:

■ A LUT can be implemented in the same cell as an unrelated register
with a single data input

■ A LUT can be implemented in the same cell as the register that is fed
by the LUT

■ A LUT can be implemented in the same cell as the register that feeds
the LUT

■ A register can be packed into a RAM block
■ A register can be packed into a DSP block
■ A register can be packed into an I/O Element (IOE)

The following options are available for register packing (for certain
device families):

■ Off—Does not pack registers.
■ Normal—Packs registers when this is not expected to hurt timing

results.
■ Minimize Area—Aggressively packs registers to reduce area.
■ Minimize Area with Chains—Aggressively packs registers to

reduce area. This option packs registers with carry chains. It also
converts registers into register cascade chains and packs them with
other logic to reduce area. This option is available only for Arria GX
devices, the Stratix and Cyclone series of devices, and MAX II
devices.

■ Auto—This is the default setting for register packing. This setting
tells the Fitter to attempt to achieve the best performance while
maintaining a fit for the design in the specified device. The Fitter
combines all combinational (LUT) and sequential (register) functions
that benefit circuit speed. In addition, more aggressive combinations
of unrelated combinational and sequential functions are performed
to the extent required to reduce the area of the design to achieve a fit
in the specified device. This option is available only for Arria GX
devices, the Stratix and Cyclone series of devices, and MAX II
devices.

■ Sparse—In this mode, the combinational (LUT) and sequential
(register) functions are combined such that the combined logic has
either a combinational output or a sequential output but not both.
This mode is available only for Arria GX, Stratix III, Stratix II,
Cyclone III, and Cyclone II devices. This option results in a higher
logic array block (LAB) usage, but might give you better timing
performance because of reduced routing congestion.

■ Sparse Auto—In this mode, the Quartus II Fitter starts with sparse
mode packing, and then attempts to achieve best performance while
maintaining a fit for the specified device. Later optimizations are

8–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

carried out in a way similar to the Auto mode. This mode is available
only for Arria GX, Stratix III, Stratix II, Cyclone III, and Cyclone II
devices.

Turning on register packing decreases the number of logic elements (LEs)
or adaptive logic modules (ALMs) in the design, but could also decrease
performance in some cases. On the Assignments menu, click Settings. In
the Category list, select Fitter Settings, and then click More Settings.
Turn on Auto Packed Registers to turn on register packing.

The area reduction and performance results can vary greatly depending
on the design. Typical results for register packing are shown in the
following tables. Table 8–1 shows typical results for Arria GX devices.
Table 8–2 shows typical results for Cyclone III and Cyclone II devices,
and Table 8–3 shows typical results for Stratix, Stratix GX, and Cyclone
devices.

The Auto setting performs more aggressive register packing as needed,
so the typical results vary depending on the device resource utilization.

Table 8–2 shows typical results for Cyclone III and Cyclone II devices.

Table 8–1. Typical Register Packing Results for Arria GX, Stratix III, and Stratix II Devices

Register Packing Setting Relative fMAX Relative ALM Count

Off 0.94 1.26

Sparse 1.01 1.04

Normal 1.00 1.00

Minimize Area 0.95 0.94

Minimize Area with Chains 0.95 0.94

Auto 1.0 until device is very full, then
gradually to 0.95 as required

1.0 until device is very full, then
gradually to 0.94 as required

Sparse Auto 1.01 until device is very full, then
gradually to 0.95 as required

1.04 until device is very full, then
gradually to 0.94 as required

Table 8–2. Typical Register Packing Results for Cyclone III and Cyclone II Devices (Part 1 of 2)

Register Packing Setting Relative fMAX Relative LE Count

Off 0.97 1.40

Sparse 1.02 1.06

Normal 1.00 1.00

Minimize Area 0.96 0.93

Altera Corporation 8–33
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–33
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Table 8–3 shows results for Stratix, Stratix GX, and Cyclone devices.

Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to
meet may not fit in the targeted device. This can occur when the location
or LogicLock assignments are too strict and not enough routing resources
are available on the device.

In this case, use the Routing Congestion view in the Chip Planner or
Timing Closure Floorplan (for older devices) to locate routing problems
in the floorplan, then remove any location or LogicLock region
assignments in that area. If your design still does not fit, the design is
over-constrained. To correct the problem, remove all location and
LogicLock assignments and run successive compilations, incrementally
constraining the design before each compilation. You can delete specific
location assignments in the Assignment Editor or the Chip Planner or the
Timing Closure Floorplan. To remove LogicLock assignments in the Chip
Planner (or in the Timing Closure Floorplan), in the LogicLock Regions
Window, or, on the Assignments menu, click Remove Assignments. Turn
on the assignment categories you want to remove from the design in the
Available assignment categories list.

Minimize Area with Chains 0.94 0.91

Auto 1.0 until device is very full, then
gradually to 0.94 as required

1.0 until device is very full, then
gradually to 0.91 as required

Sparse Auto 1.02 until device is very full, then
gradually to 0.94 as required

1.06 until device is very full, then
gradually to 0.91 as required

Table 8–2. Typical Register Packing Results for Cyclone III and Cyclone II Devices (Part 2 of 2)

Register Packing Setting Relative fMAX Relative LE Count

Table 8–3. Typical Register Packing Results for Stratix, Stratix GX and Cyclone Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 1.00 1.12

Normal 1.00 1.00

Minimize Area 0.97 0.93

Minimize Area with Chains 0.94 0.90

Auto (default) 1.0 until device is very full, then
gradually to 0.94 as required

1.0 until device is very full, then
gradually to 0.90 as required

8–34 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

f For more information about the Routing Congestion view in the Chip
Planner and the Timing Closure Floorplan, refer to Analyzing and
Optimizing the Design Floorplan in volume 2 of the Quartus II Handbook.
Also refer to the Quartus II Help.

Change State Machine Encoding

State machines can be encoded using various techniques. Using binary or
gray code encoding typically results in fewer state registers than one-hot
encoding, which requires one register for every state bit. If your design
contains state machines, changing the state machine encoding to one that
uses the minimal number of registers may reduce resource utilization.
The effect of state machine encoding varies depending on the way your
design is structured.

If your design does not manually encode the state bits, you can specify the
state machine encoding in your synthesis tool. When using Quartus II
Integrated Synthesis, go to the Assignments menu and click Settings. In
the Category list, select Analysis & Synthesis Settings and turn on
Minimal Bits for State Machine Processing. You also can specify this
logic option for specific modules or state machines in your design with
the Assignment Editor.

You can also use the following Tcl command in scripts to modify the state
machine encoding.

set_global_assignment -name <state_machine_processing> <value>

In this case, <value> could be AUTO, ONE-HOT, MINIMAL BITS, or
USER-ENCODE.

Flatten the Hierarchy During Synthesis

Synthesis tools typically provide the option of preserving hierarchical
boundaries, which may be useful for verification or other purposes.
However, optimizing across hierarchical boundaries allows the synthesis
tool to perform the most logic minimization, which can reduce area.
Therefore, to achieve the best results, flatten your design hierarchy
whenever possible. If you are using Quartus II integrated synthesis,
ensure that the Preserve Hierarchical Boundary logic option is turned
off, that is, make sure that you have not turned on the option in the
Assignment Editor or with Tcl assignments. If you are using Quartus II
incremental compilation, you cannot flatten your design across design
partitions. Incremental compilation always preserves the hierarchical
boundaries between design partitions. Follow Altera’s recommendations
for design partitioning, such as registering partition boundaries to reduce
the effect of cross-boundary optimizations.

Altera Corporation 8–35
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–35
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

f For more information about using incremental compilation and
recommendations for design partitioning, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook. If you are using an incremental
synthesis flow that requires separate hierarchy blocks, you can find
additional recommendations for design partitioning in the Design
Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook.

Retarget Memory Blocks

If the design fails to fit because it runs out of device memory resources,
your design may require a certain type of memory the device does not
have. For example, a design that requires two M-RAM blocks can be
targeted to a Stratix EP1S10 device, which has only one M-RAM block. By
building one of the memories with a different size memory block, such as
an M4K memory block, you might obtain a fit.

If the memory block was created with the MegaWizard® Plug-In
Manager, open the MegaWizard Plug-In Manager and edit the RAM
block type so it targets a new memory block size.

ROM and RAM memory blocks can also be inferred from your HDL code,
and your synthesis software can place large shift registers into memory
blocks by inferring the altshift_taps megafunction. This inference
can be turned off in your synthesis tool to cause the memory to be placed
in logic instead of in memory blocks. To disable inference when using
Quartus II integrated synthesis, on the Assignments menu, click Settings.
In the Category list, select Analysis & Synthesis, and turn off the Auto
RAM Replacement, Auto ROM Replacement, or Auto Shift Register
Replacement logic option as appropriate for your project. Or, disable the
option for a specific entity in the Assignment Editor.

Depending on your synthesis tool, you can also set the RAM block type
for inferred memory blocks. In Quartus II integrated synthesis, set the
ramstyle attribute to the desired memory type for the inferred RAM
blocks, or set the option to logic to implement the memory block in
standard logic instead of a memory block.

Consider the resource utilization by hierarchy in the report file, and
determine whether there is an unusually high register count in any of the
modules. Some coding styles may prevent the Quartus II software from
inferring RAM blocks from the source code because of their architectural
implementation, and forcing the software to implement the logic in
flipflops, instead. As an example, a function such as an asynchronous
reset on a register bank might make it incompatible with the RAM blocks

8–36 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

in the device architecture, so that the register bank is implemented in
flipflops. Often it is possible to move a large register bank into RAM by
slight modification of associated logic.

f For more information about memory inference control in other synthesis
tools, refer to the appropriate chapter in the Synthesis section in volume 1
of the Quartus II Handbook, or your synthesis software’s documentation.
For more information about coding styles and HDL examples that
ensure memory inference, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook.

Use Physical Synthesis Options to Reduce Area

The physical synthesis options for fitting may help you decrease the
resource usage; additional optimizations for fitting are available. When
you enable these settings for physical synthesis for fitting, the Quartus II
software makes placement-specific changes to the netlist that reduce
resource utilization for a specific Altera device.

The following physical synthesis optimizations for fitting are available:

■ Physical synthesis for combinational logic
■ Map logic into memory

On the Assignments menu, click Settings. In the Category list, select
Fitter Settings, and specify the physical synthesis optimization options
on the Physical Synthesis Optimizations page. You can also specify the
physical synthesis effort, which sets the level of physical synthesis
optimization that you want the Quartus II software to perform.

The Perform physical synthesis for combinational logic for fitting option
allows the Quartus II Fitter to resynthesize the combinational logic in a
design to reduce the resource utilization to help achieve a fit.

The Map logic into memory for fitting option allows the Quartus II Fitter
to automatically map logic into unused memory blocks during fitting,
reducing the number of logic elements required to implement the design.

Retarget or Balance DSP Blocks

A design may not fit because it requires too many DSP blocks. All DSP
block functions can be implemented with logic cells, so you can retarget
some of the DSP blocks to logic to obtain a fit.

Altera Corporation 8–37
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–37
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

If the DSP function was created with the MegaWizard Plug-In Manager,
open the MegaWizard Plug-In Manager and edit the function so it targets
logic cells instead of DSP blocks. The Quartus II software uses the
DEDICATED_MULTIPLIER_CIRCUITRY megafunction parameter to
control the implementation.

DSP blocks also can be inferred from your HDL code for multipliers,
multiply-adders, and multiply-accumulators. This inference can be
turned off in your synthesis tool. When you are using Quartus II
integrated synthesis, you can disable inference by turning off the
Auto DSP Block Replacement logic option for your whole project. On
the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn off Auto DSP Block
Replacement. Alternatively, you can disable the option for a specific
block with the Assignment Editor.

f For more information about disabling DSP block inference in other
synthesis tools, refer to the appropriate chapter in the Synthesis section
in volume 1 of the Quartus II Handbook, or your synthesis software’s
documentation.

The Quartus II software also offers the DSP Block Balancing logic
option, which implements DSP block elements in logic cells or in different
DSP block modes. The default Auto setting allows DSP block balancing
to convert the DSP block slices automatically as appropriate to minimize
the area and maximize the speed of the design. You can use other settings
for a specific node or entity, or on a project-wide basis, to control how the
Quartus II software converts DSP functions into logic cells and DSP
blocks. Using any value other than Auto or Off overrides the
DEDICATED_MULTIPLIER_CIRCUITRY parameter used in
megafunction variations.

f For more details about the Quartus II logic options described in this
section, refer to the Quartus II Help.

Optimize Source Code

If your design does not fit because of logic utilization, and the methods
described in the preceding sections do not sufficiently improve the
resource utilization of the design, modify the design at the source to
achieve the desired results. You can often improve logic significantly by
making design-specific changes to your source code. This is typically the
most effective technique for improving the quality of your results.

If your design does not fit into available LEs or ALMs, but you have
unused memory or DSP blocks, check to see if you have code blocks in
your design that describe memory or DSP functions that are not being

8–38 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

inferred and placed in dedicated logic. You may be able to modify your
source code to allow these functions to be placed into dedicated memory
or DSP resources in the target device.

Ensure that your state machines are recognized as state machine logic and
optimized appropriately in your synthesis tool. State machines that are
recognized are generally optimized better than if the synthesis tool treats
them as generic logic. In the Quartus II software, you can check for the
State Machine report under Analysis & Synthesis in the Compilation
Report. This report provides details, including the state encoding for each
state machine that was recognized during compilation. If your state
machine is not being recognized, you may need to change your source
code to enable it to be recognized.

f For coding style guidelines including examples of HDL code for
inferring memory and DSP functions, refer to the Instantiating Altera
Megafunctions and the Inferring Altera Megafunctions sections of the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook. For guidelines and sample HDL code for state machines, refer
to the General Coding Guidelines section of the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Use a Larger Device

If a successful fit cannot be achieved because of a shortage of LEs or
ALMs, memory, or DSP blocks, you may need to use a larger device.

Routing

Use the suggestions in the following subsections to help you resolve
routing resource problems.

Set Auto Register Packing to Auto

This option is useful for reducing LE or ALM count in a design. This
option is available for Arria GX devices and for the Cyclone and Stratix
series of devices. On the Settings menu, select Fitter Settings. Click More
Settings. From the options list, select Auto Register Packing and select
the Auto option from the drop-down menu.

When you choose a register packing setting to perform more register
packing than the Auto setting, the extra register packing may affect the
routability of the design as an unintended result. The Minimize the area
with chains setting restricts placement and reduces routability
significantly more than using the Minimize Area setting. For more
information about register packing, refer to “Use Register Packing” on
page 8–29.

Altera Corporation 8–39
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–39
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Set Fitter Aggressive Routability Optimizations to Always

If routing resources are resulting in no-fit errors, use this option to reduce
routing wire utilization. On the Assignments menu, click Settings. In the
Category list, select Fitter Settings. Click More Settings. In the More
Fitter Settings dialog box, set Fitter Aggressive Routability
Optimizations to Always and click OK.

On average, in Arria GX and Stratix II devices, this option saves
approximately 3% wire utilization but can reduce performance by
approximately 1%. In Stratix III devices, this option saves approximately
6% wire utilization, at the same time reducing the performance by
approximately 3%. In Cyclone III devices, using this option saves
approximately 4.5% wire utilization while reducing the performance by
about 4%.

These optimizations are used automatically when the Fitter performs
more than one fitting attempt, but turning the option on increases the
optimization effort on the first fitting attempt. This option also ensures
that the Quartus II software uses maximum optimization to reduce
routability, even if the Fitter Effort is set to Auto Fit.

You can modify the Placement Effort Multiplier using the following Tcl
command; <value> can be any positive, non-zero number.

set_global_assignment \
-name PLACEMENT_EFFORT_MULTIPLIER <value>

Increase Placement Effort Multiplier

Increasing the placement effort can improve the routability of the design,
allowing the software to route a design that otherwise requires too many
routing resources. On the Assignments menu, click Settings. In the
Category list, select Fitter Settings. Click More Settings. In the More
Fitter Settings dialog box, increase the value of the Placement Effort
Multiplier to increase placement effort. The default value is 1.0. Legal
values must be greater than 0 and can be non-integer values. Higher
numbers increase compilation time but may improve placement quality.
For example, a value of 4 increases fitting time by approximately 2 to 4
times but may increase the quality of results. Increasing the placement
effort multiplier does not tend to improve timing optimization unless the
design also has very high routing resource usage.

Increased effort is used automatically when the Fitter performs more than
one fitting attempt. Setting a multiplier higher than one (before
compilation) increases the optimization effort on the first fitting attempt.

8–40 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The second and third fitting loops increase the Placement Effort
Multiplier to 4 and then to 16. These loops result in increased compilation
times, with possible improvement in the quality of placement.

Increase Router Effort Multiplier

The Router Effort Multiplier controls how quickly the router tries to find
a valid solution. The default value is 1.0, and legal values must be greater
than 0. Numbers higher than 1 (as high as 3 is generally reasonable) may
improve routing quality at the expense of run-time on difficult-to-route
circuits. Numbers closer to 0 (for example, 0.1) can reduce router runtime,
but usually reduce routing quality slightly. Experimental evidence shows
that a multiplier of 3.0 reduces overall wire usage by about 2%. There is
usually no gain in performance beyond a multiplier value of 3.

You can set the Router Effort Multiplier to a value higher than the default
value for difficult-to-route designs. To set the Router Effort Multiplier,
from the Assignments menu, click Settings, and then click Fitter
Settings. Click the More Settings button. From the options available,
select Router Effort Multiplier and edit the value in the dialog box that
appears.

You can modify the Router Effort Multiplier by the following Tcl
command, where <value> can be any positive, non-zero number.

set_global_assignment \
-name ROUTER_EFFORT_MULTIPLIER <value>

Remove Fitter Constraints

A design with conflicting constraints or constraints that are difficult to
meet may not fit the targeted device. This can occur when location or
LogicLock assignments are too strict and there are not enough routing
resources.

In this case, use the Routing Congestion view in the Chip Planner or the
Timing Closure Floorplan (for older devices) to locate routing problems
in the floorplan, then remove all location and LogicLock region
assignments from that area. If your design still does not fit, the design is
over-constrained. To correct the problem, remove all location and
LogicLock assignments and run successive compilations, incrementally
constraining the design before each compilation. You can delete specific
location assignments in the Assignment Editor or the Chip Planner or
Timing Closure Floorplan (for supported devices). Remove LogicLock
assignments in the Chip Planner (or in the Timing Closure Floorplan), in

Altera Corporation 8–41
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–41
October 2007

Resource Utilization Optimization Techniques (LUT-Based Devices)

the LogicLock Regions Window, or, on the Assignments menu, click
Remove Assignments. Turn on the assignment categories you want to
remove from the design in the Available assignment categories list.

f For more information about the Routing Congestion view in the Chip
Planner or the Timing Closure Floorplan, refer to the “Routing
Congestion View” section in the Analyzing and Optimizing the Design
Floorplan chapter in volume 2 of the Quartus II Handbook. You can also
refer to the Quartus II Help.

Set Maximum Router Timing Optimization Level

To improve routability in cases in which the router did not pick up the
optimal routing lines, set the Router Timing Optimization Level to
Maximum. This setting determines how aggressively the router tries to
meet timing requirements. Setting this option to Maximum can increase
design speed slightly, at the cost of increased compilation time. Setting
this option to Minimum can reduce compilation time, at the cost of
slightly reduced design speed. The default value is Normal.

To modify the Router Timing Optimization level, on the Assignments
menu, click Settings. The Settings dialog box appears. In the Category
list, click Fitter Settings. Click on the More Settings tab. From the
available settings, select Router Timing Optimization Level and choose
the required setting from the drop-down menu.

Optimize Synthesis for Area, Not Speed

In some cases, resynthesizing the design to improve the area utilization
can also improve the routability of the design. First, ensure that you have
set your device and timing constraints correctly in your synthesis tool.
Ensure that you do not over-constrain the timing requirements for the
design, particularly when the area utilization of the design is a concern.
Synthesis tools generally try to meet the specified requirements, which
can result in higher device resource usage if the constraints are too
aggressive.

If resource utilization is important to improving the routing results in
your design, some synthesis tools offer an easy way to optimize for area
instead of speed. If you are using Quartus II integrated synthesis, on the
Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, and choose Balanced or Area under Optimization
Technique.

You can also specify this logic option for specific modules in your design
with the Assignment Editor in cases where you want to reduce area using
the Area setting (potentially at the expense of register-to-register timing

8–42 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

performance). You can apply the setting to specific modules while leaving
the default Optimization Technique setting at Balanced (for the best
trade-off between area and speed for certain device families) or Speed.
You can also use the Speed Optimization Technique for Clock Domains
logic option to specify that all combinational logic in or between the
specified clock domain(s) is optimized for speed.

1 In the Quartus II software, the Balanced setting typically
produces utilization results that are very similar to those
obtained with the Area setting, with better performance results.
The Area setting may give better results in some unusual cases.

In some synthesis tools, not specifying an fMAX requirement may result in
less resource utilization which may improve routability.

f For information about setting timing requirements and synthesis options
in Quartus II integrated synthesis and other synthesis tools, refer to the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook, or your synthesis software’s documentation.

Optimize Source Code

If your design does not fit because of routing problems, and the methods
described in the preceding sections do not sufficiently improve the
routability of the design, modify the design at the source to achieve the
desired results. You can often improve results significantly by making
design-specific changes to your source code, such as duplicating logic or
changing the connections between blocks that require significant routing
resources.

Use a Larger Device

If a successful fit cannot be achieved because of a shortage of routing
resources, you may need to use a larger device.

Timing
Optimization
Techniques
(LUT-Based
Devices)

This section contains guidelines if your design does not meet its timing
requirements.

Timing Optimization Advisor

The Timing Optimization Advisor guides you to make settings that
optimize your design to meet your timing requirements. To run the
Timing Optimization Advisor, on the Tools menu, point to Advisors, and
click on Timing Optimization Advisor. This advisor describes many of
the suggestions made in this section.

Altera Corporation 8–43
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–43
October 2007

Timing Optimization Techniques (LUT-Based Devices)

When you open the Timing Optimization Advisors after compilation, you
find recommendations to improve the timing performance of your
design. Some of the recommendations in these advisors may contradict
each other. Altera recommends evaluating these options and choosing the
settings that best suit the given requirements.

I/O Timing Optimization

The example in Figure 8–8 shows the Timing Optimization Advisor after
compiling a design that meets its frequency requirements, but requires
settings changes to improve the timing.

Figure 8–8. Timing Optimization Advisor

When you expand one of the categories in the Advisor, such as Maximum
Frequency (fmax) or I/O Timing (tsu, tco, tpd), the recommendations are
divided into stages. The stages show the order in which you should apply
the recommended settings. The first stage contains the options that are
easiest to change, make the least drastic changes to your design
optimization, and have the least effect on compilation time. Icons indicate
whether each recommended setting has been made in the current project.
In Figure 8–8, the check mark icons in the list of recommendations for
Stage 1 indicate recommendations that are already implemented. The
warning icons indicate recommendations that are not followed for this
compilation. The information icon indicates general suggestions. For

These options open the Settings dialog box or Assignment
Editor so you can manually change the settings.

This button makes the recommended
changes automatically.

8–44 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

these entries, the advisor does not report whether these
recommendations were followed, but instead explains how you can
achieve better performance. Refer to the “How to use” page in the
Advisor for a legend that provides more information for each icon.

There is a link from each recommendation to the appropriate location in
the Quartus II user interface where you can change the settings. For
example, consider the Synthesis Netlist Optimizations page of the
Settings dialog box or the Global Signals category in the Assignment
Editor. This approach provides the most control over which settings are
made, and helps you learn about the settings in the software. In some
cases, you can also use the Correct the Settings button, shown in the
advisor in Figure 8–8, to automatically make the suggested change to
global settings.

For some entries in the advisor, a button appears that allows you to
further analyze your design and gives you more information. For
example, Figure 8–9 shows the guidelines for the Use Global Clocks
entry, after the user has clicked List all clocks. The advisor provides a
table with the clocks in the design, and indicates whether they have been
assigned a timing constraint.

Figure 8–9. Timing Optimization Advisor

Altera Corporation 8–45
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–45
October 2007

Timing Optimization Techniques (LUT-Based Devices)

The next stage of design optimization focuses on I/O timing. Ensure that
you have made the appropriate assignments as described in “Initial
Compilation: Required Settings” on page 8–3, and that the resource
utilization is satisfactory, before proceeding with I/O timing
optimization. The suggestions given in this section are applicable to all
Altera FPGA families and to the MAX II family of CPLDs.

Because changes to the I/O paths affect the internal register-to-register
timing, complete this stage before proceeding to the register-to-register
timing optimization stage as described in the “Register-to-Register
Timing Optimization Techniques (LUT-Based Devices)” on page 8–52.

The options presented in this section address how to improve I/O timing,
including the setup delay (tSU), hold time (tH), and clock-to-output (tCO)
parameters.

Improving Setup and Clock-to-Output Times Summary

Table 8–4 shows the recommended order in which to use techniques to
reduce tSU and tCO times. Check marks indicate which timing parameters
are affected by each technique. Reducing tSU times increases hold (tH)
times.

Table 8–4. Improving Setup and Clock-to-Output Times Note (1) (Part 1 of 2)

Technique
Affects

tSU

Affects
tCO

Ensure that the appropriate constraints are set for the failing I/Os (page 8–4) v v
Use timing-driven compilation for I/O (page 8–47) v v
Use fast input register (page 8–47) v —

Use fast output register, fast output enable register, and fast OCT register (page 8–47) — v
Decrease the value of Input Delay from Pin to Input Register or set Decrease Input Delay
to Input Register = ON (page 8–49) v —

Decrease the value of Input Delay from Pin to Internal Cells, or set Decrease Input Delay
to Internal Cells = ON (page 8–49) v —

Decrease the value of Delay from Output Register to Output Pin, or set Increase Delay to
Output Pin = OFF (page 8–49)

— v
Increase the value of Input Delay from Dual-Purpose Clock Pin to Fan-Out Destinations
(page 8–51) v —

Use PLLs to shift clock edges (page 8–51) v v
Use the Fast Regional Clock option (page 8–52) — v

8–46 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Timing-Driven Compilation

To perform IOC timing optimization using the Optimize IOC Register
Placement For Timing option, perform the following steps.

1. On the Assignments menu, click Settings.

2. In the Category list, select Fitter Settings and click More Settings.

3. In the More Fitter Settings dialog box, under Existing options
settings, select Optimize IOC Register Placement for Timing.

This option moves registers into I/O elements if required to meet tSU or
tCO assignments, duplicating the register if necessary (as in the case where
a register fans out to multiple output locations). This option is enabled by
default and is a global setting. The option does not apply to MAX II
devices because they do not contain I/O registers.

For APEX™ 20KE and APEX 20KC devices, if the I/O register is not
available, the Fitter tries to move the register into the logic array block
(LAB) adjacent to the I/O element.

The Optimize IOC Register Placement for Timing option affects only
pins that have a tSU or tCO requirement. Using the I/O register is possible
only if the register directly feeds a pin or is fed directly by a pin. This
setting does not affect registers with any of the following characteristics:

■ Have combinational logic between the register and the pin
■ Are part of a carry or cascade chain
■ Have an overriding location assignment
■ Use the synchronous load or asynchronous clear ports of APEX 20K

and APEX II devices

For MAX II devices, set Guarantee I/O paths to zero, Hold Time at Fast Timing Corner to
OFF, or When tSU and tPD constraints permit (page 8–52) v —

Increase the value of Delay to output enable pin or set Increase delay to output enable
pin (page 8–51) — v
Note to Table 8–4:
(1) These options may not apply to all device families.

Table 8–4. Improving Setup and Clock-to-Output Times Note (1) (Part 2 of 2)

Technique
Affects

tSU

Affects
tCO

Altera Corporation 8–47
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–47
October 2007

Timing Optimization Techniques (LUT-Based Devices)

■ Are input registers that use the synchronous load port and the value
is not 1 (in device families where the port is available, other than
APEX 20K, APEX II, and FLEX® 6000 devices)

■ Use the asynchronous load port and the value is not 1 (in device
families where the port is available)

Registers with the characteristics listed are optimized using the regular
Quartus II Fitter optimizations.

Fast Input, Output and Output Enable Registers

You can place individual registers in I/O cells manually by making fast
I/O assignments with the Assignment Editor. For an input register, use
the Fast Input Register option; for an output register, use the Fast Output
Register option; and for an output enable register, use the Fast Output
Enable Register option. Stratix II devices also support the Fast OCT
(on-chip termination) Register option. In MAX II devices, which have no
I/O registers, these assignments lock the register into the LAB adjacent to
the I/O pin if there is a pin location assignment for that I/O pin.

If the fast I/O setting is on, the register is always placed in the I/O
element. If the fast I/O setting is off, the register is never placed in the I/O
element. This is true even if the Optimize IOC Register Placement for
Timing option is turned on. If there is no fast I/O assignment, the
Quartus II software determines whether to place registers in I/O
elements if the Optimize IOC Register Placement for Timing option is
turned on.

The four fast I/O options (Fast Input Register, Fast Output Register, Fast
Output Enable Register, and Fast OCT Register) also can be used to
override the location of a register that is in a LogicLock region, and force
it into an I/O cell. If this assignment is applied to a register that feeds
multiple pins, the register is duplicated and placed in all relevant I/O
elements. In MAX II devices, the register is duplicated and placed in each
distinct LAB location that is next to an I/O pin with a pin location
assignment.

Programmable Delays

Various programmable delay options can be used to minimize the tSU and
tCO times. For Arria GX devices, Stratix and Cyclone series devices, and
MAX II devices, the Quartus II software automatically adjusts the
applicable programmable delays to help meet timing requirements. For
APEX series devices, the default values are set to avoid any hold time
problems. Programmable delays are advanced options that you should

8–48 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

use only after you compile a project, check the I/O timing, and determine
that the timing is unsatisfactory. For detailed information about the effect
of these options, refer to the device family handbook or data sheet.

After you have made a programmable delay assignment and compiled
the design, you can view the value of every delay chain for every I/O pin
in the Delay Chain Summary section of the Compilation Report.

You can assign programmable delay options to supported nodes with the
Assignment Editor. You also can view and modify the delay chain setting
for the target device with the Chip Planner and Resource Property Editor.
When you use the Resource Property Editor to make changes after
performing a full compilation, recompiling the entire design is not
necessary; you can save changes directly to the netlist. Because these
changes are made directly to the netlist, the changes are not made again
automatically when you recompile the design. The change management
features allow you to reapply the changes on subsequent compilations.

Though the programmable delays in Stratix III devices are
user-controllable, Altera recommends their use for advanced users only.
However, the Quartus II software may use the programmable delays
internally during the Fitter phase.

f For more details about Stratix III programmable delays, refer to the
Stratix III Device Handbook and AN 474: Stratix III Programmable I/O Delay
Settings in Quartus II.

f For more information about using the Chip Planner and Resource
Property Editor, refer to the Design Analysis and Engineering Change
Management with Chip Planner chapter in volume 3 of the Quartus II
Handbook.

Altera Corporation 8–49
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–49
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Table 8–5 summarizes the programmable delays available for Altera
devices.

Table 8–5. Programmable Delays for Altera Devices (Part 1 of 2)

Programmable Delay Description I/O Timing
Impact Devices

Decrease input delay to input
register

Decreases propagation delay from an
input pin to the data input of the input
register in the I/O cell associated with
the pin. Applied to an
input/bidirectional pin or register it
feeds.

Decreases tS U
Increases tH

● Stratix
● Stratix GX
● Cyclone
● MAX 7000B
● APEX II
● APEX 20KE
● APEX 20KC
● Mercury™

Input delay from pin to input
register

Sets propagation delay from an input
pin to the data input of the input
register implemented in the I/O cell
associated with the pin. Applied to an
input/bidirectional pin.

Changes tS U
Changes tH

● Arria GX
● Stratix II
● Stratix II GX
● Cyclone III
● Cyclone II

Decrease input delay to
internal cells

Decreases the propagation delay from
an input or bidirectional pin to logic
cells and embedded cells in the
device. Applied to an
input/bidirectional pin or register it
feeds.

Decreases tS U
Increases tH

● Stratix
● Stratix GX
● Cyclone
● APEX II
● APEX 20KE
● APEX 20KC
● ACEX® 1K
● FLEX 10K®

● FLEX 6000
● Mercury

Input delay from pin to
internal cells

Sets the propagation delay from an
input or bidirectional pin to logic and
embedded cells in the device. Applied
to an input or bidirectional pin.

Changes tS U
Changes tH

● Stratix II
● Stratix II GX
● Cyclone III
● Cyclone II
● MAX II

Decrease input delay to
output register

Decreases the propagation delay from
the interior of the device to an output
register in an I/O cell. Applied to an
input/bidirectional pin or register it
feeds.

Decreases tP D ● Arria GX
● Stratix
● Stratix GX
● APEX II
● APEX 20KE
● APEX 20KC

Increase delay to output
enable pin

Increases the propagation delay
through the tri-state output to the pin.
The signal can either come from
internal logic or the output enable
register in an I/O cell. Applied to an
output/bidirectional pin or register
feeding it.

Increases tC O ● Stratix
● Stratix GX
● APEX II
● Mercury

8–50 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Delay to output enable pin Sets the propagation delay to an
output enable pin from internal logic or
the output enable register
implemented in an I/O cell.

Changes tC O ● Arria GX
● Stratix II
● Stratix II GX
● Cyclone III

Increase delay to output pin Increases the propagation delay to the
output or bidirectional pin from internal
logic or the output register in an I/O
cell. Applied to output/bidirectional pin
or register feeding it.

Increases tC O ● Stratix
● Stratix GX
● Cyclone
● APEX II
● APEX 20KE
● APEX 20KC
● Mercury

Delay from output register to
output pin

Sets the propagation delay to the
output or bidirectional pin from the
output register implemented in an I/O
cell. This option is off by default.

Changes tC O ● Arria GX
● Stratix II
● Stratix II GX
● Cyclone III
● Cyclone II

Increase input clock enable
delay

Increases the propagation delay from
the interior of the device to the clock
enable input of an I/O input register.

N/A ● Stratix
● Stratix GX
● APEX II
● APEX 20KE
● APEX 20KC

Input delay from dual
purpose clock pin to fan-out
destinations

Sets the propagation delay from a
dual-purpose clock pin to its fan-out
destinations that are routed on the
global clock network. Applied to an
input or bidirectional dual-purpose
clock pin.

N/A ● Cyclone III
● Cyclone II

Increase output clock enable
delay

Increases the propagation delay from
the interior of the device to the clock
enable input of the I/O output register
and output enable register.

N/A ● Stratix
● Stratix GX
● APEX II
● APEX 20KE
● APEX 20KC

Increase output enable clock
enable delay

Increases the propagation delay from
the interior of the device to the clock
enable input of an output enable
register.

N/A ● Stratix
● Stratix GX

Increase tZX delay to output
pin

Used for zero bus-turnaround (ZBT) by
increasing the propagation delay of
the falling edge of the output enable
signal.

Increases tC O ● Stratix
● Stratix GX
● APEX II
● Mercury

Table 8–5. Programmable Delays for Altera Devices (Part 2 of 2)

Programmable Delay Description I/O Timing
Impact Devices

Altera Corporation 8–51
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–51
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Use PLLs to Shift Clock Edges

Using a PLL typically improves I/O timing automatically. If the timing
requirements are still not met, most devices allow the PLL output to be
phase shifted in order to change the I/O timing. Shifting the clock
backwards gives a better tCO at the expense of tSU, while shifting it
forward gives a better tSU at the expense of tCO and tH. Refer to
Figure 8–10. This technique can be used only in devices that offer PLLs
with the phase shift option.

Figure 8–10. Shift Clock Edges Forward to Improve tSU at the Expense of tCO

You can achieve the same type of effect in certain devices using the
programmable delay called Input Delay from Dual Purpose Clock Pin
to Fan-Out Destinations, described in Table 8–5.

Use Fast Regional Clock Networks and Regional Clocks Networks

Stratix EP1S25, EP1S20, and EP1S10 devices, and Stratix GX EP1SGX25
and EP1SGX10 devices, contain two fast regional clock networks,
FCLK[1..0], in each quadrant, fed by input pins that can connect to
other fast regional clock networks.

In Stratix EP1S30, Stratix GX EP1SGX40, and larger devices in both
families, there are two fast regional clock networks in each half-quadrant.
Dedicated FCLK input pins feed these clock nets directly. Stratix fast
regional clocks have less delay to I/O elements than do regional and
global clocks, and are used for high fan-out control signals.

Stratix III, Stratix II GX, and Stratix II devices provide 32 regional clock
networks. Eight regional clock networks, RCLK[7..0], in each quadrant
of the device are driven by the dedicated input pins CLK[15..0], by PLL
outputs, or by internal logic. These regional clock networks provide the
lowest clock delay and skew for logic contained in a single quadrant.
Placing clocks on these low-skew and low-delay clock nets provides
better tCO performance.

8–52 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Change How Hold Times are Optimized for MAX II Devices

For MAX II devices, you can use the Guarantee I/O paths have zero hold
time at Fast Timing Corner option to control how hold time is optimized
by the Quartus II software. On the Assignments menu, click Settings. In
the Category list, select Fitter Settings. Click More Settings. In the More
Fitter Settings dialog box, set the option globally. Or, on the Assignments
menu, click Assignment Editor to set this option for specific I/Os.

The option controls whether the Fitter uses timing-driven compilation to
optimize a design to achieve a zero hold time for I/Os that feed globally
clocked registers at the fast (best-case) timing corner, even in the absence
of any user timing assignments. When this option is set to On (default),
the Fitter guarantees zero hold time (tH) for I/Os feeding globally clocked
registers at the fast timing corner, at the expense of possibly violating tSU
or tPD timing constraints. When this option is set to When tsu and tpd
constraints permit, the Fitter achieves zero hold time for I/Os feeding
globally clocked registers at the fast timing corner only when tSU or tPD
timing constraints are not violated. When this option is set to Off, designs
are optimized to meet user timing assignments only.

By setting this option to Off or When tsu and tpd constraints permit, you
improve tSU at the expense of tH.

Register-to-Register Timing Optimization Techniques
(LUT-Based Devices)

The next stage of design optimization is to improve register-to-register
(fMAX) timing. There are a number of options available if the performance
requirements are not achieved after compilation.

1 When using the Quartus II TimeQuest Timing Analyzer,
register-to-register timing optimization is the same as
maximizing the slack on the clock domains in your domain. You
can use the techniques described in this section to improve the
slack on different timing paths in your design.

Before optimizing your design, you should understand the structure of
your design as well as the type of logic affected by each optimization. An
optimization can decrease performance if the optimization does not
benefit your logic structure.

Altera Corporation 8–53
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–53
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Improving Register-to-Register Timing Summary

The choice of options and settings to improve the timing margin (slack)
or to improve register-to-register timing depends on the failing paths in
the design. To achieve the results that best approximate your
performance requirements, apply the following techniques, and compile
the design after each:

1. Ensure that your timing assignments are complete. For details, refer
to “Timing Requirement Settings” on page 8–4.

2. Ensure that you have reviewed all warning messages from your
initial compilation, and have checked for ignored timing
assignments. Refer to “Design Analysis” on page 8–14 for details
and fix any of these problems before proceeding with optimization.

3. Apply netlist synthesis optimization options and physical synthesis
(page 8–54).

4. Try multiple different Fitter seeds (page 8–62). You can omit this
step if a large number of critical paths are failing, or if paths are
failing badly.

5. Apply the following synthesis options to optimize for speed:

● Optimize Synthesis for Speed, Not Area (page 8–58)
● Flatten the Hierarchy During Synthesis (page 8–59)
● Set the Synthesis Effort to High (page 8–60)
● Change State Machine Encoding (page 8–60)
● Duplicate Logic for Fan-Out Control (page 8–60)
● Prevent Shift Register Inference (page 8–61)
● Use Other Synthesis Options Available in Your Synthesis Tool

(page 8–61)

6. Make LogicLock assignments (page 8–64) to control placement.

7. Make design source code modifications to fix areas of the design
that are still failing timing requirements by significant amounts
(page 8–63).

8. Make location assignments, or, as a last resort, perform manual
placement by back-annotating the design (page 8–67).

f You can use the Design Space Explorer (DSE) to automate the process of
running several different compilations with different settings. For more
information, refer to the Design Space Explorer chapter in volume 2 of
the Quartus II Handbook.

8–54 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

If these techniques do not achieve performance requirements, additional
design source code modifications may be required (page 8–63).

Synthesis Netlist Optimizations and Physical Synthesis Optimizations

The Quartus II software offers advanced netlist optimization options,
including physical synthesis. Various netlist optimizations can help
improve the performance of many designs regardless of the synthesis tool
used. Netlist optimizations can be applied both during synthesis and
during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation. Operating either on the output from another
EDA synthesis tool or as an intermediate step in Quartus II integrated
synthesis, these optimizations make changes to the synthesis netlist to
improve either area or speed, depending on your selected optimization
technique.

The following synthesis netlist optimizations are available during the
synthesis stage:

■ WYSIWYG primitive resynthesis (for netlists from third-party EDA
synthesis tools)

■ Gate-level register retiming

On the Assignments menu, click Settings. In the Category list, expand
Analysis & Synthesis Settings and select Synthesis Netlist
Optimizations to view and modify the synthesis netlist optimization
options.

If you use another EDA synthesis tool and want to determine if the
Quartus II software can remap the circuit to improve performance, you
can use the Perform WYSIWYG Primitive Resynthesis option. This
option directs the Quartus II software to unmap the LEs in an atom netlist
to logic gates, and then map the gates back to Altera-specific primitives.
Using Altera-specific primitives enables the Fitter to remap the circuits
using architecture-specific techniques.

To turn on the Perform WYSIWYG Primitive Resynthesis option, on the
Assignments menu, click Settings. In the Category list, expand Analysis
& Synthesis Settings and select Synthesis Netlist Optimizations. Turn
on Perform WYSIWYG primitive resynthesis (using optimization
techniques specified in Analysis & Synthesis settings).

Altera Corporation 8–55
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–55
October 2007

Timing Optimization Techniques (LUT-Based Devices)

The Quartus II technology mapper optimizes the design for Speed, Area,
or Balanced, according to the setting of the Optimization Technique
option. To change this setting, on the Assignments menu, click Settings.
In the Category list, select Analysis & Synthesis Settings, and choose
Speed or Balanced under Optimization Technique.

The Perform gate-level register retiming option enables movement of
registers across combinational logic to balance timing, allowing the
Quartus II software to balance the delay between timing-critical paths
and non-critical paths. You can use this option with Quartus II integrated
synthesis, or if you are using a third-party EDA synthesis tool, you can
use this option if you have turned on Perform WYSIWYG primitive
resynthesis (using optimization techniques specified in Analysis &
Synthesis settings). After you turn on the Perform gate-level register
retiming, you can optionally check the Trade off tCO/tSU with fMAX
setting. When you turn on this setting, register retiming can affect
registers that are connected to the I/O pins. If this setting is not turned on,
the Quartus II software does not touch any of the registers that are
connected to the I/O pins when doing register retiming.

The physical synthesis optimizations occur during the Fitter stage of
Quartus II compilation. Physical synthesis optimizations make
placement-specific changes to the netlist that improve speed performance
results for a specific Altera device.

The following physical synthesis optimizations are available during the
trigger stage for improving performance:

■ Physical synthesis for combinational logic
■ Automatic asynchronous signal pipelining
■ Physical synthesis for registers

● Register duplication
● Register retiming

On the Assignments menu, click Settings. In the Category list, select
Fitter Settings, and specify the physical synthesis optimization options
on the Physical Synthesis Optimizations page. You can also specify the
Physical synthesis effort, which sets the level of physical synthesis
optimization that you want the Quartus II software to perform.

The Perform physical synthesis for combinational logic option allows
the Quartus II Fitter to resynthesize the combinational logic in a design to
reduce delay along the critical path and improve design performance.

The Perform automatic asynchronous signal pipelining option allows
the Quartus II Fitter to insert pipeline stages for asynchronous clear and
asynchronous load signals automatically during fitting to increase circuit

8–56 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

performance. You can use this option if asynchronous control signal
recovery and removal times do not meet your requirements. The option
improves performance for designs in which asynchronous signals in very
fast clock domains cannot be distributed across the chip quickly enough
(because of long global network delays).

1 The Perform automatic asynchronous signal pipelining option
adds registers to nets driving the asynchronous clear or
asynchronous load ports of registers. This adds register delays
(and latency) to the reset, adding the same number of register
delays for each destination using the reset. Therefore, the option
should be used only when adding latency to reset signals does
not violate any design requirements. This option also prevents
the promotion of signals to use global routing resources.

The Perform register duplication Fitter option allows the Quartus II
Fitter to duplicate registers based on Fitter placement information to
improve design performance. The Fitter can also duplicate combinational
logic when this option is enabled.

The Perform register retiming Fitter option allows the Quartus II Fitter
to move registers across combinational logic to balance timing. This
option turns on algorithms similar to the Perform gate-level register
retiming option. This option applies to registers and combinational logic
that have already been placed into logic cells, and it compliments the
synthesis gate-level option.

f For more information and detailed descriptions of these netlist
optimization options, refer to the Netlist Optimizations and Physical
Synthesis chapter in volume 2 of the Quartus II Handbook.

Because performance results are design-dependent, try these options in
different combinations until you achieve the best results. Generally,
turning on all the options gives the best results but significantly increases
compilation time. This section provides typical benchmark results on
different designs with varying amounts of logic using synthesis netlists
from leading third-party synthesis tools and compiled with Quartus II
software. These results use the default Balanced setting for the
Optimization Technique for WYSIWYG resynthesis. Changing the setting
to Speed or Area can affect your results.

Tables 8–6 through 8–8 show the average results for different device
families, using the following measures for the quality of results:

■ fMAX Gain—The percentage gain in clock fMAX performance
■ Win Ratio—The percentage of designs that showed better

performance with the option on than without the option on

Altera Corporation 8–57
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–57
October 2007

Timing Optimization Techniques (LUT-Based Devices)

■ Winner’s fMAX Gain—The average percentage improvement for the
designs that showed better performance with these settings (the
designs considered a win)

■ Logic Area Change—The percentage gain in logic utilization.
Negative values mean reduced area; positive values mean increased
area

■ Compile Time Change—The multiplication factor for the
compilation time when the option is used

Table 8–6. Average Results of Synthesis Netlist and Physical Synthesis Optimizations for Stratix and Cyclone
Designs

Optimization Method
fMAX Gain

(%)
Win Ratio

(%)

Winner’s
fMAX Gain

(%)

 Logic Area
Change (%)

Compile Time
Change (×)

WYSIWYG primitive resynthesis 3 60 6 –8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 10 86 12 4 1.4

Using physical synthesis Normal effort level 15 86 16 4 2.2

Using physical synthesis Extra effort level 17 86 18 4 3.7

Table 8–7. Average Results of Synthesis Netlist and Physical Synthesis Optimizations for Arria GX, Stratix II,
Stratix II GX, and Cyclone II Designs

Optimization Method
fMAX Gain

(%)
Win Ratio

(%)

Winner’s
fMAX Gain

(%)

 Logic Area
Change (%)

Compile Time
Change (×)

WYSIWYG primitive resynthesis 3 60 6 –8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 11 82 14 2.5 1.3

Using physical synthesis Normal effort
level

14 88 17 4 2.0

Using physical synthesis Extra effort level 15 88 18 4.3 2.3

8–58 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Turn Off Extra-Effort Power Optimization Settings

If PowerPlay Power Optimization settings are set to Extra Effort, your
design performance may be affected. If improving timing performance is
more important than reducing power use, set the Power Optimization
setting to Normal.

To change the PowerPlay Power Optimization level, on the Assignments
menu, choose Settings. The Setting dialog box appears. From the
Category list, select Analysis & Synthesis Settings. From the drop-down
menu, select the appropriate level of PowerPlay Power Optimization
level.

f For more information about reducing power use, refer to the Power
Optimization chapter in volume 2 of the Quartus II Handbook.

Optimize Synthesis for Speed, Not Area

The manner in which the design is synthesized has a large impact on
design performance. Design performance varies depending on the way
the design is coded, the synthesis tool used, and the options specified
when synthesizing. Change your synthesis options if a large number of
paths are failing, or if specific paths are failing badly and have many
levels of logic.

Set your device and timing constraints in your synthesis tool. Synthesis
tools are timing-driven and optimized to meet specified timing
requirements. If you do not specify target frequency, some synthesis tools
optimize for area.

Some synthesis tools offer an easy way to instruct the tool to focus on
speed instead of area.

Table 8–8. Average Performance of Synthesis Netlist and Physical Synthesis Optimizations for Stratix III and
Cyclone III Designs

Optimization Method
fMAX Gain

(%)
Win

Ratio (%)

Winner’s
fMAX Gain

(%)

 Logic Area
Change (%)

Compile Time
Change (×)

WYSIWYG primitive resynthesis 3 60 6 –8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 8 75 11 2 1.2

Using physical synthesis Normal effort
level

10 79 14 3 1.7

Using physical synthesis Extra effort level 11 79 15 3 2.0

Altera Corporation 8–59
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–59
October 2007

Timing Optimization Techniques (LUT-Based Devices)

For Quartus II integrated synthesis, on the Assignments menu, click
Settings. In the Category list, select Analysis & Synthesis Settings, and
specify Speed as the Optimization Technique option. You can also
specify this logic option for specific modules in your design with the
Assignment Editor while leaving the default Optimization Technique
setting at Balanced (for the best trade-off between area and speed for
certain device families) or Area (if area is an important concern). You can
also use the Speed Optimization Technique for Clock Domains option
to specify that all combinational logic in or between the specified clock
domain(s) is optimized for speed.

To achieve best performance with push-button compilation, follow the
recommendations in the following sections for other synthesis settings.
You can use DSE to experiment with different Quartus II synthesis
options to optimize your design for the best performance.

f For information about setting timing requirements and synthesis options
in Quartus II integrated synthesis and third-party synthesis tools, refer
to the appropriate chapter in the Synthesis section in volume 1 of the
Quartus II Handbook, or refer to your synthesis software documentation.

Flatten the Hierarchy During Synthesis

Synthesis tools typically let you preserve hierarchical boundaries, which
can be useful for verification or other purposes. However, the best
optimization results generally occur when the synthesis tool optimizes
across hierarchical boundaries because doing so often allows the
synthesis tool to perform the most logic minimization, which can
improve performance. Whenever possible, flatten your design hierarchy
to achieve the best results. If you are using Quartus II integrated
synthesis, ensure that the Preserve Hierarchical Boundary option is
turned off. If you are using Quartus II incremental compilation, you
cannot flatten your design across design partitions. Incremental
compilation always preserves the hierarchical boundaries between
design partitions. Follow Altera’s recommendations for design
partitioning such as registering partition boundaries to reduce the effect
of cross-boundary optimizations.

f For more information about using incremental compilation and
recommendations for design partitioning, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook. If you are using an incremental
synthesis flow that requires separate hierarchy blocks, you can find
additional recommendations for design partitioning in the Design
Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook.

8–60 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Set the Synthesis Effort to High

Some synthesis tools offer varying synthesis effort levels to trade off
compilation time with synthesis results. Set the synthesis effort to high to
achieve best results when applicable.

Change State Machine Encoding

State machines can be encoded using various techniques. One-hot
encoding, which uses one register for every state bit, usually provides the
best performance. If your design contains state machines, changing the
state machine encoding to one-hot can improve performance at the cost
of area.

If your design does not manually encode the state bits, you can select the
state machine encoding chosen in your synthesis tool. In Quartus II
integrated synthesis, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings, and for State
Machine Processing, choose One-Hot. You also can specify this logic
option for specific modules or state machines in your design with the
Assignment Editor.

In some cases (especially in Stratix II and Stratix III devices), encoding
styles other than the default offer better performance. Experiment with
different encoding styles to see what effect the style has on your resource
utilization and timing performance.

Duplicate Logic for Fan-Out Control

Duplicating logic or registers can help improve timing in cases where
moving a register in a failing timing path to reduce routing delay creates
other failing paths, or where there are timing problems due to the fan-out
of the registers.

Many synthesis tools support options or attributes that specify the
maximum fan-out of a register. When using Quartus II integrated
synthesis, you can set the Maximum Fan-Out logic option in the
Assignment Editor to control the number of destinations for a node so
that the fan-out count does not exceed a specified value. You can also use
the maxfan attribute in your HDL code. The software duplicates the node
as needed to achieve the specified maximum fan-out.

1 Logic duplication using Maximum Fan-Out assignments
normally increases resource utilization, and can potentially
increase compilation time, depending on the placement and the
total resource usage within the selected device. The
improvement in timing performance that results because of
Maximum Fan-Out assignments is very design-specific.

Altera Corporation 8–61
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–61
October 2007

Timing Optimization Techniques (LUT-Based Devices)

If you are using Maximum Fan-Out assignments, Altera
recommends benchmarking your design with and without these
assignments to evaluate whether they give the expected
improvement in timing performance, and use the assignments
only when you get improved results.

You can manually duplicate registers in the Quartus II software
regardless of the synthesis tool used. To duplicate a register, apply the
Manual Logic Duplication option to the register with the Assignment
Editor.

The manual logic duplication option also accepts wildcards. This is an
easy and powerful duplication technique that you can use without
editing your source code. You can use this technique, for example, to
make a duplicate of a large fan-out node for all of its destinations in a
certain design hierarchy, such as hierarchy_A. To apply such an
assignment in the Assignment Editor, make an entry such as the one
shown in Table 8–9:

f For more information about the manual logic duplication option, refer to
the Quartus II Help.

Prevent Shift Register Inference

In some cases, turning off the inference of shift registers increases
performance. Doing so forces the software to use logic cells to implement
the shift register instead of implementing the registers in memory blocks
using the altshift_taps megafunction. If you implement shift
registers in logic cells instead of memory, logic utilization is increased.

Use Other Synthesis Options Available in Your Synthesis Tool

With your synthesis tool, experiment with the following options if they
are available:

■ Turn on register balancing or retiming
■ Turn on register pipelining
■ Turn off resource sharing

These options may increase performance. They typically increase the
resource utilization of your design.

Table 8–9. Duplicating Logic in the Assignment Editor

From To Assignment Name Value

My_high_fanout_node *hierarchy_A* Manual Logic Duplication high_fanout_to_A

8–62 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Fitter Seed

The Fitter seed affects the initial placement configuration of the design.
Changing the seed value changes the Fitter results because the fitting
results change whenever there is a change in the initial conditions.
Because each seed value results in a somewhat different fit, you can
experiment with several different seeds to attempt to obtain better fitting
results and timing performance.

When there are changes in your design, there is some random variation
in performance between compilations. This variation is inherent in
placement and routing algorithms—there are too many possibilities to try
them all and get the absolute best result, so the initial conditions change
the compilation result.

Note that any design change that directly or indirectly affects the Fitter
has the same type of random effect as changing the seed value. This
includes any change in source files, Analysis and Synthesis settings, Fitter
settings, or Timing Analyzer settings. The same effect can appear if you
use a different computer processor type or different operating system
because different systems can change the way floating point numbers are
calculated in the Fitter.

If a change in optimization settings slightly affects the register-to-register
timing or number of failing paths, you can’t always be certain that your
change caused the improvement or degradation or whether it could be
due to random effects in the Fitter. If your design is still changing,
running a seed sweep (compiling your design with multiple seeds)
determines whether the average result has improved after an
optimization change and whether a setting that increases compilation
time has benefits worth the increased time (such as turning the Physical
Synthesis Effort to Extra). The sweep also shows the amount of random
variation you should expect for your design.

If your design is finalized, you can compile your design with different
seeds to obtain one optimal result. However, if you subsequently make
any changes to your design, you will likely have to perform seed sweep
again.

On the Assignments menu, select Fitter Settings to control the initial
placement with the Seed. You can use the Design Space Explorer (DSE) to
perform a seed sweep easily.

You can use the following Tcl command from a script to specify a Fitter
seed:

set_global_assignment -name SEED <value>

Altera Corporation 8–63
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–63
October 2007

Timing Optimization Techniques (LUT-Based Devices)

f For more information about compiling with different seeds using the
DSE script, refer to the Design Space Explorer chapter in volume 2 of the
Quartus II Handbook.

Optimize Source Code

If the methods described in the preceding sections do not sufficiently
improve timing of the design, modify your design files to achieve the
desired results. Try restructuring the design to use pipelining or more
efficient coding techniques. In many cases, optimizing the design’s source
code can have a very significant effect on your design performance. In
fact, optimizing your source code is typically the most effective technique
for improving the quality of your results, and is often a better choice than
using LogicLock or location assignments.

If the critical path in your design involves memory or DSP functions,
check whether you have code blocks in your design that describe memory
or functions that are not being inferred and placed in dedicated logic. You
may be able to modify your source code to cause these functions to be
placed into high-performance dedicated memory or resources in the
target device.

Ensure that your state machines are recognized as state machine logic and
optimized appropriately in your synthesis tool. State machines that are
recognized are generally optimized better than if the synthesis tool treats
them as generic logic. In the Quartus II software, you can check for the
State Machine report under Analysis & Synthesis in the Compilation
Report. This report provides details, including the state encoding for each
state machine that was recognized during compilation. If your state
machine is not being recognized, you may need to change your source
code to enable it to be recognized.

f For coding style guidelines including examples of HDL code for
inferring memory, and functions and guidelines and sample HDL code
for state machines, refer to the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook.

LogicLock Assignments

You can make LogicLock assignments for optimization based on nodes,
design hierarchy, or critical paths. This method can be used if a large
number of paths are failing, and recoding the design does not seem to be
necessary. LogicLock assignments can help if routing delays form a large
portion of your critical path delay, and placing logic closer together in the
device improves the routing delay. This technique is most beneficial for
devices with hierarchical routing structures such as the APEX 20K device
family.

8–64 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–64 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

1 Improving fitting results with LogicLock assignments,
especially for larger devices, such as the Stratix series of devices
and Arria GX devices, can be difficult. The LogicLock feature is
intended to be used for performance preservation; therefore,
LogicLock assignments do not always improve the performance
of the design. In many cases, you cannot improve upon results
from the Fitter by making location assignments.

If there are existing LogicLock assignments in your design, remove the
assignments if your design methodology permits it. Recompile the design
to see if the assignments are making the performance worse.

When making LogicLock assignments, it is important to consider how
much flexibility to give the Fitter. LogicLock assignments provide more
flexibility than hard location assignments. Assignments that are more
flexible require higher Fitter effort, but reduce the chance of design
over-constraint. The following types of LogicLock assignments are
available, listed in order of decreasing flexibility:

■ Soft LogicLock regions
■ Auto size, floating location regions
■ Fixed size, floating location regions
■ Fixed size, locked location regions

To determine what to put into a LogicLock region, refer to the timing
analysis results and the Chip Planner (Timing Closure Floorplan for older
devices). The register-to-register timing paths in the Timing Analyzer
section of the Compilation Report helps you recognize patterns.

The following sections describe cases in which LogicLock regions can
help to optimize a design.

f For more information about using LogicLock regions, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

Hierarchy Assignments

For a design with the hierarchy shown in Figure 8–11, which has failing
paths in the timing analysis results similar to those shown in Table 8–10,
mod_A is probably a problem module. In this case, a good strategy to fix
the failing paths is to place the mod_A hierarchy block in a LogicLock
region so that all the nodes are closer together in the floorplan.

Altera Corporation 8–65
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–65
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Figure 8–11. Design Hierarchy

Table 8–10 shows the failing paths connecting two regions together
within mod_A listed in the timing analysis report.

Hierarchical LogicLock regions are also important if you are using an
incremental compilation flow. Each design partition for incremental
compilation should be placed in a separate LogicLock region to reduce
conflicts and ensure good quality of results as the design develops. In this
case, you should not use soft LogicLock regions because they allow the
Fitter to move nodes away from the region. You can use auto size and
floating location regions to find a good design floorplan, but you should
then fix the size and placement to achieve the best results in future
compilations.

f For more information about using incremental compilation and
recommendations for creating a design floorplan using LogicLock
regions, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook, and
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

Path Assignments

If you see a pattern such as the one shown in Figure 8–12 and Table 8–11,
it often indicates paths with a common problem. In this case, a path-based
assignment can be made from all d_reg registers to all memaddr

Table 8–10. Failing Paths in a Module Listed in Timing Analysis

From To

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

8–66 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–66 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

registers. You can make a path-based assignment to place all source
registers, destination registers, and the nodes between them in a
LogicLock region with the wildcard characters “*” and “?”.

You also can explicitly place the nodes of a critical path in a LogicLock
region. However, using this method instead of path assignments can
result in alternate paths between the source and destination registers
becoming critical paths.

Figure 8–12. Failing Paths in Timing Analysis

Table 8–11 shows the failing paths listed in the timing analysis report.

Table 8–11. Failing Paths in Timing Analysis

From To

|d_reg[1] |memaddr[5]

|d_reg[1] |memaddr[6]

|d_reg[1] |memaddr[7]

|d_reg[2] |memaddr[0]

|d_reg[2] |memaddr[1]

D Q

D Q

D Q

D Q

D Q

D Q

d_reg[0]

d_reg[1]

d_reg[7]

memaddr[0]

memaddr[2]

memaddr[7]

Altera Corporation 8–67
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–67
October 2007

Timing Optimization Techniques (LUT-Based Devices)

f For more information about path-based LogicLock assignments, refer to
the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook.

Location Assignments and Back-Annotation

If a small number of paths are failing to meet their timing requirements,
you can use hard location assignments to optimize placement. Location
assignments are less flexible for the Quartus II Fitter than LogicLock
assignments. In some cases, when you are very familiar with your design,
you can enter location constraints in a way that produces better results.

1 Improving fitting results, especially for larger devices, such as
the Stratix series of devices and Arria GX devices, can be
difficult. Location assignments do not always improve the
performance of the design. In many cases, you cannot improve
upon the results from the Fitter by making location assignments.

The following are commonly used location assignments, listed in order of
decreasing flexibility:

■ Custom regions
■ Back-annotated LAB location assignments
■ Back-annotated LE or ALM location assignments

Custom Regions

A custom region is a rectangular region containing user-assigned nodes,
which are constrained in the region’s boundaries. If any portion of a block
in the device floorplan, such as an M-RAM block, overlaps a custom
region, it is considered to be entirely in that region.

Custom regions are hard location assignments that cannot be overridden
and are very similar to fixed-size, locked-location, LogicLock regions.
Custom regions are commonly used when logic must be constrained to a
specific portion of the device.

Back-Annotation and Manual Placement

Assigning the location of nodes in a design to the locations to which they
were assigned during the last compilation is called “back-annotation”.
When nodes are locked to their assigned locations in a back-annotated
design, you can manually move specific nodes without affecting other
back-annotated nodes. The process of manually moving and reassigning
specific nodes is called manual placement.

8–68 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–68 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

1 Back-annotation is very restrictive to the compiler, so you
should back-annotate only when the design has been finalized
and no further changes are expected. Assignments can become
invalid if the design is changed. Combinational nodes often
change names when a design is resynthesized, even if they are
unrelated to the logic that was changed.

Moving nodes manually can be very difficult for large devices.
In many cases, you cannot improve upon the Fitter’s results.

Illegal or unroutable location constraints can cause “no fit”
errors.

Before making location assignments, determine whether to
back-annotate to lock down the assigned locations of all nodes in the
design. When you are using a hierarchical design flow, you can lock down
node locations in one LogicLock region only, while other node locations
are left floating in a fixed LogicLock region. By implementing a
hierarchical approach, you can use the LogicLock design methodology to
reduce the dependence of logic blocks on other logic blocks in the device.

Consistent node names are required to perform back-annotation. If you
use Quartus II integrated synthesis or any Quartus II optimizations, such
as the WYSIWYG primitive resynthesis netlist optimization or any
physical synthesis optimizations, you must create an atom netlist before
you back-annotate to lock down the placement of any nodes. This creates
consistent node names.

1 Physical synthesis optimizations are placement-specific as well
as design-specific. Unless you back-annotate the design before
recompilation, the physical synthesis results can differ. This
happens because the atom netlist creates different placement
results. By back-annotating the design, the design source and
the atom netlist use the same placement when the design is
recompiled. When you are using an atom netlist and you want
to maintain the same placement results as a previous
compilation, use LogicLock regions and back-annotate the
placement of all nodes in the design. Not back-annotating the
design can result in the design source and the atom netlist
having different placement results and therefore different
synthesis results.

f For more information about creating atom netlists for your design, refer
to the Analyzing and Optimizing the Design Floorplan chapter in volume 2
of the Quartus II Handbook.

Altera Corporation 8–69
October 2007

Timing Optimization Techniques (LUT-Based Devices)

Altera Corporation 8–69
October 2007

Timing Optimization Techniques (LUT-Based Devices)

When you back-annotate a design, you can choose whether to assign the
nodes either to LABs (this is preferred because of increased flexibility) or
LEs/ALMs. You also can choose to back-annotate routing to further
restrict the Fitter and force a specific routing within the device.

1 Using back-annotated routing with physical synthesis
optimizations can result in a routing failure.

f For more information about back-annotating routing, refer to the
Quartus II Help.

When performing manual placement at a detailed level, Altera
recommends that you move LABs, not logic cells (LEs or ALMs). The
Quartus II software places nodes that share the same control signals in
appropriate LABs. Successful placement and routing is more difficult
when you move individual logic cells. This is because LEs with different
control signals are put into the same LAB may not have any unused
control signals available and the design may not fit.

In general, when you are performing manual placement and routing, fix
all I/O paths first, because often fewer options are available to meet I/O
timing. After I/O timing is met, focus on manually placing register-to-
register timing paths. This strategy is consistent with the methodology
outlined in this chapter.

The best way to meet performance is to move nodes closer together. For a
critical path such as the one shown in Figure 8–13, moving the destination
node closer to the other nodes reduces the delay and helps meet your
timing requirements.

Figure 8–13. Reducing Delay of Critical Path

8–70 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–70 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Optimizing Placement for Stratix, Stratix II, Arria GX, and Cyclone II
Devices

In the Arria GX devices and Stratix and Cyclone series of devices, the row
interconnect delay is slightly faster than the column interconnect delay.
Therefore, when placing nodes, optimal placement is typically an ellipse
around the source or destination node. In Figure 8–14, if the source is
located in the center, any of the shaded LABs should give approximately
the same delay.

Figure 8–14. Possible Optimal Placement Ellipse

In addition, you should avoid crossing any M-RAM memory blocks for
node-to-node routing, because routing paths across M-RAM blocks
requires using R24 or C16 routing lines.

The Quartus II software calculates the interconnect delay based on
different electrical characteristics of each individual wire, such as the
length, fan-out, distribution of the parasitic loading on the wire, and so
forth.

To determine the actual delays to and from a resource, use the Show
Physical Timing Estimate feature in the Chip Planner.

f For more information about using the Chip Planner or the Timing
Closure Floorplan, refer to the Analyzing and Optimizing the Design
Floorplan chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 8–71
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–71
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Optimizing Placement for Cyclone Devices

In Cyclone devices, the row and column interconnect delays are similar;
therefore, when placing nodes, optimal placement is typically a circle
around the source or destination node.

Try to avoid long routes across the device. Long routes require more than
one routing line to cross the Cyclone device.

Optimizing Placement for Mercury, APEX II, and APEX 20KE/C Devices

For the Mercury, APEX II, and APEX 20KE/C device families, the delay
for paths is reduced by placing the source and destination nodes in the
same geographical resource location. The following list shows the device
resources, listed in order from fastest to slowest:

■ LAB
■ MegaLAB structure
■ MegaLAB column
■ Row

For example, if the nodes cannot be placed in the same MegaLAB
structure to reduce the delay, place them in the same MegaLAB column.
For the actual delays to and from resources, use the Show Physical
Timing Estimate feature in the Timing Closure Floorplan.

Resource
Utilization
Optimization
Techniques
(Macrocell-
Based CPLDs)

The following recommendations help you take advantage of the
macrocell-based architecture in the MAX 7000 and MAX 3000 device
families to yield maximum speed, reliability, and device resource
utilization while minimizing fitting difficulties.

After design analysis, the first stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to timing
optimization. First, ensure that you have set the basic constraints
described in “Initial Compilation: Required Settings” on page 8–3. If your
design is not fitting into a specified device, use the techniques in this
section to achieve a successful fit.

Use Dedicated Inputs for Global Control Signals

MAX 7000 and MAX 3000 devices have four dedicated inputs that can be
used for global register control. Because the global register control signals
can bypass the logic cell array and directly feed registers, product terms
can be preserved for primary logic. Also, because each signal has a
dedicated path into the LAB, global signals also can bypass logic and data
path interconnect resources.

8–72 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–72 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Because the dedicated input pins are designed for high fan-out control
signals and provide low skew, you should always assign global signals
(such as clock, clear, and output enable) to the dedicated input pins.

You can use logic-generated control signals for global control signals
instead of dedicated inputs. However, the following list shows the
disadvantages to using logic-generated control signals:

■ More resources are required (logic cells, interconnect).
■ More data skew is introduced.
■ If the logic-generated control signals have high fan-out, the design

may be more difficult to fit.

By default, the Quartus II software uses dedicated inputs for global
control signals automatically. You can assign control signals to dedicated
input pins in one of the following ways:

■ In the Assignment Editor, choose one of the two following methods:
● Assign pins to dedicated pin locations.
● Assign a Global Signal setting to the pins.

■ On the Assignments menu, click Settings. On the Analysis &
Synthesis Settings page, in the Auto Global Options section, in the
Category list, select Register Control Signals.

■ Insert a GLOBAL primitive after the pins.
■ If you have already assigned pins for the design in the

MAX+PLUS® II software, on the Assignments menu, click Import
Assignments.

Reserve Device Resources

Because pin and logic option assignments may be necessary for board
layout and performance requirements, and because full utilization of the
device resources can increase the difficulty of fitting the design, Altera
recommends that you leave 10% of the device’s logic cells and 5% of the
I/O pins unused to accommodate future design modifications. Following
the Altera-recommended device resource reservation guidelines for
macrocell-based CPLDs increases the chance that the Quartus II software
can fit the design during recompilation after changes or assignments have
been made.

Pin Assignment Guidelines and Procedures

Sometimes user-specified pin assignments are necessary for board layout.
This section discusses pin assignment guidelines and procedures.

Altera Corporation 8–73
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–73
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

To minimize fitting issues with pin assignments, follow these guidelines:

■ Assign speed-critical control signals to dedicated inputs.
■ Assign output enables to appropriate locations.
■ Estimate fan-in to assign output pins to the appropriate LAB.
■ Assign output pins that require parallel expanders to macrocells

numbered 4 to 16.

1 Altera recommends that you allow the Quartus II software to
choose pin assignments automatically when possible.

Control Signal Pin Assignments

Assign speed-critical control signals to dedicated input pins. Every
MAX 7000 and MAX 3000 device has four dedicated input pins (GCLK1,
OE2/GCLK2, OE1, and GCLRn). You can assign clocks to global clock
dedicated inputs (GCLK1, and OE2/GCLK2), clear to the global clear
dedicated input (GCLRn), and speed-critical output enable to global OE
dedicated inputs (OE1, and OE2/GCLK2).

Output Enable Pin Assignments

Occasionally, because the total number of required output enable pins is
more than the dedicated input pins, output enable signals must be
assigned to I/O pins.

f To minimize possible fitting errors when assigning the output enable
pins for MAX 7000 and MAX 3000 devices, refer to Pin-Out Files for
Altera Devices on the Altera website (www.altera.com).

Estimate Fan-In When Assigning Output Pins

Macrocells with high fan-in can cause more placement problems for the
Quartus II Fitter than those with low fan-in. The maximum fan-in per
LAB should not exceed 36 in MAX 7000 and MAX 3000 devices.
Therefore, estimate the fan-in of logic (such as an x-input AND gate) that
feeds each output pin. If the total fan-in of logic that feeds each output pin
in the same LAB exceeds 36, compilation may fail. To save resources and
prevent compilation errors, avoid assigning pins that have high fan-in.

Outputs Using Parallel Expander Pin Assignments

Figure 8–15 illustrates how parallel expanders are used within a LAB.
MAX 7000 and MAX 3000 devices contain chains that can lend or borrow
parallel expanders. The Quartus II Fitter places macrocells in a location
that allows them to lend and borrow parallel expanders appropriately.

http://www.altera.com

8–74 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–74 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

As shown in Figure 8–15, only macrocells 2 through 16 can borrow
parallel expanders. Therefore, assign output pins that may need parallel
expanders to pins adjacent to macrocells 4 through 16. Altera
recommends using macrocells 4 through 16 because they can borrow the
largest number of parallel expanders.

Figure 8–15. LAB Macrocells and Parallel Expander Associations

Macrocell 1

Macrocell 2

Macrocell 3

Macrocell 4

Macrocell 5

Macrocell 6

Macrocell 7

Macrocell 8

Macrocell 9

Macrocell 10

Macrocell 11

Macrocell 12

Macrocell 13

Macrocell 14

Macrocell 15

Macrocell 16

Macrocells 4 through 16 borrow
up to 15 parallel expanders from the
three immediately-preceding macrocells.

Macrocell 2 borrows up to five parallel
expanders from Macrocell 1.

Macrocell 1 cannot borrow
any parallel expanders.

Macrocell 3 borrows up to ten
parallel expanders from

Macrocells 1 and 2.

LAB A

Altera Corporation 8–75
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–75
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Resolving Resource Utilization Problems

Two common Quartus II compilation fitting issues cause errors: excessive
macrocell usage and lack of routing resources. Macrocell usage errors
occur when the total number of macrocells in the design exceeds the
available macrocells in the device. Routing errors occur when the
available routing resources are insufficient to implement the design.
Check the Message window for the compilation results.

1 Messages in the Messages window are also copied in the Report
Files. Right-click on a message and select Help for more
information.

Resolving Macrocell Usage Issues

Occasionally, a design requires more macrocell resources than are
available in the selected device, which results in the design not fitting.
The following list provides tips for resolving macrocell usage issues as
well as tips to minimize the number of macrocells used.

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn off Auto Parallel
Expanders. If the design’s clock frequency (fMAX) is not an important
design requirement, turn off parallel expanders for all or part of the
project. The design usually requires more macrocells if parallel
expanders are turned on.

■ Change Optimization Technique from Speed to Area. Selecting Area
instructs the compiler to give preference to area utilization rather
than speed (fMAX). On the Assignments menu, click Settings. In the
Category list, change the Optimization Technique option in the
Analysis & Synthesis Settings page.

■ Use D-type flipflops instead of latches. Altera recommends that you
always use D-type flipflops instead of latches in your design because
D-type flipflops can reduce the macrocell fan-in, and thus reduce
macrocell usage. The Quartus II software uses extra logic to
implement latches in MAX 7000 and MAX 3000 designs because
MAX 7000 and MAX 3000 macrocells contain D-type flipflops
instead of latches.

■ Use asynchronous clear and preset instead of synchronous clear and
preset. To reduce the product term usage, use asynchronous clear
and preset in your design whenever possible. Using other control
signals such as synchronous clear produces macrocells and pins with
higher fan-out.

8–76 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–76 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

1 After following the suggestions in this section, if your project
still does not fit the targeted device, consider using a larger
device. When upgrading to a different density, the vertical
package-migration feature of the MAX 7000 and MAX 3000
device families allows pin assignments to be maintained.

Resolving Routing Issues

Routing is another resource that can cause design fitting issues. For
example, if the total fan-in into a LAB exceeds the maximum allowed, a
no-fit error can occur during compilation. If your design does not fit the
targeted device because of routing issues, consider the following
suggestions.

■ Use dedicated inputs/global signals for high fan-out signals. The
dedicated inputs in MAX 7000 and MAX 3000 devices are designed
for speed-critical and high fan-out signals. Always assign high
fan-out signals to dedicated inputs/global signals.

■ Change the Optimization Technique option from Speed to Area.
This option may resolve routing resource and macrocell usage issues.
Refer to the same suggestion in “Resolving Macrocell Usage Issues”
on page 8–75.

■ Reduce the fan-in per cell. If you are not limited by the number of
macrocells used in the design, you can use the Fan-in per cell (%)
option to reduce the fan-in per cell. The allowable values are
20–100%; the default value is 100%. Reducing the fan-in can reduce
localized routing congestion but increase the macrocell count. You
can set this logic option in the Assignment Editor or under More
Settings in the Analysis & Synthesis Settings page of the Settings
dialog box.

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn off Auto Parallel
Expanders. By turning off the parallel expanders, you give
Quartus II software more fitting flexibility for each macrocell,
allowing macrocells to be relocated. For example, each macrocell
(previously grouped together in the same LAB) can be moved to a
different LAB to reduce routing constraints.

Altera Corporation 8–77
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–77
October 2007

Resource Utilization Optimization Techniques (Macrocell-Based CPLDs)

■ Insert logic cells. Inserting logic cells reduces fan-in and shared
expanders used per macrocell, increasing routability. By default, the
Quartus II software automatically inserts logic cells when necessary.
Otherwise, Auto Logic Cell can be disabled as follows. On the
Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings. Under More Settings, turn off Auto
Logic Cell Insertion. Refer to “Using LCELL Buffers to Reduce
Required Resources” on page 8–77 for more information.

■ Change pin assignments. If you are willing to discard your pin
assignments, you can let the Quartus II Fitter ignore some or all the
assignments.

1 If you prefer reassigning pins to increase routing efficiency,
refer to “Pin Assignment Guidelines and Procedures” on
page 8–72.

Using LCELL Buffers to Reduce Required Resources

Complex logic, such as multilevel XOR gates, are often implemented with
more than one macrocell. When this occurs, the Quartus II software
automatically allocates shareable expanders—or additional macrocells
(called synthesized logic cells)—to supplement the logic resources that
are available in a single macrocell. You also can break down complex logic
by inserting logic cells in the project to reduce the average fan-in and the
total number of shareable expanders needed. Manually inserting logic
cells can provide greater control over speed-critical paths.

Instead of using the Quartus II software’s Auto Logic Cell Insertion
option, you can manually insert logic cells. However, Altera recommends
that you use the Auto Logic Cell Insertion option unless you know
which part of the design is causing the congestion.

A good location to manually insert LCELL buffers is where a single
complex logic expression feeds multiple destinations in your design. You
can insert an LCELL buffer just after the complex expression; the
Quartus II Fitter extracts this complex expression and places it in a
separate logic cell. Rather than duplicate all the logic for each destination,
the Quartus II software feeds the single output from the logic cell to all
destinations.

8–78 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–78 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

To reduce fan-in and prevent no-fit compilations caused by routing
resource issues, insert an LCELL buffer after a NOR gate (Figure 8–16).
The design in Figure 8–16 was compiled for a MAX 7000AE device.
Without the LCELL buffer, the design requires two macrocells and eight
shareable expanders, and the average fan-in is 14.5 macrocells. However,
with the LCELL buffer, the design requires three macrocells and eight
shareable expanders, and the average fan-in is just 6.33 macrocells.

Figure 8–16. Reducing the Average Fan-In by Inserting LCELL Buffers

Altera Corporation 8–79
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–79
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

Timing
Optimization
Techniques
(Macrocell-
Based CPLDs)

After resource optimization, design optimization focuses on timing.
Ensure that you have made the appropriate assignments as described in
“Initial Compilation: Required Settings” on page 8–3, and that the
resource utilization is satisfactory before proceeding with timing
optimization.

Maintaining system performance at or above certain timing requirements
is an important goal of circuit designs. The following five timing
parameters are primarily responsible for a design’s performance:

■ Setup time (tSU), the propagation time for input data signals
■ Hold time (tH), the propagation time for input data signals
■ Clock-to-output time (tCO), the propagation time for output signals
■ Pin-to-pin delays (tPD), the time required for a signal from an input

pin to propagate through combinational logic and appear at an
external output pin

■ Maximum clock frequency (fMAX), the internal register-to-register
performance

This section provides guidelines to improve the timing if the timing
requirements are not met. Figure 8–17 shows the parts of the design that
determine the tSU, tH, tCO, tPD, and fMAX timing parameters.

Figure 8–17. Main Timing Parameters that Determine the System’s Performance

Timing results for tSU, tH, tCO, tPD, and fMAX are found in the Compilation
Report for the Quartus II Classic Timing Analyzer, as discussed in
“Design Analysis” on page 8–14.

When you are analyzing a design to improve performance, be sure to
consider the two major contributors to long delay paths:

■ Excessive levels of logic
■ Excessive loading (high fan-out)

PRN

CLRN

D Q

DFF

PRN

CLRN

D Q

DFF

Logic Logic Logic

Input

Input Output

Clock Frequency

Setup and Hold Time Clock-to-Output Time

8–80 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–80 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

When a MAX 7000 or MAX 3000 device signal drives more than one LAB,
the programmable interconnect array (PIA) delay increases by 0.1 ns per
additional LAB fan-out. Therefore, to minimize the added delay,
concentrate the destination macrocells into fewer LABs, minimizing the
number of LABs that are driven. The main cause of long delays in circuit
design is excessive levels of logic.

Improving Setup Time

Sometimes the tSU timing reported by the Quartus II Fitter does not meet
your timing requirements. To improve the tSU timing, refer to the
following guidelines:

■ Turn on the Fast Input Register option using the Assignment Editor.
The Fast Input Register option allows input pins to directly drive
macrocell registers via the fast-input path, thus minimizing the
pin-to-register delay. This option is useful when a pin drives a D-type
flipflop and there is no combinational logic between the pin and the
register.

■ Reduce the amount of logic between the input and the register.
Excessive logic between the input pin and register causes more
delays. To improve setup time, Altera recommends that you reduce
the amount of logic between the input pin and the register whenever
possible.

■ Reduce fan-out. The delay from input pins to macrocell registers
increases when the fan-out of the pins increases. To improve the
setup time, minimize the fan-out.

Improving Clock-to-Output Time

To improve a design’s clock-to-output time, minimize the
register-to-output-pin delay. To improve the tCO timing, refer to the
following guidelines.

■ Use the global clock. In addition to minimizing the delay from a
register to an output pin, minimizing the delay from the clock pin to
the register can also improve tCO timing. Always use the global clock
for low-skew and speed-critical signals.

■ Reduce the amount of logic between the register and output pin.
Excessive logic between the register and the output pin causes more
delay. Always minimize the amount of logic between the register and
output pin for faster clock-to-output time.

Altera Corporation 8–81
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–81
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

Table 8–12 shows the timing results for an EPM7064AETC100-4 device
when a combination of the Fast Input Register option, global clock, and
minimal logic is used. When the Fast Input Register option is turned on,
the tSU timing is improved (tSU decreases from 1.6 ns to 1.3 ns and from
2.8 ns to 2.5 ns). The tCO timing is improved when the global clock is used
for low-skew and speed-critical signals (tCO decreases from 4.3 ns to
3.1 ns). However, if there is additional logic used between the input pin
and the register or the register and the output pin, the tSU and tCO delays
increase.

Table 8–12. EPM7064AETC100-4 Device Timing Results

Number of
Registers

tSU

(ns)
tH

(ns)
tCO

(ns)
Global

Clock Used

Fast Input
Register
Option

D Input
Location

Q Output
Location

Additional Logic Between:

D Input
Location &
Register

Register &
Q Output
Location

1 1.3 1.2 4.3 — On LAB A LAB A — —

1 1.6 0.3 4.3 — Off LAB A LAB A — —

1 2.5 0 3.1 v On LAB A LAB A — —

1 2.8 0 3.1 v Off LAB A LAB A — —

1 3.6 0 3.1 v Off LAB A LAB A v —

1 2.8 0 7.0 v Off LAB D LAB A — v
16 with the
same D
and clock
inputs

2.8 0 All
6.2

v Off LAB D LAB A, B — —

32 with the
same D
and clock
inputs

2.8 0 All
6.4

v Off LAB C LAB A, B,
C

— —

8–82 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–82 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Improving Propagation Delay (tPD)

Achieving fast propagation delay (tPD) timing is required in many system
designs. However, if there are long delay paths through complex logic,
achieving fast propagation delays can be difficult. To improve your
design’s tPD, refer to the following guidelines.

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn on Auto Parallel
Expanders. Turning on the parallel expanders for individual nodes
or sub-designs can increase the performance of complex logic
functions. However, if the project’s pin or logic cell assignments use
parallel expanders placed physically together with macrocells
(which can reduce routability), parallel expanders can cause the
Quartus II Fitter to have difficulties finding and optimizing a fit.
Additionally, the number of macrocells required to implement the
design increases and results in a no-fit error during compilation if the
device resources are limited. For more information about turning the
Auto Parallel Expanders option on, refer to “Resolving Macrocell
Usage Issues” on page 8–75.

■ Set the Optimization Technique to Speed. By default, the Quartus II
software sets the Optimization Technique option to Speed for
MAX 7000 and MAX 3000 devices. Reset the Optimization
Technique option to Speed only if you previously set it to Area. On
the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

Improving Maximum Frequency (fMAX)

Maintaining the system clock at or above a certain frequency is a major
goal in circuit design. For example, if you have a fully synchronous
system that must run at 100 MHz, the longest delay path from the output
of any register to the inputs of the registers it feeds must be less than
10 ns. Maintaining the system clock speed can be difficult if there are long
delay paths through complex logic. Altera recommends that you follow
the following guidelines to improve your design’s clock speed (fMAX).

Altera Corporation 8–83
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–83
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

■ On the Assignments menu, click Settings. In the Category list, select
Analysis & Synthesis Settings and turn on Auto Parallel
Expanders. Turning on the parallel expanders for individual nodes
or subdesigns can increase the performance of complex logic
functions. However, if the project’s pin or logic cell assignments use
parallel expanders placed physically together with macrocells
(which can reduce routability), parallel expanders can cause the
Quartus II compiler to have difficulties finding and optimizing a fit.
Additionally, the number of macrocells required to implement the
design also increases and can result in a no-fit error during
compilation if the device’s resources are limited. For more
information about using the Auto Parallel Expanders option, refer to
“Resolving Macrocell Usage Issues” on page 8–75.

■ Use global signals or dedicated inputs. Altera MAX 7000 and
MAX 3000 devices have dedicated inputs that provide low skew and
high speed for high fan-out signals. Minimize the number of control
signals in the design and use the dedicated inputs to implement
them.

■ Set the Optimization Technique to Speed. By default, the Quartus II
software sets the Optimization Technique option to Speed for
MAX 7000 and MAX 3000 devices. Reset the Optimization
Technique option to Speed only if you have previously set it to Area.
You can reset the Optimization Technique option. In the Category
list, choose Analysis & Synthesis Settings, and turn on Speed under
Optimization Technique.

■ Pipeline the design. Pipelining, which increases clock frequency
(fMAX), refers to dividing large blocks of combinational logic by
inserting registers. For more information about pipelining, refer to
“Optimizing Source Code—Pipelining for Complex Register Logic”
on page 8–83.

Optimizing Source Code—Pipelining for Complex Register Logic

If the methods described in the preceding sections do not sufficiently
improve your results, modify the design at the source to achieve the
desired results. Using a pipelining technique can consume device
resources, but it also lowers the propagation delay between registers,
allowing you to maintain high system clock speed.

8–84 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–84 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The benefits of pipelining can be demonstrated with a 4-to-16 pipelined
decoder that decodes 4-bit numbers. The decoder is based on five 2-to-4
pipelined decoders with outputs that are registered using D-type
flipflops. Figure 8–18 shows one of the 2-to-4 pipelined decoders. The
function 2TO4DEC is the 2-to-4 decoder that feeds all four decoded
outputs (out1, out2, out3, and out4) to the D-type flipflops in 4REG.

Figure 8–18. A 2- to 4-Pipelined Decoder

Figure 8–19 shows five 2-to-4 decoders (2TO4REGDEC) that are combined
to form a 4-to-16 pipelined decoder. The first decoder (2TO4REGDEC1)
decodes the two most significant bits (MSB) (in3 and in4) of the 4-to-16
decoder. The decoded output from the 2TO4REGDEC1 decoder enables
only one of the rest of the 2-to-4 decoders (2TO4REGDEC2,
2TO4REGDEC3, 2TO4REGDEC4, or 2TO4REGDEC5). The inputs in1 and
in2 are decoded by the enabled 2-to-4 decoder. Because the time to
generate the decoded output increases with the size of the decoder,
pipelining the design reduces the time consumed to generate the decoded
output, thus improving the maximum frequency. In Figure 8–19, the
MSBs (in3 and in4) are decoded in the first clock cycle, while the other
bits (in1 and in2) are decoded in the following clock cycle.

Altera Corporation 8–85
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

Altera Corporation 8–85
October 2007

Timing Optimization Techniques (Macrocell-Based CPLDs)

Figure 8–19. Five 2-to-4 Pipelined Decoders Combined to Form a 4-to-16 Pipelined Decoder Note (1)

Note to Figure 8–19:
(1) This figure assumes an active low reset.

2TO4REGDEC1

2TO4REGDEC2

2TO4REGDEC3

2TO4REGDEC4

2TO4REGDEC5

in1
in2
clk
reset

in1
in2
clk
reset

in1
in2
clk
reset

in1
in2
clk
reset

in1
in2
clk
reset

out1
out2
out3
out4

out1
out2
out3
out4

out1
out2
out3
out4

out1
out2
out3
out4

out5
out6
out7
out8

out1
out2
out3
out4

out9
out10
out11
out12

out1
out2
out3
out4

out13
out14
out15
out16

in1
in2

in3
in4

reset

clk

8–86 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–86 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Compilation-
Time
Optimization
Techniques

If reducing the compilation time of your design is important, use the
techniques in this section. Be aware that reducing compilation time using
some of these techniques can reduce the overall quality of results. A
Compilation Time Advisor is also available in the Quartus II software,
which helps you to reduce the compilation time. You can run the
Compilation Time Advisor by pointing to Advisors on the Tools menu,
and then clicking on the Compilation Time Advisor. You can find all the
compilation time optimizing techniques described in this section in the
Compilation Time Advisor as well.

If you open the Compilation Time Advisor after compilation, it displays
recommendations on settings that can reduce the compilation time. Some
of the recommendations from different advisors may contradict each
other; Altera recommends evaluating the options, and choosing the
settings that best suit your design requirements.

Incremental Compilation

You can speed up design iteration time by an average of 60% when
making changes to the design and reach design timing closure more
efficiently with the incremental compilation feature. Using incremental
compilation allows you to organize your design into logical and physical
partitions for design synthesis and fitting. Design iterations can be made
dramatically faster by recompiling only a particular design partition and
merging results with previous compilation results from other partitions.
You can also use physical synthesis optimization techniques for specific
design partitions while leaving other modules untouched to preserve
performance.

When making changes to the design, use the incremental synthesis
feature (part of incremental compilation) to save synthesis time.
Incremental synthesis allows you to set design partitions to ensure that
only those sections of a design that have been updated are resynthesized
when the design is compiled, which reduces synthesis time and run-time
memory usage.

If you are using a third-party synthesis tool, you can create separate atom
netlist files for parts of your design that you already have synthesized
and optimized so that you update only the parts of the design that
change.

Regardless of your synthesis tool, you can use full incremental
compilation along with LogicLock regions to preserve your placement
and routing results for unchanged partitions while working on other
partitions. This ability provides the most reduction in compilation time
and run-time memory usage because neither synthesis nor fitting is
performed for unchanged partitions in the design.

Altera Corporation 8–87
October 2007

Compilation-Time Optimization Techniques

Altera Corporation 8–87
October 2007

Compilation-Time Optimization Techniques

You can also perform a bottom-up compilation in which parts of the
design are compiled completely independently in separate Quartus II
projects, and then exported into the top-level design. This flow is useful
in team-based designs or when incorporating third-party IP.

f For information about the full incremental compilation flow in the
Quartus II software, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook. For information about using the Quartus II incremental
synthesis feature alone, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook. For information about creating
multiple netlist files in third-party tools for use with incremental
compilation, refer to the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Use Multiple Processors for Parallel Compilation

The Quartus II software can run some algorithms in parallel to take
advantage of multiple processors and reduce compilation time when
more than one processor is available to compile the design. You can
specify the maximum number of processors that the software can use.
The Quartus II software supports up to four processors. The software
does not necessarily use all the processors that you specify during a given
compilation, but it never uses more than the specified number of
processors. This allows you to work on other tasks on your machine
without becoming slow or less responsive.

By allowing the Quartus II software to use two processors, you may be
able to reduce the compilation time by up to 10% on systems with
dual-core processors. Four processors can reduce compilation time by up
to 15%. With certain design flows in which timing analysis runs alone,
using multiple processors can reduce the time required for timing
analysis by an average of 12% when using two processors. This reduction
can reach an average of 15% when using four processors.

The actual reduction in compilation time depends on the design and on
the specific settings used for compilation. For example, compilations with
fast-corner optimization turned on benefit more from using multiple
processors than do compilations that do not use fast-corner optimization.
The runtime requirement is not reduced for some other compilation
stages, such as Analysis and Synthesis. The Fitter (quartus_fit), the
Classic Timing Analyzer (quartus_tan) and the TimeQuest Timing
Analyzer (quartus_sta) stages in the compilation may benefit from the
use of multiple processors. In the Compilation Report, on the Flow
Elapsed Time panel, the average number of processors used for these
stages is shown.

8–88 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–88 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

1 Do not consider processors with Intel Hyper-Threading to be
more than one processor. If you have a single processor with
Intel Hyper-Threading enabled, you should set the number of
processors to one. Altera recommends that you do not use the
Intel Hyper-Threading feature for Quartus II compilations, as it
can increase runtimes.

f Many factors can impact the performance of parallel compilation. For
detailed information and instructions that can help improve the
performance of this feature, refer to the solution to the problem “How
can I improve the compilation time performance of the parallel
compilation feature in the Quartus II software?” on the Altera website,
www.altera.com.

The Quartus II software does not check the number of processors
physically available, but instead simply configures its algorithms to use
the specified number of processors. Therefore, you should not specify
more processors than those actually available. Doing so could result in
increased compilation time.

Using multiple processors does not affect the quality of the fit. For a given
Fitter seed on a specific design, the fit is exactly the same, regardless of
whether the Quartus II software uses one processor or multiple
processors. The only difference between such compilations using
different number of processors is the compilation time.

To set the number of processors available for Quartus II compilation, on
the Assignments menu, select Settings. From the Settings dialog box,
under Category, click Compilation Process Settings. In the dialog box
that appears, specify the Maximum processors for parallel Quartus II
use. The default value for the number of processors is 1.

You can also set the number of processors available for Quartus II
compilation using the following Tcl command in your script.

set_global_assignment -name NUM_PARALLEL_PROCESSORS <value> ;

In this case, <value> is an integer between 1 and 4.

Reduce Synthesis Time and Synthesis Netlist Optimization Time

You can reduce synthesis time by reducing your use of netlist
optimizations and by using incremental compilation. Use incremental
compilation (with Netlist Type set to Post-Synthesis) to reduce the
synthesis time, without affecting the Fitter time. For more ideas about
reducing synthesis time in third-party EDA synthesis tools, refer to your
synthesis software’s documentation.

http://www.altera.com

Altera Corporation 8–89
October 2007

Compilation-Time Optimization Techniques

Altera Corporation 8–89
October 2007

Compilation-Time Optimization Techniques

Synthesis Netlist Optimizations

You can use Quartus II integrated synthesis to synthesize and optimize
HDL designs, and you can use synthesis netlist optimizations to optimize
netlists that were synthesized by third-party EDA software. Using these
netlist optimizations can cause the Analysis and Synthesis module to take
much longer to run. Look at the Analysis and Synthesis messages to find
out how much time these optimizations take. The compilation time spent
in Analysis and Synthesis is typically small compared to the compilation
time spent in the Fitter.

If your design meets your performance requirements without synthesis
netlist optimizations, turn off the optimizations to save time. If you need
to turn on synthesis netlist optimizations to meet performance, you can
optimize parts of your design hierarchy separately to reduce the overall
time spent in analysis and synthesis.

Check Early Timing Estimation before Fitting

The Quartus II software can provide an estimate of your timing results
after synthesis, before the design is fully processed by the Fitter. In cases
where you want a quick estimate of your design results before proceeding
with further design or synthesis tasks, this feature can save you
significant compilation time. For more information, refer to “Early
Timing Estimation” on page 8–9.

After you perform analysis and synthesis in the Quartus II software, in
the Processing menu, point to Start, and click Start Early Timing
Estimate.

Reduce Placement Time

The time needed to place a design depends on two factors: the number of
ways the logic in the design can be placed in the device and the settings
that control how hard the placer works to find a good placement. You can
reduce the placement time in two ways:

■ Change the settings for the placement algorithm.
■ Use incremental compilation to preserve the placement for parts of

the design.

Sometimes there is a trade-off between placement time and routing time.
Routing time can increase if the placer does not run long enough to find
a good placement. When you reduce placement time, make sure that it
does not increase routing time and negate the overall time reduction.

8–90 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–90 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Fitter Effort Setting

Standard Fit takes the most runtime and usually does not yield a better
result than Auto Fit. To switch from Standard to Auto Fit, on the
Assignments menu, click Settings. In the Category list, select Fitter
Settings, and use the Fitter effort setting to shorten runtime by changing
the effort level to Auto Fit. If you are certain that your design has only
easy-to-meet timing constraints and low routing resource usage, you can
select Fast Fit for an even greater runtime saving.

Placement Effort Multiplier Settings

You can control the amount of time the Fitter spends in placement by
reducing one aspect of placement effort with the Placement Effort
Multiplier option. On the Assignments menu, click Settings. Select Fitter
Settings, and click More Settings. Under Existing Option Settings, select
Placement Effort Multiplier. The default is 1.0. Legal values must be
greater than 0 and can be non-integer values. Numbers between 0 and 1
can reduce fitting time, but also can reduce placement quality and design
performance. Numbers higher than 1 increase placement time and
placement quality, but may reduce routing time for designs with routing
congestion. For example, a value of 4 increases placement time by
approximately 2 to 4 times, but may increase quality.

Final Placement Optimization Levels

The Final Placement Optimization Level option specifies whether the
Fitter performs final placement optimizations. This can be set to Always,
Never, and Automatically. Performing optimizations may improve
register-to-register timing and fitting, but may require longer compilation
times. The default setting of Automatically can be used with the Auto Fit
Fitter Effort Level (also the default) to let the Fitter decide whether these
optimizations should run based on the routability and timing
requirements of the design.

Setting the Final Placement Optimization to Never often reduces your
compilation time, but typically affects routablity negatively and reduces
timing performance.

To change the Final Placement Optimization level, on the Assignments
menu, choose Settings. The Settings dialog box appears. From the
Category list, select Fitter Settings. Click the More Settings button. Select
Final Placement Optimization Level, and then from the drop-down
menu, select the required setting.

Altera Corporation 8–91
October 2007

Compilation-Time Optimization Techniques

Altera Corporation 8–91
October 2007

Compilation-Time Optimization Techniques

Physical Synthesis Effort Settings

You can use the physical synthesis options to optimize your
post-synthesis netlist and improve your timing performance. These
options, which affect placement, can significantly increase compilation
time. Refer to Table 8–6 on page 8–57 for detailed results.

If your design meets your performance requirements without physical
synthesis options, turn them off to save time. You also can use the
Physical synthesis effort setting on the Physical Synthesis
Optimizations page under Fitter Settings in the Category list to reduce
the amount of extra compilation time that these optimizations use. The
Fast setting directs the Quartus II software to use a lower level of physical
synthesis optimization that, compared to the normal level, can cause a
smaller increase in compilation time. However, the lower level of
optimization can result in a smaller increase in design performance.

Limit to One Fitting Attempt

This option causes the software to quit after one fitting attempt option,
instead of repeating placement and routing with increased effort.

From the Assignments menu, select Settings. On the Fitter Settings page,
turn on Limit to one fitting attempt.

For more details about this option, refer to “Limit to One Fitting Attempt”
on page 8–12.

Preserving Placement, Incremental Compilation, and LogicLock Regions

Preserving information about previous placements can make future
placements take less time. The incremental compilation provides an
easy-to-use methodology for preserving placement results. For more
information, refer to “Incremental Compilation” on page 8–86 and the
references listed in the section.

8–92 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–92 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Reduce Routing Time

The time needed to route a design depends on three factors: the device
architecture, the placement of the design in the device, and the
connectivity between different parts of the design. Typically, the routing
time is not a significant amount of the compilation time. If your design
takes a long time to route, perform one or more of the following actions:

■ Check for routing congestion
■ Let the placer run longer to find a more routable placement
■ Use incremental compilation to preserve routing information for

parts of your design

Identify Routing Congestion in the Chip Planner

To identify areas of congested routing in your design, open the Chip
Planner. On the Tools menu, click Chip Planner. To view the routing
congestion in the Chip Planner, click the Layers icon located next to the
Task menu. Under Background Color Map, select the Routing Utilization.
Routing resource usage above 90% indicates routing congestion. You can
change the connections in your design to reduce routing congestion. If the
area with routing congestion is in a LogicLock region or between
LogicLock regions, change or remove the LogicLock regions and
recompile the design. If the routing time remains the same, the time is a
characteristic of the design and the placement. If the routing time
decreases, consider changing the size, location, or contents of LogicLock
regions to reduce congestion and decrease routing time.

f For information about identifying areas of congested routing using the
Chip Planner tool, refer to the Viewing Routing Congestion subsection in
the Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook.

Identify Routing Congestion in the Timing Closure Floorplan for Legacy
Devices

If the device you have in your design is not supported by the Chip
Planner, you have to use the Timing Closure Floorplan tool. To identify
areas of congested routing in your design. To open Timing Closure
Floorplan, on the Assignments menu, click Timing Closure Floorplan,
and turn on Show Routing Congestion. This feature is available only
when you choose the Field View on the View menu. Routing resource
usage above 90% indicates routing congestion. You can change the
connections in your design to reduce routing congestion. If the area with
routing congestion is in a LogicLock region or between LogicLock
regions, change or remove the LogicLock regions and recompile the
design. If the routing time remains the same, the time is a characteristic of

8–93 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–93 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

the design and the placement. If the routing time decreases, consider
changing the size, location, or contents of LogicLock regions to reduce
congestion and decrease routing time.

Placement Effort Multiplier Setting

Some designs may be difficult to route, and take a long time to route
because the placement is less than optimal. In such cases, you can increase
the Placement Effort Multiplier to get a better placement. Though this
may increase the placement time, it can reduce the routing time, and even
overall compilation time in some cases.

Preserve Routing Incremental Compilation and LogicLock Regions

Preserving information about the previous routing results for part of the
design can make future routing efforts take less time. The use of
LogicLock regions with incremental compilation provides an easy-to-use
methodology that preserves placement and routing results. For more
information, refer to “Incremental Compilation” on page 8–86 and the
references listed in the section.

Other Optimizing
Resources

The Quartus II software has additional resources to help you optimize
your design for resource, performance, compilation time and power.

Design Space Explorer

The Design Space Explorer (DSE) automates the process of running
multiple compilations with different settings. You can use the DSE to try
the techniques described in this chapter. The DSE utility helps automate
the process of finding the best set of options for your design. The DSE
explores the design space by applying various optimization techniques
and analyzing the results.

f For more information, refer to the Design Space Explorer chapter in
volume 2 of the Quartus II Handbook.

Power Optimization Advisor

The Quartus II software has a Power Optimization Advisor to provide
guidance for reducing power consumption. In addition, the Incremental
Compilation Advisor provides suggestions to improve your quality of
results when partitioning your design for a hierarchical or team-based
design flow using the Quartus II incremental compilation feature.

8–94 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–94 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

f For more information about using the Power Optimization Advisor,
refer to the Power Optimization chapter in volume 2 of the Quartus II
Handbook. Fore more information about using the Incremental
Compilation Advisor, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Quartus II Scripting Reference Manual includes the same information
in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either in an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> \
-to <instance name>

1 If the <value> field includes spaces (for example, “Standard
Fit”), the value must be enclosed by straight double quotation
marks.

8–95 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–95 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Initial Compilation Settings

The Quartus Settings File variable name is used in the Tcl assignment to
make the setting along with the appropriate value. The Type column
indicates whether the setting is supported as a global setting, an instance
setting, or both.

1 This chapter refers to timing settings and analysis in the
Quartus II Classic Timing Analyzer. For equivalent settings and
analysis in the Quartus II TimeQuest Timing Analyzer, refer to
the Quartus II TimeQuest Timing Analyzer or the Switching to the
Quartus II TimeQuest Timing Analyzer chapters in volume 3 of the
Quartus II Handbook.

Table 8–13 lists the Quartus Settings File variable name and applicable
values for the settings discussed in “Initial Compilation: Required
Settings” on page 8–3.

Table 8–13. Initial Compilation Settings

Setting Name Quartus Settings File Variable Name Values Type

Device Setting DEVICE <device part number> Global

Use Smart Compilation SPEED_DISK_USAGE_TRADEOFF SMART, NORMAL Global

Optimize IOC Register
Placement For Timing

OPTIMIZE_IOC_REGISTER_
PLACEMENT_FOR_TIMING

ON, OFF Global

Optimize Hold Timing OPTIMIZE_HOLD_TIMING OFF, IO PATHS AND MINIMUM
TPD PATHS, ALL PATHS

Global

Fitter Effort FITTER_EFFORT STANDARD FIT, FAST FIT,
AUTO FIT

Global

Router Effort Multiplier ROUTER_EFFORT_MULTIPLIER Any positive, non-zero value Global

Router Timing
Optimization level

ROUTER_TIMING_OPTIMIZATION_L
EVEL

NORMAL, MINIMUM, MAXIMUM Global

Final Placement
Optimization

FINAL_PLACEMENT_OPTIMIZATION ALWAYS, AUTOMATICALLY,
NEVER

Global

8–96 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–96 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Resource Utilization Optimization Techniques (LUT-Based
Devices)

Table 8–14 lists the Quartus Settings File variable name and applicable
values for the settings discussed in “Resource Utilization Optimization
Techniques (LUT-Based Devices)” on page 8–25. The QSF variable name
is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is
supported as a global setting, an instance setting, or both.

Table 8–14. Resource Utilization Optimization Settings

Setting Name QSF Variable Name Values Type

Auto Packed Registers
(1)

AUTO_PACKED_REGISTERS_
<device family name>

OFF, NORMAL,
MINIMIZE AREA,
MINIMIZE AREA
WITH CHAINS, AUTO

Global,
Instance

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Optimization
Technique

<device family name>_OPTIMIZATION_
TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

Speed Optimization
Technique for Clock
Domains

SYNTH_CRITICAL_CLOCK ON, OFF Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, ONE-HOT,
MINIMAL BITS,
USER-ENCODE

Global,
Instance

Preserve Hierarchy PRESERVE_HIERARCHICAL_BOUNDARY OFF, RELAXED, FIRM Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

Number of Processors
for Parallel
Compilation

NUM_PARALLEL_PROCESSORS Integer between 1 and
4 inclusive

Global

Note to Table 8–15:
(1) Allowed values for this setting depend on the device family that is selected.

8–97 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–97 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

I/O Timing Optimization Techniques (LUT-Based Devices)

Table 8–15 lists the QSF variable name and applicable values for the
settings discussed in “I/O Timing Optimization Techniques (LUT-Based
Devices)” on page 8–97. The QSF variable name is used in the Tcl
assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a global
setting, an instance setting, or both.

Register-to-Register Timing Optimization Techniques
(LUT-Based Devices)

Table 8–16 lists the QSF variable name and applicable values for the
settings discussed in “Register-to-Register Timing Optimization
Techniques (LUT-Based Devices)” on page 8–52. The QSF variable name
is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is
supported as a global setting, an instance setting, or both.

Table 8–15. I/O Timing Optimization Settings

Setting Name Quartus Settings File Variable Name Values Type

Optimize IOC
Register Placement
For Timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR_TIMING ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output
Register

FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output Enable
Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Fast OCT Register FAST_OCT_REGISTER ON, OFF Instance

Table 8–16. Register-to-Register Timing Optimization Settings (Part 1 of 2)

Setting Name Quartus Settings File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Perform Gate Level
Register Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Allow Register
Retiming to trade off
tS U/tC O with fM A X

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

8–98 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–98 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Duplicate Logic for Fan-Out Control

The manual logic duplication option accepts wildcards. This is an easy
and powerful duplication technique that you can use without editing
your source code. You can use this technique, for example, to make a
duplicate of a large fan-out node for all of its destinations in a certain
design hierarchy, such as hierarchy_A. To make such an assignment
with Tcl, use a command similar to Example 8–1.

Example 8–1. Duplication Technique
set_instance_assignment -name DUPLICATE_ATOM \

high_fanout_to_A -from high_fanout_node \
-to *hierarchy_A*

Conclusion Complex designs have complex requirements. Methodologies for fitting
your design and for achieving timing closure are fundamental to optimal
performance of your design. Using the Quartus II design optimization
methodology closes timing quickly on complex designs, reduces
iterations by providing more intelligent and better linkage between
analysis and assignment tools, and balances multiple design constraints
including multiple clocks, routing resources, and area constraints.

Perform Physical
Synthesis for
Combinational Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Physical Synthesis
Effort

PHYSICAL_SYNTHESIS_EFFORT NORMAL, EXTRA,
FAST

Global

Fitter Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic
Duplication

DUPLICATE_ATOM <node name> Instance

Optimize Power
during Synthesis

OPTIMIZE_POWER_DURING_SYNTHESIS NORMAL, OFF
EXTRA_EFFORT

Global

Optimize Power
during Fitting

OPTIMIZE_POWER_DURING_FITTING NORMAL, OFF
EXTRA_EFFORT

Global

Table 8–16. Register-to-Register Timing Optimization Settings (Part 2 of 2)

Setting Name Quartus Settings File Variable Name Values Type

8–99 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–99 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The Quartus II software provides many features to achieve optimal
results. Follow the techniques presented in this chapter to efficiently
optimize a design for area or timing performance, or to reduce
compilation time.

Referenced
Documents

This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Analyzing Designs with Quartus II Netlist Viewers chapter in volume 1
of the Quartus II Handbook

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Design Recommendations for Altera Devices chapter in volume 1 of the

Quartus II Handbook
■ Design Analysis and Engineering Change Management with Chip Planner

chapter in volume 3 of the Quartus II Handbook
■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ Instantiating Altera Megafunctions and the Inferring Altera

Megafunctions sections of the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook

■ Message Suppression section in the Managing Quartus II Projects
chapter in volume 2 of the Quartus II Handbook

■ Power Optimization chapter in volume 2 of the Quartus II Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in

volume 3 of the Quartus II Handbook
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53010.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v2_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52012.pdf
http://www.altera.com/literature/hb/qts/qts_qii53010.pdf
http://www.altera.com/literature/hb/qts/qts_qii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

8–100 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–100 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Document
Revision History

Table 8–17 shows the revision history for this chapter.

Table 8–17. Document Revision History (Part 1 of 3)

Date and
Document

Version
Changes Made Summary of

Changes

October 2007
v7.2.0

Major update for the Quartus II software version 7.2, including:
● Major re-organization of the chapter

Changes made to
this chapter reflect
the software
changes made in
version 7.2.

May 2007
v7.1.0

Updated for the Quartus II software version 7.1, including:
● Adding text to “Limit to One Fitting Attempt” on page 8–12
● Significantly adjusted text to “Fitter Effort Setting” on page 8–13
● Added Table 8–1, “Typical Register Packing Results for Arria GX

Devices,” on page 8-30
● Adjusted text throughout to include Chip Planner information
● Adjusted text throughout to add Arria GX support information
● Added a paragraph on page 8–89 for more information about

identifying routing congestion in the timing closure floorplan
● Added row to Table 8–15, “Resource Utilization Optimization

Settings,” on page 8-94
● Added “Referenced Documents” on page 8–97

Changes made to
this chapter reflect
the software
changes made in
version 7.1.

March 2007
v7.0.0

Minor changes to add information regarding Cyclone III details,
including updating benchmarking tables:
● Table 8–2, “Typical Register Packing Results for Stratix II and

Stratix III Devices,” on page 8-30
● Table 8–3, “Typical Register Packing Results for Cyclone II and

Cyclone III Devices,” on page 8-30

Added Cyclone III
information.

8–101 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–101 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

November 2006
v6.1.0

Updated for the Quartus II software version 6.1.0:
● Added references to the Power Optimization Advisor and

Incremental Compilation Advisor
● Updated text to include Quartus II TimeQuest Timing Analyzer
● Added check_timing for illegal and ignored constraints
● In the “Resource Utilization” section, modified note about ALM

counts
● In the “Use Register Packing” section, updated for Stratix II support;

added new benchmarking tables
● Added new sections to the “Routing” section:

• Set Auto Register Packing to Auto
• Set Fitter Aggressive Routability Optimizations to Always
• Increase Router Effort Multiplier
• Set Maximum Router Optimization Level

● To the “Increase Placement Effort Multiplier” section, added that
second and third fitting loops increase the multiplier to 4 and then 16

● Added relevant information for Stratix III
● In the “Synthesis Netlist Optimizations and Physical Synthesis

Optimizations” section, updated benchmarking information in tables;
reorganized information for clarity

● Added new section: “Turn Off Extra-Effort Power Optimization
Settings”

Updates for
TimeQuest
support, Stratix III
devices, and
updated
benchmarking
tables.

Table 8–17. Document Revision History (Part 2 of 3)

Date and
Document

Version
Changes Made Summary of

Changes

8–102 Altera Corporation
 October 2007

Quartus II Handbook, Volume 2

8–102 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added Optimization advisors.
● Added initial compilation information.
● Added design analysis information.
● Added fMAX timing optimization techniques.

—

December 2005
v5.1.1

Minor typographic corrections. —

October 2005
v5.1.0

Chapter 8 was formerly Chapter 7 in version 5.0. —

May 2005
v5.0.0

Chapter 7 was formerly Chapter 6 in version 4.2. —

Dec. 2004
v2.1

Updated for Quartus II software version 4.2:
● Re-organized chapter.
● Added Early Timing Estimation segment.
● Removed Incremental Fitting segment.
● Updated Optimization Advisors.
● Updated Resource Utilization Optimization Techniques (LUT-Based

Devices) segment.
● Added the DSP Block Balancing logic option to Retarget or Balance

DSP Blocks segment.
● Updated Duplicate Logic for Fan-Out Control segment.
● Updates to tables, figures.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality in the Quartus II software version 4.1.

—

Feb. 2004
v1.0

Initial release. —

Table 8–17. Document Revision History (Part 3 of 3)

Date and
Document

Version
Changes Made Summary of

Changes

Altera Corporation 9–1
October 2007 Preliminary

9. Power Optimization

Introduction The Quartus® II software offers power-driven compilation to fully
optimize device power consumption. Power-driven compilation focuses
on reducing your design’s total power consumption using power-driven
synthesis and power-driven place-and-route. This chapter describes the
power-driven compilation feature and flow in detail, as well as low
power design techniques that can further reduce power consumption in
your design. The techniques primarily target Arria™ GX, Stratix® and
Cyclone® series of devices, and HardCopy® II devices. These devices
utilize a low-k dielectric material that dramatically reduces dynamic
power and improves performance. Stratix III and Stratix II devices
include new, more efficient, logic structures called adaptive logic
modules (ALMs) that obtain maximum performance while minimizing
power consumption. Cyclone III and Cyclone II devices offer the optimal
blend of high performance and low power in a low-cost FPGA.

f For more information about Stratix III architecture, refer to the Stratix III
Device Handbook.

Altera provides the Quartus II PowerPlay Power Analyzer to aid you
during the design process by delivering fast and accurate estimations of
power consumption. You can minimize power consumption, while
taking advantage of the industry’s leading FPGA performance, by using
the tools and techniques described in this chapter.

f For more information about the PowerPlay Power Analyzer, refer to the
PowerPlay Power Analyzer chapter in volume 3 of the Quartus II Handbook.

Total FPGA power consumption is comprised of I/O power, core static
power, and core dynamic power. This chapter focuses on design
optimization options and techniques that help reduce core dynamic
power and I/O power. In addition to these techniques there are
additional power optimization techniques available for Stratix III
devices. These techniques include:

■ Selectable Core Voltage
■ Programmable Power Technology
■ Device Speed Grade Selection

f For more information about power optimization techniques available for
Stratix III devices, refer to application note AN: 437 Power Optimization in
Stratix III FPGAs.

QII52016-7.2.0

9–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Power
Dissipation

This section describes the sources of power dissipation in Stratix II and
Cyclone II devices. You can refine techniques that reduce power
consumption in your design by understanding the sources of power
dissipation.

Figure 9–1 shows the power dissipation of Stratix II and Cyclone II
devices in different designs. All designs were analyzed at a fixed clock
rate of 200 MHz and exhibited varied logic resource utilization across
available resources.

Figure 9–1. Average Core Dynamic Power Dissipation

Notes to Figure 9–1:
(1) 112 different designs were used to obtain these results.
(2) 93 different designs were used to obtain these results.
(3) In designs using DSP blocks, DSPs consumed 5% of core dynamic power.

As shown in Figure 9–1, a significant amount of the total power is
dissipated in routing for both Stratix II and Cyclone II devices, with the
remaining power dissipated in logic, clock, and RAM blocks.

In Stratix and Cyclone device families, a series of column and row
interconnect wires of varying lengths provide signal interconnections
between logic array blocks (LABs), memory block structures, and digital
signal processing (DSP) blocks or multiplier blocks. These interconnects
dissipate the largest component of device power.

Average Core Dynamic Power Dissipation by Block
 Type in Stratix II Devices at a 12.5% Toggle Rate (1)

Routing
35%

Combinational Logic
15%

Registered Logic
25%

DSP Blocks
1% (3)

Average Core Dynamic Power Dissipation by Block
 Type in Cyclone II Devices at a 12.5% Toggle Rate (2)

Memory
9%

Global Clock Routing
15%

Routing
39%

Combinational Logic
23%

Registered Logic
16%

Memory
14%

Global Clock Routing
7%

DSP Blocks
1% (3)

Altera Corporation 9–3
October 2007 Preliminary

Design Space Explorer

FPGA combinational logic is another source of power consumption. The
basic building block of logic in Stratix III and Stratix II devices is the
ALM, and in Cyclone III and Cyclone II devices, it is the logic element
(LE).

f For more information about ALMs and LEs in Stratix III, Stratix II,
Cyclone III and Cyclone II devices, refer to the respective device
handbook.

Memory and clock resources are other major consumers of power in
FPGAs. Stratix II devices feature the TriMatrix memory architecture.
TriMatrix memory includes 512-bit M512 blocks, 4-Kbit M4K blocks, and
512-Kbit M-RAM blocks, which are each configurable to support many
features. Stratix III TriMatrix on-chip memory is an enhancement based
upon the Stratix II FPGA TriMatrix memory and includes three sizes of
memory blocks: MLAB blocks, M9K blocks, and M144K blocks.
Cyclone II devices have 4-Kbit M4K memory blocks and Cyclone III
devices have 9-Kbit M9K memory blocks.

Design Space
Explorer

The Design Space Explorer (DSE) is a simple, easy-to-use, design
optimization utility that is included in the Quartus II software. The DSE
explores and reports optimal Quartus II software options for your design,
targeting either power optimization, design performance, or area
utilization improvements. You can use the DSE to implement the
techniques described in this chapter.

Figure 9–2 shows the DSE user interface. The Settings tab is divided into
Project Settings and Exploration Settings.

9–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–2. Design Space Explorer User Interface

The Search for Lowest Power option, under Exploration Settings, uses a
predefined exploration space that targets overall design power
improvements. This setting focuses on applying different options that
specifically reduce total design thermal power. You can also set the
Optimization Goal option for your design using the Advanced tab in the
DSE window. You can select your design optimization goal, such as
optimize for power, from the list of available settings in the Optimization
Goal list. The DSE then uses the selection from the Optimization Goal
list, along with the Search for Lowest Power selection, to determine the
best compilation results.

By default, the Quartus II PowerPlay Power Analyzer is run for every
exploration performed by the DSE when the Search for Lowest Power
option is selected. This helps you debug your design and determine
trade-offs between power requirements and performance optimization.

Altera Corporation 9–5
October 2007 Preliminary

Power-Driven Compilation

f For more information about the DSE, refer to the Design Space Explorer
chapter in volume 2 of the Quartus II Handbook.

Power-Driven
Compilation

The standard Quartus II compilation flow consists of Analysis and
Synthesis, Fitter, Assembler, and Timing Analysis. Power-driven
compilation takes place at the analysis and synthesis and Fitter levels.
Power-driven compilation settings are divided in the PowerPlay power
optimization list on the Analysis & Synthesis Settings page, and
PowerPlay power optimization on the Fitter Settings page. The
following section describes these power optimization options at the
analysis and synthesis and Fitter levels.

Power-Driven Synthesis

Synthesis netlist optimization occurs during the synthesis stage of the
compilation flow. The optimization technique makes changes to the
synthesis netlist to optimize your design according to the selection of
area, speed, or power optimization. This section describes power
optimization techniques at the synthesis level.

The Analysis & Synthesis Settings page allows you to specify logic
synthesis options. The PowerPlay power optimization option is
available for the Arria GX, Stratix and Cyclone families of devices, and
MAX® II devices (Figure 9–3).

To perform power optimization at the synthesis level in the Quartus II
software, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Analysis & Synthesis. The Analysis &
Synthesis page appears.

3. In the PowerPlay power optimization list, select your preferred
setting. This option determines how aggressively Analysis and
Synthesis optimizes the design for power.

9–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–3. Analysis & Synthesis Settings Page

Table 9–1 shows the settings in the PowerPlay power optimization list.
You can apply these settings on a project or entity level.

Table 9–1. Optimize Power During Synthesis Options

Settings Description

Off No netlist, placement, or routing optimizations are
performed to minimize power

Normal compilation (Default) Enables power optimizations as long as they are
not expected to reduce design performance

Extra effort Enables you to perform additional power
optimizations which can reduce design
performance

Altera Corporation 9–7
October 2007 Preliminary

Power-Driven Compilation

The Normal compilation setting is turned on by default. This setting
performs memory optimization and power-aware logic mapping during
synthesis.

Memory blocks can represent a large fraction of total design dynamic
power as described in “Reducing Memory Power Consumption” on
page 9–23. Minimizing the number of memory blocks accessed during
each clock cycle can significantly reduce memory power. Memory
optimization involves effective movement of user-defined read/write
enable signals to associated read-and-write clock enable signals for all
memory types (Figure 9–4).

Figure 9–4. Memory Transformation

Figure 9–4 shows a default implementation of a simple dual-port
memory block in which write-clock enable and read-clock enable signals
are connected to VCC, making both read-and-write memory ports active
during each clock cycle. Memory transformation effectively moves the
read-enable and write-enable signals to the respective read-clock enable
and write-clock enable signals. By using this technique, memory ports are
shut down when they are not accessed. This significantly reduces your
design’s memory power consumption. For more information about clock
enable signals, refer to “Reducing Memory Power Consumption” on
page 9–23. For Stratix III devices, the memory transformation takes place
at the Fitter level by selecting the Normal compilation settings for the
power optimization option.

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Data Q

Wr Clk
Enable

Write
Address

Rd Clk
Enable

Read
Address

Clock

Write
Enable

Read
Enable

VCC

Wren

Write
Address

Data Q

Rden

VCC

Read
Address

Switch

Switch

9–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 In Stratix III and Cyclone III devices, the specified
read-during-write behavior can significantly impact the power
of single-port and bidirectional dual-port RAMs. It is best to set
the read-during-write parameter to “Don’t care” (at the HDL
level), as it allows an optimization whereby the read-enable
signal can be set to the inversion of the existing write-enable
signal (if one exists). This allows the core of the RAM to shut
down (that is, not toggle), which saves a significant amount of
power.

The other type of power optimization that takes place with the Normal
compilation setting is power-aware logic mapping. The power-aware
logic mapping reduces power by rearranging the logic during synthesis
to eliminate nets with high toggle rates.

The Extra effort setting performs the functions of the Normal
compilation setting and other memory optimizations to further reduce
memory power by shutting down memory blocks that are not accessed.
This level of memory optimization may require extra logic which can
reduce design performance.

The Extra effort setting also performs power-aware memory balancing.
Power-aware memory balancing automatically chooses the best memory
configuration for your memory implementation and provides optimal
power saving by determining the number of memory blocks, decoder,
and multiplexer circuits needed. If you have not previously specified
target-embedded memory blocks for your design’s memory functions,
the power-aware balancer automatically selects them during memory
implementation.

Figure 9–5 shows an example of a 4K × 4 (4K deep and 4 bits wide)
memory implementation in two different configurations using M4K
memory blocks available in Stratix II devices. The minimum logic area
implementation uses M4K blocks configured as 4K × 1. This
implementation is the default in the Quartus II software because it has the
minimum logic area (0 logic cells) and the highest speed. However, all
four M4K blocks are active on each memory access in this
implementation, which increases RAM power. The minimum RAM
power implementation is created by selecting Extra effort in the
PowerPlay power optimization list. This implementation automatically
uses four M4K blocks configured as 1K × 4 for optimal power saving. An
address decoder is implemented by the altsyncram megafunction to
select which of the four M4K blocks should be activated on a given cycle,
based on the state of the top two user address bits. The altsyncram
megafunction automatically implements a multiplexer to feed the
downstream logic by choosing the appropriate M4K output. This

Altera Corporation 9–9
October 2007 Preliminary

Power-Driven Compilation

implementation reduces RAM power because only one M4K block is
active on any cycle, but it requires extra logic cells, costing logic area and
potentially impacting design performance.

There is a trade-off between power saved by accessing fewer memories
and power consumed by the extra decoder and multiplexor logic. The
Quartus II software automatically balances the power savings against the
costs to choose the lowest power configuration for each logical RAM.

Figure 9–5. 4K × 4 Memory Implementation Using Multiple M4K Blocks

Memory optimization options can also be controlled by the
Low_Power_Mode parameter in the Default Parameters page of the
Settings dialog box. The settings for this parameter are None, Auto, and
ALL. None corresponds to the Off setting in the PowerPlay power
optimization list. Auto corresponds to the Normal compilation setting
and ALL corresponds to the Extra effort setting, respectively. You can
apply PowerPlay power optimization either on a compiler basis or on
individual entities. The Low_Power_Mode parameter always takes
precedence over the Optimize Power for Synthesis option for power
optimization on memory.

You can also set the MAXIMUM_DEPTH parameter manually to configure
the memory for low power optimization. This technique is the same as
the power-aware memory balancer, but it is manual rather than
automatic like the Extra effort setting in the PowerPlay power
optimization list. You can set the MAXIMUM_DEPTH parameter for
memory modules manually in the megafunction instantiation or in the
MegaWizard® Plug-In Manager for power optimization as described in

Addr
Decoder

4

1K Deep × 4 Wide
M4K RAM

Addr[0:9]

Addr[10:11]

Data[0:3]

Addr[10:11]

4K Words Deep &
4 Bits Wide

Addr[0:11]

4K Deep × 1 Wide
M4K RAM

Data[0:3]

Minimum RAM Power
(Power Efficient)

Minimum Logic Area
(Power Inefficient)

9–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

“Reducing Memory Power Consumption” on page 9–23. The
MAXIMUM_DEPTH parameter always takes precedence over the Optimize
Power for Synthesis options for power optimization on memory
optimization.

Power-Driven Synthesis Experiment for Stratix II Devices

In this experiment for Stratix II devices, three designs are compiled with
the Quartus II software using Normal compilation and Extra effort
settings in the PowerPlay power optimization list. The default setting for
Fitter is Normal compilation. Table 9–2 shows resources used in the
power-driven synthesis experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–6 shows that the power-driven synthesis
reduces memory power consumption by as much as 68% in Stratix II
devices.

Figure 9–6. Memory Blocks Power Savings Using the Power-Driven Synthesis
for Stratix II Devices

Table 9–2. Resources Used in the Power-Driven Synthesis Experiment for Stratix II Devices

Design Name Settings ALUT Register Memory Bits

Design 1 Normal compilation 8,941 9,150 293,856

Extra effort 8,954 9,151 293,856

Design 2 Normal compilation 28,169 12,148 1,009,920

Extra effort 28,817 12,297 1,009,920

Design 3 Normal compilation 5,376 2,809 153,864

Extra effort 5,559 2,813 153,864

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3

Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–11
October 2007 Preliminary

Power-Driven Compilation

Power-Driven Fitter

The Fitter Settings page enables you to specify options for fitting
(Figure 9–7). The PowerPlay power optimization option is available for
Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II,
HardCopy II, and MAX II devices.

To perform power optimization at the Fitter level, perform the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Fitter Settings. The Fitter Settings page
appears.

3. In the PowerPlay power optimization list, select your preferred
setting. This option determines how aggressively the Fitter
optimizes the design for power.

9–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–7. Fitter Settings Page

Table 9–3 lists the settings in the PowerPlay power optimization list.
These settings can only be applied on a project-wide basis. The Extra
effort setting for the Fitter requires extensive effort to optimize the design
for power and can increase the compilation time.

Table 9–3. Power-Driven Fitter Option

Settings Description

Off No netlist, placement, or routing optimizations are
performed to minimize power

Normal compilation
(Default)

Enables power optimizations as long as they are not
expected to reduce design performance

Extra effort Enables you to perform additional power
optimizations that can reduce design performance

Altera Corporation 9–13
October 2007 Preliminary

Power-Driven Compilation

The Normal compilation setting is selected by default and performs DSP
optimization by creating power-efficient DSP block configurations for
your DSP functions. For Stratix III devices, this setting, which is based on
timing constraints entered for the design, enables the Programmable
Power Technology to configure tiles as high-speed mode or low-power
mode. Programmable Power Technology is always turned ON even
when the OFF setting is selected for the Fitter PowerPlay power
optimization option. Tiles are the combination of LAB and MLAB pairs
(including the adjacent routing associated with LAB and MLAB) which
can be configured to operate in high-speed or low-power mode. This
level of power optimization will not have any affect on the fitting, timing
results, or compile time. Also, for Stratix III devices, this setting enables
the memory transformation as described in “Power-Driven Synthesis” on
page 9–5.

f For more information about Stratix III power optimization, refer to
AN 437:Power Optimization in Stratix III FPGAs.

The Extra effort setting performs the functions of the Normal
compilation setting and other place-and-route optimizations during
fitting to fully optimize the design for power. The Fitter applies an extra
effort to minimize power even after timing requirements have been met
by effectively moving the logic closer during placement to localize
high-toggling nets, and using routes with low capacitance. However, this
effort can increase the compilation time.

The Extra effort setting uses a Signal Activity File (.saf) or Verilog Value
Change Dump File (.vcd) that guides the Fitter to fully optimize the
design for power based on the signal activity of the design. The best
power optimization during fitting results from using the most accurate
signal activity information. Signal activities from full post-fit netlist
(timing) simulation provide the highest accuracy because all node
activities reflect the actual design behavior, provided that supplied input
vectors are representative of typical design operation. If you do not have
a Signal Activity File (from simulation or other source), the Quartus II
software uses assignments, clock assignments, and vectorless estimation
values (PowerPlay Power Analyzer Tool settings) to estimate the signal
activities. This information is used to optimize your design for power
during fitting.

1 Only the Extra effort setting in the PowerPlay power
optimization list for the Fitter option uses the signal activities
(from Value Change Dump File or SAF) during fitting. The
settings made in the PowerPlay Power Analyzer Settings page
in the Settings dialog box are used to calculate the signal activity
of your design.

9–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

f For more information about Signal Activity Files and Verilog Value
Change Dump Files, and how to create them, refer to the PowerPlay
Power Analysis chapter in volume 3 of the Quartus II Handbook.

Power-Driven Fitter Experiment for Stratix II Devices

In this experiment for Stratix II devices, three designs are compiled with
the Quartus II software using the Normal compilation and Extra effort
settings in the Fitter for the PowerPlay power optimization list. The
default setting for Analysis and Synthesis is Normal compilation.

Table 9–4 shows resources used in the power-driven Fitter experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–8 shows that the power-driven Fitter
technique reduces power consumption by as much as 19% in Stratix II
devices.

Figure 9–8. Power Savings Using the Power-Driven Fitter for Stratix II Devices

Table 9–4. Designs Used in the Power-Driven Fitter Experiment for Stratix II
Devices

Design Name ALUTs (Normal Compilation) ALUTs (Extra Effort)

Design 1 21,435 21,363

Design 2 19,035 18,970

Design 3 5,335 5,328

0%
5%

10%
15%
20%
25%

1 2 3

Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–15
October 2007 Preliminary

Recommended Flow for Power-Driven Compilation

Recommended
Flow for
Power-Driven
Compilation

Figure 9–9 shows the recommended design flow to fully optimize your
design for power during compilation. This flow utilizes the power-driven
synthesis and power-driven Fitter options. On average, you can reduce
core dynamic power by 16% with the extra effort synthesis and extra
effort fitting settings, as compared to off settings in both synthesis and
Fitter options for power-driven compilation.

Figure 9–9. Recommended Flow for Power-Driven Compilation

Area-Driven Synthesis

Using area optimization rather than timing or delay optimization during
synthesis saves power because you use fewer logic blocks. Using less
logic usually means less switching activity.

Area-Driven Synthesis Experiment for Stratix II Devices

In this experiment for Stratix II devices, five designs are compiled with
the Quartus II software in two ways. First, the designs are compiled
optimizing for area. The same designs are then compiled optimizing for
speed. The power optimization settings for synthesis and fitting are set to
Off.

.saf
or

.vcd

Power-Driven
Synthesis of Design

Power-Driven
Fitting of Design

Find Signal Toggle
Rates: Gate-Level

Simulation with
Glitch Filtering

Fit Design

9–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Table 9–5 shows ALUT usage in the area-driven synthesis experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–10 shows that the area-driven technique
reduces power consumption by as much as 31% in Stratix II devices.

Figure 9–10. Power Savings Using Area-Driven Synthesis for Stratix II Devices

Area-Driven Synthesis Experiment for Cyclone II Devices

In this experiment for Cyclone II devices, five designs are compiled with
the Quartus II software in two ways. First, the designs are compiled
optimizing for area. The same designs are then compiled optimizing for
speed.

Table 9–5. Designs Used in the Area-Driven Synthesis Experiment for
Stratix II Devices

Design Name ALUTs (Area Mapping) ALUTs (Speed Mapping)

Design 1 5,682 8,553

Design 2 16,986 17,783

Design 3 36,554 36,312

Design 4 4,717 5,820

Design 5 15,947 15,978

0%
5%

10%
15%
20%
25%
30%
35%

1 2 43 5

Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–17
October 2007 Preliminary

Recommended Flow for Power-Driven Compilation

Table 9–6 shows LE usage in the area-driven synthesis experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–11 shows that the area-driven technique
reduces power consumption by as much as 15% in Cyclone II devices.

Figure 9–11. Power Savings Using Area-Driven Synthesis for Cyclone III and
Cyclone II Devices

Gate-Level Register Retiming

You can also use gate-level register retiming to reduce circuit switching
activity. Retiming shuffles registers across combinational blocks without
changing design functionality. The Perform gate-level register retiming
option in the Quartus II software enables the movement of registers
across combinational logic to balance timing, allowing the software to
trade off the delay between timing critical and non-critical timing paths.

Retiming uses fewer registers than pipelining. Figure 9–12 shows an
example of gate-level register retiming, where the 10 ns critical delay is
reduced by moving the register relative to the combinational logic,
resulting in the reduction of data depth and switching activity.

Table 9–6. Designs Used in the Area-Driven Synthesis Experiment for
Cyclone II Devices

Design Name LEs (Area Mapping) LEs (Speed Mapping)

Design 1 13,020 16,429

Design 2 13,317 13,636

Design 3 5,384 5,690

Design 4 33,640 40,008

Design 5 21,409 22,988

0%
2%
4%
6%
8%

1 2 43 5

Po
w

er
 S

av
in

gs

Designs

10%
12%
14%
16%

9–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–12. Gate-Level Register Retiming

1 Gate-level register retiming makes changes at the gate level. If
you are using an atom netlist from a third-party synthesis tool,
you must also select the Perform WYSIWYG primitive
resynthesis option to undo the atom primitives to gates
mapping (so that register retiming can be performed), and then
to remap gates to Altera® primitives. When using the Quartus II
integrated synthesis, retiming occurs during synthesis before
the design is mapped to Altera primitives.

f For more information about register retiming, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook.

Gate-Level Register Retiming Experiment for Stratix II Devices

In this experiment for Stratix II devices, three designs are compiled with
the Quartus II software in two ways. First, a netlist from a third-party
synthesis tool is compiled. Then, the same netlist is compiled after
selecting the Perform WYSIWYG primitive resynthesis and Perform
gate-level register retiming options.

D Q D Q

D Q D Q

D Q

D Q

10 ns 5 ns

7 ns 8 ns

Before

After

Altera Corporation 9–19
October 2007 Preliminary

Recommended Flow for Power-Driven Compilation

Table 9–7 shows resource usage results.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–13 shows that the combination of
WYSIWYG remapping and gate-level register retiming reduces power
consumption by nearly 6% in Stratix II devices.

Figure 9–13. Power Savings Using Retiming for Stratix II Devices

Gate-Level Register Retiming Experiment for Cyclone II Devices

In this experiment for Cyclone II devices, three designs are compiled with
the Quartus II software in two ways. First, a netlist from a third-party
synthesis tool is compiled. Then, the same netlist is compiled by selecting
the Perform WYSIWYG primitive resynthesis and Perform gate-level
register retiming options.

Table 9–7. Resources Used in the Gate-Level Register Retiming Experiment
for Stratix II Devices

Design
Name

WYSIWYG
and Register

Retiming
ALUTs Registers DSP

Blocks Memory

Design 1 No 2,051 691 0 16

Yes 1,882 731 0 16

Design 2 No 123,909 40,070 0 0

Yes 95,593 39,816 0 0

Design 3 No 6,354 6,019 64 3,584

Yes 7,496 5,970 64 3,584

6%
5%
4%
3%
2%
1%
0%

1 2 3
Designs

Po
w

er
 S

av
in

gs

9–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Table 9–8 shows resource usage results.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–14 shows that the combination of
WYSIWYG remapping and gate-level register retiming reduces power
consumption by as much as 21% in Cyclone II devices.

Figure 9–14. Power Savings Using Retiming for Cyclone II Devices

Design
Guidelines

Several low-power design techniques can reduce power consumption
when applied during FPGA design implementation. This section
provides detailed design techniques for Stratix III, Stratix II, Cyclone III,
and Cyclone II devices that affect overall design power. The results of
these techniques may be different from design to design.

Clock Power Management

Clocks represent a significant portion of dynamic power consumption
due to their high switching activity and long paths. Figure 9–1 on
page 9–2 shows a 7% average contribution to power consumption for
global clock routing in Stratix II devices and 15% in Cyclone II devices.
Actual clock-related power consumption is higher than this because the

Table 9–8. Resources Used in the Gate-Level Register Retiming Experiment
for Cyclone II Devices

Design
Name

WYSIWYG
and Register

Retiming
LEs Registers Multiplier

Blocks Memory

Design 1 No 385 137 0 0

Yes 278 143 0 0

Design 2 No 14,758 1,683 0 0

Yes 13,079 1,683 0 0

Design 3 No 31,727 29,097 96 3,120

Yes 27,038 24,272 96 3,120

0%
5%

10%
15%
20%
25%

1 2 3
Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–21
October 2007 Preliminary

Design Guidelines

power consumed by local clock distribution within logic, memory, and
DSP or multiplier blocks is included in the power consumption for the
respective blocks.

Clock routing power is automatically optimized by the Quartus II
software, which only enables those portions of the clock network that are
required to feed downstream registers. Power can be further reduced by
gating clocks when they are not needed. It is possible to build clock gating
logic, but this approach is not recommended because it is difficult to
generate a glitch-free clock in FPGAs using ALMs or LEs.

Arria GX, Stratix III, Stratix II, Cyclone III, and Cyclone II devices use
clock control blocks that include an enable signal. A clock control block is
a clock buffer that lets you dynamically enable or disable the clock
network and dynamically switch between multiple sources to drive the
clock network. You can use the Quartus II MegaWizard Plug-In Manager
to create this clock control block with the altclkctrl megafunction.
Arria GX, Stratix III, Stratix II, Cyclone III, and Cyclone II devices
provide clock control blocks for global clock networks. In addition,
Stratix III and Stratix II devices have clock control blocks for regional
clock networks. The dynamic clock enable feature lets internal logic
control the clock network. When a clock network is powered down, all
the logic fed by that clock network does not toggle, thereby reducing the
overall power consumption of the device. Figure 9–15 shows a 4-input
clock control block diagram.

Figure 9–15. Clock Control Block Diagram

The enable signal is applied to the clock signal before being distributed to
global routing. Therefore, the enable signal can either have a significant
timing slack (at least as large as the global routing delay) or it can reduce
the fMAX of the clock signal.

f For more information about using clock control blocks, refer to the
altclkctrl Megafunction User Guide.

inclk 3×
inclk 2×
inclk 1×
inclk 0×

clkselect[1..0]

outclk

ena

9–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Another contributor to clock power consumption is the LAB clock that
distributes a clock to the registers within a LAB. LAB clock power can be
the dominant contributor to overall clock power. For example, in
Cyclone III and Cyclone II devices, each LAB can use two clocks and two
clock enable signals, as shown in Figure 9–16. Each LAB’s clock signal
and clock enable signal are linked. For example, an LE in a particular LAB
using the labclk1 signal also uses the labclkena1 signal.

Figure 9–16. LAB-Wide Control Signals

To reduce LAB-wide clock power consumption without disabling the
entire clock tree, use the LAB-wide clock enable to gate the LAB-wide
clock. The Quartus II software automatically promotes register-level
clock enable signals to the LAB-level. All registers within an LAB that
share a common clock and clock enable are controlled by a shared gated
clock. To take advantage of these clock enables, use a clock enable
construct in the relevant HDL code for the registered logic.

LAB-Wide Clock Enable Example

This VHDL code makes use of a LAB-wide clock enable. This clock-gating
logic is automatically turned into an LAB-level clock enable signal.

IF clk'event AND clock = '1' THEN
 IF logic_is_enabled = '1' THEN
 reg <= value;
 ELSE

6

labclk1 labclk2 labclr2syncload

labclkena1 labclkena2 labclr1 synclr

Local
Interconnect

Local
Interconnect

Local
Interconnect

Local
Interconnect

Dedicated
LAB Row
Clocks

Altera Corporation 9–23
October 2007 Preliminary

Design Guidelines

 reg <= reg;
 END IF;
END IF;

f For more information about LAB-wide control signals, refer to the
Stratix II Architecture, Cyclone III Architecture, or Cyclone II Architecture
chapters in the respective device handbook.

Reducing Memory Power Consumption

The memory blocks in FPGA devices can represent a large fraction of
typical core dynamic power. Memory represents 14% of the core dynamic
power in a typical Stratix II device design and 9% in a Cyclone II device
design. Memory blocks are unlike most other blocks in the device because
most of their power is tied to the clock rate, and is insensitive to the toggle
rate on the data and address lines.

When a memory block is clocked, there is a sequence of timed events that
occur within the block to execute a read or write. The circuitry controlled
by the clock consumes the same amount of power regardless of whether
or not the address or data has changed from one cycle to the next. Thus,
the toggle rate of input data and the address bus have no impact on
memory power consumption.

The key to reducing memory power consumption is to reduce the
number of memory clocking events. You can achieve this through clock
network-wide gating described in “Clock Power Management” on
page 9–20, or on a per-memory basis through use of the clock enable
signals on the memory ports. Figure 9–17 shows the logical view of the
internal clock of the memory block. Use the appropriate enable signals on
the memory to make use of the clock enable signal instead of gating the
clock.

Figure 9–17. Memory Clock Enable Signal

Using the clock enable signal enables the memory only when necessary
and shuts it down for the rest of the time, reducing the overall memory
power consumption. You can use the Quartus II MegaWizard Plug-In
Manager to create these enable signals by selecting the Clock enable
signal option for the appropriate port when generating the memory
block function (Figure 9–18).

Enable Internal Memory Clk

Clk

0

1

9–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–18. MegaWizard Plug-In Manager RAM 2-Port Clock Enable Signal
Selectable Option

For example, consider a design that contains a 32-bit-wide M4K memory
block in ROM mode that is running at 200 MHz. Assuming that the
output of this block is only needed approximately every four cycles, this
memory block will consume 8.45 mW of dynamic power according to the
demands of the downstream logic. By adding a small amount of control
logic to generate a read clock enable signal for the memory block only on
the relevant cycles, the power can be cut 75% to 2.15 mW.

You can also use the MAXIMUM_DEPTH parameter in your memory
megafunction to save power in Stratix III, Stratix II, Cyclone III, and
Cyclone II devices; however, this approach may increase the number of
LEs required to implement the memory and affect design performance.

You can set the MAXIMUM_DEPTH parameter for memory modules
manually in the megafunction instantiation or in the MegaWizard
Plug-In Manager (Figure 9–19). The Quartus II software automatically
chooses the best design memory configuration for optimal power as,
described in “Power-Driven Compilation” on page 9–5.

Altera Corporation 9–25
October 2007 Preliminary

Design Guidelines

Figure 9–19. MegaWizard Plug-In Manager RAM 2-Port Maximum Depth
Selectable Option

Memory Power Reduction Example

Table 9–9 shows power usage measurements for a 4K × 36 simple
dual-port memory implemented using multiple M4K blocks in a Stratix II
EP2S15 device. For each implementation, the M4K blocks are configured
with a different memory depth.

Table 9–9. 4K × 36 Simple Dual-Port Memory Implemented Using Multiple
M4K Blocks

M4K Configuration Number of M4K Blocks ALUTs

4K × 1 (Default setting) 36 0

2K × 2 36 40

1K × 4 36 62

512 × 9 32 143

256 × 18 32 302

128 × 36 32 633

9–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–20 shows the amount of power saved using the
MAXIMUM_DEPTH parameter. For all implementations, a user-provided
read enable signal is present to indicate when read data is needed. Using
this power-saving technique can reduce power consumption by as much
as 60%.

Figure 9–20. Power Savings Using the MAXIMUM_DEPTH Parameter

As the memory depth becomes more shallow, memory dynamic power
decreases because unaddressed M4K blocks can be shut off using a
decoded combination of address bits and the read enable signal. For a
128-deep memory block, power used by the extra LEs starts to outweigh
the power gain achieved by using a more shallow memory block depth.
The power consumption of the memory blocks and associated LEs
depends on the memory configuration.

Pipelining and Retiming

Designs with many glitches consume more power because of faster
switching activity. Glitches cause unnecessary and unpredictable
temporary logic switches at the output of combinational logic. A glitch
usually occurs when there is a mismatch in input signal timing leading to
unequal propagation delay.

For example, consider an input change on one input of a 2-input XOR
gate from 1 to 0, followed a few moments later by an input change from
0 to 1 on the other input. For a moment, both inputs become 1 (high)
during the state transition, resulting in 0 (low) at the output of the XOR
gate. Subsequently, when the second input transition takes place, the
XOR gate output becomes 1 (high). During signal transition, a glitch is
produced before the output becomes stable, as shown in Figure 9–21. This
glitch can propagate to subsequent logic and create unnecessary
switching activity, increasing power consumption. Circuits with many
XOR functions, such as arithmetic circuits or cyclic redundancy check
(CRC) circuits, tend to have many glitches if there are several levels of
combinational logic between registers.

0%
10%
20%
30%
40%
50%
60%
70%

4K × 1 2K × 2 256 × 18 128 × 361K × 4 512 × 9
M4K Configuration

Po
w

er
 S

av
in

gs

Altera Corporation 9–27
October 2007 Preliminary

Design Guidelines

Figure 9–21. XOR Gate Showing Glitch at the Output

Pipelining can reduce design glitches by inserting flipflops into long
combinational paths. Flip-flops do not allow glitches to propagate
through combinational paths. Therefore, a pipelined circuit tends to have
less glitching. Pipelining has the additional benefit of generally allowing
higher clock speed operations, although it does increase the latency of a
circuit (in terms of the number of clock cycles to a first result). Figure 9–22
shows an example where pipelining is applied to break up a long
combinational path.

Figure 9–22. Pipelining Example

Pipelining is very effective for glitch-prone arithmetic systems because it
reduces switching activity, resulting in reduced power dissipation in
combinational logic. Additionally, pipelining allows higher-speed

XOR (Exclusive OR) Gate

A

B Q

A

B

Q

Timing Diagram for the 2-Input XOR Gate

Glitch

t

Combinational
Logic

Combinational
Logic

Combinational
Logic

Short Logic
Depth

Short Logic
Depth

Long Logic
DepthD Q D Q

D Q D Q D Q

Non-Pipelined

Pipelined

9–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

operation by reducing logic-level numbers between registers. The
disadvantage of this technique is that if there are not many glitches in
your design, pipelining may increase power consumption by adding
unnecessary registers. Pipelining can also increase resource utilization.

Pipelining Experiment for Stratix II Devices

In this experiment, three designs are implemented in Stratix II devices
with and without pipelining. These three designs use arithmetic heavily
(based on XOR functions) and may result in significant glitching.

Table 9–10 shows the resource utilization for the designs used in the
experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–23 shows that pipelining reduces
dynamic power consumption by as much as 31% in Stratix II devices.

Figure 9–23. Power Savings Using Pipelining for Stratix II Devices

Table 9–10. Resources Used in the Pipelining Experiment for Stratix II
Devices

Design Name Pipelined ALUTs Registers

Multiplier (Design 1) No 9,726 448

Yes 9,772 1,109

Accumulator multipliers
(Design 2)

No 13,719 1,120

Yes 14,007 2,260

Fir filter (Design 3) Yes (level 1) 1,048 949

Yes (level 2) 932 929

0%
5%

10%
15%
20%
25%
30%
35%

1 2 3
Designs

Po
w

er
 S

av
in

gs

Altera Corporation 9–29
October 2007 Preliminary

Design Guidelines

Pipelining Experiment for Cyclone II Devices

In this experiment, three designs are implemented in Cyclone II devices
with and without pipelining. These three designs use arithmetic heavily
(based on XOR functions) and may result in significant glitching.

Table 9–11 shows resource utilization for the designs used in the
experiment.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–24 shows that pipelining reduces
dynamic power by as much as 31% in Cyclone II devices.

Figure 9–24. Power Savings Using Pipelining for Cyclone II Devices

Architectural Optimization

You can use design-level architectural optimization by taking advantage
of specific device architecture features. These features include dedicated
memory and DSP or multiplier blocks available in FPGA devices to
perform memory or arithmetic-related functions. You can use these

Table 9–11. Resources Used in the Pipelining Experiment for Cyclone II
Devices

Design Name Pipelined LEs Registers

Accumulator Multipliers
(Design 1)

No 6,870 320

Yes 13,071 3,719

Adder (Design 2) No 7,392 1,076

Yes 7,343 752

Divider (Design 3) No 6,659 320

Yes 6,735 520

0%
5%

10%
15%
20%
25%
30%
35%

1 2 3
Designs

Po
w

er
 S

av
in

gs

9–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

blocks in place of LUTs to reduce power consumption. For example, you
can build large shift registers from RAM-based FIFO buffers instead of
building the shift registers from the LE registers.

The Stratix device family allows you to efficiently target small, medium,
and large memories with the TriMatrix memory architecture. Each
TriMatrix memory block is optimized for a specific function. The M512
memory blocks available in Stratix II devices are useful for implementing
small FIFO buffers, DSP, and clock domain transfer applications. M512
memory blocks are more power-efficient than the distributed memory
structures in some competing FPGAs. The M4K memory blocks are used
to implement buffers for a wide variety of applications, including
processor code storage, large look-up table implementation, and large
memory applications. The M-RAM blocks are useful in applications
where a large volume of data must be stored on-chip. Effective utilization
of these memory blocks can have a significant impact on power reduction
in your design.

The Cyclone device family has configurable M4K and M9K memory
blocks that provide various memory functions such as RAM, FIFO
buffers, and ROM.

f For more information about using DSP and memory blocks efficiently,
refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

Architectural Optimization Experiment for Stratix II Devices

In this experiment, three designs are implemented in Stratix II devices in
three ways to illustrate the power-reducing capabilities of dedicated
blocks. The first two designs use logic elements and DSP blocks. The third
design uses M4K and M-RAM blocks. In the third design, you can see that
using MRAM blocks is more power efficient than using M4K blocks for
large memory applications. The power optimization options for synthesis
and fitting are turned off in this experiment.

Table 9–12 shows relative resource usage results.

Table 9–12. Designs Used in the Architectural Optimization Experiment for Stratix II Devices (Part 1 of 2)

Design Name Implementation ALUT Register DSP Blocks Memory

Design 1 Regular
implementation

9,726 448 0 0

Dedicated resource
implementation

1,124 448 121 0

Altera Corporation 9–31
October 2007 Preliminary

Design Guidelines

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–25 shows that the architectural
optimization technique has power savings of over 60% in Stratix II
devices.

Figure 9–25. Power Savings Using Dedicated Blocks for Stratix II Devices

Architectural Optimization Experiment for Cyclone II

In this experiment, three designs are implemented in Cyclone II devices
in three ways to illustrate the power-reducing capabilities of dedicated
blocks. The first two designs use LEs and multiplier blocks. The third
design uses LEs and M4K blocks.

Design 2 Regular
implementation

13,719 1,120 0 0

Dedicated resource
implementation

2,880 896 212 0

Design 3 M4K 286 228 0 1,835,008 (M4K)

M-RAM 224 224 0 1,835,008 (M-RAM)

Table 9–12. Designs Used in the Architectural Optimization Experiment for Stratix II Devices (Part 2 of 2)

Design Name Implementation ALUT Register DSP Blocks Memory

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3

Po
w

er
 S

av
in

gs

Designs

9–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Table 9–13 shows relative resource usage results.

The PowerPlay Power Analyzer estimates the power using a gate-level
simulation output file. Figure 9–26 shows that the architectural
optimization technique has power savings of as much as 88% in
Cyclone II devices.

Figure 9–26. Power Savings Using Dedicated Blocks for Cyclone II Devices

Table 9–13. Designs Used in the Architectural Optimization Experiment for Cyclone II Devices

Design Name Implementation LEs Register Multiplier
Blocks Memory

Design 1 Regular
implementation

6,870 320 0 0

Dedicated
resource
implementation

1,130 320 49 0

Design 2 Regular
implementation

7,343 752 0 0

Dedicated
resource
implementation

1,401 608 44 0

Design 3 Regular
implementation

1,550 1,265 0 0

M4K 72 72 0 1,152

0%
10%
20%
30%
40%
50%
60%
70%

1 2 3

80%
90%

100%

Po
w

er
 S

av
in

gs

Designs

Altera Corporation 9–33
October 2007 Preliminary

Design Guidelines

I/O Power Guidelines

Non-terminated I/O standards such as LVTTL and LVCMOS have a
rail-to-rail output swing. The voltage difference between logic-high and
logic-low signals at the output pin is equal to the VCCIO supply voltage. If
the capacitive loading at the output pin is known, the dynamic power
consumed in the I/O buffer can be calculated as:

P = 0.5 × F × C × V2

In this equation, F is the output transition frequency and C is the total
load capacitance being switched. V is equal to VCCIO supply voltage.
Because of the quadratic dependence on VCCIO, lower voltage standards
consume significantly less dynamic power. In addition, lower pin
capacitance is an important factor in considering I/O power
consumption. Hardware and simulation data show that Stratix II device
I/O pins have half the pin capacitance of the nearest competing FPGA.
Cyclone II devices exhibit 20% less I/O power consumption than
competitive, low-cost, 90 nm FPGAs.

Transistor-to-transistor logic (TTL) I/O buffers consume very little static
power. As a result, the total power consumed by a LVTTL or LVCMOS
output is highly dependent on load and switching frequency.

When using resistively terminated I/O standards like SSTL and HSTL,
the output load voltage swings by a small amount around some bias
point. The same dynamic power equation is used, where V is the actual
load voltage swing. Because this is much smaller than VCCIO, dynamic
power is lower than for non-terminated I/O under similar conditions.
These resistively terminated I/O standards dissipate significant static
(frequency-independent) power, because the I/O buffer is constantly
driving current into the resistive termination network. However, the
lower dynamic power of these I/O standards means they often have
lower total power than LVCMOS or LVTTL for high-frequency
applications. Use the lowest drive strength I/O setting that meets your
speed and waveform requirements to minimize I/O power when using
resistively terminated standards.

You can save a small amount of static power by connecting unused I/O
banks to the lowest possible VCCIO voltage of 1.2 V.

9–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Table 9–14 shows the total supply and thermal power consumed by
outputs using different I/O standards for Stratix II devices. The numbers
are for an I/O pin transmitting random data clocked at 200 MHz with a
10 pF capacitive load.

For this configuration, non-terminated standards generally use less
power, but this is not always the case. If the frequency or the capacitive
load is increased, the power consumed by non-terminated outputs
increases faster than the power of terminated outputs.

f For more information about I/O Standards, refer to the Selectable I/O
Standards in Stratix II Devices and Stratix II GX Devices chapter in
volume 2 of the Stratix II Device Handbook or the Selectable I/O Standards in
Cyclone II Devices chapter in the Cyclone II Device Handbook or the
Cyclone III Device Handbook.

When calculating I/O power, the PowerPlay Power Analyzer uses the
default capacitive load set for the I/O standard in the Capacitive Loading
tab of the Device & Pin Options dialog box. If Enable Advanced I/O
Timing is turned on, I/O power is measured using an equivalent load
calculated as the sum of the near capacitance, the transmission line
distributed capacitance, and the far end capacitance as defined in the
Board Trace Model tab of the Device & Pin Options dialog box or the

Table 9–14. I/O Power for Different I/O Standards in Stratix II Devices

Standard
Total Supply Current Drawn

from VCCIO Supply (mA)
Total On-Chip Thermal

Power Dissipation (mW)

3.3-V LVTTL 2.42 9.87

2.5-V LVCMOS 1.9 6.69

1.8-V LVCMOS 1.34 4.18

1.5-V LVCMOS 1.18 3.58

3.3-V PCI 2.47 10.23

SSTL-2 class I 6.07 4.42

SSTL-2 class II 10.72 5.1

SSTL-18 class I 5.33 3.28

SSTL-18 class II 8.56 4.06

HSTL-15 class I 6.06 3.49

HSTL-15 class II 11.08 4.87

HSTL-18 class I 6.87 4.09

HSTL-18 class II 12.33 5.82

Altera Corporation 9–35
October 2007 Preliminary

Design Guidelines

Board Trace Model view in the Pin Planner. Any other components
defined in the board trace model are not taken into account for the power
measurement.

f For information about using Advanced I/O Timing and configuring a
board trace model, refer to the I/O Management chapter in volume 2 of
the Quartus II Handbook.

Power Optimization Advisor

The Quartus II software includes the Power Optimization Advisor,
which provides specific power optimization advice and
recommendations based on the current design project settings and
assignments. The advisor covers many of the suggestions listed in this
chapter. The following example shows how to reduce your design power
with the Power Optimization Advisor.

Power Optimization Advisor Example

After compiling your design, run the PowerPlay Power Analyzer to
determine your design power and to see where power is dissipated in
your design. Based on this information, you can run the Power
Optimization Advisor to implement recommendations that can reduce
design power. Figure 9–27 shows the Power Optimization Advisor after
compiling a design that is not fully optimized for power.

9–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–27. Power Optimization Advisor

The Power Optimization Advisor shows the recommendations that can
reduce power in your design. The recommendations are split into stages
to show the order in which you should apply the recommended settings.
The first stage shows the mostly CAS settings options that are easy to
implement and highly effective in reducing design power. An icon
indicates whether each recommended setting is made in the current
project. In Figure 9–27, the checkmark icon for Stage 1 shows the
recommendations that are already implemented. The warning icons
indicate recommendations that are not followed for this compilation. The
information icon shows the general suggestions. Each recommendation
includes the description, summary of the affect of the recommendation,
and the action required to make the appropriate setting.

There is a link from each recommendation to the appropriate location in
the Quartus II user interface where you can change the setting, such as
the Power-Driven Synthesis setting. You can change the Power-Driven
Synthesis setting by clicking Open Settings dialog box - Analysis &
Synthesis Settings page (Figure 9–28). The Settings dialog box is shown
with the Analysis & Synthesis Settings page selected, where you can
change the PowerPlay power optimization settings.

Altera Corporation 9–37
October 2007 Preliminary

Design Guidelines

Figure 9–28. Analysis & Synthesis Settings Page

After making the recommended changes, recompile your design. The
Power Optimization Advisor indicates with green checkmarks that the
recommendations were implemented successfully (Figure 9–29). You can
use the PowerPlay Power Analyzer to verify your design power results.

9–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 9–29. Implementation of Power Optimization Advisor Recommendations

The recommendations listed in Stage 2 generally involve design changes,
rather than CAD settings changes as in Stage 1. You can use these
recommendations to further reduce your design power consumption.
Altera recommends that you implement Stage 1 recommendations first,
then the Stage 2 recommendations.

Conclusion

The combination of a smaller process technology, the use of low-k
dielectric material, and reduced supply voltage significantly reduces
dynamic power consumption in the latest FPGAs. To further reduce your
dynamic power, you should use the design recommendations presented
in this chapter to optimize resource utilization and minimize power
consumption.

Altera Corporation 9–39
October 2007 Preliminary

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ altclkctrl Megafunction User Guide
■ AN: 437 Power Optimization in Stratix III FPGAs
■ Cyclone III Device Family Overview chapter in the Cyclone III Device

Handbook
■ Cyclone II Architecture chapter in the Cyclone II Device Handbook
■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the

Quartus II Handbook
■ PowerPlay Power Analyzer chapter in volume 3 of the Quartus II

Handbook
■ Stratix II Architecture chapter in volume 1 in the Stratix II Device

Handbook
■ Selectable I/O Standards in Stratix II Devices and Stratix II GX Devices

chapter in volume 2 of the Stratix II Device Handbook
■ Selectable I/O Standards in Cyclone II Devices chapter in the Cyclone II

Device Handbook
■ Selectable I/O Standards in Cyclone II Devices chapter in the Cyclone II

Device Handbook
■ Area and Timing Optimization chapter in volume 2 of the Quartus II

Handbook
■ Stratix III Device Handbook
■ Stratix II Device Handbook

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/ug/ug_altclock_mf.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii51002.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii52004.pdf
http://www.altera.com/literature/an/AN437.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51010.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii51010.pdf
http://www.altera.com/literature/hb/cyc3/cyc3_ciii51001.pdf

9–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Document
Revision History

Table 9–15 shows the revision history for this chapter.

Table 9–15. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 9–39. —

May 2007
v7.1.0

● Updated Power Dissipation.
● Updated Power-Driven Compilation.
● Added Referenced Documents.

Updated figures for the
Quartus II software

7.1. Added support for
Arria GX.

March 2007
v7.0.0

Minor text edits to include Cyclone III information; added new
screenshot to Figure 9-2.

Added support
information for the
Cyclone III device.

November 2006
v6.1.0

Updated figures to accommodate GUI changes in the software Added information
about Stratix III
support. Changes in
procedures were made
for Quartus II
enhancements to new
user functionality.

May 2006 v6.0.0 Updated for the Quartus II software version 6.0.0:
Updated device support
Added multi-VCD/SAF support information
Updated achieved power reductions values

—

October 2005
v5.1.0

Chapter 9 was formerly Chapter 7 in Volume 1: Stratix II Low
Power Design Techniques.

—

Altera Corporation 10–1
October 2007 Preliminary

10. Analyzing and Optimizing
the Design Floorplan

Introduction As FPGA designs grow larger and larger in density, the need to analyze
the design for performance, routing congestion, and logic placement to
meet the design requirements becomes critical.

You can use the Chip Planner as a powerful tool to perform design
analysis and create a design floorplan. With some of the older device
families, you must use the Timing Closure Floorplan tool to analyze the
device floorplan.

This chapter discusses how to analyze the design floorplan with both the
Chip Planner and the Timing Closure Floorplan tools. It also shows you
how to create LogicLock™ regions in the design floorplan and how to use
the LogicLock design methodology as a performance preservation tool
for older device families.

This chapter includes the following topics:

■ “Chip Planner Overview” on page 10–2
■ “LogicLock Regions” on page 10–6
■ “Using LogicLock Regions in the Chip Planner” on page 10–11
■ “Design Analysis Using the Chip Planner” on page 10–13
■ “Timing Closure Floorplan Overview” on page 10–36
■ “Design Analysis Using the Timing Closure Floorplan” on

page 10–38
■ “Using LogicLock Methodology for Older Device Families” on

page 10–57
■ “Scripting Support” on page 10–67

To view and create assignments for a design floorplan in supported
devices, use the Chip Planner. To make I/O assignments, you must use
the Pin Planner tool.

f For more information about the Pin Planner tool, refer to the Early I/O
Planning Using the Pin Planner section of the I/O Management chapter in
volume 2 of the Quartus II Handbook.

QII52006-7.2.0

10–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 10–1 lists the device families supported by the Chip Planner and the
Timing Closure Floorplan.

This chapter describes how to use the Chip Planner—and the Timing
Closure Floorplan for devices not supported by the Chip Planner—for
design analysis.

Chip Planner
Overview

The Chip Planner provides a visual display of chip resources. It can show
logic placement, LogicLock and custom regions, relative resource usage,
detailed routing information, fan-in and fan-out paths between registers,
and delay estimates for paths. With the Chip Planner, you can view
critical path information, physical timing estimates, and routing
congestion.

The Chip Planner can perform assignment changes, such as creating and
deleting resource assignments, as well as post-compilation changes, such
as creating, moving, and deleting logic cells and I/O atoms. By using the

Table 10–1. Chip Planner Device Support

Device Family Timing Closure Floorplan Chip Planner

Arria™ GX — v
Stratix® III — v
Stratix II — v
Stratix II GX — v
Stratix — v
Stratix GX — v
Cyclone® III — v
Cyclone II — v
Cyclone — v
HardCopy® II — v
MAX® II — v
MAX 7000 v —

ACEX® v —

APEX™ II
APEX 20KC
APEX 20KE

v —

FLEX 10K®
FLEX® 10KA
FLEX 10KE
FLEX 6000

v —

Altera Corporation 10–3
October 2007 Preliminary

Chip Planner Overview

Chip Planner in conjunction with the Resource Property Editor, you can
change connections between resources and make post-compilation
changes to the properties of logic cells, I/O elements, PLLs, and RAM and
DSP blocks. With the Chip Planner, you can view and create assignments
for a design floorplan, perform power and design analyses, and
implement ECOs in a single tool.

f For details about how to implement ECOs in your design using the Chip
Planner tool, refer to the Engineering Change Management with the Chip
Planner chapter in volume 2 of the Quartus II Handbook.

Starting Chip Planner

To start the Chip Planner, on the Tools menu, click Chip Planner
(Floorplan & Chip Editor). Other methods to start the Chip Planner
include:

■ Click the Chip Planner icon on the Quartus II software toolbar
■ Use the shortcut menu from the following sources and use the Locate

menu:
● Compilation Report
● Project Navigator window
● RTL source code
● Node Finder
● Simulation Report
● RTL Viewer

1 If the device in your project is not supported by the Chip
Planner and you attempt to start the Chip Planner, the following
message appears: Can’t display Chip Planner: the
current device family is unsupported. Use the
Timing Closure Floorplan for these devices.

Chip Planner Toolbar

The Chip Planner gives you powerful capabilities for design analysis
with a very user-friendly GUI. Many functions within the Chip Planner
can be selected or performed from the menu items or by clicking the icons
on the toolbar. Figure 10–1 shows an example of the Chip Planner Toolbar
and provides descriptions for commonly used icons available from the
Chip Planner toolbar.

10–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–1. Chip Planner Toolbar

1 You can customize the icons present on the Chip Planner’s
toolbar by clicking Customize Chip Planner on the Tools menu
(if the Chip Planner window is attached) or by clicking
Customize on the Tools menu (if the Chip Planner window is
detached).

Chip Planner Tasks and Layers

The Chip Planner has predefined tasks that enable you to quickly
implement ECO changes or manipulate assignments for the floorplan of
the device. To select a task, click on it in the Task pull-down menu. The
predefined tasks in the Chip Planner are:

■ Floorplan Editing (Assignment)
■ Post-Compilation Editing (ECO)
■ Partition Display (Assignment)

Detach Window

Selection Tool

Zoom Tool

Hand Tool

Full Screen

Find

Create LogicLock Region

Generate Fan-In Connections
Generate Fan-Out Connections

Generate Immediate Fan-In

Generate Immediate Fan-Out

Generate Connections Between Nodes
Critical Path Settings

Expand Connections/Paths
Clear Unselected Connections/Paths

Highlight Selections
Highlight Routing

Clear Unselected Highlight

Show Delays

Equations

Detailed Tooltip

Bird's Eye View

Check and Save All Netlist Changes

Opens Layers Settings Dialog Box

Altera Corporation 10–5
October 2007 Preliminary

Chip Planner Overview

■ Global Clock Network (Assignment)
■ Power Analysis (Assignment) — available for Stratix III, Stratix II,

Stratix II GX, Cyclone III, Cyclone II, and HardCopy II devices only

In the Chip Planner, layers allow you to specify the graphic elements that
are displayed for a given task. You can turn off the display of specific
graphic elements to increase the window refresh speed and reduce visual
clutter when viewing complex designs. The Background Color Map
indicates the relative level of resource usage for different areas of the
device. For example, Routing Utilization indicates the relative routing
utilization, and Physical Timing Estimate indicates the relative physical
timing.

Each predefined task in the Chip Planner has a Background Color Map, a
set of displayed layers, and an editing mode associated with it. Click the
Layers icon (shown in Figure 10–1) to display the Layers Settings
window (Figure 10–2). In this window you can select the layers and
background color map for each task.

Figure 10–2. Layers in the Chip Planner

Layers

10–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Chip Planner operates in either Assignment or ECO mode. You can
use either of these modes to perform design analyses. Use the Floorplan
Editor (Assignment) task in the Assignment mode to manipulate
LogicLock regions and location assignments in your design. The Post
Compilation Changes (ECO) task in ECO mode allows you to implement
ECO changes in your design. The Partition Display (Assignment) task
allows you to view the placement of nodes and color-codes the nodes
based on their partition. When you select the Global Clock Network
(Assignment) task, you can see all the global clock regions in your device.
The Power Analysis (Assignment) task allows you to view high and low
power resources in a Stratix III device.

f For more information about the ECO mode of operation, refer to the
Engineering Change Management with the Chip Planner chapter in volume 2
of the Quartus II Handbook.

You can also create and save your own custom tasks. When you create a
custom task, you can turn on or off any layer in your task. Layers can be
turned on or off by checking the appropriate box located next to each
layer. You can also select different Background Color Maps to be used for
your custom task. After selecting the required settings, you can click
Save Task As to save your custom task.

LogicLock
Regions

LogicLock regions are user-defined rectangular regions within the
device. You can use LogicLock regions to create a floorplan for your
design. Your floorplan may contain several non-overlapping LogicLock
regions. A LogicLock region is defined by its size (height and width) and
location (where the region is located on the device). You can specify the
size or location of a region, or both, or the Quartus® II software can
generate these properties automatically. The Quartus II software bases
the size and location of a region on the region’s contents and the module’s
timing requirements. Table 10–2 describes the options for creating
LogicLock regions.

Table 10–2. Types of LogicLock Regions (Part 1 of 2)

Properties Values Behavior

State Floating
(default),
Locked

Floating regions allow the Quartus II software to determine the region’s location on
the device. Locked regions represent user-defined locations for a region and are
shown with a solid boundary in the floorplan. A locked region must have a fixed size.

Size Auto
(default),
Fixed

Auto-sized regions allow the Quartus II software to determine the appropriate size of
a region given its contents. Fixed regions have a user-defined shape and size.

Altera Corporation 10–7
October 2007 Preliminary

LogicLock Regions

1 The Quartus II software cannot automatically define a region’s
size if the location is locked. Therefore, if you want to specify the
exact location of the region, you must also specify the size.
Mercury devices support only locked and fixed regions.

Creating LogicLock Regions

After you perform either a full compilation or analysis and elaboration on
the design, the Quartus II software displays the hierarchy of the design.
On the View menu, click Project Navigator. With the hierarchy of the
design fully expanded, as shown in Figure 10–3, right-click on any design
entity in the design and click Create New LogicLock Region to create a
LogicLock region.

Figure 10–3. Using the Project Navigator to Create LogicLock Regions

Reserved Off (default),
On

The reserved property allows you to define whether the Fitter can use the resources
within a region for entities that are not assigned to the region. If the reserved property
is turned on, only items assigned to the region can be placed within its boundaries.

Soft Off (default),
On

Soft (on) regions give more deference to timing constraints, and allow some entities
to leave a region if it improves the performance of the overall design. Hard (off)
regions do not allow contents to be placed outside of the boundaries of the region.

Origin Any
Floorplan
Location

The origin is the origin of the LogicLock region’s placement on the floorplan. For
Arria GX devices, Stratix and Cyclone series devices, and MAX II devices, the origin
is located in the lower left corner. For other Altera device families, the origin is
located in the upper left corner.

Table 10–2. Types of LogicLock Regions (Part 2 of 2)

Properties Values Behavior

10–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Placing LogicLock Regions

A fixed region must contain all resources required for the module.
Although the Quartus II software can automatically place and size
LogicLock regions to meet resource and timing requirements, you can
manually place and size regions to meet your design needs. To do so,
follow these guidelines:

■ LogicLock regions with pin assignments must be placed on the
periphery of the device, adjacent to the pins. (For Stratix and Cyclone
series of devices and MAX II devices, you must also include the I/O
block).

■ Floating LogicLock regions cannot overlap.
■ Avoid creating fixed and locked regions that overlap.

1 If you want to import multiple instances of a module into a
top-level design, you must ensure that the device has two or
more locations with exactly the same device resources. If the
device does not have another area with exactly the same
resources, the Quartus II software generates a fitting error
during compilation of the top-level design.

Placing Device Features into LogicLock Regions

A LogicLock region includes all device resources within its boundaries,
including memory and pins. You can assign pins to LogicLock regions;
however, this placement puts location constraints on the region. When
the Quartus II software places a floating auto-sized region, it places the
region in an area that meets the requirements of the LogicLock region’s
contents.

1 Pin assignments to LogicLock regions are effective only in fixed
and locked regions. Pins assigned to floating regions do not
influence the region’s placement.

Only one LogicLock region can claim a device resource. If the boundary
includes part of a device resource, the Quartus II software allocates the
entire resource to the LogicLock region.

LogicLock Regions Window

The LogicLock window consists of the LogicLock Regions window
(Figure 10–4) and the LogicLock Region Properties dialog box. Use the
LogicLock Regions window to create LogicLock regions and assign nodes
and entities to them. The dialog box provides a summary of all LogicLock
regions in your design. In the LogicLock Regions window, you can
modify a LogicLock region’s size, state, width, height, and origin as well

Altera Corporation 10–9
October 2007 Preliminary

LogicLock Regions

as whether the region is soft or reserved. When the region is
back-annotated, the placement of each node within the region is relative
to the region’s origin, and the region’s node placements are maintained
during subsequent compilations.

1 The origin location varies based on device family. For Arria GX
devices, Stratix and Cyclone series devices, and MAX II devices,
the LogicLock region’s origin is located at the lower left corner
of the region. For all other supported devices, the origin is
located at the upper left corner of the region.

Figure 10–4. LogicLock Regions Window

You can customize the LogicLock Regions window by dragging and
dropping the various columns. Columns can also be hidden.

1 The Soft and Reserved columns are not shown by default.

For designs targeting Stratix and Cyclone series and MAX II devices, the
Quartus II software automatically creates a LogicLock region that
encompasses the entire device. This default region is labelled
Root_region, and it is effectively locked and fixed.

Use the LogicLock Region Properties dialog box to obtain detailed
information about your LogicLock region, such as which entities and
nodes are assigned to your region and what resources are required. The
LogicLock Region Properties dialog box shows the properties of the
current selected regions.

1 To open the LogicLock Region Properties dialog box,
double-click any region in the LogicLock Regions window, or
right-click the region and click Properties.

10–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Excluded Resources

The Excluded Resources feature allows you to easily exclude specific
device resources such as DSP blocks or M4K memory blocks from a
LogicLock region. For example, you can specify resources that belong to
a specific entity that are assigned to a LogicLock region, and specify that
these resources be included with the exception of the DSP blocks. Use the
Excluded Resources feature on a per-LogicLock region member basis.

To exclude certain device resources from an entity, in the LogicLock
Region Properties dialog box, highlight the entity in the Design Element
column, and click Edit. In the Edit Node dialog box, under Excluded
Element Types, click on (...). In the Excluded Resources Element Types
dialog box, you can select the device resources you want to exclude from
the entity. Once you have selected the resources to exclude, the Excluded
Resources column is updated in the LogicLock Region Properties dialog
box to reflect the excluded resources.

1 The Excluded Resources feature prevents certain resource types
from being included in a region, but it does not prevent the
resources from being placed inside the region unless the
region’s “Reserved” property is set to On. To inform the Fitter
that certain resources are not required inside a LogicLock
region, define a resource filter.

Hierarchical (Parent and Child) LogicLock Regions

You can define a hierarchy for a group of regions by declaring parent and
child regions. The Quartus II software places a child region completely
within the boundaries of its parent region, allowing you to further
constrain module locations. Additionally, parent and child regions allow
you to further improve a module’s performance by constraining the
nodes in the module’s critical path.

To make one LogicLock region a child of another LogicLock region, in the
LogicLock Regions window, select the new child region and drag and
drop it in its new parent region.

1 The LogicLock region hierarchy does not have to be the same as
the design hierarchy.

A child region’s location can float within its parent or remain locked
relative to its parent’s origin. A locked parent region’s location is locked
relative to the device. If the child’s location is locked and the parent’s
location is changed, the child’s origin changes but maintains the same

Altera Corporation 10–11
October 2007 Preliminary

Using LogicLock Regions in the Chip Planner

placement relative to the origin of its parent. Either you or the Quartus II
software can determine a child region’s size; however, the child region
must fit entirely within the parent region.

Using LogicLock
Regions in the
Chip Planner

Assigning LogicLock Region Content

Once you have defined a LogicLock region, you must assign resources to
it using the Chip Planner, the LogicLock Regions dialog box, or a Tcl
script.

You can drag selected logic displayed in the Hierarchy tab of the Project
Navigator, in the Node Finder, or in a schematic design file, and drop it
into the Chip Planner or the LogicLock Regions dialog box. Figure 10–5
shows logic that has been dragged from the Hierarchy tab of the Project
Navigator and dropped into a LogicLock region in the Chip Planner.

Figure 10–5. Drag and Drop Logic in the Chip Planner

You can also drag logic from the Hierarchy tab of the Project Navigator
and drop it in the LogicLock Regions Properties dialog box. Logic can
also be dropped into the Design Element Assigned column of the
Contents tab of the LogicLock Region Properties box.

10–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 You must assign pins to a LogicLock region manually. The
Quartus II software does not include pins automatically when
you assign an entity to a region. The software only obeys pin
assignments to locked regions that border the periphery of the
device. For the Stratix and Cyclone series of devices and MAX II
devices, the locked regions must include the I/O pins as
resources.

Creating LogicLock Regions with the Chip Planner

This section explains the basics of creating LogicLock regions. You can
use the following methods s to create a LogicLock region in the Chip
Planner:

■ On the Assignments menu, click LogicLock Regions Window.
■ On the View menu, click Project Navigator. Use the Hierarchy tab.
■ In the View menu of the Chip Planner, click the Create LogicLock

Region tab.
■ Use a Tcl script.

Viewing Connections Between LogicLock Regions in the Chip
Planner

You can view and edit LogicLock regions using Chip Planner. Select the
task Floorplan Editing (Assignment) or select any custom task with
“Assignment” as the editing mode to manipulate LogicLock regions.

The Chip Planner shows the connections between LogicLock regions.
Rather than showing multiple connection lines from one LogicLock
region to another, you can select the option of viewing connections
between LogicLock regions as a single bundled connection. To use this
option, open the Chip Planner floorplan, and on the View menu, click
Generate Inter-region Bundles.

In the Generate Inter-region Bundles dialog box, specify the Source
node to region fanout less than and the Bundle width greater than
values.

f For more information about the parameters in the Generate Inter-region
Bundles dialog box, refer to the Quartus II Help.

Altera Corporation 10–13
October 2007 Preliminary

Design Analysis Using the Chip Planner

Design Analysis
Using the Chip
Planner

The Chip Planner assists you in visually analyzing your design at any
stage of your design cycle. With the Chip Planner tool, you can view
post-compilation placement, connections, and routing paths. You can also
create LogicLock regions and location assignments. The Chip Planner
allows you to create new logic cells and I/O atoms and to move existing
logic cells and I/O atoms using the architectural floorplan of your design.
You can also see global and regional clock regions within the device, and
the connections between both I/O atoms and PLLs and the different clock
regions.

From the Chip Planner, you can launch the Resource Property Editor. The
Resource Property Editor lets you make changes to the properties and
parameters of device resources, and modify connectivity between certain
types of device resources. Changes that you perform are logged within
the Change Manager. The Change Manager helps you track the various
changes you make on your design floorplan, so that you can selectively
undo the changes if necessary.

f For more information about the Resource Property Editor and the
Change Manager, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

The following sections present design analysis procedures and views of
Chip Planner, which can be used with any predefined task of the Chip
Planner (unless explicitly stated that a certain procedure requires a
particular task or editing mode).

Chip Planner Floorplan Views

The Chip Planner uses a hierarchical zoom viewer that shows various
abstraction levels of the targeted Altera device. As you increase the zoom
level, the level of abstraction decreases, thus revealing more detail about
your design.

First-Level View

The first level provides a high-level view of the entire device floorplan.
You can locate and view the placement of any node in your design.
Figure 10–6 shows the Chip Planner’s Floorplan first level view of a
Stratix device.

10–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–6. Chip Planner’s First-Level Floorplan View

Each resource is shown in a different color. The Chip Planner floorplan
uses a gradient color scheme in which the color becomes darker as the
utilization of a resource increases. For example, as more LEs are used in
the LAB, the color of the LAB becomes darker.

When you place the mouse pointer over a resource at this level, a tooltip
appears that describes, at a high level, the utilization of the resource
(Figure 10–7).

LABs

MRAM

DSP

M512

M4K

I/Os

Altera Corporation 10–15
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–7. Tooltip Message: First-Level View

Second-Level View

As you zoom in, the level of detail increases. Figure 10–8 shows the
second-level view of the Chip Planner Floorplan for a Stratix device.

Figure 10–8. Chip Planner’s Second Level Floorplan View

At this level, the contents of LABs and I/O banks and the routing
channels that are used to connect resources are all visible.

When you place the mouse pointer over an LE or ALM at this level, a
tooltip is displayed (Figure 10–9) that shows the name of the LE/ALM,
the location of the LE/ALM, and the number of resources that are used
with that LAB. When you place the mouse pointer over an interconnect,
the tooltip shows the routing channels that are used by that interconnect.
At this level, you can move LEs, ALMs, and I/Os from one physical
location to another.

LEs

I/Os

LABs

10–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–9. Tooltip Message: Second-Level View

Third-Level View

At the third level, which provides a more detailed view, you can see each
routing resource that is used within a LAB in the FPGA. Figure 10–10
shows the level of detail at the third level view for a Stratix device.

From the third level, you can move LEs, ALMs, and I/Os from one
physical location to another. You can move a resource by selecting,
dragging, and dropping it into the desired location. At this level, you can
also create new LEs and I/Os when you are in the post-compilation
(ECO) mode.

1 You can delete a resource only after all of its fan-out connections
are removed. Moving nodes in the Floorplan Editing
(Assignment) task creates an assignment. However, if you move
logic nodes in the Post-Compilation Editing (ECO) task, that
change is considered an ECO change.

For more information about Floorplan Assignments, refer to “Viewing
Assignments in the Chip Planner” on page 10–32.

f For more information about performing ECOs, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook.

Altera Corporation 10–17
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–10. Chip Planner’s Third Level Floorplan View

Bird’s Eye View

The Bird’s Eye View (Figure 10–11) displays a high-level picture of
resource usage for the entire chip and provides a fast and efficient way to
navigate between areas of interest in the Chip Planner.

Horizontal
Routing

LE

LAB Internal
Routing

Vertical
Routing

10–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–11. Bird’s Eye View

The Bird’s Eye View is displayed as a separate window that is linked to
the Chip Planner floorplan. When you select an area of interest in the
Bird’s Eye View, the Chip Planner floorplan automatically refreshes to
show that region of the device. As you change the size of the main-view
rectangle in the Bird’s Eye View window, the main Chip Planner

DSP

M512

Main-View
Rectangle

M4K

LAB

Altera Corporation 10–19
October 2007 Preliminary

Design Analysis Using the Chip Planner

floorplan window also zooms in (or zooms out). You can make the
main-view rectangle smaller in the Bird’s Eye View to see more detail on
the Chip Planner floorplan window.

The Bird’s Eye View is particularly useful when parts of your design that
you are interested in are at opposite ends of the chip, and you want to
quickly navigate between resource elements without losing your frame of
reference.

Viewing Architecture-Specific Design Information

With the Chip Planner, you can view the following architecture-specific
information related to your design:

■ Device routing resources used by your design—View how blocks
are connected, as well as the signal routing that connects the blocks.

■ LE configuration—View how a logic element (LE) is configured
within your design. For example, you can view which LE inputs are
used; if the LE utilizes the register, the look-up table (LUT), or both;
as well as the signal flow through the LE.

■ ALM configuration—View how an adaptive logic module (ALM) is
configured within your design. For example, you can view which
ALM inputs are used, if the ALM utilizes the registers, the upper
LUT, the lower LUT, or all of them. You can also view the signal flow
through the ALM.

■ I/O configuration—View how the device I/O resources are used.
For example, you can view which components of the I/O resources
are used, if the delay chain settings are enabled, which I/O standards
are set, and the signal flow through the I/O.

■ PLL configuration—View how a phase-locked loop (PLL) is
configured within your design. For example, you can view which
control signals of the PLL are used with the settings for your PLL.

■ Timing—View the delay between the inputs and outputs of FPGA
elements. For example, you can analyze the timing of DATAB input to
the COMBOUT output.

In addition, you can modify the following properties of an Altera device
with the Chip Planner:

■ LEs and ALMs
■ I/O cells
■ PLLs
■ Registers in RAM and DSP blocks
■ Connections between elements
■ Placement of elements

10–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about LEs, ALMs, and other resources of an FPGA
device, refer to the relevant device handbook.

Viewing Critical Paths

Critical paths are timing paths in your design that have a negative slack.
These timing paths can span from device I/Os to internal registers,
registers-to-registers, or registers-to-devices I/Os. The View Critical
Paths feature displays routing paths in the Chip Planner, as shown in
Figure 10–12. The criticality of a path is determined by its slack and is
shown in the timing analysis report. Design analysis for timing closure is
a fundamental requirement for optimal performance in highly complex
designs. The Quartus II Chip Planner helps you close timing on complex
designs with its analysis capability.

Viewing critical paths in the Chip Planner helps you analyze why a
specific path is failing. You will be able to see if any modification in the
placement can potentially reduce the negative slack.

To view critical paths in the Chip Planner while using the Quartus II
Classic Timing Analyzer, on the View menu, click Critical Path Settings.
In the Critical Path Settings dialog box, click Show Path (see
Figure 10–13 on page 10–22).

If you are using the TimeQuest Timing Analyzer to locate the critical
paths, run the Report Timing task from the Custom Reports group in the
Tasks pane of the TimeQuest GUI. From the View pane, which lists the
failing paths, you can right-click on any failing path or node, and select
Locate Path. From the pop-up dialog box, select Chip Planner to see the
failing path in the Chip Planner.

Altera Corporation 10–21
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–12. Chip Planner Showing Critical Path

When viewing critical paths, you can specify the clock in the design you
want to view. You determine the paths to be displayed by specifying the
slack threshold in the slack field of the Critical Path Settings dialog box.
This dialog box also helps you to filter specific paths based on the source
and destination registers.

1 Timing settings must be made and a timing analysis performed
for paths to be displayed in the floorplan.

f For more information about performing static timing analysis with the
Quartus II Classic Timing Analyzer, refer to the Quartus II Classic Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

f For more information about performing static timing analysis with the
Quartus II TimeQuest Timing Analyzer, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

10–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–13. Critical Path Settings for the Chip Planner

Viewing Physical Timing Estimates

In the Chip Planner, you can select a resource and see the approximate
delay to any other resource on the device. After you select a resource, the
delay is represented by the color of potential destination resources. The
lighter the color of the resource, the longer the delay.

To see the physical timing map of the device, in the Chip Planner, click
the Layers icon located next to the Task pull-down menu. Under the
Background Color Map, select Physical Timing Estimate. Select a source
and move your cursor to a destination resource. The Chip Planner
displays the approximate routing delay between your selected source
and destination register.

You can use the physical timing estimate information when attempting to
improve the Fitter results by manually moving logic in a device or when
creating LogicLock regions to group logic together. This feature allows

Altera Corporation 10–23
October 2007 Preliminary

Design Analysis Using the Chip Planner

you to estimate the physical routing delay between different nodes so
that you can place critical nodes and modules closer together, and move
non-critical or unrelated nodes and modules further apart.

In addition to reducing delay between critical nodes, you can make
placement assignments to reduce the routing congestion between critical
and noncritical entities and modules. This allows the Quartus II Fitter to
meet the design timing requirements.

1 Note that moving logic and creating manual placements is an
advanced technique to meet timing requirements and must be
done after careful analysis of the design. Moving nodes in the
Floorplan Editing (Assignment) task creates an assignment.
However, if you move logic nodes in the Post-Compilation
Editing (ECO) task, that change is considered an ECO change.

For more information about Floorplan Assignments, refer to “Viewing
Assignments in the Chip Planner” on page 10–32.

f For more information about performing ECOs, refer to the Engineering
Change Management with the Chip Planner chapter in volume 2 of the
Quartus II Handbook.

Viewing Routing Congestion

The Routing Congestion view allows you to determine the percentage of
routing resources used after a compilation. This feature identifies where
there is a lack of routing resources. This information helps you to make
decisions about design changes that may be necessary to ease the routing
congestion and thus meet design requirements. The congestion is visually
represented by the color and shading of logic resources. The darker
shading represents a greater routing resource utilization. To view the
routing congestion in the Chip Planner, click the Layers icon located next
to the Task menu. Under Background Color Map, select the Routing
Utilization map (Figure 10–14).

If you intend to use a HardCopy II device, there is no selection for
Background Color. To get to the routing congestion view with
HardCopy II, turn on Routing Congestion.

10–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–14. Viewing Routing Congestion Map in the Chip Planner

Viewing I/O Banks

The Chip Planner can show all of the I/O banks of the device displayed
in different colors. To see the I/O bank map of the device, click the Layers
icon located next to the Task menu. Under Background Color Map,
select the I/O Banks map. See Figure 10–15.

Altera Corporation 10–25
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–15. Viewing I/O Banks in the Chip Planner

1 All predefined tasks in the Chip Planner show the Block
Utilization Map as the default Background Color Map.

10–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Generating Fan-In and Fan-Out Connections

This feature enables you to view the atoms that fan-in to or fan-out from
the selected atom. To remove the connections displayed, use the Clear
Connections icon in the Chip Planner toolbar. Figure 10–16 shows the
fan-in connections for the selected resource.

Figure 10–16. Generated Fan-In

Generating Immediate Fan-In and Fan-Out Connections

This feature enables you to view the immediate resource that is the fan-in
or fan-out connection for the selected atom. For example, selecting a logic
resource and choosing to view the immediate fan-in enables you to see
the routing resource that drives the logic resource. You can generate
immediate fan-in and fan-outs for all logic resources and routing
resources. To remove the connections that are displayed, use the Clear
Connections icon in the toolbar. Figure 10–17 shows the immediate
fan-out connections for the selected resource.

Altera Corporation 10–27
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–17. Immediate Fan-Out Connection

10–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Highlight Routing

This feature enables you to highlight the routing resources used for a
selected path or connection. Figure 10–18 shows the routing resources
used between two logic elements.

Figure 10–18. Highlight Routing

Altera Corporation 10–29
October 2007 Preliminary

Design Analysis Using the Chip Planner

Show Delays

You can view the timing delays for the highlighted connections when
generating connections between elements. For example, you can view the
delay between two logic resources or between a logic resource and a
routing resource. Figure 10–19 shows the delays between several logic
elements.

Figure 10–19. Show Delays

10–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Exploring Paths in the Chip Planner

You can use the Chip Planner to explore paths between logic elements.
The following example uses the Chip Planner to traverse paths from the
Timing Analysis report.

Locate Path from the Timing Analysis Report to the Chip Planner

To locate a path from the Timing Analysis Report to the Chip Planner,
perform the following steps:

1. Select the path you want to locate.

2. Right-click the path in the Timing Analysis Report, right-click
Locate, then click Locate in Chip Planner (Floorplan & Chip
Editor) (Figure 10–20).

Figure 10–20. Locate a Timing Path from the Chip Planner Timing Analysis
Report

Figure 10–21 shows the path that is displayed in the Chip Planner.

Altera Corporation 10–31
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–21. Resulting Path

To view the routing resources taken for a path you have located in the
Chip Planner, click the Highlight Routing icon in the Chip Planner
toolbar, or from the View menu, click Highlight Routing.

Analyzing Connections for a Path

To determine the connections between items in the Chip Planner, use the
Expand Connections/Paths icon on the toolbar. To add the timing delays
between each connection, use the Show Delays icon on the toolbar.
Figure 10–22 shows the connections for the selected path that are
displayed in the Chip Planner.

10–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–22. Path Analysis

Viewing Assignments in the Chip Planner

Location Assignments can be viewed by selecting the appropriate layer
set from the tool. To view Location Assignments in Chip Planner, select
the task Floorplan Editing (Assignment) or any custom task with
Assignment editing mode. See Figure 10–23.

The Chip Planner shows location assignments graphically, by displaying
assigned resources in a particular color (gray, by default). You can create
or move an assignment by dragging the selected resource to a new
location.

Altera Corporation 10–33
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–23. Viewing Assignments in Chip Planner

You can make node and pin location assignments and assignments to
LogicLock regions and custom regions using the drag-and-drop method
in the Chip Planner. The assignments that you create are applied by the
Fitter during the next place and route operation.

f To learn more about working with location assignments, refer to the
Quartus II Help.

Viewing Routing Channels for a Path in the Chip Planner

To determine the routing channels between connections, click the
Highlight Routing icon on the toolbar. Figure 10–24 shows the routing
channels used for the selected path in the Chip Planner.

Note: The gray
colored resource is a
user assignment.

10–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–24. Highlight Routing

f You can view and edit resources in the FPGA using the Resource
Property Editor mode of the Chip Planner tool. For more information,
refer to the Engineering Change Management with the Chip Planner chapter
in volume 2 of the Quartus II Handbook.

Cell Delay Table

You can view the propagation delay from all inputs to all outputs for any
LE in your design. To see the Cell Delay Table for an atom, select the atom
in the Chip Planner and right-click. From the pop-up menu, click Locate
and then click Locate in Resource Property Editor. The Resource
Property window shows you the atom properties along with the Cell
Delay Table, indicating the propagation delay from all inputs to all
outputs. Figure 10–25 shows the Cell Delay Table.

Altera Corporation 10–35
October 2007 Preliminary

Design Analysis Using the Chip Planner

Figure 10–25. Cell Delay Table

Viewing High and Low Power Tiles in Stratix III Devices in the
Chip Planner

The Chip Planner has a predefined task, Power Analysis (Assignment),
which shows the power map of a Stratix III device. Stratix III devices have
Adaptive Logic Modules (ALMs) that can operate in either high power
mode or low power mode. The power mode is set during the fitting
process in the Quartus II software. These ALMs are grouped together to
form a larger block, called a “tile”.

f To learn more about power analyses and optimizations in Stratix III
devices, refer to the application note AN 437: Power Optimization in
Stratix III FPGAs.

When the Power Analysis (Assignment) task is selected in the Chip
Planner for Stratix III devices, low-power and high-speed tiles are
displayed in different colors; yellow tiles operate in a high-speed mode,
while blue tiles operate in a low-power mode (see Figure 10–26). The

10–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

editing mode in the Power Analysis task is “Assignment.” In this mode,
you can perform all floor plan-related functions for this task; however,
you cannot edit any tiles to change the power mode.

Figure 10–26. Viewing High and Low Power Tiles in a Stratix III Device

Timing Closure
Floorplan
Overview

For the older device families not supported by the Chip Planner, you can
perform the floorplan analysis using the Timing Closure Floorplan. The
APEX, ACEX, FLEX, and MAX 7000 families of devices are supported
only by the Timing Closure Floorplan. This section explains how to use
the Timing Closure Floorplan to enhance your FPGA design analysis.

Table 10–1 on page 10–2 lists the device families supported by the Timing
Closure Floorplan Editor and the Chip Planner.

To start the Timing Closure Floorplan Editor, on the Assignments menu,
click Timing Closure Floorplan.

1 If the device in your project is not supported by the Timing
Closure Floorplan, the following message appears: Can’t
display a floorplan: the current device family
is only supported by Chip Planner.

Yellow Tiles Operate in
High Speed Mode

Altera Corporation 10–37
October 2007 Preliminary

Timing Closure Floorplan Overview

If your target device is supported by the Timing Closure Floorplan, you
can also start the Timing Closure Floorplan tool by right-clicking any of
the following sources, pointing to Locate, and clicking Locate in Timing
Closure Floorplan:

■ Compilation Report
■ Node Finder
■ Project Navigator
■ RTL source code
■ RTL Viewer
■ Simulation Report
■ Timing Report

Figure 10–27 shows the icons in the Timing Closure Floorplan toolbar.

Figure 10–27. Timing Closure Floorplan Icons

10–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Design Analysis
Using the
Timing Closure
Floorplan

The Timing Closure Floorplan Editor allows you to analyze your designs
visually before and after performing a full design compilation in the
Quartus II software. This floorplan editor, used in conjunction with the
Quartus II timing analyzer, provides a method for performing design
analysis.

Timing Closure Floorplan Views

The Timing Closure Floorplan Editor provides the following five views
of your design:

■ Field view
■ Interior Cells view
■ Interior Labs view
■ Package Top view
■ Package Bottom view

Field View

The Field view provides a color-coded, high-level view of the resources
used in the device floorplan. All device resources, such as embedded
system blocks (ESBs) and MegaLAB blocks, are outlined. Figure 10–28
shows the Field view of an APEX II device.

Altera Corporation 10–39
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 10–28. Field View of an APEX II Device

To view the details of a resource in the Field view, select the resource,
right-click, and click Show Details. To hide the details, select all the
resources, right-click, and click Hide Details (Figure 10–29).

10–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–29. Show and Hide Details of a Logic Array Block in Field View

Other Views

You can also view your design in the Timing Closure Floorplan Editor
with the Interior Cells, Interior Labs, Package Top, and Package Bottom
views. Use the View menu to display the various floorplan views. The
Interior Cells view provides a detailed view of device resources,
including device pins and individual logic elements within a MegaLAB.

Viewing Assignments

The Timing Closure Floorplan Editor differentiates between user
assignments and Fitter placements. User assignments include LogicLock
regions and are made by a user.

If the device is changed after a compilation, the user assignment and
Fitter placement options cannot be used together. When this situation
occurs, the Fitter placement displays the last compilation result and the
user assignment displays the floorplan of the newly selected device.

To see the user assignments, click the Show User Assignments icon in the
Floorplan Editor toolbar, or, on the View menu, point to Assignments
and click Show User Assignments. To see the Fitter placements, click the

Altera Corporation 10–41
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

Show Fitter Placements icon in the Floorplan Editor toolbar, or, on the
View menu, point to Assignments and click Show Fitter Placements.
Figure 10–30 shows the Fitter placements.

Figure 10–30. Fitter Placements

10–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Viewing Critical Paths

The View Critical Paths feature displays routing paths in the floorplan, as
shown in Figure 10–31. The criticality of a path is determined by its slack
and is also shown in the timing analysis report.

Figure 10–31. Critical Paths

To view critical paths in the Timing Closure Floorplan, click the Critical
Path Settings icon on the toolbar, or, on the View menu, point to Routing
and click Critical Paths Settings.

When viewing critical paths, you can specify the clock in the design to be
viewed. You can determine which paths to display by specifying the slack
threshold in the slack field.

1 Timing settings must be made and timing analysis performed
for paths to be displayed in the floorplan.

f For more information about performing static timing analyses of your
design with a timing analyzer, refer to the Quartus II Classic Timing
Analyzer and the Quartus II TimeQuest Timing Analyzer chapters in
volume 3 of the Quartus II Handbook.

Altera Corporation 10–43
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

Viewing the critical paths is useful for determining the criticality of nodes
based on placement. There are a number of ways to view the details of the
critical path.

The default view in the Timing Closure Floorplan shows the path with
the source and destination registers displayed. You can also view all the
combinational nodes along the worst-case path between the source and
destination nodes. To view the full path, click on the delay label to select
the path, right-click, and select Show Path Edges. Figure 10–32 shows the
critical path through combinational nodes. To hide the combinational
nodes, select the path, right-click, and select Hide Path Edges.

1 You must view the routing delays to select a path.

Figure 10–32. Worst-Case Combinational Path Showing Path Edges

To assign the path to a LogicLock region using the Paths dialog box, select
the path, right-click, and select Properties.

You can determine the maximum routing delay between two nodes
within a LogicLock region. To use this feature, on the View menu, point
to Routing and click Show Intra-region Delay. Place your cursor over a
Fitter-placed LogicLock region to see the maximum delay.

10–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For more information about making path assignments with the Paths
dialog box, refer to “Timing Closure Floorplan View” on page 10–48.

After running timing analysis, you can locate timing paths from the
timing reports file produced. Right-click on any row in the report file,
point to Locate, and click Locate in Timing Closure Floorplan. The
Timing Closure Floorplan window opens with the timing path
highlighted.

f For more information about optimizing your design in the Quartus II
software, refer to the Area and Timing Optimization chapter in volume 2 of
the Quartus II Handbook. With the options and tools available in the
Timing Closure Floorplan and the techniques described in that chapter,
the Quartus II software can help you achieve timing closure in a more
time-efficient manner.

Physical Timing Estimates

In the Timing Closure Floorplan Editor, you can select a resource and see
the approximate delay to any other resource on the device. After you
select a resource, the delay is represented by the color of potential
destination resources. The darker the color of the resource, the longer the
delay (Figure 10–33).

Altera Corporation 10–45
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 10–33. Physical Timing Estimates View

You can also obtain an approximation of the delay between two points by
selecting a source and holding your cursor over a potential destination
resource (Figure 10–34).

10–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–34. Delay for Physical Timing Estimate in the Timing Closure Floorplan

The delays represent an estimate based on probable best-case routing.
The delay may be greater than what is shown, depending on the
availability of routing resources. In general, there is a strong correlation
between the probable and actual delay.

To view the physical timing estimates, click the Show Physical Timing
Estimate icon, or, on the View menu, point to Routing and click Show
Physical Timing Estimates.

You can use the physical timing estimate information when manually
placing logic in a device. This information allows you to place critical
nodes and modules closer together, and non-critical or unrelated nodes
and modules further apart, reducing the routing congestion between
critical and non-critical entities and modules. This placement enables the
Quartus II Fitter to meet the timing requirements.

Altera Corporation 10–47
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

Viewing Routing Congestion

The View Routing Congestion feature allows you to determine the
percentage of routing resources used after a compilation. This feature
identifies where there is a lack of routing resources.

The congestion is shown by the color and shading of logic resources. The
darker shading represents a greater routing resource utilization. Logic
resources that are red have routing resource utilization greater than the
specified threshold.

The routing congestion view is only available from the View menu when
you enable the Field View. To view routing congestion in the floorplan,
click the Show Routing Congestion icon, or, on the View menu, point to
Routing and click Show Routing Congestion. To set the criteria for the
critical path you want to view, click the Routing Congestion Settings
icon, or, on the View menu, point to Routing and click Routing
Congestion Settings.

In the Routing Congestion Settings dialog box, you can choose the
routing resource (interconnect type) you want to examine and set the
congestion threshold. Routing congestion is calculated based on the total
resource usage divided by the total available resources (Figure 10–35).

Figure 10–35. Routing Congestion Settings Dialog Box

10–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you use the routing congestion viewer to determine where there is a
lack of routing resources, examine each routing resource individually to
determine which ones use close to 100% of the available resources
(Figure 10–36).

Figure 10–36. Routing Congestion of a Sample Design in a Cyclone Device

Timing Closure Floorplan View

The Timing Closure Floorplan view provides you with current and
previous compilation assignments on one screen. You can display device
resources in either of two views: the Field View and the Interior Cells
View, as shown in Figure 10–37. The Field View provides an uncluttered
view of the device floorplan in which all device resources, such as
embedded system blocks (ESBs) and MegaLAB blocks, are outlined. The
Interior Cells View provides a detailed view of device resources,
including individual logic elements within a MegaLAB and device pins.

Altera Corporation 10–49
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 10–37. Timing Closure Floorplan Editor

LogicLock Regions in the Timing Closure Floorplan

After you have defined a LogicLock region in a device supported by the
Timing Closure Floorplan, you must assign resources to it using the
Timing Closure Floorplan, the LogicLock Regions dialog box, or a Tcl
script.

Creating LogicLock Regions in the Timing Closure Floorplan Editor

The Timing Closure Floorplan Editor has toolbar buttons that are used to
manipulate LogicLock regions as shown in Figure 10–38. You can use the
Create New LogicLock Region button to draw LogicLock regions in the
device floorplan.

1 The Timing Closure Floorplan Editor displays LogicLock
regions when you select Show User Assignments or Show
Fitter Placements. The type of region determines its appearance
in the floorplan.

The Timing Closure Floorplan Editor differentiates between user
assignments and Fitter placements. When the Show User Assignments
option is turned on in the Timing Closure Floorplan, you can see current
assignments made to a LogicLock region. When the Fitter Placement
option is turned on, you can see the properties of the LogicLock region
after the most recent compilation. User-assigned LogicLock regions
appear in the Timing Closure Floorplan Editor with a dark blue border.
Fitter-placed regions appear in the Timing Closure Floorplan Editor with
a magenta border (Figure 10–38).

Field View Interior Cells View

10–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–38. Timing Closure Floorplan Editor Toolbar Buttons

Using Drag and Drop to Place Logic

You can drag selected logic displayed in the Hierarchy tab of the Project
Navigator, in the Node Finder, or in a schematic design file, and drop it
into the Timing Closure Floorplan or the LogicLock Regions dialog box.
Figure 10–5 shows logic that has been dragged from the Hierarchy tab of
the Project Navigator and dropped into a LogicLock region in the Timing
Closure Floorplan.

Analyzing LogicLock Region Connectivity Using the Timing
Closure Floorplan

To see how logic in LogicLock regions interfaces, view the connectivity
between LogicLock regions. This capability is extremely useful when
entities are assigned to LogicLock regions. You can also see the fan-in and
fan-out of selected LogicLock regions.

User Placed Region

Fitter Placed Region

Show Fitter Placements
Show User Assignments

Create New LogicLock Region

Altera Corporation 10–51
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

To view the connections in the timing closure floorplan, on the View
menu, point to Routing and click Show LogicLock Regions
Connectivity. Figure 10–39 shows standard LogicLock region
connections.

Figure 10–39. LogicLock Region Connections with Connection Count

As shown in Figure 10–39, the thickness of the connection line indicates
how many connections exist between regions. To see the number of
connections between regions, on the View menu, point to Routing and
click Show Connection Count.

LogicLock region connectivity is applicable only when the user
assignments are enabled in the Timing Closure Floorplan. When you use
floating LogicLock regions, the origin of the user-assigned region is not
necessarily the same as that of the Fitter-placed region. You can change
the origin of your floating LogicLock regions to that of the most recent

10–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

compilation either in the LogicLock Regions window or by selecting
Back-Annotate Origin and Lock under Location in the LogicLock
Regions Properties dialog box.

To view the fan-in or fan-out of a LogicLock region in the Timing Closure
Floorplan, select the user-assigned LogicLock region while the fan-in or
the fan-out option is turned on.

To turn on the fan-in option, click the Show Node Fan-In icon, or, on the
View menu, point to Routing and click Show Node Fan-In. To turn on the
fan-out option, click the Show Node Fan-Out icon, or, on the View menu,
point to Routing and click Show Node Fan-Out. Only the nodes that have
user assignments are visible when viewing fan-in or fan-out of LogicLock
regions.

Additional Quartus II LogicLock Design Features

To complement the LogicLock Regions dialog box and Device Floorplan
view, the Quartus II software has additional features to help you design
with the LogicLock feature.

Tooltips

When you move the mouse pointer over a LogicLock region name on the
LogicLock Regions dialog box, or over the top bar of the LogicLock
region in the Timing Closure Floorplan, the Quartus II software displays
a tooltip with information about the properties of the LogicLock region.

Placing the mouse pointer over Fitter-placed LogicLock regions displays
the maximum routing delay within the LogicLock region. To enable this
feature, on the View menu, point to Routing and click Show Intra-region
Delay.

Reserve LogicLock Region

The Quartus II software honors all entity and node assignments to
LogicLock regions. Occasionally, entities and nodes do not occupy an
entire region, which leaves some of the region’s resources unoccupied. To
increase the region’s resource utilization and performance, the Quartus II
software’s default behavior fills the unoccupied resources with other
nodes and entities that have not been assigned to any other region. You
can prevent this behavior by turning on the Reserved option on the
General tab of the LogicLock Region Properties dialog box. When this
option is turned on, your LogicLock region only contains the entities and
nodes that you have specifically assigned to your LogicLock region.

Altera Corporation 10–53
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

In a team-based design environment, this option is extremely helpful in
creating a device floorplan. When this option is turned on, each team can
be assigned a portion of the device floorplan where placement and
optimization of each submodule occurs. Device resources can be
distributed to every module without affecting the performance of other
modules.

Prevent Assignment to LogicLock Regions Option

Turning on the Prevent Assignment to LogicLock Regions option
excludes the specified entity or node from being a member of any
LogicLock region. However, it does not prevent the entity or node from
physically overlapping LogicLock regions. The Fitter places the entity or
node anywhere on the device as if no regions exist. For example, if an
entire module is assigned to a LogicLock region, when this option is
turned on, you can exclude a specific subentity or node from the region.

1 You can make the Prevent Assignment to LogicLock Regions
assignment to an entity or node in the Assignment Editor under
Assignment Name.

LogicLock Regions Connectivity

The Timing Closure Floorplan Editor allows you to see connections
between various LogicLock regions that exist within a design. The
connection between the regions is drawn as a single line between the
LogicLock regions. The thickness of this line is proportional to the
number of connections between the regions.

Rubber Banding

On the View menu, click Routing, and select Rubber Banding to show
existing connections between LogicLock regions and nodes during
movement of LogicLock regions within the Floorplan Editor.

Show Critical Paths

You can display the critical paths in the design by turning on the Show
Critical Paths option. Use this option with the Critical Paths Settings
option to display paths based on the Timing Analysis report.

Show Connection Count

You can determine the number of connections between LogicLock
regions by turning on the Show Connection Count option.

10–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Analysis and Synthesis Resource Utilization by Entity

The Compilation Report contains an Analysis and Synthesis Resource
Utilization by Entity section, which reports accurate resource usage
statistics, including entity-level information. This feature is useful when
manually creating LogicLock regions.

Path-Based Assignments

You can assign paths to LogicLock regions based on source and
destination nodes, allowing you to easily group critical design nodes into
a LogicLock region. Any of the following types of nodes can be the source
and destination nodes:

■ Valid register-to-register path, meaning that the source and
destination nodes must be registers

■ Valid pin-to-register path, meaning the source node is a pin and the
destination node is a register

■ Valid register to pin path, meaning that the source node is a register
and the destination node is a pin

■ Valid pin-to-pin path, meaning that both the source and destination
nodes are pins

To open the Paths dialog box, on the General tab of the Logic Lock
Regions dialog box, click Add Path.

1 Both “*” and “?” wildcard characters are allowed for the source
and destination nodes. When creating path-based assignments,
you can exclude specific nodes using the Name exclude field in
the Paths dialog box. Quartus II ignores all paths passing
through the nodes that match the setting in the Name exclude
field. For example, consider a case with two paths between the
source and destination—one passing through node A and the
other passing through node B. If you specify node B in the Name
exclude field, only the path assignment through node A is valid.

You can also use the Quartus II Timing Analysis Report to create
path-based assignments by following these steps:

1. Expand the Timing Analyzer section in the Compilation Report.

2. Select any of the clocks in the section labeled
“Clock Setup:<clock name>.”

3. Locate a path that you want to assign to a LogicLock region. Drag
this path from the Report window and drop it in the row labeled in
the LogicLock Region pane in the Quartus II GUI.

Altera Corporation 10–55
October 2007 Preliminary

Design Analysis Using the Timing Closure Floorplan

This operation creates a path-based assignment from the source register
to the destination register as shown in the Timing Analysis Report.

Quartus II Revisions Feature

When you create, modify, or import LogicLock regions into a top-level
design, you may need to experiment with different configurations to
achieve your desired results. The Quartus II software Revisions feature
provides a convenient way to organize the same project with different
settings until an optimum configuration is found.

On the Project menu, click Revisions. In the Revisions dialog box, create
and set revisions. Revision can be based on the current design or any
previously created revisions. Each Revision may have an associated
description. Revisions are a convenient way to organize the placement
constraints created for your LogicLock regions.

LogicLock Assignment Precedence

Conflicts can arise during the assignment of entities and nodes to
LogicLock regions. For example, an entire top-level entity might be
assigned to one region and a node within this top-level entity assigned to
another region. To resolve conflicting assignments, the Quartus II
software maintains an order of precedence for LogicLock assignments.
The following order of precedence, from highest to lowest, applies:

1. Exact node-level assignments
2. Path-based and wildcard assignments
3. Hierarchical assignments

However, conflicts can also occur within path-based and wildcard
assignments. Path-based and wildcard assignment conflicts arise when
one path-based or wildcard assignment contradicts another path-based
or wildcard assignment. For example, a path-based assignment is made
containing a node labeled X and assigned to LogicLock region
PATH_REGION. A second assignment is made using wildcard assignment
X* with node X being placed into region WILDCARD_REGION. As a result
of these two assignments, node X is assigned to two regions:
PATH_REGION and WILDCARD_REGION.

To resolve this type of conflict, the Quartus II software maintains the
order in which the assignments were made and treats the most recent
assignment created with the highest priority.

10–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 Open the Priority dialog box by selecting Priority on the
General tab of the LogicLock properties dialog box. You can
change the priority of path-based and wildcard assignments by
using the Up and Down buttons in the Priority dialog box. To
prioritize assignments between regions, you must select
multiple LogicLock regions. Once the regions have been
selected, you can open the Priority dialog box from the
LogicLock Properties window.

LogicLock Regions Versus Soft LogicLock Regions

Normally all nodes assigned to a particular LogicLock region reside
within the boundaries of that region. Soft LogicLock regions can enhance
design performance by removing the fixed rectangular boundaries of
LogicLock regions. When you assign the “Soft” property to a LogicLock
region, the Quartus II software attempts to place as many nodes assigned
to the region as close together as possible, and has the added flexibility to
move nodes outside of the soft region to meet your design performance
requirement. This process allows the Quartus II Fitter greater flexibility
in placing nodes in the device to meet your performance requirements.

When you assign nodes to a soft LogicLock region, they can be placed
anywhere in the device, but if the soft region is the child of a region, the
nodes are not assigned outside the boundaries of the first non-soft parent
region. If a non-soft parent does not exist (in a design targeting a Stratix II,
Stratix GX, Stratix, Cyclone II, Cyclone, or MAX II device), the region
floats within the Root_region, that is, the boundaries of the device. You
can turn on the Soft Region option on the Location tab of the LogicLock
Region Properties dialog box.

1 Soft regions can have an arbitrary hierarchy that allows any
combination of parent and child to be a soft region. The
Reserved option is not compatible with soft regions.

Soft LogicLock regions cannot be back-annotated because the Quartus II
software may have placed nodes outside of the LogicLock region,
resulting in location assignments incompatible with the region’s origin
and size.

Soft LogicLock regions are available for all device families that support
floating LogicLock regions.

Virtual Pins

When you compile a design in the Quartus II software, all I/O ports are
directly mapped to pins on the targeted device. The I/O port mapping
may create problems for a modular and hierarchical design as lower level

Altera Corporation 10–57
October 2007 Preliminary

Using LogicLock Methodology for Older Device Families

modules may have I/O ports that exceed device pins available on the
targeted device. Or, the I/O ports may not directly feed a device pin, but
instead drive other internal nodes. The Quartus II software
accommodates this situation by supporting virtual pins.

The Virtual Pin assignment communicates to the Quartus II software
which I/O ports of the design module are internal nodes in the top-level
design. These assignments prevent the number of I/O ports in the
lower-level modules from exceeding the total number of available device
pins. Every I/O port that is designated a virtual pin is mapped to either
an LCELL or an ALM, depending on the target device.

1 Bidirectional, registered I/O pins, and I/O pins with output
enable signals cannot be virtual pins.

In the top-level design, these virtual pins are connected to an internal
node of another module. Making assignments to virtual pins allows you
to place them in the same location or region on the device as that of the
corresponding internal nodes in the top-level module. This feature has
the added benefit of providing accurate timing information during
lower-level module optimization.

Use the following guidelines for creating virtual pins in the Quartus II
software:

■ Do not declare clock pins
■ Nodes or signals that drive physical device pins in the top-level

design should not be declared as virtual pins

1 In the Node Finder, setting Filter Type to Pins: Virtual allows
you to display all assigned virtual pins in the design. From the
Assignment Editor, to access the Node Finder, double-click the
To field; when the arrow appears on the right side of the field,
click the arrow and select Node Finder.

Using LogicLock
Methodology for
Older Device
Families

The LogicLock methodology is recommended as an optimization method
only for older device families, such as the MAX II and APEX II device
families, that do not support incremental compilation. In this
methodology, you optimize your design and lock it down one module at
a time. Using the LogicLock feature, you can create and implement each
logic module independently in a hierarchical or team-based design. You
can use this LogicLock methodology to optimize and preserve timing,
placement, or both for devices that do not support incremental
compilation.

10–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Using the LogicLock methodology as an optimization strategy is less
effective on newer device families such as those device families in the
Cyclone and Stratix series of devices. Altera does not recommend using
the LogicLock methodology for designs in such devices, although the
feature may be supported on some devices in these series. However, you
can use LogicLock regions in conjunction with Incremental Compilation
to create a floorplan and preserve timing results for these devices in the
Stratix and Cyclone series of devices.

f For more information about hierarchical and team-based design, refer to
the Quartus II Incremental Compilation for Hierarchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook.

The Quartus II LogicLock Methodology

When you use the LogicLock methodology for older devices, you can
place the logic in each netlist file in a fixed or floating region in an Altera
device. You can then maintain the placement and, if necessary, the
routing of your blocks in the Altera device, thus retaining performance.

To design with the LogicLock feature, create a LogicLock region in a
supported device and then assign logic to the region. After you optimize
the logic placed within the boundaries of a region to achieve the required
performance, you must back-annotate the region’s contents to lock the
logic placement and routing. Locking the placement and routing
preserves the performance when you integrate the region with the rest of
the design.

Figures 10–40 compares the traditional design flow with the LogicLock
design flow.

Figure 10–40. Traditional Design Flow Compared with Quartus II LogicLock
Design Flow

Design

Integrate

Optimize

Verify

Traditional Design Flow

Design, Optimize & Verify

Integrate

Verify

LogicLock Design Flow

Altera Corporation 10–59
October 2007 Preliminary

Using LogicLock Methodology for Older Device Families

f For more information about block-based design with the LogicLock
feature, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Improving Design Performance

The LogicLock methodology helps you optimize and preserve
performance. You can use the LogicLock regions to place modules,
entities, or any group of logic into regions in a device’s floorplan.
LogicLock assignments can be hierarchical, which allows you to have
more control over the placement and performance of each module and
group of modules.

In addition to hierarchical blocks, you can apply LogicLock constraints to
individual nodes; for example, you can make a wildcard path-based
LogicLock assignment on a critical path. This technique is useful if the
critical path spans multiple design blocks.

1 Although LogicLock constraints can improve performance, they
can also degrade performance if they are not applied correctly.
They can also result in increased resource usage.

LogicLock Restrictions

During the design process, placing restrictions on nodes or entities in the
design is often necessary. These restrictions can conflict with the node or
entity assignments for a LogicLock region. To avoid conflicts, consider
the order of precedence given to constraints by the Quartus II software
during fitting. The following assignments have priority over LogicLock
region assignments:

■ Assignments to device resources and location assignments
■ Fast input-register and fast output-register assignments
■ Local clock assignments for Stratix devices
■ Custom region assignments
■ I/O standard assignments

The Quartus II software removes nodes and entities from LogicLock
regions if any of these constraints are applied to them.

1 After a LogicLock region is back-annotated, the Quartus II
software can place the region only in areas of the device with
exactly the same resources.

10–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Preserving Timing Results Using the LogicLock Flow

To preserve the timing results for a design module in the Quartus II
software, you must preserve the placement and routing information for
all the logic in the design module. For older device families, you can use
the LogicLock design methodology to back-annotate logic locations
within a LogicLock region, which makes assignments to each node in the
design.

f For more information about block-based design with the LogicLock
feature, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

When preserving logic placement in an Altera device using LogicLock
back-annotation, an atom netlist preserves the node names in subblocks
of your design. An atom netlist contains design information that fully
describes the submodule logic in terms of the device architecture. In the
atom netlist, the nodes are fixed as Altera primitives and the node names
do not change if the atom netlist does not change. If a node name changes,
any placement information associated with that node, such as LogicLock
assignments made when back-annotating a region, is invalid and ignored
by the compiler.

If all the netlists are contained in one Quartus II project, use the
LogicLock flow to back-annotate the logic in each region. If a design
region changes, only the netlist associated with the changed region is
affected. When you place and route the design using the Quartus II
software, the software needs to re-fit only the LogicLock region
associated with the changed netlist file.

1 Turn on the Prevent further netlist optimization option when
back-annotating a region with the Synthesis Netlist
Optimizations option, the Physical Synthesis Optimization
option, or both, turned on. This sets the Netlist Optimizations
option to Never Allow for all nodes in the region, preventing
node name changes in the top-level design when the region is
recompiled.

You must remove previously back-annotated assignments for a modified
block if the node names are different in the newly synthesized version.
When you recompile with one new netlist file, the placement and
assignments for the unchanged netlist files assigned to other LogicLock
regions are not affected. Therefore, you can make changes to code in an
independent block and not interfere with another designer’s changes,
even when all the blocks are integrated into the same top-level design.

With the LogicLock design methodology, you can develop and test
submodules without affecting other areas of a design.

Altera Corporation 10–61
October 2007 Preliminary

Using LogicLock Methodology for Older Device Families

Importing and Exporting LogicLock Regions

This section describes the steps required to import and export the
LogicLock regions when you are using the LogicLock methodology as an
optimization tool for older devices.

f For information about importing and exporting the assignments for
lower-level design partitions using the incremental compilation flow,
refer to the Quartus II Incremental Compilation for Hierarchical and Team-
Based Design chapter in volume 1 of the Quartus II Handbook.

For the Quartus II software to achieve optimal placement, you must
specify timing assignments, including tSU, tCO, and tPD, for all clock
signals in the design.

To facilitate the LogicLock design flow, the Timing Closure Floorplan
highlights resources that have back-annotated LogicLock regions.

Export the Module

This section describes how to export a module’s constraints in a format
that can be imported to a top-level design. To be exported, a module
requires design information stored as an atom netlist (VQM or EDF),
placement information stored in a Quartus II Settings File, and routing
information stored in a Routing Constraints File (.rcf).

Atom Netlist Design Information
The atom netlist contains design information that fully describes the
module’s logic in terms of an Altera device architecture. If the design was
synthesized using a third-party tool and then brought into the Quartus II
software, an atom netlist already exists and the node names are fixed. You
do not have to generate another atom netlist. However, if you use any
synthesis netlist optimizations or physical synthesis optimizations, you
must generate a Verilog Quartus Mapping Netlist File (.vqm) using the
Quartus II software, because the original atom netlist may have changed
as a result of these optimizations.

1 Turn on the Prevent further netlist optimization option when
back-annotating a region with the Synthesis Netlist
Optimizations and/or Physical Synthesis Optimization
options turned on. This sets the Netlist Optimizations to Never
Allow for all nodes in the region, avoiding the possibility of a
node name change when the region is imported into the
top-level design.

10–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you synthesized the design from a VHDL Design File (.vhd), Verilog
Design File (.v), Text Design File (.tdf), or Block Design File (.bdf) in the
Quartus II software, you must also create an atom netlist to fix the node
names. During compilation, the Quartus II software creates a Verilog
Quartus Mapping Netlist File in the atom_netlists subdirectory in the
project directory.

1 If the atom netlist is generated by a third-party synthesis tool
and the design has a black box library of parameterized modules
(LPM) functions or Altera megafunctions, you must generate a
Quartus II Verilog Quartus Mapping Netlist File for the black
box modules.

f For instructions about creating an atom netlist in the Quartus II
software, refer to Saving Synthesis Results to a Verilog Quartus Mapping
File in the Quartus II Help.

When you export LogicLock regions, all your design assignments are
exported. Filtering occurs only when the design is imported. However,
you can export a subentity of the compilation hierarchy and all of its
relevant regions. To do this, right-click on the entity in the Hierarchy tab
of the Project Navigator and click Export Assignments.

Placement Information
The Quartus II Settings File contains the module’s LogicLock constraint
information, including clock settings, pin assignments, and relative
placement information for back-annotated regions. To maintain
performance, you must back-annotate the module.

Routing Information
The Routing Constraints File (.rcf) contains the module’s LogicLock
routing information. To maintain performance, you must back-annotate
the module.

Exporting the Routing Constraint File and Atom Netlist
To specify the Routing Constraint File and Atom Netlist to export,
perform the following steps:

1. Run a full compilation.

2. On the Assignments menu, click LogicLock Regions Window.

3. Right-click the region name, and click Properties.

Altera Corporation 10–63
October 2007 Preliminary

Using LogicLock Methodology for Older Device Families

4. In the LogicLock Region Properties dialog box, click
Back-Annotate Contents.

5. Enable or disable any of the advanced options such as Prevent
further netlist optimization.

6. Turn on Routing, and click OK.

7. In the LogicLock Region Properties dialog box, click OK.

8. On the Assignments menu, click Export Assignments.

9. In the Export Assignments dialog box, turn on Export
back-annotated routing and Save a node-level netlist of the entire
design into a persistent source file, then click OK.

f For instructions about exporting a LogicLock region assignment in the
Quartus II software, refer to Importing and Exporting LogicLock Region
Assignments in the Quartus II Help.

Import the Module

To specify the Quartus II Settings File for a specific instance or entity, use
the LogicLock Import File Name option in the Assignment Editor. This
option lets you specify different LogicLock region constraints for each
instance of an entity and import them into the top-level design. You can
also specify an RCF file with the LogicLock Routing Constraints File
Name option in the Assignment Editor.

When importing LogicLock regions into the top-level design, you must
specify the Quartus II Settings File and Routing Constraints File for the
modules in the project. If the design instantiates a module multiple times,
the Quartus II software applies the LogicLock regions multiple times.

1 Before importing LogicLock regions, you must perform analysis
and elaboration, or compile the top-level design, to ensure the
Quartus II software is aware of all instances of the lower-level
modules.

The following sections describe how to specify a Quartus II Settings File
for a module and how to import the LogicLock assignments into the
top-level design.

10–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Importing the Routing Constraints File and the Atom Netlist File
To specify the Quartus II Settings File and atom netlist to import, perform
the following steps:

1. On the Assignments menu, click Import Assignments. In the
Import Assignments dialog box, click Advanced.

2. In the Advanced Import Settings dialog box, turn on
Back-annotated routing.

Now, when you import a LogicLock region, the routing constraint file is
also imported.

Import the Assignments
On the Assignments menu, click Import Assignments to import the
assignments. The Import Assignments dialog box appears. In the Import
Assignments dialog box, click Advanced. The Advanced Import
Settings dialog box appears. Use the options available in the Advanced
Import Settings dialog box to control how you import your LogicLock
regions.

To prevent spurious no-fit errors, parent or top-level regions with
multiple instances (that do not contain back-annotated routing
information) are imported with their states set to floating. Otherwise, the
region’s state remains as specified in the Quartus II Settings File. This
default allows the Quartus II software to move LogicLock regions to
areas on the device with free resources. A child region is locked or
floating relative to its parent region’s origin as specified in the module’s
original LogicLock constraints.

1 If you want to lock a LogicLock region to a location, you can
manually lock down the region in the LogicLock Regions dialog
box or the Timing Closure Floorplan.

Each imported LogicLock region has a name that corresponds to the
original LogicLock region name combined with the instance name in the
form of <instance name>|<original LogicLock region name>. For example, if
a LogicLock region for a module is named LLR_0 and the instance name
for the module is Filter:inst1, then the LogicLock region name in the
top-level design is Filter:inst1|LLR_0.

Compile and Verify the Top-Level Design

After importing all modules, you can compile and verify the top-level
design. The compilation report shows whether system timing
requirements are met.

Altera Corporation 10–65
October 2007 Preliminary

Using LogicLock Methodology for Older Device Families

Back-Annotating Routing Information

LogicLock regions not only allow you to preserve the placement of logic
from one compilation to the next, they also allow you to retain the routing
inside the LogicLock regions. With both placement and routing locked,
you have an extremely portable design module that can be used many
times in a top-level design without requiring further optimization.

1 Back-annotate routing only when necessary because doing so
can prevent the Quartus II Fitter from finding an optimal fit for
your design.

Back-annotate the routing from the Assignments menu, by choosing
Routing from the Back-Annotate Assignments dialog box.

1 If you are not using an atom netlist, you must turn on the Save
a node-level netlist of the entire design into a persistent source
file option (on the Assignments menu, click Back-Annotate
Assignments) if back-annotation of routing is selected. Writing
out a Verilog Quartus Mapping Netlist File causes the
Quartus II software to enforce persistent naming of nodes when
saving the routing information. The Verilog Quartus Mapping
Netlist File is then used as the design’s source.

Back-annotated routing information is valid only for regions with fixed
sizes and locked locations. The Quartus II software ignores the routing
information for LogicLock regions you specify as floating and
automatically sized.

The Disable Back-Annotated Node locations option in the LogicLock
Region Properties dialog box is not available if the region contains both
back-annotated routing and back-annotated nodes.

Back-Annotating LogicLock Regions

To back-annotate the contents of your LogicLock regions, perform these
steps:

1. In the LogicLock Region Properties dialog box, click
Back-Annotate Contents. The Back-Annotate Assignments dialog
is shown.

2. In the Back-Annotate Assignments dialog box, in the Back
annotation type list, select Advanced and click OK.

3. In the LogicLock Region Properties dialog box, click OK.

10–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 If you are using the incremental compilation flow, logic
back-annotation is not required. Preserve placement results
using the Post-Fit Netlist Type instead of making placement
assignments with back-annotation as described in this section.

1 You can also back-annotate routing within LogicLock regions to
preserve performance of the regions. For more information
about back-annotating routing, refer to “Back-Annotating
Routing Information” on page 10–65.

When you back-annotate a region’s contents, all of the design element
nodes appear under Back-annotated nodes with an assignment to a
device resource under Node Location, for example, logic array block
(LAB), memory block, or digital signal processing (DSP) block. Each
node’s location is the placement of the node after the most recent
compilation. If the origin of the region changes, the node’s location
changes to maintain the same relative placement. This relative placement
preserves the performance of the module. If cell assignments are
demoted, the nodes are assigned to LABs rather than directly to logic
cells. This provides more flexibility to the Fitter, and improves the
chances of a fit.

Exporting Back-Annotated Routing in LogicLock Regions

To export the LogicLock region routing information, on the Assignments
menu, click Export Assignments, and in the Export Assignments dialog
box, turn on Export Back-annotated routing. This option generates a
Quartus II Settings File and a Routing Constraints File in the specified
directory. The Quartus II Settings File contains all LogicLock region
properties as specified in the current design. The Routing Constraints File
contains all the necessary routing information for the exported LogicLock
regions.

This Routing Constraints File works only with the atom netlist for the
entity being exported.

Only regions that have back-annotated routing information have their
routing information exported when you export the LogicLock regions.
All other regions are exported as regular LogicLock regions.

To determine if a LogicLock region contains back-annotated routing,
refer to the Content Status box shown on the Contents tab of the
LogicLock Region Properties dialog box. If routing has been
back-annotated, the status is “Nodes and Routing Back-Annotated”.

Altera Corporation 10–67
October 2007 Preliminary

Scripting Support

The Quartus II software also reports whether routing information has
been back-annotated in the Timing Closure Floorplan. LogicLock regions
with back-annotated routing have an “R” in the top-left corner of the
region.

Importing Back-Annotated Routing in LogicLock Regions

To import LogicLock region routing information, you must specify the
instance that will have its routing information imported. This is done
with the assignment LogicLock Routing Constraints File in the
Assignment Editor.

1 A Routing Constraints File must be explicitly specified using the
LogicLock Back-annotated Routing Import File Name
assignment before importing any LogicLock region.

The Quartus II software imports LogicLock regions with back-annotated
routing as regions locked to a location and of fixed size.

You can import back-annotated routing if only one instance of the
imported region exists in the top level of the design. If more than one
instance of the imported region exists in the top level of the design, the
routing constraint is ignored and the LogicLock region is imported
without back-annotation of routing. This is because routing resources
from one part of the device may not be exactly the same in another area
of the device.

1 When importing the Routing Constraints File for a lower level
entity, you must use the same atom netlist, that is, the Verilog
Quartus Mapping Netlist File that was used to generate the
Routing Constraints File. This restriction ensures that the node
names annotated in the Routing Constraints File match those in
the atom netlist.

Scripting
Support

You can run procedures and create the settings described in this chapter
in a Tcl script. You can also run some procedures at a command prompt.
For detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

f The same information is available in the Quartus II Help, and in PDF
format in the Quartus II Scripting Reference Manual.

10–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

f for information about all settings and constraints in the Quartus II
software, refer to the Quartus II Settings File Reference Manual.

Initializing and Uninitializing a LogicLock Region

You must initialize the LogicLock data structures before creating or
modifying any LogicLock regions and before executing any of the Tcl
commands listed below.

Use the following Tcl command to initialize the LogicLock data
structures:

initialize_logiclock

Use the following command to uninitialize the LogicLock data structures
before closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions

Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region \
<my_region-name>

1 In the above example, the region’s size is set to auto and the state
set to floating.

If you specify a region name that does not exist in the design, the
command creates the region with the specified properties. If you specify
the name of an existing region, the command changes all properties you
specify, and leaves unspecified properties unchanged.

For more information about creating LogicLock regions, refer to the
sections “Creating LogicLock Regions” on page 10–7 and “Creating
LogicLock Regions with the Chip Planner” on page 10–12.

Altera Corporation 10–69
October 2007 Preliminary

Scripting Support

Obtaining LogicLock Region Properties

Use the following Tcl command to obtain LogicLock region properties.
This example returns the height of the region named my_region.

get_logiclock -region my_region -height

Assigning LogicLock Region Content

Use the following Tcl commands to assign or change nodes and entities
in a LogicLock region. This example assigns all nodes with names
matching fifo* to the region named my_region.

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl
command:

set_logiclock_contents -region my_region -from \
fifo -to ram*

For more information about assigning LogicLock Region Content, refer to
“Assigning LogicLock Region Content” on page 10–11.

Prevent Further Netlist Optimization

Use this Tcl code to prevent further netlist optimization for nodes in a
back-annotated LogicLock region. In your code, specify the name of your
LogicLock region.

foreach node [get_logiclock_contents -region \
<region name> -node_locations] {

set node_name [lindex $node 0]

set_instance_assignment -name
ADV_NETLIST_OPT_ALLOWED "NEVER ALLOW" -to $node_name

The get_logiclock_contents command is in the logiclock
package.

10–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Save a Node-Level Netlist for the Entire Design into a Persistent
Source File

Make the following assignments to cause the Quartus II Fitter to save a
node-level netlist for the entire design into a Verilog Quartus Mapping
Netlist File:

set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name is relative to the project directory. For
example, specifying atom_netlists/top.vqm places top.vqm in the
atom_netlists subdirectory of your project directory.

A Verilog Quartus Mapping Netlist File is saved in the directory specified
at the completion of a full compilation.

For more information about saving a node-level netlist, refer to “Atom
Netlist Design Information” on page 10–61.

Exporting LogicLock Regions

Use the following Tcl command to export LogicLock region assignments.
This example exports all LogicLock regions in your design to a file called
export.qsf.

logiclock_export -file export.qsf

For more information about exporting LogicLock regions refer to “Export
the Module” on page 10–61.

Importing LogicLock Regions

Use the following Tcl commands to import LogicLock region
assignments. This example ignores any pin assignments in the imported
region.

set_instance_assignment -name LL_IMPORT_FILE \
my_region.qsf -to my_destination

logiclock_import -no_pins

Running the import command imports the assignment types for each
entity in the design hierarchy. The assignments are imported from the file
specified in the LL_IMPORT_FILE setting.

Altera Corporation 10–71
October 2007 Preliminary

Scripting Support

For more information about importing LogicLock regions, refer to
“Import the Module” on page 10–63.

Setting LogicLock Assignment Priority

Use the following Tcl code to set the priority for a LogicLock region’s
members. This example reverses the priorities of the LogicLock region in
your design.

set reverse [list]
for each member [get_logiclock_member_priority] {

set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

For more information about setting the LogicLock assignment priority,
refer to “LogicLock Restrictions” on page 10–59.

Assigning Virtual Pins

Use the following Tcl command to turn on the virtual pin setting for a pin
called my_pin:

set_instance_assignment -name VIRTUAL_PIN ON \
-to my_pin

For more information about assigning virtual pins, refer to “Virtual Pins”
on page 10–56.

Back-Annotating LogicLock Regions

The Quartus II software provides the back-annotate Tcl package that
allows you to back-annotate the contents of a LogicLock region.

logiclock_back_annotate [-h | -help] [-long_help]
[-region <region name>] [-from <source name>]
[-to <destination name>] [-exclude_from] [-exclude_to] [-path_exclude <path_exclude name>]
[-no_delay_chain] [-no_contents] [-lock] [-routing]
[-resource_filter <resource_filter value>] [-no_dont_touch]

[-remove_assignments] [-no_demote_lab] [-no_demote_mac] [-no_demote_pin] [-no_demote_ram]

For example, the following command back-annotates all nodes and
routing in the region, one_region.

package require ::quartus::backannotate
logiclock_back_annotate -routing -lock -no_demote_lab -region one_region

10–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

Conclusion Design analysis for timing closure is a fundamental requirement for
optimal performance in highly complex designs. With their analysis
capability, the Quartus II Timing Closure Floorplan Editor and Chip
Planner tools help you close timing quickly on complex designs. Using
these tools along with the LogicLock and Incremental Compilation
methodologies, enables you to compile your designs hierarchically,
preserving the timing results from individual compilation runs. You can
use LogicLock regions as part of an incremental compilation
methodology to improve your productivity. You can also include a
module in one or more projects while maintaining performance and
reducing development costs and time-to-market. LogicLock region
assignments give you complete control over logic and memory
placement, and you can use LogicLock region assignments to improve
the performance of non-hierarchical designs as well.

Altera Corporation 10–73
October 2007 Preliminary

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ AN 437: Power Optimization in Stratix III FPGAs
■ Area and Timing Optimization chapter in volume 2 of the Quartus II

Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Engineering Change Management with the Chip Planner chapter in

volume 2 of the Quartus II Handbook
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Scripting Reference Manual
■ Quartus II Settings File Reference Manual
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 10–3 shows the revision history for this chapter.

Table 10–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

Updated for the Quartus II 7.2 software release, including:
● Reorganization of sections to emphasize the Chip

Planner.
● Updated instructions.

Updated for the
Quartus II 7.2 software
release.

May 2007
v7.1.0

This is a new chapter, consisting of material from the
following Quartus II 7.0 Handbook chapters:
● Timing Closure Floorplan (volume 2)
● LogicLock Design Methodology (volume 3)
● Design Analysis and Engineering Change Management

with the Chip Planner (volume 3)
The following changes were also made:
● All of the information about Floorplan Analysis in these

chapters has been integrated into this new chapter. All
ECO-related sections have moved to a different chapter.

● Updated several screenshots.
● Updated device support.
● Added Referenced Documents section.

Updated for the
Quartus II 7.1 software
release.

http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/an/an437.pdf
http://www.altera.com/literature/hb/qts/qts_qii
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

10–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 11–1
October 2007 Preliminary

11. Netlist Optimizations and
Physical Synthesis

Introduction The Quartus® II software offers advanced netlist optimization options,
including physical synthesis, to optimize your design beyond the
optimization performed in the course of the standard Quartus II
compilation flow. The effect of these options depends on the structure of
your design, but netlist optimizations can help improve the performance
of your design regardless of the synthesis tool used. Device support for
these optimizations varies; see the appropriate section for details.

Netlist optimization options work with your design’s atom netlist, which
describes a design in terms of Altera®-specific primitives. An atom netlist
file can take the form of an Electronic Design Interchange Format file
(.edf) or a Verilog Quartus Mapping file (.vqm) generated by a
third-party synthesis tool, or a netlist used internally by the Quartus II
software. Netlist optimizations are applied at different stages of the
Quartus II compilation flow, either during synthesis or during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation flow. The synthesis netlist optimizations make
changes to the synthesis netlist output from a third-party synthesis tool
or make changes as an intermediate step in Quartus II integrated
synthesis (one of the optimizations applies only to third-party synthesis
netlists). These netlist changes are beneficial in terms of area or speed,
depending on your selected optimization technique.

Physical synthesis optimizations take place during the Fitter stage of the
Quartus II compilation flow. These optimizations make
placement-specific changes to the netlist that improve performance
results for a specific Altera device.

This chapter explains how the netlist optimizations in the Quartus II
software can modify your design’s netlist and help improve your quality
of results. The sections “Synthesis Netlist Optimizations” on page 11–3
and “Physical Synthesis Optimizations” on page 11–11 explain how the
available optimizations work. This chapter also provides information
about preserving your compilation results through back-annotation and
writing out a new netlist, and provides guidelines for applying the
various options.

QII52007-7.2.0

11–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 When synthesis netlist optimization or physical synthesis
options are turned on, the node names for primitives in the
design can change. The fact that nodes may be renamed must be
considered if you are using a LogicLock™ or verification flow
that may require fixed node names, such as the SignalTap® II
logic analyzer or formal verification. If your design flow
requires fixed node names, you may need to turn off the
synthesis netlist optimization and physical synthesis options.

Primitive node names are specified during synthesis. When
netlist optimizations are applied, node names may change as
primitives are created and removed. Hardware description
language (HDL) attributes applied to preserve logic in
third-party synthesis tools cannot be honored because those
attributes are not written into the atom netlist read by the
Quartus II software. If you are synthesizing in the Quartus II
software, you can use the Preserve Register (preserve) and
Keep Combinational Logic (keep) attributes to maintain certain
nodes in the design.

f For more information about using these attributes during synthesis in
the Quartus II software, refer to the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

Altera Corporation 11–3
October 2007 Preliminary

Synthesis Netlist Optimizations

Synthesis Netlist
Optimizations

To view and modify the synthesis netlist optimization options, on the
Assignments menu, click Settings. In the Category list, select Analysis &
Synthesis Settings, select Synthesis Netlist Optimizations, and specify
the options for performing netlist optimization during synthesis, as
shown in Figure 11–1.

Figure 11–1. Synthesis Netlist Optimizations Page

The sections “WYSIWYG Primitive Resynthesis” and “Gate-Level
Register Retiming” on page 11–5 describe these synthesis netlist
optimizations, and how they can help improve the quality of results for
your design.

WYSIWYG Primitive Resynthesis

You can use the Perform WYSIWYG primitive resynthesis (using
optimization technique specified in Analysis & Synthesis settings)
synthesis option when you have an atom netlist file that specifies a design
as Altera-specific primitives. Atom netlist files can take the form of either
an Electronic Design Interchange Format file or a Verilog Quartus
Mapping file generated by a third-party synthesis tool. To select this
option, on the Assignments menu, click Settings. In the Category list,
select Analysis & Synthesis Settings, select Synthesis Netlist

11–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Optimizations, and turn on Perform WYSIWYG primitive resynthesis
(using optimization technique specified in Analysis & Synthesis
Settings). If you want to perform WYSIWYG resynthesis on only a
portion of your design, you can use the Assignment Editor to assign the
Perform WYSIWYG primitive resynthesis logic option to a lower-level
entity in your design. This option can be used with Arria™ GX,
HardCopy® series, Stratix® series, Cyclone® series, MAX® II, or APEX™
series device families.

The Perform WYSIWYG primitive resynthesis option directs the
Quartus II software to un-map the logic elements (LEs) in an atom netlist
to logic gates, and then re-map the gates back to Altera-specific
primitives. This feature allows the Quartus II software to use different
techniques specific to the device architecture during the re-mapping
process. This feature re-maps the design using the Optimization
Technique specified for your project.

To turn on this option, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings. In the Analysis &
Synthesis Settings page, under Optimization Technique, select Speed,
Area, or Balanced to specify how the Quartus II technology mapper
optimizes the design. The Balanced setting is the default for many Altera
device families; this setting optimizes the timing critical parts of the
design for speed and the rest for area.

f Refer to the Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook for details on the Optimization Technique option.

Figure 11–2 shows the Quartus II software flow for this feature.

Figure 11–2. WYSIWYG Primitive Resynthesis

Altera Corporation 11–5
October 2007 Preliminary

Synthesis Netlist Optimizations

The Perform WYSIWYG primitive resynthesis option is not applicable
if you are using Quartus II integrated synthesis. With the Quartus II
synthesis, you do not have to un-map Altera primitives; they are already
mapped during the synthesis step using the techniques that are used with
the WYSIWYG primitive resynthesis option.

The Perform WYSIWYG primitive resynthesis option un-maps and
re-maps only logic cell, also referred to as LCELL or LE primitives, and
regular I/O primitives (which may contain registers). Double data rate
(DDR) I/O primitives, memory primitives, digital signal processing
(DSP) primitives, and logic cells in carry/cascade chains are not touched.
Logic specified in an encrypted Verilog Quartus Mapping file or an
Electronic Design Interchange Format file, such as third-party intellectual
property (IP), is not touched.

Turning on this option can cause drastic changes to the node names in the
Verilog Quartus Mapping file or Electronic Design Interchange Format
file from your third-party synthesis tool, because the primitives in the
atom netlist are being broken apart and then remapped within the
Quartus II software. Registers can be minimized away and duplicates
removed, but registers that are not removed have the same name after
remapping.

Any nodes or entities that have the Netlist Optimizations logic option set
to Never Allow are not affected during WYSIWYG primitive resynthesis.
To apply this logic option, on the Assignments menu, click Assignment
Editor. This option disables WYSIWYG resynthesis for parts of your
design.

Gate-Level Register Retiming

The Perform gate-level register retiming option enables movement of
registers across combinational logic to balance timing, allowing the
Quartus II software to trade off the delay between timing-critical paths
and non-critical paths. See Figure 11–3 on page 11–6 for an example. This
option can be used with Arria GX, HardCopy series, Stratix series,
Cyclone series, MAX II, and APEX series device families. To set this
option, on the Assignments menu, click Settings. In the Category list,
select Analysis & Synthesis Settings, select Synthesis Netlist
Optimizations. In the Synthesis Netlist Optimizations page, turn on
Perform gate-level register retiming.

11–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

The functionality of your design is not changed when the Perform
gate-level register retiming option is turned on. However, if any
registers in your design have the Power-Up Don’t Care logic option
assigned, the values of registers during power-up may change due to this
register and logic movement. The Power-Up Don’t Care logic option is
turned on globally by default. To change the default setting for this
option, on the Assignments menu, click Settings. In the Category list,
select Analysis & Synthesis Settings. In the Analysis & Synthesis
Settings page, click More Settings.

You can set the Power-Up Don't Care logic option for individual registers
or entities using the Assignment Editor. You can also specify a power-up
value for individual registers or entities with the Power-Up Level logic
option. Registers that are explicitly assigned power-up values are not
combined with registers that have been explicitly assigned other values.

Figure 11–3 shows an example of gate-level register retiming where the
10 ns critical delay is reduced by moving the register relative to the
combinational logic.

Figure 11–3. Gate-Level Register Retiming Diagram

Register retiming makes changes at the gate level. If you are using an
atom netlist from a third-party synthesis tool, you must also use the
Perform WYSIWYG primitive resynthesis option to un-map atom
primitives to gates (so that register retiming can be performed) and then
to re-map gates to Altera primitives. If your design uses Quartus II
integrated synthesis, retiming occurs during synthesis before the design
is mapped to Altera primitives. Megafunctions instantiated in a design
are always synthesized using the Quartus II software.

Altera Corporation 11–7
October 2007 Preliminary

Synthesis Netlist Optimizations

The design flows for the case of integrated Quartus II synthesis and a
third-party atom netlist are shown in Figure 11–4.

Figure 11–4. Gate-Level Synthesis

The gate-level register retiming option only moves registers across
combinational gates. Registers are not moved across LCELL primitives
instantiated by the user, memory blocks, DSP blocks, or carry/cascade
chains that you have instantiated. Carry/cascade chains are always left
intact when performing register retiming.

One benefit of register retiming is the ability to move registers from the
inputs of a combinational logic block to the output, potentially combining
the registers. In this case, some registers are removed, and one is created
at the output, as shown in Figure 11–5.

Figure 11–5. Combining Registers with Register Retiming

The register retiming option can only move and combine registers in this
type of situation if the following conditions are met:

■ All registers have the same clock signal
■ All registers have the same clock enable signal
■ All registers have asynchronous control signals that are active under

the same conditions
■ Only one register has an asynchronous load other than VCC or GND

11–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Retiming can always create multiple registers at the input of a
combinational block from a register at the output of a combinational
block. In this case, the new registers have the same clock and clock enable.
The asynchronous control signals and power-up level are derived from
previous registers to provide equivalent functionality.

The Gate-level Retiming report provides a list of registers that were
created and removed during register retiming. To access this report, on
the Processing menu, click Compilation Report. In the Analysis &
Synthesis list, select Optimization Results, select Netlist Optimizations,
and click Gate-level Retiming (Figure 11–6).

1 The node names for these registers change during the retiming
process.

Figure 11–6. Gate-Level Retiming Report

You can set the Netlist Optimizations logic option to Never Allow to
prevent register movement during register retiming. This option can be
applied either to individual registers or entities in the design using the
Assignment Editor.

The following registers are not moved during gate-level register
retiming:

■ Registers that have any timing constraint other than global fMAX, tSU,
or tCO. For example, any node affected by a Multicycle or Cut Timing
assignment is not moved.

■ Registers that feed asynchronous control signals on another register.
■ Registers feeding the clock of another register.
■ Registers feeding a register in another clock domain.
■ Registers that are fed by a register in another clock domain.
■ Registers connected to serializer/deserializer (SERDES).
■ Registers that have the Netlist Optimizations logic option set to

Never Allow.

Altera Corporation 11–9
October 2007 Preliminary

Synthesis Netlist Optimizations

■ Registers feeding output pins (without logic between the register
and the pin).

■ Registers fed by an input pin (without logic between register and
input pin).

■ Both registers in a direct connection from input pin-to-register-to-
register if both registers have the same clock and the first register
does not fan out to anywhere else. These registers are considered
synchronization registers.

■ Both registers in a direct connection from register-to-register if both
registers have the same clock, the first register does not fan out to
anywhere else, and the first register is fed by another register in a
different clock domain (directly or through combinational logic).
These registers are considered synchronization registers.

You can change the retiming behavior for a sequence of synchronization
or meta-stability registers by changing the value of the Retiming
Meta-Stability Register Sequence Length logic option. The value of this
option indicates the number of synchronization registers that will not be
moved during gate-level register retiming. The default value is 2. To set
the value to any number greater than 0, on the Assignments menu, click
Settings. In the Settings dialog box, select Analysis & Synthesis Settings
and click More Settings. A value of 1 means that any registers connected
to the first register in a register-to-register connection can be moved
during retiming. A value of n > 1 means that any registers in a sequence
of length 1, 2,… n are not moved during gate-level register retiming as
long as all of the following are true:

■ The first register is fed either directly by a pin or by a register in
another clock domain (directly or through combinational logic)

■ All registers in the sequence have the same clock
■ All but the last register feed the next register in the sequence directly

and do not fan out to anywhere else

If you want to consider registers with any of these conditions for register
retiming, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow for a given set of registers.

Allow Register Retiming to Trade-Off tSU/tCO with fMAX

To determine whether the Quartus II compiler should attempt to increase
fMAX at the expense of tSU or tCO times, on the Assignments menu, click
Settings. In the Category list, select Analysis & Synthesis Settings, and
select Synthesis Netlist Optimizations. In the Synthesis Netlist
Optimizations page, turn on Allow register retiming to trade off
Tsu/Tco with Fmax. This option affects the optimizations performed due
to the gate-level register retiming option.

11–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

When both the Perform gate-level register retiming and the Allow
register retiming to trade off Tsu/Tco with Fmax options are turned on,
retiming can affect registers that feed and are fed by I/O pins. If the latter
option is not turned on, the retiming option does not touch any registers
that connect to I/O pins through one or more levels of combinational
logic.

Preserving Synthesis Netlist Optimization Results

The Quartus II software generates the same results on every compilation
for the same source code and settings on a given system. Therefore, it is
typically not necessary to take any steps to preserve your results from
compilation to compilation. When changes are made to the source code
or to the settings, you usually get the best results by allowing the software
to compile without using any previous compilation results or location
assignments. In some cases, if you avoid running Analysis & Synthesis,
or quartus_map, and run the Fitter or another desired Quartus II
executable instead, you can skip the synthesis stage of the compile.

You can use the incremental compilation feature to preserve synthesis
results for a particular partition of your design by choosing a netlist type
of post-synthesis.

1 You should use the incremental compilation flow to preserve
compilation results instead of the LogicLock back-annotation
flow described here.

f For information about the incremental compilation design methodology,
refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

If you wish, you may preserve the nodes resulting from netlist
optimizations. Preserving the nodes may be required if you use the
LogicLock flow to back-annotate placement and/or import one design
into another. (Note that this is not needed if you use the incremental
compilation design flow along with the LogicLock feature).

If you are using any Quartus II synthesis netlist optimization options, you
can save your optimized results. To do so, on the Assignments menu,
click Settings. In the Category list, select Compilation Process Settings.
In the Compilation Process Settings page, turn on Save a node-level
netlist of the entire design into a persistent source file. This option saves
your final results as an atom-based netlist in Verilog Quartus Mapping
file format. By default, the Quartus II software places the Verilog Quartus
Mapping file in the atom_netlists directory under the current project
directory. If you want to create a different Verilog Quartus Mapping file

Altera Corporation 11–11
October 2007 Preliminary

Physical Synthesis Optimizations

using different Quartus II settings, on the Assignments menu, click
Settings. In the Category list, select Compilation Process Settings. In the
Compilation Process Settings page, change the File name setting.

If you are using the synthesis netlist optimizations (and not any physical
synthesis optimizations), generating a Verilog Quartus Mapping file is
optional. To lock down the location of all logic and device resources in the
design with or without a Quartus II-generated Verilog Quartus Mapping
file, on the Assignments menu, click Back-Annotate Assignments and
specify the desired options. You should use back-annotated location
assignments unless the design has been finalized. Making any changes to
the design invalidates your back-annotated location assignments. If you
need to make changes later on, use the new source HDL code as your
input files, and remove the back-annotated assignments corresponding to
the old code or netlist.

If you create a Verilog Quartus Mapping file and wish to recompile the
design, use the new Verilog Quartus Mapping file as the input source file
and turn off the synthesis netlist optimizations for the new compilation.

Physical
Synthesis
Optimizations

Traditionally, the Quartus II design flow has involved separate steps of
synthesis and fitting. The synthesis step optimizes the logical structure of
a circuit for area, speed, or both. The Fitter then places and routes the
logic cells to ensure critical portions of logic are close together and use the
fastest possible routing resources. While this push-button flow produces
excellent results, the synthesis stage is unable to anticipate the routing
delays seen in the Fitter. Since routing delays are a significant part of the
typical critical path delay, performing synthesis operations with physical
delay knowledge allows the tool to target its timing-driven optimizations
at these parts of the design. This tight integration of the fitting and
synthesis processes is known as physical synthesis.

The following sections describe the physical synthesis optimizations
available in the Quartus II software, and how they can help improve your
performance results. Physical synthesis optimization options can be used
with Arria GX, the Stratix and Cyclone series device families, as well as
with HardCopy II devices.

If you are migrating your design to a HardCopy II device, you can target
physical synthesis optimizations to the FPGA architecture in the FPGA-
first flow or to the HardCopy II architecture in the HardCopy-first flow.
The optimizations are mapped to the other device architecture during the
migration process. Note that you cannot target optimizations to optimize
for both device architectures individually because doing so would result
in a different post-fitting netlist for each device.

11–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

f For more information about using physical synthesis with HardCopy
devices, refer to the Quartus II Support of HardCopy Series Devices chapter
in volume 1 of the Quartus II Handbook.

To view and modify the physical synthesis optimization options, on the
Assignments menu, click Settings. In the Category list, select Fitter
Settings and select Physical Synthesis Optimizations, as shown in
Figure 11–7.

Figure 11–7. Physical Synthesis Optimization Settings

The physical synthesis optimizations are split into two groups: those that
affect only combinational logic and not registers, and those that can affect
registers. The options are split to allow you to keep your registers intact
for formal verification or other reasons.

The following physical synthesis optimizations are available:

■ Physical synthesis for combinational logic
■ Automatic asynchronous signal pipelining
■ Physical synthesis for registers:

● Register duplication
● Register retiming

Altera Corporation 11–13
October 2007 Preliminary

Physical Synthesis Optimizations

You can control the effect of physical synthesis with the Physical
synthesis effort option. The default selection is Normal. The Extra effort
setting uses extra compilation time to try to achieve extra circuit
performance, while the Fast effort setting uses less compilation time than
Normal but may not achieve the same gains.

All Physical Synthesis optimizations write results to the Netlist
Optimizations report. To access this report, on the Processing menu,
click Compilation Report. In the Category list, select Fitter and select
Compilation Report. This report provides a list of atom netlist files that
were modified, created, and deleted during physical synthesis.

The node names for these atoms change during the physical synthesis
process.

Nodes or entities that have the Netlist Optimizations logic option set to
Never Allow are not affected by the physical synthesis algorithms. To
access this logic option, on the Assignments menu, click Assignment
Editor. Use this option to disable physical synthesis optimizations for
parts of your design.

Automatic Asynchronous Signal Pipelining

The Perform automatic asynchronous signal pipelining option on the
Physical Synthesis Optimizations page in the Fitter Settings section of
the Settings dialog box allows the Quartus II Fitter to perform automatic
insertion of pipeline stages for asynchronous clear and asynchronous
load signals during fitting when these signals negatively affect
performance. You can use this option if asynchronous control signal
recovery and removal times are not achieving their requirements.

This option improves performance for designs in which asynchronous
signals in very fast clock domains cannot be distributed across the chip
fast enough due to long global network delays. This optimization
performs automatic pipelining of these signals, while attempting to
minimize the total number of registers inserted.

1 The Perform automatic asynchronous signal pipelining option
adds registers to nets driving the asynchronous clear or
asynchronous load ports of registers. This adds register delays
(adds latency) to the reset, adding the same number of register
delays for each destination using the reset, changing the
behavior of the signal in the design. Therefore this option should
only be used when adding latency to reset signals does not
violate any design requirements. This option also prevents the
promotion of signals to global routing resources.

11–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

The Quartus II software performs automatic asynchronous signal
pipelining only if Recovery/Removal Analysis is enabled. Pipelining is
allowed only on asynchronous signals that have the following properties:

■ The asynchronous signal is synchronized to a clock (a
synchronization register drives the signal)

■ The asynchronous signal fans-out only to asynchronous control
ports of registers

To access the Recovery/Removal Analysis option, on the Assignments
menu, click Settings. In the Category list, select Timing
Requirements & Options. On the Timing Requirements & Options
page, click More Settings.

The Quartus II software does not perform automatic asynchronous signal
pipelining on asynchronous signals that have the Netlist Optimization
logic option set to Never Allow.

Physical Synthesis for Combinational Logic

To resynthesize the design and reduce delay along the critical path using
the Quartus II Fitter, on the Assignments menu, click Settings. In the
Category list, select Fitter Settings and select Physical Synthesis
Optimizations. In the Physical Synthesis Optimizations page, click
Perform physical synthesis for combinational logic. The software can
accomplish this type of optimization by swapping the look-up table
(LUT) ports within LEs so that the critical path has fewer layers through
which to travel. See Figure 11–8 for an example. This option also allows
the duplication of LUTs to enable further optimizations on the critical
path.

Figure 11–8. Physical Synthesis for Combinational Logic

In the first case, the critical input feeds through the first LUT to the second
LUT. The Quartus II software swaps the critical input to the first LUT
with an input feeding the second LUT. This reduces the number of LUTs
contained in the critical path. The synthesis information for each LUT is
altered to maintain design functionality.

Altera Corporation 11–15
October 2007 Preliminary

Physical Synthesis Optimizations

The Physical synthesis for combinational logic option affects only
combinational logic in the form of LUTs. The registers contained in the
affected logic cells are not modified. Inputs into memory blocks, DSP
blocks, and I/O elements (IOEs) are not swapped.

The Quartus II software does not perform combinational optimization on
logic cells that have the following properties:

■ Are part of a chain
■ Drive global signals
■ Are constrained to a single logic array block (LAB) location
■ Have the Netlist Optimizations option set to Never Allow

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Duplication

The Perform register duplication Fitter option on the Physical synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II Fitter to duplicate registers based on Fitter
placement information. Combinational logic can also be duplicated when
this option is enabled. A logic cell that fans out to multiple locations can
be duplicated to reduce the delay of one path without degrading the
delay of another. The new logic cell may be placed closer to critical logic
without affecting the other fan-out paths of the original logic cell.
Figure 11–9 shows an example of register duplication.

Figure 11–9. Register Duplication

11–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

The Quartus II software does not perform register duplication on logic
cells that have the following properties:

■ Are part of a chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive global signals
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are driven by input pins without a tSU

constraint
■ Contain registers that are driven by a register in another clock

domain
■ Are considered virtual I/O pins
■ Have the Netlist Optimizations option set to Never Allow

f For more information about virtual I/O pins, see the LogicLock Design
Methodology chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Physical Synthesis for Registers—Register Retiming

The Perform register retiming fitter option in the Physical Synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II fitter to move registers across combinational
logic to balance timing. This option enables algorithms similar to the
Perform gate-level register retiming option (see “Gate-Level Register
Retiming” on page 11–5). This option applies to the atom level (registers
and combinational logic have already been placed into logic cells), and it
compliments the synthesis gate-level option.

Altera Corporation 11–17
October 2007 Preliminary

Physical Synthesis Optimizations

The Quartus II software does not perform register retiming on logic cells
that have the following properties:

■ Are part of a cascade chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive a register in another clock domain
■ Contain registers that are driven by a register in another clock

domain
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are connected to SERDES
■ Are considered virtual I/O pins
■ Registers that have the Netlist Optimizations logic option set to

Never Allow

f For more information about virtual I/O pins, refer to the LogicLock
Design Methodology chapter in volume 2 of the Quartus II Handbook.

If you want to consider logic cells that meet any of these conditions for
physical synthesis, you can override these rules by setting the
Netlist Optimizations logic option to Always Allow on a given set of
registers.

Preserving Your Physical Synthesis Results

Given the same source code and settings on a given system, the
Quartus II software generates the same results for every compilation.
Therefore, it is typically not necessary to take any steps to preserve your
results from compilation to compilation. When changes are made to the
source code or to the settings, you usually get the best results by allowing
the software to compile without using any previous compilation results
or location assignments. However, if you do wish to preserve the
compilation results, make sure to follow the guidelines outlined in this
section.

You can use the incremental compilation feature to preserve fitting
results for a particular partition of your design by choosing a netlist type
of post-fit.

1 You should use the incremental compilation flow to preserve
compilation results instead of the LogicLock back-annotation
flow described here.

f For information about the incremental compilation design methodology,
refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

11–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

If you wish, you can preserve the nodes resulting from physical synthesis.
Preserving the nodes may be required if you use the LogicLock flow to
back-annotate placement and/or import one design into another. (Note
that this is not needed if you use the incremental compilation design flow
along with the LogicLock feature).

If you are using any Quartus II physical synthesis optimization options,
you can save the nodes in your optimized result using the Save a
node-level netlist into a persistent source file (Verilog
Quartus Mapping File) option on the Compilation Process Settings
page in the Settings dialog box. This option saves your final results as an
atom-based netlist in Verilog Quartus Mapping file format. By default,
the Quartus II software places the Verilog Quartus Mapping file in the
atom_netlists directory under the current project directory. If you want
to create a different Verilog Quartus Mapping file using different
Quartus II settings, you may do so by changing the File name setting on
the Compilation Process Settings page in the Settings dialog box.

If you are using the physical synthesis optimizations and you wish to lock
down the location of all LEs and other device resources in the design
using the Back-Annotate Assignments command, a Verilog Quartus
Mapping file netlist is required to preserve the changes that were made
to your original netlist. Since the physical synthesis optimizations depend
on the placement of the nodes in the design, back-annotating the
placement changes the results from physical synthesis. Changing the
results means that node names are different, and your back-annotated
locations are no longer valid. To access this option, on the Assignments
menu, click Back-Annotate Assignments.

You should not use a Quartus II-generated Verilog Quartus Mapping file
or back-annotated location assignments with physical synthesis
optimizations unless the design has been finalized. Making any changes
to the design invalidates your physical synthesis results and
back-annotated location assignments. If you need to make changes later,
use the new source HDL code as your input files, and remove the
back-annotated assignments corresponding to the Quartus II-generated
Verilog Quartus Mapping file.

To back-annotate logic locations for a design that was compiled with
physical synthesis optimizations, first create a Verilog Quartus Mapping
file. When recompiling the design with the hard logic location
assignments, use the new Verilog Quartus Mapping file as the input
source file and turn off the physical synthesis optimizations for the new
compilation.

Altera Corporation 11–19
October 2007 Preliminary

Applying Netlist Optimization Options

If you are importing a Verilog Quartus Mapping file and back-annotated
locations into another project that has any Netlist Optimizations turned
on, it is important to apply the Netlist Optimizations = Never Allow
constraint, to make sure node names don't change, otherwise the
back-annotated location or LogicLock assignments are invalid.

1 You should use the incremental compilation flow to preserve
compilation results instead of using logic back-annotation.

Applying Netlist
Optimization
Options

Netlist optimizations options can have various effects on different
designs. Designs that are well coded or have already been restructured to
balance critical path delays may not see a noticeable difference in
performance.

To obtain optimal results when using netlist optimization options, you
may need to vary the options applied to find the best results. By default,
all options are off. Turning on additional options leads to the largest effect
on the node names in the design. Take this into consideration if you are
using a LogicLock or verification flow such as the SignalTap II logic
analyzer or formal verification that requires fixed or known node names.
On average, applying all of the physical synthesis options at the Extra
effort level produces the best results for those options, but adds
significantly to the compilation time. You can also use the
Physical synthesis effort option to decrease the compilation time.

The synthesis netlist optimizations typically do not add much
compilation time, relative to the overall design compilation time.

1 When you are using a third-party atom netlist (Verilog Quartus
Mapping file or Electronic Design Interchange Format file), the
WYSIWYG Primitive Resynthesis option must be turned on in
order to use the Gate-level Register Retiming option.

The Design Space Explorer (DSE) tool command language (Tcl)/Tk script
is provided with the Quartus II software to automate the application of
various sets of netlist optimization options.

f For more information about using the DSE script to run multiple
compilations, refer to the Design Space Explorer chapter in volume 2 of
the Quartus II Handbook. For information about typical performance
results using combinations of netlist optimization options and other
optimization techniques, refer to the Area and Timing Optimization
chapter in volume 2 of the Quartus II Handbook.

11–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> -to <instance name>

Synthesis Netlist Optimizations

Table 11–1 lists the Quartus II Settings File (.qsf) variable name and
applicable values for the settings discussed in “Synthesis Netlist
Optimizations” on page 11–3. The Quartus II Settings File variable name

Altera Corporation 11–21
October 2007 Preliminary

Scripting Support

is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is
supported as a global setting, an instance setting, or both.

Physical Synthesis Optimizations

Table 11–2 lists the Quartus II Settings File variable name and applicable
values for the settings discussed in “Physical Synthesis Optimizations”
on page 11–11. The Quartus II Settings File variable name is used in the
Tcl assignment to make the setting, along with the appropriate value. The
Type column indicates whether the setting is supported as a global
setting, an instance setting, or both.

Table 11–1. Synthesis Netlist Optimizations and Associated Settings

Setting Name Quartus II Settings File Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Optimization
Technique

<Device Family Name>_
OPTIMIZATION_TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

Perform Gate-Level
Register Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Allow Register
Retiming to trade off
Tsu/Tco with Fmax

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

Save a node-level
netlist into a persistent
source file

LOGICLOCK_INCREMENTAL_COMPILE_
ASSIGNMENT

ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT, "NEVER
ALLOW"

Instance

Table 11–2. Physical Synthesis Optimizations and Associated Settings (Part 1 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Physical Synthesis for
Combinational Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Automatic
Asynchronous Signal
Pipelining

PHYSICAL_SYNTHESIS_ASYNCHRONOUS_
SIGNAL_PIPELINING

ON, OFF Global

11–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Incremental Compilation

For information about scripting and command line usage for incremental
compilation as mentioned in “Preserving Synthesis Netlist Optimization
Results” on page 11–10 or “Preserving Your Physical Synthesis Results”
on page 11–17, refer to the Quartus II Incremental Compilation chapter in
volume 1 of the Quartus II Handbook.

Back-Annotating Assignments

You can use the logiclock_back_annotate Tcl command to
back-annotate resources in your design. This command can
back-annotate resources in LogicLock regions, and resources in designs
without LogicLock regions.

For more information about back-annotating assignments, see
“Preserving Synthesis Netlist Optimization Results” on page 11–10 or
“Preserving Your Physical Synthesis Results” on page 11–17.

The following Tcl command back-annotates all registers in your design.

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate
package.

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global,
Instance

Power-Up Level POWER_UP_LEVEL HIGH,LOW Instance

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level
netlist into a persistent
source file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

Table 11–2. Physical Synthesis Optimizations and Associated Settings (Part 2 of 2)

Setting Name Quartus II Settings File Variable Name Values Type

Altera Corporation 11–23
October 2007 Preliminary

Conclusion

Conclusion Synthesis netlist optimizations and physical synthesis optimizations
work in different ways to restructure and optimize your design netlist.
Taking advantage of these Quartus II netlist optimizations can help
improve your quality of results.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Design Space Explorer chapter in volume 2 of the Quartus II Handbook
■ LogicLock Design Methodology chapter in volume 2 of the Quartus II

Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
■ Quartus II Settings File Reference Manual
■ Quartus II Support of HardCopy Series Devices chapter in volume 1 of

the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

The following table shows the revision history for this chapter.

Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 11–23. —

May 2007
v7.1.0

● Added Arria GX as a newly supported device
● Added Referenced Documents.

Updated chapter to
include support for Arria
GX.

March 2007
v7.0.0

No changes made.
—

November 2006
v6.1.0

Added revision history for document.
—

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0.
—

October 2005
v5.1.0

Chapter 11 was formerly Chapter 9 in version 5.0. —

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51004.pdf
http://www.altera.com/literature/hb/qts/qts_qii52009.pdf
http://www.altera.com/literature/hb/qts/qts_qii52008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

11–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

May 2005
v5.0.0

Chapter 9 was formerly Chapter 8 in version 4.2. —

December 2004
v2.1

Updated for Quartus II software version 4.2:
● General formatting and editing updates.
● Additional description about fixed and primitive node

names for synthesis netlist optimization and physical
synthesis options.

● Updates to figures.
● Clarified APEX support.
● Added information about node name changes for atoms

during physical synthesis.
● Deleted Physical Synthesis Report section.

—

June 2004
v2.0

● Updates to tables and figures.
● New functionality in the Quartus II software version 4.1.

—

Feb. 2004
v1.0

Initial release. —

Document Revision History

Date and
Document Version Changes Made Summary of Changes

Altera Corporation 12–1
October 2007

12. Design Space Explorer

Introduction The Quartus® II software includes many advanced optimization
algorithms to help you achieve timing closure, optimize area, and reduce
dynamic power. The various settings and parameters control the
behavior of the algorithms. These options provide complete control over
the Quartus II software optimization and power techniques.

Each FPGA design is unique. There is no standard set of options that
always results in the best performance or power utilization. Each design
requires a unique set of options to achieve optimal performance. This
chapter describes the Design Space Explorer (DSE), a utility written in
Tcl/Tk that automates finding the best set of options for your design. DSE
explores the design space of your design by applying various
optimization techniques and analyzing the results.

DSE Concepts

This section explains the concepts and terminology used by DSE.

Exploration Space and Exploration Point

Before DSE explores a design, DSE creates an exploration space, which
consists of Synthesis and Fitter settings available in the Quartus II
software. Each group of settings in an exploration space is referred to as
a point. An exploration space contains one or more points. DSE traverses
the points in the exploration space to determine optimal settings for your
design.

Seed and Seed Sweeping

The Quartus II Fitter uses a seed to specify the starting value that
randomly determines the initial placement for the current design. The
seed value can be any non-negative integer value. Changing the starting
value may or may not produce better fitting. However, varying the value
of the seed or seed sweeping allows the Quartus II software to determine
an optimal value for the current design.

QII52008-7.2.0

12–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

DSE extends Fitter seed sweeping in exploration spaces by providing a
method for sweeping through general compilation and Fitter parameters
to find the best options for your design. You can run DSE in various
exploration space modes, ranging from an exhaustive
try-all-options-and-values mode to a mode that focuses on one
parameter.

DSE Exploration

DSE compares all exploration point results with the results of a base
compilation, generated from the initial settings that you specify in the
original Quartus II project files. As DSE traverses all points in the
exploration space, all settings, not explicitly modified by DSE, default to
the base compilation setting. For example, if an exploration point turns on
register retiming but does not modify the register packing setting, the
register packing setting defaults to the value you specified in the base
compilation.

1 DSE performs the base compilation with the settings you
specified in the original Quartus II project. These settings are
restored after DSE traverses all points in the exploration space.

General
Description

You can use DSE in either the graphical user interface (GUI) or from a
command line. To run DSE with the GUI, either click Design Space
Explorer on the Tools menu in the Quartus II software, or at the
command prompt, type:

quartus_sh --dse r
To run DSE from a command line, type the following command at the
command prompt:

quartus_sh --dse -nogui [<options>] r

Altera Corporation 12–3
October 2007

General Description

You can run DSE with the following options:

-archive
-concurrent-compiles [0..6]
-custom-file <filename>
-decision-column <"column name">
-exploration-space <"space">
-ignore-failed-base
-ignore-signalprobe
-ignore-signaltap
-llr-restructuring
-lower-priority
-lsf-queue <queue name>
-nogui
-optimization-goal <"goal">
-project <project name>
-revision <revision name>
-run-power
-search-method <"method">
-seeds <seed list>
-skip-base
-slaves <"slave list">
-stop-after-time <dd:hh:mm>
-stop-after-zero-failing-paths
-use-lsf

The DSE script is in the default Quartus II software installation in
<Quartus II installation directory>/common/tcl/apps/dse/dse.tcl on the
PC, Solaris, HP-UX, and Linux platforms. You can launch DSE using one
of the following methods:

■ On the Tools menu, click Launch Design Space Explorer.
■ On Windows, select Start > Programs > Altera > Design Space

Explorer or Quartus II <version number>.

1 For more information on DSE, launch the DSE GUI. On the Help
menu, click Contents or press the F1 key.

12–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 12–1 shows the DSE user interface. The Settings tab is divided into
two sections: Project Settings and Exploration Settings.

Figure 12–1. DSE User Interface

Timing Analyzer Support

DSE supports both the Quartus II Classic Timing Analyzer and the
Quartus II TimeQuest Timing Analyzer. You must set the timing
analyzer prior to opening the project in DSE. Once the timing analyzer is
set, DSE performs the design exploration with the selected timing
analyzer that guides the fitter.

1 TimeQuest is launched directly from DSE if you set the default
timing analyzer to TimeQuest.

Altera Corporation 12–5
October 2007

DSE Flow

DSE Flow You can run DSE at any point in the design process. However, Altera
recommends that you run DSE late in your design cycle when you are
focusing on optimizing performance and power. The results gained from
different combinations of optimization options may not persist over large
changes in a design. Running DSE in signature mode (refer to “Signature
Mode” on page 12–13) at the midpoint of your design cycle shows you
the affect of various parameters such as the register packing logic option
on your design.

DSE runs the Quartus II software for every compilation specified in the
Exploration Settings options. DSE selectively determines the best
settings for your design based on the Optimization Goal selected for the
exploration. The Quartus II software always attempts to achieve all your
timing requirements regardless of the Optimization Goal set in DSE. The
Optimization Goal changes the metrics that DSE evaluates to determine
if one compilation is better than another. Design Space Explorer does not
change the behavior of the Quartus II software.

DSE reports the compilation that has the smallest slack. Specifying all
timing requirements before you use DSE to explore your design is very
important to ensure that DSE finds the optimal set of parameters for your
design based on design criteria you set in your initial design.

You can change the initial placement configuration used by the
Quartus II Fitter by varying the Fitter Seed value. You can enter seed
values in the Seeds field of the DSE user interface.

1 To set the seed value on the Assignments menu, click Fitter
Settings in the Settings dialog box.

Compilation time increases as DSE exploration spaces become more
comprehensive. Increased compilation time results from running several
compilations and comparing the generated results with the original base
compilation results.

For typical designs, varying only the seed value results in a 5% fMAX
increase. For example, when compiling with three different seeds,
one-third of the time fMAX does not improve over the initial compilation,
one-third of the time fMAX gets 5% better, and one-third of the time fMAX
gets 10% better.

12–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

DSE Support for
Altera Device
Families

DSE setting support varies across device families. To see the range of
settings DES supports, click the Advanced Search radio button on the
Settings tab, then select the Advanced tab to access the settings listed in
the following categories:

■ Exploration Space
■ Optimization Goal
■ Search Method

The following device families support all Advanced setting types:

■ ArriaTM GX
■ Stratix® III
■ Stratix II
■ Stratix
■ Stratix GX
■ Cyclone® III
■ Cyclone II
■ Cyclone
■ MAX® II

The following device families support only the Advanced Exploration
Space and Optimization Goal settings shown in Table 12–1:

■ APEXTM 20K
■ APEX 20KC
■ APEX 20KE
■ APEX II
■ FLEX 10K®

■ FLEX® 10KA
■ FLEX 10KE

Click the Advanced Search radio button on the Settings tab before you
select the Advanced tab to access the settings in Table 12–1.

Table 12–1. Advanced Exploration Space Support for APEX 20K, APEX II and FLEX 10K Devices

Seed sweep Area optimization space

Signature fitting effort level Extra effort space

Extra effort for Quartus II Integrated Synthesis Projects Custom space

Altera Corporation 12–7
October 2007

DSE Project Settings

DSE Project
Settings

This section provides the following information about DSE project
settings:

■ Setting up the DSE work environment
■ Specifying the revision
■ Setting the initial seed
■ Quartus II integrated synthesis
■ Restructuring LogicLock regions

Setting Up the DSE Work Environment

From the DSE GUI, you can open a Quartus II project for a design
exploration with either of the following actions:

■ On the File menu, click Open Project and browse to your project.
■ Use the Open icon to open a project.

Specifying the Revision

You can specify the revision to be explored with the Revision field in the
DSE user interface. The Revision field is populated after the Quartus II
project has been opened.

1 If no revisions were created in the Quartus II project, the default
revision, which is the top-level entity, is used. For more
information, refer to Quartus II Project Management chapter in
volume 2 of the Quartus II Handbook.

Setting the Initial Seed

To specify the seed that DSE uses for an exploration, specify a
non-negative integer value in the Seed box under Project Settings on the
Settings tab. The seed value determines your design’s initial placement
in a Quartus II compilation.

To specify a range of seeds, type the low end of the range followed by a
hyphen, followed by the high end of the range. For example, 2-5 specifies
that DSE uses the values 2, 3, 4, and 5 as seeds.

Restructuring LogicLock Regions

The Allow LogicLock Region Restructuring option allows DSE to
modify LogicLock region properties in your design, if any exist. DSE
applies the Soft property to LogicLock regions to improve timing. In
addition, DSE can remove LogicLock regions that negatively affect the
performance of the design.

12–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

1 “Exploration Space” on page 12–10 describes the type of
explorations you can perform.

Search for Best Performance, Search for Best Area Options, or Search for
Lowest Power Option

Use the Exploration Settings list to select the type of exploration to
perform: Search for Best Area, Search for Best Performance, Search for
Lowest Power, or Advanced Search.

The Search for Best Performance option uses a predefined exploration
space that targets performance improvements for your design.
Depending on the device your design targets, you can select up to four
predefined exploration spaces: Low (Seed Sweep), Medium (Extra Effort
Space), High (Physical Synthesis Space), and Highest (Physical
Synthesis with Retiming Space). As you move from Low to Highest, the
number of options explored by DSE increases, causing compilation time
to increase.

The Search for Lowest Power option uses a predefined exploration space
that targets overall power improvements for your design. When Search
for Lowest Power is selected, DSE automatically runs the PowerPlay
Power Analyzer for each point in the space. You must ensure that the
PowerPlay Power Analyzer is configured correctly to ensure accurate
results. DSE issues a warning if the confidence level for any power
estimate is low.

The Search for Best Area option uses a predefined exploration space that
targets device utilization improvements for your design.

Advanced Search Option

The Advanced Search option provides full control over the exploration
space, the optimization goal for your design, and the search method used
in a design exploration. Refer to “Performing an Advanced Search in
Design Space Explorer” on page 12–9 for detailed information on how to
set up and perform an Advanced Search in DSE.

1 You can use Advanced Search to define exploration spaces that
are equivalent to the Search for Best Area, Search for Lowest
Power, and Search for Best Performance options.

Altera Corporation 12–9
October 2007

Performing an Advanced Search in Design Space Explorer

Quartus II Integrated Synthesis

The Project Uses Quartus II Integrated Synthesis option works only for
designs that have been synthesized with Quartus II integrated synthesis.
With this option turned on, DSE explores options that affect the synthesis
stage of compilation.

f For more information on integrated synthesis options, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook.

Performing an
Advanced
Search in
Design Space
Explorer

You must make three exploration settings in the Advanced Search dialog
box before exploring a design. These three settings, Exploration Space,
Optimization Goal, and Search Method, are described in the following
sections. Figure 12–2 shows the Advanced Search dialog box.

1 You can access the Advanced tab only after you open a
Quartus II project in DSE and select Advanced Search on the
Settings tab.

Figure 12–2. DSE Advanced Search Dialog Box

12–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Exploration Space

The Exploration Space list controls the types of explorations that DSE
performs on your design. DSE traverses the points in the exploration
space, applying the settings to the design and comparing compilation
results to determine the best settings for your design. DSE offers the
following exploration space types:

■ Seed Sweep
■ Extra Effort Spaces
■ Physical Synthesis Spaces
■ Retiming Spaces
■ Area Optimization Space
■ Selective Performance Optimization Space
■ Custom Space
■ Signature mode—Power Optimization Spaces

1 Not all Advanced exploration space types are available for
every device family. Refer to “DSE Support for Altera Device
Families” on page 12–6 for Advanced exploration space support
for various device families.

Compilation time increases proportionally to the breadth of the
explorations. The exploration space compilation time increases with the
number and type of exploration spaces DSE explores, especially with
exploration space types that have more optimization options and
parameters.

On the Options menu, point to Advanced, and turn on Save Exploration
Space to File to save an XML file representing the exploration space. DSE
writes the exploration space to a file named <project name>.dse in the
project directory. You can modify this file to create a custom exploration
space.

For more information on using custom exploration spaces in DSE, refer to
“Creating Custom Spaces for DSE” on page 12–22.

Seed Sweep

Enter the seed values in the Seeds field in the DSE user interface. There
are no “magic” seeds. The variation between seeds is truly random, any
non-negative integer value is as likely to produce good results. DSE
defaults to seeds 3, 5, 7, and 11. The Seed Sweep exploration space does
not change your netlist.

1 The Seeds field accepts individual seed values, for example, 2,
3, 4, and 5, or seed ranges, for example, 2-5.

Altera Corporation 12–11
October 2007

Performing an Advanced Search in Design Space Explorer

Compilation time increases 1× for every seed value you specify. For
example, if you enter five seeds, the compilation time increases to 5× the
initial compilation time.

Extra Effort Spaces

The Extra Effort Space exploration space adds the Register Packing
option to the exploration space done by the Seed Sweep. The Extra Effort
Space exploration space also increases the Quartus II Fitter effort during
placement and routing. However, the Extra Effort Space exploration
space does not change your netlist.

Physical Synthesis Spaces

The Physical Synthesis Space exploration space adds physical synthesis
options such as register retiming and physical synthesis for
combinational logic to the options included in the Extra Effort Space
exploration space. These netlist optimizations move registers in your
design. Look-up tables (LUTs) are modified by these options. However,
the design behavior is not affected by these options.

f For more information about physical synthesis, refer to the Netlist
Optimizations & Physical Synthesis chapter in volume 2 of the Quartus II
Handbook.

The Physical Synthesis for Quartus II Integrated Synthesis Projects
exploration space includes all the options in the Physical Synthesis
exploration space and explores various Quartus II integrated synthesis
optimization options. The Physical Synthesis for Quartus II Integrated
Synthesis Projects exploration space works only for designs that have
been synthesized using Quartus II integrated synthesis software.

Retiming Space

The Physical Synthesis with Retiming Space exploration space includes
all the options in the Physical Synthesis Space exploration space and
explores register retiming. Register retiming can move registers in your
design.

The Physical Synthesis Retiming Space for Quartus II Integrated
Synthesis Projects exploration space includes all the options in Physical
Synthesis with Retiming Space exploration space, and also explores
various Quartus II integrated synthesis optimization options. The
Physical Synthesis with Retiming Space for Quartus II Integrated
Synthesis Projects exploration space works only for designs that have
been synthesized using the Quartus II integrated synthesis.

12–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Area Optimization Space

The Area Optimization Space exploration space explores options that
affect logic cell utilization for your design. These options include register
packing and Optimization Technique set to Area.

Selective Performance Optimization Space

The Selective Performance Optimization combines a seed sweep with
various performance fitter settings to improve the timing of your design.
The seed sweep is performed over a limited number of points in such a
way that the base settings are not replicated. This is the recommended
option for large designs where other spaces may be too large.

Custom Space

Use the Custom Space exploration space to selectively explore the effects
of various optimization options on your design. This exploration space
gives you complete control over which options are explored and in what
mode. In the Custom Space mode you can explore all optimization
options available in DSE.

Table 12–2 shows the settings adjusted by each exploration space.

Table 12–2. Summaries of Exploration Spaces Note (1)

Search Type

Exploration Spaces

Seed
Sweep Extra Effort Physical

Synthesis Retiming Area
Optimization Custom

Analysis and Synthesis Settings

Optimization technique — — v v v v
Perform WYSIWYG resynthesis — — v v v v
Perform gate-level register
retiming

— — — v — v
Fitter Settings

Fitter seed v v v v v v
Register packing — v v v v v
Increase PowerFit fitter effort — v v v — v
Perform physical synthesis for
combinational logic

— — v v — v
Perform register retiming — — — v — v
Note to Table 12–2:
(1) For exploration spaces that includes Quartus II Integrated Synthesis Projects, DSE increases the synthesis effort.

Altera Corporation 12–13
October 2007

Performing an Advanced Search in Design Space Explorer

For more information about using custom exploration spaces with DSE,
refer to “Creating Custom Spaces for DSE” on page 12–22.

Signature Mode

In Signature mode, DSE analyzes the fMAX, slack, compilation time, and
area trade-offs of a single parameter. Running the single parameter over
multiple seeds, DSE reports the average of the resulting values. With this
information you gain a better understanding of how that parameter
affects your design. There are four signature mode settings in DSE:

■ Signature: Fitting Effort Level
■ Signature: Netlist Optimizations
■ Signature: Fast Fit
■ Signature: Register Packing

Each setting explores a specific optimization option for your design. For
example, in Signature: Register Packing mode, DSE explores the Auto
Packed Registers logic option with its four settings (OFF, Normal,
Minimized Area, and Minimize Area with Chains), and reports the
effects of each on your design.

Optimization Goal

Design metrics are extremely important in exploring your design,
whether the metric is performance, logic utilization, or a combination of
both. These metrics allow you to determine which compilation is best,
based on the design requirements. By specifying options in the
Optimization Goal settings, you specify your optimization design goals.
DSE then uses the Optimization Goal settings to determine the best
compilation results. Table 12–3 summarizes the six available optimization
settings.

Table 12–3. Optimization Goal Settings (Part 1 of 2)

Setting Description

Optimize for Speed The exploration point containing the smallest worst-case slack value is selected
as the best run.

Optimize for Area The exploration point containing the lowest logic cell count is selected as the best
run

Optimize for Power The exploration point containing the lowest thermal power dissipation, and, if
possible, a positive worst-case slack value, is selected as the best run.

Optimize for Negative Slack
and Failing Paths

The exploration point containing the best average negative worst-case slack and
lowest number of failing paths is selected as the best run.

12–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Quality of Fit (QoF)

Quality of Fit (QoF) is a better evaluation of fit than traditional worst-case
slack metrics, because QoF considers all timing domains. QoF is not
susceptible to the common mistake of accepting a fit because it has
marginally better worst-case slack than other marginal timing domains
with much worse slack. For example, the traditional worst-case slack
metric favors a fit that achieves -2 ns slack for clock A and -5 ns slack for
clock B, over a fit that achieves 1 ns slack for clock A and -5.5 ns slack for
clock B. By applying a piece-wise linear function to each domain slack
value, QoF ensures that large improvements in domains with ample slack
do not unnecessarily skew the overall quality assessment of the fit.

To achieve a representative QoF value, ensure that slack values from
domains that are easily meeting timing requirements do not offset the
slack values from domains that are marginally meeting timing
requirements. To correlate these values correctly, DSE applies a
piece-wise linear function to the individual slack values before they are
added together. This function reduces the improvement per unit of
additional slack in a domain, as the domain slack improves. For example,
the improvement of 100 ps in a domain that begins with 0 ns of slack is
weighted more significantly than a 100 ps improvement in a domain that
begins with 10 ns of slack.

To calculate the QoF for a design, use the sum of worst- case slack values
for all timing domains reported by timing analysis. Timing domains
include: Clock Setup, Clock Hold, tSU, tCO, tPD, tH, min tCO, min tPD, and
other timing parameters. For example, if clock A has a Clock Setup slack
of -500 ps, and clock B has a Clock Setup slack of 200 ps, the QoF for these
two domains is -700 ps. The higher the QoF value reported, the better the
QoF.

The QoF can be calculated for any fully compiled design by entering the
following Tcl command in the Tcl console:

source [file join $::quartus(tclpath) apps dse
calculate_quality_of_fit.tcl]

Optimize for Average Period The exploration point containing the highest average period in a multiclock design
is selected as the best run.

Optimize for Quality Fit The exploration point containing the highest quality of fit is selected as the best
run.

Table 12–3. Optimization Goal Settings (Part 2 of 2)

Setting Description

Altera Corporation 12–15
October 2007

DSE Flow Options

1 All variables in the above statement are predefined; type the
statement as shown without any variable substitution.

Search Method

The Search Method setting allows you to control the breadth of the
search that DSE performs. DSE provides two search methods: Exhaustive
search of exploration space and Accelerated search of exploration
space. These search methods are described in Table 12–4.

DSE Flow
Options

You can control the configuration of DSE with the following options:

■ Create a Revision from a DSE Point
■ Change Decision Column
■ Stop Flow When Zero Failing Paths are Achieved
■ Continue Exploration Even If Base Compilation Fails
■ Run Quartus II PowerPlay Power Analyzer During Exploration
■ Archive All Compilations
■ Stop Flow After Time
■ Save Exploration Space to File
■ Ignore SignalTap and SignalProbe Settings
■ Skip Base Analysis and Compilation If Possible
■ Lower Priority of Compilation Threads
■ DSE Configuration File

Create a Revision from a DSE Point

After you have performed a design exploration with DSE, a Quartus II
revision can be made from any exploration point. This option facilitates
the creation of multiple revisions based on the same space point for
further optimization within the Quartus II software. Figure 12–3 shows
the Create a Revision From a DSE Point dialog box.

Table 12–4. Search Methods

Search Method Description

Exhaustive search of exploration space Applies all settings available in the exploration space to all seeds
specified. This search method yields optimal settings for your design,
but this search requires the most time.

Accelerated search of exploration space Finds the best exploration space for your design by first determining
the best settings and then sweeping the settings across all seeds
specified.

12–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Figure 12–3. Create a Revision from a DSE Point

Change Decision Column

The criteria DSE uses to determine the best space point in an exploration
is known as the Decision column. As DSE explores a design space, the
best exploration point changes according to the following inequality:

<Current Decision Column Value> > <Previous Decision Column Value>

By default, DSE uses worst-case slack as the Decision column for an
exploration. The worst-case slack Decision column is the greatest slack
value in an exploration, which can be I/O timing or clock slack values.
You can change the Decision column on the Options menu. On the

Altera Corporation 12–17
October 2007

DSE Flow Options

Options menu, click Advanced, and select Change Decision Column.
Table 12–5 lists the available Decision columns. The Decision column
can be any column within the Quartus II Timing Analyzer Report.

Stop Flow When Zero Failing Paths are Achieved

Instructs DSE to stop exploring the space after it encounters any point,
including the base point, that has zero failing paths. DSE uses the failing
path count reported in the All Failing Paths report column to make this
decision.

Continue Exploration Even If Base Compilation Fails

With the Continue Exploration Even If Base Compilation Fails option
turned on, DSE continues the exploration even when a design
compilation error occurs. For example, if timing settings are not applied
to your design, a DSE error occurs. To cause DSE to continue with the
exploration instead of halting when an error occurs, turn on this option.

Run Quartus II PowerPlay Power Analyzer During Exploration

Turn on Run Quartus II PowerPlay Power Analyzer During
Exploration to invoke the Quartus II PowerPlay Analyzer for every
exploration performed by DSE. Using this option can help you debug
your design and determine trade-offs between power requirements and
performance optimization.

Table 12–5. DSE Change Decision Columns

Decision Column Name Description

Worst-case slack (default) Determines best exploration point on worst-case slack in the exploration
space.

Clock Setup: '<clock name>':
Slack

Determines best exploration point on the <clock name> specified.

Clock Setup: '*': Slack Determines best exploration point on all clocks.

Worst-case minimum tCO Slack Determines best exploration point on worst case minimum tCO slack.

Worst-case tH Slack Determines best exploration point on worst-case tH slack.

Worst-case tSU Slack Determines best exploration point on worst case tSU slack.

<any column name> Determines best exploration point on any column available in the Quartus II
timing analysis report file.

12–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Archive All Compilations

Turn on Archive All Compilations to create a Quartus II Archive File
(.qar) for each compilation. These archive files are saved to the dse
directory in the design’s working directory.

Stop Flow After Time

Turn on Stop Flow After Time to stop further exploration after a
specified number of days, hours, and/or minutes.

1 Exploration time might exceed the specified value because DSE
does not stop in the middle of a compilation.

Save Exploration Space to File

Turn on Save Exploration Space to File to write out a <project name>.dse
file containing all options explored by DSE. You can use or modify this
file to perform a custom exploration.

Ignore SignalTap and SignalProbe Settings

DSE uses advanced physical synthesis options that are not compatible
with the SignalTap® II or SignalProbe™ features. As a result, DSE issues
an error message when a project is opened for exploration that has either
SignalTap II or SignalProbe turned on. The error message is similar to the
following:

Error Opening Project---------------------------
Project is using SignalProbe. Please turn off
SignalProbe before using this project with Design Space
Explorer or Ignore SignalProbe Setting in your Design
on the Options menu.

When the Ignore SignalTap and SignalProbe Settings option is turned
on, DSE bypasses this check.

If you have already verified the design, you might save compilation time
and improve resource utilization by turning this option on.

Skip Base Analysis and Compilation If Possible

Skip Base Analysis and Compilation If Possible allows the DSE to skip the
Analysis and Elaboration stage or the compilation of the base point if base
point compilation results are available from a previous Quartus II
compilation.

Altera Corporation 12–19
October 2007

DSE Flow Options

Lower Priority of Compilation Threads

The Lower Priority of Compilation Threads option allows DSE to run
the Quartus II executables with the lower_priority option. The
lower_priority option lowers the priority of the Quartus II
executable.

DSE Configuration File

Many options exist that allow you to customize the behavior of each DSE
exploration. For example, you can specify seed values or a list of slave
computers to be used for a distributed exploration run. Each time you
close the DSE GUI it saves these values in a configuration file, dse.conf.
The net time you launch the DSE GUI, it reads the values from dse.conf
and restores the previous exploration settings.

Where the dse.conf file is stored varies based on the operating system
that launches DSE. Table 12–6 specifies the locations where dse.conf files
are stored based on operating system usage.

1 Settings specified in the DSE command-line mode are not saved
to a dse.conf configuration file.

Table 12–6. DSE Configuration File Location

OS File Location (default) Comment

Windows %APPDATA%/Altera/dse.conf If the variable %APPDATA% is not defined, the
configuration file is saved to
/.altera.quartus/dse.conf

Unix ~/.altera.quartus/dse.conf

12–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

DSE Advanced
Information

This section covers advanced features that are available in DSE. These
features increase the processing efficiency of design space exploration
and provide further customization of the design space.

Computer Load Sharing in DSE Using Distributed Exploration

When you select Distribute Compiles to Other Machines, the DSE uses
cluster computing technology to decrease exploration time. DSE uses
multiple client computers to compile points in the specified exploration
space. When you select the Distributed DSE option, DSE functions in one
of the following operation modes:

■ Use LSF Resources: DSE uses the Platform LSF grid computing
technology to distribute exploration space points to a computing
network.

■ Distribute Compiles to Other Machines uses a Quartus II master
process: DSE acts as a master and distributes exploration space
points to client computers.

Distributed DSE Using LSF Resources

The easiest way to use distributed DSE technology is to submit the
compilations to a preconfigured LSF cluster at your local site. For more
information on LSF software, refer to www.platform.com, or contact your
system administrator. To run Distributed DSE using LSF resources, from
the Options menu, select Distributed DSE and click the Configure
Resources option.

Distributed DSE Using a Quartus II Master Process

Before DSE can use computers in the local area network to compile points
in the exploration space, you must create Quartus II software slave
instances on the computers that will be used as clients. Type the following
command at a command prompt on a client computer:

 quartus_sh --qslave r
Repeating this on several computers creates a cluster of Quartus II
software slaves for DSE to use. After you have created a set of Quartus II
software slaves on the network, add the names of each slave computer in
the QSlave tab of the Configure Resources dialog box.

To access the Configure Resources dialog box, from the Options menu,
point to Distributed DSE and click Configure Resources. To add
resources, click Add and type the client name. Click OK.

Figure 12–4 shows an example of client entries for a distributed search.

Altera Corporation 12–21
October 2007

DSE Advanced Information

Figure 12–4. Client Entry in DSE

At the start of an exploration, DSE assumes the role of a Quartus II
software master process and submits points to the slaves on the list to
compile. If the list is empty, DSE issues an error and the search stops.

1 For more information about running and configuring Quartus
slaves, at the command prompt, type:

quartus_sh --help=qslave r
1 Distributed DSE uses a protocol based on FTP to move files

between the master and the slaves. By default, the qslave client
listens to port number 1977 for communication with the master.
If you are running a firewall on a machine that is running the
qslave client, make sure you configure the firewall software
such that it allows incoming and outgoing transmission control
protocol (TCP) and user datagram protocol (UDP) packets on
the port used by qslave.

You must set this up in every machine that is used as a slave in
a distributed DSE environment.

1 You can change the default port number used by qslave by
running the following command:

quartus_sh --qslave port=<new_port_number> r

12–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

You must use the same version of the Quartus II software to run the slave
processes as you use to run DSE. To determine which Quartus II software
version that you are using to run DSE, select Help and click About DSE.
Unexpected results can occur if you mix different Quartus II software
versions when using the Distributed DSE feature.

Concurrent Local Compilations

To reduce compilation time, DSE can compile exploration points
concurrently. The Concurrent Local Compilations option allows you to
specify the number of local compilations that DSE performs. For the
Concurrent Local Compilations option, you can specify up to six
concurrent compilations by choosing an integer value ranging from 1
through 6. You can use this option in conjunction with Distributed DSE.
However, your system must have both the appropriate resources and
licenses to perform concurrent compilations, and distributed processing.
Multiprocessor or multicore systems are recommended for concurrent
local compilations.

1 Concurrent Local Compilations require a separate Quartus II
software license for each concurrent compilation. For example,
if you compile four concurrent compilations, you need four
licenses. Be sure before you choose a Concurrent Local
Compilations value and start compilation that sufficient
licenses are available.

Creating Custom Spaces for DSE

You can use custom spaces to explore combinations of options that are
not in the predefined Exploration Space list. An exploration space is
defined in an XML file. The following sections describe the tags you use
to create a Custom Space that DSE can process.

A custom space is defined by the following three pairs of tags:

■ <DESIGNSPACE> and </DESIGNSPACE>
■ <POINT> and </POINT>
■ <PARAM> and </PARAM>

DESIGNSPACE Tag

The <DESIGNSPACE> tag defines the start of the exploration space of a
custom space. The end tag </DESIGNSPACE> defines the end of the
exploration space. Both of these tags are required for all custom spaces.

Altera Corporation 12–23
October 2007

DSE Advanced Information

POINT Tag

The POINT tag pair must occur within the DESIGNSPACE tag pair. The
<POINT <name>=”<stage>” enabled=”<value>”> tag defines the start
of the exploration point in a custom exploration space. The end tag
</POINT> defines the end of the exploration point. The POINT tag also
allows you to specify the <stage> value and whether a particular point is
active for a particular DSE exploration.

The “<stage>” value in the POINT tag can be one of the following:

■ map—indicates an Analysis and Synthesis setting change for that
point

■ fit—indicates a Fitter setting change for that point
■ seed—indicates a Fitter seed change
■ llr—indicates a LogicLock property change

The “<value>” value in the POINT tag can either be "1," indicating that for
a specific stage the exploration point is active, or "0" for an inactive point.

An example of a POINT tag is shown in Example 12–1:

Example 12–1. Example of the POINT Tag
<POINT space=”map” enabled=”1”>
...
</POINT>

The preceding point indicates a point that has Analysis and Synthesis
setting changes and is active during Analysis and Synthesis.

PARAM Tag

The PARAM tag pair must occur within the POINT tag pair. The
<PARAM name=”<parameter>”> tag defines the start of a parameter to be
modified for a particular exploration point. The end tag </PARAM>
defines the end of the parameter.

An example of a PARAM tag is shown in Example 12–2:

Example 12–2. Example of the PARAM tag
<PARAM name +”ADV_NETLIST_OPT_SYNTH_GATE_RETIME”> ON </PARAM>

12–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

The Analysis and Synthesis settings and the “<parameter>” values are
shown in Table 12–7.

The point in Example 12–2 indicates that the Analysis and Synthesis
setting gate-level retiming is turned on for the exploration space point.

Table 12–8 shows the Fitter settings.

Table 12–7. Analysis and Synthesis Settings Note (1)

Analysis and Synthesis Settings Description Value

<device family name>_OPTIMIZATION_
TECHNIQUE

Type of optimization technique to use
during the Quartus II Analysis and
Synthesis stage for the specific device
family.

SPEED,
AREA,
BALANCED

ADV_NETLIST_OPT_SYNTH_GATE_RETIME Gate-level register retiming. OFF, ON

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP WYSIWYG primitive resynthesis. OFF, ON

DSE_SYNTH_EXTRA_EFFORT_MODE Controls the Quartus II software
synthesis effort.

MODE_1,
MODE_2,
MODE_3

Note to Table 12–7:
(1) Not all Analysis and Synthesis settings are available for all device families.

Table 12–8. Fitter Settings Note (1)

Fitter Settings Description Value

AUTO_PACKED_REGISTERS_
<device family name>

Register packing for
the specified device
family

NORMAL, MINIMIZE_AREA,
MINIMIZE_AREA_WITH_CHAINS,
AUTO, SPARSE, SPARSE_AUTO,
OFF

INNER_NUM PowerFit Fitter effort
level

{integer value}

PHYSICAL_SYNTHESIS_COMBO_LOGIC Physical synthesis for
combinational logic

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
DUPLICATION

Physical synthesis for
register duplication

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
RETIMING

Physical synthesis for
register retiming

OFF, ON

Note to Table 12–8:
(1) Not all Fitter settings are available for all device families.

Altera Corporation 12–25
October 2007

DSE Advanced Information

Simple Custom Space

Example 12–3 shows a simple custom exploration space performing a
seed sweep with settings for the Analysis and Synthesis and the Fitter
compilation stages.

Example 12–3. Simple Custom Exploration Space
<DESIGNSPACE>

<POINT space="map" enabled="1">
 <PARAM name="CYCLONE_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_GATE_RETIME">ON</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP">ON</PARAM>
 <PARAM name="STRATIX_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 </POINT>

<POINT space="fit" enabled="1">
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_RETIMING">ON</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION">

ON</PARAM>
 <PARAM name="AUTO_PACKED_REG_CYCLONE">OFF</PARAM>
 <PARAM name="AUTO_PACKED_REGISTERS_STRATIX">OFF</PARAM>
 <PARAM name="SEED">3</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_COMBO_LOGIC">ON</PARAM>

</POINT>
</DESIGNSPACE>

The example defines a custom exploration space that has two points: one
map exploration point which changes synthesis settings, and one fit
exploration point which change the Quartus II Fitter settings. The map
point sets the optimization technique to speed, turns on gate-level
retiming, and turns on the WYSIWYG resynthesis. For the fit point,
register retiming, register duplication, and physical synthesis for
combinational logic are turned on; register packing is turned off; and a
seed value of three is used.

12–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Custom Space XML Schema

Example 12–4 contains an XML Schema describing the XML format for
custom exploration space files. You can use an advanced XML editor or
XML verification tool to validate any custom exploration files against this
schema.

Example 12–4. XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="DESIGNSPACE">
<xs:complexType>
<xs:sequence>
<xs:element name="COPYRIGHT" type="xs:string" minOccurs="0"/>
<xs:element name="POINT" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="PARAM" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="space" type="xs:string" use="required"/>
<xs:attribute name="enabled" type="xs:boolean" use="optional" default="1"/>
</xs:complexType>

</xs:element>
</xs:sequence>

<xs:attribute name="name" type="xs:string" use="optional"/>
</xs:complexType>

</xs:element:
</xs:schema

Altera Corporation 12–27
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Netlist Optimizations & Physical Synthesis chapter in volume 2 of the
Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook

Document
Revision History

Table 12–9 shows the revision history for this chapter.

Table 12–9. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 12–27. —

May 2007
v7.1.0

● Added Arria GX to list of devices that support all Advanced
setting types

● Removed device-centric specificity in Table 12–7 and
Table 12–8 to cover a broader range of devices (device
families)

● Added Referenced Documents on page 12–27.

Added support
information for the Arria
GX device.

March 2007
v7.0.0

Updates for software version 7.0, including:
● Made minor changes to DSE Support for Altera Device

Families
● Made minor changes to Distribute DSE Using LSF Resources
● Updated XML Schema (Example 12-4)

Added support
information for the
Cyclone III device.

November 2006
v6.1.0 Added revision history to the document

Added support
information for the
Stratix III device.

May 2006
v6.0.0

Updated text for the software version 6.0.0, including information
about the new Quartus II TimeQuest Timing Analyzer feature

—

October 2005
v5.1.0

Chapter 12 was formerly Chapter 10 in version 5.0 —

May 2005
v5.0.0

Chapter 10 was formerly Chapter 9 in version 4.2 —

December 2004
v2.1

Updated to reflect the new functionality in software version 4.1,
including tables and figures

—

June 2004
v2.0

Updated to reflect the new functionality in software version 4.0,
including tables and figures

—

February 2004
v1.0

Initial release —

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

12–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 2

Altera Corporation 13–1
October 2007 Preliminary

13. Synplicity Amplify
Physical Synthesis Support

Introduction Synplicity has developed the Amplify Physical Optimizer physical
synthesis software to help designers meet performance and
time-to-market goals. You can use this software to create location
assignments and optimize critical paths outside the Quartus® II software
design environment. The Amplify Physical Optimizer design software,
which runs on the Synplify Pro synthesis engine, creates a Tcl script with
hard location assignments and LogicLock™ regions to control logic
placement in the Quartus II software. Depending on the design, the
Amplify Physical Optimizer software can improve Altera® device
performance over Synplify Pro-compiled designs by reducing the
number of logic levels and the interconnect delays in critical paths.
Moreover, the Amplify Physical Optimizer software allows designers to
compile multiple implementations in parallel to reduce optimization
time.

f For more information on the Synplify Pro software, refer to Synplicity
Synplify & SynplifyPro Support chapter in volume 1 of the Quartus II
Handbook.

This chapter explains the physical synthesis concepts, including an
overview of the Amplify Physical Optimizer software and Quartus II
flow.

Software
Requirements

The examples in this document were generated using the following
software versions:

■ Quartus II, version 5.1
■ Amplify Physical Optimizer, version 3.7

QII52011-7.2.0

13–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Amplify Physical
Synthesis
Concepts

The Amplify Physical Optimizer physical synthesis tool uses information
about the interconnect architectures of Altera devices to reduce
interconnect and logic delays in the critical paths. Timing-driven
synthesis tools cannot accurately predict how place-and-route tools
function; therefore, determining the real critical path with the synthesis
tool is a difficult task.

Synthesis tools create technology-level netlist files that work with
floorplans using place-and-route tools. Synthesis tools also define netlist
names that are used in place-and-route, which means hard location
assignments may not apply in the next revision of the resynthesized
netlist as nodes names might have been renamed or removed.

Physical synthesis allows you to create floorplans at the register transfer
level (RTL) of a design, giving you the ability to perform logic tunneling
and replication. Physical synthesis also gives you the flexibility to make
changes at the RTL level, allowing these changes to reflect in previously
planned paths.

Physical synthesis uses knowledge of the FPGA device architecture to
place paths into customized regions. This process will minimize
interconnect delays as interconnect and placement information
influences the synthesis process of the design.

When the Amplify Physical Optimizer software synthesizes a design, it
creates a .vqm atom-netlist and Tcl script files, which are read by the
Quartus II software. You can create a Quartus II project with the VQM
netlist as the top-level module and source the Tcl script generated by the
Amplify Physical Optimizer software. The Tcl script sets the design's
device, timing constraints (Timing Driven Compilation [TDC] value,
multicycle paths, and false paths), and any other constraints specified by
the Amplify Physical Optimizer software. After you source the Tcl script,
you can compile the design in the Quartus II software.

Refer to “Forward Annotating Amplify Physical Optimizer Constraints
into the Quartus II Software” on page 13–12 for more information on
setting up a Quartus II project with Amplify Physical Optimizer Tcl script
files.

After the Quartus II software compiles the design, the software performs
a timing analysis on the design. The timing analysis reports all timing-
related information for the design. If the design does not meet the timing
requirements, you can use the timing analysis numbers as a reference
when running the next iteration of physical synthesis through the
Amplify Physical Optimizer software. This same timing analysis
information is also reported in a file called <revision name>.tan.rpt in the
design directory.

Altera Corporation 13–3
October 2007 Preliminary

Amplify-to-Quartus II Flow

Amplify-to-
Quartus II Flow

If timing requirements are not met with the Amplify Physical Optimizer
flow, you should first place and route the design in the Quartus II
software without physical constraints. After compilation, you can
determine which critical paths should be optimized in the Amplify
Physical Optimizer tool in the next iteration. Figure 13–1 shows the
Amplify Physical Optimizer design flow.

Figure 13–1. Software Design Flow

Initial Pass: No Physical Constraints

The initial iteration involves synthesizing the design in the Amplify
Physical Optimizer software without physical constraints.

Before beginning the physical synthesis flow, run an initial pass in the
Amplify Physical Optimizer without physical constraints. At the
completion of every Quartus II compilation, the Quartus II Timing
Analyzer performs a comprehensive static timing analysis on your
design and reports your design’s performance and any timing violations.
If the design does not meet performance requirements after the first pass,
additional passes can be made in the Amplify software.

Amplify Software

Timing
Requirements

Satisfied?

Yes

No

Configure Device

Physical Optimization

Quartus II Software

VHDL Verilog
HDL
Files

13–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Create New Implementations

To set the Amplify Physical Optimizer software options, perform the
following steps:

1. Compile the design with the Resource Sharing and FSM Compiler
options selected and the Frequency setting specified in MHz. For
optimal synthesis, the Amplify software includes the retiming,
pipelining, and FSM Explorer options. For designs with multiple
clocks, set the frequency of individual clocks with Synthesis
Constraints Optimization Environment (SCOPE).

2. Select New Implementation. The Options for Implementation
dialog box appears.

3. Specify the part, package, and speed grade of the targeted device in
the Device tab.

4. Turn on the Map Logic to Atoms option in the Device Mapping
Options dialog box.

5. Turn off the Disable I/O Insertion and Perform Cliquing options.

6. Specify the name and directory in the Implementation Results tab.
The result format should be VQM, and you should select Optional
Output Files as the Write Vendor Constraint File option so that the
software can generate the Tcl script containing the project
constraints.

7. Specify the number of critical paths and the number of start and end
points to report in the Timing Report tab. Figure 13–2 shows the
main Amplify Physical Optimizer project window.

These steps create a directory where the results of this pass are recorded.
Ensure that the Amplify Physical Optimizer software implementation
options are set as described in the initial pass.

Altera Corporation 13–5
October 2007 Preliminary

Amplify-to-Quartus II Flow

Figure 13–2. Amplify Physical Optimizer Project Window

Iterative Passes: Optimizing the Critical Paths

In the iterative passes, you optimize the design by placing logic in the
device floorplan within the Amplify software. Amplify's floorplan is a
high-level view of the device architecture. The floorplan view is
dependent upon the target device family. When the Amplify Physical
Optimizer re-optimizes the current critical path, additional critical paths
may be created. Continue to add new constraints to the existing floorplan
until it meets the performance requirements. The design may need
several iterations to meet these performance requirements. Since
optimizing critical paths involves trying different implementations, the
creation of various Amplify project implementations will help in
organizing the placement of logic in the floorplan.

13–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Using the
Amplify Physical
Optimizer
Floorplans

When designs do not meet performance requirements with the initial
pass through the Amplify Physical Optimizer software, you can create
location assignments to reduce interconnect and logic delays to improve
your design's performance.

You must determine which paths to constrain based on the critical paths
from the previous implementation. When Quartus II projects are
launched with the Amplify Tcl script, the Quartus II software generates a
<revision name>.tan. rpt file that lists the critical paths for the design. You
can then create custom structure regions for critical paths. After critical
paths are implemented in a floorplan with the Amplify Physical
Optimizer software, you must resynthesize the design. The software will
then attempt to optimize the critical paths and reduce the number of logic
levels. After the Amplify Physical Optimizer software resynthesizes the
design, the Quartus II software must compile the new implementation. If
the design does not meet timing requirements, perform another physical
synthesis iteration.

Use the following steps to create a floorplan in the Amplify Physical
Optimizer software:

1. Click the New Physical Constraint File icon at the top of the
Amplify Physical Optimizer window.

2. Click Yes on the Estimation Needed dialog box; the floorplan
window appears (Figure 13–3).

Figure 13–3. Stratix 1S20 Floorplan in the Amplify Physical Optimizer Software

Altera Corporation 13–7
October 2007 Preliminary

Using the Amplify Physical Optimizer Floorplans

The floorplan view is located at the top of the screen and the RTL view is
at the bottom of the screen.

You can specify modules or individual paths in the Amplify Physical
Optimizer software. Using modules can quickly resolve timing problems.

Use the following steps in the software to create a floorplan module:

1. Create a region in the Amplify Physical Optimizer device floorplan
window and select the module in the RTL view of the design.

2. Drag the module to the new region. The software will then report
the utilization of the region.

3. Resynthesize the design in the software to reoptimize the critical
path after the modules have location constraints.

4. Write out the placement constraints into the VQM netlist and the Tcl
script.

Repeat the above procedure to create as many regions as required.

Multiplexers

To create a floorplan for critical paths with one or more multiplexers,
create multiple regions and assign the multiplexer to one region and the
logic to another. Figure 13–4 shows placing critical paths with
multiplexers.

Figure 13–4. Placing Critical Paths with Multiplexers

Region 2

Region 1

Region 3

Device Column

Place multiplexer in
Region 2 or Region 3.

Place logic portion
in Region 1.

Logic FIFO,
RAM, or

Black Box

13–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

If the critical path contains a multiplexer feeding a register, create a
region and place the multiplexer along with the entire critical path in the
region (Figure 13–5).

Figure 13–5. Critical Paths with Multiplexers Feeding Registers

If the critical path is too large for the region, divide the critical path and
ensure that the multiplexer and register are in the same region.
Figure 13–6 shows large critical paths with multiplexers feeding registers.

Figure 13–6. Large Critical Paths with Multiplexers Feeding Registers

Critical Path

Include this multiplexer in the
same region as the critical path
to extract the enable flip flop.

Logic

Critical Path too Large for One LAB

Include this multiplexer in the same region as
the register to to extract the enable flip flop.

Logic

Altera Corporation 13–9
October 2007 Preliminary

Using the Amplify Physical Optimizer Floorplans

Independent Paths

Designs may have two or more independent critical paths. To create an
independent path in the Amplify Physical Optimizer software, follow the
steps below:

1. Create a region and assign the first critical path to that region.

2. Create another region, leaving one MegaLAB structure between the
first and second regions.

3. Assign the second critical path to the second region.

Feedback Paths

If critical paths have the same start and end points, follow the steps below
in the Amplify Physical Optimizer software (Figure 13–7):

1. Select the register and instance not directly connected to the register.

2. Right-click and select Filter Schematic twice.

3. Highlight the line leading out of the register and either press P or
right-click the line. Select Expand Paths. Assign this logic to a
region.

Figure 13–7. Critical Paths with the Same Starting or Ending Points

Starting and Ending Points

Figure 13–8 shows a critical path that has multiple starting and ending
points. Use Find to display all the starting and ending points in the RTL
view in Amplify. Expand the paths between those points. If there is
unrelated logic between the multiple starting points and ending points,

C1 C2 C3 C4

If the critical path does not include I/O pins,
create region in columns C2 or C3.

13–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

assign the starting points and ending points to the same region. Similarly,
if there is unrelated logic between starting points and multiple ending
points, assign the starting points and ending points to the same region.

Figure 13–8. Critical Paths with Multiple Starting or Ending Points

If the two critical paths share a register at the starting or ending point,
assign one critical path to one region, and assign the other critical path to
an adjacent region. Figure 13–9 shows two critical paths that share a
register.

Figure 13–9. Two Critical Paths Sharing a Register

If the fanout is on the shared region, replicate the register and assign both
registers to two regions (Figure 13–10). This is done by dragging the same
register to the required regions. Entities and nodes are also replicated by
performing the same procedure.

A BCombinational
Logic

Combinational
Logic

Combinational
Logic

Combinational
Logic

Combinational
Logic

Combinational
Logic

Register
2

Register
1

Region 1

Critical Path 1 End Point

Region 2

Register
3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2Logic 1 Logic 2

Altera Corporation 13–11
October 2007 Preliminary

Using the Amplify Physical Optimizer Floorplans

Figure 13–10. Fanout on a Shared Region

Utilization

Designs with device utilizations of 90% or higher may have difficulties
during fitting in the Quartus II software. If the device has several finite
state machines, you should implement the state machines with sequential
encoding, as opposed to one-hot encoding.

To check area utilization, check the Amplify Physical Optimizer log file
and .srr file for region utilization, after the mapping stage is complete. On
the Run menu, click Estimate Area to update the utilization estimates.

Detailed Floorplans

If the critical path does not meet timing requirements after physical
optimization, you can create new regions to achieve timing closure. It is
recommended that regions do not overlap. Regions should either be
entirely contained in another region or remain entirely outside of it. Select
the logic requiring optimization from the existing region. Deselect the
logic and assign it to the new region. Run the Amplify Physical Optimizer
software on the design with the modified physical constraints. Then place
and route the design.

reg_2reg_1

Critical Path 1 End Point

reg_3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2

reg_1

Critical Path 1 End Point

reg_3

Critical Path 2 Start Point (reg_2 replicate)

reg_2 Replicate
reg_2

Logic

LogicLogic

Logic

Logic

Logic

Logic

Logic

13–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Forward Annotating Amplify Physical Optimizer Constraints into
the Quartus II Software

The Amplify Physical Optimizer software simplifies the forward
annotating of both timing and location constraints into the Quartus II
software through the generation of three Tcl scripts. At the completion of
a physical synthesis run, in the Amplify Physical Optimizer software, the
following Tcl scripts are generated:

■ <project name>_cons.tcl
■ <project name>.tcl
■ <project name>_rm.tcl

Table 13–1 provides a description of each script’s purpose.

To forward annotate Amplify Physical Optimizer's constraints into the
Quartus II software you must use quartus_cmd. The quartus_cmd
command must be used as Amplify Physical Optimizer's Tcl scripts are
not compatible with quartus_sh. The following command will execute
the <project name>_cons, which will create a Quartus II project with all
Amplify Physical Optimizer constraints forward annotated, and will
perform a compilation.

<command prompt>quartus_cmd f-my_project_cons.tcl r
1 You must run the <project name>_cons.tcl first.

After compilation, you may customize the project either in the Quartus II
GUI or sourcing a custom Tcl script.

f Refer to the Tcl Scripting chapter in volume 2 of the Quartus II Handbook
for more information on creating and understanding Tcl scripts in the
Quartus II software.

Table 13–1. Amplify Physical Optimizer Tcl Script Description

Tcl File Description

<project name>_cons This Tcl script will create and compile a Quartus II project. The <project name>.tcl
will automatically be sourced when this script is sourced.

<project name> This script contains forward annotation of constraint information including clock
frequency, duty cycle, location, etc.

<project name>_rm This script removes any previous constraints from the project. The removed
constrainst is saved in <project name>_prev.tcl

Altera Corporation 13–13
October 2007 Preliminary

Using the Amplify Physical Optimizer Floorplans

Altera Megafunctions Using the MegaWizard Plug-In Manager
with the Amplify Software

When you use the Quartus II MegaWizard® Plug-In Manager to set up
and parameterize a megafunction, it creates either a VHDL or Verilog
HDL wrapper file. This file instantiates the megafunction (a black box
methodology) or, for some megafunctions, generates a fully
synthesizeable netlist for improved results with EDA synthesis tools such
as Synplify (a clear box methodology).

Clear Box Methodology

The MegaWizard Plug-In Manager-generated fully synthesizeable netlist
is referred to as a clear box methodology because the Amplify Physical
Optimizer software can “see” into the megafunction file. The clear box
feature enables the synthesis tool to report more accurate timing
estimates and take better advantage of timing driven optimization.

To turn on the clear box, go to the Tools menu, and select the
MegaWizard Plug-In Manager. Turn on the Generate Clearbox body
(for EDA tools only) option. This option is only for certain
megafunctions. If this option does not appear, then clear box models are
not supported for the selected megafunction. Turning on this option
causes the MegaWizard Plug-In Manager to generate a synthesizable
clear box netlist instead of the megafunction wrapper file described in
“Black Box Methodology” on page 13–14.

Using MegaWizard Plug-In Manager-generated Verilog HDL Files for
Clear Box Megafunction Instantiation
If you check the <output file>_inst.v option on the last page of the wizard,
the MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file for use in your Synplify design. This file can help you
instantiate the megafunction clear box netlist file, <output file>.v, in your
top-level design. Include the megafunction clear box netlist file in your
Amplify Physical Optimizer project and the information gets passed to
the Quartus II software in the Amplify Physical Optimizer-generated
VQM output file.

Using MegaWizard Plug-In Manager-generated VHDL Files for Clear
Box Megafunction Instantiation
If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL component declaration file and a VHDL instantiation template
file for use in your design. These files help to instantiate the megafunction
clear box netlist file, <output file>.vhd, in your top-level design. Include

13–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

the megafunction clear box netlist file in your Amplify Physical
Optimizer project and the information gets passed to the Quartus II
software in the Amplify Physical Optimizer-generated VQM output file.

Black Box Methodology

The MegaWizard Plug-In Manager-generated wrapper file is referred to
as a black-box methodology because the megafunction is treated as a
“black box” in the Amplify Physical Optimizer software. The black box
wrapper file is generated by default in the MegaWizard Plug-In Manager
and is available for all megafunctions.

The black-box methodology does not allow the synthesis tool any
visibility into the function module thus not taking full advantage of the
synthesis tool's timing driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes.

f For more information on instantiating MegaWizard Plug-In Manager
modules or black boxes, refer to the Synplicity Synplify & SynplifyPro
Support chapter in volume 1 of the Quartus II Handbook.

Conclusion Physical synthesis uses improved delay estimation to optimize critical
paths. The Amplify Physical Optimizer software uses the hierarchical
structure of logic and interconnect in Altera devices so that designers can
direct a critical path to be placed into several well-defined blocks. The
Amplify Physical Optimizer-to-Quartus II software flow is one of the
steps to solving the problem of achieving timing closure through physical
synthesis.

Referenced
Documents

This chapter references the following documents:

■ Synplicity Synplify and SynplifyPro Support chapter in volume 1 of the
Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii51009.pdf

Altera Corporation 13–15
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 13–2 shows the revision history for this chapter.

Table 13–2. Document Revision History

Data and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

No changes.
—

May 2007
v7.1.0

Added “Referenced Documents” on page 13–14.
—

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Added revision history to this chapter.
—

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0.
—

October 2005
v5.1.0

Chapter 14 was formerly Chapter 12 in version 5.0. —

May 2005
v5.0.0

Chapter 12 was formerly Chapter 11 in version 4.2. —

December 2004
v1.1

● Chapter 11 was formerly Chapter 12.
● Updates to tables and figures.
● New functionality in the Quartus II software version 4.2

—

February 2004
v1.0

Initial release. —

13–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Altera Corporation Section IV–i

Section IV. Engineering
Change Management

Programmable logic can accommodate changes to a system specification
late in the design cycle. Last-minute design changes, commonly referred
to as engineering change orders (ECOs), are small changes to the
functionality of a design after the design has been fully compiled. This
section describes how the Chip Planner feature in the Quartus II software
supports ECOs by allowing quick and efficient changes to your logic late
in the design cycle.

This section includes the following chapter:

■ Chapter 14, Engineering Change Management with the Chip
Planner

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section IV–ii Altera Corporation

Engineering Change Management Quartus II Handbook, Volume 2

Altera Corporation 14–1
October 2007 Preliminary

14. Engineering Change
Management with the Chip

Planner

Introduction Programmable logic can accommodate changes to a system specification
late in the design cycle. In a typical engineering project development
cycle, the specification for the programmable logic portion is likely to
change after engineering development begins or while integrating all
system elements.

Last-minute design changes, commonly referred to as engineering
change orders (ECOs), are small changes to the functionality of a design
after the design has been fully compiled. A design is fully compiled when
synthesis and place-and-route are completed.

The Chip Planner supports ECOs by allowing quick and efficient changes
to your logic late in the design cycle. It provides a visual display of your
post place-and-route design mapped to the device architecture of your
chosen FPGA, from LAB placement in the device to each mapped Logic
Element (LE) or Adaptive Logic Module (ALM). You can analyze your
design with the visual display to alter how device resources are mapped
to support ECOs.

This chapter addresses the impact that ECOs have on the design cycle,
discusses the design flow for performing ECOs, and describes how you
can use the Chip Planner to perform ECOs.

1 In addition to performing ECOs, the Chip Planner allows you to
perform detailed analysis on routing congestion, relative
resource usage, logic placement, LogicLock™ and customized
regions, fan-ins and fan-outs, paths between registers, and delay
estimates for paths.

f For detailed information about using the Chip Planner for design
analysis, refer to the Analyzing and Optimizing the Design Floorplan
chapter in volume 2 of the Quartus II Handbook.

The Chip Planner supports the following device families:

■ Arria™ GX
■ Stratix® III
■ Stratix II
■ Stratix II GX
■ Stratix
■ Stratix GX

QII52017-7.2.0

14–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

■ HardCopy® II
■ HardCopy
■ Cyclone® III
■ Cyclone II
■ Cyclone
■ MAX II®

Engineering
Change Orders

ECOs are typically performed during the verification stage of a design
cycle. When a small change is required on a design, such as modifying a
PLL for a different clock frequency or routing a signal out to a pin for
analysis, recompilation of the entire design can be time consuming,
especially for larger designs. Because several iterations of small design
changes can occur during the verification cycle, recompilation times can
quickly add up. Furthermore, a full recompilation due to a small design
change can result in the loss of previous design optimizations.
Performing ECOs, instead of performing a full recompilation on your
design, limits the change only to the affected portions of logic.

This section discusses the areas in which ECOs have an impact on a
system design and how the Quartus II software can help you optimize the
design in these areas. The following topics are discussed in this section:

■ “Performance”
■ “Compilation Time” on page 14–3
■ “Verification” on page 14–3
■ “Documentation” on page 14–4

Performance

Making a small change to the design functionality can result in a loss of
previous design optimizations. Typical examples of design optimizations
are floorplan optimizations and physical synthesis. Ideally, you should
preserve previous design optimizations.

The Chip Planner allows you to perform ECOs directly on the post
place-and-route database of your design. Any changes you make are
restricted to the affected device resources, so the timing performance of
the remaining portions of your design are not affected. The Chip Planner
performs design rule checks on all changes to prevent illegal
modifications to your design.

Additionally, the Quartus II software offers an incremental compilation
feature that preserves the optimizations and placement of your design
during recompilation. This feature allows you to create partitions of your

Altera Corporation 14–3
October 2007 Preliminary

Engineering Change Orders

design, so that if a change is required after the design is fully placed and
optimized, only the affected partition is recompiled to implement the
change.

The incremental compilation flow fully supports performing ECOs with
the Chip Planner.

When recompiling a project with the Quartus II incremental compilation
enabled, the compiler preserves all ECOs performed with the Chip
Planner in partitions that have not been modified.

f For more information about how to use the incremental compilation
feature in the Quartus II software, refer to the Quartus II Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

For more information about using the ECO flow in conjunction with
incremental compilation, refer to “Using Incremental Compilation in the
ECO Flow” on page 14–38.

Compilation Time

In the traditional programmable logic design flow, a small change in the
design requires a complete recompilation of the design. A complete
recompilation of the design consists of synthesis and place-and-route.
Making small changes to the design to reach the final implementation on
a board can be a long process. Since the Chip Planner works only on the
post place-and-route database, you can implement your design changes
in minutes without performing a full compilation.

Verification

After you make a design change, you can verify the impact to your
design. To verify that you have not violated timing, you can perform a
static timing analysis using the Quartus II Classic Timing Analyzer or the
Quartus II TimeQuest Timing Analyzer after you check and save your
netlist changes within the Chip Planner.

f For more information about the Quartus II TimeQuest Timing Analyzer,
refer to the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of
the Quartus II Handbook. For more information about the Quartus II
Classic Timing Analyzer, refer to the Quartus II Classic Timing Analyzer
chapter in volume 3 of the Quartus II Handbook.

Additionally, you can perform a gate-level or timing simulation of the
ECO-modified design by using the post place-and-route netlist generated
by the Quartus II software.

14–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Documentation

All ECOs made with the Chip Planner are logged in the Change Manager
to provide a track record of all changes. By using the Change Manager,
you can easily revert back to the original post-fit netlist or you can pick
and choose which ECOs you want to have applied.

For more information about the Change Manager, refer to “Change
Manager” on page 14–36.

Additionally, the Quartus II software provides support for multiple
compilation revisions of the same project. You can use ECOs made with
the Chip Planner in conjunction with revision support to compare several
different ECO changes and to provide the ability to revert back to
previous project revisions.

Altera Corporation 14–5
October 2007 Preliminary

ECO Design Flow

ECO Design
Flow

Figure 14–1 shows the design flow for performing ECOs.

Figure 14–1. Design Flow to Support ECO Changes

Verilog
HDL
(.v)

VHDL
(.vhdl)

AHDL
(.tdf)

Block
Design

File
(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Partition Top

Partition 1

Partition 2

Yes

NoRequirements
Satisfied?

No

Design Partition
Assignment

Analysis and
Synthesis Changes

Analysis and Synthesis

Fitter

Assembler

Timing Analyzer

Program/Configuration
Device

System Test and Verify

Analysis and
Synthesis Changes

Modify
Logic Cells, I/O Cells,

PLL, Floorplan Location
Assignments in

Chip Planner

Partition Merge
Create Complete Netlist Using

Appropriate Source Netlists for Each
Partition (Post-Fit or Post-Synthesis)

Change Manager
Stores Netlist
Modification

Details

Make ECO
at Netlist Level

Make a Design
Change in Your HDL

Recreate Programming File

14–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

For iterative verification cycles, implementing small design changes at
the netlist level can be faster than making an RTL code change. As such,
making ECO changes are especially helpful when you debug the design
on silicon and need a fast turnaround to generate a programming file for
debugging the system.

A typical ECO application occurs when you uncover a problem on the
board and isolate the problem to the appropriate nodes or I/O cells on the
device. You must be able to correct the functionality quickly and generate
a new programming file. Performing small changes using the Chip
Planner allows you to modify the post place-and-route netlist directly.
This bypasses the need to perform synthesis and logic mapping, thus
decreasing the turn around time for programming file generation during
the verification cycle. If the change corrects the problem, no modification
of the HDL source code is necessary. You can use the Chip Planner to
perform the following ECO-related changes to your design:

■ Document the changes made with the Change Manager
■ Easily recreate the steps taken to produce design changes
■ Generate EDA simulation netlists for design verification
■ Perform static timing analysis on the design

1 The Quartus II software can help reduce recompilation time
with incremental recompilation for more complex changes that
require HDL source code modifications.

The Chip
Planner
Overview

The Chip Planner provides a visual display of device resources. It shows
the arrangement and usage of the resource atoms in the device
architecture that you are targeting. Resource atoms are the building
blocks for your device, such as ALMs, LEs, PLLS, DSP blocks, memory
block, or IOEs.

The Chip Planner also provides an integrated platform for design
analysis and for making ECOs to your design after place-and-route. The
toolset consists of the Chip Planner (providing a device floorplan view of
your mapped design) and two integrated subtools —the Resource
Property Editor and the Change Manager.

For analysis, the Chip Planner can show logic placement, LogicLock and
custom regions, relative resource usage, detailed routing information,
routing congestion, fan-ins and fan-outs, paths between registers, and
delay estimates for paths. Additionally, the Chip Planner allows you to
create location constraints or resource assignment changes, such as
moving or deleting logic cells or I/O atoms using the device floorplan.
For ECO changes, the Chip Planner enables you to create, move, or delete
logic cells in the post place-and-route netlist for fast programming file
generation. Additionally, you can open the Resource Property Editor

Altera Corporation 14–7
October 2007 Preliminary

The Chip Planner Overview

from the Chip Planner to edit the properties of resource atoms or to edit
the connections between them. All changes to resource atoms and
connections are logged automatically with the Change Manager.

Opening the Chip Planner

To open the Chip Planner, on the Tools menu, click Chip Planner.
Alternatively, click the Chip Planner icon on the Quartus II software
toolbar.

Optionally, the Quartus II software supports cross-probing to open the
Chip Planner. To open the Chip Planner by cross-probing, use the
shortcut menu in the following tools:

■ Compilation Report
■ Project Navigator window
■ RTL source code
■ Timing Closure Floorplan
■ Node Finder
■ Simulation Report
■ RTL Viewer

1 If the device in your project is not supported by the Chip
Planner and you attempt to open the Chip Planner, the
Quartus II software displays the following message: “Can’t
display Chip Planner: the current device family is
unsupported.” In such cases, use the Timing Closure Floorplan.

f For more information about the Timing Closure Floorplan, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

The Chip Planner Toolbar

The Chip Planner gives you design analysis capabilities with a
user-friendly GUI. You can perform many functions within the Chip
Planner from the menu items or by clicking the icons on the toolbar.
Figure 14–2 shows an example of the Chip Planner toolbar and describes
the commonly used icons.

14–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–2. Chip Planner Toolbar

1 You can also customize the icons on the Chip Planner toolbar. To
customize the icon toolbar if the Chip Planner window is
attached, on the Tools menu, click Customize Chip Planner. If
the Chip Planner window is detached, on the Tools menu, click
Customize.

f For more information about using the Chip Planner for analyzing your
design, refer to the Analyzing and Optimizing the Design Floorplan chapter
in volume 2 of the Quartus II Handbook.

The Chip Planner Tasks and Layers

The Chip Planner enables you to set up tasks to quickly implement ECO
changes or manipulate assignments for the floorplan of the device. Each
task consists of an editing mode and a set of customized layer settings.

Detach Window

Selection Tool

Zoom Tool

Hand Tool

Full Screen

Find

Create LogicLock Region

Generate Fan-In Connections
Generate Fan-Out Connections

Generate Immediate Fan-In

Generate Immediate Fan-Out

Generate Connections Between Nodes
Critical Path Settings

Expand Connections/Paths
Clear Unselected Connections/Paths

Highlight Selections
Highlight Routing

Clear Unselected Highlight

Show Delays

Equations

Detailed Tooltip

Bird's Eye View

Check and Save All Netlist Changes

Opens Layers Settings Dialog Box

Task Pull Down menu

Altera Corporation 14–9
October 2007 Preliminary

The Chip Planner Overview

The editing modes available in the Chip Planner are the Assignment
mode and the ECO mode. Assignment mode enables you to create or
manipulate LogicLock regions and make location constraints on the
resource atoms used in your design. Assignments made are reflected in
the Quartus II Settings File (.qsf) and the Assignment Editor. With ECO
mode, you can create atoms, delete atoms, and move existing atoms to
different locations. The changes made with ECO mode are made in the
post place-and-route database. You can analyze your design with both
modes.

The layers settings enable you to specify the displayed graphic elements
for a given task. You can turn off the display of specific graphic elements
to increase the window refresh speed and reduce visual clutter when
viewing complex designs. The Background Color Map indicates the
relative level of resource usage for different areas of the device. For
example, Routing Utilization indicates the relative routing utilization
and Physical Timing Estimate indicates the relative physical timing.

The Chip Planner has predefined tasks that enable you to quickly
implement ECO changes or manipulate assignments for the floorplan of
the device. The Chip Planner provides the following predefined tasks:

■ Post-Compilation Editing (ECO)
■ Floorplan Editing (Assignment)
■ Power Analysis (Assignment)—available for Stratix III devices only

You can choose the predefined task by selecting it in the Task pull down
menu located in the upper right corner of the Chip Planner floorplan
view.

To customize your own task, click on the layers icon to open the Layers
Settings dialog box.

f For more information about assignments and analysis with the Chip
Planner, refer to the Analyzing and Optimizing the Design Floorplan
chapter in volume 2 of the Quartus II Handbook.

For more information about performing ECOs using the ECO mode, refer
to “Performing ECOs with the Chip Planner (Floorplan View)” on
page 14–15.

The Chip Planner Floorplan Views

The Chip Planner uses a hierarchical zoom viewer that shows various
abstraction levels of the targeted Altera device. As you increase the zoom
level, the level of abstraction decreases, thus revealing more detail about
your design.

14–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

First-Level View

The first zoom level provides a high-level view of the entire device
floorplan. This view provides a level of detail similar to the Field View in
the Quartus II Timing Closure Floorplan. You can locate and view the
placement of any node in your design. Figure 14–3 shows the Chip
Planner Floorplan first-level view of a Stratix device.

Figure 14–3. The Chip Planner First-Level (Highest) Floorplan View (Stratix
Family Device)

Each resource is shown in a different color to help you distinguish
between resources. The Chip Planner Floorplan uses a gradient color
scheme in which the color becomes darker as the utilization of a resource
increases. For example, as more LEs are used in the LAB, the color of the
LAB becomes darker.

LABs

MRAM

DSP

M512

M4K

I/Os

Altera Corporation 14–11
October 2007 Preliminary

The Chip Planner Overview

When you place the mouse pointer over a resource at this level, a tooltip
appears that describes, at a high level, the utilization of the resource
(Figure 14–4).

Figure 14–4. Tooltip Message: First-Level View

Second-Level View

As you zoom in, you see an increase in the level of detail. Figure 14–5
shows the second-level view of the Chip Planner Floorplan for a Stratix
device.

Figure 14–5. The Chip Planner Second-Level Floorplan View (Stratix Family
Device)

At this level you can see the contents of LABs and I/O banks. You also see
the routing channels that are used to connect resources. When you place
the mouse pointer over an LE or ALM at this level, a tooltip is displayed
(Figure 14–6) that shows the name of the LE/ALM, the location of the
LE/ALM, and the number of resources that are used with that LAB.
When you place the mouse pointer over an interconnect, the tooltip
shows the routing channels that are used by that interconnect.

LEs

I/Os

LABs

14–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–6. Tooltip Message: Second-Level View

Third-Level View

At the third level, which provides the greatest level of detail, you can see
each routing resource that is used within a LAB in the FPGA. Figure 14–7
shows the level of detail at the third-level view for a Stratix device.

Figure 14–7. The Chip Planner Third-Level View

The second and third level of zoom allows you to move LEs, ALMs, and
I/Os from one physical location to another. You can move a resource by
selecting, dragging, and dropping it into the desired location. At this level
you can also create new LEs and I/Os.

For more information about creating atoms, deleting atoms, or
reallocating device atoms, refer to the section “Performing ECOs with the
Chip Planner (Floorplan View)” on page 14–15.

Horizontal
Routing

LE

LAB Internal
Routing

Vertical
Routing

Altera Corporation 14–13
October 2007 Preliminary

The Chip Planner Overview

For more information about creating Floorplan Assignments, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the
Quartus II Handbook.

Bird’s Eye View

The Bird’s Eye View (Figure 14–8) displays a high-level picture of
resource usage for the entire chip and provides a fast and efficient way to
navigate between areas of interest in the Chip Planner.

14–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–8. Bird’s Eye View

The Bird’s Eye View is displayed as a separate window that is linked to
the Chip Planner Floorplan. When you select an area of interest in the
Bird’s Eye View, the Chip Planner Floorplan automatically refreshes to
show that region of the device. As you change the size of the main-view
rectangle in the Bird’s Eye View window, the main Chip Planner

DSP

M512

Main-View
Rectangle

M4K

LAB

Altera Corporation 14–15
October 2007 Preliminary

Performing ECOs with the Chip Planner (Floorplan View)

Floorplan window also zooms in (or zooms out). You can make the
main-view rectangle smaller in the Bird’s Eye View to see more detail on
the Chip Planner Floorplan window.

The Bird’s Eye View is particularly useful when the parts of your design
that you are interested in are at opposite ends of the chip and you want
to quickly navigate between resource elements without losing your frame
of reference.

Performing
ECOs with the
Chip Planner
(Floorplan View)

You can manipulate resource atoms in the Chip Planner when you select
the ECO editing mode. The following ECO changes can be performed
with the Chip Planner Floorplan view:

■ “Creating Atoms”
■ “Deleting Atoms” on page 14–20
■ “Moving Atoms” on page 14–20

To select the ECO editing mode in the Chip Planner, perform the
following steps with the Chip Planner open:

1. On the View menu, click Layers Settings. The Layers Setting
window appears.

2. Under Editing Mode, select ECO.

Creating Atoms

While in the ECO editing mode, the Chip Planner enables you to easily
create atoms by moving the mouse pointer over the desired resource
atom, right-clicking, and then clicking Create Atom. After the atoms are
created, the properties can be edited by double-clicking the resource
atom, which opens the Resource Property Editor.

The type of atoms that you can create are:

■ ALMs (for Arria GX, Stratix III, Stratix II, and Stratix II GX)
■ LEs (for Stratix, Stratix GX, Cyclone III, Cyclone II, Cyclone, and

MAX II)
■ I/O Elements

1 Creating resource atoms is not supported in the Assignment
editing mode.

Refer to “Resource Property Editor” on page 14–21 for details about
editing atom resource properties.

14–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Creating ALM Atoms

Each ALM for Stratix III, Stratix II, and Arria GX device families has two
combinational LUT outputs and two registered outputs. In the Chip
Planner, you can divide each ALM into four resource atoms according to
the type of output path. Figure 14–9 shows an ALM as shown in the Chip
Planner.

Figure 14–9. ALM in the Chip Planner

To create a combinational ALM LUT atom, perform the following steps:

1. Right click on the left side of any unused (not shaded) ALM and
click Create Atom. The Resource Selection dialog box appears.

2. In the Resource Selection dialog box, select the atom that you wish
to create. The lower index number refers to the top combinational
node and the higher index refers to the bottom combinational node.

3. Click OK. The Create <Altera device> LUT Atom dialog box
appears.

4. In the Atom Name box, type the name of the resource atom.

5. Under LUT Mode, select from Normal, Extended, or Arithmetic.

6. If applicable, in the Partition list, select the partition that the newly
created atom should reside in. The default partition for newly
created atoms is the top-level partition.

7. Click OK.

f To find more information about the LUT mode, refer to the data sheet of
the appropriate device.

When you have successfully created a combinational output, the
combinational element is colored in the Chip Planner. Figure 14–10 shows
a combinational ALUT atom.

Top
Combinational

ALUT

Bottom
Combinational

ALUT

Top
Register
Node

Bottom
Register
Node

Altera Corporation 14–17
October 2007 Preliminary

Performing ECOs with the Chip Planner (Floorplan View)

Figure 14–10. Combinational ALUT Atom

To create a registered ALM atom, perform the following steps:

1. Right click on any ALM register resource and click Create Atom.
The Create Register Atom dialog box appears.

2. In the Atom Name box, type the atom name.

3. Click OK.

Creating Logic Element Atoms

The Chip Planner shows resource atoms for Stratix, Cyclone, and MAX
device families as logic elements. For Cyclone II devices, the Chip
Planner shows resource atoms as the combinational output of the logic
element LUT and the registered output of the logic element. Figure 14–11
show an example of an atom resource in the Chip Planner for the Stratix,
Cyclone, and MAX devices. Figure 14–12 shows the Cyclone II resource
atom in the Chip Planner.

14–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–11. Logic Element for Stratix, Cyclone, and MAX Devices in the Chip
Planner

Altera Corporation 14–19
October 2007 Preliminary

Performing ECOs with the Chip Planner (Floorplan View)

Figure 14–12. Logic Element for Cyclone II in the Chip Planner

To create a logic element resource for Stratix, Cyclone, and MAX device
families, perform the following steps:

1. Right-click on any available (unshaded) LE resource and click
Create Atom. The Create Logic Cell Atom dialog box appears.

2. If applicable, in the Partition list, select the partition that the newly
created atom should reside in. The default partition for newly
created atoms is the top-level partition.

3. In the Atom Name box, type the atom name.

4. Click OK.

To create a combinational resource atoms for Cyclone II devices, perform
the following steps:

1. Right-click on the left side of an available (unshaded) LE resource
and click Create Atom. The Create Cyclone II LUT Atom dialog
box appears.

14–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

2. If applicable, in the Partition list, select the partition that the newly
created atom should reside in. The default partition for newly
created atoms is the top-level partition.

3. In the Atom Name box, type the atom name.

4. Click OK.

To create a register resource atom for Cyclone II devices, perform the
following steps:

1. Right-click on right side of an available (unshaded) LE resource and
click Create Atom. The Create Cyclone II Register Atom dialog box
appears.

2. If applicable, in the Partition list, select the partition that the newly
created atom should reside in. The default partition for newly
created atoms is the top-level partition.

3. In the Atom Name box, type the atom name.

4. Click OK.

Deleting Atoms

To delete a resource atoms, right-click on the desired resource atom in the
Chip Planner and click Delete Atom.

You can delete a resource only after all of its fan-out connections are
removed. Protected resources, such as resources in megafunctions or IP
cores, cannot be deleted.

Refer to “Resource Property Editor” on page 14–21 for more details about
removing fan-out connections.

Moving Atoms

You can move resource atoms by clicking on the desired resource and
dragging the selected atom to a free resource atom. Moving nodes as an
ECO can only be done in the ECO editing mode. Changes made while in
Assignment mode create location constraints on the design and require a
recompilation to incorporate the change.

Resource atoms from protected resources, such as resources of
Megafunction IP cores, cannot be moved.

Altera Corporation 14–21
October 2007 Preliminary

Resource Property Editor

Check and Save Netlist changes

After making all ECOs, you can run the Fitter to incorporate the changes
by clicking on the Check and Save All Netlist Changes icon in the Chip
Planner toolbar. The Fitter compiles the ECO changes, performs design
rule checks on the design, and generates a programming file.

Resource
Property Editor

You can view and edit the following resources with the Resource
Property Editor:

■ “Logic Element” (Stratix, Stratix GX, Cyclone III, Cyclone II,
Cyclone, and MAX II) on page 14–21

■ “Adaptive Logic Module”(Arria GX, Stratix II, Stratix II GX, and
Stratix III) on page 14–25

■ “FPGA I/O Elements”(I/O resources) on page 14–27
■ “PLL Properties”on page 14–43

You can view (but not edit) the following resources with the Resource
Property Editor:

■ RAM
■ DSP blocks

Logic Element

An Altera LE contains a four-input LUT, which is a function generator
that can implement any function of four variables. In addition, each LE
contains a register that is fed by the output of the LUT or by an
independent function generated in another LE.

You can use the Resource Property Editor to view and edit any LE in the
FPGA. Open the Resource Property Editor for an LE by pointing to Locate
and clicking Locate in Resource Property Editor in one of the following
views:

■ Timing Closure Floorplan
■ RTL Viewer
■ Technology Map Viewer
■ Node Finder
■ Chip Planner

f For more information about LE architecture for a particular device
family, refer to the device family handbook or data sheet.

14–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

You can use the Resource Property Editor to change the following LE
properties:

■ Data input to the LUT
■ LUT mask or LUT equation

Logic Element Schematic View

Figure 14–13 shows how the LE appears in the Resource Property Editor.

Figure 14–13. Stratix LE Architecture Notes (1), (2)

Notes to Figure 14–13:
(1) By default, the Quartus II software displays the used resources in blue and the unused in gray. For Figure 14–13, the

used resources are in blue and the unused resources are in red.
(2) For more information about the Stratix device’s LE Architecture, refer to the Stratix Device Handbook.

Altera Corporation 14–23
October 2007 Preliminary

Resource Property Editor

LE Properties

Figure 14–14 shows an example of the properties that can be viewed for a
selected LE in the Resource Property Editor. To view LE properties, on the
View menu, click View Properties to view these properties.

Figure 14–14. LE Properties

Modes of Operation

LUTS in an LE can operate in either normal or arithmetic mode.

f For more information about LE modes of operation, refer to volume 1 of
the appropriate device handbook.

When an LE is configured in normal mode, the LUT in the LE can
implement a function of four inputs.

When the LE is configured in arithmetic mode, the LUT in the LE is
divided into two 3-input LUTs. The first LUT generates the signal that
drives the output of the LUT, while the second LUT generates the
carry-out signal. The carry-out signal can only drive a carry-in signal of
another LE.

Sum and Carry Equations

You can change the logic function implemented by the LUT by changing
the sum and carry equations. When the LE is configured in normal mode,
you can only change the SUM equation. When the LE is configured in
arithmetic mode, you can change both the SUM and the CARRY
equations.

The LUT mask is the hexadecimal representation of the LUT equation
output. When you change the LUT equation, the Quartus II software
automatically changes the LUT mask. Conversely, when you change the
LUT mask, the Quartus II software automatically computes the LUT
equation.

14–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

sload and sclear Signals

Each LE register contains a synchronous load (sload) signal and a
synchronous clear (sclear) signal. You can invert either the sload or
sclr signal feeding into the LE. If the design uses the sload signal in an
LE, the signal and its inversion state must be the same for all other LEs in
the same LAB. For example, if two LEs in a LAB have the sload signal
connected, both LEs must have the sload signal set to the same value.
This is also true for the sclr signal.

Register Cascade Mode

When register cascade mode is enabled, the cascade-in port feeds the
input to the register. The register cascade mode is used most often when
the design implements shift registers. You can change the register cascade
mode by connecting (or disconnecting) the cascade in port. However, if
you create this port, you must ensure that the source port LE is directly
above the destination LE.

Cell Delay Table

The cell delay table describes the propagation delay from all inputs to all
outputs for the selected LE.

LE Connections

On the View menu, click View Port Connections to view the connections
that feed in and out of an LE. Figure 14–15 shows the LE connections in
the Connectivity window.

Figure 14–15. View Connections

Delete an LE

To delete an LE, perform the following steps:

1. Right click the desired LE in the Resource Property Editor, point to
Locate and click Locate in Resource Property Editor.

Altera Corporation 14–25
October 2007 Preliminary

Resource Property Editor

2. You must remove all fan-out connections from an LE prior to
deletion. To delete fan-out connections, right-click each connected
output signal, point to remove, and click Fanouts. Select all of the
fan-out signals on the dialog box that appear and click OK.

3. Remove fan-out connections. After you locate the LE in the
Resource Property Editor, delete the fan-out connections. On the
right-click menu, point to Remove and click Fanouts on all outputs.

4. To delete an atom after all fan-out connections are removed,
reference the atom back in the Chip Planner. Right-click and choose
Delete Atom.

Adaptive Logic Module

The basic building block of logic in the Arria GX, Stratix II, Stratix II GX,
and Stratix III architectures is the ALM. The ALM provides advanced
features that have efficient logic utilization. Each ALM contains
LUT-based resources that can be divided between two adaptive LUTs
(ALUTs). With up to eight inputs to the two ALUTs, each ALM can
implement various combinations of two functions. This adaptability
allows the ALM to be completely backward-compatible with four-input
LUT architectures. One ALM can implement any function with up to six
inputs and certain seven-input functions. In addition to the adaptive
LUT-based resources, each ALM contains two programmable registers,
two dedicated full adders, a carry chain, a shared arithmetic chain, and a
register chain. The ALM can efficiently implement various arithmetic
functions and shift registers using these dedicated resources.

You can implement the following types of functions in a single ALM:

■ Two independent 4-input functions
■ An independent 5-input function and an independent 3-input

function
■ A 5-input function and a 4-input function, if they share one input
■ Two 5-input functions, if they share two inputs
■ An independent 6-input functions
■ Two 6-input functions, if they share four inputs and share function
■ Certain 7-input functions

You can use the Resource Property Editor to change the following LE
properties:

■ Existing ALM atom location
■ Data input to the LUT
■ LUT mask or LUT equation

14–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

ALM Schematic

You can view and edit any ALM atom with the Resource Property Editor
by right-clicking the ALM in the Timing Closure Floorplan, the RTL
Viewer, the Node Finder, or the Chip Planner, and clicking Locate in
Resource Property Editor (Figure 14–16).

f For a detailed description of the ALM, refer to the device handbooks for
Arria GX, Stratix II, Stratix II GX, or Stratix III device families.

Figure 14–16. ALM Schematic Note (1)

Note to Figure 14–16:
(1) By default, the Quartus II software displays the used resources in blue and the unused in gray. For Figure 14–16, the

used resources are in blue and the unused resources are in red.

ALM Properties

The properties that you can display for the ALM include an equations
table that shows the name and location of each of the two combinational
nodes and two register nodes in the ALM, the individual LUT equations
for each of the combinational nodes and the combout, sumout,
carryout, and shareout equations for each combinational node.

Altera Corporation 14–27
October 2007 Preliminary

Resource Property Editor

ALM Connections

On the View menu, click View Port Connections to view the connections
that feed in and out of an ALM.

FPGA I/O Elements

Altera FPGAs, with high-performance I/O elements including up to six
registers, are equipped with support for a number of I/O standards
allowing you to run your design at peak speeds.

f For a detailed description of the device I/O elements, refer to the
applicable device handbook.

You can change the following I/O properties:

■ Delay chain
■ Bus hold
■ Weak pull up
■ Slow slew rate
■ I/O standard
■ Current strength
■ Extend OE disable
■ PCI I/O
■ Register reset mode
■ Register synchronous reset mode
■ Register power up
■ Register mode

Arria GX, Stratix II, Stratix, and Stratix GX I/O Elements

The I/O elements in Stratix series device families and Arria GX devices
contain a bidirectional I/O buffer, six registers, and a latch for a complete
bidirectional single data rate or DDR transfer. Figure 14–17 shows the
Stratix and Stratix GX I/O element structure. The I/O element structure
contains two input registers (plus a latch), two output registers, and two
output enable registers.

14–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–17. Stratix and Stratix GX Device I/O Element and Structure Notes (1), (2)

Notes to Figure 14–17:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In

Figure 14–17, the used resources are in blue and the unused resources are in red.
(2) For more information about I/O elements in Stratix and Stratix GX devices, refer to the Stratix Device Handbook and

the Stratix GX Device Handbook.

Altera Corporation 14–29
October 2007 Preliminary

Resource Property Editor

Figure 14–18 shows the Arria GX I/O element structures.

Figure 14–18. Arria GX Device I/O Element and Structure Notes (1), (2), (3), (4)

Notes to Figure 14–18:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In

Figure 14–18, the used resources are in blue and the unused resources are in red.
(2) For more information about I/O elements in Stratix II devices, refer to the Stratix II Device Handbook.
(3) This diagram also applies to Stratix II devices.
(4) Current IOE shown in a DQS pin. Non-DQS pins do no contain DQS delay circuitry.

Stratix III I/O Elements

The I/O element (IOE) in Stratix III devices contain a bi-directional I/O
buffer and I/O registers to support a complete embedded bi-directional
single data rate or DDR transfer (shown in Figure 14–19). The IOEs are
located in I/O blocks around the periphery of the Stratix III device. The
I/O registers are composed of the input path for handling data from the
pin to the core, the output path for handling data from the core to the pin,
and the output enable (OE) path for handling the OE signal for the output
buffer. The output and OE paths are divided into output/OE registers,
alignment registers, and HDR blocks. You can bypass each block of the
output and output-enable path.

14–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–19. Stratix III Device I/O Element and Structure Notes (1), (2)

Notes to Figure 14–19:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In

Figure 14–19, the used resources are in blue and the unused resources are in red.
(2) For more information about I/O elements in Stratix III devices, refer to the Stratix III Device Handbook.

Cyclone II and Cyclone I/O Elements

The I/O elements in Cyclone III, Cyclone II, and Cyclone devices contain
a bidirectional I/O buffer and three registers for complete bidirectional
single data-rate transfer. Figure 14–20 shows the Cyclone II and Cyclone
I/O element structure. The I/O element contains one input register, one
output register, and one output enable register.

Altera Corporation 14–31
October 2007 Preliminary

Resource Property Editor

Figure 14–20. Cyclone II and Cyclone Device I/O Elements and Structure Notes (1), (2)

Notes to Figure 14–20:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In

Figure 14–20, the used resources are in blue and the unused resources are in red.
(2) For more information about I/O elements in Cyclone II and Cyclone devices, refer to the Cyclone II Device Handbook

and Cyclone Device Handbook, respectively.

Cyclone III I/O Elements

Cyclone III device IOEs contain a bidirectional I/O buffer and five
registers for complete embedded bidirectional single-data rate transfer.
Figure 14–21 shows the Cyclone III IOE structure. The IOE contains one
input register, two output registers, and two output-enable registers. The
two output registers and two output-enable registers are utilized for
double-data rate (DDR) applications. You can use the input registers for
fast setup times and the output registers for fast clock-to-output times.
Additionally, you can use the output-enable (OE) registers for fast
clock-to-output enable timing. You can use IOEs for input, output, or
bidirectional data paths.

14–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–21. Cyclone III Device I/O Elements and Structure (1), (2)

Notes to Figure 14–21:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In

Figure 14–21, the used resources are in blue and the unused resources are in red.
(2) For more information about I/O elements in Cyclone III devices, refer to the Cyclone III Device Handbook.

MAX II I/O Elements

MAX II device I/O elements contain a bidirectional I/O buffer.
Figure 14–22 shows the MAX II I/O element structure. Registers from
adjacent LABs can drive to or be driven from the I/O element’s
bidirectional I/O buffers.

Altera Corporation 14–33
October 2007 Preliminary

Resource Property Editor

Figure 14–22. MAX II Device I/O Elements and Structure Notes (1), (2)

Notes to Figure 14–22:
(1) By default, the Quartus II software displays the used resources in blue and the

unused resources in gray. In Figure 14–22, the used resources are in blue and the
unused resources are in red.

(2) For more information about I/O elements in MAX II devices, refer to the MAX II
Device Handbook.

I/O Element Features in the Resource Property Editor

You use the Resource Property Editor to view, change connectivity, and
edit the properties of the I/O elements. You can use the Chip Planner to
change placement, delete, and create new I/O elements. You can perform
all these operations on Arria GX, Stratix III, Stratix II, Stratix II GX,
Stratix, Stratix GX, Cyclone III, Cyclone II, Cyclone, and MAX II devices.

FPGA RAM Blocks

In the Quartus II software beginning with version 6.1, you can view the
architecture of different RAM blocks in the device. Figure 14–23 shows a
M9K RAM view in a Stratix III device. You can only view the connections
and properties of RAM blocks in the Resource Property Editor.

14–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Figure 14–23. M9k RAM View in a Stratix III Device Note (1)

Note to Figure 14–23:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In

Figure 14–23, the used resources are in blue and the unused resources are in red.

FPGA DSP Blocks

Dedicated hardware DSP circuit blocks in Altera devices provide
performance benefits for the critical DSP functions in your design.
Beginning with version 6.1 of the Quartus II software, you can view the
architecture of DSP blocks in the Resource Property Editor for Stratix and
Cyclone series of devices. Figure 14–24 shows a view of a DSP
architecture in a Stratix III device. You can view the properties and
connections of DSP blocks in the Resource Property Editor but you
cannot edit them.

Altera Corporation 14–35
October 2007 Preliminary

Resource Property Editor

Figure 14–24. DSP Block View in a Stratix III Device Note (1)

Note to Figure 14–24:
(1) By default, the Quartus II software displays the used resources in blue and the unused resources in gray. In

Figure 14–24, the used resources are in blue and the unused resources are in red.

14–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Change
Manager

The Change Manager maintains a record of every change that you
perform with the Resource Property Editor. Each row in the Change
Manager represents one ECO performed. The changes are numbered
sequentially, such that the larger the number, the more recent the change.

More complex changes are marked in the Change Manager with a plus
icon. You can expand a complex entry in the Change Manager by clicking
the plus icon to reveal all the changes that occurred. An example of a
complex change is the creation or deletion of an atom.

Table 14–1 summarizes the information shown by the Change Manager.

After you complete all of your design modifications, check the integrity
of the netlist by right-clicking in the Change Manager and clicking Check
& Save All Netlist Changes. If the applied changes successfully pass the
netlist check, they are written to disk. If the changes do not pass the netlist
check, all changes made since the previous successful netlist check are
reversed. Figure 14–25 shows the Change Manager.

Colored indicators in the Current Value and Disk Value columns
indicate the present status of the data in those columns. Green in the
Current Value column indicates that the change has occurred. Blue in the

Table 14–1. Change Manager Information

Column Name Description

Index Identifies, by a sequential number, change records corresponding to changes made in the Chip
Planner or Resource Property Editor.

In the case of complex change records, the index column identifies not only the main change,
but also any component changes.

Node Name Uniquely identifies the resource to which a change has been made.

Change Type Identifies the type of change that has been made to the resource.

Old Value Lists the value of the resource immediately prior to the change being made.

Target Value Lists the desired target value (new value) that you have established using the Resource
Property Editor, Chip Planner, or SignalProbe.

Current Value Lists the value of the resource in the netlist that is currently active in memory (as opposed to
the value in the netlist saved on disk, which may be different if you have made changes and not
yet used the Check & Save All Netlist Changes command).

Disk Value Lists the current value of the resource on disk.

Comment Lets you add a comment to a change record in the Change Manager.
To add a comment to a change record, double-click in the Comment field of the record you want
to annotate, and type the desired comment.

Altera Corporation 14–37
October 2007 Preliminary

Change Manager

Disk Value column indicates that the change has successfully passed a
Check & Save Netlist Changes operation. Choose Check & Save All
Netlist Changes.

Figure 14–25. Change Manager Results

f For more information about SignalProbe pins, refer to the Quick Design
Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook.

1 Each line in the Change Manager represents a change record.
Simple changes appear as a single line. More complex changes,
which require that several actions be performed to achieve the
change, appear as a single line marked by a plus icon. Click the
plus icon to show all the component actions performed as part
of the change.

Complex Changes in the Change Manager

Certain types of changes that you make in the Resource Property Editor
or the Chip Planner (including creating or deleting atoms and changing
connectivity) may appear to be self-contained, but these changes are
actually composed of multiple actions. Complex changes are indicated
with a plus icon in the Index column.

The change record in the Change Manager is a single-line representation
of the actual change actions that occurred. You expand the change record
to show the component actions that make up the change by clicking the
plus icon.

After expanding a change entry in the Change Manager, you can see that
creation of an atom consists of three actions:

■ The creation of a new logic cell
■ The creation of an output port on the newly created logic cell
■ The assignment of a location index to the newly created logic cell

14–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

You cannot select individual components of a complex change record; if
you select any part of a complex change record, the entire complex
change record is selected.

1 For examples of managing changes with the Change Manager,
refer to “Example of Managing Changes With the Change
Manager” in the Quartus II Help.

Managing SignalProbe Signals

The SignalProbe pins that you create from the SignalProbe Pins dialog
box are recorded in the Change Manager. After you have created a
SignalProbe assignment, you can use the Change Manager to quickly
disable SignalProbe assignments by selecting Revert to Last Saved
Netlist from the right-click menu in the Change Manager.

f For more information about SignalProbe pins, refer to the Quick Design
Debugging Using SignalProbe chapter in volume 3 of the Quartus II
Handbook.

Exporting Changes

You can export all your changes to a tool command language (Tcl) script,
a Comma Separated Value (.csv) file, or a Text (.txt) file. The Tcl file
enables you to write a script that reapplies changes that were deleted by
compilation. You can also write a script that applies to other Quartus II
software projects that you create. The Comma-Separated Value or Text
files provide a list of changes in a tabular format. To export changes,
perform the following steps:

1. On the right-click menu, click Export Changes.

2. Specify the Tcl file name.

3. Click OK.

The resulting Tcl script can also implement similar changes to another
Quartus II design.

Using
Incremental
Compilation in
the ECO Flow

Beginning with the Quartus II software version 6.1, the incremental
compilation feature is turned on by default. The top-level design is
automatically set to a design partition when the incremental compilation
feature is on. A design partition during incremental compilation can have
different netlist types (netlist types can be set to source HDL, post
synthesis, or post-fit). The netlist type indicates whether that partition
should be resynthesized or refit during the recompilation. Incremental

Altera Corporation 14–39
October 2007 Preliminary

Using Incremental Compilation in the ECO Flow

compilation saves you time and preserves the placement of unchanged
partitions in your design if small changes must be made to some
partitions late in the design cycle.

f For more information about partitions, their netlist types and the
Quartus II incremental compilation, refer to the Quartus Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

The behavior of ECOs during an incremental compilation depends on the
netlist type of your design partitions. The Quartus II software preserves
ECOs if the partition containing the ECO satisfies the following two
conditions:

■ The netlist type of the affected partition is set to post-fit with the
Fitter preservation level set to Placement and Routing.

■ There are no source code changes in the affected partition that would
cause the partition to be resynthesized during recompilation.

If you have ECOs that affect multiple partitions in your design, the
Quartus II software preserves your ECOs during recompilation if any of
the affected partitions are set to post-fit. Note that whenever an ECO
affects multiple partitions, all of the affected partitions become linked. All
of the higher-level “parent” partitions up to their nearest common parent
are also linked. In such cases, the connection between the partitions is
actually defined outside of the two partitions immediately affected, so all
the partitions must be compiled together. The linked partition inherits the
netlist type of the partition with the highest level of preservation. For
example, if an ECO is performed on a lower-level partition of a post-fit
type and a top-level partition of a post-synthesis type, the two partitions
will be linked and will have a post-fit netlist type.

If the partitions are set to use the source code or a post-synthesis netlist,
the software issues a warning and the post-fit ECO changes are not
included in the new compilation.

For example, if your top-level partition netlist type is set to
post–synthesis, and either you have no other lower-level partitions or the
lower-level partitions netlist type is also set to post-synthesis, during
recompilation, your ECOs are not preserved and a warning message
appears in the messages window, indicating that ECO modifications are
discarded; however, all of the ECO information is retained in the Change
Manager. In this case, you can apply ECOs from the change manager and
perform the Check & Save All Netlist Changes step as described in
““ECO Flow with No Quartus II Incremental Compilation” on
page 14–40.

14–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

ECO Flow with No Quartus II Incremental Compilation

If you do not use the Quartus II incremental compilation feature and have
implemented ECOs, those ECOs are not preserved during recompilation
of your design; however, all of the ECOs remain in the Change Manager.
To apply an ECO, right click the Change Manager and click Apply
Selected Change. (If the Change Manager window is not visible at the
bottom of your screen, from the View menu, point to Utility Windows
and click Change Manager.)

After applying the selected ECO, perform one of the following steps:

v From the menu within the Change Manager, click Check & Save All
Netlist Changes.

or

v From Processing menu, point to Start and click Start Check & Save
All Netlist Changes.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. The
Tcl commands for controlling the Chip Planner are located in the
chip_planner package of the quartus_cdb executable. A
comprehensive list of Tcl commands for the Chip Planner can be found in
the Quartus Scripting Reference Manual.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about all settings and constraints in the Quartus II software, refer to the
Quartus II Settings File Reference Manual. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Common ECO
Applications

This section provides examples of the situations in which you might use
an ECO to make a post-compilation change to your design. To help build
your system quickly, you can use Chip Planner functions to perform the
following activities:

■ Adjust the drive strength of an I/O using the Chip Planner
■ Modifying the PLL properties using the Chip Planner (see

page 14–42)

Altera Corporation 14–41
October 2007 Preliminary

Common ECO Applications

Adjust the Drive Strength of an I/O Using the Chip Planner

To adjust the drive strength of an I/O, follow the steps in this section to
run the Fitter and assembler to incorporate the ECO changes into the
netlist of the design.

1. In Chip Planner, select the Post Compilation Editing (ECO) task.

2. Locate the I/O in the Resource Property Editor, as shown in
Figure 14–26.

Figure 14–26. I/O in the Resource Property Editor

3. Click the Current Strength box for the selected I/O, then click Edit.

4. Change the value for the desired current strength.

5. Right-click the ECO change in the Change Manager tool and click
Check & Save All Netlist Changes to apply the ECO change.

14–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

1 Changing the pin locations of input/output ports can be done
using the ECOs flow as well. You can drag and move the signal
from an existing pin location to a new location while in the Post
Compilation Editing (ECO) task in the Chip Planner. Afterward,
you can set Check & Save All Netlist Changes to compile the
ECO.

Modifying the PLL Properties Using the Chip Planner

PLLs are used to modify and generate clock signals to meet design
requirements. Additionally, PLLs are used for distributing clock signals
to different devices in a design, reducing clock skew between devices,
improving I/O timing, and generating internal clock signals.

The Resource Property Editor enables you to view and modify PLL
properties to meet your design requirements. Using the Stratix PLL as an
example, the rest of this section describes the adjustable PLL properties
and the equations as a function of the adjustable PLL properties that
govern the PLL output parameters. Figure 14–27 shows a Stratix PLL as
shown in the Resource Property Editor.

Altera Corporation 14–43
October 2007 Preliminary

Common ECO Applications

Figure 14–27. The PLL View in a Stratix Device

PLL Properties

The Resource Property Editor enables you to modify PLL options, such as
phase shift, output clock frequency, and duty cycle. You can also change
the following PLL properties with the Resource Property Editor:

■ Input frequency
■ M VCO tap
■ M initial
■ M value
■ N value
■ M counter delay
■ N counter delay

14–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

■ M2 value
■ N2 value
■ SS counter
■ Charge pump current
■ Loop filter resistance
■ Loop filter capacitance
■ Counter delay
■ Counter high
■ Counter low
■ Counter mode
■ Initial
■ VCO tap

Adjusting the Duty Cycle

Use the following equation to adjust the duty cycle of individual output
clocks:

(1)

Adjusting the Phase Shift

Use the following equation to adjust the phase shift of an output clock of
a PLL:

(2)

For normal mode Period VCO, Tap VCO, and Initial VCO are governed by
the following settings:

Tap VCO = Counter Delay — M Tap VCO

Initial VCO = Counter Initial — M Initial
Period VCO = In Clock Period × N / M

For external feedback mode, Tap VCO, Initial VCO, and Period VCO are
governed by the following settings:

Tap VCO = Counter Delay — M Tap VCO

Initial VCO = Counter Initial — M Initial
Period VCO = In Clock Period × N / (M + Counter High + Counter Low)

High % = Counter High/(Counter High + Counter Low)
Low % = Counter Low/(Counter High + Counter Low)

Phase Shift = (Period VCO × 0.125 × Tap VCO) + (Initial VCO ×
Period VCO)

Altera Corporation 14–45
October 2007 Preliminary

Common ECO Applications

1 For a detailed description of the settings, refer to the Quartus II
Help. For more information about Stratix device PLLs, refer to
the Stratix Architecture chapter in volume 1 of the Stratix Device
Handbook. For more information about PLLs in Arria GX, Stratix
II, Cyclone II, and Cyclone devices, refer to the appropriate
device handbook.

Adjusting the Output Clock Frequency

Use the following equation to adjust the PLL output clock in normal
mode:

(3)

Use the following equation to adjust the PLL output clock in external
feedback mode:

(4)

Adjusting the Spread Spectrum

Use the following equation to adjust the spread spectrum for your PLL:

(5)

Output Clock Frequency = Input Frequency M initial
N initial + Counter High + Counter Low

OUTCLK INCLK =
M initial + External Feedback Counter High + External Feedback Counter Low

N initial + Counter High + Counter Low

%spread = 1 –
M2N1
M1N2

14–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Post ECO Steps This section describes the operations you can perform after making an
ECO change with the Chip Planner.

Performing Static Timing Analysis

After you make an ECO change with the Chip Planner, you must perform
static timing analysis of your design with either the Quartus II Classic
Timing Analyzer or the Quartus II TimeQuest Timing Analyzer to ensure
that your changes have not adversely affected your design’s timing
performance.

For example, when you turn on one of the delay chain settings for a
specific pin, you change the I/O timing. Therefore, to ensure that all
timing requirements are still met, you should perform static timing
analysis.

Whenever you change your design using the Chip Planner, Altera also
recommends that you perform a gate-level timing simulation on your
design with either the Quartus II Simulator or a third-party EDA
simulation tool.

1 For more information about performing a static timing analysis
of your design, refer to the Quartus II Classic Timing Analyzer or
Quartus II TimeQuest Timing Analyzer chapters in volume 3 of
the Quartus II Handbook.

Generating a Programming File

After you have performed simulation and static timing analysis and are
confident that the changes meet your design requirements, generate a
new programming file with the Quartus II Assembler. Use the
programming file to implement your modified design in an Altera
device.

f For more information about programming your FPGA, refer to the
Quartus II Programmer chapter in volume 3 of the Quartus II Handbook.

Conclusion As the time-to-market pressure mounts, it is more and more important to
produce a fully functional design in the shortest amount of time. To
address this challenge, Altera developed the Chip Planner in the
Quartus II software suite. The Chip Planner enables you to analyze and
modify your design floorplan. Also, ECO changes made with the Chip
Planner do not require a full recompilation, eliminating the lengthy
process of RTL modification, resynthesis, and another place-and-route
cycle. In summary, the Chip Planner shortens the verification cycle and
brings timing closure to your design in a shorter period of time.

Altera Corporation 14–47
October 2007 Preliminary

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of
the Quartus II Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Cyclone Device Handbook
■ MAX II Device Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Programmer chapter in volume 3 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the

Quartus II Handbook
■ Stratix Architecture chapter in volume 1 of the Stratix Device Handbook
■ Stratix Device Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 14–2 shows the revision history for this chapter.

Table 14–2. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 14–47. —

May 2007
v7.1.0

Initial Release. —

http://www.altera.com/literature/hb/stx/ch_2_vol_1.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/stx/stratix_handbook.pdf
http://www.altera.com/literature/hb/cyc/cyc_c5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/cyc/cyc_c5v1.pdf
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii53022.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

14–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 2

Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 3: Verification

QII5V3-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates .. xxix

About this Handbook .. xxxi
How to Contact Altera .. xxxi
Third-Party Software Product Information ... xxxi
Typographic Conventions ... xxxii

Section I. Simulation

Chapter 1. Quartus II Simulator
Introduction .. 1–1
Simulation Flow ... 1–1

Functional Simulation .. 1–3
Timing Simulation .. 1–4
Timing Simulation Using Fast Timing Model Simulation ... 1–4

Waveform Editor ... 1–5
Creating VWFs .. 1–5

Count Value ... 1–11
Clock ... 1–11
Arbitrary Value ... 1–12
Random Value ... 1–13

Generating a Testbench ... 1–13
Grid Size .. 1–14
Time Bars ... 1–14
Stretch or Compress a Waveform Interval ... 1–15
End Time .. 1–16
Arrange Group or Bus in LSB or MSB Order ... 1–17

Simulator Settings .. 1–17
Simulation Verification Options .. 1–21
Simulation Output Files Options ... 1–24

Simulation Report .. 1–25
Simulation Waveform .. 1–25
Simulating Bidirectional Pin ... 1–26
Logical Memories Report .. 1–27
Simulation Coverage Reports ... 1–27
Comparing Two Waveforms .. 1–28

Debugging with the Quartus II Simulator ... 1–29
Breakpoints .. 1–29
Updating Memory Content .. 1–30

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Last Simulation Vector Outputs ... 1–30
Conventional Debugging Process .. 1–30

Accessing Internal Signals for Simulation ... 1–30
Scripting Support ... 1–32
Conclusion .. 1–33
Referenced Documents ... 1–33
Document Revision History ... 1–34

Chapter 2. Mentor Graphics ModelSim Support
Introduction .. 2–1
Background ... 2–1
Software Compatibility ... 2–3
Altera Design Flow with ModelSim or ModelSim-Altera Software .. 2–3
Functional RTL Simulation .. 2–5

Functional Simulation Libraries ... 2–5
lpm Simulation Models .. 2–5
Altera Megafunction Simulation Models .. 2–6
Low-Level Primitive Simulation Models .. 2–7

Simulating VHDL Designs .. 2–7
Create Simulation Libraries ... 2–7

Create Simulation Libraries Using the ModelSim GUI .. 2–8
Create Simulation Libraries Using the ModelSim Command Prompt 2–8

Compile Simulation Models into Simulation Libraries ... 2–8
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI 2–8
Compile Simulation Models into Simulation Libraries at the ModelSim Command
Prompt ... 2–9

Compile Testbench and Design Files into Work Library .. 2–9
Compile Testbench and Design Files into Work Library Using the ModelSim Command
Prompt ... 2–9

Loading the Design ... 2–9
Loading the Design Using the ModelSim Command Prompt 2–10

Running the Simulation ... 2–10
Running the Simulation Using the ModelSim Command Prompt 2–10

Simulating Verilog HDL Designs .. 2–10
Create Simulation Libraries ... 2–10

Create Simulation Libraries Using the ModelSim GUI .. 2–11
Create Simulation Libraries Using the ModelSim Command Prompt 2–11

Compile Simulation Models into Simulation Libraries ... 2–11
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–11
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–12

Compile Testbench and Design Files into Work Library .. 2–12
Compile Testbench and Design Files into Work Library Using the ModelSim Command
Prompt ... 2–12

Altera Corporation v
Preliminary

Contents

Loading the Design ... 2–12
Loading a Design Using the ModelSim Command Prompt ... 2–13

Running the Simulation ... 2–13
Running the Simulation Using the ModelSim Command Prompt 2–13

Verilog HDL Functional RTL Simulation with Altera Memory Blocks 2–13
Post-Synthesis Simulation .. 2–16

Generating a Post-Synthesis Simulation Netlist .. 2–16
Simulating VHDL Designs .. 2–17

Create Simulation Libraries ... 2–17
Create Simulation Libraries Using the ModelSim GUI .. 2–17
Create Simulation Libraries Using the ModelSim Command Prompt 2–18
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–18
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–18

Compile Testbench and VHDL Output File into Work Library .. 2–18
Compile Testbench and VHDL Output File into Work Library Using ModelSim
Command Prompt ... 2–19

Loading the Design ... 2–19
Loading the Design Using the ModelSim Command Prompt 2–19

Running the Simulation ... 2–19
Running the Simulation Using the ModelSim Command Prompt 2–20

Simulating Verilog HDL Designs .. 2–20
Create Simulation Libraries ... 2–20

Create Simulation Libraries Using the ModelSim GUI .. 2–20
Create Simulation Libraries Using the ModelSim Command Prompt 2–20
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–21
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–21

Compile Testbench and Verilog Output File into Work Library 2–21
Compile Testbench and Verilog Output File into Work Library Using the ModelSim
Command Prompt ... 2–21

Loading the Design ... 2–22
Loading the Design Using the ModelSim Command Prompt 2–22

Running the Simulation ... 2–22
Running the Simulation Using the ModelSim Command Prompt 2–23

Gate-Level Timing Simulation ... 2–23
Generating a Gate-Level Timing Simulation Netlist ... 2–23

Generating a Different Timing Model ... 2–24
Operating Condition Example: Generate All Timing Models for Stratix III Devices 2–25

Perform Timing Simulation Using Post-synthesis Netlist .. 2–26
Gate-Level Simulation Libraries .. 2–27
Simulating VHDL Designs .. 2–29

Create Simulation Libraries ... 2–30
Create Simulation Libraries Using the ModelSim GUI .. 2–30
Create Simulation Libraries Using the ModelSim Command Prompt 2–31
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–31
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–31

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Compile Testbench and VHDL Output File into Work Library .. 2–31
Compile Testbench and VHDL Output File into Work Library Using the ModelSim
Command Prompt ... 2–32

Loading the Design ... 2–32
Loading a Design Using the ModelSim Command Prompt ... 2–33

Running the Simulation ... 2–33
Running a Simulation Using the ModelSim Command Prompt 2–33

Simulating Verilog HDL Designs .. 2–33
Create Simulation Libraries ... 2–33

Create Simulation Libraries Using the ModelSim GUI .. 2–34
Create Simulation Libraries Using the ModelSim Command Prompt 2–34
Compile Simulation Models into Simulation Libraries Using the ModelSim GUI ... 2–34
Compile Simulation Models into Simulation Libraries Using the ModelSim Command
Prompt ... 2–35

Compile Testbench and Verilog Output File into Work Library 2–35
Compile Testbench and Verilog Output File into Work Libraries Using the ModelSim
Command Prompt ... 2–35

Loading the Design ... 2–35
Loading the Design Using the ModelSim Command Prompt 2–36

Running the Simulation ... 2–36
Running the Simulation Using the ModelSim Command Prompt 2–36

Simulating Designs that Include Transceivers .. 2–37
Stratix GX Functional Simulation .. 2–37

Example: Performing Functional Simulation for Stratix GX in Verilog HDL 2–37
Example: Performing Functional Simulation for Stratix GX in VHDL 2–37

Stratix GX Post-Fit (Timing) Simulation ... 2–38
Example: Performing Timing Simulation for Stratix GX in Verilog HDL 2–38
Example: Performing Timing Simulation for Stratix GX in VHDL 2–39

Stratix II GX Functional Simulation ... 2–39
Example: Performing Functional Simulation for Stratix II GX in Verilog HDL 2–40
Example: Performing Functional Simulation for Stratix II GX in VHDL 2–41

Stratix II GX Post-Fit (Timing) Simulation ... 2–41
Example: Performing Timing Simulation for Stratix II GX in Verilog HDL 2–42
Example: Performing Timing Simulation for Stratix II GX in VHDL 2–42

Transport Delays .. 2–43
+transport_path_delays ... 2–43
+transport_int_delays .. 2–43

Using the NativeLink Feature with ModelSim ... 2–44
Setting Up NativeLink ... 2–44
Performing an RTL Simulation Using NativeLink .. 2–44
Performing a Gate-Level Simulation Using NativeLink .. 2–47
Setting Up a Testbench .. 2–48

Creating a Testbench .. 2–49
Scripting Support ... 2–50

Generating a Post-Synthesis Simulation Netlist for ModelSim ... 2–50
Tcl Commands ... 2–50
Command Prompt .. 2–50

Generating a Gate-Level Timing Simulation Netlist for ModelSim 2–51
Tcl Commands ... 2–51

Altera Corporation vii
Preliminary

Contents

Command Line .. 2–51
Software Licensing and Licensing Setup ... 2–51

LM_LICENSE_FILE Variable ... 2–52
Conclusion .. 2–52
Referenced Documents ... 2–52
Document Revision History ... 2–53

Chapter 3. Synopsys VCS Support
Introduction .. 3–1
Software Requirements ... 3–1
Using VCS in the Quartus II Design Flow ... 3–3
Using VCS in the Quartus II Design Flow ...3–3

Functional Simulations .. 3–4
Megafunctions Requiring Atom Libraries .. 3–5
Functional RTL Simulation with Altera Memory Blocks .. 3–5

Compiling Functional Library Files with Compiler Directives 3–5
Post-Synthesis Simulation ... 3–6

Generating a Post-Synthesis Simulation Netlist ... 3–6
Gate-Level Timing Simulation ... 3–8
Generating a Gate-Level Timing Simulation Netlist ... 3–8

Generating Different Timing Model .. 3–9
Operating Condition Example: Generate All Timing Models for Stratix III Devices 3–10

Perform Timing Simulation Using Post-Synthesis Netlist ... 3–11
Common VCS Software Compiler Options ... 3–11
Using VirSim .. 3–12
Debugging Support Command-Line Interface ... 3–12
Simulating Designs that Include Transceivers .. 3–13

Stratix GX Functional Simulation .. 3–13
Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL .
..3–13

Stratix GX Post-Fit (Timing) Simulation ... 3–13
Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL
..3–14

Stratix II GX Functional Simulation ... 3–14
Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL
..3–15

Stratix II GX Post-Fit (Timing) Simulation ... 3–16
Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL ...
..3–16

Using PLI Routines with the VCS Software .. 3–16
Preparing and Linking C Programs to Verilog HDL Code .. 3–16

Transport Delays .. 3–17
+transport_path_delays ... 3–17
+transport_int_delays .. 3–17

Using NativeLink with the VCS Software ... 3–18
Setting Up NativeLink ... 3–18
Performing an RTL Simulation Using NativeLink .. 3–18

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Performing a Gate-Level Simulation Using NativeLink .. 3–20
Setting Up a Testbench .. 3–21

Creating a Testbench .. 3–22
Scripting Support ... 3–23

Generating a Post-Synthesis Simulation Netlist for VCS ... 3–23
Tcl Commands ... 3–23
Command Prompt .. 3–23

Generating a Gate-Level Timing Simulation Netlist for VCS .. 3–23
Tcl Commands ... 3–24
Command Prompt .. 3–24

Conclusion .. 3–24
Referenced Documents ... 3–24
Document Revision History ... 3–25

Chapter 4. Cadence NC-Sim Support
Introduction .. 4–1
Software Requirements ... 4–1
Simulation Flow Overview ..4–3

Operation Modes .. 4–4
Quartus II Software and NC Simulation Flow Overview .. 4–5

Functional and RTL Simulation ... 4–6
Create Libraries .. 4–6

Basic Library Setup ... 4–7
Using Multiple cds.lib Files .. 4–7
Create a cds.lib File in Command-Line Mode ... 4–8
Create a cds.lib File in GUI Mode ... 4–8

LPM Functions, Altera Megafunctions, and Altera Primitives Libraries 4–9
Megafunctions Requiring Atom Libraries .. 4–11

Simulating a Design with Memory .. 4–11
Compile Source Code and Testbenches .. 4–13

Compilation in Command-Line Mode .. 4–13
Compilation in GUI Mode ... 4–14

Elaborate Your Design ... 4–15
Elaboration in Command-Line Mode .. 4–15
Elaboration in GUI Mode ... 4–16

Add Signals to View .. 4–17
Adding Signals in Command-Line Mode ... 4–17
Adding Signals in GUI Mode .. 4–18

Simulate Your Design .. 4–20
Functional/RTL Simulation in Command-Line Mode ... 4–21
Functional/RTL Simulation in GUI Mode .. 4–21

Post-Synthesis Simulation .. 4–22
Quartus II Simulation Output Files ... 4–22
Create Libraries .. 4–23

Altera Corporation ix
Preliminary

Contents

Compile Project Files and Libraries ... 4–23
Elaborate Your Design ... 4–23
Add Signals to the View .. 4–23
Simulate Your Design .. 4–24

Gate-Level Timing Simulation ... 4–24
Generating a Gate-Level Timing Simulation Netlist ... 4–24

Generating a Different Timing Model ... 4–25
Operating Condition Example: Generate All Timing Models for Stratix III and
Cyclone III Devices .. 4–26

Perform Timing Simulation Using Post-Synthesis Netlist ... 4–27
Quartus II Timing Simulation Libraries .. 4–27
Create Libraries .. 4–28
Compile the Project Files and Libraries .. 4–28
Elaborate Your Design ... 4–28

Compiling the Standard Delay Output File (VHDL Only)
in Command-Line Mode .. 4–29
Compiling the Standard Delay Output File (VHDL Only) in GUI Mode 4–30

Add Signals to View .. 4–30
Simulate Your Design .. 4–31

Simulating Designs that Include Transceivers .. 4–31
Stratix GX Functional Simulation .. 4–31

Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL .
..4–31
Example of Compiling Library Files for Functional Stratix GX Simulation in VHDL ... 4–31

Stratix GX Post-Fit (Timing) Simulation ... 4–32
Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL
..4–32
Example of Compiling Library Files for Timing Stratix GX Simulation in VHDL 4–32

Stratix II GX Functional Simulation ... 4–33
Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL
..4–34

Example of Compiling Library Files for Functional Stratix II GX Simulation in VHDL 4–35
Stratix II GX Post-Fit (Timing) Simulation ... 4–35

Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL ...
...4–35
Example of Compiling Library Files for Timing Stratix II GX Simulation in VHDL 4–36

Pulse Reject Delays ... 4–36
-PULSE_R ... 4–36
-PULSE_INT_R .. 4–36

Using the NativeLink Feature with NC-Sim ... 4–37
Setting Up NativeLink ... 4–37
Performing an RTL Simulation Using NativeLink .. 4–37
Performing a Gate Level Simulation Using NativeLink ... 4–40
Setting Up a Testbench .. 4–40

Creating a Testbench .. 4–42
Incorporating PLI Routines .. 4–43

Dynamically Link a PLI Library ... 4–43

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Dynamically Load a PLI Library .. 4–44
Statically Link the PLI Library with NC-Sim ... 4–47

Scripting Support ... 4–48
Generate NC-Sim Simulation Output Files .. 4–49

Tcl Commands: .. 4–49
Command Prompt .. 4–49

Conclusion .. 4–49
Referenced Documents ... 4–50
Document Revision History ... 4–50

Chapter 5. Simulating Altera IP in Third-Party Simulation Tools
Introduction .. 5–1
IP Functional Simulation Flow .. 5–1

Verilog and VHDL IP Functional Simulation (IPFS) Models .. 5–2
Instantiate the IP in Your Design .. 5–3
Perform Simulation ... 5–4

Simulating Altera IP Using the Quartus II NativeLink Feature .. 5–4
Set up a Quartus II Project ... 5–5
Select the Third-Party Simulation Tool .. 5–5
Specify the Path for the Third-Party Simulator .. 5–7
Specify the Testbench Settings .. 5–7
Analyze and Elaborate the Quartus II Project .. 5–9
Run RTL Functional Simulation ... 5–9

Simulating Altera IP Without the Quartus II NativeLink Feature .. 5–9
Design Language Examples5–11

Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software 5–11
VHDL Example: Simulating the IPFS Model in the ModelSim Software 5–12
NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software 5–14
Verilog HDL Example: Simulating Your IPFS Model in VCS ... 5–15

Single-Step Process ... 5–15
Two-Step Process (Compilation and Simulation) .. 5–16

Conclusion .. 5–16
Referenced Documents ... 5–16
Document Revision History ... 5–17

Section II. Timing Analysis

Chapter 6. The Quartus II TimeQuest Timing Analyzer
Introduction .. 6–1
Getting Started with the Quartus II TimeQuest Timing Analyzer ... 6–2

Setting Up the Quartus II TimeQuest Timing Analyzer .. 6–2
Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines 6–3

Running the Quartus II TimeQuest Timing Analyzer .. 6–4
Directly from the Quartus II Software ... 6–4
Stand-Alone Mode .. 6–5

Altera Corporation xi
Preliminary

Contents

Command-Line Mode .. 6–5
Timing Analysis Overview .. 6–7

Clock Analysis .. 6–11
Clock Setup Check .. 6–11
Clock Hold Check ... 6–13
Recovery and Removal .. 6–15
Multicycle Paths .. 6–16

Specify Design Timing Requirements .. 6–19
Create a Timing Netlist ... 6–19
Specify Timing Constraints ... 6–20
Generate SDC Constraint Reports ... 6–21

The Quartus II TimeQuest Timing Analyzer Flow Guidelines .. 6–22
Create a Timing Netlist ... 6–22
Read the Synopsys Design Constraints File ... 6–22
Update Timing Netlist ... 6–23
Generate Timing Reports .. 6–23

Collections .. 6–23
Application Examples .. 6–25

Constraints Files ... 6–25
Fitter and Timing Analysis SDC Files ... 6–26

Specifying SDC Files for Place-and-Route .. 6–26
Specifying SDC Files for Static Timing Analysis .. 6–26

Synopsys Design Constraints File Precedence ... 6–27
Clock Specification .. 6–28

Clocks ... 6–28
Generated Clocks ... 6–29
Virtual Clocks ... 6–32
Multi-Frequency Clocks .. 6–33
Automatic Clock Detection ... 6–34
Derive PLL Clocks .. 6–35
Default Clock Constraints ... 6–37
Clock Groups .. 6–37
Clock Effect Characteristics .. 6–39

Clock Latency .. 6–39
Clock Uncertainty ... 6–40

Derive Clock Uncertainty .. 6–41
Inter-Clock Transfers .. 6–42
Intra-Clock Transfers .. 6–43
I/O Interface Clock Transfers ... 6–43

I/O Specifications .. 6–45
Input and Output Delay .. 6–45

Set Input Delay .. 6–45
Set Output Delay ... 6–47

Timing Exceptions ... 6–48
Precedence ... 6–49
False Path ... 6–49
Minimum Delay ... 6–50

xii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Maximum Delay ... 6–52
Multicycle Path ... 6–53
Clock-as-Data Analysis ... 6–55
Application Examples .. 6–55

Constraint and Exception Removal .. 6–57
Timing Reports ... 6–58

report_timing .. 6–58
report_clock_transfers ... 6–62
report_clocks ... 6–63
report_min_pulse_width ... 6–63
report_net_timing ... 6–65
report_sdc .. 6–66
report_ucp ... 6–66
report_path .. 6–68
report_datasheet ... 6–69
report_rskm ... 6–70
report_tccs ... 6–70
report_path .. 6–71
check_timing ... 6–73
report_clock_fmax_summary ... 6–75
create_timing_summary .. 6–76

Timing Analysis Features ... 6–77
Multi-Corner Analysis ... 6–77
Advanced I/O Timing and Board Trace Model Assignments .. 6–79
Wildcard Assignments and Collections .. 6–79
Resetting a Design .. 6–81

The TimeQuest Timing Analyzer GUI ... 6–82
The Quartus II Software Interface and Options ... 6–83
View Pane .. 6–85

View Pane: Splitting ... 6–85
View Pane: Removing Split Windows ... 6–86

Tasks Pane ... 6–87
Opening a Project and Writing a Synopsys Design Constraints File 6–87
Netlist Setup Folder .. 6–88
Reports Folder ... 6–88
Macros Folder .. 6–89

Console Pane ... 6–90
Report Pane ... 6–90
Constraints .. 6–90
Name Finder ... 6–92
Target Pane .. 6–94
SDC Editor ... 6–94

Conclusion .. 6–95
Referenced Documents ... 6–95
Document Revision History ... 6–96

Altera Corporation xiii
Preliminary

Contents

Chapter 7. Switching to the Quartus II TimeQuest Timing Analyzer
Introduction .. 7–1

Benefits of Switching to the Quartus II TimeQuest Analyzer ... 7–1
Chapter Contents .. 7–2

Switching to the Quartus II TimeQuest Analyzer .. 7–2
Compile Your Design .. 7–2
Create an SDC File ... 7–3

Conversion Utility ... 7–3
Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer 7–4

Run the Quartus II TimeQuest Analyzer .. 7–4
Set the Default Timing Analyzer .. 7–4

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers 7–5
Terminology .. 7–5

Netlist .. 7–6
Collections .. 7–7

Constraints .. 7–7
Constraint Files .. 7–7
Constraint Entry .. 7–8

Time Units .. 7–9
MegaCore Functions ... 7–9
Bus Name Format .. 7–10

Constraint File Priority ... 7–10
Constraint Priority .. 7–11
Ambiguous Constraints ... 7–12

Clocks ... 7–13
Related and Unrelated Clocks ... 7–13
Clock Offset .. 7–14
Clock Latency .. 7–15
Offset and Latency Example ... 7–15

Clock Offset Scenario .. 7–16
Clock Latency Scenario ... 7–17

Clock Uncertainty ... 7–18
Derived and Generated Clocks ... 7–19
Automatic Clock Detection ... 7–19

derive_clocks Command .. 7–20
derive_pll_clocks Command ... 7–22

Hold Relationship ... 7–23
Clock Objects ... 7–23
Hold Multicycle .. 7–24
Fitter Behavior .. 7–27

Fitter Performance .. 7–27
Reporting ... 7–27

Paths and Pairs .. 7–28
Default Reports ... 7–28
Netlist Names .. 7–29
Non-Integer Clock Periods .. 7–29
Other Features ... 7–30

xiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Scripting API ... 7–32
Timing Assignment Conversion ... 7–33

Setup Relationship ... 7–33
Hold Relationship .. 7–34
Clock Latency .. 7–34
Clock Uncertainty ... 7–34
Inverted Clock ... 7–35
Not a Clock .. 7–35
Default Required fMAX Assignment ... 7–35
Virtual Clock Reference ... 7–36
Clock Settings .. 7–37
Multicycle .. 7–37
Clock Enable Multicycle .. 7–38
I/O Constraints .. 7–38
Input and Output Delay .. 7–39
tSU Requirement .. 7–40
tH Requirement ... 7–43
tCO Requirement ... 7–45
Minimum tCO Requirement .. 7–48
tPD Requirement .. 7–50

Combinational Path Delay Scenario ... 7–50
Minimum tPD Requirement ... 7–51
Cut Timing Path ... 7–52
Maximum Delay ... 7–52
Minimum Delay ... 7–52
Maximum Clock Arrival Skew ... 7–53
Maximum Data Arrival Skew .. 7–53

Constraining Skew on an Output Bus .. 7–53
Conversion Utility ... 7–55

Unsupported Global Assignments .. 7–56
Recommended Global Assignments ... 7–56
Clock Conversion ... 7–58
Instance Assignment Conversion .. 7–59

PLL Phase Shift Conversion .. 7–61
tCO Requirement Conversion ... 7–62

Entity-Specific Assignments ... 7–63
Paths between Unrelated Clock Domains .. 7–63
Unsupported Instance Assignments ... 7–64
Reviewing Conversion Results .. 7–64

Warning Messages .. 7–64
Ignored QSF Variable <assignment> .. 7–65
Global <name> = <value> .. 7–65
QSF: Expected <name> to be set to <expected value> but it is set to <actual value>
......................... ...7–65
QSF: Found Global Fmax Requirement. Translation will be done using derive_clocks
............................. ...7–65
TAN Report Database not found. HDL based assignments will not be migrated 7–65

Altera Corporation xv
Preliminary

Contents

Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to
<to> .. 7–65
Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <clock> 7–66
Clock <clock> has no FMAX_REQUIREMENT - No clock was generated 7–66
No Clock Settings defined in QSF file .. 7–66

Clocks .. 7–66
Clock Transfers .. 7–66
Path Details .. 7–67
Unconstrained Paths ... 7–67
Bus Names ... 7–68
Other ... 7–68

Re-Running the Conversion Utility ... 7–68
Notes .. 7–68

Output Pin Load Assignments ... 7–68
Constraint Target Types .. 7–69
DDR Constraints with the DDR Timing Wizard ... 7–69
HardCopy Stratix Device Handoff .. 7–69
Unsupported SDC Features .. 7–69
Constraint Passing .. 7–70
Optimization ... 7–70
Clock Network Delay Reporting .. 7–70
PowerPlay Power Analysis ... 7–70
Project Management .. 7–71
Conversion Utility .. 7–71

tPD and Minimum tPD Requirement Conversion .. 7–71
Referenced Documents ... 7–72
Document Revision History ... 7–72

Chapter 8. Quartus II Classic Timing Analyzer
Introduction .. 8–1
Timing Analysis Tool Setup ... 8–2
Static Timing Analysis Overview .. 8–2

Clock Analysis .. 8–4
Clock Setup Check .. 8–4
Clock Hold Check ... 8–6

Multicycle Paths ... 8–7
Clock Settings ... 8–8

Individual Clock Settings .. 8–8
Default Clock Settings ... 8–8

Clock Types .. 8–9
Base Clocks .. 8–9
Derived Clocks .. 8–9
Undefined Clocks ... 8–9
PLL Clocks ... 8–10

Clock Uncertainty .. 8–11
Clock Latency ... 8–12
Timing Exceptions ... 8–15

xvi Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Multicycle .. 8–15
Destination Multicycle Setup Exception .. 8–15
Destination Multicycle Hold Exception ... 8–16
Source Multicycle Setup Exception .. 8–17
Source Multicycle Hold Exception ... 8–18
Default Hold Multicycle .. 8–19
Clock Enable Multicycle ... 8–19

Setup Relationship and Hold Relationship .. 8–22
Maximum Delay and Minimum Delay ... 8–24
False Paths ... 8–24

I/O Analysis ... 8–26
External Input Delay and Output Delay Assignments ... 8–26

Input Delay Assignment .. 8–26
Output Delay Assignment ... 8–28

Virtual Clocks ... 8–29
Asynchronous Paths .. 8–30

Recovery and Removal .. 8–30
Recovery Report .. 8–31
Removal Report ... 8–32

Skew Management .. 8–34
Maximum Clock Arrival Skew ... 8–34
Maximum Data Arrival Skew .. 8–35

Generating Timing Analysis Reports with report_timing .. 8–36
Other Timing Analyzer Features ... 8–38

Wildcard Assignments .. 8–38
Assignment Groups ... 8–38
Fast Corner Analysis .. 8–40
Early Timing Estimation ... 8–40
Timing Constraint Checker ... 8–41
Latch Analysis ... 8–42

Timing Analysis Using the Quartus II GUI ... 8–43
Assignment Editor ... 8–43
Timing Settings ... 8–44

Clock Settings Dialog Box .. 8–45
More Timing Settings Dialog Box ... 8–46

Timing Reports ... 8–47
Advanced List Path .. 8–49
Early Timing Estimate ... 8–51
Assignment Groups ... 8–51

Scripting Support ... 8–52
Creating Clocks ... 8–53

Base Clocks ... 8–53
Derived Clocks .. 8–53

Clock Latency .. 8–53
Clock Uncertainty ... 8–54
Cut Timing Paths .. 8–54
Input Delay Assignment ... 8–54

Altera Corporation xvii
Preliminary

Contents

Maximum and Minimum Delay .. 8–55
Maximum Clock Arrival Skew ... 8–55
Maximum Data Arrival Skew .. 8–55
Multicycle .. 8–56
Output Delay Assignment .. 8–56
Report Timing ... 8–57
Setup and Hold Relationships .. 8–57
Assignment Group ... 8–57
Virtual Clock ... 8–58

MAX+PLUS II Timing Analysis Methodology ... 8–58
fMAX Relationships .. 8–58

Slack .. 8–58
I/O Timing .. 8–60

tSU Timing ... 8–60
tH Timing .. 8–60
tCO Timing .. 8–61
Minimum tCO (min tCO) .. 8–62
tPD Timing .. 8–62
Minimum tPD (min tPD) ... 8–62

The Timing Analyzer Tool .. 8–62
Conclusion .. 8–63
Referenced Documents ... 8–63
Document Revision History ... 8–64

Chapter 9. Synopsys PrimeTime Support
Introduction .. 9–1
Quartus II Settings for Generating the PrimeTime Software Files ... 9–2
Files Generated for the PrimeTime Software Environment .. 9–3

The Netlist ... 9–3
The SDO File ... 9–4

Generating Multiple Operating Conditions with TimeQuest .. 9–4
The Tcl Script .. 9–7

Generated File Summary ... 9–9
Running the PrimeTime Software ... 9–10

Analyzing Quartus II Projects .. 9–10
Other pt_shell Commands .. 9–11

PrimeTime Timing Reports .. 9–12
Sample of the PrimeTime Software Timing Report .. 9–12
Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the PrimeTime
Software ... 9–13

Clock Setup Relationship and Slack ... 9–13
Clock Hold Relationship and Slack .. 9–17
Input Delay and Output Delay Relationships and Slack .. 9–21

Static Timing Analyzer Differences .. 9–23
The Quartus II Classic Timing Analyzer and the PrimeTime Software 9–23

Rise/Fall Support .. 9–23
Minimum and Maximum Delays ... 9–23

xviii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Recovery/Removal Analysis .. 9–23
Encrypted Intellectual Property Blocks ... 9–24
Registered Clock Signals .. 9–24
Multiple Source and Destination Register Pairs ... 9–25
Latches .. 9–25
LVDS I/O ... 9–25
Clock Latency .. 9–26
Input and Output Delay Assignments ... 9–26
Generated Clocks Derived from Generated Clocks ... 9–26

The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software 9–26
Encrypted Intellectual Property Blocks ... 9–26
Latches .. 9–27
LVDS I/O ... 9–27
The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility . 9–27
Clock and Data Paths ... 9–27
Inverting and Non-Inverting Propagation .. 9–28
Multiple Rise/Fall Numbers For a Timing Arc .. 9–28
Virtual Generated Clocks ... 9–28
Generated Clocks Derived from Generated Clocks ... 9–28

Conclusion .. 9–28
Referenced Documents ... 9–29
Document Revision History ... 9–30

Section III. Power Estimation and Analysis

Chapter 10. PowerPlay Power Analysis
Introduction .. 10–1
Quartus II Early Power Estimator File ... 10–2

PowerPlay Early Power Estimator File Generator Compilation Report 10–5
Types of Power Analyses ... 10–6
Factors Affecting Power Consumption .. 10–6

Device Selection .. 10–6
Environmental Conditions .. 10–7

Air Flow .. 10–7
Heat Sink and Thermal Compound ... 10–7
Ambient Temperature .. 10–8
Board Thermal Model .. 10–8

Design Resources .. 10–8
Number, Type, and Loading of I/O Pins .. 10–8
Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks 10–8
Number and Type of Global Signals .. 10–9

Signal Activities .. 10–9
PowerPlay Power Analyzer Flow10–10

Operating Conditions .. 10–11
Signal Activities Data Sources .. 10–12

Altera Corporation xix
Preliminary

Contents

Simulation Results .. 10–13
Using Simulation Files in Modular Design Flows10–15

Complete Design Simulation .. 10–16
Modular Design Simulation ... 10–16
Multiple Simulations on the Same Entity ... 10–17
Overlapping Simulations .. 10–18
Partial Simulations ... 10–18
Node Name Matching Considerations ... 10–18
Glitch Filtering .. 10–19
Node and Entity Assignments ... 10–21

Timing Assignments to Clock Nodes .. 10–22
Default Toggle Rate Assignment ... 10–22
Vectorless Estimation ... 10–23

Using the PowerPlay Power Analyzer ... 10–23
Common Analysis Flows .. 10–23

Signal Activities from Full Post-Fit Netlist (Timing) Simulation 10–23
Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless
Estimation .. 10–24
Signal Activities from Vectorless Estimation, User-Supplied Input Pin Activities 10–24
Signal Activities from User Defaults Only .. 10–24

Generating a SAF or VCD File Using the Quartus II Simulator .. 10–24
Generating a VCD File Using a Third-Party Simulator .. 10–28
Running the PowerPlay Power Analyzer Using the Quartus II GUI 10–31
PowerPlay Power Analyzer Compilation Report ... 10–39

Summary .. 10–39
Settings ... 10–39
Simulation Files Read ... 10–39
Operating Conditions Used ... 10–39
Thermal Power Dissipated by Block .. 10–39
Thermal Power Dissipation by Block Type (Device Resource Type) 10–39
Thermal Power Dissipation by Hierarchy ... 10–40
Core Dynamic Thermal Power Dissipation by Clock Domain .. 10–40
Current Drawn from Voltage Supplies .. 10–40
Confidence Metric Details ... 10–40
Signal Activities ... 10–41
Messages ... 10–41
Specific Rules for Reporting .. 10–41

Scripting Support ... 10–41
Running the PowerPlay Power Analyzer from the Command Line 10–42

Conclusion .. 10–43
Referenced Documents ... 10–43
Document Revision History ... 10–44

xx Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Section IV. Signal Integrity

Chapter 11. Signal Integrity Analysis with Third-Party Tools
Introduction .. 11–1
The Need for FPGA to Board Signal Integrity Analysis .. 11–3
The Double Counting Problem for FPGA Output Timing .. 11–4

Defining the Double Counting Problem ... 11–4
The Solution to Double Counting .. 11–5

I/O Model Selection: IBIS or HSPICE .. 11–7
FPGA to Board Signal Integrity Analysis Flow ... 11–8

Create I/O and Board Trace Model Assignments ... 11–10
Enable Output File Generation ... 11–10
Generate the Output Files ... 11–10
Customize the Output Files .. 11–11
Set Up and Run Simulations in Third-Party Tools .. 11–11
Interpret Simulation Results ... 11–12

Simulation with IBIS Models ... 11–12
Elements of an IBIS Model .. 11–12
Creating Accurate IBIS Models .. 11–13

Download IBIS Models .. 11–13
Generate Custom IBIS Models with the IBIS Writer .. 11–14

Design Simulation Using the Mentor Graphics HyperLynx Software 11–17
Configuring LineSim to Use Altera IBIS Models ... 11–20
Integrating Altera IBIS Models into LineSim Simulations ... 11–21
Running and Interpreting LineSim Simulations ... 11–24

Simulation with HSPICE Models .. 11–25
Supported Devices and Signaling .. 11–26
Creating Accurate HSPICE Models ... 11–26

Creating HSPICE Model Files Using the Quartus II GUI ... 11–27
Creating HSPICE Model Files Using Tcl Scripting and the Command Line 11–28

Customizing HSPICE Model Files ... 11–29
Design Simulation Using Synopsys HSPICE ... 11–30
Running HSPICE Simulations .. 11–30
Viewing and Interpreting Tabular Simulation Results ... 11–31
Viewing Graphical Simulation Results ... 11–31
Making Design Adjustments Based on HSPICE Simulations ... 11–33

Conclusion .. 11–35
Referenced Documents ... 11–36
Document Revision History ... 11–36

Section V. In-System Design Debugging

Chapter 12. Quick Design Debugging Using SignalProbe
Introduction .. 12–1

Altera Corporation xxi
Preliminary

Contents

On-Chip Debugging Tool Comparison .. 12–2
Debugging Using the SignalProbe Feature .. 12–4

Reserve the SignalProbe Pins ... 12–4
Perform a Full Compilation .. 12–6
Assign a SignalProbe Source .. 12–6
Add Registers to the Pipeline Path to SignalProbe Pin .. 12–7
Perform a SignalProbe Compilation .. 12–9
Analyze the Results of the SignalProbe Compilation ... 12–10
Generate the Programming File ... 12–11
SignalProbe ECO flows ... 12–11

SignalProbe ECO Flow with Quartus II Incremental Compilation 12–11
SignalProbe ECO Flow without Quartus Incremental Compilation 12–12

Common Questions About the SignalProbe Feature .. 12–14
Why Did I Get the Following Error Message, “Error: There are No Enabled SignalProbes to
Process”? .. 12–14
How Can I Retain My SignalProbe ECOs during Re-compilation of My Design? 12–14
Why Did My SignalProbe Source Disappear in the Change Manager? 12–14
What is an ECO and Where Can I Find More Information on ECO? 12–15
How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software
Versions 5.1 and below to Versions 6.0 and Higher? .. 12–15
What are all the Changes for the SignalProbe Feature between the Quartus II Software
Version 5.1 and Earlier, and Version 6.0 and Later? .. 12–16

Scripting Support ... 12–17
Make a SignalProbe Pin ... 12–17
Delete a SignalProbe Pin .. 12–17
Enable a SignalProbe Pin ... 12–18
Disable a SignalProbe Pin .. 12–18
Perform a SignalProbe Compilation .. 12–18
Migrating Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later
.. ...12–18
Script Example ... 12–18

Using SignalProbe with the APEX Device Family .. 12–19
Adding SignalProbe Sources .. 12–19
Performing a SignalProbe Compilation .. 12–20

Running SignalProbe with Smart Compilation .. 12–21
Understanding the Results of a SignalProbe Compilation .. 12–21

Analyzing SignalProbe Routing Failures .. 12–23
SignalProbe Scripting Support for APEX Devices ... 12–23
Reserving SignalProbe Pins .. 12–24
Adding SignalProbe Sources .. 12–24
Assigning I/O Standards .. 12–24
Adding Registers for Pipelining ... 12–24
Run SignalProbe Automatically ... 12–25
Run SignalProbe Manually ... 12–25
Enable or Disable All SignalProbe Routing .. 12–25
Running SignalProbe with Smart Compilation ... 12–26
Allow SignalProbe to Modify Fitting Results .. 12–26

xxii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Conclusion .. 12–26
Referenced Documents ... 12–26
Document Revision History ... 12–27

Chapter 13. Design Debugging Using the SignalTap II Embedded Logic Analyzer
Introduction .. 13–1

Hardware and Software Requirements .. 13–3
On-Chip Debugging Tool Comparison .. 13–5
Design Flow Using the SignalTap II Logic Analyzer ... 13–7
SignalTap II Logic Analyzer Task Flow ... 13–8

Add the SignalTap II Logic Analyzer to Your Design .. 13–9
Configure the SignalTap II Logic Analyzer .. 13–9
Define Triggers ... 13–9
Compile the Design .. 13–9
Program the Target Device or Devices .. 13–9
Run the SignalTap II Logic Analyzer .. 13–10
View, Analyze, and Use Captured Data ... 13–10

Add the SignalTap II Logic Analyzer to Your Design ... 13–10
Creating and Enabling a SignalTap II File .. 13–10

Creating a SignalTap II File ... 13–10
Enabling and Disabling a SignalTap II File for the Current Project 13–11

Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer 13–12
Creating an HDL Representation Using the MegaWizard Plug-In Manager 13–12
SignalTap II Megafunction Ports .. 13–16
Instantiating the SignalTap II Logic Analyzer in Your HDL .. 13–16

Embedding Multiple Analyzers in One FPGA .. 13–17
Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer 13–17

Configure the SignalTap II Logic Analyzer ... 13–18
Assigning an Acquisition Clock ... 13–18
Adding Signals to the SignalTap II File .. 13–19

Signal Preservation ... 13–21
Assigning Data Signals .. 13–22
Node List Signal Use Options ... 13–23
Untappable Signals ... 13–23

Adding Signals with a Plug-In ... 13–23
Specifying the Sample Depth ... 13–25
Capturing Data to a Specific RAM Type .. 13–26
Choosing the Buffer Acquisition Mode .. 13–26

Circular Buffer ... 13–27
Segmented Buffer .. 13–27

Managing Multiple SignalTap II Files and Configurations ... 13–28
Define Triggers ... 13–30

Creating Basic Trigger Conditions ... 13–30
Creating Advanced Trigger Conditions ... 13–31

Examples of Advanced Triggering Expressions .. 13–32
Trigger Condition Flow Control .. 13–34

Sequential Triggering ... 13–34

Altera Corporation xxiii
Preliminary

Contents

Custom State-Based Triggering .. 13–36
State Diagram Pane ... 13–39
State Machine Pane .. 13–39
Resources Pane ... 13–39

SignalTap II Trigger Flow Description Language .. 13–40
State Labels .. 13–41
Boolean_expression .. 13–41
Action_list .. 13–42
Resource Manipulation Action ... 13–43
Buffer Control Action ... 13–43
State Transition Action ... 13–44

Specifying the Trigger Position .. 13–44
Creating a Power-Up Trigger ... 13–45

Enabling a Power-Up Trigger ... 13–45
Managing and Configuring Power-Up and Runtime Trigger Conditions 13–46

Using External Triggers ... 13–47
Trigger In .. 13–47
Trigger Out .. 13–48
Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer 13–48

Compile the Design ... 13–50
Faster Compilations with Quartus II Incremental Compilation ... 13–51

Enabling Incremental Compilation for your Design ... 13–51
Using Incremental Compilation with the SignalTap II Logic Analyzer 13–52

Preventing Changes Requiring Recompilation .. 13–54
Timing Preservation with the SignalTap II Logic Analyzer .. 13–54
Performance and Resource Considerations ... 13–55

Program the Target Device or Devices ... 13–57
Programming a Single Device .. 13–57
Programming Multiple Devices to Debug Multiple Designs .. 13–58

Run the SignalTap II Logic Analyzer .. 13–59
Running with a Power-Up Trigger .. 13–60
Running with Runtime Triggers .. 13–60
Performing a Force Trigger ... 13–61
SignalTap II Status Messages .. 13–62

View, Analyze, and Use Captured Data .. 13–63
Viewing Captured Data .. 13–63
Creating Mnemonics for Bit Patterns .. 13–64
Automatic Mnemonics with a Plug-In .. 13–64
Locating a Node in the Design ... 13–65
Saving Captured Data ... 13–66
Converting Captured Data to Other File Formats ... 13–66
Creating a SignalTap II List File ... 13–67

Other Features .. 13–67
Using the SignalTap II MATLAB MEX Function to Capture Data 13–67
Using SignalTap II in a Lab Environment .. 13–69
Remote Debugging Using the SignalTap II Logic Analyzer .. 13–69

Equipment Setup ... 13–70

xxiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Software Setup on the Remote PC .. 13–70
Software Setup on the Local PC .. 13–71
SignalTap II Setup on the Local PC .. 13–72

SignalTap II Scripting Support .. 13–72
SignalTap II Command Line Options ... 13–73
SignalTap II Tcl Commands ... 13–75

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems 13–77
Custom Triggering Flow Application Examples .. 13–77

Design Example 1: Specifying a Custom Trigger Position ... 13–77
Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and
triggercond3 .. 13–78

Conclusion13–80
Referenced Documents13–80
Document Revision History ... 13–81

Chapter 14. In-System Debugging Using External Logic Analyzers
Introduction .. 14–1

Choosing a Logic Analyzer ... 14–2
Required Components ... 14–3
FPGA Device Support ... 14–3

Debugging Your Design Using the Logic Analyzer Interface .. 14–4
Creating a Logic Analyzer Interface File .. 14–4

Creating a New Logic Analyzer Interface File ... 14–5
Opening an Existing External Analyzer Interface File .. 14–6
Saving the External Analyzer Interface File .. 14–7

Configuring the Logic Analyzer Interface File Core Parameters .. 14–7
Mapping the Logic Analyzer Interface File Pins to Available I/O Pins 14–9
Mapping Internal Signals to the Logic Analyzer Interface Banks .. 14–9
Using the Node Finder .. 14–10
Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project 14–11
Compiling Your Quartus II Project .. 14–12
Programming Your FPGA Using the Logic Analyzer Interface .. 14–13
Using the Logic Analyzer Interface with Multiple Devices ... 14–14
Configuring Banks in the Logic Analyzer Interface File .. 14–15
Acquiring Data on Your Logic Analyzer .. 14–15

Advanced Features .. 14–15
Using the Logic Analyzer Interface with Incremental Compilation 14–15
Creating Multiple Logic Analyzer Interface Instances in One FPGA 14–16

Conclusion .. 14–17
Document Revision History ... 14–18

Chapter 15. In-System Updating of Memory and Constants
Introduction .. 15–1
Overview ... 15–1
Device Megafunction Support ... 15–2
Using In-System Updating of Memory Constants with Your Design ... 15–3
Creating In-System Modifiable Memories Constants .. 15–3

Altera Corporation xxv
Preliminary

Contents

Running the In-System Memory Content Editor .. 15–4
Instance Manager ... 15–5
Editing Data Displayed in the Hex Editor .. 15–7
Importing Exporting Memory Files ... 15–7
Viewing Memories Constants in the Hex Editor ... 15–7
Scripting Support ... 15–9
Programming the Device Using the In-System Memory Content Editor 15–10
Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic
Analyzer .. 15–10

Conclusion .. 15–11
Referenced Documents ... 15–11
Document Revision History ... 15–12

Chapter 16. Design Debugging Using In-System Sources and Probes
Introduction .. 16–1
Overview ... 16–1

Hardware and Software Requirements .. 16–3
Design Flow Using In-System Sources and Probes .. 16–4

Configuring the altsource_probes Megafunction .. 16–6
Instantiating the altsource_probe Megafunction ... 16–8
Compiling the Design .. 16–8

Running the
In-System Sources and Probes Editor ... 16–9

Programming Your Device Using the JTAG Chain Configuration Window 16–11
Instance Manager ... 16–12
Sources and Probes Editor Window .. 16–13

Reading Probe Data .. 16–13
Writing Data .. 16–13
Data Organization ... 16–14

TCL Support ... 16–14
Design Example: Dynamic PLL Reconfiguration ... 16–18
Conclusion .. 16–21
Referenced Documents ... 16–21
Document Revision History ... 16–21

Section VI. Formal Verification

Chapter 17. Cadence Encounter Conformal Support
Introduction .. 17–1

Formal Verification Versus Simulation ... 17–2
Formal Verification: What You Need to Know .. 17–2

Formal Verification Design Flow .. 17–2
Quartus II Integrated Synthesis ... 17–3
EDA Tool Support for Quartus II Integrated Synthesis ... 17–3
Synplify Pro ... 17–3

xxvi Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

EDA Tool Support for Synplify Pro ... 17–4
RTL Coding Guidelines for Quartus II Integrated Synthesis .. 17–5

Synthesis Directives and Attributes .. 17–5
Stuck-at Registers ... 17–7
ROM, LPM_DIVIDE, and Shift Register Inference ... 17–8
RAM Inference .. 17–8
Latch Inference ... 17–9
Combinational Loops .. 17–9
Finite State Machine Coding Styles ... 17–10

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files 17–10
Tcl Command .. 17–15
GUI .. 17–15

The Quartus II Software Generated Files, Formal Verification Scripts, and Directories ... 17–16
Understanding the Formal Verification Scripts for Encounter Conformal 17–18

The Encounter Conformal Commands within the Quartus II Software-Generated Scripts
...17–18

Comparing Designs Using Encounter Conformal .. 17–21
Black Boxes in the Encounter Conformal Flow .. 17–21
Running the Encounter Conformal Software ... 17–22

Running the Encounter Conformal Software from the GUI ... 17–22
Running the Encounter Conformal Software From a System Command Prompt 17–24

Known Issues and Limitations .. 17–24
Conclusion .. 17–27
Black Box Models ... 17–28
Conformal Dofile/Script Example .. 17–30
Referenced Documents ... 17–32
Document Revision History ... 17–33

Chapter 18. Synopsys Formality Support
Introduction .. 18–1
Formal Verification .. 18–1

Equivalence Checking ... 18–1
Formal Verification Support .. 18–2

EDA Tools and Device Support ... 18–2
Formal Verification Between RTL and Post-Synthesis Netlist .. 18–2

Generating Post-Synthesis Netlist for Formal Verification ... 18–3
DC FPGA Software Settings ... 18–3

Generating the VO File and Formality Script .. 18–4
Handling Black Boxes .. 18–9

Tcl Command .. 18–9
GUI .. 18–10

Quartus II Scripts for Formality .. 18–11
Comparing Designs Using the Formality Software .. 18–11
Known Issues and Limitations .. 18–12
Conclusion .. 18–12
Related Links .. 18–12
Tcl Sample Script ... 18–13

Altera Corporation xxvii
Preliminary

Contents

DC FPGA Synthesis Script .. 18–13
Quartus II Software-Generated Formal Verification Script ... 18–14

Referenced Documents ... 18–15
Document Revision History ... 18–15

Section VII. Device Programming

Chapter 19. Quartus II Programmer
Introduction .. 19–1
Programming Flow ... 19–1
Programming and Configuration Modes ... 19–4

JTAG Mode .. 19–4
Passive Serial Mode ... 19–4
Active Serial Mode ... 19–5
In-Socket Programming Mode ... 19–5

Programmer Overview ... 19–6
Tools Menu .. 19–11

Hardware Setup ... 19–12
Hardware Settings .. 19–12
JTAG Settings .. 19–13

Device Programming and Configuration .. 19–14
Single Device Programming and Configuration ... 19–14
Multi-Device Programming and Configuration .. 19–14

Bypassing an Altera Device ... 19–15
Bypassing a Non-Altera Device .. 19–15
Chain Description File .. 19–17
Design Security Key Programming .. 19–17

Optional Programming Files .. 19–18
Types of Programming and Configuration Files ... 19–18
Generating Optional Programming Files ... 19–20

Create Programming Files ... 19–20
Convert Programming Files .. 19–20
Generating Optional Programming or Configuration Files During Compilation 19–21

Flash Loaders ... 19–21
Parallel Flash Loader ... 19–21
Serial Flash Loader ... 19–21

Other Programming Tools ... 19–22
Quartus II Stand-Alone Programmer .. 19–22
jtagconfig Debugging Tool .. 19–22

Scripting Support ... 19–22
Conclusion .. 19–23
Referenced Documents ... 19–24
Document Revision History ... 19–24

xxviii Altera Corporation
Preliminary

Quartus II Handbook, Volume 3

Altera Corporation xxix

Chapter Revision Dates

The chapters in this book, the Quartus II Handbook, Volume 3, were revised on the following dates.
Where chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Quartus II Simulator
Revised: October 2007
Part number: QII53017-7.2.0

Chapter 2. Mentor Graphics ModelSim Support
Revised: October 2007
Part number: QII53001-7.2.0

Chapter 3. Synopsys VCS Support
Revised: October 2007
Part number: QII53002-7.2.0

Chapter 4. Cadence NC-Sim Support
Revised: October 2007
Part number: QII53003-7.2.0

Chapter 5. Simulating Altera IP in Third-Party Simulation Tools
Revised: October 2007
Part number: QII53014-7.2.0

Chapter 6. The Quartus II TimeQuest Timing Analyzer
Revised: October 2007
Part number: QII53018-7.2.0

Chapter 7. Switching to the Quartus II TimeQuest Timing Analyzer
Revised: October 2007
Part number: QII53019-7.2.0

Chapter 8. Quartus II Classic Timing Analyzer
Revised: October 2007
Part number: QII53004-7.2.0

Chapter 9. Synopsys PrimeTime Support
Revised: October 2007
Part number: QII53005-7.2.0

xxx Altera Corporation

Chapter Revision Dates Quartus II Handbook, Volume 3

Chapter 10. PowerPlay Power Analysis
Revised: October 2007
Part number: QII53013-7.2.0

Chapter 11. Signal Integrity Analysis with Third-Party Tools
Revised: October 2007
Part number: QII53020-7.2.0

Chapter 12. Quick Design Debugging Using SignalProbe
Revised: October 2007
Part number: QII53008-7.2.0

Chapter 13. Design Debugging Using the SignalTap II Embedded Logic Analyzer
Revised: October 2007
Part number: QII53009-7.2.0

Chapter 14. In-System Debugging Using External Logic Analyzers
Revised: October 2007
Part number: QII53016-7.2.0

Chapter 15. In-System Updating of Memory and Constants
Revised: October 2007
Part number: QII53012-7.2.0

Chapter 16. Design Debugging Using In-System Sources and Probes
Revised: October 2007
Part number: QII53021-7.2.0

Chapter 17. Cadence Encounter Conformal Support
Revised: October 2007
Part number: QII53011-7.2.0

Chapter 18. Synopsys Formality Support
Revised: October 2007
Part number: QII53015-7.2.0

Chapter 19. Quartus II Programmer
Revised: October 2007
Part number: QII53022-7.2.0

Altera Corporation xxxi
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 7.2.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Third-Party
Software
Product
Information

Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change
without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed
responsibility for the selection of such third-party software products and its
use in the Quartus II 7.2 software release. To the extent that the software
products described in this handbook are derived from third-party software, no
third party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH
RESPECT TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Information Type Contact (1)

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature/

Altera literature services literature@altera.com (1)

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature/
ftp://ftp.altera.com

xxxii Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 3

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

v, —, N/A Used in table cells to indicate the following: v indicates a “Yes” or “Applicable”
statement; — indicates a “No” or “Not Supported” statement; N/A indicates that
the table cell entry is not applicable to the item of interest.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation Section I–i
Preliminary

Section I. Simulation

As the design complexity of FPGAs continues to rise, verification
engineers are finding it increasingly difficult to simulate their system-on-
a-programmable-chip (SOPC) designs in a timely manner. The
verification process is now the bottleneck in the FPGA design flow. You
can perform functional and timing simulation of your design by using the
Quartus® II Simulator. The Quartus II software also provides a wide
range of features for performing simulation of designs in EDA simulation
tools.

This section includes the following chapters:

■ Chapter 1, Quartus II Simulator
■ Chapter 2, Mentor Graphics ModelSim Support
■ Chapter 3, Synopsys VCS Support
■ Chapter 4, Cadence NC-Sim Support
■ Chapter 5, Simulating Altera IP in Third-Party Simulation Tools

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation
Preliminary

Simulation Quartus II Handbook, Volume 3

Altera Corporation 1–1
October 2007 Preliminary

1. Quartus II Simulator

Introduction With today’s FPGAs becoming faster and more complex, designers face
challenges in validating their designs. Simulation verifies the correctness
of the design, reducing board testing and debugging time.

Altera® offers the Simulator as part of the Quartus® II software to assist
designers with design verification. The Quartus II Simulator has a
comprehensive set of features that are covered in the following sections:

■ “Simulation Flow”
■ “Waveform Editor” on page 1–5
■ “Simulator Settings” on page 1–17
■ “Simulation Report” on page 1–25
■ “Debugging with the Quartus II Simulator” on page 1–29
■ “Scripting Support” on page 1–32

This chapter describes how to perform different types of simulations with
the Quartus II Simulator.

Simulation Flow You can perform both functional and timing simulations with the
Quartus II Simulator. Both types of simulation verify the correctness and
behavior of your design. Functional simulations are run at the beginning
of the Quartus II design flow and timing simulations are run at the end.

Figure 1–1 shows the Quartus II Simulator flow.

QII53017-7.2.0

1–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–1. Simulation Flow

Notes to Figure 1–1:
(1) For more information on EDA Simulators, refer to the Simulation section in volume 3 of the Quartus II Handbook.
(2) You can use Signal Activity Files (.saf) or Value Change Dump Files (.vcd) in the PowerPlay Power Analyzer to

check power resources.

Design Entry

Analysis & Synthesis

Place & Route (Fitter)

Timing Analysis

.saf

.vwf/.tbl/

.vec/.scf/
.cvwf/
.vcd

.rptSimulation
Report File

Input Stimulus

NetlistNetlist

Generate Functional
Simulation Netlist

Fast Timing
Analysis

Netlist

Timing Simulation Using
Fast Timing Model

Functional Simulation Timing Simulation

Functional
Netlist (db)

Timing
Netlist (db)

Fast Timing
Netlist (db)

Signal Activity File (2)

Netlist
Writer

EDA
Simulator (1)

Quartus II Simulator

Quartus II
Simulator

.vwf/
.cvwf/
.vcd

Test Bench File

EndSimulation Debugging
YesNo Requirements

Satisfied?

Convert to
RTL Testbench

.vt/.vht

.vcd

Altera Corporation 1–3
October 2007 Preliminary

Simulation Flow

As shown in Figure 1–1, your design simulation can happen at the
functional level, where your design’s logical behavior is verified and no
timing information is used in simulation. Timing simulation can happen
after your design has been compiled (synthesized and placed and routed)
and after you use the timing data of your design’s resources. In Timing
simulation, your design’s logical behavior is verified with the device’s
worst-case timing models. Timing simulation using the Fast Timing
Model is also a type of Timing simulation where best-case timing data is
used.

To perform functional simulations with the Quartus II Simulator, you
must first generate a functional simulation netlist. A functional netlist file
is a flattened netlist extracted from the design files that does not contain
timing information.

For timing simulations, you must first perform place-and-route and static
timing analysis to generate a timing simulation netlist. A timing
simulation netlist includes timing delays of each device atom block and
the routing delays.

If you want to use third-party EDA simulation tools, you can generate a
netlist using EDA Netlist Writer. You can use this netlist with your
testbench files in third-party simulation tools.

f For more information about third-party simulators, refer to the
respective EDA Simulation chapter in the Simulation section in volume 3
of the Quartus II Handbook.

The Quartus II Simulator supports Functional, Timing, and Timing using
Fast Timing Model simulations. The following sections describe how to
perform these simulations.

Functional Simulation

To run a functional simulation, perform the following steps:

1. On the Processing menu, click Generate Functional Simulation
Netlist. This flattens the functional simulation netlist extracted from
the design files. The netlist does not contain timing information.

2. On the Assignments menu, click Settings. The Settings dialog box
appears.

3. In the Category list, select Simulator Settings. The Simulator
Settings page appears.

4. In the Simulation mode list, select Functional.

1–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. In the Simulation input box, specify the vector source. You must
specify the vector file to run the simulation.

6. Click OK.

7. On the Processing menu, click Start Simulation.

Timing Simulation

To run a timing simulation, perform the following steps:

1. On the Processing menu, click Start Compilation or click the
Compilation button on the toolbar. This flattens the design and
generates an internal netlist with timing delay information
annotated.

2. On the Assignments menu, click Settings. The Settings dialog box
appears.

3. In the Category list, select Simulator Settings. The Simulator
Settings page appears.

4. In the Simulation Mode list, select Timing.

5. In the Simulation input list, specify the vector source. You need to
specify the vector file to run the simulation.

6. Click OK.

7. On the Processing menu, click Start Simulation.

Timing Simulation Using Fast Timing Model Simulation

To run a timing simulation using a fast timing model, perform the
following steps:

1. On the Processing menu, point to Start and click Start Analysis and
Synthesis.

2. On the Processing menu, point to Start and click Start Fitter.

You must perform fast timing analysis before you can perform a
timing simulation using the fast timing models.

3. On the Processing menu, point to Start and click Start Classic
Timing Analyzer (Fast Timing Model).

Altera Corporation 1–5
October 2007 Preliminary

Waveform Editor

4. On the Assignments menu, click Settings. The Settings dialog box
appears.

5. In the Category list, select Simulator Settings. The Simulator
Settings page appears.

6. In the Simulation mode list, select Timing using Fast Timing
Model.

7. In the Simulation input box, specify the vector source. You need to
specify the vector file to run the simulation.

8. Click OK.

9. On the Processing menu, click Start Simulation.

Waveform Editor The most common input stimulus for the Quartus II Simulator are VWFs.
You can use the Quartus II Waveform Editor to generate a VWF.

Creating VWFs

To create a VWF, perform the following steps:

1. On the File menu, click New. The New dialog box appears.

2. Click the Other Files tab, and select Vector Waveform File.

3. Click OK. A blank Waveform Editor window appears (Figure 1–2).

1–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–2. Waveform Editor Window

4. Add nodes and buses. To add a node or bus, on the Edit menu, click
Insert and click Insert Node or Bus. The Insert Node or Bus dialog
box appears (Figure 1–3). All nodes and buses, as well as the
internal signals, are listed under Name in the Waveform Editor
window.

1 You can also open the Insert Node or Bus dialog box by
double-clicking under Name in the Waveform Editor.

Altera Corporation 1–7
October 2007 Preliminary

Waveform Editor

Figure 1–3. Insert Node or Bus Dialog Box

5. You can customize the type of node or bus you want to add. If you
have a large design with many nodes or buses, you may want to use
the Node Finder for node or bus selection. To use the Node Finder,
click Node Finder. The Node Finder dialog box appears
(Figure 1–4).

1–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–4. Node Finder Dialog Box

You can use the Node Finder to find your nodes for simulation
among all the nodes and buses in your design. Use the Node Finder
to filter and add nodes to your waveform. The Node Finder is
equipped with multiple default filter options. By using the correct
filter in the Node Finder, you can find the internal node’s name and
add it to your Vector Waveform File for simulation.

1 Your node might not appear in the simulation waveform and
might be ignored during simulation. This happens because the
node has been renamed or synthesized away by the Quartus II
software. To prevent this from happening, Altera recommends
using the register and pin nodes to simulate your design.

Name of the node or
bus you want to find

Specify or browse the hierarchy
of the design to find the node or bus

List of default filters

Customize your filters

All nodes and buses matching
the search criteria are listed here

All selected nodes and
buses are placed here

Altera Corporation 1–9
October 2007 Preliminary

Waveform Editor

Table 1–1 describes twelve of the Node Finder default filters.

To customize your own filters in the Node Finder, perform the
following steps:

a. Click Customize. The Customize Filter dialog box appears.

b. To configure settings, click New. The New Custom Filter
dialog box appears.

c. In the Filter name box, type the name of the custom filter.

d. In the Copy settings from filter list, select the filter setting.

e. Click OK.

f. You can now customize your filters in the Customize Filter
dialog box.

6. In the Look in box, you can view and edit the current search
hierarchy path. You can type the search hierarchy path or you can
browse for the hierarchy path by clicking the browse button.

Table 1–1. Filter Options

Filter Description

Pins: input Finds all input pin names in your design file(s).

Pins: output Finds all output pin names in your design file(s).

Pins: bidirectional Finds all bidirectional pin names in your design file(s).

Pins: virtual Finds all virtual pin names.

Pins: all Finds all pin names in your design file(s).

Registers: pre-synthesis Finds all user-entered register names contained in the design after design
elaboration, but before physical synthesis does any synthesis optimizations.

Registers: post-fitting Finds all user-entered register names in your design file(s) that survived physical
synthesis and fitting.

Design Entry (all names) Finds all user-entered names in your design file(s).

Post-Compilation Finds all user-entered and compiler-generated names that do not have location
assignments and survived fitting.

SignalTap II:
pre-synthesis

Finds all internal device nodes in the pre-synthesis netlist that can be analyzed by
the SignalTap® II Logic Analyzer.

SignalTap II: post-fitting Finds all internal device nodes in the post-fitting netlist that can be analyzed by the
SignalTap II Logic Analyzer.

SignalProbe Finds all SignalProbe™ device nodes in the post-fitting netlist.

1–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can move up the search hierarchy by selecting hierarchical
names in the Select Hierarchy Level dialog box. This ensures that in
a large design with many signals, you can specify which hierarchy
you would like to get the node from to reduce the amount of signals
displayed.

7. After you have configured the filter and specified the correct
hierarchy in the Node Finder dialog box, click List to display all
relevant nodes or buses.

Select any node(s) or bus(es) from the Nodes Found list and click >
to include it in the waveform, or you can click >> to include all nodes
and buses displayed in the Nodes Found list.

8. Click OK.

1 You can also add nodes to the Waveform Editor by dragging
nodes from the Project Navigator, Netlist Viewers, or Block
Diagram, and dropping them into the Waveform Editor.

9. Create a waveform for a signal. The Quartus II Waveform Editor
toolbar includes some of the most common waveform settings,
making waveform vector drawings easier and user friendly.
Figure 1–5 shows the options available on the Waveform Editor
toolbar.

Figure 1–5. Waveform Editor Toolbar

10. After you edit your waveform, save the waveform. On the File
menu, click Save As. The Save As dialog box appears. Type your
file name, specify the file type, and click Save.

Selection
Tool

Full
Screen

Forcing
Unknown (x)

Weak
Unknown (W)

Invert Random
Value (R)

Waveform
Editing Tool

Replace Forcing
High (1)

Weak
High (H)

Overwrite
Clock

Sort

Text Find
Forcing
Low (0)

Weak
Low (L)

Count
Value (C)

Snap
to Grid

Zoom
Tool

Unitialized
(U)

High
Impedence

(Z)
Don't

Care (DC)
Arbitrary

Value

Altera Corporation 1–11
October 2007 Preliminary

Waveform Editor

1 Instead of using the Node Finder to insert your nodes for your
VWF, you can also drag-and-drop any nodes from the Netlist
Viewer to your Simulation Vector Waveform File. For more
information on Netlist Viewers, refer to Analyzing Designs with
the Quartus II Netlist Viewers in volume 1 of the Quartus II
Handbook.

Count Value

Count Value applies a count value to a bus to increment the value of the
bus by a specified time interval. Instead of manually editing the values
for each node, the Count Value feature on the Waveform Editor toolbar
automatically creates the counting values for buses. This feature enables
you to specify a starting value for a bus, what time interval to increment,
and when to stop counting. You can also configure transition
occurrences, while setting the count type and increment number. When
you click on the Count Value button in the Waveform Editor toolbar, the
Count Value dialog box appears (Figure 1–6). You can also open the
Count Value dialog box by right-clicking the selected node, pointing to
Value, and clicking Count Value.

Figure 1–6. Count Value Dialog Box

Clock

You can use the Clock feature in the Waveform Editor toolbar to
automatically generate the clock wave, rather than drawing each clock
triggering pulse. To generate a clock signal with the Clock dialog box,

1–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

click the Overwrite Clock button on the Waveform Editor toolbar.
Furthermore, you can determine the start and end time of a clock signal,
whether to manually configure the period (the offset and the duty cycle),
or whether to generate the clock based on a specified clock. Figure 1–7
shows the Clock dialog box.

Figure 1–7. Clock Dialog Box

Arbitrary Value

Arbitrary Value allows you to overwrite a node value over the selected
waveform, waveform interval, or across one or more nodes or groups. To
overwrite a node value, perform the following steps:

1. Select a node or a bus and click the Arbitrary Value button on the
Waveform Editor toolbar (Figure 1–5). The Arbitrary Value dialog
box appears (Figure 1–8).

2. Under Time range, specify the start and end time you want to
overwrite for the node value.

3. In the Radix list, select the radix type.

4. Specify the new value you want overwritten in the Numeric or
named value box.

5. Click OK.

Altera Corporation 1–13
October 2007 Preliminary

Waveform Editor

Figure 1–8. Arbitrary Value Dialog Box

Random Value

Random Value allows you to generate random node values over the
selected waveform, waveform interval, or across one or more nodes or
groups. Figure 1–9 shows the Random Values dialog box.

You can generate random node values by every grid interval, every half
grid interval, at random intervals, or at fixed intervals.

Figure 1–9. Random Values Dialog Box

Generating a Testbench

You can export your VWF as a VHDL Test Bench File (.vht) or Verilog
Test Bench File (.vt). This is useful when you want to use a vector
waveform in different EDA tools. You must run an analysis and

1–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

elaboration before you can export a waveform vector. To export a
waveform vector, have your vector waveform open and perform the
following steps:

1. On the File menu, click Export. The Export dialog box appears.

2. In the Save as type list, select VHDL Test Bench File (*.vht) or
Verilog Test Bench File (*.vt).

3. You can optionally turn on Add self-checking code to file. This
option adds additional logic to check the results of the output and
compares it to the original VWF.

1 You must open your project in the Quartus II software before
you can export a VWF.

f For more information about using the generated test bench in other EDA
tools, refer to the respective EDA simulator chapter in the Simulation
section in volume 3 of the Quartus II Handbook.

Grid Size

When you select portions of your waveform, the selection area snaps to
time intervals specified in the Grid Size dialog box. You can customize
the grid size in the Waveform Editor. You can change the grid size based
on the clock settings or by setting the time period. To customize the grid
size, on the Edit menu, click Grid Size.

Time Bars

Add time bars in the Waveform Editor to compare edges between
different signals. You can also use time bars to jump forward and
backward to the next edge transition in the selected signal, and read the
logic level of signals by sliding the Time Bar in your waveform. The logic
level is displayed in the Value at column of the Waveform Editor.

The Time Bar Organizer dialog box enables you to create, delete, and edit
a time bar, and to create a master time bar. Only one master time bar is
allowed per waveform file. To use the Time Bar Organizer, on the Edit
menu, point to Time Bar and click Time Bar Organizer.

1 Under Existing time bars, in the Absolute time column, the
red M indicates the master time bar (Figure 1–10).

Altera Corporation 1–15
October 2007 Preliminary

Waveform Editor

Figure 1–10. Time Bar Organizer Dialog Box

Stretch or Compress a Waveform Interval

You can stretch or compress a waveform interval in the Waveform Editor,
which enables you to analyze the effects on a waveform. For example,
you can check the behavior of your design at high speeds for a short
interval by using the compress option to compress the waveform. You
can also use this feature to delay the transition of a signal by stretching
the waveform.

You have to specify the original start and end time, and the new time for
the waveform you want to stretch or compress. If you want to stretch or
compress all the nodes or buses, deselect all nodes and buses and set the
stretch or compress feature.

To stretch or compress a waveform interval, on the Edit menu, point to
Value and click Stretch or Compress Waveform Interval. The Stretch or
Compress Waveform Interval dialog box appears.

The “To time value” end time specified in the Stretch or Compress
Waveform Interval dialog box cannot be larger than the “End Time”
specified in the Simulator Settings page of the Settings dialog box
(Figure 1–12). Otherwise, the Quartus II software displays a message
indicating the invalid time value.

1–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

End Time

The End Time setting enables you to change the end time of the VWF. The
end time represents the maximum length of time in the VWF. You can
specify the end time and your preferred time unit, and have different
extension values for different nodes or buses. With the waveform open,
specify the end time by performing the following steps:

1. On the Edit menu, click End Time. The End Time dialog box
appears (Figure 1–11).

Figure 1–11. End Time Dialog Box

2. In the Time box, specify the end time and select the time unit in the
Time list.

3. Under Default extension options, in the Extension value list, select
the value.

4. Under End time extension per signal, you can select specific
extension values for each signal by clicking in the Extension value
column.

Altera Corporation 1–17
October 2007 Preliminary

Simulator Settings

1 The options in the End time dialog box are different settings
than those under Simulation period in the Settings dialog box.
Simulation period is the period that the Quartus II software
simulates the stimuli. End time is the maximum length of time
in the VWF. For information on the simulation period, refer to
Table 1–2 on page 1–19.

Arrange Group or Bus in LSB or MSB Order

You can arrange a group or bus in Least Significant Bit (LSB) or Most
Significant Bit (MSB) order. If you arrange in LSB order, the LSB is on top
and MSB is at bottom. If you arrange in MSB order, the MSB is on top and
LSB is at bottom.

To arrange a group or bus in LSB or MSB order, perform the following
steps:

1. Select the bus that you want to change the LSB or MSB order. You
can also select multiple buses in the waveform editor.

2. On the Edit, point to Group and Bus Bit Order and click either MSB
on top, LSB on Bottom to change the bus or group in MSB order or
click LSB on top, MSB on Bottom to change the bus or group in LSB
order.

Simulator
Settings

You can enhance your output, reduce debugging time, and provide better
coverage before running a simulation. This section covers the different
simulation modes supported by the Quartus II Simulator. Additionally,
the Quartus II Simulator offers common setup features like glitch
filtering, setup and hold violation detection, and simulation coverage.

To setup simulation settings, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Simulator Settings. The Simulator
Settings page appears (Figure 1–12).

1–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 1–12. Simulator Settings Page

Altera Corporation 1–19
October 2007 Preliminary

Simulator Settings

Table 1–2 shows the options in the Simulator Settings page.

Table 1–2. Quartus II Simulator Settings (Part 1 of 2)

Settings and Options Description

Simulation mode (1) Functional
This simulation mode uses a pre-synthesis compiler database to simulate the logical
performance of a project without the timing information. This mode enables you to
check the functionality of the design. All nodes and buses are preserved in this
simulation because functional simulation is performed before synthesis, partitioning,
or fitting. A VWF is required to perform this simulation mode.

Timing
This simulation mode takes the compiled netlist that includes timing information. With
this simulation mode, you can check setup, hold violation, glitches, and simulation
coverage. You can remove nodes or buses using the Quartus II Compiler when logic
is optimized. This simulation mode uses the worst case timing model.

Timing using Fast Timing Model
This simulation mode is similar to timing simulation but this mode uses the best-case
timing model.

Simulation input You must include the vector file in the Simulation input box. You can type the name
of the file or use the browse button to open the Select File dialog box. In the Files of
type list, you can select Vector Waveform File (*.vwf), Compressed Vector
Waveform File (*.cvwf), Value Change Dump File (*.vcd), Vector Table Output File
(*.tbl), Vector Text File (*.vec), Simulation Channel File (.scf), or All Files (*.*).

TBL files contain input vectors and output logic levels in tabular-format list. You can
generate this file using a VWF. However, if you would like to maintain, view, or update
the vectors, VWFs offer better visibility. VWF or TBL file formats are interchangeable.
You can generate TBL files from VWFs and vice versa. You can create a VWF with
the Waveform Editor. For more information on the Waveform Editor, refer to
“Waveform Editor” on page 1–5.

The Quartus II software also supports MAX+PLUS® II simulation vector files, such as
VEC and SCF.

A CVWF is the simplified version, non-readable, format of the VWF format. This file
type is in binary format and is generally smaller in file size. You can use CVWFs in
the Waveform Editor and simulation.

A VCD file is an ASCII file which contains header information, variable definitions,
and the value changes for specified variables, or all variables, in a given design. The
value changes for a variable are given in scalar or vector format, based on the nature
of the variable.

1–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Simulation period The simulation period determines the length of time that the simulator runs the stimuli
with the maximum period being equal to the end time of a VWF. If the simulation
period is configured shorter than the end time, all signals beyond the simulation
period are displayed as Unknown (X). Therefore, you can also shorten the simulation
period or end the simulation earlier by selecting End Simulation at and specifying
the time and selecting the time unit. If the simulation period is configured longer than
the end time, the simulation will stop at the end time. For information on the end time,
refer to “End Time” on page 1–16.

Glitch filtering options Specifies whether to enable glitch filtering for simulations. You can select one of the
following options:

Auto—The Simulator performs glitch filtering when SAF generation is enabled in the
Simulation Output Files page of the Settings dialog box.

Always—The Simulator always performs glitch filtering, even if SAF generation is not
enabled.

Never—The Simulator never performs glitch filtering, even if SAF generation is
enabled.

More Settings If you click More Settings, the More Simulator Settings dialog box appears. The
following options are available under Existing option settings.

Cell Delay Model Type
Specifies the type of delay model to be used for cell delays: transport or inertial. The
default is transport.

Interconnect Delay Model Type
Specifies the type of delay model to be used for interconnect delays: transport or
inertial. The default is transport.

Preserve fewer signal transition to reduce memory requirements
This option is effective on lower performance workstations because turning on this
option flushes signal transitions from memory to disk for memory optimization.

Note to Table 1–2:
(1) The Quartus II Simulator may flag an error message if zero-time oscillation happens in your design. Zero-time

oscillation happens when a particular output signal does not achieve a stable output value at a particular fixed
time, which may be due to your design containing combinational logic path loops.

Table 1–2. Quartus II Simulator Settings (Part 2 of 2)

Settings and Options Description

Altera Corporation 1–21
October 2007 Preliminary

Simulator Settings

Simulation Verification Options

Figure 1–13 shows the simulation verification page.

Figure 1–13. Simulation Verification Page

1–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 1–3 shows the options in the simulation verification page.

Table 1–3. Quartus II Simulation Verification (Part 1 of 2)

Settings and Options Description

Check outputs Check outputs checks expected outputs against actual outputs in the
simulation report. After turning on Check outputs, click the Waveform
Comparison Settings button. The Waveform Comparison Settings dialog
box appears.

In the Waveform Comparison Settings dialog box, you can specify the
waveform comparison time frame and the comparison options. You can also set
the tolerance level for all the signals by specifying the tolerance limit in the
Default comparison timing tolerance box. The Maximum comparison
mismatches box is the amount of mismatches the Quartus II Simulator is
allowed to accept before it stops comparing.

You can also set the type of transition the comparison should trigger in the
Waveform Comparison Settings dialog box. You can assign trigger
comparisons based on Input signal transition edges, All signal transition
edges, or Selected Signal transition edges.

To customize the waveform comparison matching rules, you can also click the
Comparison Rules button. The Comparison Rules dialog box appears,
allowing you to customize the comparison matching rules.

Setup and hold time
violation detection

This option detects setup and hold time violation. Setup time is the period
required by a synchronous signal to stabilize before the arrival of a clock edge.
Hold time is the time required by a synchronous signal to maintain after the
same clock edge. If the Setup and hold time violation detection option is
turned on, a warning in the Messages windows appears if any setup or hold time
violation is detected during the simulation. This option is only for Timing and
Timing using Fast Timing Model simulation modes.

Glitch detection Conditions happen when two or more signals toggle simultaneously and can
cause glitches or unwanted short pulses. The Glitch detection option enables
you to detect glitches and specify the time interval that defines a glitch. If two
logic level transitions occur in a period shorter than the specified time period, the
resulting glitch is detected and reported in the Processing tab of the Messages
window.

If you turn on the Glitch detection option, you can specify the acceptable glitch
width. A Messages window appears when a pulse is smaller than the specified
glitch width that is detected. The Glitch detection option is only available for
Timing and Timing using Fast Timing Model simulation modes.

Altera Corporation 1–23
October 2007 Preliminary

Simulator Settings

Simulation coverage
reporting

This option reports the ratio of outputs (coverage) actually simulated to the
number of outputs in the netlist and is expressed as a percentage. When you
turn on the Simulation coverage reporting option, the Report Settings button
is available. If you click Report Settings, the Report Settings dialog box
appears. The three types of coverage reports you can select from are Display
complete 1/0 value coverage report, Display missing 1-value coverage
report, and Display missing 0-value coverage report.

Disable setup and hold time
violation detection for input
registers of bi-directional
pins

This option enables you to disable setup and hold time violations detection in
input registers of all bidirectional pins in the simulated design during Timing or
Timing using Fast Timing Model simulation.

Table 1–3. Quartus II Simulation Verification (Part 2 of 2)

Settings and Options Description

1–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Simulation Output Files Options

Figure 1–14 shows the simulation output file page.

Figure 1–14. Simulation Output Files Page

Altera Corporation 1–25
October 2007 Preliminary

Simulation Report

Table 1–4 shows the options in the simulation output file page.

Simulation
Report

Comprehensive reports are shown after the completion of each
simulation. These reports are important to ensure designs meet timing
and logical correctness. These simulation reports also play an important
role in debugging.

Simulation Waveform

Simulation Waveforms are part of the Simulation report. In this report,
the stimuli and the results of the simulation are displayed.

Table 1–4. Quartus II Simulation Output Files

Setting and Options Description

Simulation output
waveform

Specify the simulation output waveform options.

Automatically add pins to simulation output waveforms
The Automatically add pins to simulation output waveforms option
automatically adds all outputs that are available in the design to the waveform
reports. If your design has large amounts of outputs, turning on this option
ensures all outputs are monitored during simulation.

Overwrite simulation input file with simulation results
This option overwrites the vector source file with simulation results. This option
is ignored when the Check outputs setting is turned on. This option adds the
result to the vector file and generally, it can give you more visibility during the
debugging process. (1)

Group bus channel in simulation results
This option automatically groups bus channels in the output waveform that are
shown in the simulation reports. By turning off this option, all output waveforms
have a node to represent each bus signal.

Signal activity output for
power analysis

When you perform your simulation with the Quartus II Simulator, you can
generate a SAF which is used by the PowerPlay Power Analyzer to assist you
with power analysis. (2), (3)

VCD output for power
analysis

When you perform simulation with the Quartus II Simulator, you can generate a
VCD file, which is used by the PowerPlay Power Analyzer to assist you with
power analysis. (2), (3)

Notes to Table 1–4:
(1) A backup copy of the source vector file is saved under the db folder with the name <project>.sim_ori.

<vector file format type>.
(2) Instead of using the SAF or Generate VCD file (*.vcd), you can also save your output waveform as a VCD file to

perform power analysis.
(3) For more information about the PowerPlay Power Analyzer, refer to the PowerPlay Power Analysis chapter in

volume 3 of the Quartus II Handbook.

1–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can export the simulation waveform as a VHDL Test Bench File or a
Verilog Test Bench File for use in other EDA tools. You can also save a
simulation as a VWF or Vector Table Output File for use with the
Quartus II software.

When you try to edit the Simulation Waveform, the Edit Input Vector
File dialog box appears, asking whether you would like to edit the vector
input file with the results of the simulation or if you would like to
overwrite the vector input file with other vector inputs (Figure 1–15).

Figure 1–15. Edit Input Vector File

You can overwrite your simulation input file with the simulation results
so that your input vector file is updated with the resulting waveform after
a simulation. For more information, refer to the Overwrite simulation
input file with simulation results option in Table 1–2.

If you do not want to overwrite the simulation input file in every
simulation run, perform the following to overwrite simulation input files
with simulation results after a simulation:

On the Processing Menu, point to Simulation Debug and click Overwrite
Vector Inputs with Simulation Outputs.

Simulating Bidirectional Pin

A bidirectional pin is represented in the waveform by two channels. One
channel represents the input to the bidirectional pin, and the other
channel represents the output from the bidirectional pin. You can enter
the input channel into the waveform by using the Node Finder dialog
box. The output channel is automatically created by the Quartus II
Simulator and named <bidir pin name> ~result.

Altera Corporation 1–27
October 2007 Preliminary

Simulation Report

Logical Memories Report

The Quartus II software writes out the contents of each memory module
after simulation. Therefore, if you use memory cells in your design, you
can analyze the contents of the logic memory structures in the device in
the Logical Memories Report. The Logical Memories Report displays
individual reports for each memory block and contains the data stored in
the memory cell used at the end of simulation.

After being simulated, a memory module’s contents are stored in the
Logical Memories section of the simulation report file.

To view this section, perform the following steps:

1. On the Processing menu, click Simulation Report. The Simulation
Report window appears.

2. In the report window, click on the “+” next to Logical Memories.

Simulation Coverage Reports

The Coverage Summary report contains the following summary
information for the simulation:

■ Total toggling coverage as a percentage
■ Total nodes checked in the design
■ Total output ports checked
■ Total output ports with complete 1/0-value coverage
■ Total output ports with no 1/0-value coverage
■ Total output ports with no 1-value coverage
■ Total output ports with no 0-value coverage

The Complete 1/0-Value Coverage report lists the following information:

■ Node name
■ Output port name
■ Output port type for output ports that toggle between 1 and 0 during

the simulation

The Missing 0-Value Coverage report and Missing 1-Value Coverage
report list the following information:

■ Node name
■ Output port name
■ Output port type for output ports that do not toggle to the

designated value

1–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For more information about Simulation Coverage reports, refer to the
Simulation coverage reporting option in Table 1–2 on page 1–19.

The following are individual reports and their definition:

Complete 1/0 value coverage report
Displays all the nodes or buses that toggle between 1 and 0 during
simulation.

Missing 1-value coverage and Missing 0-value coverage reports
Displays all the nodes that do not toggle to the designated value.

Comparing Two Waveforms

You can compare your simulation results against previous simulations
using the compare option. To compare two waveforms in the Simulation
Report, turn on the Check outputs option. For more information on the
Check outputs option, refer to Table 1–2 on page 1–19. With the Check
outputs option turned on, the two comparable waveforms are visible in
black and red. The black waveforms represent the original output or the
expected output, and the red waveforms represent the compared output
or the actual output. Figure 1–16 shows an example of expected output
waveform versus actual output waveform.

Figure 1–16. Example of Simulation Waveform from the Simulation Report When Check Output is Turned On

Expected Output Waveform

(in Black)
Actual Output Waveform

(in Red)

Altera Corporation 1–29
October 2007 Preliminary

Debugging with the Quartus II Simulator

Debugging with
the Quartus II
Simulator

The Quartus II software includes tools to help with simulation
debugging. This section covers some debugging tools and their use.

Breakpoints

Inserting breakpoints into the simulation process enables the simulator to
break at the desired time or on the desired node or bus condition. You can
monitor the activity of nodes or buses during specified times and
pinpoint the cause of mismatched signal levels between expected and
actual. To use breakpoints, perform the following steps:

1. On the Processing menu, point to Simulation Debug and click
Breakpoints. The Breakpoints dialog box appears (Figure 1–17).

Figure 1–17. Breakpoints Dialog Box

2. Click New to create a new breakpoint. The New Breakpoint dialog
box appears. In this dialog box, you can specify the name, the
equation, and the action of the breakpoint. You can also enable or
disable this breakpoint by using the Enable Breakpoint check box.

3. In the Equation text box, click condition. You can configure the
logical conditions of individual nodes or buses, or you can set the
time.

4. After you configure the equation conditions, select the action for the
Quartus II Simulator. In the Action drop down list, select Stop,
Warning Message, Error Message, or Information Message. This
selection defines the action once the condition is met.

1–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. You can also enter the text that appears when the Simulator encounters
the breakpoint. If you do not make an entry in this box, the Quartus II
software displays a default message.

Updating Memory Content

If your design includes memories, when the simulator stops at a breakpoint,
you can view and edit the contents of the memories. To view your memories
during a breakpoint in the simulation, on the Processing menu, point to
Simulation Debug and click Embedded Memory.

Last Simulation Vector Outputs

The Last Simulation Vector Outputs command opens the Output Simulation
Waveforms report generated by the last simulation. To use this command, on
the Processing menu, point to Simulation Debug and click Last Simulation
Vector Outputs.

You can open the current input vectors that you defined in the Simulator
Settings dialog box with the Current Vector Inputs command. To use this
command, on the Processing menu, point to Simulation Debug and click
Current Vector Inputs. Lastly, you can overwrite the vector source file with
the simulation outputs which open the resulting file.

Conventional Debugging Process

During the design phase, tapping out internal signals is a common practice to
debug simulation errors. Therefore, the Quartus II software enables you to tap
out the signal for simulation debug and also enables you to pull out the
internal signal to the physical I/O. The Quartus II software also offers
SignalTap II and SignalProbe to further assist you with debugging.

Accessing Internal Signals for Simulation

You can conventionally debug by probing out the internal signals, which
enables you to preserve the internal signals during synthesis. You can probe
the internal signal by selecting the node or bus and specifying a name, and then
adding an output port to the schematic with a similar name. Figure 1–18 shows
an example of accessing internal signals for simulation from a schematic
diagram.

Altera Corporation 1–31
October 2007 Preliminary

Debugging with the Quartus II Simulator

Figure 1–18. Example of Tapping Out Internal Signal

For timing simulations, the simulation netlist is based on the Compilation
post-Synthesis and post-Fitting netlist. Therefore, some of the internal
nodes or buses are optimized away during compilation of the netlist. If an
internal node is optimized away, the Quartus II software shows a
warning in the Warning tab of the Messages window similar to the
following message:

Warning: Compiler packed, optimized or synthesized away node “DataU”. Ignored vector
source file node.

This internal node is ignored by the Quartus II Simulator.

If you would like to tap out the D and Q ports of registers, turn on Add
D and Q ports of register node to Simulation Output Waveform from
the Assignment Editor. This feature is only available for functional
simulations.

Accesing the internal
signal of the bus INTA.

Both the internal signal bus and
the output port have the same name.

1–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

You can change the Functional, Timing, or Timing using Fast Timing
Model simulation modes with the following command:

simulation_mode <mode> r

To initialize the simulation for the current design, use the following
command. During initialization, the Simulator builds the simulation
netlist and sets the simulation time to zero.

The option -ignore_vector_file is set to Off by default, when the
source vector file exists for simulation. The Quartus II software ignores
the source vector file during simulation if the option
-ignore_vector_file is set to On. The -end_time option is used
only when the -ignore_vector_file option is set to On.

initialize_simulation [-h | -help] [-long_help] [-check_outputs <On | Off>] \
[-end_time <end_time>] [-glitch_filtering <On | Off>] [-ignore_vector_file <On | Off>] \
[-memory_limiter <On | Off>] [-power_vcd_output <target_file>] [-read_settings_files <On |
Off>] \ [-saf_output <target_file>] [-sim_mode <functional | timing | timing_using_fast_timing_model >] \
[-vector_source <vector_source_file>] [-write_settings_files <On | Off>] \
-simulation_results_format <VWF | CVWF | VCD> -vector_source <vector source file>

To force the specified signal or group of signals to the specified value,
type the following at a command prompt:

force_simulation_value [-h | -help] [-long_help] -node <hpath> <value> r

To turn on the simulator to simulate the design for a specified time, type
the following at a command prompt:

run_simulation [-h | -help] [-long_help] [-time <time>] r

Altera Corporation 1–33
October 2007 Preliminary

Conclusion

1 If you do not specify the length of time the simulation runs, it
runs until the simulation is complete.

To create a breakpoint with a specified equation and action, type the
following at a command prompt:

create_simulation_breakpoint [-h | -help] [-long_help] \
-action [Give Warning | Give Info | Give Error] \
-breakpoint <breakpoint_name> -equation <equation> [-user_message <message_text>]r

To delete a breakpoint with a specified name, type the following at a
command prompt:

delete_simulation_breakpoint [-h | -help] [-long_help] \
-breakpoint <breakpoint_name> r

Conclusion Simulation plays an important role in ensuring the quality of a product.
The Quartus II software offers various tools to assist you with simulation
and helps reduce debugging time with the introduction of features like
Glitch Filtering and Breakpoints.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Settings File Reference Manual
■ Section I: Simulation section in volume 3 of the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

1–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 1–5 shows the revision history for this chapter.

Table 1–5. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 1–33. —

May 2007
v7.1.0

● Updated a command in Scripting Support.
● Updated Breakpoints.
● Added procedure to Logical Memories Report.
● Updated sections, added sections and deleted sections in

Simulator Settings.
● Updated Simulation Report.
● Updated Table 1-2.
● Added Arrange Group or Bus in LSB ir MSB Order.
● Updated Creating VWFs.
● Added Referenced Documents.

Updated for the
Quartus II software
version 7.1.

March 2007 v7.0.0 Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Updated for the Quartus II software version 6.1.
● Added references to Value Change Dump File (.vcd)
● Added Random Value section
● Other minor changes

Updated for the
Quartus II software
version 6.1.

May 2006 v6.0.0 Initial release. —

Altera Corporation 2–1
October 2007 Preliminary

2. Mentor Graphics
ModelSim Support

Introduction An Altera® software subscription includes a license for the
ModelSim-Altera software on a PC or UNIX platform. The
ModelSim-Altera software can be used to perform functional register
transfer level (RTL), post-synthesis, and gate-level timing simulations for
either Verilog HDL or VHDL designs that target an Altera FPGA. This
chapter provides detailed instructions on how to simulate your design in
the ModelSim-Altera version or the Mentor Graphics® ModelSim®
software version. This chapter gives you details on the specific libraries
that are needed for a functional RTL simulation or a gate-level timing
simulation.

This document describes using ModelSim-Altera software version 6.1g
and the Mentor Graphics ModelSim software version 6.1g. It also
contains references to features available in the Altera Quartus® II
software version 7.2.

The following topics are discussed in this chapter:

■ “Background”
■ “Software Compatibility” on page 2–3
■ “Altera Design Flow with ModelSim or ModelSim-Altera Software”

on page 2–3
■ “Functional RTL Simulation” on page 2–5
■ “Post-Synthesis Simulation” on page 2–16
■ “Gate-Level Timing Simulation” on page 2–23
■ “Simulating Designs that Include Transceivers” on page 2–37
■ “Using the NativeLink Feature with ModelSim” on page 2–44
■ “Scripting Support” on page 2–50
■ “Software Licensing and Licensing Setup” on page 2–51

f For more information about the current Quartus II software version,
refer to the Altera website at www.altera.com.

Background The ModelSim-Altera software version 6.1g is included with your Altera
software subscription and can be licensed for the PC, Solaris, or Linux
platforms to support either Verilog HDL or VHDL hardware description
language (HDL) simulation. The ModelSim-Altera software supports
VHDL or Verilog functional RTL, post-synthesis, and gate-level timing
simulations for all Altera devices.

QII53001-7.2.0

2–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 2–1 describes the differences between the Mentor Graphics
ModelSim SE/PE and ModelSim-Altera software versions.

Table 2–1. Comparison of ModelSim Software Versions

Product Feature ModelSim SE ModelSim PE ModelSim-Altera ModelSim-Altera
Web Edition

100% VHDL, Verilog,
mixed-HDL support

Optional Optional Supports only
single-HDL
simulation

Supports only
single-HDL
simulation

Complete HDL debugging
environment

v v v v

Optimized direct compile
architecture

v v v v

Industry-standard scripting v v v v
Flexible licensing v Optional v —

Verilog PLI support.
Interfaces Verilog HDL
designs to customer C code
and third-party software

v v v v

VHDL FLI support. Interfaces
VHDL designs to customer C
code and third-party software

v — — —

Standard Delay Format File
annotation

v v v(1) v (1)

Advanced debugging
features and
language-neutral licensing

v — — —

Customizable, user-
expandable graphical user
interface GUI and integrated
simulation performance
analyzer

v — — —

Integrated code coverage
analysis and SWIFT support

v — — —

Accelerated VITAL and
Verilog HDL primitives
(3 times faster), and register
transfer level (RTL)
acceleration (5 times faster)

v — — —

Platform support PC, UNIX, Linux PC only PC, UNIX, Linux PC only

Precompiled Libraries No No Yes Yes

Note to Table 2–1:
(1) ModelSim-Altera will only allow SDF annotation to modules in the Altera library.

Altera Corporation 2–3
October 2007 Preliminary

Software Compatibility

Software
Compatibility

Table 2–2 shows which ModelSim-Altera software version is compatible
with the Quartus II software versions. ModelSim versions provided
directly from Mentor Graphics do not correspond to specific Quartus II
software versions.

For help with ModelSim-Altera licensing set up, refer to “Software
Licensing and Licensing Setup” on page 2–51.

Altera Design
Flow with
ModelSim or
ModelSim-
Altera Software

This chapter contains the following sections:

■ Functional RTL simulations
■ Post-synthesis simulations
■ Gate-level timing simulations
■ Using the NativeLink® feature with ModelSim

Figure 2–1 illustrates an Altera design flow using the Mentor Graphics
ModelSim software or ModelSim-Altera software.

Table 2–2. Compatibility Between Software Versions

ModelSim-Altera Software Quartus II Software (1)

ModelSim-Altera software version 6.1g Quartus II software version 6.1, 7.0, 7.1, and 7.2

ModelSim-Altera software version 6.1d Quartus II software version 6.0

ModelSim-Altera software version 6.0e Quartus II software version 5.1

ModelSim-Altera software version 6.0c Quartus II software version 5.0

ModelSim-Altera software version 5.8.e
ModelSim-Altera software version 5.8

Quartus II software version 4.2

Note to Table 2–2:
(1) Updated ModelSim-Altera precompiled libraries are available for download on Altera’s website for each release

of the Quartus II service pack.

2–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 2–1. Altera Design Flow with ModelSim-Altera and Quartus II Software

Note to Figure 2–1:
(1) If you are performing a functional simulation through NativeLink, you must

complete analysis and elaboration first.

.vo/.vho

Design Entry

Functional RTL Simulation (1)

Synthesis

Post-Synthesis Simulation

Verilog Output
File and VHDL

Output File

.sdo

Place-and-Route

.v/.vhd

Gate-Level Timing Simulation

Gate-Level
Simulation

Library Files

Post-Synthesis
Simulation

Library Files

Functional
Simulation

Library Files

.vo/.vho
Verilog Output
File and VHDL

Output File

Standard Delay
Format Output

File

Testbench

ALTERA IP

Altera Corporation 2–5
October 2007 Preliminary

Functional RTL Simulation

Functional RTL
Simulation

A functional RTL simulation is performed before a gate-level simulation
or post-synthesis simulation. Functional RTL simulation verifies the
functionality of the design before synthesis and place-and-route. This
section provides detailed instructions on how to perform a functional
RTL simulation in the ModelSim-Altera software and highlights some of
the differences in performing similar steps in the Mentor Graphics
ModelSim software versions for Verilog HDL and VHDL designs.

Functional Simulation Libraries

Pre-compiled libraries are available for functional simulation with the
ModelSim-Altera software. These libraries include the lpm library and
the altera_mf library. To create these libraries for simulation with the
ModelSim SE/PE software, compile the library files described in the
following sections.

lpm Simulation Models

To simulate designs containing lpm functions, use the following
functional simulation models:

■ 220model.v (for Verilog HDL)
■ 220pack.vhd and 220model.vhd (for VHDL)

1 When you are simulating a design that uses VHDL-1987, use the
220model_87.vhd model file.

Table 2–3 shows the location of these simulation model files and
precompiled libraries in the Quartus II software and the
ModelSim-Altera software.

f For more information about LPM functions, refer to the Quartus II Help.

Table 2–3. Location of lpm Simulation Models Files and Pre-Compiled Libraries

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib\ (1)

ModelSim-Altera <ModelSim-Altera installation directory>\altera\<HDL>\220model\ (2), (3)

Notes to Table 2–3:
(1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
(2) For ModelSim-Altera, use the precompiled libraries for simulation.
(3) <HDL> can be either Verilog HDL or VHDL.

2–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Megafunction Simulation Models

To simulate a design that contains Altera megafunctions, use the
following simulation models:

■ altera_mf.v (for Verilog HDL)
■ altera_mf.vhd and altera_mf_components.vhd (for VHDL)

1 When you are simulating a design that uses VHDL-1987, use
altera_mf_87.vhd.

Table 2–4 shows the location of these simulation files and precompiled
libraries in the Quartus II software and the ModelSim-Altera software.

The following Altera megafunctions require device atom libraries to
perform a functional simulation in a third-party simulator:

■ altclkbuf
■ altclkctrl
■ altdqs
■ altdq
■ altddio_in
■ altddio_out
■ altddio_bidir
■ altufm_none
■ altufm_parallel
■ altufm_spi
■ altmemmult
■ altremote_update

The device atom library files are located in the following directory:

<Quartus II installation directory>/eda/sim_lib

Table 2–4. Location of Altera Megafunction Simulation Models Files and Precompiled Libraries

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib\ (1)

ModelSim-Altera <ModelSim-Altera installation directory>\altera\<HDL>\altera_mf\ (2), (3)

Notes to Table 2–4:
(1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
(2) For ModelSim-Altera, use the precompiled libraries for simulation.
(3) <HDL> can be either Verilog HDL or VHDL.

Altera Corporation 2–7
October 2007 Preliminary

Functional RTL Simulation

Low-Level Primitive Simulation Models

You can simulate a design that contains low-level Altera primitives with
the following simulation models:

■ altera_primitives.v (for Verilog HDL)
■ altera_primitives.vhd and altera_primitives_components.vhd (for

VHDL)

Table 2–5 shows the location of these simulation library files and
precompiled libraries in the Quartus II software and the
ModelSim-Altera software.

Simulating VHDL Designs

Use the following instructions to perform a functional RTL simulation for
VHDL designs in the ModelSim software.

1 The steps in the following section assume you have already
created a ModelSim project.

The ModelSim-Altera software comes with precompiled
simulation libraries. Creating simulation libraries and
compiling simulation models steps are not required. You can
proceed directly to “Compile Testbench and Design Files into
Work Library” on page 2–9.

Create Simulation Libraries

Simulation libraries are required to simulate a design that contains an
Altera primitive, lpm function, or Altera megafunction. These libraries
have already been compiled if you are using the ModelSim-Altera
software. However, if you are using the Mentor Graphics ModelSim
software, you must create the simulation libraries and link them to your
design correctly.

Table 2–5. Location of Altera Primitives Model Files and Precompiled Libraries

Software Location

Quartus II <Quartus II installation directory>\eda\sim_lib (1)

ModelSim-Altera <ModelSim-Altera installation directory>\altera\<HDL>\altera (2), (3)

Notes to Table 2–5:
(1) For ModelSim SE/PE, compile the files provided with the Quartus II software.
(2) For ModelSim-Altera, use the precompiled libraries for simulation.
(3) <HDL> can be either Verilog HDL or VHDL.

2–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the name of the newly created
library.

For example, the library name for Altera megafunctions should be
altera_mf, and the library name for LPM should be lpm.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib altera_mf r
vmap altera_mf altera_mf r
vlib lpm r
vmap lpm lpm r
vlib altera r
vmap altera altera r

Compile Simulation Models into Simulation Libraries

The following steps are not required for the ModelSim-Altera software.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib and add
the necessary simulation model files to your project.

1 The altera_mf.vhd model file should be compiled into the
altera_mf library. The 220pack.vhd and 220model.vhd model
files should be compiled into the lpm library.

3. In the Workspace window, select the simulation model file, and on
the View menu, click Properties.

Altera Corporation 2–9
October 2007 Preliminary

Functional RTL Simulation

4. Choose the correct library from the Compile to Library list.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries at the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vcom -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf_components.vhd r
vcom -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf.vhd r
vcom -work lpm <Quartus II installation directory>/eda/sim_lib/220pack.vhd r
vcom -work lpm <Quartus II installation directory>/eda/sim_lib/220model.vhd r
vcom -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives_components.vhd r
vcom -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives.vhd r

Compile Testbench and Design Files into Work Library

Compile a testbench and design files into a work library by clicking
Compile All or by clicking the Compile All toolbar icon on the Compile
menu.

Compile Testbench and Design Files into Work Library Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_design_files.vhd>r
1 Resolve compile-time errors before proceeding to the following

section.

Loading the Design

To load a design, perform the following steps:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Expand the work library in the Start Simulation dialog box.

3. Select the top-level design unit (your testbench).

4. In the Resolution list, select ps.

5. Click OK.

2–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim work.<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag signals to monitor from the Objects window and drop them
into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Simulating Verilog HDL Designs

The following instructions provide step-by-step instructions to perform
functional RTL simulation for Verilog HDL designs in the ModelSim
software.

1 The following steps assume you have already created a
ModelSim project.

If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–12.

Create Simulation Libraries

Simulation libraries are needed to properly simulate a design that
contains an lpm function or an Altera megafunction. These libraries have
already been compiled if you are using the ModelSim-Altera software.

Altera Corporation 2–11
October 2007 Preliminary

Functional RTL Simulation

However, if you are using the Mentor Graphics ModelSim software, you
must create the simulation libraries and correctly link them to your
design.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. On the File menu, point to New and click Library. The Create a
New Library dialog box appears.

2. Select a new library and a logical mapping to it.

3. In the Library Name box, type the name of the newly created
library.

For example, the library name for Altera megafunctions should be
altera_mf, and the library name for LPM should be lpm.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib altera_mf r
vmap altera_mf altera_mf r
vlib lpm r
vmap lpm lpm r
vlib altera r
vmap altera altera r

Compile Simulation Models into Simulation Libraries

The following steps are not required for the ModelSim-Altera software.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib and add
the necessary simulation model files to your project.

1 Compile the altera_mf.v into the altera_mf library. Compile the
220model.v into the lpm library.

2–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

3. Select the simulation model file and on the View menu, click
Properties.

4. Choose the correct library from the Compile to Library list.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlog -work altera_mf <Quartus II installation directory>/eda/sim_lib/altera_mf.v r
vlog -work lpm <Quartus II installation directory>/eda/sim_lib/220model.v r
vlog -work altera <Quartus II installation directory>/eda/sim_lib/altera_primitives.v r

Compile Testbench and Design Files into Work Library

Compile a testbench and design files into a work library on the Compile
menu by clicking Compile All or clicking the Compile All toolbar icon
on the Compile menu.

Compile Testbench and Design Files into Work Library Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_design_files.v>r
1 Resolve compile-time errors before proceeding to the following

section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Click the Libraries tab.

3. In the Search Libraries box, click Add.

4. Specify the location of the lpm or altera_mf simulation libraries.

Altera Corporation 2–13
October 2007 Preliminary

Functional RTL Simulation

1 If you are using the ModelSim-Altera version, refer to Table 2–3
on page 2–5 and Table 2–4 on page 2–6 for the location of the
precompiled simulation libraries. If you are using the
Mentor Graphics ModelSim software version, browse to the
library that was created earlier.

5. In the Load Design dialog box, click the Design tab and expand the
work library.

6. Select the top-level design unit (your testbench).

7. In the Resolution list, select ps.

8. Click OK.

Loading a Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -L altera_mf -L lmp work.<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Verilog HDL Functional RTL Simulation with Altera Memory Blocks

Both ModelSim software products support simulating Altera memory
megafunctions initialized with Hexadecimal (Intel-Format) File (.hex) or
RAM initialization files (.rif).

2–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Although synthesis is able to read a Memory Initialization File (.mif), this
memory file is not supported with third-party tools and must be
converted to either a Hexadecimal (Intel-Format) File or RAM
Initialization File.

Table 2–6 summarizes the different types of memory initialization file
formats that are supported with each RTL language.

To simulate your design by converting your Memory Initialization File
into either a Hexadecimal (Intel-Format) File or a RAM Initialization File,
perform the following steps:

1. Convert a Memory Initialization File to a Hexadecimal
(Intel-Format) File or RAM Initialization File in the Quartus II
software.

Converting a Memory Initialization File to a Hexadecimal
(Intel-Format) File

a. Open the Memory Initialization File. On the File menu, click
Save As. The Save As dialog box appears.

b. In the Save as type list, select Hexadecimal (Intel-Format) File
(*.hex).

c. Click OK.

Convert a Memory Initialization File to a RAM Initialization File

a. Open the Memory Initialization File and on the File menu, click
Export. The Export dialog box appears.

b. In the Save as type list, select RAM Initialization File (*.rif).

Table 2–6. Simulation Support for Memory Initialization Files

File Verilog HDL VHDL

Hexadecimal (Intel-Format) File Yes (1) Yes

Memory Initialization File No No

RAM Initialization File Yes (2) No

Notes to Table 2–6:
(1) For memories and library files from the Quartus II software version 5.0 and earlier, you must use a PLI library

containing the convert_hex2ver function.
(2) Requires the USE_RIF macro to be defined, described later in this section.

Altera Corporation 2–15
October 2007 Preliminary

Functional RTL Simulation

c. Click OK.

Alternatively, you can convert a Memory Initialization File to a RAM
Initialization File using the mif2rif.exe utility located in the
<Quartus II installation>/bin directory.

mif2rif <mif_file> <rif_file> r
2. Modify the HDL file generated by the MegaWizard® Plug-In

Manager.

The Altera memory custom megafunction variation file includes the
lpm_file parameter for LPM memories such as LPM_ROM, or the
init_file for Altera specific memories such as an altsyncram, to
point to the initialization file.

In a text editor, open the custom megafunction variation file and edit
the lpm_file or init_file to point to the Hexadecimal
(Intel-Format) File or RAM Initialization File, as shown in the
following example:

lpm_ram_dp_component.lpm_file = “<path to HEX/RIF>”

3. Compile the functional library files with compiler directives.

If you use a Hexadecimal (Intel-Format) File, no compiler directives
are required. If you use a RAM Initialization File, you must define
the USE_RIF macro when compiling the model library files. For
example, you should enter the following when compiling the
altera_mf library when RAM Initialization File memory
initialization files are used:

vlog -work altera_mf altera_mf.v +define+USE_RIF=1

1 For the Quartus II software versions 5.0 and earlier, you must
define the NO_PLI macro instead of USE_RIF. The NO_PLI
macro is forward compatible with the Quartus II software.

2–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Post-Synthesis
Simulation

A post-synthesis simulation verifies the functionality of a design after
synthesis has been performed. You can create a post-synthesis netlist in
the Quartus II software and use this netlist to perform a post-synthesis
simulation in ModelSim. Once the post-synthesis version of the design is
verified, the next step is to place-and-route the design in the target device
using the Quartus II Fitter.

Generating a Post-Synthesis Simulation Netlist

The following steps describe the process of generating a post-synthesis
simulation netlist in the Quartus II software:

1. Perform Analysis and Synthesis. On the Processing menu, point to
Start and click Start Analysis and Synthesis (you can also perform
this after step 2).

2. Turn on the Generate Netlist for Functional Simulation Only
option by performing the following steps:

a. On the Assignments menu, click EDA Tool Settings. The
Settings dialog box appears.

b. In the Category list, select Simulation. The Simulation page
appears.

c. In the Tool name list:

• If you are using the ModelSim-Altera software, select
ModelSim-Altera.

• If you are using the Mentor Graphics ModelSim software,
select ModelSim.

d. Under EDA Netlist Writer options, in the Format for output
netlist list, select VHDL or Verilog. You can also modify where
you want the post-synthesis netlist generated by editing or
browsing to a directory in the Output directory box.

e. Click More Settings. The More EDA Tools Simulation
Settings dialog box appears. In the Existing options settings
list, click Generate Netlist for Functional Simulation Only
and select On from the Setting list under Option.

f. Click OK.

g. In the Settings dialog box, click OK.

Altera Corporation 2–17
October 2007 Preliminary

Post-Synthesis Simulation

3. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo) or VHDL Output File (.vho) that
can be used for post-synthesis simulations in the ModelSim software.
This netlist file is mapped to architecture-specific primitives. No
timing information is included at this stage. The resulting netlist is
located in the output directory you specified in the Settings dialog
box, which defaults to the <project directory>/simulation/modelsim
directory.

Simulating VHDL Designs

The following instructions help you perform a post-synthesis simulation
for a VHDL design in the ModelSim software.

1 The following steps assume you have already created a
ModelSim project.

If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–9.

Create Simulation Libraries

Simulation libraries are required to simulate a design that is mapped to
post-synthesis primitives. If you are using the Mentor Graphics
ModelSim software, you must create the simulation libraries and
correctly link them to your design.

1 This process is not required with the ModelSim-Altera version
because a set of pre-compiled libraries is installed with the
software.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. On the File menu, click New Library. The Create a New Library
dialog box appears.

2. Select a new Library and a logical linking to it.

3. In the Library Name box, type the name of the newly created
library.

2–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands to create simulation libraries:

vlib <device family name> r
vmap <device family name> <device family name> r
For more information about library names, refer to Table 2–9 on
page 2–28.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib
directory and add the necessary gate-level simulation files to your
project.

3. Select the simulation model file and on the View menu, click
Properties.

4. In the Compile to Library list, select the correct library.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_atoms.vhd r
vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_components.vhd r

Compile Testbench and VHDL Output File into Work Library

To compile the testbench and VHDL Output Files into a work library, on
the Compile menu, click Compile All or click the Compile All toolbar
icon on the Compile menu.

Altera Corporation 2–19
October 2007 Preliminary

Post-Synthesis Simulation

Compile Testbench and VHDL Output File into Work Library Using
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_vhdl_output_file.vho>r
1 Resolve any compilation errors before proceeding to the

following section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Simulate.

2. Click the Design tab.

3. In the Library list, select the work library.

4. In the Simulate dialog box, expand the work library and select the
top-level design unit (your testbench).

5. Click OK.

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim work.<my test bench> -t 1ps r
1 Set the time scale resolution to 1 ps when simulating Altera

FPGA designs.

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

2–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Simulating Verilog HDL Designs

The following sections provide step-by-step instructions for performing
post-synthesis simulation for Verilog HDL designs in the ModelSim
software.

Create Simulation Libraries

The following steps assume you have already created a ModelSim
project.

1 If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–9.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

1 The name of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for lpm and MegaWizard Plug-in
Manager-generated entities).

3. In the Library Name box, type the name of the newly created
library.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib <device family name> r
vmap <device family name> <device family name> r
For more information about library names, refer to Table 2–9 on
page 2–28.

Altera Corporation 2–21
October 2007 Preliminary

Post-Synthesis Simulation

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, click Add to Project, then select Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib
directory and add the necessary simulation model files to your
project.

3. Select the simulation model file and on the View menu, click
Properties.

4. Specify the correct library in the Compile to Library box.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work <device family name> <Quartus II installation \
directory> /eda/sim_lib/<device family name>_atoms.v r

Compile Testbench and Verilog Output File into Work Library

To compile the testbench and Verilog Output Files into a work library, on
the Compile menu, click Compile All or click the Compile All toolbar
icon on the Compile menu.

Compile Testbench and Verilog Output File into Work Library Using
the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_verilog_output_file.vo> r
1 Resolve any compilation errors before proceeding to the

following section.

2–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Click the Libraries tab.

3. In the Search Libraries box, click Add.

4. Specify the location of the device family simulation libraries.

5. In the Load Design dialog box, click the Design tab and expand the
work library.

6. Select the top-level design unit (your testbench).

7. In the Resolution list, select ps.

8. Click OK.

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -L <gate-level simulation library> work.<my_test bench> -t 1ps r
1 Set the time scale resolution to 1 ps when simulating Altera

FPGA designs.

Running the Simulation

Perform the following steps to run a simulation:

1. In the View menu, point to Debug Windows and click Objects. This
command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Altera Corporation 2–23
October 2007 Preliminary

Gate-Level Timing Simulation

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Gate-Level
Timing
Simulation

Gate-level timing simulation is a post place-and-route simulation to
verify the operation of the design after the worst-case timing delays have
been calculated. This section provides detailed instructions on how to
perform gate-level timing simulation in the ModelSim-Altera software
and highlights differences in performing similar steps in the
Mentor Graphics ModelSim software versions for VHDL and
Verilog HDL designs.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the ModelSim-Altera software
requires information about how the design was placed into
device-specific architectural blocks. The Quartus II software provides
this information in the form of a Verilog Output File for Verilog HDL
designs and a VHDL Output File for VHDL designs. The accompanying
timing information is stored in the Standard Delay Format Output File
(.sdo), which annotates the delay for the elements found in the Verilog
Output File or VHDL Output File.

The following steps describe the process of generating a gate-level timing
simulation netlist in the Quartus II software:

1. Perform a full compilation. On the Processing menu, click Start
Compilation.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, click the “+” icon to expand EDA Tool Settings
and select Simulation. The Simulation page appears.

4. In the Tool name list:

● If you are using the ModelSim-Altera software, select
ModelSim-Altera.

● If you are using the Mentor Graphics ModelSim software, select
ModelSim.

2–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. Under EDA Netlist Writer options, in the Format for output netlist
list, select VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

6. Click OK.

7. In the Settings dialog box, click OK.

8. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo), VHDL Output File (.vho), and
a SDO used for gate-level timing simulations in the ModelSim
software. This netlist file is mapped to architecture-specific
primitives. The timing information for the netlist is included in the
SDO. The resulting netlist is located in the output directory you
specified in the Settings dialog box, which defaults to the
<project directory>/simulation/modelsim directory.

Generating a Different Timing Model

If you enable the Quartus II Classic or Quartus II TimeQuest Timing
Analyzer when generating the SDO file, slow-corner (worst case) timing
models are used by default. To generate the SDO file using a different
timing model, you must run the Quartus II Classic or the Quartus II
TimeQuest Timing Analyzer with a different timing model before you
start the EDA Netlist writer.

To run the Quartus II Classic Timing Analyzer with the best-case model,
on the Processing menu, point to Start and click Start Classic Timing
Analyzer (Fast Timing Model). After timing analysis is complete, the
Compilation Report appears. You can also type the following command
at a command prompt:

quartus_tan <project_name> --fast_model=on r
To run the Quartus II TimeQuest Timing Analyzer with a best-case
model, use the -fast_model option after you create the timing netlist.
The following command enables the fast timing models:

create_timing_netlist -fast_model r
You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on r

Altera Corporation 2–25
October 2007 Preliminary

Gate-Level Timing Simulation

f For more information about generating the timing model, refer to the
Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

After you run the Classic or TimeQuest Timing Analyzer, you can
perform steps 2 through 8 in “Generating a Gate-Level Timing Simulation
Netlist” on page 2–23 to generate the SDO file. For fast corner timing
models, the _fast post fix is added to the VO, VHO, and SDO file (for
example, my_project_fast.vo, my_project_fast.vho, and
my_project_fast.sdo).

Operating Condition Example: Generate All Timing Models for
Stratix III Devices
In Stratix III and Cyclone III devices, you can specify different
temperature and voltage parameters to generate the timing models.
Table 2–7 shows the available operation conditions (model, voltage, and
temperature) for Stratix III and Cyclone III devices.

To generate the SDO files for the three different operating conditions for
a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions.
Type the following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the ModelSim simulation output files for all three corners

specified above. The output files are generated in the simulation
output directory. Type the following command at a command
prompt:

quartus_eda <project name> --simulation --tool=modelsim --format=verilog r

Table 2–7. Available Operating Condition for Stratix III and Cyclone III
Devices

Device Family Model Voltage Temperature

Stratix III Slow 1100 mV 85° C

Slow 1100 mV 0° C

Fast 1100 mV 0° C

Cyclone III Slow 1200 mV 85° C

Slow 1200 mV 0° C

Fast 1200 mV 0° C

2–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To summarize, for the three operating conditions the preceding steps
generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85º C):
VO file— <revision name>.vo
SDO file— <revision name>_v.sdo

Second slow corner (slow, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_slow.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast corner (fast, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-synthesis Netlist

Instead of using the gate-level netlist, you can also perform a timing
simulation with the post-synthesis netlist. You can generate a SDO
without running the fitter. In this case, the SDO file includes all timing
values for only the device cells. Interconnect delays are not included
because fitting (placement and routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following
command at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation --tool= \
<3rd party EDA tool> --format=<HDL language> r

For more information on the --format and --tool options, type the
following command at a command prompt:

quartus_eda -help=<options> r

Altera Corporation 2–27
October 2007 Preliminary

Gate-Level Timing Simulation

Gate-Level Simulation Libraries

Table 2–8 provides a description of the ModelSim-Altera precompiled
device libraries.

Table 2–8. ModelSim-Altera Precompiled Device Libraries

Library Description

arriagx_hssi Precompiled library for Arria® GX device designs using the Gigabit Transceiver Block
(alt2gxb megafunction). This precompiled library is required for both functional and timing
simulations.

stratixiii Precompiled library for Stratix® III device designs.

stratixii Precompiled library for Stratix II device designs.

stratixiigx Precompiled library for Stratix II GX device designs.

stratixiigx_hssi Precompiled library for Stratix II GX device designs using the Gigabit Transceiver Block
(alt2gxb megafunction). This precompiled library is required for both functional and timing
simulations.

stratix Precompiled library for Stratix device designs.

stratixgx Precompiled library for Stratix GX device designs.

stratixgx_gxb Precompiled library for Stratix GX device designs using the Gigabit Transceiver Block. This
precompiled library should be used for post-fit (timing) simulations.

altgxb Precompiled library for Stratix GX device designs that include the altgxb megafunction.
This precompiled library should be used for functional simulations.

cycloneii Precompiled library for Cyclone® II device designs.

cyclone Precompiled library for Cyclone device designs.

maxii Precompiled library for MAX® II device designs.

max Precompiled library for MAX 7000 and MAX 3000 device designs.

apexii Precompiled library for APEX™ II device designs.

apex20k Precompiled library for APEX 20K device designs.

apex20ke Precompiled library for APEX 20KC, APEX 20KE, and Excalibur™ device designs.

mercury Precompiled library for Mercury™ device designs.

flex10ke Precompiled library for FLEX® 10KE and ACEX® 1K device designs.

flex6000 Precompiled library for FLEX 6000 device designs.

2–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 2–9 shows the location of the timing simulation libraries in the
ModelSim-Altera software for Verilog HDL.

Table 2–10 shows the location of the timing simulation libraries in the
ModelSim-Altera software for VHDL.

Table 2–9. Location of Timing Simulation Libraries for ModelSim-Altera for Verilog HDL

Library Verilog HDL

arriagx_ver <ModelSim-Altera installation directory>\altera\verilog\arriagx\

arriagx_hssi_ver <ModelSim-Altera installation directory>\altera\verilog\arriagx_hssi\ (1)

stratixii_ver <ModelSim-Altera installation directory>\altera\verilog\stratixii\

stratixiigx_ver <ModelSim-Altera installation directory>\altera\verilog\stratixiigx\

stratixiigx_hssi_ver <ModelSim-Altera installation directory>\altera\verilog\stratixiigx_hssi\ (1)

stratixiii_ver <ModelSim-Altera installation directory>\altera\verilog\stratixiii\

stratix_ver <ModelSim-Altera installation directory>\altera\verilog\stratix\

stratixgx_ver <ModelSim-Altera installation directory>\altera\verilog\stratixgx\

stratixgx_gxb_
ver

<ModelSim-Altera installation directory>\altera\verilog\stratixgx_gxb\

cycloneiii_ver <ModelSim-Altera installation directory>\altera\verilog\cycloneiii\

cycloneii_ver <ModelSim-Altera installation directory>\altera\verilog\cycloneii\

cyclone_ver <ModelSim-Altera installation directory>\altera\verilog\cyclone\

maxii_ver <ModelSim-Altera installation directory>\altera\verilog\maxii\

max_ver <ModelSim-Altera installation directory>\altera\verilog\max\

apexii_ver <ModelSim-Altera installation directory>\altera\verilog\apexii\

apex20k_ver <ModelSim-Altera installation directory>\altera\verilog\apex20k\

apex20ke_ver <ModelSim-Altera installation directory>\altera\verilog\apex20ke\

mercury_ver <ModelSim-Altera installation directory>\altera\verilog\mercury\

flex10ke_ver <ModelSim-Altera installation directory>\altera\verilog\flex10ke\

flex6000_ver <ModelSim-Altera installation directory>\altera\verilog\flex6000\

Note to Table 2–9:
(1) The stratixiigx_hssi precompiled library is required for functional and timing simulations.

Table 2–10. Location of Timing Simulation Library Files for ModelSim-Altera for VHDL (Part 1 of 2)

Library VHDL

arriagx <ModelSim-Altera installation directory>\altera\vhdl\arriagx\

arriagx_hssi <ModelSim-Altera installation directory>\altera\vhdl\arriagx_hssi\ (1)

stratixii <ModelSim-Altera installation directory>\altera\vhdl\stratixii\

Altera Corporation 2–29
October 2007 Preliminary

Gate-Level Timing Simulation

If you are using the Mentor Graphics ModelSim software version for
your timing simulation, libraries are available in the Quartus II software
in the <Quartus II installation directory>\eda\sim_lib\ directory.
Mentor Graphics ModelSim software users must use the files provided
with the Quartus II software.

Simulating VHDL Designs

The following section provides step-by-step instructions for performing
gate-level timing simulation for VHDL designs. The following steps
assume you have already created a ModelSim project. For additional
information, refer to “Altera Design Flow with ModelSim or ModelSim-
Altera Software” on page 2–3.

stratixiigx <ModelSim-Altera installation directory>\altera\vhdl\stratixiigx\

stratixiigx_hssi <ModelSim-Altera installation directory>\altera\vhdl\stratixiigx_hssi\ (1)

stratixiii <ModelSim-Altera installation directory>\altera\vhdl\stratixiii\

stratix <ModelSim-Altera installation directory>\altera\vhdl\stratix\

stratixgx <ModelSim-Altera installation directory>\altera\vhdl\stratixgx\

stratixgx_gxb <ModelSim-Altera installation directory>\altera\vhdl\stratixgx_gxb\

cycloneiii <ModelSim-Altera installation directory>\altera\vhdl\cycloneiii\

cycloneii <ModelSim-Altera installation directory>\altera\vhdl\cycloneii\

cyclone <ModelSim-Altera installation directory>\altera\vhdl\cyclone\

maxii <ModelSim-Altera installation directory>\altera\vhdl\maxii\

max <ModelSim-Altera installation directory>\altera\vhdl\max\

apexii <ModelSim-Altera installation directory>\altera\vhdl\apexii\

apex20ke <ModelSim-Altera installation directory>\altera\vhdl\apex20ke\

apex20k <ModelSim-Altera installation directory>\altera\vhdl\apex20k\

flex10ke <ModelSim-Altera installation directory>\altera\vhdl\flex10ke\

flex6000 <ModelSim-Altera installation directory>\altera\vhdl\flex6000\

mercury <ModelSim-Altera installation directory>\altera\vhdl\mercury\

Note to Table 2–10:
(1) The stratixiigx_hssi precompiled library is required for functional and timing simulations.

Table 2–10. Location of Timing Simulation Library Files for ModelSim-Altera for VHDL (Part 2 of 2)

Library VHDL

2–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 If you are using the ModelSim-Altera software, a set of
precompiled libraries are created when you install the software.
Creating simulation libraries and compiling simulation models
steps are not required. You can proceed directly to “Compile
Testbench and Design Files into Work Library” on page 2–9.

Create Simulation Libraries

If you are using the Mentor Graphics ModelSim software, create the
gate-level simulation libraries and correctly link them to your design.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

1 The name of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for lpm and MegaWizard Plug-In
Manager-generated entities).

3. In the Library Name box, type the name of the newly created
library.

1 The library name must be one of those listed in Table 2–10 on
page 2–28.

4. Click OK.

Altera Corporation 2–31
October 2007 Preliminary

Gate-Level Timing Simulation

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib <device family name> r
vmap <device family name> <device family name> r

For more information about library names, refer to Table 2–9 on
page 2–28.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib
directory, and add the necessary gate-level simulation files to your
project.

3. Select the simulation model file, and on the View menu, click
Properties.

4. In the Compile to Library list, select the correct library.

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_atoms.vhd r
vcom -work <device family name> <Quartus II installation directory> \
/eda/sim_lib/<device family name>_components.vhd r

Compile Testbench and VHDL Output File into Work Library

Compile testbench and VHDL Output Files into a work library on the
Compile menu by clicking Compile All or by clicking the Compile All
toolbar icon on the Compile menu.

2–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Compile Testbench and VHDL Output File into Work Library Using
the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vcom -work work <my_test bench.vhd> <my_vhdl_output_file.vho> r
1 Resolve any compilation errors before proceeding to the

following section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation.

2. Click the SDF tab, and click Add.

3. In the Add SDF Entry dialog box, click Browse and select the
Standard Delay Format Output File (.sdo).

4. In the Apply to Region dialog box, type in the instance path to
which the SDO should be applied. For example, if you are using a
testbench exported into the Quartus II software from a Vector
Waveform File, the instance path should be set to /i1.

1 You do not have to choose from the Delay list because the
Quartus II EDA Netlist Writer generates the SDO using the
same value for the triplet (minimum, typical, and
maximum timing values). The value is derived from either
the fast (minimum) timing model or worst case (maximum)
timing model, depending on which timing model was used
in the last timing analysis. In the standard compilation
flow, the Quartus II software writes the SDO using timing
values from the worst case (maximum) timing model.

5. Click OK.

6. Click the Design tab. In the Resolution list, select ps.

7. In the Library list, select the work library.

8. In the Start Simulation dialog box, expand the work library.

9. Select the top-level design unit (your testbench).

10. Click OK.

Altera Corporation 2–33
October 2007 Preliminary

Gate-Level Timing Simulation

Loading a Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -sdftyp <instance path to design>=<path to SDO> work. \
<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. In the View menu, point to Debug Windows and click Objects. This
command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running a Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

Simulating Verilog HDL Designs

The following sections provide step-by-step instructions on performing
gate-level timing simulation for Verilog HDL designs in the
ModelSim-Altera software.

1 If you are using the ModelSim-Altera software, a set of
pre-compiled libraries are created when you install the
software. Creating simulation libraries and compiling
simulation models steps are not required. You can proceed
directly to “Compile Testbench and Design Files into Work
Library” on page 2–9.

Create Simulation Libraries

If you are using the Mentor Graphics ModelSim software, you must
create the simulation libraries and correctly link them to your design.

2–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following steps assume you have already created a ModelSim
project. For additional information, refer to “Altera Design Flow with
ModelSim or ModelSim-Altera Software” on page 2–3.

Create Simulation Libraries Using the ModelSim GUI
Perform the following steps to create simulation libraries:

1. In the ModelSim software, on the File menu, point to New and click
Library. The Create a New Library dialog box appears.

2. Select a new library and a logical mapping to it.

1 The names of the libraries should be altera_mf (for Altera
megafunctions) and lpm (for lpm and MegaWizard Plug-In
Manager-generated entities).

3. In the Library Name box, type the name of the newly created
library.

4. Click OK.

Create Simulation Libraries Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

vlib <library name> r
vmap <library name> <device family name> r
For more information about library names, refer to Table 2–9 on
page 2–28.

Compile Simulation Models into Simulation Libraries Using the
ModelSim GUI
Perform the following steps to compile simulation models into
simulation libraries:

1. On the File menu, point to Add to Project and click Existing File.

2. Browse to the <Quartus II installation directory>/eda/sim_lib, and
add the necessary simulation model files to your project.

3. Select the simulation model file, and on the View menu, click
Properties.

4. In the Compile to Library list, select the correct library.

Altera Corporation 2–35
October 2007 Preliminary

Gate-Level Timing Simulation

5. Click OK.

6. On the Compile menu, click Compile selected.

Compile Simulation Models into Simulation Libraries Using the
ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work <device family name> <Quartus II installation directory> /eda/sim_lib/<device family name> \
_atoms.v r

Compile Testbench and Verilog Output File into Work Library

Compile a testbench and Verilog Output File into a work library on the
Compile menu by clicking Compile All or by clicking the Compile All
toolbar icon on the Compile menu.

Compile Testbench and Verilog Output File into Work Libraries
Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vlog -work work <my_test bench.v> <my_verilog_output_file.vo> r
1 Resolve any compilation errors before proceeding to the

following section.

Loading the Design

Perform the following steps to load a design:

1. On the Simulate menu, click Start Simulation. The Start Simulation
dialog box appears.

2. Click the Libraries tab.

3. In the Search Libraries box, click Add.

4. Specify the location of the lpm or altera_mf simulation libraries.

1 If you are using the ModelSim-Altera version, refer to Table 2–3
on page 2–5 and Table 2–4 on page 2–6 for the location of the
precompiled simulation libraries. If you are using the
Mentor Graphics ModelSim software version, browse to the
library that you created earlier.

5. In the Load Design dialog box, click the Design tab and expand the
work library.

2–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

6. Select the top-level design unit (your testbench).

7. In the Resolution list, select ps.

8. Click OK.

When simulating in Verilog HDL, the SDO does not have to be manually
specified because in the Quartus II generated Verilog Output File, there
is a $sdf_annotate task that ModelSim uses to look into the current
directory from which VSIM was run and uses to look for the SDO. If your
SDO is not in the same directory from which you ran VSIM, you can
either copy the SDO into your current directory or comment out the
$sdf_annotate line in the Verilog Output File and manually specify
the SDO in the Load Design dialog box.

Loading the Design Using the ModelSim Command Prompt
Type the following command at the ModelSim command prompt:

vsim -L <location of the gate level simulation library> -work.<my_test bench> -t ps r

Running the Simulation

Perform the following steps to run a simulation:

1. On the View menu, point to Debug Windows and click Objects.
This command displays all objects in the current scope.

2. On the View menu, point to Debug Windows and click Wave.

3. Drag the signals to monitor from the Objects window and drop
them into the Wave window.

4. Type the following command at the ModelSim command prompt:

run <time period> r

Running the Simulation Using the ModelSim Command Prompt
Type the following commands at the ModelSim command prompt:

add wave /<signal name> r
run <time period> r

f For the design examples to run gate-level timing simulation in VHDL or
Verilog language, refer to:
www.altera.com/support/examples/modelsim/exm-modelsim.html.

Altera Corporation 2–37
October 2007 Preliminary

Simulating Designs that Include Transceivers

Simulating
Designs that
Include
Transceivers

If your design includes a Stratix GX or Stratix II GX transceiver, you must
compile additional library files to perform functional or timing
simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the
altgxb megafunction which enables the gigabit transceiver block on
Stratix GX devices, compile the stratixgx_mf model file into the altgxb
library.

1 The stratixiigx_mf model file references the lpm and sgate
libraries. If you are using ModelSim PE/SE, you must create
these libraries to perform a simulation.

Example: Performing Functional Simulation for Stratix GX in Verilog HDL

 If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L altgxb work.<my design> r
If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulation the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlib work r
vlib lpm r
vlib altera_mf r
vlib sgate r
vlib altgxb r
vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work altgxb stratixgx_mf.v r
vsim -L lpm -L sgate-L altgxb work.<my design> r

Example: Performing Functional Simulation for Stratix GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not necessary
and you can simulate the design directly by typing the following
command:

vsim -L lpm -L sgate -L altgxb work.<my design> r r

2–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulation the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd r
vsim -L lpm -L altera_mf -L sgate -L altgxb work.<my design> r

Stratix GX Post-Fit (Timing) Simulation

Perform a post-fit timing simulation of your design that includes a
Stratix GX transceiver by compiling the stratixgx_atoms and
stratixgx_hssi_atoms model files into the stratixgx and stratixgx_gxb
libraries, respectively.

1 The stratixgx_hssi_atoms model file references the lpm and
sgate libraries. If you are using ModelSim PE/SE, you must
create these libraries to perform a simulation.

Example: Performing Timing Simulation for Stratix GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb work.<my design> -t ps +transport_int_delays \
+transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work stratixgx stratixgx_atoms.v r
vlog -work stratixgx_gxb stratixgx_hssi_atoms.v r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Altera Corporation 2–39
October 2007 Preliminary

Simulating Designs that Include Transceivers

1 This example assumes you are using ModelSim PE/SE. If you
are using ModelSim-Altera, type the following command to
simulate your design:

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_ver -L \
stratixgx_gxb work.<my design> -t ps +transport_int_delays \
+transport_path_delays r

Example: Performing Timing Simulation for Stratix GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps - +transport_int_delays+transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd r
vcom -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps +transport_int_delays +transport_path_delays r

1 This example assumes you are using ModelSim PE/SE. If you
are using ModelSim-Altera, type the following command to
simulate your design:

vsim -L lpm -L altera_mf -L sgate -L stratixgx -L stratixgx_gxb \
work. <my design> -t ps - +transport_int_delays+transport_path_delays r

Stratix II GX Functional Simulation

To perform a functional simulation of your design that instantiates the
alt2gxb megafunction, which enables the gigabit transceiver block on
Stratix II GX devices, compile the stratixiigx_hssi model file into the
stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries. If you are using ModelSim PE/SE, you must
create these libraries to perform a simulation.

2–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Generate a functional simulation netlist by turning on Generate
Simulation Model in the Simulation Library tab of the alt2gxb
MegaWizard Plug-In Manager (Figure 2–2). The <alt2gxb entity
name>.vho or <alt2gxb module name>.vo is generated in the current project
directory.

1 The Quartus II-generated alt2gxb functional simulation
library file references stratixiigx_hssi wysiwyg atoms.

Figure 2–2. alt2gxb MegaWizard

.

Example: Performing Functional Simulation for Stratix II GX in Verilog
HDL

 If you are using ModelSim-Altera, compiling the libraries is not
necessary and you can simulate the design directly by typing the
following command:

Altera Corporation 2–41
October 2007 Preliminary

Simulating Designs that Include Transceivers

vsim -L lpm_ver -L altera_mf_ver -L sgate_ver -L stratixgx_hssi_ver \
work.<my design> r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r
vlog -work work <alt2gxb module name>.vo r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r

Example: Performing Functional Simulation for Stratix II GX in VHDL

 If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r r
If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vcom -work work <alt2gxb entity name>.vho r
vsim -L lpm -L altera_mf -L sgate -L stratixgx_hssi work.<my design> r

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a
Stratix II GX transceiver, compile stratixiigx_atoms and
stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi
libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries. If you are using ModelSim PE/SE, you must
create these libraries to perform a simulation.

2–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example: Performing Timing Simulation for Stratix II GX in Verilog HDL

If you are using ModelSim-Altera, compiling the libraries is not necessary
and you can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vlog -work lpm 220model.v r
vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work stratixiigx stratixiigx_atoms.v r
vlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Example: Performing Timing Simulation for Stratix II GX in VHDL

If you are using ModelSim-Altera, compiling the libraries is not
necessary. You can simulate the design directly by typing the following
command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<mydesign> -t ps +transport_int_delays +transport_path_delays r

If you are using ModelSim SE/PE, you must compile the necessary
libraries before you can simulate the designs. Type the following
commands at the ModelSim command prompt to compile and simulate
the design:

vcom -work lpm 220pack.vhd 220model.vhd r
vcom -work altera_mf altera_mf_components.vhd altera_mf.vhd r
vcom -work sgate sgate_pack.vhd sgate.vhd r
vcom -work stratixiigx stratixiigx_atoms.vhd stratixiigx_components.vhd r
vcom -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Altera Corporation 2–43
October 2007 Preliminary

Simulating Designs that Include Transceivers

1 This example assumes you are using ModelSim PE/SE. If you
are using ModelSim-Altera, you do not need to compile any
libraries and can type the following command:

vsim -L lpm -L altera_mf -L sgate -L stratixiigx -L stratixiigx_hssi \
work.<my design> -t ps +transport_int_delays +transport_path_delays r

Transport Delays

By default, the ModelSim software filters out all pulses that are shorter
than the propagation delay between primitives. Turning on the transport
delay options in the ModelSim software prevents the simulation tool
from filtering out these pulses. Use the following options to ensure that
all signal pulses are seen in the simulation results.

+transport_path_delays

Use this option when the pulses in your simulation may be shorter than
the delay within a gate-level primitive.

+transport_int_delays

Use this option when the pulses in your simulation may be shorter than
the interconnect delay between gate-level primitives.

The +transport_path_delays and +transport_int_delays
options are also used by default in the NativeLink feature for gate-level
timing simulation.

f For more information about either of these options, refer to the
ModelSim Altera Command Reference installed with the ModelSim
software.

The following ModelSim software command describes the command-line
syntax to perform a gate-level timing simulation with the device family
library:

vsim -t 1ps -L stratixii -sdftyp /i1=filtref_vhd.sdo work.filtref_vhd_vec_tst \
+transport_int_delays +transport_path_delays

2–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Using the
NativeLink
Feature with
ModelSim

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools
and allows you to run ModelSim within the Quartus II software.

Setting Up NativeLink

To run ModelSim automatically from the Quartus II software using the
NativeLink feature, you must specify the path to your simulation tool by
performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options.

3. Double-click the entry under Location of executable beside the
name of your EDA Tool.

4. Type or browse to the directory containing the executables of your
EDA tool.

1 For ModelSim-Altera and ModelSim SE/PE, executable files are
stored in the win32aloem and win32 directories, respectively.

c:\<ModelSim-Altera installation path>\win32aloem

c:\<ModelSim installation path>\win32

5. Click OK.

You can also specify the path to the simulator’s executables by using the
set_user_option TCL command:

set_user_option –name EDA_TOOL_PATH_MODELSIM <path to executables>
set_user_option -name EDA_TOOL_PATH_MODELSIM_ALTERA <path to executables>

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation with the ModelSim software in the
Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears (Figure 2–3).

Altera Corporation 2–45
October 2007 Preliminary

Using the NativeLink Feature with ModelSim

Figure 2–3. Simulation Page in the Settings Dialog Box

3. In the Tool name list, select one of the following choices:

● ModelSim
● ModelSim-Altera

4. If your design is written entirely in Verilog HDL or in VHDL, the
NativeLink feature automatically chooses the correct language and
Altera simulation libraries. If your design is written with mixed
languages, the NativeLink feature uses the default language
specified in the Format for output netlist list. To change the default
language when there is a mixed language design, under EDA
Netlist Writer options, in the Format for output netlist list, select
VHDL or Verilog. Table 2–11 shows the design languages for
output netlists and simulation models.

2–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 For mixed language simulation, choose the same language that
was used to generate your megafunctions to ensure correct
parameter passing between the megafunctions and the Altera
libraries. For example, if your altsyncram megafunction was
generated in VHDL, choose VHDL as the format for the output
netlist.

When creating mixed language designs, it is important to be
aware of the following:

• EDA Simulation tools do not allow seamless passing of
parameters when a VHDL entity is instantiated in Verilog
designs.

• The ModelSim and ModelSim-Altera software do not allow
the use of Verilog User Defined Primitives (UDPs) to be
instantiated in VHDL designs.

5. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

For more information about setting up a testbench with NativeLink,
refer to “Setting Up a Testbench” on page 2–48.

6. Click OK.

7. On the Processing menu, point to Start and click Start Analysis and
Elaboration to perform an analysis and elaboration. This command
collects all your file name information and builds your design
hierarchy in preparation for simulation.

8. On the Tools menu, point to EDA Simulation Tool and click Run
EDA RTL Simulation to automatically run ModelSim, compile all
necessary design files, and complete a simulation.

Table 2–11. NativeLink Design Languages

Design File Format for Output Netlist Simulation Models Used

Verilog Any Verilog

VHDL Any VHDL

Mixed Verilog Verilog

Mixed VHDL VHDL

Altera Corporation 2–47
October 2007 Preliminary

Using the NativeLink Feature with ModelSim

Performing a Gate-Level Simulation Using NativeLink

To run a gate-level timing simulation with the ModelSim software in the
Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears (Figure 2–3 on page 2–45).

3. In the Tool name list, select one of the following:

● ModelSim
● ModelSim-Altera

4. Under EDA Netlist Writer options, in the Format for output netlist
list, choose VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

5. To run a gate-level simulation after each full compilation, turn on
Run Gate Level Simulation automatically after compilation.

6. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

7. Click OK.

8. On the Processing menu, point to Start and click Start EDA Netlist
Writer to generate a simulation netlist of your design.

9. On the Tools menu, point to EDA Simulation Tool and click Run
EDA Gate Level Simulation to automatically run ModelSim,
compile all necessary design files, and complete a simulation.

1 A ModelSim Macro File (*.do) is generated in the
<project_directory>\simulation\modelsim directory while
running NativeLink. You can perform a simulation with the DO
file directly from ModelSim when you rerun a simulation
without using NativeLink. To perform the simulation directly
without NativeLink, type the following command in the
ModelSim console: do <generated_do_file>.do.

2–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Setting Up a Testbench

You can use NativeLink to compile your design files and testbench files,
and run an EDA simulation tool to automatically perform a simulation.

To set up NativeLink for simulation, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the “+” icon to expand EDA Tool Settings
and select Simulation. The Simulation page appears.

3. Under NativeLink settings, select None, Compile test bench, or
Script to compile test bench (Table 2–12).

4. If you select Compile test bench, select your test bench setup from
the Compile test bench list. You can use different testbench setups
to specify different test scenarios. If there are no testbench setups
entered, create a testbench setup by performing the following steps:

a. Click Test Benches. The Test Benches dialog box appears.

b. Click New. The New Test Bench Settings dialog box appears.

c. In the Test Bench name box, type in the testbench setup name
that identifies the different test bench setups.

d. In the Test bench entity box, type in the top-level testbench
entity name. For example, for a Quartus II generated VHDL
testbench, type in <Vector Waveform File name>_vhd_vec_tst.

e. In the Instance box, type in the full instance path to the top
level of your FPGA design. For example, for a Quartus II
generated VHDL testbench, type in i1.

Table 2–12. NativeLink Settings

Settings Description

None Compile simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and starts
simulation.

Script to compile test bench NativeLink compiles the simulation models and design files. The script you provide
is sourced after design files compile. Use this option when you want to create your
own script to compile your testbench and perform simulation.

Altera Corporation 2–49
October 2007 Preliminary

Using the NativeLink Feature with ModelSim

f. Under Simulation period, select Run simulation until all
vector stimuli are used or specify the end time of the
simulation.

g. Under Test bench files, browse and add all your testbench files
in the File name box. Use the Up and Down button to reorder
your files. The script used by NativeLink compiles the files in
order from top to bottom.

1 You can also specify the library name and the HDL version to
compile the testbench file. Native link compiles the testbench to
a library name using the specified HDL version.

h. Click OK.

i. In the Test Benches dialog box, click OK.

5. Under NativeLink settings, you can turn on Use script to setup
simulation and browse to your script. Your script is executed to set
up and run simulation after loading the design using the vsim
command.

6. If you choose Script to compile test bench, browse to your script
and click OK.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL
testbench from a Vector Waveform File. The generated testbench includes
the behavior of the input stimulus and applies it to your instantiated
top-level FPGA design.

1. On the File menu, click Open. The Open dialog box appears.

2. Click the Files of type arrow and select Waveform/Vector Files.
Select your Vector Waveform File.

3. Click Open.

4. On the File menu, click Export. The Export dialog box appears.

5. Click the Save as type arrow and select VHDL Test Bench File
(*.vht) or Verilog Test Bench File (*.vt).

6. You can turn on Add self-checking code to file to check your
simulation results against your Vector Waveform File.

2–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

7. Click Export. Your VHDL or Verilog testbench file is generated in
your project directory.

Scripting
Support

You can run procedures and create settings described in this chapter in a
Tcl script. You can also run some procedures at the command line
prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

For more information about command line scripting, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the
Qhelp command line and Tcl API help browser.

Type this command to start the Qhelp help browser:

quartus_sh --qhelpr

Generating a Post-Synthesis Simulation Netlist for ModelSim

You can use the Quartus II software to generate a post-synthesis
simulation netlist with Tcl commands or with a command at the
command-line prompt. The following example assumes that you are
selecting ModelSim (Verilog HDL output from Quartus II software).

Tcl Commands

Use the following Tcl commands to set the output format to Verilog HDL,
the simulation tool to ModelSim for Verilog HDL, and to generate a
functional netlist:

set_global_assignment-name EDA_SIMULATION_TOOL "ModelSim (Verilog)"
set_global_assignment-name EDA_GENERATE_FUNCTIONAL_NETLIST ON

Command Prompt

Use the following command to generate a simulation output file for the
ModelSim simulator. Specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> --tool=ModelSim \
--functional r

http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii52002.pdf

Altera Corporation 2–51
October 2007 Preliminary

Software Licensing and Licensing Setup

Generating a Gate-Level Timing Simulation Netlist for
ModelSim

You can use the Quartus II software to generate a gate-level timing
simulation netlist with Tcl commands or with a command at the
command prompt.

Tcl Commands

Use one of the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (Verilog)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (VHDL)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim (Verilog)"
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim (VHDL)"

Command Line

Generate a simulation output file for the ModelSim simulator by
specifying VHDL or Verilog HDL for the format by typing the following
command at the command prompt:

quartus_eda <project name> --simulation=on --format=<format> --tool=ModelSim r

Software
Licensing and
Licensing Setup

License the ModelSim-Altera software with a parallel port software
guard (T-guard), USB guard, FIXEDPC license, or a network FLOATNET
or FLOATPC license. Each Altera software subscription includes a license
for either VHDL or Verilog HDL. Network licenses with multiple users
may have their licenses split between VHDL and Verilog HDL in any
ratio.

1 The USB software guard is not supported by versions earlier
than Mentor Graphics ModelSim software 5.8d.

Obtain a license for the ModelSim-Altera software from the Altera
website at www.altera.com. Get licensing information for the
Mentor Graphics ModelSim software directly from Mentor Graphics.
Refer to Figure 2–4 for the set-up process.

1 For ModelSim-Altera versions prior to 5.5b, use the PCLS utility
included with the software to set up the license.

2–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 2–4. ModelSim-Altera Licensing Set Up Process

LM_LICENSE_FILE Variable

Altera recommends setting the LM_LICENSE_FILE environment
variable to the location of the license file.

Conclusion Using the ModelSim-Altera simulation software within the Altera FPGA
design flow enables Altera software users to easily and accurately
perform functional RTL simulations, post-synthesis simulations, and
gate-level simulations on their designs. Proper verification of designs at
the functional, post-synthesis, and post place-and-route stages using the
ModelSim-Altera software helps ensure design functionality and success
and, ultimately, a quick time-to-market.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook

 Set the
LM_LICENSE_FILE

Variable

Finish

No

Yes

Initial Installation

 Is
ModelSim-Altera
Properly Licensed?

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www/literature/hb/qts/qts_qii52003.pdf
http://www/literature/hb/qts/qts_qii52002.pdf

Altera Corporation 2–53
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 2–13 shows the revision history for this chapter.

Table 2–13. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Updated Table 2–2.
Updated “Operating Condition Example: Generate All Timing
Models for Stratix III Devices” on page 2–25.

Updated for the
Quartus II software
version 7.2.

May 2007
v7.1.0

Updated “Functional RTL Simulation” on page 2–5.
Updated “Gate-Level Timing Simulation” on page 2–23.
Added “Perform Timing Simulation Using Post-synthesis Netlist”
on page 2–26.
Updated examples in “Simulating Designs that Include
Transceivers” on page 2–37.
Updated procedures in “Setting Up a Testbench” on page 2–48.
Added “Referenced Documents” on page 2–52.

Updated for the
Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. —

November 2006
v6.1.0

● Added ModelSim-Altera Web Edition to Table 2-1.
● Added Stratix III library support to Table 2-8, 2-9, and 2-10.
● Other minor changes to chapter.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added a section on setting ModelSim as the Simulation Tool
● Updated EDA Tools Settings in the GUI.
● Updated the Synopsys Design Constraints File information.
● Updated the device information.
● Added Quartus II-Generated Testbench information
● Updated megafunction information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updates to tables, figures.
● Updated information.
● New functionality for Quartus II software 5.0.

—

December 2004
v3.0

● Reorganized chapter, updated information.
● Updates to tables, figures.
● New functionality for Quartus II software 4.2.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

2–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 3–1
October 2007

3. Synopsys VCS Support

Introduction This chapter is an overview about using the Synopsys VCS software to
simulate designs that target Altera® FPGAs. It provides a step-by-step
explanation of how to perform functional register transfer level (RTL)
simulations, post-synthesis simulations, and gate-level timing
simulations using the VCS software.

This chapter discusses the following topics:

■ “Software Requirements”
■ “Common VCS Software Compiler Options” on page 3–11
■ “Using VirSim” on page 3–12
■ “Debugging Support Command-Line Interface” on page 3–12
■ “Simulating Designs that Include Transceivers” on page 3–13
■ “Using PLI Routines with the VCS Software” on page 3–16
■ “Transport Delays” on page 3–17
■ “Using NativeLink with the VCS Software” on page 3–18
■ “Scripting Support” on page 3–23

Software
Requirements

To simulate your design using VCS, you must first set up the Altera
libraries. These libraries are installed with the Quartus II software.

Table 3–1 shows the compatibility between versions of the Quartus II
software and the Synopsys VCS software.

Table 3–1. Supported Quartus II and VCS Software Version Compatibility

Synopsys Altera

VCS software version Y-2006.06-SP1 Quartus II software version 7.2

VCS software version 2006.06 Quartus II software version 7.1

VCS software version 2005.06-SP2 Quartus II software version 7.0 and 6.1

VCS software version 2005.06-SP1 Quartus II software version 6.0

VCS software version 7.2 Quartus II software version 5.1

VCS software version 7.2 Quartus II software version 5.0

VCS software version 7.1.1 Quartus II software version 4.2

QII53002-7.2.0

3–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about installing the software and the directories
created during the Quartus II software installation, refer to the Quartus II
Installation and Licensing for Windows or the Quartus II Installation and
Licensing for UNIX and Linux Workstation manuals.

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf

Altera Corporation 3–3
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

Using VCS in the
Quartus II
Design Flow

You can perform the following types of simulations using VCS:

■ Functional RTL
■ Post-synthesis
■ Gate-level timing

Figure 3–1 shows the VCS and Quartus II software design flow.

Figure 3–1. Altera Design Flow with the VCS and Quartus II Software

.vo

Design Entry (.v)

Functional RTL Simulation

Synthesis

Post-Synthesis Simulation

Verilog Output
File

.sdo

Place-and-Route

.v

Gate-Level Timing Simulation

Gate-Level
Simulation

Library Files

Post-Synthesis
Simulation

Library Files

Functional
Simulation

Library Files

.vo
Verilog Output

File

Standard Delay
Format Output

File

Testbench

3–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Functional Simulations

Functional RTL simulations verify the functionality of the design before
synthesis, placement, and routing. These simulations are independent of
any Altera FPGA architecture implementation. Once the HDL designs are
verified to be functionally correct, the next step is to synthesize the design
and use the Quartus II software to place-and-route the design in an Altera
device.

To functionally simulate an Altera FPGA design in the VCS software that
uses Altera intellectual property (IP) megafunctions, or library of
parameterized modules (LPM) functions, you must include certain
libraries during the compilation. Table 3–2 summarizes the Verilog HDL
library files that are required to compile LPM functions and Altera
megafunctions.

The library files in Table 3–2 are installed with the Quartus II software.
These files are found in the <path to Quartus II installation>\eda\sim_lib
directory.

The following is a VCS command for performing a functional RTL
simulation with one of the libraries in Table 3–2:

vcs -R <test bench>.v <design name>.v –v <library file>.v r

Table 3–2. Altera Verilog HDL Functional/Behavioral Simulation Library
Files

Library Name Verilog HDL Libraries

LPM 220model.v

altera_mf altera_mf.v

altgxb stratixgx_mf.v (1)

alt2gxb stratixiigx_hssi_atoms.v (1)
arriagx_hssi_atoms.v (1)

sgate sgate.v

altera altera_primitives.v

Note to Table 3–2:
(1) The stratixgx_mf.v, stratixiigx_hssi_atoms.v, and arriagx_hssi_atoms.v library

files require the LPM and SGATE libraries.

Altera Corporation 3–5
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

Megafunctions Requiring Atom Libraries

The following Altera megafunctions require gate-level libraries to
perform a functional simulation in a third-party simulator:

■ altclkbuf
■ altclkctrl
■ altdq
■ altdqs
■ altddio_in
■ altddio_out
■ altddio_bidir
■ altufm_none
■ altufm_parallel
■ altufm_spi
■ altmemmult
■ altremote_update

The gate-level library files are located in <path to Quartus II
installation>eda/sim_lib directory (Table 3–3).

Functional RTL Simulation with Altera Memory Blocks

The VCS software supports functional simulation of complex Altera
memory blocks such as lpm_ram_dp and altsyncram. You can create
these memory blocks with the Quartus II MegaWizard® Plug-In Manager,
which can be initialized with power-up data via a Hexadecimal
(Intel-Format) File (.hex) or Memory Initialization File (.mif). The
lpm_file parameter included in the file generated by the MegaWizard
Plug-In Manager points to the path of the Hexadecimal (Intel-Format)
File or Memory Initialization File that is used to initialize the memory
block. You can create a Hexadecimal (Intel-Format) File or Memory
Initialization File with the Quartus II software.

Compiling Functional Library Files with Compiler Directives

If you use a Hexadecimal (Intel-Format) File, no compiler directives are
required. If you use a RAM Initialization File, the USE_RIF macro must
be defined to compile the model library files. For example, enter the
following when compiling the altera_mf library using RIF memory
initialization files:

vcs -R -v <path to Quartus installation> /
\eda\sim_lib\altera_mf.v <test bench file> /
<design file (top-level)> +define+USE_RIF=1 r

3–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 For the Quartus II software versions 5.0 and earlier, the NO_PLI
macro must be defined instead of USE_RIF. The NO_PLI macro
is forward compatible with the Quartus II software.

Post-Synthesis Simulation

A post-synthesis simulation verifies the functionality of a design after
synthesis has been performed. You can create a post-synthesis netlist in
the Quartus II software and use this netlist to perform a post-synthesis
simulation in the VCS software. Once the post-synthesis version of the
design has been verified, the next step is to place-and-route the design in
the target architecture using the Quartus II software.

Generating a Post-Synthesis Simulation Netlist

The following steps describe the process of generating a post-synthesis
simulation netlist in the Quartus II software:

1. Perform Analysis and Synthesis. On the Processing menu, point to
Start and click Start Analysis and Synthesis.

2. Turn on the Generate Netlist for Functional Simulation Only
option by performing the following steps:

a. On the Assignments menu, click EDA Tool Settings. The
Settings dialog box appears.

b. In the Category list, select Simulation. The Simulation page is
shown.

c. In the Tool name list, select VCS.

d. You can modify where you want the post-synthesis netlist
generated by editing or browsing to a directory in the Output
directory box.

e. Click More Settings. The More EDA Tools Simulation
Settings dialog box appears. In the Existing options settings
list, click Generate Netlist for Functional Simulation Only
and select On from the Setting list under Option.

f. Click OK.

g. In the Settings dialog box, click OK.

3. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

Altera Corporation 3–7
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

During the EDA Netlist Writer stage, the Quartus II software produces a
Verilog Output File (.vo) that can be used for the post-synthesis
simulations in the VCS software. This netlist file is mapped to
architecture-specific primitives. No timing information is included at this
stage.

The resulting netlist is located in the output directory you specified in the
Settings dialog box, which defaults to the <project directory>
/simulation/vcs directory. This netlist, along with the device family
library listed in Table 3–3, can be used to perform a post-synthesis
simulation in the VCS software.

Table 3–3. Altera Gate-Level Simulation Library Files

Library Files Description

arriagx_atoms.v
arriagx_hssi_atoms.v

Atom libraries for Arria™ GX designs

stratixii_atoms.v Atom libraries for Stratix® II designs

stratixiigx_atoms.v
stratixiigx_hssi_atoms.v

Atom libraries for Stratix II GX designs

stratix_atoms.v Atom libraries for Stratix designs

stratixgx_atoms.v
stratixgx_hssi_atoms.v

Atom libraries for Stratix GX designs

stratixiii_atoms.v Atom libraries for Stratix III designs

hardcopyii_atoms.v Atom libraries for HardCopy® II designs

hcstratix_atoms.v Atom libraries for HardCopy Stratix designs

cycloneiii_atoms.v Atom libraries for Cyclone® III designs

cycloneii_atoms.v Atom libraries for Cyclone II designs

cyclone_atoms.v Atom libraries for Cyclone designs

apexii_atoms.v Atom libraries for APEXTM II designs

apex20ke_atoms.v Atom libraries for APEX 20KE, APEX 20KC, and ExcaliburTM designs

apex20k_atoms.v Atom libraries for APEX 20K designs

flex10ke_atoms.v Atom libraries for FLEX® 10KE and ACEX® 1K designs

flex6000_atoms.v Atom libraries for FLEX 6000 designs

maxii_atoms.v Atom libraries for MAX® II designs

max_atoms.v Atom libraries for MAX 3000 and MAX 7000 designs

mercury_atoms.v Atom libraries for MercuryTM designs

3–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following VCS software commands describe the command-line
syntax used to perform a post-synthesis simulation with the appropriate
device family library listed in Table 3–3:

vcs -R <test bench> <post synthesis netlist> -v <altera device family library> r

Gate-Level Timing Simulation

A gate-level timing simulation verifies the functionality of the design
after place-and-route. You can create a post-fit netlist in the Quartus II
software and use this netlist to perform a gate-level timing simulation in
VCS software.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the VCS software requires
information about how the design was placed into device-specific
architectural blocks. The Quartus II software provides this information in
the form of a Verilog Output File for Verilog HDL designs. The
accompanying timing information is stored in the Standard Delay Output
File (.sdo), which annotates the delay for the elements found in the
Verilog Output File.

The following steps describe the process of generating a gate-level timing
simulation netlist in the Quartus II software:

1. Perform a full compilation. On the Processing menu, click Start
Compilation.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, select Simulation. The Simulation page is
shown.

4. In the Tool name list, select VCS.

5. You can modify where you want the post-synthesis netlist
generated by editing or browsing to a directory in the Output
directory box.

6. Click OK.

7. In the Settings dialog box, click OK.

8. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

Altera Corporation 3–9
October 2007 Preliminary

Using VCS in the Quartus II Design Flow

During the EDA Netlist Writer stage, the Quartus II software produces a
Verilog Output File (.vo) that can be used for post-synthesis simulations
in the VCS software. This netlist file is mapped to architecture-specific
primitives. No timing information is included at this stage. The resulting
netlist is located in the output directory you specified in the Settings
dialog box, which defaults to the <project directory>/simulation/vcs
directory.

Generating Different Timing Model

If you enable the Quartus II Classic or Quartus II TimeQuest Timing
Analyzer when generating the SDO file, slow-corner (worst case) timing
models are used by default. To generate the SDO file using a different
timing model, you must run the Quartus II Classic or the Quartus II
TimeQuest Timing Analyzer with a different timing model before you
start the EDA Netlist writer.

To run the Classic Timing Analyzer with the best-case model, on the
Processing menu, point to Start and click Start Classic Timing Analyzer
(Fast Timing Model). After timing analysis is complete, the Compilation
Report appears. You can also type the following command at a command
prompt:

quartus_tan <project_name> --fast_model=on r
To run the Quartus II TimeQuest Timing Analyzer with a best-case
model, use the -fast_model option after you create the timing netlist.
The following command enables the fast timing models:

create_timing_netlist -fast_model

You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on r
f For more information about generating the timing model, refer to the

Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

After you run the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer, you can perform steps 2 through 8 in
“Generating a Gate-Level Timing Simulation Netlist” on page 3–8 to
generate the SDO file. For fast corner timing models, the _fast post fix is
added to the VO, VHO, and SDO file (for example, my_project_fast.vo,
my_project_fast.vho, and my_project_fast.sdo).

3–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Operating Condition Example: Generate All Timing Models for
Stratix III Devices
In Stratix III and Cyclone III devices, you can specify different
temperature and voltage parameters to generate the timing models.
Table 3–4 shows the available operation conditions (model, voltage, and
temperature) for Stratix III and Cyclone III devices.

To generating the SDO files for the three different operating conditions
for a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions.
Type the following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the ModelSim simulation output files for all three corners

specified above. The output files are generated in the simulation
output directory. Type the following command at a command
prompt:

quartus_eda <project name> --simulation --tool=vcs --format=verilog r
To summarize, for the three operating conditions the steps above
generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85º C):
VO file— <revision name>.vo
SDO file— <revision name>_v.sdo

Table 3–4. Available Operating Condition for Stratix III and Cyclone III
Devices

Device Family Model Voltage Temperature

Stratix III Slow 1100 mV 85° C

Slow 1100 mV 0° C

Fast 1100 mV 0° C

Cyclone III Slow 1200 mV 85° C

Slow 1200 mV 0° C

Fast 1200 mV 0° C

Altera Corporation 3–11
October 2007 Preliminary

Common VCS Software Compiler Options

Second slow corner (slow, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_slow.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast corner (fast, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-Synthesis Netlist

You can perform a timing simulation using the post-synthesis netlist
instead of using a gate-level netlist and you can generate a SDO without
running the fitter. In this case, the SDO file includes all timing values for
the device cells only. Interconnect delays are not included because fitting
(placement and routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following
command at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation --tool=<third party EDA tool>
--format=<HDL language> r

For more information about the -format and -tool option, type the
following command: quartus_eda -help=<options> command

Common VCS
Software
Compiler
Options

The VCS software has options that help you simulate your design.
Table 3–5 lists some of the options that are available.

Table 3–5. VCS Software Compiler Options (Part 1 of 2)

Library Description

-R Runs the executable file immediately.

-RI Once the compile has completed, instructs the VCS software to automatically launch
VirSim.

-v <library filename> Specifies a Verilog HDL library file (for example, 220model.v or altera_mf.v). The VCS
software looks in this file for module definitions that are found in the source code. Only
the relevant library files are compiled based on the modules found.

-y <library directory> Specifies a Verilog HDL library directory. The VCS software looks for library files in this
folder that contain module definitions that are instantiated in the source code.

3–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about any VCS software option, refer to the VCS
User Guide.

Using VirSim VirSim is the graphical debugging system for the VCS software. This tool
is included with the VCS software and can be run by using the -RI
compile-time compiler option when compiling a design. The following
VCS software command describes the command-line syntax for
compiling and loading a timing simulation in VirSim:

vcs -RI <test bench>.v <design name>.vo -v <path to Quartus II installation> \
\eda\sim_lib\<device family>_atoms.v +compsdf r

f For more information about using VirSim, refer to the VirSim User
Manual included in the VCS software installation.

Debugging
Support
Command-Line
Interface

The VCS software has an interactive non-graphical debugging capability
that is very similar to other UNIX debuggers such as the GNU debugger
(GDB). The VCS software CLI can be used to halt simulations at
user-defined break points, force registers with values, and display values
of registers.

Enable the non-graphical capability by using the +cli run-time option.
Use the VCS software CLI to debug your Altera FPGA design by typing
the following command:

vcs -R <test bench>.v <design name>.vo
-v <path to Quartus II installation> \
\eda\sim_lib\<device family>_atoms.v +compsdf +cli r

+compsdf Indicates that the VCS software compiler includes the back-annotated SDF file in the
compilation.

+cli The VCS software enters Command-Line Interface (CLI) mode upon successful
compilation completion.

+race Specifies that the VCS software generate a report that indicates all of the race conditions
in the design. Default report name is race.out.

-P Compiles user-defined Programming Language Interface (PLI) table files.

-q Indicates the VCS software runs in quiet mode. All messages are suppressed.

Table 3–5. VCS Software Compiler Options (Part 2 of 2)

Library Description

Altera Corporation 3–13
October 2007 Preliminary

Simulating Designs that Include Transceivers

The +cli command takes an optional number argument that specifies
the level of debugging capability. As the optional debugging capability is
increased, the overhead incurred by the simulation is increased, resulting
in an increase in simulation times.

f For more information about the +cli options, refer to the VCS User
Guide included in the VCS software installation.

For the design examples to run gate-level timing simulation in VHDL or
Verilog language, refer to www.altera.com/support/examples/vcs/exm-
vcs.html.

Simulating
Designs that
Include
Transceivers

If your design includes a Stratix GX or Stratix II GX transceiver, you must
compile additional library files to perform functional or timing
simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the
altgxb megafunction, enabling the gigabit transceiver block gigabit
transceiver block on Stratix GX devices, compile the stratixgx_mf model
file into the altgxb library.

1 The stratixiigx_mf model file references the lpm and sgate
libraries, so you must create these libraries to perform a
simulation.

Example of Compiling Library Files for Functional Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary for functional simulation of a Verilog
HDL design targeting a Stratix GX device, type the following commands
at the VCS command prompt:

vcs -R <test bench>.v <design files>.v -v stratixgx_mf.v -v \
sgate.v -v 220model.v -v altera_mf.v r

Stratix GX Post-Fit (Timing) Simulation

Perform a post-fit timing simulation of your design that includes a
Stratix GX transceiver by compiling the stratixgx_atoms and
stratixgx_hssi_atoms model files into the stratixgx and stratixgx_gxb
libraries, respectively.

3–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The stratixgx_hssi_atoms model file references the lpm and
sgate libraries, so you must create these libraries to perform a
simulation.

Example of Compiling Library Files for Timing Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary for timing simulation of a Verilog HDL
design targeting a Stratix GX device, type the following commands at the
VCS command prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixgx_atoms.v -v \
stratixgx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

Stratix II GX Functional Simulation

To perform a functional simulation of your design that instantiates the
alt2gxb megafunction, enabling the gigabit transceiver block gigabit
transceiver block on Stratix II GX devices, compile the stratixiigx_hssi
model file into the stratixiigx_hssi library.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you must create these libraries to perform a
simulation.

Generate a functional simulation netlist by turning on Generate
Simulation Model in the Simulation Library in the alt2gxb MegaWizard
Plug-In Manager (Figure 3–2). The <alt2gxb entity name>.vho file or
<alt2gxb module name>.vo file is generated in the current project directory.

1 The Quartus II-generated alt2gxb functional simulation
library file references stratixiigx_hssi wysiwyg atoms.

Altera Corporation 3–15
October 2007 Preliminary

Simulating Designs that Include Transceivers

Figure 3–2. alt2gxb MegaWizard

Example of Compiling Library Files for Functional Stratix II GX Simulation
in Verilog HDL

To compile the libraries necessary for functional simulation of a Verilog
HDL design targeting a Stratix II GX device, type the following
commands at the VCS command prompt:

vcs -R <testbench>.v <alt2gxb simulation netlist>.vo -v stratixgx_hssi_atoms.v -v \
sgate.v -v 220model.v -v altera_mf.v r

3–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a
Stratix II GX transceiver, compile stratixiigx_atoms and
stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi
libraries, respectively.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you must create these libraries to perform a
simulation.

Example of Compiling Library Files for Timing Stratix II GX Simulation in
Verilog HDL

To compile the libraries necessary for timing simulation of a Verilog HDL
design targeting a Stratix II GX device, type the following commands at
the VCS command prompt:

vcs -R <testbench>.v <gate-level netlist>.vo -v stratixiigx_atoms.v -v \
stratixiigx_hssi_atoms.v -v sgate.v -v 220model.v -v altera_mf.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

Using PLI
Routines with
the VCS
Software

The VCS software can interface your custom-defined C code with Verilog
HDL source code. This interface is known as PLI. This interface is
extremely useful because it allows advanced users to define their own
system tasks that currently may not exist in the Verilog HDL.

Preparing and Linking C Programs to Verilog HDL Code

When compiling the source code, the C code must include a reference to
the vcsuser.h file. This file defines PLI constants, data structures, and
routines that are necessary for the PLI interface. This file is included with
the VCS software installation and can be found in the $VCS_HOME\lib
directory.

Once the C code is complete, you must create an object file (.o). Create the
object file with the following command:

gcc -c my_custom_function.c r
Next, you must create a PLI table file (.tab). This file maps the C program
task to the matching task $task in the Verilog HDL source code. You can
create this file using a standard text editor. The following is an example
of an entry in the PLI file:

$my_custom_function call=my_custom_function acc+=rw* r

Altera Corporation 3–17
October 2007 Preliminary

Transport Delays

The Verilog HDL code can now include a reference to the user-defined
task. To compile an Altera FPGA design that includes a reference to a
user-defined system task, type the following at the command-line
prompt:

vcs -R <test bench>.v <design name>.v -v <Altera library file>.v –P <my_tabfile.tab> \
<my_custom_function.o> r

Transport
Delays

By default, the VCS software filters out all pulses that are shorter than the
propagation delay between primitives. Turning on the transport delay
options in the VCS software prevents the simulation tool from filtering
out these pulses. Use the following options to ensure that all signal pulses
are seen in the simulation results.

+transport_path_delays

Use this option when the pulses in your simulation may be shorter than
the delay within a gate-level primitive. For this option to work you must
also include the +pulse_e/number and +pulse_r/number options.

+transport_int_delays

Use this option when the pulses in your simulation may be shorter than
the interconnect delay between gate-level primitives. For this option to
work, you must also include the +pulse_int_e/number and
+pulse_int_r/number options. The +transport_path_delays
and +transport_int_delays options are also used by default in the
NativeLink feature for gate-level timing simulation.

f For more information about either of these options, refer to the VCS User
Guide installed with the VCS software.

The following VCS software command describes the command-line
syntax to perform a post-synthesis simulation with the device family
library:

vcs -R <test bench>.v <gate-level netlist>.v -v <altera device family library>.v \
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0 \
+transport_path_delays +pulse_e/0 +pulse_r/0 r

http://synopsys.com/
http://synopsys.com/

3–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Using
NativeLink with
the VCS
Software

The NativeLink® feature in the Quartus II software facilitates the
seamless transfer of information between the Quartus II software and
EDA tools and allows you to run VCS within the Quartus II software.

Setting Up NativeLink

To run VCS automatically from the Quartus II software using the
NativeLink feature, you must specify the path to your simulation tool by
performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options. The EDA Tool
Options page is shown.

3. Double-click the entry under the Location of executable column.

4. Type or browse to the directory containing the executables of your
EDA tool.

5. Click OK.

You can also specify the path to the simulator’s executables by using the
set_user_option Tcl command:

set_user_option –name EDA_TOOL_PATH_VCS <path to executables> r

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation automatically with the VCS software
in the Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page is
shown (Figure 3–3).

Altera Corporation 3–19
October 2007 Preliminary

Using NativeLink with the VCS Software

Figure 3–3. Simulation Page in the Settings Dialog Box

3. In the Tool name list, select VCS. You can also modify where you
want the post-synthesis netlist generated by editing or browsing to
a directory in the Output directory box.

4. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

For more information about setting up a testbench with NativeLink, refer
to “Setting Up a Testbench” on page 3–21.

5. Click OK.

3–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

6. On the Processing menu, point to Start and click Start Analysis and
Elaboration to perform an analysis and elaboration. This command
collects all your file name information and builds your design
hierarchy in preparation for simulation.

7. On the Tools menu, point to EDA Simulation Tool and click Run
EDA RTL Simulation to automatically launch VCS, compile all
necessary design files, and complete a simulation.

Performing a Gate-Level Simulation Using NativeLink

To run a gate-level timing simulation with the VCS software
automatically in the Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page is
shown (Figure 3–3).

3. In the Tool name list, select VCS.

4. You can modify where you want the post-synthesis netlist
generated by editing or browsing to a directory in the Output
directory box.

5. To perform a gate level simulation after each full compilation, turn
on Run Gate Level Simulation automatically after compilation.

6. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

7. Click OK.

8. Perform a full compilation. On the Processing menu, click Start
Compilation.

9. On the Processing menu, point to Start and click Start EDA Netlist
Writer to generate a simulation netlist of your design.

10. On the Tools menu, point to EDA Simulation Tool and click Run
EDA Gate Level Simulation to automatically launch VCS, compile
all necessary design files, and complete a simulation.

Altera Corporation 3–21
October 2007 Preliminary

Using NativeLink with the VCS Software

1 A VCS file (*.vcs) is generated in the
<project_dirrectory>\simulation\vcs directory while running
the NativeLink. With this VCS File (*.vcvs), you can simulating
the design using the following command without using the
NativeLink:

vcs -file <project_directory>\simulation\vcs\<generated_do_file>.vcs

Setting Up a Testbench

You can automatically launch your EDA simulator tool, compile your
design files and testbench files, and perform a simulation automatically
using the NativeLink feature.

To setup NativeLink with a testbench, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the “+” icon to expand EDA Tool Settings
and select Simulation. The Simulation page is shown.

3. Under NativeLink settings, select None or Compile test bench
(Table 3–6).

4. If you select Compile test bench, select your testbench setup from
the Compile test bench list. You can use different testbench setups
to specify different testbench files for different test scenarios. If there
are no testbench setups entered, create a testbench setup by
performing the following steps:

a. Click Test Benches. The Test Benches dialog box appears.

b. Click New. The New Test Bench Settings dialog box appears.

c. In the Test Bench name box, type in the testbench setup name
which is used to identify between the different testbench
setups.

Table 3–6. NativeLink Settings

Settings Description

None Compile simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and starts
simulation.

3–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

d. In the Test bench entity box, type in the top-level entity name.
For example, for a Quartus II generated Verilog testbench, type
in <Vector Waveform File name>_vlg_vec_tst.

e. In the Instance box, type the full instance path to the top level
of your FPGA design. For example, for a Quartus II generated
Verilog test bench, type i1.

f. Under Simulation period, select Run simulation until all
vector stimuli are used. If you select End simulation at, specify
the simulation end time and the time unit.

g. Under Test bench files, browse and add all your testbench files
in the File name box. Use the Up and Down buttons to reorder
your files. The script used by NativeLink compiles the files in
the order from top to the bottom.

1 You can also specify the library name and the HDL version to
compile the testbench file. NativeLink compiles the testbench to
the library name of the HDL specified version.

h. Click OK.

i. In the Test Benches dialog box, click OK.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL
testbench from a Vector Waveform File. The generated testbench includes
the behavior of the input stimulus and applies it to your instantiated
top-level FPGA design.

1. On the File menu, click Open. The Open dialog box appears.

2. Click the Files of type arrow and select Waveform/Vector Files.
Select your file.

3. Click Open.

4. On the File menu, click Export. The Export dialog box appears.

5. Click the Save as type arrow and select VHDL Test Bench File
(*.vht) or Verilog Test Bench File (*.vt).

6. You can turn on Add self-checking code to file to check your
simulation results against your Vector Waveform File.

Altera Corporation 3–23
October 2007 Preliminary

Scripting Support

7. Click Export.

Scripting
Support

You can run procedures and create settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

For more information about command-line scripting, refer to the
Command Line Scripting chapter in volume 2 of the Quartus II Handbook.

For detailed information about scripting command options, refer to the
Qhelp utility.

To start the Qhelp utility, type this command:

quartus_sh --qhelp r

Generating a Post-Synthesis Simulation Netlist for VCS

You can use the Quartus II software to generate a post-synthesis
simulation netlist with Tcl commands or with a command at a command
prompt.

Tcl Commands

Use the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r
set_global_assignment –name EDA_GENERATE_FUNCTIONAL_NETLIST ON r

Command Prompt

Use the following command to generate a simulation output file for the
VCS software simulator; specify VHDL or Verilog HDL for the format:

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs
--functional r

Generating a Gate-Level Timing Simulation Netlist for VCS

You can use the Quartus II software to generate a gate-level timing
simulation netlist with Tcl commands or with a command at a command
prompt.

3–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Tcl Commands

Use the following Tcl commands:

set_global_assignment -name EDA_SIMULATION_TOOL "VCS" r

Command Prompt

Use the following command to generate a simulation output file for the
VCS software simulator. Specify VHDL or Verilog HDL for the format.

quartus_eda <project name> --simulation=on --format=<format> --tool=vcs r

Conclusion You can use the VCS software in your Altera FPGA design flow to easily
and accurately perform functional RTL simulations, post-synthesis
simulations, and gate-level functional timing simulations. The seamless
integration of the Quartus II software and VCS software make this
simulation flow an ideal method for fully verifying an FPGA design.

Referenced
Documents

This chapter references the following documents:

■ Quartus II Installation and Licensing for Windows Manual
■ Quartus II Installation and Licensing for UNIX and Linux Workstation

Manual
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ VCS User Guide
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Command Line Scripting chapter in volume 2 of the Quartus II

Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf
http://synopsys.com/

Altera Corporation 3–25
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 3–7 shows the revision history for this chapter.

Table 3–7. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Table 3–1.
● Updated “Operating Condition Example: Generate All Timing

Models for Stratix III Devices” on page 3–10.

Updated for the
Quartus II software
version 7.2.

May 2007
v7.1.0

● Updated Tables 3–1, 3–2, and 3–3.
● Updated “Generating a Gate-Level Timing Simulation Netlist”

on page 3–8.
● Added “Perform Timing Simulation Using Post-Synthesis

Netlist” on page 3–11.
● Updated “Performing a Gate-Level Simulation Using

NativeLink” on page 3–20.
● Updated procedures in “Setting Up a Testbench” on

page 3–21.

Updated for the
Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. —

November 2006
v6.1.0

● Updated for the Quartus II software version 6.1.
● Added library for Stratix III support.
● Minor updates to Table 3-1, 3-2, and 3-3.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added a section on setting VCS as the Simulation Tool
● Updated EDA Tools Settings in the GUI.
● Updated the Synopsys Design Constraints File information.
● Added pulse_e and pulse_r information to simulation

sections.
● Added Quartus II-Generated Testbench information
● Updated megafunction information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Updated tables.
● Added Using NativeLink® with VCS section.
● New functionality for Quartus II software version 5.0.

December 2004
v2.1

● Updates to tables, figures.
● New functionality for Quartus II software version 4.2.

June 2004
v2.0

● Updates to tables and figures.
● New functionality for the Quartus II software version 4.1.

February 2004
v1.0

● Initial release.

3–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 4–1
October 2007

4. Cadence NC-Sim Support

Introduction This chapter is a getting started guide to using the Cadence Incisive
verification platform software in Altera® FPGA design flows. The Incisive
verification platform software includes NC-Sim, NC-Verilog, NC-VHDL,
Verilog, and VHDL desktop simulators. This chapter provides
step-by-step explanations of the basic NC-Sim, NC-Verilog, and
NC-VHDL functional, post-synthesis, and gate-level timing simulations.
It also describes the location of the simulation libraries and how to
automate simulations.

This chapter contains the following topics:

■ “Software Requirements”
■ “Functional and RTL Simulation” on page 4–6
■ “Post-Synthesis Simulation” on page 4–22
■ “Gate-Level Timing Simulation” on page 4–24
■ “Simulating Designs that Include Transceivers” on page 4–31
■ “Using the NativeLink Feature with NC-Sim” on page 4–37
■ “Incorporating PLI Routines” on page 4–43
■ “Scripting Support” on page 4–48

Software
Requirements

You must first install the Quartus® II software before using it with the
Cadence Incisive verification platform software. The Cadence interface is
installed automatically when you install the Quartus II software on your
computer.

QII53003-7.2.0

4–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 4–1 shows the Cadence NC simulator versions compatible with
specific Quartus II software versions.

Table 4–1. Compatibility Between Software Versions

Quartus II Software Cadence NC Simulators
(UNIX)

Cadence NC Simulators
(PC)

Cadence NC Simulators
(Linux)

Version 7.2 Version 6.10 p001 Version 5.4 s011 Version 6.10 p001

Version 7.1 Version 5.83 p003 Version 5.4 s011 Version 5.83 p003

Version 6.1 and 7.0 Version 5.82 p001 Version 5.4 s011 Version 5.82 p001

Version 6.0 Version 5.5 s012 Version 5.4 s011 Version 5.5 s012

Version 5.1 Version 5.4 s011 Version 5.4 s011 Version 5.4 s011

Version 5.0 Version 5.4 s004 Version 5.4 p001 Version 5.4 s004

Version 4.2 Version 5.1 s017 Version 5.1 s017 Version 5.1 s017

Version 4.1 Version 5.1 s012 Version 5.1 s010 Version 5.0 p001

Version 4.0 Version 5.0 s005 Version 5.0 s006 Version 5.0 p001

Altera Corporation 4–3
October 2007 Preliminary

Simulation Flow Overview

Simulation Flow
Overview

The Incisive platform software supports the following simulation flows:

■ Functional and RTL Simulation
■ Post-Synthesis Simulation
■ Gate-Level Timing Simulation
■ Using the NativeLink Feature with NC-Sim

Figure 4–1 shows the Quartus II software and Cadence design flow.

Figure 4–1. Quartus II Software Design Flow with Cadence NC Simulators

.vo/.vho

Design Entry

Functional RTL Simulation

Synthesis

Post-Synthesis Simulation

Verilog Output
File and VHDL

Output File

.sdo

Place-&-Route

.v/.vhd

Gate-Level Timing Simulation

Gate-Level
Simulation

Library Files

Post-Synthesis
Simulation

Library Files

Functional
Simulation

Library Files

.vo/.vho
Verilog Output
File and VHDL

Output File

Standard Delay
Format Output

File

Testbench

ALTERA IP

4–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Functional and RTL simulation verifies the functionality of your design.
When you perform a functional simulation with Cadence Incisive
simulators, you use your design files (Verilog HDL or VHDL) and the
models provided with the Quartus II software. These Quartus II models
are required if your design uses the library of parameterized modules
(LPM) functions or Altera-specific megafunctions. Refer to “Functional
and RTL Simulation” on page 4–6 for more information about how to
perform this simulation.

A post-synthesis simulation verifies the functionality of a design after
synthesis has been performed. You can create a post-synthesis netlist (.vo
or .vho) in the Quartus II software and use this netlist to perform a
post-synthesis simulation with the Incisive simulator. Refer to
“Post-Synthesis Simulation” on page 4–22 for more information about
how to perform this simulation.

After performing place-and-route, the Quartus II software generates a
Verilog Output File (.vo) or VHDL Output File (.vho) and a Standard
Delay Output file (.sdo) for gate-level timing simulation. The netlist files
map your design to architecture-specific primitives. The SDO file
contains the delay information of each architecture primitive and routing
element specific to your design. Together, these files provide an accurate
simulation of your design with the selected Altera FPGA architecture.
Refer to “Gate-Level Timing Simulation” on page 4–24 for more
information about how to perform this simulation.

Operation Modes

In the NC simulators, you can use either the GUI mode or the
command-line mode to simulate your design.

You can start the Incisive simulators in GUI mode in a PC or a UNIX
environment by typing nclaunch at a command prompt.

Altera Corporation 4–5
October 2007 Preliminary

Simulation Flow Overview

To simulate in command-line mode, use the programs shown in
Table 4–2.

Quartus II Software and NC Simulation Flow Overview

An overview of the Quartus II software and Cadence NC simulation flow
is described below. More detailed information is provided in “Functional
and RTL Simulation” on page 4–6, “Post-Synthesis Simulation” on
page 4–22, and “Gate-Level Timing Simulation” on page 4–24.

1. Set up your working environment (UNIX only).

You must set several environment variables in UNIX to establish an
environment that facilitates entering and processing designs.

2. Create user libraries.

Create a file that maps logical library names to their physical
locations. These library mappings include your working directory
and any design-specific libraries; for example, Altera LPM functions
or megafunctions.

3. Compile source code and testbenches.

You compile your design files at the command-line using ncvlog
(Verilog HDL files) or ncvhdl (VHDL files), or on the Tools menu by
clicking Verilog Compiler or VHDL Compiler in NCLaunch.
During compilation, the NC software performs syntax and static
semantic checks. If no errors are found, compilation produces an

Table 4–2. Command-Line Programs

Program Function

ncvlog
or
ncvhdl

NC-Verilog (ncvlog) compiles your Verilog HDL code into a Verilog Syntax Tree (.vst) file. ncvlog
also performs syntax and static semantics checks.

NC-VHDL (ncvhdl) compiles your VHDL code into a VHDL Syntax Tree (.ast) file. ncvhdl also
performs syntax and static semantics checks.

ncelab NC-Elab (ncelab) elaborates the design. ncelab constructs the design hierarchy and establishes
signal connectivity. This program also generates a Signature File (.sig) and a Simulation SnapShot
File (.sss).

ncsim NC-Sim (ncsim) performs mixed-language simulation. This program is the simulation kernel that
performs event scheduling and executes the simulation code.

4–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

internal representation for each HDL design unit in the source files.
By default, these intermediate objects are stored in a single, packed,
library database file in your working directory.

4. Elaborate your design.

Before you can simulate your model, you must define the design
hierarchy in a process called elaboration. Use ncelab in
command-line mode or on the Tools menu, click Elaborator in
NCLaunch to elaborate the design.

5. Add signals to your waveform.

Before simulating, specify which signals to view in your waveform
using a simulation history manager (SHM) database.

6. Simulate your design.

Run the simulator with the ncsim program (command-line mode) or
by clicking Run in the SimVision Console window.

Functional and
RTL Simulation

The following sections provide detailed instructions for performing
functional/RTL simulation using the Quartus II software and the
Cadence Incisive platform software tools.

Create Libraries

Before simulating with the Incisive simulator, you must set up libraries
with a file named cds.lib. The cds.lib file is an ASCII text file that maps
logical library names—for example, your working directory or the
location of resource libraries such as models for LPM functions—to their
physical directory paths. When you run the Incisive simulator, the tool
reads cds.lib to determine which libraries are accessible and where they
are located. There is also a default cds.lib file, which you can modify for
your project settings.

You can use more than one cds.lib file. For example, you can have a
project-wide cds.lib file that contains library settings specific to a project
such as technology or cell libraries and a user cds.lib file.

The following sections describe how to create and edit a cds.lib file:

■ Basic libraries setup
■ LPM function, Altera megafunction, and Altera primitive library

setup

Altera Corporation 4–7
October 2007 Preliminary

Functional and RTL Simulation

Basic Library Setup

You can create a cds.lib file with any text editor. The following examples
show how you use the DEFINE statement to bind a library name to its
physical location. The logical and physical names can be the same or you
can select different names. The DEFINE statement usage is:

DEFINE <library name> <physical directory path>

For example, a simple cds.lib file for Verilog HDL contains the following
lines:

DEFINE lib_std /usr1/libs/std_lib
DEFINE worklib ../worklib

Using Multiple cds.lib Files
Use the INCLUDE or SOFTINCLUDE statement to reference another cds.lib
file within a cds.lib file. The syntax is:

INCLUDE <path to another cds.lib>

or

SOFTINCLUDE <path to another cds.lib>

1 For the Windows operating system, enclose the path with
quotation marks if there are spaces in the directory path.

For VHDL or mixed-language simulation, in addition to the DEFINE
statements, you must include the default cds.lib file (included with
NC-Sim). The syntax for including the default cds.lib file is:

INCLUDE <path to NC installation>/tools/inca/files/cds.lib

or

INCLUDE $CDS_INST_DIR/tools/inca/files/cds.lib

The default cds.lib file, provided with NC tools, contains a
SOFTINCLUDE statement to include other cds.lib files, such as
cdsvhdl.lib and cdsvlog.lib. These files contain library definitions for
IEEE libraries and Synopsys libraries.

4–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create a cds.lib File in Command-Line Mode
To create a cds.lib file at a the command prompt, perform the following
steps:

1. Create a directory for the work library and any other libraries you
need by typing the following command at a command prompt:

mkdir <library name> r
For example: mkdir worklib r

2. Using a text editor, create a cds.lib file and add the following line to
it:

DEFINE <library name> <physical directory path>

For example: DEFINE worklib ./worklib

Create a cds.lib File in GUI Mode
To create a cds.lib file using the GUI, perform the following steps:

1. Type nclaunch r at the command line to run the GUI.

2. If the NCLaunch window is not in multiple step mode, on the File
menu, click Switch to Multiple Step.

3. Change your design directory on the File menu by clicking Set
Design Directory. The Set Design Directory dialog box appears
(Figure 4–2).

Figure 4–2. Creating a Work Directory in GUI Mode

Altera Corporation 4–9
October 2007 Preliminary

Functional and RTL Simulation

4. Click Browse to navigate to your design directory.

5. Click Create cds.lib File and in the New cds.lib File dialog box,
click Save and choose the libraries you want to include.

6. Click New under Work Library.

7. Enter your new work library name, for example, worklib.

8. Click OK. The new library is displayed under Work Library.
Figure 4–2 shows an example using the directory name worklib.

9. Repeat steps 7 and 8 for each functional simulation library. For
example, lpm, altera_mf, and altera.

10. Click OK in the Set Design Directory dialog box.

1 You can edit your libraries by editing the cds.lib file. Edit the
cds.lib file by right-clicking the cds.lib filename in the right side
of the window and choosing Edit.

LPM Functions, Altera Megafunctions, and Altera Primitives Libraries

Altera provides behavioral descriptions for LPM functions,
Altera-specific megafunctions, and Altera primitives. You can implement
the megafunctions in a design using the Quartus II MegaWizard® Plug-In
Manager or by instantiating them directly from your design file. You
must set up resource libraries so that you can simulate your design in the
Incisive simulator if your design uses LPM functions, Altera
megafunctions, or Altera primitives.

1 Many LPM functions and Altera megafunctions use memory
files. You must convert the memory files into a format the
Incisive tools can read before simulating. Follow the instructions
in “Compile Source Code and Testbenches” on page 4–13 to
connect the memory files.

Altera provides megafunction behavioral descriptions in the files shown
in Table 4–3. These library files are located in the following directory:

<path to Quartus II installation>/eda/sim_lib directory.

4–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For more information about LPM functions and Altera megafunctions,
refer to the Quartus II Help.

If an lpm library does not exist, set up a library for LPM functions by
creating a new directory and adding the following line to your cds.lib
file:

DEFINE lpm <path>/<directory name>

If an altera_mf library does not exist, set up a library for Altera
megafunctions by adding the following line to your cds.lib file:

DEFINE altera_mf <path>/<directory name>

Table 4–3. Megafunction Behavioral Description Files

Library
Description Verilog HDL VHDL

LPM 220model.v 220model.vhd (1)
220model_87.vhd (2)
220pack.vhd

Altera
megafunction

altera_mf.v altera_mf.vhd (1)
altera_mf_87.vhd (2)
altera_components.vhd

Altera primitives altera_primitives.v altera_primitives.vhd (1)
altera_primitives_components.vhd

IP functional
simulation model

sgate.v sgate.vhd
sgate_pack.vhd

altgxb stratixgx_mf.v (3) stratixgx_mf.vhd (3)
stratixgx_mf_components.vhd (3)

alt2gxb stratixiigx_hssi_atoms.v,
arriagx_hssi_atoms.v(3), (4)

stratixiigx_hssi_atoms.vhd
stratixiigx_hssi_components.vhd
arriagx_hssi_atoms.vhd
arriagx_hssi_components.vhd (3), (4)

Notes to Table 4–3:
(1) Use this model with VHDL 93.
(2) Use this model with VHDL 87.
(3) The alt2gxb and altgxb library files require the lpm and sgate libraries.
(4) You must generate a functional simulation netlist for simulation.

Altera Corporation 4–11
October 2007 Preliminary

Functional and RTL Simulation

Megafunctions Requiring Atom Libraries

The following Altera megafunctions require device atom libraries to
perform a functional simulation in a third-party simulator:

■ altclkbuf
■ altclkctrl
■ altdq
■ altdqs
■ altddio_in
■ altddio_out
■ altddio_bidir
■ altufm_none
■ altufm_parallel
■ altufm_spi
■ altmemmult
■ altremote_update

The device atom library files are located in the following directory:

<path to Quartus II installation>/eda/sim_lib

Simulating a Design with Memory

The NC-Sim simulator supports simulating Altera memory
megafunctions initialized with Hexadecimal (Intel-Format) File (.hex) or
RAM Initialization Files (.rif).

Although synthesis is able to read a Memory Initialization File (.mif),
these files are not supported in simulations with third-party tools and
must be converted to either a Hexadecimal (Intel-Format) File or RAM
Initialization File.

Table 4–4 summarizes the different types of memory initialization file
formats that are supported with each RTL language.

Table 4–4. Simulation Support for Memory Initialization Files

File Verilog HDL VHDL

Hexadecimal (Intel-Format) File Yes (1) Yes

Memory Initialization File No No

RAM Initialization File Yes (2) No

Notes to Table 4–4:
(1) For memories and library files from Quartus II software version 5.0 and earlier, you are required to use a PLI

library containing the convert_hex2ver task function.
(2) Requires the USE_RIF macro to be defined.

4–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To convert your Memory Initialization File into either a Hexadecimal
(Intel-Format) File or RAM Initialization File, perform the following
steps:

1. Open the Memory Initialization File and on the File menu, click
Export. The Export dialog box appears.

2. Select Hexadecimal (Intel-Format) File (*.hex) or RAM
Initialization File (*.rif) from the Save as type list and click OK.

1 Alternatively, you can convert a Memory Initialization File to a
RAM Initialization File using the mif2rif.exe executable
located in the <Quartus II installation>/bin directory. An
example of this executable is:

mif2rif <mif_file> <rif_file>

3. Modify the HDL file generated with the MegaWizard Plug-In
Manager.

The MegaWizard Plug-In Manager-generated Altera memory
megafunction wrapper file includes the lpm_file parameter for
LPM memories, or the init_file parameter for Altera-specific
memories to point to the initialization file.

In a text editor, open the MegaWizard Plug-In Manager generated
wrapper file and edit the lpm_file or init_file parameters to
point to the Hexadecimal (Intel-Format) File or RAM Initialization
File, as shown below:

lpm_ram_dp_component.lpm_file = "<path to HEX/RIF>"

4. Compile the functional library files with compiler directives.

If you use a Hexadecimal (Intel-Format) File, no compiler directives
are required. If you use a RAM Initialization File, the USE_RIF
macro must be defined when compiling the model library files. For
example, the following should be entered when compiling the
altera_mf library when RAM Initialization Files are used:

ncvlog -work altera_mf altera_mf.v -DEFINE
"USE_RIF=1"

1 For Quartus II software versions 5.0 and earlier, you must define
the NO_PLI macro instead of USE_RIF. The NO_PLI macro is
forward compatible with the Quartus II software.

Altera Corporation 4–13
October 2007 Preliminary

Functional and RTL Simulation

Compile Source Code and Testbenches

Compile your testbench and design files with ncvlog (for Verilog HDL
files) and ncvhdl (for VHDL files). Both ncvlog and ncvhdl perform
syntax checks and static semantic checks. A successful compilation
produces an internal representation for each HDL design unit in the
source files. By default, these intermediate objects are stored in a single,
packed, library database file in your work library directory.

Compilation in Command-Line Mode

To compile from the command line, use one of the following commands:

1 You must create a work library before compiling.

■ Verilog HDL:
ncvlog <options> -work <library name> <design files> r
■ VHDL:
ncvhdl <options> -work <library name> <design files> r

If your design uses LPM, Altera megafunctions, or Altera primitives,
you must also compile the Altera-provided functional models. The
following commands show an example of each.

■ Verilog HDL:
ncvlog –WORK lpm 220model.v r
ncvlog –WORK altera_mf altera_mf.v r
ncvlog -WORK altera altera_primitives.v r

If you are using the Quartus II software versions 5.0 and earlier and
your design uses a memory initialization file, compile the nopli.v
file, which is located in the <Quartus II installation>/eda/
sim_lib directory, before you compile your model. For example:

ncvlog –WORK lpm nopli.v 220model.v r
ncvlog –WORK altera_mf nopli.v altera_mf.v r

Another option is to define NO_PLI during compilation with the
following command:

ncvlog –DEFINE "NO_PLI=1" –WORK lpm 220model.v r
ncvlog –DEFINE "NO_PLI=1" –WORK altera_mf altera_mf.v r

■ VHDL:
ncvhdl –V93 –WORK lpm 220pack.vhd r
ncvhdl –V93 –WORK lpm 220model.vhd r
ncvhdl –V93 –WORK altera_mf altera_mf_components.vhd r
ncvhdl –V93 –WORK altera_mf altera_mf.vhd r
ncvhdl -V93 -WORK altera altera_primitives_components.vhd r

4–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

ncvhdl -V93 -WORK altera altera_primitives.vhd r

Compilation in GUI Mode

To compile using the NCLaunch GUI, perform the following steps:

1. Right-click a library filename in the NCLaunch window and click
NCVlog (Verilog HDL) or NCVhdl (VHDL).

Alternatively, on the Tools menu, click Verilog Compiler or VHDL
Compiler. Figure 4–3 shows the Compile Verilog and Compile
VHDL dialog boxes.

Figure 4–3. Compiling Verilog HDL and VHDL Files

2. Select the file and click OK in the Compile Verilog or Compile
VHDL dialog box to begin compilation. The dialog box closes and
returns you to NCLaunch.

Altera Corporation 4–15
October 2007 Preliminary

Functional and RTL Simulation

1 The command-line equivalent argument is shown at the
bottom of the NCLaunch window.

Elaborate Your Design

Before you can simulate your design, you must define the design
hierarchy in a process called elaboration. When you use the Incisive
simulator, you use the language-independent ncelab program to
elaborate your design. The ncelab program constructs a design hierarchy
based on the design’s instantiation and configuration information,
establishes signal connectivity, and computes initial values for all objects
in the design. The elaborated design hierarchy is stored in a simulation
snapshot, which is the representation of your design that the simulator
uses to run the simulation. The snapshot is stored in the library database
file, along with the other intermediate objects generated by the compiler
and elaborator.

1 If you are running the NC-Verilog simulator with the single-step
invocation method (ncverilog), and want to compile your
source files and elaborate the design with one command, use the
+elaborate option to stop the simulator after elaboration, for
example:

ncverilog +elaborate test.v r

Elaboration in Command-Line Mode

To elaborate your Verilog HDL or VHDL design from the command line,
use the following command:

ncelab [options][<library>.]<cell>[:<view>] r

You can set your simulation timescale using the –TIMESCALE <arguments>
option. The following example elaborates a dual-port RAM with the time
scale option:

ncelab –TIMESCALE 1ps/1ps worklib.lpm_ram_dp_test:entity r

1 If you specified a timescale of 1 ps in the Verilog HDL testbench,
the TIMESCALE option is not necessary. Using a ps resolution
ensures the correct simulation of your design.

If your design includes high speed signals, you may need to add the
following pulse reject options with your ncelab command.

ncelab -TIMESCALE 1ps/1ps worklib.mydesign:entity -PULSE_R 0 –PULSE_INT_R 0 r

4–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about the pulse reject options, refer to the SDF
Annotate Guide from Cadence.

To list the elements in your library and the available views, use the ncls
program. The following command displays all of the cells and their views
in your current worklib directory:

ncls –library worklib r

f For more information about the ncls program, refer to the Cadence
NC-Verilog Simulator Help or Cadence NC-VHDL Simulator Help.

Elaboration in GUI Mode

To elaborate using the GUI, perform the following steps:

1. In the right side of the NCLaunch window, expand your current
work library.

2. Select and expand (if necessary) the entity or module name you
want to elaborate.

3. Right-click the view you want to display and click NCElab. The
Elaborate dialog box appears (Figure 4–4). Optionally, on the Tools
menu, click Elaborator.

4. In the Other Options box, set the simulation timescale by typing
(Figure 4–4):

–TIMESCALE 1ps/1ps

Altera Corporation 4–17
October 2007 Preliminary

Functional and RTL Simulation

Figure 4–4. Elaborating the Design

5. Click OK in the Elaborate dialog box to begin elaboration. The
dialog box closes and returns you to NCLaunch.

Add Signals to View

To view the stored selected signals, use an SHM database, which is a
Cadence proprietary waveform database, to store the selected signals you
want to view. Before you can specify which signals to view, you must
create the database by adding commands to your code. Or you can create
a Value Change Dump File (.vcd) to store the simulation history.

f For more information about using a Value Change Dump File, refer to
the Cadence NC-Sim User Manual from Cadence included with the
installation.

Adding Signals in Command-Line Mode

To create an SHM database, specify the system tasks described in
Table 4–5 in your Verilog HDL code.

4–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 For VHDL, you can use the Tcl command interface or C function
calls to add signals to a database. Refer to the Cadence
documentation included in the installation package for details.

The following sample shows a simple example of how to add signals to
an SHM database.

initial
begin

$shm_open ("waves.shm");
$shm_probe ("AS");

end

1 You can insert this code sample into your Verilog HDL file. It is
applicable only for Verilog HDL files. For more information
about these system tasks, refer to the Cadence NC-Sim software
user manual included in the installation.

Adding Signals in GUI Mode

To add signals in GUI mode, perform the following steps:

1. In the NC-Sim software, load the design.

a. In the NCLaunch window, click the + icon to expand the
Snapshots directory.

b. Right-click on the lib.cell:view you want to simulate and click
NCSim.

Table 4–5. SHM Database System Tasks

System Task Description

$shm_open("<filename>.shm"); Opens a database. If you do not specify a filename, the default
waves.shm database opens. If a database with the specified name does
not exist, it is created for you.

$shm_probe("[A|S|C]"); Probe signals. You can specify the signals to probe; if you do not specify
signals, the default is all ports in the current scope.

A probes all nodes in the current scope.
S probes all nodes below the current scope.
C probes all nodes below the current scope and in libraries.

$shm_save; Saves the database.

$shm_close; Closes the database.

Altera Corporation 4–19
October 2007 Preliminary

Functional and RTL Simulation

c. Click OK in the Simulate dialog box.

After you load the design, the SimVision Console and SimVision
Design Browser windows appear. Figure 4–5 shows the
SimVision Design Browser window.

2. In the Design Browser window, select a module in the left side of
the window to display the signal names (Figure 4–5).

Figure 4–5. SimVision Design Browser

3. To send the selected signals to the Waveform Viewer, perform one
of the following steps:

Select a group of signals from the right side of the Design Browser
window and click the Send to Waveform Viewer icon in the Send
To toolbar (the upper-right area of the Design Browser window).

or

4–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Right-click the signals and click Send to Waveform Window
(Figure 4–6).

A waveform window showing all of your signals appears. You are
now ready to simulate your testbench and design.

Figure 4–6. Selecting Signals in the Design Browser Window

Simulate Your Design

After you have compiled and elaborated your design, you can simulate it
using ncsim. The ncsim program loads the file or snapshot generated by
ncelab as its primary input. It then loads other intermediate objects
referenced by the snapshot. If you enable interactive debugging, it may
also load HDL source files and script files. The simulation output is
controlled by the model or debugger. The output can include result files
generated by the model, SHM database, or Value Change Dump File.

Altera Corporation 4–21
October 2007 Preliminary

Functional and RTL Simulation

Functional/RTL Simulation in Command-Line Mode

To perform functional/RTL simulation of your Verilog HDL or VHDL
design at the command line, type the following command:

ncsim [options][<library>.]<cell>[:<view>] r
For example:

ncsim worklib.lpm_ram_dp:syn r

Table 4–6 shows some of the options you can use with ncsim.

Functional/RTL Simulation in GUI Mode

You can run and step through simulation of your Verilog HDL or VHDL
design in the GUI. In the Design Browser window, on the Simulation
menu, click Run to begin the simulation.

1 You must load the design before simulating. If you have not
done so, refer to step 1 in “Adding Signals in GUI Mode” on
page 4–18 for instructions.

Table 4–6. ncsim Options

Options Description

-gui Launch GUI mode

-batch Used for non-interactive mode

-tcl Used for interactive mode (not required when using –gui)

4–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Post-Synthesis
Simulation

The following sections provide detailed instructions for performing
post-synthesis simulation using Quartus II output files, simulation
libraries, and the Incisive platform software.

Quartus II Simulation Output Files

After performing synthesis with either a third-party synthesis tool or
with the Quartus II integrated synthesis, you must generate a simulation
netlist for functional simulations. To generate a simulation netlist for
functional simulation, perform the following steps in the Quartus II
software:

1. Perform Analysis and Synthesis. On the Processing menu, point to
Start and click Start Analysis and Synthesis.

2. Turn on the Generate Netlist for Functional Simulation Only
option by performing the following steps:

a. On the Assignments menu, click EDA Tool Settings. The
Settings dialog box appears.

b. In the Category list, select Simulation. The Simulation page
appears.

c. In the Tool name list, select NCSim.

d. Under EDA Netlist Writer options, in the Format for output
netlist list, select VHDL or Verilog. You can also modify where
you want the post-synthesis netlist generated by editing or
browsing to a directory in the Output directory box.

e. Click More Settings. The More EDA Tools Simulation
Settings dialog box appears. In the Existing options settings
list, click Generate Netlist for Functional Simulation Only
and select On from the Setting list under Option.

f. Click OK.

g. In the Settings dialog box, click OK.

3. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

Altera Corporation 4–23
October 2007 Preliminary

Post-Synthesis Simulation

1 During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo) or VHDL Output File (.vho)
that can be used for post-synthesis simulations in the NC-Sim
software. This netlist file is mapped to architecture-specific
primitives. No timing information is included at this stage. The
resulting netlist is located in the output directory you specified
in the Settings dialog box, which defaults to the
<project directory>/simulation/NCSim directory.

Create Libraries

Create the following libraries for your simulation:

■ Work library
■ Device family library targeting your design targets using the

following files in the <path to Quartus II installation>/eda/sim_lib
directory:
● <device_family>_atoms.v
● <device_family>_atoms.vhd
● <device_family>_components.vhd

Compile Project Files and Libraries

Compile the project files and libraries into your work directory using the
ncvlog or ncvhdl programs or the GUI. Include the following files:

■ Test bench file
■ The Quartus II software functional output netlist file (Verilog

Output File or VHDL Output File)
■ Atom library file for the device family

<device family>_atoms.<v|vhd>
■ For VHDL, <device family>_components.vhd

Refer to the section “Compile Source Code and Testbenches” on
page 4–13 for instructions about compiling.

Elaborate Your Design

Elaborate your design using the ncelab program as described in
“Elaboration in GUI Mode” on page 4–16.

Add Signals to the View

Refer to the section “Add Signals to View” on page 4–17 for information
about adding signals to the view.

4–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Simulate Your Design

Simulate your design using the ncsim program as described in “Simulate
Your Design” on page 4–20.

Gate-Level
Timing
Simulation

The following sections provide detailed instructions for performing
timing simulation using the Quartus II output files, simulation libraries,
and Cadence NC tools.

Generating a Gate-Level Timing Simulation Netlist

To perform gate-level timing simulation, the NC-Sim software requires
information about how the design was placed into device-specific
architectural blocks. The Quartus II software provides this information in
the form of a Verilog Output File for Verilog HDL designs and a VHDL
Output File for VHDL designs. The accompanying timing information is
stored in the SDO file, which annotates the delay for the elements found
in the Verilog Output File or VHDL Output File.

To generate the Verilog Output File or VHDL Output Files and the
Standard Delay File, perform the following steps:

1. Perform a full compilation. On the Processing menu, click Start
Compilation.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, select Simulation. The Simulation page
appears.

4. In the Tool name list, select NCSim.

5. Under EDA Netlist Writer options, in the Format for output netlist
list, select VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

6. Click OK.

7. Run the EDA Netlist Writer. On the Processing menu, point to Start
and click Start EDA Netlist Writer.

During the EDA Netlist Writer stage, the Quartus II software
produces a Verilog Output File (.vo), VHDL Output File (.vho), and
a SDO file used for gate-level timing simulations in the NC-Sim
software. This netlist file is mapped to architecture-specific

Altera Corporation 4–25
October 2007 Preliminary

Gate-Level Timing Simulation

primitives. The timing information for the netlist is included in the
SDO file. The resulting netlist is located in the output directory you
specified in the Settings dialog box, which defaults to the <project
directory>/simulation/ncsim directory.

Generating a Different Timing Model

If you enable the Quartus II Classic Timing Analyzer or Quartus II
TimeQuest Timing Analyzer when generating the SDO file, slow-corner
(worst case) timing models are used by default. To generate the SDO file
using a different timing model, you must run the Quartus II Classic
Timing Analyzer or the Quartus II TimeQuest Timing Analyzer with a
different timing model before you start the EDA Netlist Writer.

To run the Quartus II Classic Timing Analyzer with the best-case model,
on the Processing menu, point to Start and click Start Classic Timing
Analyzer (Fast Timing Model). After timing analysis is complete, the
Compilation Report appears. You can also type the following at a
command prompt:

quartus_tan <project_name> --fast_model=on r
To run the Quartus II TimeQuest Timing Analyzer with a best-case
model, use the -fast_model option after you create the timing netlist.
The following command enables the fast timing models:

create_timing_netlist -fast_model

You can also type the following command at a command prompt:

quartus_sta <project_name> --fast_model=on r
f For more information about generating the timing model, refer to the

Quartus II Classic Timing Analyzer or Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

After you run the Quartus II Classic Timing Analyzer or Quartus II
TimeQuest Timing Analyzer, you can perform steps 2 through 7 in
“Generating a Gate-Level Timing Simulation Netlist” on page 4–24 to
generate the SDO file. For fast corner timing models, the _fast post fix is
added to the VO, VHO, and SDO file (for example, my_project_fast.vo,
my_project_fast.vho, and my_project_fast.sdo).

4–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Operating Condition Example: Generate All Timing Models for
Stratix III and Cyclone III Devices
In Stratix® III and Cyclone® III devices, you can specify different
temperature and voltage parameters to generate the timing models.
Table 4–7 shows the available operating conditions (model, voltage, and
temperature) for Stratix III and Cyclone III devices.

To generate the SDO files for the three different operating conditions for
a Stratix III design, perform the following steps:

1. Generate all the available corner models at all operating conditions.
Type the following command at a command prompt:

quartus_sta <project name> --multicorner r
2. Generate the ModelSim simulation output files for all three corners

specified above. The output files are generated in the simulation
output directory. Type the following command at a command
prompt:

quartus_eda <project name> --simulation --tool=ncsim --format=verilog

To summarize, for the three operating conditions the steps above
generate the following files in the simulation output directory:

First slow corner (slow, 1100 mV, 85º C):
VO file— <revision name>.vo
SDO file— <revision name>_v.sdo

Table 4–7. Available Operating Conditions for Stratix III and Cyclone III
Devices

Device Family Model Voltage Temperature

Stratix III Slow 1100 mV 85° C

Slow 1100 mV 0° C

Fast 1100 mV 0° C

Cyclone III Slow 1200 mV 85° C

Slow 1200 mV 0° C

Fast 1200 mV 0° C

Altera Corporation 4–27
October 2007 Preliminary

Gate-Level Timing Simulation

Second slow corner (slow, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_slow.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_slow.sdo

Fast corner (fast, 1100 mV, 0º C):
VO file— <revision name>_<speedgrade>_1100mv_0c_fast.vo
SDO file— <revision name>_<speedgrade>_1100mv_0c_v_fast.sdo

Perform Timing Simulation Using Post-Synthesis Netlist

You can perform a timing simulation using the post-synthesis netlist
instead of using a gate-level netlist and you can generate a Standard
Delay Format Output File (.sdo) without running the Fitter. In this case,
the SDO file includes all timing values for the device cells only.
Interconnect delays are not included because fitting (placement and
routing) has not been performed.

To generate the post-synthesis netlist and the SDO file, type the following
at a command prompt:

quartus_map <project name> -c <revision name> r
quartus_tan <project name> -c <revision name> --post_map --zero_ic_delays r
quartus_eda <project name> -c <revision name> --simulation --tool= \

<3rd party EDA tool> --format=<HDL language> r
For more information on the -format and -tool options, type the
following command at a command prompt:

quartus_eda -help=<options> command r

Quartus II Timing Simulation Libraries

Altera device simulation library files are provided in the <Quartus II
installation>/eda/sim_lib directory. The Verilog Output File or VHDL
Output File requires the library for the device your design targets. For
example, the Stratix device family requires the following library files:

■ stratix_atoms.v
■ stratix_atoms.vhd
■ stratix_components.vhd

If your design targets a Stratix device, you must set up the appropriate
mappings in your cds.lib file. Refer to “Create Libraries” for more
information.

4–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create Libraries

Create the following libraries for your simulation:

■ Work library
■ Device family libraries targeting using the following files in the <path

to Quartus II installation>/eda/sim_lib directory:

● <device_family>_atoms.v
● <device_family>_atoms.vhd
● <device_family>_components.vhd

For step-by-step instructions on creating libraries, refer to “Basic Library
Setup” on page 4–7 and “LPM Functions, Altera Megafunctions, and
Altera Primitives Libraries” on page 4–9.

Compile the Project Files and Libraries

Compile the project files and libraries into your work directory using the
ncvlog or ncvhdl programs or the GUI. Include the following files:

■ Test bench file
■ The Quartus II software functional output netlist file (Verilog

Output File or VHDL Output File)
■ Atom library file for the device family

<device family>_atoms.<v|vhd>
■ For VHDL, <device family>_components.vhd

For instructions on compiling, refer to “Compile Source Code and
Testbenches” on page 4–13.

Elaborate Your Design

When performing elaboration with the Quartus II-generated Verilog
HDL netlist file, the Standard Delay Format Output File is read
automatically. When you run ncelab, it recognizes the embedded system
task $sdf_annotate and automatically compiles and annotates the
Standard Delay Format Output File (runs ncsdfc automatically).

1 The Standard Delay Format Output File should be located in the
same directory where you invoke an elaboration or simulation,
because the $sdf_annotate task references the Standard
Delay Format Output File without using a full path. If you are
invoking an elaboration or simulation from a different directory,
you can either comment out the $sdf_annotate and annotate
the Standard Delay Format Output File with the GUI, or add the
full path of the Standard Delay Format Output File.

Altera Corporation 4–29
October 2007 Preliminary

Gate-Level Timing Simulation

Refer to “Elaborate Your Design” on page 4–15 for step-by-step
instructions on elaboration.

For VHDL, the Quartus II software-generated VHDL netlist file does not
contain system task calls to locate your SDF file; therefore, you must
compile the Standard Delay Format Output File manually. Refer to
“Compiling the Standard Delay Output File (VHDL Only) in Command-
Line Mode” and “Compiling the Standard Delay Output File (VHDL
Only) in GUI Mode” for information about compiling the Standard Delay
Format Output File.

Compiling the Standard Delay Output File (VHDL Only)
in Command-Line Mode

To annotate the Standard Delay Format Output File timing data from the
command line, perform the following steps:

1. Compile the Standard Delay Format Output File using the ncsdfc
program by typing the following command at the command
prompt:

ncsdfc <project name>_vhd.sdo –output <output name> r

The ncsdfc program generates an <output name>.sdf.X compiled
SDO.

1 If you do not specify an output name, ncsdfc uses
<project name>.sdo.X.

2. Specify the compiled Standard Delay Format Output File for the
project by adding the following command to an ASCII SDF
command file for the project:

COMPILED_SDF_FILE = "<project name>.sdf.X" SCOPE = <instance path>

The following code shows an example of an SDF command file:

// SDF command file sdf_file
COMPILED_SDF_FILE = "lpm_ram_dp_test_vhd.sdo.X",
SCOPE = :tb,
MTM_CONTROL = "TYPICAL",
SCALE_FACTORS = "1.0:1.0:1.0",
SCALE_TYPE = "FROM_MTM";

After you compile the Standard Delay Format Output File, run the
following command to elaborate the design:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> r

4–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Compiling the Standard Delay Output File (VHDL Only) in GUI Mode

To annotate the SDO file timing data in the GUI, perform the following
steps in the NCLaunch window:

1. On the Tools menu, click SDF Compiler. The Compile SDF dialog
box appears.

2. In the SDF File box, type in the name of the Standard Delay Format
Output File (.sdo) for the project.

3. Click OK.

When the Standard Delay Format Output File compilation is
complete, you can elaborate the design. Refer to “Elaboration in GUI
Mode” on page 4–16 for step-by-step instructions.

1 If you are performing a VHDL gate-level simulation, you
must create an SDF command file before you begin
elaboration. To create the SDF command file, perform steps
5 through 11.

4. On the Tools menu, click Elaborator. The Elaborate dialog box
appears.

5. Click Advanced Options.

6. Click Annotation.

7. Turn on Use SDF File.

8. Click Edit.

9. Browse to the location of the SDF command file name.

10. Click Add and browse to the location of the Standard Delay Format
Output File in the Compiled SDF File box and click OK.

11. Click OK to save and exit the SDF Command File dialog box.

Add Signals to View

Refer to the section “Add Signals to View” on page 4–17 for information
about adding signals to view.

Altera Corporation 4–31
October 2007 Preliminary

Simulating Designs that Include Transceivers

Simulate Your Design

Simulate your design using the ncsim program as described in “Simulate
Your Design” on page 4–20.

f For the design examples to run gate-level timing simulation, refer to
www.altera.com/support/examples/ncsim/exm-ncsim.html.

Simulating
Designs that
Include
Transceivers

If your design includes a Stratix II GX or Stratix GX transceiver, you must
compile additional library files to perform functional or timing
simulations.

Stratix GX Functional Simulation

To perform a functional simulation of your design that instantiates the
altgxb megafunction, enabling the gigabit transceiver block (GXB) on
Stratix GX devices, compile the stratixgx_mf model file into the altgxb
library.

1 The stratixgx_mf model file references the lpm and sgate
libraries, so you will need to create these libraries to perform a
simulation.

Example of Compiling Library Files for Functional Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary for a functional simulation of a Verilog
HDL design targeting a Stratix GX device, type the following commands
at the NC Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work altgxb stratixgx_mf.v r
ncsim work.<my design> r

Example of Compiling Library Files for Functional Stratix GX Simulation in
VHDL

To compile the libraries necessary for functional simulation of a VHDL
design targeting a Stratix GX device, type the following commands at the
NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work altgxb stratixgx_mf.vhd stratixgx_mf_components.vhd r

4–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

ncsim work.<my design> r

Stratix GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes a
Stratix GX transceiver, compile the stratixgx_atoms and
stratixgx_hssi_atoms model files into the stratixgx and stratixgx_gxb
libraries, respectively.

1 You need to create these libraries to perform a simulation
because the stratixgx_hssi_atoms model file references the lpm
and sgate libraries.

Example of Compiling Library Files for Timing Stratix GX Simulation in
Verilog HDL

To compile the libraries necessary to timing simulation of a Verilog HDL
design targeting a Stratix GX device, type the following commands at the
NC-Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work stratixgx stratixgx_atoms.v r
ncvlog -work stratixgx_gxb stratixgx_hssi_atoms.v r
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 \
-PULSE_INT_R 0 r

Example of Compiling Library Files for Timing Stratix GX Simulation in
VHDL

To compile the libraries necessary for timing simulation of a VHDL
design targeting a Stratix GX device, type the following commands at the
NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work stratixgx stratixgx_atoms.vhd stratixgx_components.vhd r
ncvhdl -work stratixgx_gxb stratixgx_hssi_atoms.vhd \
stratixgx_hssi_components.vhd r
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0 r

Altera Corporation 4–33
October 2007 Preliminary

Simulating Designs that Include Transceivers

Stratix II GX Functional Simulation

To perform a post-fit timing simulation of your design that instantiates
the alt2gxb megafunction, edit your cds.lib file so that all the libraries
point to the work library, and compile the stratixiigx_hssi model file into
the stratixiigx_hssi library. When compiling the library files, you can
safely ignore the following warning message:

"Multiple logical libraries mapped to a single location"

The following example is of the cds.lib file.

Example 4–1. Example of a cds.lib File
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvhdl.lib
SOFTINCLUDE ${CDS_INST_DIR}/tools/inca/files/cdsvlog.lib
DEFINE work ./ncsim_work
DEFINE stratixiigx_hssi ./ncsim_work
DEFINE stratixiigx ./ncsim_work
DEFINE lpm ./ncsim_work
DEFINE sgate ./ncsim_work

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you will need to create these libraries to
perform a simulation.

Generate a functional simulation netlist by turning on Create a
simulation library for this design in the last page of the alt2gxb
MegaWizard (Figure 4–7). The <alt2gxb entity name>.vho or <alt2gxb
module name>.vo is generated in the current project directory.

4–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 4–7. alt2gxb MegaWizard

1 The Quartus II generated alt2gxb functional simulation library
file references stratixiigx_hssi wysiwyg atoms.

Example of Compiling Library Files for Functional Stratix II GX Simulation
in Verilog HDL

To compile the libraries necessary to functional simulation of a Verilog
HDL design targeting a Stratix II GX device, type the following
commands at the NC-Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r

Altera Corporation 4–35
October 2007 Preliminary

Simulating Designs that Include Transceivers

ncvlog -work work <alt2gxb module name>.vo r
ncelab work.<my design> r

Example of Compiling Library Files for Functional Stratix II GX Simulation
in VHDL

To compile the libraries necessary for functional simulation of a VHDL
design targeting a Stratix II GX device, type the following commands at
the NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
ncvhdl -work work <alt2gxb entity name>.vho r
ncelab work.<my design> r

Stratix II GX Post-Fit (Timing) Simulation

To perform a post-fit timing simulation of your design that includes the
alt2gxb megafunction, edit your cds.lib file so that all the libraries point
to the work library and compile stratixiigx_atoms and
stratixiigx_hssi_atoms into the stratixiigx and stratixiigx_hssi
libraries, respectively. When compiling the library files, you can safely
ignore the following warning message:

"Multiple logical libraries mapped to a single location"

For an example of a cds.lib file, refer to “Stratix II GX Functional
Simulation” on page 4–33.

1 The stratixiigx_hssi_atoms model file references the lpm and
sgate libraries, so you will need to create these libraries to
perform a simulation.

Example of Compiling Library Files for Timing Stratix II GX Simulation in
Verilog HDL

To compile the libraries necessary to timing simulation of a Verilog HDL
design targeting a Stratix II GX device, type the following commands at
the NC-Sim command prompt:

ncvlog -work lpm 220model.v r
ncvlog -work altera_mf altera_mf.v r
ncvlog -work sgate sgate.v r
ncvlog -work stratixiigx stratixiigx_atoms.v r
ncvlog -work stratixiigx_hssi stratixiigx_hssi_atoms.v r

4–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0 r

Example of Compiling Library Files for Timing Stratix II GX Simulation in
VHDL

To compile the libraries necessary for timing simulation of a VHDL
design targeting a Stratix II GX device, type the following commands at
the NC-Sim command prompt:

ncvhdl -work lpm 220pack.vhd 220model.vhd r
ncvhdl -work altera_mf altera_mf_components.vhd altera_mf.vhd r
ncvhdl -work sgate sgate_pack.vhd sgate.vhd r
ncvhdl -work stratixiigx stratixiigx_atoms.vhd \
stratixiigx_components.vhd r
ncvhdl -work stratixiigx_hssi stratixiigx_hssi_components.vhd \
stratixiigx_hssi_atoms.vhd r
ncvhdl -work work <alt2gxb>.vho r
ncelab work.<my design> -TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0 r

Pulse Reject Delays

By default, the NCSim software filters out all pulses that are shorter than
the propagation delay between primitives. Setting the pulse reject delays
(similar to transport delays) options in the NC-Sim software prevents the
simulation tool from filtering out these pulses. Use the following options
to ensure that all signal pulses are seen in the simulation results.

-PULSE_R

Use this option when the pulses in your simulation are shorter than the
delay within a gate-level primitive. The argument is the percentage of
delay for pulse reject limit for the path.

-PULSE_INT_R

Use this option when the pulses in your simulation are shorter than the
interconnect delay between gate-level primitives. The argument is the
percentage of delay for pulse reject limit for the path. The -PULSE_R and
-PULSE_INT_R options are also used by default in the NativeLink®
feature for gate-level timing simulation.

The following NC-Sim software command describes the command-line
syntax to perform a gate-level timing simulation with the device family
library:

ncelab worklib.<project name>:entity –SDF_CMD_FILE <SDF Command File> \
-TIMESCALE 1ps/1ps -PULSE_R 0 -PULSE_INT_R 0

Altera Corporation 4–37
October 2007 Preliminary

Using the NativeLink Feature with NC-Sim

Using the
NativeLink
Feature with
NC-Sim

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools
and allows you to run NC-Sim within the Quartus II software.

Setting Up NativeLink

To run NC-Sim automatically from the Quartus II software using the
NativeLink feature, you must specify the path to your simulation tool by
performing the following steps:

1. On the Tools menu, click Options. The Options dialog box appears.

2. In the Category list, select EDA Tool Options. The EDA Tool
Options page is shown.

3. Double-click the entry under the Location of executable column
beside the name of your EDA Tool, and type or browse to the
directory containing the executables of your EDA tool.

4. Click OK.

You can also specify the path to the simulator’s executables by using the
set_user_option TCL command:

set_user_option –name EDA_TOOL_PATH_NCSIM <path to executables>

Performing an RTL Simulation Using NativeLink

To run a functional RTL simulation with the NC-Sim software
automatically in the Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears (Figure 4–8).

4–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 4–8. Simulation Page in the Settings Dialog Box

3. In the Tool name list, select NCSim.

4. If your design is written entirely in Verilog HDL or in VHDL, the
NativeLink feature automatically chooses the correct language and
Altera simulation libraries. If your design is written with mixed
languages, the NativeLink feature uses the default language
specified in the Format for output netlist list. To change the default

Altera Corporation 4–39
October 2007 Preliminary

Using the NativeLink Feature with NC-Sim

language when there is a mixed language design, under EDA
Netlist Writer options, in the Format for output netlist list, select
VHDL or Verilog. Table 4–8 shows the design languages for output
netlists and simulation models.

1 For mixed language simulation, choose the same language that
was used to generate your megafunctions to ensure correct
parameter passing between the megafunctions and the Altera
libraries. For example, if your altsyncram megafunction was
generated in VHDL, choose VHDL as the format for output
netlist.

For mixed language simulations, it is important to be aware of
the following conditions:

• VHDL designs instantiating Verilog user-defined
primitives (UDPs) are not supported.

• Parameters cannot be passed in Verilog modules that
instantiate VHDL components.

5. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

For more information about setting up a testbench with NativeLink,
refer to the section “Setting Up a Testbench” on page 4–40.

6. Click OK.

7. On the Processing menu, point to Start and click Start Analysis and
Elaboration to perform an analysis and elaboration. This command
collects all your file name information and builds your design
hierarchy in preparation for simulation.

8. On the Tools menu, point to EDA Simulation Tool and click Run
EDA RTL Simulation to automatically run NC-Sim, compile all
necessary design files, and complete a simulation.

Table 4–8. NativeLink Design Languages

Design File Format for Output Netlist Simulation Models Used

Verilog Any Verilog

VHDL Any VHDL

Mixed Verilog Verilog

Mixed VHDL VHDL

4–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Performing a Gate Level Simulation Using NativeLink

To run a gate-level timing simulation with the NC-Sim software in the
Quartus II software, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation appears
(Figure 4–8 on page 4–38).

3. In the Tool name list, select NCSim.

4. Under EDA Netlist Writer options, in the Format for output netlist
list, choose VHDL or Verilog. You can also modify where you want
the post-synthesis netlist generated by editing or browsing to a
directory in the Output directory box.

5. To perform a gate level simulation after each full compilation, turn
on Run Gate Level Simulation automatically after compilation.

6. If you have testbench files or macro scripts, enter the information
under NativeLink settings.

7. Click OK.

8. On the Processing menu, point to Start and click Start EDA Netlist
Writer to generate a simulation netlist of your design.

9. On the Tools menu, point to EDA Simulation Tool and click Run
EDA Gate Level Simulation to automatically run NC-Sim, compile
all necessary design files, and complete a simulation.

1 A Tcl File (*.tcl) is generated in the
<project_directory>\simulation\ncsim directory when you run
NativeLink. This TCL File enables you to simulate the design
with the following command without using NativeLink:

quartus_sh -t <project_directory>\simulation\ncsim\<generated_do_file>.tcl

Setting Up a Testbench

You can compile your design files and testbench files, and run EDA
simulation tools to perform a simulation automatically using the
NativeLink feature.

Altera Corporation 4–41
October 2007 Preliminary

Using the NativeLink Feature with NC-Sim

To setup NativeLink with a testbench, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. Under NativeLink settings, select None or Compile test bench
(Table 4–9).

4. If you select Compile test bench, select your testbench setup from
the Compile test bench list. You can use different testbench setups
to specify different testbench files for different test scenarios. If there
are no testbench setups entered, create a testbench setup by
performing the following steps:

a. Click Test Benches. The Test Benches dialog box appears.

b. Click New. The New Test Bench Settings dialog box appears.

c. In the Test Bench name box, type in the testbench setup name
which is used to identify the different testbench setups.

d. In the Test bench entity box, type in the top-level entity name.
For example, for a Quartus II generated VHDL testbench, type
filtref_vhd_vec_tst.

e. In the Instance box, type in the full instance path to the top
level of your FPGA design. For example, for a Quartus II
generated VHDL testbench, type i1.

f. Under Simulation period, select Run simulation until all
vector stimuli are used. If you select End simulation at, specify
the simulation end time and the time unit.

Table 4–9. NativeLink Settings

Settings Description

None Compile simulation models and design files.

Compile test bench NativeLink compiles simulation models, design files, testbench files, and starts
simulation.

4–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

g. Under Test bench files, browse and add all your testbench files
in the File name box. Use the Up and Down button to reorder
your files. The script used by NativeLink compiles the files in
the order from top to the bottom.

1 You can also specify the library name and the HDL version to
compile the testbench file. NativeLink compiles the testbench to
the library name of the HDL specified version.

h. Click OK.

i. In the Test Benches dialog box, click OK.

5. Under NativeLink settings, you can turn on Use script to setup
simulation and browse to your script. You can write a script to
setup your waveforms before running the simulation.

1 The script should be a valid NC-Sim tcl script. NativeLink
passes the script to ncsim command with command-line
arguments to set up and run simulation.

Creating a Testbench

In the Quartus II software, you can create a Verilog HDL or VHDL
testbench from a Vector Waveform File. The generated testbench includes
the behavior of the input stimulus and applies it to your instantiated
top-level FPGA design.

1. On the File menu, click Open. The Open dialog box appears.

2. Click the Files of type arrow and select Waveform/Vector Files.
Select your file.

3. Click Open.

4. On the File menu, click Export. The Export dialog box.

5. Click the Save as type arrow and select VHDL Test Bench File
(*.vht) or Verilog Test Bench File (*.vt).

6. You can turn on Add self-checking code to file to check your
simulation results against your Vector Waveform File.

7. Click Export.

Altera Corporation 4–43
October 2007 Preliminary

Incorporating PLI Routines

Incorporating
PLI Routines

Designers frequently use PLI routines in Verilog HDL testbenches to
perform user- or design-specific functions that are beyond the scope of
the Verilog HDL language. Cadence NC simulators include the PLI
wizard, which helps you incorporate your PLI routines.

For example, if you are using the Quartus II software version 5.0 and
earlier, and you are using a Hexadecimal (Intel-Format) File for memory,
you can convert it for use with NC tools using the Altera-provided
convert_hex2ver function. To use this function, you must build it and
place it in your project directory using the PLI wizard.

This section describes how to dynamically link, dynamically load, and
statically link a PLI library using the convert_hex2ver function as an
example. The following convert_hex2ver source files are located in the
<path to Quartus II installation>/eda/cadence/verilog-xl directory:

■ convert_hex2ver.c
■ veriuser.c

Dynamically Link a PLI Library

To create a PLI dynamic library (.so or .sl), perform the following steps:

1. Run the PLI wizard by typing pliwiz at the command prompt.

2. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory
box.

3. Click Next.

4. In the Select Simulator/Dynamic Libraries page, turn on the
Dynamic Libraries Only option.

5. Click Next.

6. In the Select Components page, select the PLI 1.0 Applications
option, and then select libpli.

7. Click Next.

8. In the Select PLI 1.0 Application Input page, select Existing
VERIUSER (source/object file).

9. Select Source File and click Browse to locate the veriuser.c file
provided with the Quartus II software.

4–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The veriuser.c file is located in the following directory:

<path to Quartus II installation>/eda/cadence/verilog-xl

10. Click Next.

11. In the PLI 1.0 Application page, click Browse under PLI Source
Files to locate the convert_hex2ver.c file.

12. Click Next.

13. In the Select Compiler page, choose your C compiler from the
Select Compiler list box.

1 gcc is an example of a C compiler. To allow the PLIWIZ
wizard to find your C compiler, ensure your path variable
is set correctly.

14. Click Next.

15. Click Finish.

16. To build your targets now, click Yes.

17. Compilation creates the file libpli.so (libpli.dll for PCs), which is
your PLI dynamic library, in your session directory. When you
elaborate your design, the elaborator looks through the path
specified in the LD_LIBRARY_PATH (UNIX) or PATH (PCs)
environment variable, searches for the .so and .dll files, and loads
them when needed.

1 You must modify LD_LIBRARY_PATH or PATH to include the
directory location of your .so and .dll files.

Dynamically Load a PLI Library

To create a PLI library to be loaded with the NC-Sim software, perform
the following steps:

1. Open the veriuser.c file located in the following directory:

<path to Quartus II installation>/eda/cadence/verilog-xl

The following two examples are sections of the original and
modified veriuser.c file. The first example is the original veriuser.c
file packaged with the Quartus II software. The second example is a
veriuser.c file modified for dynamic loading.

Altera Corporation 4–45
October 2007 Preliminary

Incorporating PLI Routines

Original veriuser.c File

s_tfcell veriusertfs[] =
{
 /*** Template for an entry:
 { usertask|userfunction, data,
 checktf(), sizetf(), calltf(), misctf(),
 "$tfname", forwref?, Vtool?, ErrMsg? },
 Example:
 {usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
 ***/
/*** add user entries here ***/
 /* This Handles Binary bit patterns */
 {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver",
1},

 {0} /*** final entry must be 0 ***/
};

Modified veriuser.c File

p_tfcell my_bootstrap ()
 {

static s_tfcell my_tfs[] =
/*s_tfcell veriusertfs[] = */
{
 /*** Template for an entry:
 { usertask|userfunction, data,
 checktf(), sizetf(), calltf(), misctf(),
 "$tfname", forwref?, Vtool?, ErrMsg? },
 Example:
 { usertask, 0, my_check, 0, my_func, my_misctf, "$my_task" },
 ***/
/*** add user entries here ***/
 /* This Handles Binary bit patterns */
 {usertask, 0, 0, 0, convert_hex2ver, 0, "$convert_hex2ver",
1},

 {0} /*** final entry must be 0 ***/
};
return(my_tfs);
 }

2. Run the PLI wizard by typing pliwiz at a command prompt, or on
the Utilities menu by clicking PLI Wizard in the NCLaunch
window.

3. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory
box.

4. Click Next.

4–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

5. In the Select Simulator/Dynamic Libraries page, select the
Dynamic Libraries Only option.

6. Click Next.

7. In the Select Components page, turn on the PLI 1.0 Applications
option, and select loadpli1.

8. Click Next.

9. Type a name into the Bootstrap Function(s) box.

For example, type my_bootstrap into the Bootstrap Function(s)
box.

10. Type the name of your generated dynamic library into the Dynamic
Library box.

For example, type convert_dyn_lib into the Dynamic Library
box to generate a dynamic library named convert_dyn_lib.so.

11. In the PLI 1.0 Application page, click Browse under PLI Source
Files to locate the convert_hex2ver.c file and the modified
veriuser.c file.

12. Click Next.

13. In the Select Compiler page, select your C compiler from the Select
Compiler list box.

gcc is an example of a C compiler. To allow the PLIWIZ wizard to
find your C compiler, ensure your Path variable is set correctly.

14. Click Next.

15. Click Finish.

16. To build your targets now, click Yes.

Altera Corporation 4–47
October 2007 Preliminary

Incorporating PLI Routines

Compilation generates your dynamic library, cmd_file.nc, and
cmd_file.xl files into your local directory. The cmd_file.nc and
cmd_file.xl files contain command line options to use with your newly
generated dynamic library file.

■ Use the cmd_file.nc command file with ncelab to perform your
simulations, as shown in the following example:

ncelab worklib.mylpmrom -FILE cmd_file.nc r
■ Use the cmd_file.xl command file with verilog-xl or ncverilog to

perform your simulations, as shown in the following example:

ncverilog -f cmd_file.xl r
verilog -f cmd_file.xl r

Statically Link the PLI Library with NC-Sim

To statically link the PLI library with NC-Sim software, perform the
following steps:

1. Run the PLI wizard by typing pliwiz at the command prompt, or
on the Utilities menu by clicking PLI Wizard in the NCLaunch
window.

2. In the Config Session Name and Directory page, type the name of
the session in the Config Session Name box and type the directory
in which the file should be built in the Config Session Directory
box.

3. Click Next.

4. Select NC Simulators and select NC-verilog.

5. Click Next.

6. In the Select Components page, turn on the PLI 1.0 Applications
option and select Static.

7. In the Select PLI 1.0 Application Input page, select Existing
VERIUSER (source/object file).

4–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

8. Select Source File and click Browse to locate the veriuser.c file
provided with the Quartus II software.

The veriuser.c file is found in the following location:

<path to Quartus II installation>/eda/cadence/verilog-xl

9. Click Next.

10. In the PLI 1.0 Application page, click Browse under PLI Source
Files to locate the convert_hex2ver.c file.

11. Click Next.

12. In the Select Compiler page, select your C compiler from the Select
Compiler list box.

gcc is an example of a C compiler. To allow the PLIWIZ to find your
C compiler, ensure your Path variable is set correctly.

13. Click Next.

14. Click Finish.

15. To build your targets now, click Yes.

Compilation generates ncelab and ncsim executables into your local
directory. These executables replace the original ncelab and ncsim
executables.

ncverilog users can use the following command to perform simulation
with the newly generated ncelab and ncsim executables.

ncverilog +ncelabexe+<path to ncelab> +ncsimexe+<path to ncelab> <design files> r

The following example shows how an ncverilog users can perform a
simulation with the newly generated ncelab and ncsim executables:

ncverilog +ncelabexe+./ncelab +ncsimexe+./ncsim my_ram.vt my_ram.v -v altera_mf.v r

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

Altera Corporation 4–49
October 2007 Preliminary

Conclusion

The Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter
in volume 2 of the Quartus II Handbook. Refer to the Quartus II Settings
File Reference Manual for information about all settings and constraints in
the Quartus II software. For more information about command-line
scripting, refer to the Command-Line Scripting chapter in volume 2 of the
Quartus II Handbook.

Generate NC-Sim Simulation Output Files

You can generate Verilog Output File and Standard Delay Format Output
File simulation output files with Tcl commands or at a command prompt.

For more information about generating Verilog Output File simulation
output files and Standard Delay Format Output File simulation output
files, refer to “Quartus II Simulation Output Files” on page 4–22.

Tcl Commands:

The following three assignments cause a Verilog HDL netlist to be written
out when you run the Quartus II netlist writer. The netlist has a 1 ps
timing resolution for the NC-Sim Simulation software.

set_global_assignment -name EDA_OUTPUT_DATA_FORMAT VERILOG -section_id eda_simulation
set_global_assignment -name EDA_TIME_SCALE "1 ps" -section_id eda_simulation
set_global_assignment -name EDA_SIMULATION_TOOL "NC-Verilog (Verilog)"

Use the following Tcl command to run the Quartus II netlist writer:

execute_module -tool eda

Command Prompt

Use the following command to generate a simulation output file for the
Cadence NC-Sim software simulator. Specify Verilog HDL or VHDL for
the format.

quartus_eda <project name> --simulation --format=<verilog|vhdl> --tool=ncsim r

Conclusion The Cadence NC family of simulators work within an Altera FPGA
design flow to perform functional/RTL, post-synthesis, and gate-level
timing simulation, easily and accurately.

4–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera provides functional models of LPM and Altera-specific
megafunctions that you can compile with your testbench or design. For
timing simulation, use the atom netlist file generated by Quartus II
compilation.

The seamless integration of the Quartus II software and Cadence NC
tools make this simulation flow an ideal method for fully verifying an
FPGA design.

Referenced
Documents

This chapter references the following documents:

■ SDF Annotate Guide and Cadence NC-Sim User Manual from Cadence
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook

Document
Revision History

Table 4–10 shows the revision history for this chapter.

Table 4–10. Document Revision History (Part 1 of 2)

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Table 4–1.
● Updated “Operating Condition Example: Generate All Timing

Models for Stratix III and Cyclone III Devices” on page 4–26.

Updated for the
Quartus II software

version 7.2.

May 2007
v7.1.0

● Updated “Software Requirements” on page 4–1.
● Updated “Generating a Gate-Level Timing Simulation

Netlist” on page 4–24.
● Added “Perform Timing Simulation Using Post-Synthesis

Netlist” on page 4–27.
● Updated “Pulse Reject Delays” on page 4–37.
● Updated “Performing a Gate Level Simulation Using

NativeLink” on page 4–41.
● Updated procedure in “Setting Up a Testbench” on

page 4–41.
● Added “Referenced Documents” on page 4–51.

—

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

http://cadence.com/
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Altera Corporation 4–51
October 2007 Preliminary

Document Revision History

November 2006
v6.1.0

● Added new software versions to Table 4-1.
● Several other minor changes.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Added a section about setting VCS as the Simulation Tool
● Updated EDA Tools Settings in the GUI.
● Updated the Synopsys Design Constraints File information.
● Added pulse_e and pulse_r information to simulation

sections.
● Added Quartus II-Generated Testbench information
● Updated megafunction information.

—

December 2005
v5.1.1

● Removed reference to convert_hex2ver.obj. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Added Using NativeLink with NC-Sim section.
● New functionality for Quartus II software 5.0.

—

December 2004
v3.0

Reorganized chapter and updated information. —

August 2004
v2.1

● New functionality for Quartus II software 4.1 SP1. —

June 2004
v2.0

● Updates to tables and figures.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

Table 4–10. Document Revision History (Part 2 of 2)

Date and
Document Version Changes Made Summary of Changes

4–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 5–1
October 2007

5. Simulating Altera IP in
Third-Party Simulation Tools

Introduction The capacity and complexity of Altera® FPGAs continues to increase as
the need for intellectual property (IP) becomes increasingly critical. Using
IP megafunctions reduces the design and verification time, allowing you
to focus on design customization. Altera and the Altera Megafunction
Partners Program (AMPPSM) offer a broad portfolio of IP megafunctions
optimized for Altera FPGAs. Through parameterization, these reusable
blocks of IP can be customized to meet your design requirements.

Even when the IP source code is encrypted or otherwise restricted,
Altera’s Quartus® II software allows you to easily simulate designs that
contain Altera IP. With the Quartus II software, you can custom configure
IP designs, then generate a VHDL or Verilog HDL functional simulation
model to use with your choice of simulation tools.

This chapter provides an overview of the process for instantiating the IP
megafunctions in your design and simulating its’ functional simulation
model in an Altera-supported, third-party simulation tool. In this
chapter, IP megafunctions refer to Altera megafunctions, IP MegaCore®
functions and IP AMPP megafunctions. All IP MegaCore functions come
with IP functional simulations (IPFS) models to support functional
simulation. Some Altera megafunctions and some AMPP megafunctions
also require IPFS models for functional simulation.

IP Functional
Simulation Flow

The IP megafunction’s MegaWizard® interface allows you to quickly and
easily view documentation, specify parameters, generate an IP functional
simulation (IPFS) model, and output the files necessary to integrate a
parameterized IP megafunction into your design. Within the Quartus II
software, the MegaWizard Plug-In Manager can be used to select and
parameterize your choice of IP megafunctions. The Quartus II software
generates an IP megafunction’s variation file that is included in your
Quartus II project. For IP megafunctions that require IPFS models,
Quartus II software can also generate a Verilog Output File (.vo) or
VHDL Output File (.vho) that contains a Register Transfer Level (RTL)
IPFS model after you have parameterized the megafunction. IPFS models
are written to the Quartus II project directory.

QII53014-7.2.0

5–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Most Altera megafunctions and IP MegaCore functions support
functional simulation in Verilog and VHDL for all Altera supported
third-party simulators. Simulation libraries are required to simulate IP
megafunctions. Refer to Table 5–2 on page 5–10 for a subset of simulation
libraries supplied with the Quartus II software.

Figure 5–1 shows a typical simulation flow for Altera IP with third-party
simulators.

Figure 5–1. IP Functional Simulation (IPFS) Model Design Flow

Verilog and VHDL IP Functional Simulation (IPFS) Models

Some IP megafunctions require IPFS models to support functional
simulation. These IPFS models are written in high-level Register Transfer
Level (RTL) HDL. These high-level RTL models in Verilog or VHDL
format differ from the low-level synthesized netlist in Verilog or VHDL
format generated by the Quartus II software for post-synthesis or post
place-and-route simulations. The IPFS models generated by the

Quartus II Design Environment

Parameterize IP Megafunction

Instantiate IP in your Design

Perform Simulation in an
Altera-Supported VHDL/Verilog HDL

Simulator

Simulation
Libraries

Generate IPFS Model
and Variation File

Altera Corporation 5–3
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Quartus II software are much faster than the low-level post-synthesis or
post place-and-route netlists of your design because they are mapped to
higher-level primitives such as adders, multipliers, and multiplexers.
These IPFS models can be simulated together with the rest of your design
in any Altera-supported simulator. Altera recommends that you generate
IPFS models in the same hardware language as the IP megafunction's
variation file hardware language.

c You can use an IPFS model for simulation only, and not for
synthesis or any other purpose. Attempting to synthesize an
IPFS model will result in a nonfunctional design.

1 Generating an IPFS model for Altera MegaCore functions does
not require a license. However, generating an IPFS model for
AMPP megafunctions may require a license. For more
information on licensing requirements, contact the IP
megafunction vendor.

For details about how to parameterize and generate an IP, refer to the
applicable IP user guide.

Instantiate the
IP in Your
Design

For each IP megafunction in your design, you must instantiate the
corresponding entity or module in your design. Each IP megafunction
entity or module name is defined in its Quartus II generated
megafunction variation file. After instantiating the IP megafunction in
your design, you do not need to edit your design for synthesis or
simulation.

To synthesize your design using the Quartus II software, add the
Quartus II-generated Verilog HDL or VHDL variation file to your
Quartus II project. When you create new variation files for a Quartus II
project, they are added to the current open project when the
megafunction is generated.

To synthesize your design using a third-party EDA tool, add the
Quartus II-generated CMP file (<megafunction variation>.cmp) for your
VHDL design or the Verilog HDL black box file (<megafunction
variation>_bb.v) for your Verilog HDL design to your third-party
synthesis project.

f For more information about synthesis and compilation with the
Quartus II software, refer to the applicable chapters in volume 1 of the
Quartus II Handbook.

5–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Perform
Simulation

To perform simulation, in addition to adding your design files and
testbench files, you also have to add the IP megafunction's variation file
or IPFS model to your simulation project. If the IP megafunction does not
require an IPFS model for simulation, add the megafunctions’ variation
file to your simulation project. If the IP megafunction you are simulating
requires an IPFS model, then add the IPFS model to your simulation
project. Your simulation project will also require Altera-supplied libraries
for successful simulation. Figure 5–2 shows how the Altera libraries are
used in IP functional simulation.

Figure 5–2. IP Functional Simulation Library Usage

The Quartus II software contains all the libraries required for setting up
and running a successful simulation of Altera IP. You can use the
Quartus II NativeLink feature to set up your simulation if the IP
megafunction you are using supports Quartus II NativeLink. Refer to the
applicable IP megafunction user guide to determine if the IP
megafunction supports the NativeLink feature in the Quartus II software.
Alternatively, you can simulate Altera IP with third-party simulators
directly.

Simulating Altera IP Using the Quartus II NativeLink Feature

The Quartus II NativeLink feature eases the task of setting up and
running a simulation. The NativeLink feature lets you launch the
third-party simulator to perform simulation from within the Quartus II
software. The NativeLink feature automates the compilation and
simulation of testbenches.

My RTL Design

My Testbench

sgate Library

IP Functional
Simulation Model

220model and
altera_mf Libraries

Altera Corporation 5–5
October 2007

Simulating Altera IP in Third-Party Simulation Tools

The following list briefly describes the steps to simulate IP megafunctions
with third-party simulators using the Quartus II NativeLink feature.
Each of these steps is described in more detail in the sections that follow.

1. Set up a Quartus II Project.

2. Select the Third-Party Simulation Tool.

3. Specify the Path for the Third-Party Simulator.

4. Specify the Testbench Settings.

5. Analyze and Elaborate the Quartus II Project.

6. Run RTL Functional Simulation.

Set up a Quartus II Project

To simulate IP megafunctions with the Quartus II NativeLink feature,
you must open an existing project or create a new project in the Quartus II
software. You can create and parameterize the IP you want to use in your
design using MegaWizard Plug-In Manager within the Quartus II
software. Altera IP megafunction variation files are added to your
Quartus II project when you create and parameterize the IP. You can also
add any other required design files to your Quartus II project. If you are
using the Quartus II NativeLink feature and your Quartus II project
contains IP megafunctions that require IPFS models for simulation, you
do not have to manually add the IPFS models to the Quartus II project for
these IP megafunctions. When the Quartus II NativeLink feature
launches the third-party simulator tool and starts the simulation, it
automatically adds the IPFS model files required for simulation as long
as they are present in the Quartus II project directory.

Select the Third-Party Simulation Tool

You can select the third-party simulation tool from the Project Settings
menu, as shown in Figure 5–3.

5–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 5–3. Selecting Third-Party Simulator Tools

Table 5–1 lists the third-party simulators supported by the Quartus II
NativeLink feature.

Table 5–1. Third-Party Simulator Support with the Quartus II NativeLink Feature

Third-Party Simulator Can be Launched from
Quartus II Testbench Support Mixed Design (Verilog

and VHDL)

ModelSim PE/SE Yes Yes Yes

ModelSim Altera Edition Yes Yes No

Synopsys VCS Yes(1) Yes No

Synopsys VCS-MX Yes(1) Yes Yes

Cadence NC-Sim Yes(1) Yes Yes

Aldec Yes Yes Yes

Note to Table 5–1:
(1) If the simulator is run on UNIX or Linux platforms, the Quartus II software must be running on the same platform

to launch the simulator tool.

Altera Corporation 5–7
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Specify the Path for the Third-Party Simulator

To launch the third-party simulation tool, the absolute path for the
selected simulator must be provided in the Options page under the Tools
menu. See Figure 5–4. Double click the Location of executable field to
change or specify the absolute path.

Figure 5–4. Specifying the Simulator Path

Specify the Testbench Settings

Specify the applicable testbench settings as follows:

1. Under the NativeLink Settings in the Settings dialog box
(Figure 5–3), select the Compile Test Bench radio button and click
Test Benches to display the Test Benches dialog box. See Figure 5–5.

5–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 5–5. Test Bench Dialog Box

2. Click New to display the New Test Bench Settings dialog box
(shown in Figure 5–6).

Figure 5–6. New Test Bench Settings Dialog Box

3. In the New Test Bench Settings dialog box, set the appropriate
fields with the names for the testbenches.

Altera Corporation 5–9
October 2007

Simulating Altera IP in Third-Party Simulation Tools

f For specific instructions about specifying testbench settings for your
MegaCore function, refer to your MegaCore function user guide.

4. After specifying the testbench files, close the New Test Bench
Settings, Test Benches, and Settings dialog boxes.

Analyze and Elaborate the Quartus II Project

Before starting the simulation using the NativeLink feature, make sure
that each IP megafunctions’ variation files are included in your design
project. On the Quartus II Processing menu, point to Start, then click Start
Analysis & Elaboration.

Run RTL Functional Simulation

After the design is analyzed and elaborated, you can start the simulation
by clicking Run EDA-RTL Simulation from the Tools menu. See
Figure 5–7. During RTL functional simulation, the IPFS models are
compiled and used by the simulator.

Figure 5–7. Running Functional Simulation for IP using NativeLink

Simulating Altera IP Without the Quartus II NativeLink Feature

You can also simulate Altera IP directly with third-party simulators. If
your design instantiates an IP megafunction, add its variation file to your
simulation project. If the IP megafunction requires IPFS model files, do
not add the megafunctions’ variation file to your simulation project.
Rather, add its’ IPFS model files (either Verilog or VHDL) to your
simulation project. The IPFS model generated by the Quartus II software
instantiates high-level primitives such as adders, multipliers, and
multiplexers, as well as the library of parameterized modules (LPM)
functions and Altera megafunctions.

5–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

To properly compile, load, and simulate the IP megafunctions, you must
first compile the following libraries in your simulation tool:

■ sgate—includes the definition of the high-level primitives (needed
for IPFS models)

■ altera_mf—includes the definition of Altera megafunctions
■ 220model—includes the definition of LPM functions

You can use these library files with any Altera-supported simulation tool.
If you are using the ModelSim® Altera software, the libraries are
precompiled and mapped.

f To simulate a design containing a Nios® processor or Avalon®
peripherals, refer to AN 189 Simulating Nios Embedded Processor Designs.

Table 5–2 lists the simulation library files, where <path> is the directory
where the Quartus II software is installed.

Table 5–2. Simulation Library Files

Location HDL Language Description

<path>/eda/sim_lib/sgate.v Verilog HDL Libraries that contain simulation models
for IP functional models<path>/eda/sim_lib/sgate.vhd VHDL

<path>/eda/sim_lib/sgate_pack.vhd VHDL Libraries that contain VHDL component
declarations for the sgate.vhd library

<path>/eda/sim_lib/220model.v Verilog HDL Libraries that contain simulation models
for the Altera LPM version 2.2.0<path>/eda/sim_lib/220model.vhd VHDL

<path>/eda/sim_lib/220pack.vhd VHDL Libraries that contain VHDL component
declarations for the 220model.vhd
library

<path>/eda/sim_lib/altera_mf.v Verilog HDL Libraries that contain simulation models
for Altera-specific megafunctions<path>/eda/sim_lib/altera_mf.vhd VHDL

<path>/eda/sim_lib/altera_mf_components.vhd VHDL Libraries that contain VHDL component
declarations for the altera_mf.vhd library

Altera Corporation 5–11
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Design
Language
Examples

The following design language examples explain how to simulate IP
megafunctions directly with third-party simulator tools. These design
examples describe simulation with:

■ ModelSim Verilog
■ ModelSim VHDL
■ NC-VHDL
■ VCS

Verilog HDL Example: Simulating the IPFS Model in the
ModelSim Software

The following example shows the process of simulating a Verilog
HDL-based megafunction. The example assumes that the megafunction
variation and the IPFS model are generated.

1. Create a ModelSim project by performing the following steps:

a. In the ModelSim software, on the File menu, point to New and
click Project. The Create Project dialog box is shown.

b. Specify the name of your simulation project.

c. Specify the desired location for your simulation project.

d. Specify the default library name and click OK.

e. Add relevant files to your simulation project:

• Your design files
• The IPFS model generated by the Quartus II software (if

you are using the ModelSim-Altera software, skip to step 5)
• The sgate.v, 220model.v, and altera_mf.v library files

2. Create the required simulation libraries by typing the following
commands at the ModelSim prompt:

vlib sgate r
vlib lpm r
vlib altera_mf r

5–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

3. Map to the required simulation libraries by typing the following
commands at the ModelSim prompt:

vmap sgate sgate r
vmap lpm lpm r
vmap altera_mf altera_mf r

4. Compile the HDL into libraries by typing the following commands
at the ModelSim prompt:

vlog -work altera_mf altera_mf.v r
vlog -work sgate sgate.v r
vlog -work lpm 220model.v r

5. Compile the IPFS model by typing the following command at the
ModelSim prompt:

vlog -work work <my_IP>.vo r
6. Compile your RTL by typing the following command at the

ModelSim prompt:

vlog -work work <my_design>.v r
7. Compile the testbench by typing the following command at the

ModelSim prompt:

vlog -work work <my_testbench>.v r
8. Load the testbench by typing the following command at the

ModelSim prompt:

vsim -L <altera_mf library_path> -L <lpm_library_path>
-L <sgate_library_path> work.<my_testbench> r

VHDL Example: Simulating the IPFS Model in the ModelSim
Software

The following example shows the process of performing a functional
simulation of a VHDL-based, megafunction IPFS model. The example
assumes that the megafunction’s variation and the IPFS model are
generated.

Altera Corporation 5–13
October 2007

Simulating Altera IP in Third-Party Simulation Tools

1. Create a ModelSim project by performing the following steps:

a. In the ModelSim software, on the File menu, point to New and
click Project. The Create Project dialog box appears.

b. Specify the name for your simulation project.

c. Specify the desired location for your simulation project.

d. Specify the default library name and click OK.

e. Add the relevant files to your simulation project:

• Add your design files
• Add the IPFS model generated by the Quartus II software

(if you are using the ModelSim-Altera software, skip to step
5)

• Add the sgate.vhd, sgate_pack.vhd, 220model.vhd,
220pack.vhd, altera_mf.vhd, and
altera_mf_components.vhd library files

2. Create the required simulation libraries by typing the following
commands at the ModelSim prompt:

vlib sgate r
vlib lpm r
vlib altera_mf r

3. Map to the required simulation libraries by typing the following
commands at the ModelSim prompt:

vmap sgate sgate r
vmap lpm lpm r
vmap altera_mf altera_mf r

4. Compile the HDL into libraries by typing the following commands
at the ModelSim prompt:

vcom -work altera_mf -93 -explicit
altera_mf_components.vhd r
vcom -work altera_mf -93 -explicit altera_mf.vhd r

5–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

vcom -work lpm -93 -explicit 220pack.vhd r
vcom -work lpm -93 -explicit 220model.vhd r
vcom -work sgate -93 -explicit sgate_pack.vhd r
vcom -work sgate -93 -explicit sgate.vhd r

5. Compile the IPFS model by typing the following command at the
ModelSim prompt:

vcom -work work -93 -explicit <output_netlist>.vho r
6. Compile the RTL by typing the following command at the

ModelSim prompt:

vcom -work work -93 -explicit <RTL>.vhd r
7. Compile the testbench by typing the following command at the

ModelSim prompt:

vcom -work work -93 -explicit <my_testbench>.vhd r
8. Load the testbench by typing the following command at the

ModelSim prompt:

vsim work.my_testbench r

NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL
Software

The following example shows the process of performing a functional
simulation of an NC-VHDL-based, megafunction IP
functional-simulation model. The example assumes that the
megafunction’s variation and the IPFS model are generated.

1. Create a cds.lib file by typing the following entries:

DEFINE worklib ./worklib

DEFINE sgate ./sgate

DEFINE altera_mf ./altera_mf

DEFINE lpm ./lpm

Altera Corporation 5–15
October 2007

Simulating Altera IP in Third-Party Simulation Tools

2. Compile library files into appropriate libraries by typing the
following commands at the command prompt:

ncvhdl –V93 –WORK lpm 220pack.vhd r
ncvhdl –V93 –WORK lpm 220model.vhd r
ncvhdl –V93 –WORK altera_mf
altera_mf_components.vhd r
rncvhdl –V93 –WORK altera_mf altera_mf.vhd r
ncvhdl –V93 –WORK sgate sgate_pack.vhd r
ncvhdl –V93 –WORK sgate sgate.vhd r

3. Compile source code and testbench files by typing the following
commands at the command prompt:

ncvhdl –V93 –WORK worklib <my_design>.vhd r
ncvhdl –V93 –WORK worklib <my_testbench>.vhd r
ncvhdl –V93 –WORK worklib
<my_IPtoolbench_output_netlist>.vho r

4. Elaborate the design by typing the following command at the
command prompt:

ncelab worklib.<my_testbench>:entity r

Verilog HDL Example: Simulating Your IPFS Model in VCS

The following example illustrates the process of performing a functional
simulation of a design that contains a Verilog HDL-based, megafunction
IPFS model. This example assumes that the megafunction variation and
the IPFS model are generated.

Single-Step Process

For the single-step process, type the following at the command prompt:

vcs <testbench>.v <RTL>.v <output_netlist>.v -v 220model.v
altera_mf.v sgate.v -R r

5–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Two-Step Process (Compilation and Simulation)

For compilation and simulation, perform the following steps:

1. Compile your design files by typing the following at the command
prompt:

vcs <testbench>.v <RTL>.v <output_netlist>.v -v 220model.v
altera_mf.v sgate.v -o simulation_out r

2. Load your simulation by typing the following at a command
prompt:

source simulation_out r
f For more information about simulating a design in VCS, refer to the

chapter Synopsys VCS Support in volume 3 of the Quartus II Handbook.

Conclusion Altera Quartus II software provides full support for simulating IP
megafunction’s with third party tools either directly or using its
NativeLink feature. Using the Quartus II software, you can also generate
IPFS models for supported megafunctions that enhances and simplifies
design verification. Using an IPFS model is transparent, requiring only
the addition of different files in which to synthesize and simulate projects.

Referenced
Documents

This chapter references the following documents:

■ Synopsys VCS Support in volume 3 of the Quartus II Handbook
■ Volume 1 of the Quartus II Handbook

http://www.altera.com/literature/quartus2/lit-qts-synthesis.jsp
http://www.altera.com/literature/hb/qts/qts_qii53002.pdf

Altera Corporation 5–17
October 2007

Simulating Altera IP in Third-Party Simulation Tools

Document
Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 5–16. —

May 2007
v7.1.0

● Updated Figure 5–6
● Added “Referenced Documents” section.

Minor updates to support the
Quartus II software, version
7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. —

November 2006
v6.1.0

● Added Quartus II NativeLink feature information
● Updated Figure 5-1, 5-2
● Added Figure 5-3, 5-4, 5-7
● Added Table 5-1

Chapter updates to support
the Quartus II NativeLink
feature.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

Chapter 4 was formerly in Section I, Vol 3 in 4.2. —

December 2004
v1.0.0

Initial release. —

5–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Altera Corporation Section II–i
Preliminary

Section II. Timing Analysis

As designs become more complex, the need for advanced timing analysis
capability grows. Static timing analysis is a method of analyzing,
debugging, and validating the timing performance of a design. The
Quartus® II software provides the features necessary to perform
advanced timing analysis for today’s system-on-a-programmable-chip
(SOPC) designs.

Synopsys PrimeTime is an industry standard sign-off tool, used to
perform static timing analysis on most ASIC designs. The Quartus II
software provides a path to enable you to run PrimeTime on your
Quartus II software designs, and export a netlist, timing constraints, and
libraries to the PrimeTime environment.

This section explains the basic principles of static timing analysis, the
advanced features supported by the Quartus II Timing Analyzer, and
how you can run PrimeTime on your Quartus designs.

This section includes the following chapters:

■ Chapter 6, The Quartus II TimeQuest Timing Analyzer
■ Chapter 7, Switching to the Quartus II TimeQuest Timing Analyzer
■ Chapter 8, Quartus II Classic Timing Analyzer
■ Chapter 9, Synopsys PrimeTime Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation
Preliminary

Timing Analysis Quartus II Handbook, Volume 3

Altera Corporation 6–1
October 2007

6. The Quartus II TimeQuest
Timing Analyzer

Introduction The Quartus® II TimeQuest Timing Analyzer is a powerful ASIC-style
timing analysis tool that validates the timing performance of all logic in
your design using an industry-standard constraint, analysis, and
reporting methodology. Use the Quartus II TimeQuest Timing Analyzer’s
GUI or command-line interface to constrain, analyze, and report results
for all timing paths in your design.

Before running the Quartus II TimeQuest Timing Analyzer, you must
specify initial timing constraints that describe the clock characteristics,
timing exceptions, and signal transition arrival and required times. You
can specify timing constraints in the Synopsys Design Constraints (SDC)
file format using the GUI or command-line interface. The Quartus II Fitter
optimizes the placement of logic to meet your constraints.

During timing analysis, the Quartus II TimeQuest Timing Analyzer
analyzes the timing paths in the design, calculates the propagation delay
along each path, checks for timing constraint violations, and reports
timing results as slack in the Report pane and in the Console pane. If the
Quartus II TimeQuest Timing Analyzer reports any timing violations,
you can customize the reporting to view precise timing information about
specific paths, and then constrain those paths to correct the violations.
When your design is free of timing violations, you can be confident that
the logic will operate as intended in the target device.

the Quartus II TimeQuest Timing Analyzer is a complete static timing
analysis tool that you can use as a sign-off tool for Altera® FPGAs and
structured ASICs.

This chapter contains the following sections:

■ “Getting Started with the Quartus II TimeQuest Timing Analyzer”
■ “Compilation Flow with the Quartus II TimeQuest Timing Analyzer

Guidelines” on page 6–3
■ “Timing Analysis Overview” on page 6–7
■ “Specify Design Timing Requirements” on page 6–19
■ “The Quartus II TimeQuest Timing Analyzer Flow Guidelines” on

page 6–22
■ “Collections” on page 6–23
■ “Constraints Files” on page 6–25
■ “Clock Specification” on page 6–28
■ “I/O Specifications” on page 6–45

 QII53018-7.2.0

6–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ “Timing Exceptions” on page 6–48
■ “Constraint and Exception Removal” on page 6–57
■ “Timing Reports” on page 6–58
■ “Timing Analysis Features” on page 6–77
■ “The TimeQuest Timing Analyzer GUI” on page 6–82
■ “Conclusion” on page 6–95

Getting Started
with the
Quartus II
TimeQuest
Timing Analyzer

The Quartus II TimeQuest Timing Analyzer caters to the needs of the
most basic to the most advanced designs for FPGAs.

This section provides a brief overview of the Quartus II TimeQuest
Timing Analyzer, including the necessary steps to properly constrain a
design, perform a full place-and-route, and perform reporting on the
design.

Setting Up the Quartus II TimeQuest Timing Analyzer

The Quartus II software version 7.2 supports two native timing analysis
tools: Quartus II TimeQuest Timing Analyzer and the Quartus II Classic
Timing Analyzer. When you specify the Quartus II TimeQuest Timing
Analyzer as the default timing analysis tool, the Quartus II TimeQuest
Timing Analyzer guides the Fitter and analyzes timing results after
compilation.

To specify the Quartus II TimeQuest Timing Analyzer as the default
timing analyzer, on the Assignments menu, click Settings. In the Settings
dialog box, in the Category list, select Timing Analysis Settings, and turn
on Use TimeQuest Timing Analyzer during compilation.

To add the TimeQuest icon to the Quartus II toolbar, on the Tools menu,
click Customize. In the Customize dialog box, click the Toolbars tab, turn
on Processing, and click Close.

Altera Corporation 6–3
October 2007 Preliminary

Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines

Compilation
Flow with the
Quartus II
TimeQuest
Timing Analyzer
Guidelines

When you enable the Quartus II TimeQuest Timing Analyzer as the
default timing analyzer, everything from constraint validation to timing
verification is performed by the Quartus II TimeQuest Timing Analyzer.
Figure 6–1 shows the recommended design flow steps to maximize and
leverage the benefits the Quartus II TimeQuest Timing Analyzer. Details
about each step are provided after the figure.

Figure 6–1. Design Flow with the Quartus II TimeQuest Timing Analyzer

■ Create Quartus II Project and Specify Design Files—Creates a
project before you can compile design files. In this step you specify
the target FPGA, any EDA tools used in the design cycle, and all
design files.

You can also modify existing design files for design optimization and
add additional design files. For example, you can add HDL files or
schematics to the project.

■ Perform Initial Compilation—Creates an initial design database
before you specify timing constraints for your design. Perform
Analysis and Synthesis to create a post-map database, or perform a
full compilation to create a post-fit database.

Creating a post-map database for the initial compilation is faster than
creating a post-fit database, and a post-map database is sufficient for
the initial database.

Creating a post-fit database is recommended only if you previously
created and specified an SDC file for the project. A post-map
database is sufficient for the initial compilation.

Create Quartus II Project
& Specify Design Files

Perform Initial Compilation

Specify Design Requirements

Perform Compilation

Verify Timing

6–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Specify Design Requirements—Timing requirements guide the
Fitter as it places and routes your design.

You must enter all timing constraints and exceptions in an SDC file.
This file must be included as part of the project. To add this file to
your project, on the Project menu, click Add/Remove Files in
Project, and add the SDC file in the Files dialog box.

1 Refer to “Specify Timing Constraints” on page 6–20 for a list of
timing constraints and exceptions.

■ Perform Compilation—Synthesizes, places, and routes your design
into the target FPGA.

When compilation is complete, the TimeQuest Timing Analyzer
generates summary clock setup and clock hold, recovery, and
removal reports for all defined clocks in the design.

■ Verify Timing—Verifies timing in your design with the Quartus II
TimeQuest Timing Analyzer

Running the Quartus II TimeQuest Timing Analyzer

You can run the Quartus II TimeQuest Timing Analyzer in one of the
following modes:

■ Directly from the Quartus II software
■ Stand-alone mode
■ Command-line mode

This section describes each of the modes, and the behavior of the
Quartus II TimeQuest Timing Analyzer.

Directly from the Quartus II Software

To run the Quartus II TimeQuest Timing Analyzer from the Quartus II
software, on the Tools menu, click TimeQuest Timing Analyzer. The
Quartus II TimeQuest Timing Analyzer is available after you have
created a database for the current project. The database can be either a
post-map or post-fit database; perform Analysis and Synthesis to create a
post-map database, or a full compilation to create a post-fit database.

1 After a database is created in the Quartus II software, you can
create a timing netlist based on that database. If you create a
post-map database, you cannot create a post-fit timing netlist in
the Quartus II TimeQuest Timing Analyzer.

Altera Corporation 6–5
October 2007 Preliminary

Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines

When you launch the TimeQuest Timing Analyzer directly from the
Quartus II software, the current project opens by default.

Stand-Alone Mode

To run the Quartus II TimeQuest Timing Analyzer in stand-alone mode,
type the following command at the command prompt:

quartus_staw r
In stand-alone mode, you can perform static analysis on any project that
contains either a post-map or post-fit database. To open a project,
double-click Open Project in the Tasks pane.

Command-Line Mode

Use the command-line mode for easy integration with scripted design
flows. Using the command-line mode avoids interaction with the user
interface provided by the Quartus II TimeQuest Timing Analyzer, but
allows the automation of each step of the static timing analysis flow.
Table 6–1 provides a summary of the options available in the
command-line mode.

Table 6–1. Summary of Command Line Options (Part 1 of 2)

Command Line Option Description

-h | --help Provides help information on quartus_sta.

-t <script file> |
--script=<script file>

Sources the <script file>.

-s | --shell Enters shell mode.

--tcl_eval <tcl command> Evaluates the Tcl command <tcl command>.

--do_report_timing Runs the command:
report_timing -npaths 1 -to_clock $clock for all clocks in the
design.

--force_dat Forces the Delay Annotator to annotate the new delays from the recently
compiled design to the compiler database.

--lower_priority Lowers the computing priority of the quartus_sta process.

--post_map Uses the post-map database results.

--qsf2sdc Converts assignments from the Quartus II Settings File (.qsf) format to the
Synopsys Design Constraints File format.

--sdc=<SDC file> Specifies the SDC file to read.

--fast_model Uses the fast corner delay models.

--report_script=<script> Specifies a custom report script to be called.

--speed=<value> Specifies the device speed grade to be used for timing analysis.

6–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To run the Quartus II TimeQuest Timing Analyzer in command-line
mode, type the following command at the command prompt:

quartus_sta <options> r

--tq2hc Generate temporary files to convert the Quartus II TimeQuest Timing Analyzer
SDC file(s) to a PrimeTime SDC file that can be used by the HardCopy Design
Center (HCDC).

--tq2pt Generate temporary files to convert the Quartus II TimeQuest Timing Analyzer
SDC file(s) to a PrimeTime SDC file.

-f <argument file> Specifies a file containing additional command-line arguments.

-c <revision name> |
--rev=<revision_name>

Specifies which revision and its associated Quartus II Settings File (.qsf) to
use.

--multicorner Specifies that all slack summary reports be generated for both the slow and
fast corners.

Table 6–1. Summary of Command Line Options (Part 2 of 2)

Command Line Option Description

Altera Corporation 6–7
October 2007 Preliminary

Timing Analysis Overview

Timing Analysis
Overview

This section provides an overview of the Quartus II TimeQuest Timing
Analyzer concepts. Understanding these concepts allows you to take
advantage of the powerful timing analysis features available in the
Quartus II TimeQuest Timing Analyzer.

the Quartus II TimeQuest Timing Analyzer follows the flow shown in
Figure 6–2 when it analyzes your design. Table 6–2 lists the most
commonly used commands for each step.

Figure 6–2. The the Quartus II TimeQuest Timing Analyzer Flow

Create Timing Netlist
create_timing_netlist

Create Timing Netlist
create_timing_netlist

Constrain the Design

UpdateTiming Netlist
update_timing_netlist

Verify Static Timing
Analysis Results

Open Project
project_open

create_clock
set_clock_uncertainty
set_clock_latency

create_generated_clock
derive_pll_clocks
set_input_delay
set_output_delay, ...

report_sdc
report_timing
report_clocks
report_min_pulse_width
report_ucp

report_clocks_transfers
report_min_pulse_width
report_net_timing

6–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–2 describes the Quartus II TimeQuest Timing Analyzer
terminology.

The Quartus II TimeQuest Timing Analyzer requires a timing netlist
before it can perform a timing analysis on any design. For example, for
the design shown in Figure 6–3, the Quartus II TimeQuest Timing
Analyzer generates a netlist equivalent to the one shown in Figure 6–4.

Figure 6–3. Sample Design

Table 6–2. The Quartus II TimeQuest Timing Analyzer Terms

Terminology Definition

Nodes Most basic timing netlist unit. Use to represent ports, pins, registers, and keepers.

Keepers Ports or registers. (1)

Cells Look-up table (LUT), registers, DSP blocks, TriMatrix® memory, IOE, and so on. (2)

Pins Inputs or outputs of cells.

Nets Connections between pins.

Ports Top-level module inputs or outputs; for example, device pins.

Clocks Abstract objects outside of the design.

Notes to Table 6–2:
(1) Pins can indirectly refer to keepers. For example, when the value in the -from field of a constraint is a clock pin to

a dedicated memory. In this case, the clock pin refers to a collection of registers.

(2) For Stratix® devices and other early device families, the LUT and registers are contained in logic elements (LE) and
act as cells for these device families.

data1 and_inst

data2

clk

reg1

reg2

reg3

Altera Corporation 6–9
October 2007 Preliminary

Timing Analysis Overview

Figure 6–4. The Quartus II TimeQuest Timing Analyzer Timing Netlist

Figure 6–4 shows various cells, pins, nets, and ports. Sample cell names
are reg1, reg2, and and_inst; sample pins are data1|combout,
reg1|regout, and and_inst|combout; sample net names are
data1~combout, reg1, and and_inst; and sample port names are
data1, clk, and data_out.

Paths connect two design nodes, such as the output of a register to the
input of another register. Timing paths play a significant role in timing
analysis. Understanding the types of timing paths is important to timing
closure and optimization. The following list shows some of the
commonly analyzed paths that are described in this section:

■ Edges—the connections from ports-to-pins, from pins-to-pins, and
from pins-to-ports.

■ Clock paths—the edges from device ports or internally generated
clock pins to the clock pin of a register.

■ Data paths—the edges from a port or the data output pin of a
sequential element to a port or the data input pin of another
sequential element.

■ Asynchronous paths—the edges from a port or sequential element
to the asynchronous set or clear pin of a sequential element.

Figure 6–5 shows some of these commonly analyzed path types.

data1
reg1

combout

combout

outclk

inclk0]

datain

clk

regout

regout

datac

datad
datain

data_out
reg3

and_inst

data2 reg2

clk clk~clkctrl

Cell

Port

Pin

Pin

Port

Cells

Cell

6–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–5. Path Types

Once the Quartus II TimeQuest Timing Analyzer identifies the path type,
it can report data and clock arrival times for valid register-to-register
paths. The Quartus II TimeQuest Timing Analyzer calculates data arrival
time by adding the delay from the clock source to the clock pin of the
source register, the micro clock-to-out (μtCO) of the source register, and the
delay from the source register’s Q pin to the destination register’s D pin,
where the μtCO is the intrinsic clock-to-out for the internal registers in the
FPGA. The Quartus II TimeQuest Timing Analyzer calculates clock
arrival time by adding the delay from the clock source to the destination
register’s clock pin. Figure 6–6 shows a data arrival path and a clock
arrival path. The Quartus II TimeQuest Timing Analyzer calculates data
required time by accounting for the clock arrival time and the micro setup
time (μtSU) of the destination register, where the μtSU is the intrinsic setup
for the internal registers in the FPGA.

Figure 6–6. Data Arrival and Clock Arrival

In addition to identifying various paths in a design, the Quartus II
TimeQuest Timing Analyzer analyzes clock characteristics to compute
the worst-case requirement between any two registers in a single register-
to-register path. You should constrain all clocks in your design before
performing this analysis.

CLRN

D Q

Clock Path Data Path

Asynchronous Clear Path

clk

rst

CLRN

D Q

D QD Q

Data Arrival

Clock Arrival

Altera Corporation 6–11
October 2007 Preliminary

Timing Analysis Overview

The launch edge is an active clock edge that sends data out of a sequential
element, acting as a source for the data transfer. A latch edge is the active
clock edge that captures data at the data port of a sequential element,
acting as a destination for the data transfer.

Figure 6–7 shows a single-cycle system that uses consecutive clock edges
to transfer and capture data, a register-to-register path, and the
corresponding launch and latch edges timing diagram. In this example,
the launch edge sends the data out of register reg1 at 0 ns, and register
reg2 latch edge captures the data at 5 ns.

Figure 6–7. Launch Edge and Latch Edge

The Quartus II TimeQuest Timing Analyzer validates clock setup and
hold requirements relative to the launch and latch edges.

Clock Analysis

A comprehensive static timing analysis includes analysis of
register-to-register, I/O, and asynchronous reset paths. The Quartus II
TimeQuest Timing Analyzer uses data required times, data arrival times,
and clock arrival times to verify circuit performance and detect possible
timing violations. The Quartus II TimeQuest Timing Analyzer
determines the timing relationships that must be met for the design to
correctly function, and checks arrival times against required times to
verify timing.

Clock Setup Check

To perform a clock setup check, the Quartus II TimeQuest Timing
Analyzer determines a setup relationship by analyzing each launch and
latch edge for each register-to-register path. For each latch edge at the
destination register, the Quartus II TimeQuest Timing Analyzer uses the
closest previous clock edge at the source register as the launch edge. In

D QD Q

clk

clk

reg1 reg2

0 ns 5 ns 15 ns10 ns

Latch Edge at Destination Register reg2
Launch Edge at Source Register reg1

6–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–8, two setup relationships are defined and are labeled Setup A
and Setup B. For the latch edge at 10 ns, the closest clock that acts as a
launch edge is at 3 ns and is labeled Setup A. For the latch edge at 20 ns,
the closest clock that acts as a launch edge is 19 ns, and is labeled Setup B.

Figure 6–8. Setup Check

The Quartus II TimeQuest Timing Analyzer reports the result of clock
setup checks as slack values. Slack is the margin by which a timing
requirement is met or not met. Positive slack indicates the margin by
which a requirement is met, and negative slack indicates the margin by
which a requirement is not met. The Quartus II TimeQuest Timing
Analyzer determines clock setup slack, as shown in Equation 1, for
internal register-to-register paths.

(1)

If the data path is from an input port to a internal register, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 2 to
calculate the setup slack time.

(2)

Setup A Setup B

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Register Delay+

Data Required Clock Arrival Time μtSU Setup Uncertainty––=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=

Clock Setup Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay ++=

Input Maximum Delay of Pin Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=

Altera Corporation 6–13
October 2007 Preliminary

Timing Analysis Overview

If the data path is an internal register to an output port, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 3 to
calculate the setup slack time.

(3)

Clock Hold Check

To perform a clock hold check, the Quartus II TimeQuest Timing
Analyzer determines a hold relationship for each possible setup
relationship that exists for all source and destination register pairs. The
Quartus II TimeQuest Timing Analyzer checks all adjacent clock edges
from all setup relationships to determine the hold relationships. The
Quartus II TimeQuest Timing Analyzer performs two hold checks for
each setup relationship. The first hold check determines that the data
launched by the current launch edge is not captured by the previous latch
edge. The second hold check determines that the data launched by the
next launch edge is not captured by the current latch edge. Figure 6–9
shows two setup relationships labeled setup A and setup B. The first hold
check is labeled hold check A1 and hold check B1 for setup A and setup
B, respectively. The second hold check is labeled hold check A2 and hold
check B2 for setup A and setup B, respectively.

Figure 6–9. Hold Checks

From the possible hold relationships, The Quartus II TimeQuest Timing
Analyzer selects the hold relationship that is the most restrictive. The
hold relationship with the largest difference between the latch and launch
edges (that is, latch – launch and not the absolute value of latch and

Clock Setup Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register ++=

μtCO Register-to-Pin Delay+

Data Required Time Latch Edge Clock Network Delay Output Maximum Delay of Pin–+=

Setup A

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Setup BHold
Check A1

Hold
Check B2

Hold
Check A2

Hold
Check B1

6–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

launch) is selected because this determines the minimum allowable delay
for the register-to-register path. For Figure 6–9, the hold relationship
selected is hold check A2.

The Quartus II TimeQuest Timing Analyzer determines clock hold slack
as shown in Equation 4.

(4)

If the data path is from an input port to an internal register, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 5 to
calculate the setup slack time.

(5)

If the data path is an internal register to an output port, the Quartus II
TimeQuest Timing Analyzer uses the equations shown in Equation 6 to
calculate the setup slack time.

(6)

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register μtCO+ + +=

Register-to-Register Delay

Data Required Time Clock Arrival Time μtH Hold Uncertainty+ +=

Clock Arrival Time Latch Edge Clock Network Delay to Destination Register+=

Clock Setup Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay + +=

Input Minimum Delay of Pin Pin-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Clock Setup Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Latch Edge Clock Network Delay to Source Register μtCO+ + +=

Register-to-Pin Delay

Data Required Time Latch Edge Clock Network Delay Output Minimum Delay of Pin–+=

Altera Corporation 6–15
October 2007 Preliminary

Timing Analysis Overview

Recovery and Removal

Recovery time is the minimum length of time the de-assertion of an
asynchronous control signal, for example, clear and preset, must be
stable before the next active clock edge. The recovery slack time
calculation is similar to the clock setup slack time calculation, but it
applies to asynchronous control signals. If the asynchronous control
signal is registered, the Quartus II TimeQuest Timing Analyzer uses
Equation 7 to calculate the recovery slack time.

(7)

If the asynchronous control is not registered, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 8 to calculate the
recovery slack time.

(8)

1 If the asynchronous reset signal is from a port (device I/O), you
must make an Input Maximum Delay assignment to the
asynchronous reset port for the Quartus II TimeQuest Timing
Analyzer to perform recovery analysis on that path.

Removal time is the minimum length of time the de-assertion of an
asynchronous control signal must be stable after the active clock edge.
The Quartus II TimeQuest Timing Analyzer removal time slack
calculation is similar to the clock hold slack calculation, but it applies
asynchronous control signals. If the asynchronous control is registered,
the Quartus II TimeQuest Timing Analyzer uses the equations shown in
Equation 9 to calculate the removal slack time.

(9)

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

μtCO Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtSU–+=

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Clock Network Delay Maximum Input Delay+ + +=

Port-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register Delay μtSU–+=

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay to Source Register+ +=

μtCO of Source Register Register-to-Register Delay+

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

6–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If the asynchronous control is not registered, the Quartus II TimeQuest
Timing Analyzer uses the equations shown in Equation 10 to calculate the
removal slack time.

(10)

+

1 If the asynchronous reset signal is from a device pin, you must
specify the Input Minimum Delay constraint to the
asynchronous reset pin for the Quartus II TimeQuest Timing
Analyzer to perform a removal analysis on this path.

Multicycle Paths

Multicycle paths are data paths that require more than one clock cycle to
latch data at the destination register. For example, a register may be
required to capture data on every second or third rising clock edge.
Figure 6–10 shows an example of a multicycle path between a
multiplier’s input registers and output register where the destination
latches data on every other clock edge.

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Clock Network Delay Input Minimum Delay of Pin+ +=

Minimum Pin-to-Register Delay

Data Required Time Latch Edge Clock Network Delay to Destination Register μtH+ +=

Altera Corporation 6–17
October 2007 Preliminary

Timing Analysis Overview

Figure 6–10. Example Diagram of a Multicycle Path

Figure 6–11 shows a register-to-register path where the source clock,
src_clk, has a period of 10 ns and the destination clock, dst_clk, has
a period of 5 ns.

Figure 6–11. Register-to-Register Path

Figure 6–12 shows the respective timing diagrams for the source and
destination clocks and the default setup and hold relationships. The
default setup relationship is 5 ns and the default hold relationship is 0 ns.

D Q

ENA

D Q

D Q

ENA

2 cycles

D Q

ENA

D Q D Qdata_in

dst_clk

src_clk

reg reg

data_out

6–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–12. Default Setup and Hold Timing Diagram

The default setup and hold relationships can be modified with the
set_multicycle_path command to accommodate the system
requirements.

Table 6–3 shows the commands used to modify either the launch or latch
edge times that the Quartus II TimeQuest Timing Analyzer Timing
Analyzer uses to determine a setup relationship or hold relationship.

Figure 6–13 shows the timing diagram after a multicycle setup of two has
been applied. The command moves the latch edge time to 10 ns from the
default 5 ns.

Figure 6–13. Modified Setup Diagram

0 10 20 30

setup
hold

Table 6–3. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end Latch edge time of the setup relationship

set_multicycle_path -setup -start Launch edge time of the setup relationship

set_multicycle_path -hold -end Latch edge time of the hold relationship

set_multicycle_path -hold -start Latch edge time of the hold relationship

0 10 20 30

 new setup
default setup

Altera Corporation 6–19
October 2007 Preliminary

Specify Design Timing Requirements

Specify Design
Timing
Requirements

Next, specify timing constraints and exceptions for your design.

Timing requirements guide the Fitter as it places and routes your design.
You must enter all timing constraints and exceptions in an SDC file. This
file must be included as part of the project. To add this file to your project,
on the Project menu, click Add/Remove Files in Project, and add the SDC
file in the Files dialog box.

1 Refer to “Specify Timing Constraints” on page 6–20 for a list of
timing constraints and exceptions.

After you create the initial database, follow these steps to create timing
requirements:

1. Launch the Quartus II TimeQuest Timing Analyzer.

2. Create a Timing Netlist.

3. Specify Timing Constraints.

4. Generate SDC Constraint Reports.

1 You cannot use the Assignment Editor to specify timing
requirements for the TimeQuest timing analyzer.

Create a Timing Netlist

The TimeQuest timing analyzer requires a timing netlist before you can
specify timing requirements. The TimeQuest timing analyzer creates a
timing netlist based upon the netlist generated in the compilation step. It
annotates the timing netlist with either the post-map or post-fit delay
results.

You can create a timing netlist in the following ways:

■ In the Tasks pane, double-click Create Timing Netlist.

1 By default, the Create Timing Netlist command generates
a timing netlist based on the post-fit database. An error
message displays if the initial database is a post-map
database.

or

■ On the Netlist menu, click Create Timing Netlist. The Create Timing
Netlist dialog box appears (Figure 6–14).

6–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–14. Create Timing Netlist Dialog Box

In the Create Timing Netlist dialog box, specify the input netlist type
and the delay model, and click OK.

or

■ To create a timing netlist in the Console pane, type the following
command at a Tcl prompt:

create_timing_netlist r
You can use the -post_map option to specify that the timing netlist
is based on a post-map database. For example, you can type the
following command:

create_timing_netlist -post_map r

Specify Timing Constraints

Use the SDC Editor to create and edit your timing constraints and
exceptions. The following constraints are available:

■ Create Clock
■ Create Generated Clock
■ Set Clock Latency
■ Set Clock Uncertainty
■ Set Input Delay
■ Set Output Delay
■ Set False Path
■ Set Multicycle Path
■ Set Maximum Delay
■ Set Minimum Delay

Altera Corporation 6–21
October 2007 Preliminary

Specify Design Timing Requirements

For more information on the SDC Editor, refer to “SDC Editor” on
page 6–94.

The specified constraints and exceptions guide the Fitter as it places and
routes your design. After you have specified all timing constraints and
exceptions, save the SDC file.

Generate SDC Constraint Reports

You can generate initial timing reports to verify that all constraints and
exceptions have been entered. Because the constraints and exceptions
have not been processed by the Fitter, do not use this step to verify that
your timing requirements have been met.

You should verify the following items before continuing:

■ All clocks are constrained
■ Any invalid clock-to-clock transfers have been removed
■ All paths are constrained

You can double-click the Report Clocks command in the Tasks pane, or
type the report_clocks command in the Console pane to verify that
all clocks have been properly defined and applied to the proper nodes in
the design.

You can double-click the Report Clock Transfers command in the Tasks
pane, or type the report_clock_transfers command in the Console
pane to verify all clock-to-clock transfers.

You can double-click the Report Unconstrained Paths command in the
Tasks pane, or type the report_ucp command in the Console pane to
verify that all paths in the design have been properly constrained.

6–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Quartus II
TimeQuest
Timing Analyzer
Flow Guidelines

Use the steps shown in Figure 6–15 to verify timing in the TimeQuest
timing analyzer.

Figure 6–15. Timing Verification in the TimeQuest Timing Analyzer

The following sections describe each of the steps shown in Figure 6–15.

Create a Timing Netlist

After you perform a full compilation, you must create a timing netlist
based on the fully annotated database from the post-fit results.

To create the timing netlist, double-click Create Timing Netlist in the
Tasks pane, or type the following command in the Console pane:

create_timing_netlist r

Read the Synopsys Design Constraints File

After you create a timing netlist, you must read an SDC file. This step
reads all constraints and exceptions defined in the SDC file.

You can read the SDC file from either the Task pane or the Console pane.

To read the SDC file from the Tasks pane, double-click the Read SDC File
command.

1 The Read SDC File task reads the <current revision>.sdc file.

To read the SDC file from the Console pane, type the following command
in the Console pane:

read_sdc r

Create a Timing Netlist

Read Synopsys Design Constraints File

Update Timing Netlist

Generate Timing Reports

Altera Corporation 6–23
October 2007 Preliminary

Collections

Update Timing Netlist

You must update the timing netlist after you read an SDC file. The
TimeQuest timing analyzer applies all constraints to the netlist for
verification, and removes any invalid or false paths in the design from
verification.

To update the timing netlist, double-click Update Timing Netlist in the
Tasks pane, or type the following command in the Console pane:

update_timing_netlist r

Generate Timing Reports

You can generate timing reports for all critical paths in your design. The
Tasks pane contains the commonly used reporting commands.
Individual or custom reports can be generated for your design.

For more information about reporting, refer to the section “Timing
Reports” on page 6–58.

f For a full list of available report APIs, refer to the SDC & TimeQuest API
Reference Manual.

As you verify timing, you may encounter failures along critical paths. If
this occurs, you can refine the existing constraints or create new ones to
change the effects of existing constraints. If you modify, remove, or add
constraints, you should perform a full compilation. This allows the Fitter
to re-optimize the design based upon the new constraints, and brings you
back to the Perform Compilation step in the process. This iterative
process allows you to resolve your timing violations in the design.

f For a sample Tcl script to automate the timing analysis flow, refer to the
TimeQuest Quick Start Tutorial.

Collections The Quartus II TimeQuest Timing Analyzer supports collection APIs that
provide easy access to ports, pins, cells, or nodes in the design. Use
collection APIs with any valid constraints or Tcl commands specified in
the Quartus II TimeQuest Timing Analyzer.

6–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–4 describes the collection commands supported by the Quartus II
TimeQuest Timing Analyzer.

Table 6–5 describes the SDC extension collection commands supported
by the Quartus II TimeQuest Timing Analyzer.

Table 6–4. Collection Commands

Command Description

all_clocks Returns a collection of all clocks in the design.

all_inputs Returns a collection of all input ports in the design.

all_outputs Returns a collection of all output ports in the design.

all_registers Returns a collection of all registers in the design.

get_cells Returns a collection of cells in the design. All cell names in the collection match the
specified pattern. Wildcards can be used to select multiple cells at the same time.

get_clocks Returns a collection of clocks in the design. When used as an argument to another
command, such as the -from or -to of set_multicycle_path, each node in the
clock represents all nodes clocked by the clocks in the collection. The default uses the
specific node (even if it is a clock) as the target of a command.

get_nets Returns a collection of nets in the design. All net names in the collection match the
specified pattern. You can use wildcards to select multiple nets at the same time.

get_pins Returns a collection of pins in the design. All pin names in the collection match the
specified pattern. You can use wildcards to select multiple pins at the same time.

get_ports Returns a collection of ports (design inputs and outputs) in the design.

Table 6–5. SDC Extension Collection Commands (Part 1 of 2)

Command Description

get_fanouts <filter> Returns a collection of fan-out nodes starting from <filter>.

get_keepers <filter> Returns a collection of keeper nodes (non-combinational nodes) in the
design.

get_nodes <filter> Returns a collection of nodes in the design. The get_nodes collection cannot
be used when specifying constraints or exceptions.

get_partitions <filter> Returns a collection of partitions matching the <filter>.

get_registers <filter> Returns a collection of registers in the design.

get_fanins <filter> Returns a collection of fan-in nodes starting from <filter>.

derive_pll_clocks Automatically create generated clocks on the outputs of PLL. The generated
clock properties reflect the PLL properties that have been specified by the

MegaWizard® Plug-In Manager.

Altera Corporation 6–25
October 2007 Preliminary

Constraints Files

f For more information about collections, refer to the SDC file and the
SDC and TimeQuest API Reference Manual.

Application Examples

Example 6–1 shows various uses of the create_clock and
create_generated_clock commands and specific design structures.

Example 6–1. create_clock and create_generate_clock Commands and Specific Design Structures
Create a simple 10 ns with clock with a 60 % duty cycle
create_clock -period 10 -waveform {0 6} -name clk [get_ports clk]
The following multicycle applies to all paths ending at registers
clocked by clk
set_multicycle_path -to [get_clocks clk] 2

Constraints Files The Quartus II TimeQuest Timing Analyzer stores all timing constraints
in an SDC file. You can create an SDC file with different constraints for
place-and-route and for timing analysis.

1 The SDC file should contain only SDC and Tcl commands.
Commands to manipulate the timing netlist or control the
compilation flow should not be included in the SDC file.

The Quartus II software does not automatically update SDC files. You
must explicitly write new or updated constraints in the TimeQuest GUI.
Use the write_sdc command, or, in the Quartus II TimeQuest Timing
Analyzer, on the Constraints menu, click Write SDC File to write your
constraints to an SDC file.

get_assignment_groups
<filter>

Returns either a collection of keepers, ports, or registers that have been
saved to the Quartus Settings File (QSF) with the Assignment (Time) Groups
option.

remove_clock <clock list> Removes the list of clocks specified by <clock list>.

set_scc_mode <size> Allows you to set the maximum Strongly Connected Components (SCC) loop
size or force the Quartus II TimeQuest Timing Analyzer to always estimate
delays through SCCs.

set_time_format Sets time format, including time unit and decimal places.

Table 6–5. SDC Extension Collection Commands (Part 2 of 2)

Command Description

6–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Fitter and Timing Analysis SDC Files

You can specify the same or different SDC files for the Quartus II Fitter for
place-and-route, and the Quartus II TimeQuest Timing Analyzer for
static timing analysis. Using different SDC files allows you to have one set
of constraints for place-and-route, and another set of constraints for final
timing sign-off in the Quartus II TimeQuest Timing Analyzer.

Specifying SDC Files for Place-and-Route

To specify an SDC file for the Fitter, you must add the SDC file to your
Quartus II project. To add the file to your project, use the following
command in the Tcl console:

set_global_assignment -name SDC_FILE <SDC file name>

Or, in the Quartus II GUI, on the Project menu, click Add/Remove Files
in Project.

The Fitter optimizes your design based on the requirements in the SDC
files in your project.

The results shown in the timing analysis report located in the
Compilation Report are based on the SDC files added to the project.

1 You must specify the Quartus II TimeQuest Timing Analyzer as
the default timing analyzer to make the Fitter read the SDC file.

Specifying SDC Files for Static Timing Analysis

After you create a timing netlist in the Quartus II TimeQuest Timing
Analyzer, you must specify timing constraints and exceptions before you
can perform a timing analysis. The timing requirements do not have to be
identical to those provided to the Fitter. You can specify your timing
requirements manually or you can read a previously created SDC file.

To manually enter your timing requirements, you can use constraint entry
dialog boxes or SDC commands. If you have an SDC file that contains
your timing requirements, you can use this file to apply your timing
requirements. To specify the SDC file for timing analysis in the Quartus II
TimeQuest Timing Analyzer, use the following command:

read_sdc [<SDC file name>]

If you use the TimeQuest GUI to apply SDC file for timing analysis, in the
Quartus II TimeQuest Timing Analyzer, on the Constraints menu, click
Read SDC File.

Altera Corporation 6–27
October 2007 Preliminary

Constraints Files

1 By default, the Read SDC File command in the Tasks pane
reads the SDC files specified in the Quartus II Settings File (.qsf)
(QSF), which are the same SDC files used by the Fitter.

Synopsys Design Constraints File Precedence

The Quartus II Fitter and the Quartus II TimeQuest Timing Analyzer
reads the SDC files from the files list in the QSF file in the order they are
listed, from top to bottom.

The Quartus II software searches for an SDC file, as shown in Figure 6–16.

Figure 6–16. Synopsys Design Constraints File Order of Precedence

Note to Figure 6–16:
(1) This occurs only in the Quartus II TimeQuest Timing Analyzer, and not during

compilation in the Quartus II software. The Quartus II TimeQuest Timing
Analyzer has the ability to automate the conversion of the QSF timing assignments
to SDC if no SDC file exists when the Quartus II TimeQuest Timing Analyzer is
opened.

1 If you type the read_sdc command at the command line
without any arguments, the precedence order shown in
Figure 6–16 is followed.

Is the SDC File
Specified in the Add Files to

Project Dialog Box?

No

Yes

Does the SDC File
<current revision>.sdc

Exist?

No

Yes

Compilation Flow

Manually create SDC File <current revision>.sdc
Based on the Current Quartus Settings File (1)

6–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Clock
Specification

The specification of all clocks and any associated clock characteristics in
your design is essential for accurate static timing analysis results. The
Quartus II TimeQuest Timing Analyzer supports many SDC commands
that accommodate various clocking schemes and any clock
characteristics.

This section describes the SDC file API available to create and specify
clock characteristics.

Clocks

Use the create_clock command to create a clock at any register, port,
or pin. You can create each clock with unique characteristics. Example 6–2
shows the create_clock command and options.

Example 6–2. create_clock Command
create_clock
-period <period value>
[-name <clock name>]
[-waveform <edge list>]
[-add]
<targets>

Table 6–6 describes the options for the create_clock command.

Table 6–6. create_clock Command Options

Option Description

-period <period value> Specifies the clock period. You can also specify the clock period in units of
frequency, such as -period <num>MHz. (1)

-name <clock name> Name of the specific clock, for example, sysclock. If you do not specify the
clock name, the clock name is the same as the node to which it is assigned.

-waveform <edge list> Specifies the clock’s rising and falling edges. The edge list alternates between
rising edge and falling edge. For example, a 10 ns period where the first rising
edge occurs at 0 ns and the first falling edge occurs at 5 ns would be written
as -waveform {0 5}. The difference must be within one period unit, and
the rise edge must come before the fall edge. The default edge list is
{0 <period>/2}, or a 50% duty cycle.

-add Allows you to specify more than one clock to the same port or pin.

<targets> Specifies the port(s) or pin(s) to which the assignment applies. If source
objects are not specified, the clock is a virtual clock. Refer to “Virtual Clocks”
on page 6–32 for more information.

Note to Table 6–6:
(1) The default time unit in the Quartus II TimeQuest Timing Analyzer is nanoseconds (ns).

Altera Corporation 6–29
October 2007 Preliminary

Clock Specification

Example 6–3 shows how to create a 10 ns clock with a 50% duty cycle,
where the first rising edge occurs at 0 ns applied to port clk.

Example 6–3. 100MHz Clock Creation
create_clock –period 10 –waveform { 0 5 } clk

Example 6–4 shows how to create a 10 ns clock with a 50% duty cycle that
is phase shifted by 90 degrees applied to port clk_sys.

Example 6–4. 100MHz Shifted by 90 Degrees Clock Creation
create_clock –period 10 –waveform { 2.5 7.5 } clk_sys

Clocks defined with the create_clock command have a default source
latency value of zero. The Quartus II TimeQuest Timing Analyzer
automatically computes the clock’s network latency for non-virtual
clocks.

Generated Clocks

The Quartus II TimeQuest Timing Analyzer considers clock dividers,
ripple clocks, or circuits that modify or change the characteristics of the
incoming or master clock as generated clocks. You should define the
output of these circuits as generated clocks. This definition allows the
Quartus II TimeQuest Timing Analyzer to analyze these clocks and
account for any network latency associated with them.

Use the create_generated_clock command to create generated
clocks. Example 6–5 shows the create_generated_clock command
and the available options.

Example 6–5. create_generated_clock Command
create_generated_clock
[-name <clock name>]
-source <master pin>
[-edges <edge list>]
[-edge_shift <shift list>]
[-divide_by <factor>]
[-multiply_by <factor>]
[-duty_cycle <percent>]
[-add]
[-invert]
[-master_clock <clock>]
[-phase <phase>]
[-offset <offset>]
<targets>

6–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–7 describes the options for the create_generated_clock
command.

Source latencies are based on clock network delays from the master clock
(not necessarily the master pin). You can use the set_clock_latency
-source command to override the source latency.

Table 6–7. create_generated_clock Command Options

Option Description

-name <clock name> Name of the generated clock, for example, clk_x2. If you do not specify the clock
name, the clock name is the same as the first node to which it is assigned.

-source <master pin> The <master pin> specifies the node in the design from which the clock settings
derive.

-edges <edge list> |
-edge_shift <shift list>

The -edges option specifies the new rising and falling edges with respect to the
master clock’s rising and falling edges. The master clock’s rising and falling edges
are numbered 1..<n> starting with the first rising edge, for example, edge 1. The
first falling edge after that is edge number 2, the next rising edge number 3, and
so on. The <edge list> must be in ascending order. The same edge may be used
for two entries to indicate a clock pulse independent of the original waveform’s
duty cycle.

-edge_shift specifies the amount of shift for each edge in the <edge list>. The
-invert option can be used to invert the clock after the -edges and
-edge_shifts are applied. (1)

-divide_by <factor> |
-multiply_by <factor>

The -divide_by and -multiply_by factors are based on the first rising edge
of the clock, and extend or contract the waveform by the specified factors. For
example, a -divide_by 2 is equivalent to -edges {1 3 5}. For multiplied
clocks, the duty cycle can also be specified. The Quartus II TimeQuest Timing
Analyzer supports specifying multiply and divide factors at the same time.

-duty_cycle <percent> Specifies the duty cycle of the generated clock. The duty cycle is applied last.

-add Allows you to specify more than one clock to the same pin.

-invert Inversion is applied at the output of the clock after all other modifications are
applied, except duty cycle.

-master_clock <clock> -master_clock is used to specify the clock if multiple clocks exist at the master
pin.

-phase <phase> Specifies the phase of the generated clock.

-offset <offset> Specifies the offset of the generated clock.

<targets> Specifies the port(s) or pin(s) to which the assignment applies.

Note to Table 6–7:
(1) The Quartus II TimeQuest Timing Analyzer supports a maximum of three edges in the edge list.

Altera Corporation 6–31
October 2007 Preliminary

Clock Specification

Figure 6–17 shows how to create an inverted generated clock based on a
10 ns clock.

Figure 6–17. Generating an Inverted Clock

create_clock -period 10 [get_ports clk]
create_generated_clock -divide_by 1 -invert -source [get_registers clk] \

[get_registers gen|clkreg]

Figure 6–18 shows how to modify the generated clock using the -edges
and -edge_shift options.

Figure 6–18. Edges and Edge Shifting a Generated Clock

create_clock -period 10 -waveform { 0 5} [get_ports clk]
Creates a divide-by-t clock
create_generated_clock -source [get_ports clk] -edges {1 3 5 } [get_registers \
clkdivA|clkreg]
Creates a divide-by-2 clock independent of the master clocks’ duty cycle (now 50%)
create_generated_clock -source [get_ports clk] -edges {1 1 5} -edge_shift { 0 2.5 0 } \
[get_registers clkdivB|clkreg]

0 10 20 30

1 2 3 4 5 6 7 8Edges

clk

gen|clkreg

Time

0 10 20 30

1 2 3 4 5 6 7 8Edges

clk

clkdivA|clkreg

clkdivB|clkreg

Time

6–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–19 shows the effect of the -multiply_by option on the
generated clock.

Figure 6–19. Multiplying a Generated Clock

create_clock -period 10 -waveform { 0 5 } [get_ports clk]
Creates a multiply-by-2 clock
create_generated_clock -source [get_ports clk] -multiply_by 2 [get_registers \
clkmult|clkreg]

Virtual Clocks

A virtual clock is a clock that does not have a real source in the design or
that does not interact directly with the design. For example, if a clock
feeds only an external device’s clock port, and not a clock port in the
design, and the external device then feeds (or is fed by) a port in the
design, it is considered a virtual clock.

Use the create_clock command to create virtual clocks, with no value
specified for the source option.

1 You can use virtual clocks for set_input_delay and
set_output_delay constraints.

Figure 6–20 shows an example where a virtual clock is required for the
Quartus II TimeQuest Timing Analyzer to properly analyze the
relationship between the external register and those in the design.
Because the oscillator labeled virt_clk does not interact with the Altera
device, but acts as the clock source for the external register, the clock
virt_clk must be declared. Example 6–6 shows the command to create
a 10 ns virtual clock named virt_clk with a 50% duty cycle where the
first rising edge occurs at 0 ns. The virtual clock is then used as the clock
source for an output delay constraint.

0 10 20 30

clk

clkmult|clkreg

Time

Altera Corporation 6–33
October 2007 Preliminary

Clock Specification

Figure 6–20. Virtual Clock Board Topology

After you create the virtual clock, you can perform register-to-register
analysis between the register in the Altera device and the register in the
external device.

Example 6–6. Virtual Clock Example 1
#create base clock for the design
create_clock -period 5 [get_ports system_clk]
#create the virtual clock for the external register
create_clock -period 10 -name virt_clk -waveform { 0 5 }
#set the output delay referencing the virtual clock
set_output_delay -clock virt_clk -max 1.5 [get_ports dataout]

Example 6–7 shows the command to create a 10 ns virtual clock with a
50% duty cycle that is phase shifted by 90 degrees.

Example 6–7. Virtual Clock Example 2
create_clock -name virt_clk –period 10 –waveform { 2.5 7.5 }

Multi-Frequency Clocks

Certain designs have more than one clock source feeding a single clock
port in the design. The additional clock may act as a low power clock,
with a lower frequency than the primary clock. To analyze this type of
design, the create_clock command supports the –add option that
allows you to add more than one clock to a clock node.

Example 6–8 shows the command to create a 10 ns clock applied to clock
port clk, and then add an additional 15 ns clock to the same clock port.
The Quartus II TimeQuest Timing Analyzer uses both clocks when it
performs timing analysis.

Example 6–8. Multi-Frequency Example
create_clock –period 10 –name clock_primary –waveform { 0 5 } [get_ports clk]
create_clock –period 15 –name clock_secondary –waveform { 0 7.5 } [get_ports clk] -add

reg_b

External Device
datain

reg_a

Altera FPGA

dataout

system_clk virt_clk

6–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Automatic Clock Detection

To create clocks for all clock nodes in your design automatically, use the
derive_clocks command. This command creates clocks on ports or
registers to ensure every register in the design has a clock.

Example 6–9 shows the derive_clocks command and options.

Example 6–9. derive_clocks Command
derive_clocks
[-period <period value>]
[-waveform <edge list>]

Table 6–8 describes the options for the derive_clocks command.

1 The derive_clocks command does not create clocks for the
outputs of the PLLs.

The derive_clocks command is equivalent to using create_clock
for each register or port feeding the clock pin of a register.

1 The use of the derive_clocks command for final timing
sign-off is not recommended. You should create clocks for all
clock sources using the create_clock and
create_generated_clock commands.

Table 6–8. derive_clocks Command Options

Option Description

-period <period value> Creates the clock period. You can also specify the frequency as
-period <num>MHz. (1)

-waveform <edge list> Creates the clock’s rising and falling edges. The edge list alternates between
rising edge and falling edge. For example, for a 10 ns period where the first
rising edge occurs at 0 ns and first falling edge occurs at 5 ns, the edge list is
waveform {0 5}. The difference must be within one period unit, and the
rising edge must come before the falling edge. The default edge list is
{0 period/2}, or a 50% duty cycle.

Note to Table 6–8:
(1) This option uses the default time unit nanoseconds (ns).

Altera Corporation 6–35
October 2007 Preliminary

Clock Specification

Derive PLL Clocks

PLLs are used for clock management and synthesis in Altera devices. You
can customize the clocks generated from the outputs of the PLL based on
the design requirements. Because a clock should be created for all clock
nodes, all outputs of the PLL should have an associated clock.

You can manually create a clock for each output of the PLL with the
create_generated_clock command, or you can use the
derive_pll_clocks command, which automatically searches the
timing netlist and creates generated clocks for all PLL outputs according
to the settings specified for each PLL output.

Use the derive_pll_clocks command to automatically create a clock
for each output of the PLL, as shown in the following list:

derive_pll_clocks
[-use_tan_name]

Table 6–9 describes the options for the derive_pll_clocks command.

The derive_pll_clocks command calls the
create_generated_clock command to create generated clocks on
the outputs of the PLL. The source for the create_generated_clock
command is the input clock pin of the PLL. Before or after the
derive_pll_clocks command has been issued, you must manually
create a base clock for the input clock port of the PLL. If a clock is not
defined for the input clock node of the PLL, no clocks are reported for the
PLL outputs. Instead, the Quartus II TimeQuest Timing Analyzer issues
a warning message similar to Figure 6–10 when the timing netlist is
updated.

Example 6–10. Warning Message
Warning: The master clock for this clock assignment could not be derived.
Clock: <name of PLL output clock pin name> was not created.

You can include the derive_pll_clocks command in your SDC file,
which allows the derive_pll_clocks command to automatically
detect any changes to the PLL. With the derive_pll_clocks

Table 6–9. derive_pll_clocks Command Options

Option Description

-use_tan_name By default, the clock name is the output clock name. This option uses the net name
similar to the names used by the Quartus II Classic Timing Analyzer.

6–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

command in your SDC file, each time the file is read, the appropriate
create_generated_clock command for the PLL output clock pin is
generated. If you use the write_sdc command after the
derive_pll_clock command, the new SDC file contains the
individual create_generated_clock commands for the PLL output
clock pins and not the derive_pll_clocks command. Any changes to
the properties of the PLL are not automatically reflected in the new SDC
file. You must manually update the create_generated_clock
commands in the new SDC file written by the derive_pll_clocks
command, to reflect the changes to the PLL.

1 The derive_pll_clocks constraint will also constrain any
LVDS transmitters or LVDS receivers in the design by adding the
appropriate multicycle constraints to account for any
deserialization factors.

For example, Figure 6–21 shows a simple PLL design with a
register-to-register path.

Figure 6–21. Simple PLL Design

Use the derive_pll_clocks command to automatically constrain the
PLL. When this command is issued for the design shown in Figure 6–21,
the messages shown in Example 6–11 are generated.

Example 6–11. derive_pll_clocks Generated Messages
Info:
Info: Deriving PLL Clocks:
Info: create_generated_clock -source pll_inst|altpll_component|pll|inclk[0] -divide_by 2 -name
pll_inst|altpll_component|pll|CLK[0] pll_inst|altpll_component|pll|clk[0]
Info:

The node name pll_inst|altpll_component|pll|inclk[0] used
for the source option refers to the input clock pin of the PLL. In addition,
the name of the output clock of the PLL is the name of the PLL output
clock node, pll_inst|altpll_component|pll|clk[0].

reg1

pll_inclk
pll_inst

reg2 dataout

Altera Corporation 6–37
October 2007 Preliminary

Clock Specification

1 If the PLL is in clock switchover mode, multiple clocks are
created for the output clock of the PLL; one for the primary
input clock (for example, inclk[0]), and one for the secondary
input clock (for example, inclk[1]). In this case, you should
cut the primary and secondary output clocks using the
set_clock_groups command with the -exclusive option.

Before you can generate any reports for this design, you must create a
base clock for the PLL input clock port. Use a command similar to the
following:

create_clock -period 5 [get_ports pll_inclk]

1 You do not have to generate the base clock on the input clock pin
of the PLL: pll_inst|altpll_component|pll|inclk[0].
The clock created on the PLL input clock port propagates to all
fan-outs of the clock port, including the PLL input clock pin.

Default Clock Constraints

To provide a complete clock analysis, the Quartus II TimeQuest Timing
Analyzer, by default, automatically creates clocks for all detected clock
nodes in your design that have not be constrained, if there are no base
clock constraints in the design. The Quartus II TimeQuest Timing
Analyzer creates a base clock with a 1 GHz requirement to unconstrained
clock nodes, using the following command:

derive_clocks -period 1

1 Individual clock constraints (for example, create_clock,
create_generated_clock) should be made for all clocks in
the design. This results in a thorough and realistic analysis of the
design’s timing requirements. The use of derive_clocks
should be avoided for final timing sign-off.

The default clock constraint is only applied when the Quartus II
TimeQuest Timing Analyzer detects that all synchronous elements have
no clocks associated with them. For example, if a design contains two
clocks and only one clock has constraints, the default clock constraint will
not be applied. However, if both clocks have not been constrained, the
default clock constraint will be applied.

Clock Groups

Many clocks can exist in a design, however, not all of the clocks interact
with one another, and certain clock interactions are not possible.
Asynchronous clocks are unrelated clocks (asynchronous clocks have

6–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

different ideal clock sources). Exclusive clocks are not active at the same
time (for example, multiplexed clocks). The mutual exclusivity must be
declared to the Quartus II TimeQuest Timing Analyzer to prevent it from
analyzing these clock interactions.

Use the set_clock_groups command to specify clocks that are
exclusive or asynchronous. Example 6–12 shows the
set_clock_groups command and options.

Example 6–12. set_clock_groups Command
set_clock_groups
[-asynchronous | -exclusive]
-group <clock name>
[-group <clock name>]
[-group <clock name>] ...

Table 6–10 describes the options for the set_clock_groups command.

Example 6–13 shows a set_clock_groups command and the
equivalent set_false_path commands.

Example 6–13. set_clock_groups Example
Clocks A and C are never active when clocks B and D are active
set_clock_groups -exclusive -group {A C} -group {B D}

Equivalent specification using false paths
set_false_path -from [get_clocks A] -to [get_clocks B]
set_false_path -from [get_clocks A] -to [get_clocks D]
set_false_path -from [get_clocks C] -to [get_clocks B]
set_false_path -from [get_clocks C] -to [get_clocks D]
set_false_path -from [get_clocks B] -to [get_clocks A]
set_false_path -from [get_clocks B] -to [get_clocks C]
set_false_path -from [get_clocks D] -to [get_clocks A]
set_false_path -from [get_clocks D] -to [get_clocks C]

Table 6–10. set_clock_groups Command Options

Option Description

-asynchronous Asynchronous clocks—when the two clocks have no phase relationship and are
active at the same time.

-exclusive Exclusive clocks—when only one of the two clocks will be active at any given time.
An example of an exclusive clock group is when two clocks feed a 2-to-1 MUX.

-group <clock name> Specifies valid destination clock names that are mutually exclusive. <clock name> is
used to specify the clock names.

Altera Corporation 6–39
October 2007 Preliminary

Clock Specification

Clock Effect Characteristics

The create_clock and create_generated_clock commands
create ideal clocks that do not account for any board effects. This section
describes how to account for clock effect characteristics with clock latency
and clock uncertainty.

Clock Latency

There are two forms of clock latency: source and network. Source latency
is the propagation delay from the origin of the clock to the clock definition
point (for example, a clock port), and network latency is the propagation
delay from a clock definition point to a register’s clock pin. The total
latency (or clock propagation delay) at a register’s clock pin is the sum of
the source and network latencies in the clock path.

1 The set_clock_latency command supports only source
latency. The -source option must be specified when using the
command.

Use the set_clock_latency command to specify source latency to any
clock ports in the design. Example 6–14 shows the
set_clock_latency command and options.

Example 6–14. set_clock_latency Command
set_clock_latency
-source
[-clock <clock_list>]
[-rise | -fall]
[-late | -early]
<delay>
<targets>

Table 6–11 describes the options for the set_clock_latency
command.

Table 6–11. set_clock_latency Command Options (Part 1 of 2)

Option Description

-source Specifies a source latency.

-clock <clock list> Specifies the clock to use if the target has more than one clock assigned to it.

6–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Quartus II TimeQuest Timing Analyzer automatically computes
network latencies; therefore, the set_clock_latency command
specifies only the source latencies.

Clock Uncertainty

The set_clock_uncertainty command specifies clock uncertainty or
skew for clocks or clock-to-clock transfers. Specify the uncertainty
separately for setup and hold, and you can specify separate rising and
falling clock transitions. The Quartus II TimeQuest Timing Analyzer
subtracts the setup uncertainty from the data required time for each
applicable path, and adds the hold uncertainty to the data required time
for each applicable path.

Use the set_clock_uncertainty command to specify any clock
uncertainty to the clock port. Example 6–15 shows the
set_clock_uncertainty command and options.

Example 6–15. set_clock_uncertainty Command and Options
set_clock_uncertainty
[-rise_from <rise from clock> | -fall_from <fall from clock> |
-from <from clock>]
[-rise_to <rise to clock> | -fall_to <fall to clock> | -to <to clock>]
[-setup | -hold]
<value>

-rise | -fall Specifies the rising or falling delays.

-late | -early Specifies the earliest or the latest arrival times to the clock.

<delay> Specifies the delay value.

<targets> Specifies the clocks or clock sources if a clock is clocked by more than one clock.

Table 6–11. set_clock_latency Command Options (Part 2 of 2)

Option Description

Altera Corporation 6–41
October 2007 Preliminary

Clock Specification

Table 6–12 describes the options for the set_clock_ uncertainty
command.

Derive Clock Uncertainty

Use the derive_clock_uncertainty command to automatically
apply inter-clock, intra-clock, and I/O interface uncertainties. Both setup
and hold uncertainties are calculated for each clock-to-clock transfer.
Example 6–16 shows the derive_clock_uncertainty command and
options.

Example 6–16. derive_clock_uncertainty Command
derive_clock_uncertainty
[-overwrite]
[-dtw]

Table 6–13 describes the options for the derive_clock_uncertainty
command.

The Quartus II TimeQuest Timing Analyzer automatically applies clock
uncertainties to clock-to-clock transfers in the design.

Table 6–12. Options Description for set_clock_uncertainty

Option Description

-from <from clock> Specifies the from clock.

-rise_from <rise from clock> Specifies the rise from clock.

-fall_from <fall from clock> Specifies the fall from clock.

-to <to clock> Specifies the to clock.

-rise_to <rise to clock> Specifies the rise to clock.

-fall_to <fall to clock> Specifies the fall to clock.

-setup | -hold Specifies setup or hold.

<value> Uncertainty value.

Table 6–13. derive_clock_uncertainty Command Options

Option Description

-overwrite Overwrites previously performed clock uncertainty assignments

-dtw Creates the PLLJ-PLLSPE_INFO.txt file

6–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Any clock uncertainty constraints that have been applied to source and
destination clock pairs with the set_clock_uncertainty command
have a higher precedence than the clock uncertainties derived from the
derive_clock_uncertainty command for the same source and
destination clock pairs. For example, if the set_clock_uncertainty
command is called first to specify clock uncertainties between the source
clock CLKA and destination clock CLKB. Then the
derive_clock_uncertainty command is called second, the clock
uncertainty calculated by the derive_clock_uncertainty command
is ignored for the source clock CLKA to destination clock CLKB.

The clock uncertainty value that would have been used, however, is still
reported for informational purposes. You can use the -overwrite
command to overwrite previous clock uncertainty assignments, or
remove them manually with the remove_clock_uncertainty
command.

In the following types of clock-to-clock transfers, clock certainties can
arise. They are modeled by the derive_clock_uncertainty
command automatically.

■ Inter-clock
■ Intra-clock
■ I/O Interface

Inter-Clock Transfers

Inter-clock transfers occur when the register-to-register transfer happens
in the core of the FPGA and source and destination clocks come from the
same PLL output pin or clock port. An example of an inter-clock transfer
is shown in Figure 6–22.

Figure 6–22. Inter-Clock Transfer

D Q D Qdata_in

data_out PLL

clk0

Source Register Destination Register

Altera Corporation 6–43
October 2007 Preliminary

Clock Specification

Intra-Clock Transfers

Intra-clock transfers occur when the register-to-register transfer happens
in the core of the FPGA and source and destination clocks come from a
different PLL output pin or clock port. An example of an intra-clock
transfer is shown in Figure 6–23.

Figure 6–23. Intra-Clock Transfer

I/O Interface Clock Transfers

I/O interface clock transfers occur when data transfers from an I/O port
to the core of the FPGA (input) or from the core of the FPGA to the I/O
port (output). An example of an I/O interface clock transfer is shown in
Figure 6–24.

Figure 6–24. Interface-Clock Transfer

For I/O interface uncertainty, you must create a virtual clock and
constrain the input and output ports with the set_input_delay and
set_output_delay commands that reference the virtual clock. The
virtual clock is required to prevent the derive_clock_uncertainty
command from applying clock certainties for either intra- or inter-clock
transfers on an I/O interface clock transfer when the set_input_delay
or set_output_delay commands reference a clock port or PLL output.
If a virtual clock is not referenced in the set_input_delay or
set_output_delay commands to clock uncertainty for the I/O
interface clock, transfers will result in a pessimistic analysis.

D Q D Qdata_in

clk_in PLL

clk0

Source Register Destination Register

data_out

D Qdata_in

clk_in

reg1

data_out

6–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The virtual clock should be created with the same properties as the
original clock that is driving the I/O port. For example, Figure 6–25
shows a typical input I/O interface with the clock specifications.

Figure 6–25. I/O Interface Specifications

Example 6–17 shows the SDC commands to constrain the I/O Interface
shown in Figure 6–25.

Example 6–17. SDC Commands to Constrain the I/O Interface
Create the base clock for the clock port
create_clock –period 10 –name clk_in [get_ports clk_in]
Create a virtual clock with the same properties of the base clock driving
the source register
create_clock –period 10 –name virt_clk_in
Create the input delay referencing the virtual clock and not the base
clock
DO NOT use set_input_delay –clock clk_in <delay_value>
[get_ports data_in]
set_input_delay –clock virt_clk_in <delay value> [get_ports data_in]

data_in

clk_in

D Q

reg1

D Q

reg1

External Device Altera FPGA

100 MHz

Altera Corporation 6–45
October 2007 Preliminary

I/O Specifications

I/O
Specifications

The Quartus II TimeQuest Timing Analyzer supports Synopsys Design
Constraints that constrain the ports in your design. These constraints
allow the Quartus II TimeQuest Timing Analyzer to perform a system
static timing analysis that includes not only the FPGA timing, but also
any external device timing and board timing parameters.

Input and Output Delay

Use input and output delay constraints to specify any external device or
board timing parameters. When you apply these constraints, the
Quartus II TimeQuest Timing Analyzer performs static timing analysis
on the entire system.

Set Input Delay

The set_input_delay constraint specifies the data arrival time at a
port (a device I/O) with respect to a given clock. Figure 6–26 shows an
input delay path.

Figure 6–26. Set Input Delay

Use the set_input_delay command to specify input delay constraints
to ports in the design. Example 6–18 shows the set_input_delay
command and options.

Example 6–18. set_input_delay Command
set_input_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
[-source_latency_included]
<delay value>
<targets>

External Device

Oscillator

Altera Device

6–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–14 describes the options for the set_input_delay command.

1 A warning message appears if you specify only a –max or –min
value for the input delay value. The input minimum delay
default value is the input maximum delay, and the input
maximum delay default value is the input minimum delay, if
only one is specified. Similarly, a warning message appears if
you specify only a -rise or -fall value for the delay value,
and the delay defaults in the same manner as the input
minimum and input maximum delays.

The maximum value is used for setup checks, and the minimum value is
used for hold checks.

By default, a set of input delays (min/max, rise/fall) is allowed for only
one clock, -clock_fall, -reference_pin combination. Specifying an
input delay on the same port for a different clock, -clock_fall, or
-reference_pin removes any previously set input delays, unless you
specify the -add_delay option. When you specify the -add_delay
option, the worst-case values are used.

The -rise and -fall options are mutually exclusive. The -min and
-max options are also mutually exclusive.

Table 6–14. set_input_delay Command Options

Option Description

-clock <clock name> Specifies the source clock.

-clock_fall Specifies the arrival time with respect to the falling edge of the clock.

-rise | -fall Specifies either the rise or fall delay at the port.

-max | -min Specifies the minimum or maximum data arrival time.

-add_delay Adds another delay, but does not replace the existing delays assigned
to the port.

-reference_pin <target> Specifies a pin or port in the design from which to determine source
and network latencies. This is useful to specify input delays relative to
an output port fed by a clock.

-source_latency_ included Specifies that the input delay value includes the source latency delay
value, and therefore any source clock latency assigned to the clock will
be ignored.

<delay value> Specifies the delay value.

<targets> Specifies the destination ports or pins.

Altera Corporation 6–47
October 2007 Preliminary

I/O Specifications

Set Output Delay

The set_output_delay command specifies the data required time at a
port (the device pin) with respect to a given clock.

Use the set_output_delay command to specify output delay
constraints to ports in the design. Figure 6–27 shows an output delay
path.

Figure 6–27. Output Delay

Example 6–19 shows the set_output_delay command and options.

Example 6–19. set_output_delay Command
set_output_delay
-clock <clock name>
[-clock_fall]
[-rise | -fall]
[-max | -min]
[-add_delay]
[-reference_pin <target>]
<delay value>
<targets>

Table 6–15 describes the options for the set_output_delay command.

External DeviceAltera Device

Oscillator

Table 6–15. set_output_delay Command Options (Part 1 of 2)

Option Description

-clock <clock name> Specifies the source clock.

-clock_fall Specifies the required time with respect to the falling edge of the clock.

-rise | -fall Specifies either the rise or fall delay at the port.

-max | -min Specifies the minimum or maximum data arrival time.

-add_delay Adds another delay, but does not replace the existing delays assigned to
the port.

6–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 A warning message appears if you specify only a –max or –min
value for the output delay value. The output minimum delay
default value is the output maximum delay, and the output
maximum delay default value is the output minimum delay, if
only one is specified.

The maximum value is used for setup checks, and the minimum value is
used for hold checks.

By default, a set of output delays (min/max, rise/fall) is allowed for only
one clock, -clock_fall, port combination. Specifying an output delay
on the same port for a different clock or -clock_fall removes any
previously set output delays, unless you specify the -add_delay option.
When you specify the -add_delay option, the worst-case values are
used.

The -rise and -fall options are mutually exclusive, as are the -min
and -max options.

Timing
Exceptions

Timing exceptions modify the default analysis that is performed by the
Quartus II TimeQuest Timing Analyzer. This section describes the
following available timing exceptions:

■ False path
■ Minimum delays
■ Maximum delays
■ Multicycle path

-reference_pin <target> Specifies a pin or port in the design from which to determine source and
network latencies. Use this option to specify input delays relative to an
output port fed by a clock.

-source_latency_included Specifies that the input delay value includes the source latency delay
value, and therefore any source clock latency assigned to the clock will
subsequently be ignored.

<delay value> Specifies the delay value.

<targets> Specifies the destination ports or pins.

Table 6–15. set_output_delay Command Options (Part 2 of 2)

Option Description

Altera Corporation 6–49
October 2007 Preliminary

Timing Exceptions

Precedence

If a conflict of node names occurs between timing exceptions, the
following order of precedence applies:

1. False path
2. Minimum delays and maximum delays
3. Multicycle path

The false path timing exception has the highest precedence. Within each
category, assignments to individual nodes have precedence over
assignments to clocks. Finally, the remaining precedence for additional
conflicts is order-dependent, such that the last assignments overwrite (or
partially overwrite) earlier assignments.

False Path

False paths are paths that can be ignored during timing analysis.

Use the set_false_path command to specify false paths in the design.
Example 6–20 shows the set_false_path command and options.

Example 6–20. set_false_path Command
set_false_path
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-through <names>]
<delay>

Table 6–16 describes the options for the set_false_path command.

Table 6–16. set_false_path Command Options (Part 1 of 2)

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies false path
begins at the fall from <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies false path ends
at the fall to <clocks>.

-from <names> The <names> is a collection or list of objects in the design. Specifies false path
begins at the <names>.

-hold Specifies the false path is valid during the hold analysis only.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies false path
begins at the rise from <clocks>.

6–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

When the objects are timing nodes, the false path only applies to the path
between the two nodes. When an object is a clock, the false path applies
to all paths where the source node (-from) or destination node (-to) is
clocked by the clock.

Minimum Delay

Use the set_min_delay command to specify an absolute minimum
delay for a given path. The following list shows the set_min_delay
command and options.

Example 6–21. set_min_delay Command
set_min_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>

-rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies false path ends
at the rise to <clocks>.

-setup Specifies the false path is valid during the setup analysis only.

-through <names> The <names> is a collection or list of objects in the design. Specifies false path
passes through <names>.

-to <names> The <names> is a collection or list of objects in the design. Specifies false path ends
at <names>.

<delay> Specifies the delay value.

Table 6–16. set_false_path Command Options (Part 2 of 2)

Option Description

Altera Corporation 6–51
October 2007 Preliminary

Timing Exceptions

Table 6–17 describes the options for the set_min_delay command.

If the source or destination node is clocked, the clock paths are taken into
account, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included
in the minimum delay check.

When the objects are timing nodes, the minimum delay applies only to
the path between the two nodes. When an object is a clock, the minimum
delay applies to all paths where the source node (-from) or destination
node (-to) is clocked by the clock.

You can apply the set_min_delay command exception to an output
port that does not use a set_output_delay constraint. In this case, the
setup summary and hold summary report the slack for these paths.
Because there is no clock associated with the output port, no clock is
reported for these paths and the Clock column is empty. In this case, you
cannot report timing for these paths.

1 To report timing using clock filters for output paths with the
set_min_delay command, you must use the
set_output_delay command for the output port with a
value of 0. You can use an existing clock from the design or a
virtual clock as the clock reference in the set_output_delay
command.

Table 6–17. set_min_delay Command Options

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay begins at the falling edge of <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the
start point of the path.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay at the rising edge of <clocks>.

rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the minimum
delay at the rising edge of <clocks>.

-through <names> The <names> is a collection or list of objects in the design. The <names> acts as the
through point of the path.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the
end point of the path.

<delay> Specifies the delay value.

6–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Maximum Delay

Use the set_max_delay command to specify an absolute maximum
delay for a given path. Example 6–22 shows the set_max_delay
command and options.

Example 6–22. set_max_delay Command
set_max_delay
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-through <names>]
<delay>

Table 6–18 describes the options for the set_max_delay command.

If the source or destination node is clocked, the clock paths are taken into
account, allowing more or less delay on the data path. If the source or
destination node has an input or output delay, that delay is also included
in the maximum delay check.

When the objects are timing nodes, the maximum delay only applies to
the path between the two nodes. When an object is a clock, the maximum
delay applies to all paths where the source node (-from) or destination
node (-to) is clocked by the clock.

Table 6–18. or set_max_delay Command Options

Option Description

-fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay begins at the falling edge of <clocks>.

-fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the
start point of the path.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay at the rising edge of <clocks>.

rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the maximum
delay at the rising edge of <clocks>.

-through <names> The <names> is a collection or list of objects in the design. The <names> acts as the
thru point of the path

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the
end point of the path

<delay> Specifies the delay value.

Altera Corporation 6–53
October 2007 Preliminary

Timing Exceptions

You can apply the set_max_delay command exception to an output
port that does not use a set_output_delay constraint. In this case, the
setup summary and hold summary report the slack for these paths.
Because there is no clock associated with the output port, no clock is
reported for these paths and the Clock column is empty. In this case, you
cannot report timing for these paths.

1 To report timing using clock filters for output paths with the
set_max_delay command, you must use the
set_output_delay command for the output port with a
value of 0. You can use an existing clock from the design or a
virtual clock as the clock reference in the set_output_delay
command.

Multicycle Path

By default, the Quartus II TimeQuest Timing Analyzer uses a single-cycle
analysis. When analyzing a path, the setup launch and latch edge times
are determined by finding the closest two active edges in the respective
waveforms. For a hold analysis, the timing analyzer analyzes the path
against two timing conditions for every possible setup relationship, not
just the worst-case setup relationship. Therefore, the hold launch and
latch times may be completely unrelated to the setup launch and latch
edges.

A multicycle constraint relaxes setup or hold relationships by the
specified number of clock cycles based on the source (-start) or
destination (-end) clock. An end multicycle constraint of 2 extends the
worst-case setup latch edge by one destination clock period.

Hold multicycle constraints are based on the default hold position (the
default value is 0). An end hold multicycle constraint of 1 effectively
subtracts one destination clock period from the default hold latch edge.

6–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Use the set_multicycle_path command to specify the multicycle
constraints in the design. Example 6–23 shows the
set_multicycle_path command and options.

Example 6–23. set_multicycle_path Command
set_multicycle_path
[-end]
[-fall_from <clocks> | -rise_from <clocks> | -from <names>]
[-fall_to <clocks> | -rise_to <clocks> | -to <names>]
[-hold]
[-setup]
[-start]
[-through <names>]
<path multiplier>

Table 6–19 describes the options for the set_multicycle_path
command.

Table 6–19. set_multicycle_path Command Options

Option Description

fall_from <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle
begins at the falling edge of <clocks>.

fall_to <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle
ends at the falling of <clocks>.

-from <names> The <names> is a collection or list of objects in the design. The <names> acts as the
start point of the path.

-hold | -setup Specifies the type of multicycle to be applied.

-rise_from <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle at
the rising edge of <clocks>.

-rise_to <clocks> The <names> is a collection or list of objects in the design. Specifies the multicycle
ends at the rising edge of <clocks>.

-start | -end Specifies whether the start or end clock acts as the source or destination for the
multicycle.

-through <names> The <names> is a collection or list of objects in the design. Specifies multicycle
passes through <names>.

-to <names> The <names> is a collection or list of objects in the design. The <names> acts as the
end point of the path.

<path multiplier> Specifies the multicycle multiplier value.

Altera Corporation 6–55
October 2007 Preliminary

Timing Exceptions

When the objects are timing nodes, the multicycle constraint only applies
to the path between the two nodes. When an object is a clock, the
multicycle constraint applies to all paths where the source node (-from)
or destination node (-to) is clocked by the clock.

Clock-as-Data Analysis

The Quartus II TimeQuest Timing Analyzer has the ability to analyze
clock paths as data paths. This analysis plays an important part when
determining arrival and required times for source synchronous
interfaces, or where clock path is used as a data path (for example, a clock
captured by a register. Figure 6–28 shows a typical source synchronous
interface.

Figure 6–28. Simple Source Synchronous Circuit

To constrain the path from port clk, through the PLL, to port clk_out
you can use a set_output_delay to the clk_out port, or you can use
the set_max_delay exception to the clk_out port (optionally
specifying the PLL clock or PLL output pin as the -from). Without the
clock as data analysis, this constraint will lose the phase shift associated
with the PLL.

With the clock as data analysis the path from port clk to port clk_out
will be analyzed as data path and includes the PLL phase shift. Two paths
are reported per analysis: one from the rising edge of the clock source and
one from the falling edge of the clock source.

Application Examples

This section describes specific examples for the set_multicycle_path
command.

Figure 6–29 shows a register-to-register path where the source clock,
src_clk, has a period of 10 ns and the destination clock, dst_clk, has
a period of 5 ns.

D Q DATA_OUT

CLK_OUT

DATA

CLK PLL

6–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 6–29. Register-to-Register Path

Figure 6–30 shows the respective timing diagrams for the source and
destination clocks and the default setup and hold relationships. The
default setup relationship is 5 ns and the default hold relationship is 0 ns.

Figure 6–30. Default Setup and Hold Timing Diagram

The default setup and hold relationships can be modified with the
set_multicycle_path command to accommodate the system
requirements.

Table 6–20 shows the commands used to modify either the launch or latch
edge times that the TimeQuest Timing Analyzer uses to determine a setup
relationship or hold relationship.

D Q D Qdata_in

dst_clk

src_clk

reg reg

data_out

0 10 20 30

setup
hold

Table 6–20. Commands to Modify Edge Times

Command Description of Modification

set_multicycle_path -setup -end Latch edge time of the setup relationship

set_multicycle_path -setup -start Launch edge time of the setup relationship

set_multicycle_path -hold -end Latch edge time of the hold relationship

set_multicycle_path -hold -start Latch edge time of the hold relationship

Altera Corporation 6–57
October 2007 Preliminary

Constraint and Exception Removal

Figure 6–31 shows the command used to modify the setup latch edge and
the resulting timing diagram. The command moves the latch edge time to
10 ns from the default 5 ns.

Figure 6–31. Modified Setup Diagram

latch every 2nd edge
set_multicycle_path -from [get_clocks src_clk] -to [get_clocks dst_clk] -setup -end 2

Constraint and
Exception
Removal

When using the Quartus II TimeQuest Timing Analyzer interactively, it is
usually necessary to remove a constraint or exception. In cases where
constraints and exceptions either become outdated or have been
erroneously entered, the Quartus II TimeQuest Timing Analyzer
provides a convenient way to remove them.

Table 6–21 lists commands that allow you to remove constraints and
exceptions from a design.

0 10 20 30

 new setup
default setup

Table 6–21. Constraint and Exception Removal

Command Description

remove_clock [-all] [<clock list>] Removes any clocks specified by <clock list> that have been
previously created. The -all option removes all declared clocks.

remove_clock_groups -all Removes all clock groups previously created. Specific clock
groups cannot be removed.

remove_clock_latency -source
<targets>

Removes the clock latency constraint from the clock specified by
<targets>.

remove_clock_uncertainty -from
<from clock> -to <to clock>

Removes the clock uncertainty constraint from <from clock> to
<to clock>.

remove_input_delay <targets> Removes the input delay constraint from <targets>.

remove_output_delay <targets> Removes the output delay constraint from <targets>.

reset_design Removes all constraints and exceptions in the design.

6–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Timing Reports The Quartus II TimeQuest Timing Analyzer provides real-time static
timing analysis result reports. Reports are generated only when
requested. Each report can be customized to display specific timing
information, excluding those fields not required.

This section describes the various report generation commands
supported by the Quartus II TimeQuest Timing Analyzer.

report_timing

Use the report_timing command to generate a setup, hold, recovery,
or removal report. Example 6–24 shows the report_timing command
and options.

Example 6–24. report_timing Command
report_timing
[-append]
[-detail <summary|path_only|path_and_clock|full_path>]
[-from <names>]
[-to <names>]
[-file <name>]
[-fall_from_clock <names> | -rise_from_clock <names> -from_clock <names>]
[-hold]
[-less_than_slack <slack limit>]
[-npaths <number>]
[-nworst <number>]
[-recovery]
[-removal]
[-setup]
[-stdout]
[-through <names>]
[-through <names>]
[-to_clock <names>]
[-panel_name <name>]
[-fall_to_clock <names> | -rise_to_clock <names>]

Table 6–22 describes the options for the report_timing command.

Table 6–22. report_timing Command Options (Part 1 of 2)

Option Description

-append Specifies that the current report be appended to the file specified by
the -file option.

-file <name> Indicates that the current report is written to the file <name>.

Altera Corporation 6–59
October 2007 Preliminary

Timing Reports

Example 6–25 shows a sample report that results from typing the
following command:

report_timing -from_clock clk_async -to_clock clk_async -setup -npaths 1 r

-detail
<summary|path_only|path_and_clock|
full_path>

Specifies whether or not the clock path detail is reported.
Path Only: Clock network delay is lumped together
Summary: Lists each individual path
Path and Clock: Clock network delay is shown in detail
Full Path: More clock network details, in particular for generated
clocks

-fall_from_clock <names> Specifies the falling edge of the <names> from the source register to be
analyzed. The options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-fall_to_clock <names> Specifies the falling edge of the <names> to the destination register to
be analyzed. The options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-file <names> Indicates that the current report is written to the file <name>.

-hold Specifies a clock hold analysis.

-less_than_slack <slack limit> Limits the paths to be reported to those the <slack limit> value.

-npaths <number> Specifies the number of paths to report.

-nworst <number> Restricts the number of paths per endpoint.

-panel_name <names> Specifies the name of the panel in the Reports pane.

-recovery Specifies a recovery analysis.

-removal Specifies a removal analysis.

-rise_from_clock <names> Specifies the rising edge of the <names> from the source register to be
analyzed. The options from_clock, fall_from_clock, and
rise_from_clock are mutually exclusive.

-rise_to_clock <names> Specifies the rising edge of the <names> to the destination register to
be analyzed. The options to_clock, fall_to_clock, and
rise_to_clock are mutually exclusive.

-setup Specifies a clock setup analysis.

-stdout Indicates the report be sent to stdout.

-through <names> Specifies the through node for the analysis.

-to <names> Specifies the to node for the analysis.

-to_clock <names> Specifies the destination clock for the analysis.

-panel_name <names> Sends the results to the panel and specifies the name of the new
panel.

Table 6–22. report_timing Command Options (Part 2 of 2)

Option Description

6–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 6–25. Sample report_timing Report
 Info:
===
 Info: To Node : dst_reg
 Info: From Node : src_reg
 Info: Latch Clock : clk_async
 Info: Launch Clock : clk_async
 Info:
 Info: Data Arrival Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ==========================
 Info: 0.000 0.000 launch edge time
 Info: 2.237 2.237 R clock network delay
 Info: 2.410 0.173 uTco src_reg
 Info: 2.410 0.000 RR CELL src_reg|regout
 Info: 3.407 0.997 RR IC dataout|datain
 Info: 3.561 0.154 RR CELL dst_reg
 Info:
 Info: Data Required Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ==========================
 Info: 10.000 10.000 latch edge time
 Info: 11.958 1.958 R clock network delay
 Info: 11.610 -0.348 uTsu dst_reg
 Info:
 Info: Data Arrival Time : 3.561
 Info: Data Required Time : 11.610
 Info: Slack : 8.049
 Info: ==

The report_timing command generates a report of the specified
analysis type—either setup, hold, recovery, or removal. Each report
contains various columns for the data arrival times and data required
time, specifically:

■ Total
■ Incr
■ RF
■ Type
■ Fanout
■ Location
■ Element

Altera Corporation 6–61
October 2007 Preliminary

Timing Reports

Each of the four column descriptions are described in the Table 6–23.

1 All columns appear only when a report panel is created. If the
report_timing output is directed to a file or the console, only
the Total, Incr, RF, Type and Node columns appear.

Table 6–24 provides a description of the possible node Type in the
report_timing reports.

Table 6–23. Timing Report Data

Column Name Description

Total Shows the accumulated time delay

Incr Shows the increment in delay

RF Shows the input and output transition of the element; this can be one of
the following: R, F, RR, RF, FR, FF

Type Shows the node type; refer to Table 6–24 of a description of the various
node types

Fanout Shows the number of fan-outs of the element

Location Shows the location of the element in the FPGA

Element Shows the name element

Table 6–24. Type Description

Type Name Description

CELL Indicates the element is either a register or a combinational element in the
FPGA; the CELL can be a register in the ALM, memory blocks, or DSP
blocks

COMP Indicates the PLL clock network compensation delay

IC Indicates the element is an interconnect delay

μtCO Indicates the element's micro clock-to-out time

μtSU Indicates the element’s micro setup time

μtH Indicates the element’s micro hold time

iEXT Indicates the element’s external input delay time

oEXT Indicates the element’s external output delay time

6–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_clock_transfers

Use the report_clock_transfers command to generate a report that
details all clock-to-clock transfers in the design. A clock-to-clock transfer
is reported if a path exists between two registers that are clocked by two
different clocks. Information such as the number of destinations and
sources is also reported.

Use the report_clock_transfers command to generate a setup,
hold, recovery, or removal report.

Example 6–26 shows the report_clock_transfers command and
options.

Example 6–26. report_clock_transfers Command
report_clock_transfers
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-recovery]
[-removal]
[-panel_name <name>]

Table 6–25 describes the options for the report_clock_transfers
command.

Table 6–25. report_clock_transfers Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-hold Creates a clock transfer summary for hold analysis.

-setup Creates a clock transfer summary for setup analysis.

-stdout Indicates the report be sent to stdout.

-recovery Creates a clock transfer summary for recovery analysis.

-removal Creates a clock transfer summary for removal analysis.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–63
October 2007 Preliminary

Timing Reports

report_clocks

Use the report_clocks command to generate a report that details all
clocks in the design. The report contains information such as type, period,
waveform (rise and fall), and targets for all clocks in the design.

Example 6–27 shows the report_clocks command and options.

Example 6–27. report_clocks Command
report_clocks
[-append]
[-desc]
[-file <name>]
[-stdout]
[-panel_name <name>]

Table 6–26 describes the options for the report_clocks command.

report_min_pulse_width

A minimum pulse width checks that a clock high or low pulse is
sustained enough to recognize an actual change in the clock signal. A
failed minimum pulse width check indicates that the register may not
recognize the clock transition. Use the report_min_pulse_width
command to generate a report that details the minimum pulse width for
all clocks in the design. The report contains information for high and low
pulses for all clocks in the design.

The report_min_pulse_width command also reports minimum
period checks for RAM and DSP, as well as I/O edge rate limits for input
and output clock ports. For output ports, the port must either have a clock
(or generated clock) assigned to it or used as the -reference_pin for
an input/output delays.

Table 6–26. report_clocks Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-desc Specifies the clock names to sort in descending order. The default is ascending
order.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

6–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The report_min_pulse_width command checks the I/O edge rate
limits, but does not always perform the check for output clock ports. For
the report_min_pulse_width command to check the I/O edge rate
limits for output clock ports the output clock port must:

■ Have a clock or generated clock constraint assigned to it

or

■ Be used as a -reference_pin for an Input or Output delay
constraint

Each register in the design is reported twice per clock that clocks the
register: once for the high pulse and once for the low pulse. Example 6–28
shows the report_min_pulse_width command and options.

Example 6–28. report_min_pulse_width Command
report_min_pulse_width
[-append]
[-file <name>]
[-nworst <number>]
[-stdout]
[<targets>]
[-panel_name <name>]

Table 6–27 describes the options for the report_min_pulse_width
command.

Table 6–27. report_min_pulse_width Command Options

Option Description

-append If output is sent to a file, this option appends the result to that file. Otherwise, the file
is overwritten.

-file <name> Sends the results to a file.

-nworst <number> Specifies the number of pulse width checks to report. The default is 1.

-stdout Redirects the output to stdout via messages; only required if another output
format, such as a file, has been selected and is also to receive messages.

-targets Specifies registers.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–65
October 2007 Preliminary

Timing Reports

report_net_timing

Use the report_net_timing command to generate a report that details
the delay and fan-out information about a net in the design. A net
corresponds to a cell’s output pin.

Example 6–29 shows the report_net_timing command and options.

Example 6–29. report_net_timing Command
report_net_timing
[-append]
[-file <name>]
[-nworst_delay <number>]
[-nworst_fanout <number>]
[-stdout]
[-panel_name <name>]

Table 6–28 describes the options for the report_net_timing
command.

Table 6–28. report_net_timing Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the
-file option.

-file <name> Indicates that the current report is written to the file <name>.

-nworst_delay <number> Specifies that <number> worst net delays be reported.

-nworst_fanout <number> Specifies that <number> worst net fan-outs be reported.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

6–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_sdc

Use the use the report_sdc command to generate a report of all the
Synopsys Design Constraints in the project.

Example 6–30 shows the report_sdc command and options.

Example 6–30. report_sdc Command
report_sdc
[-ignored]
[-append]
[-file]
[-stdout]
[-panel_name <name>]

Table 6–29 describes the options for the report_sdc command.

report_ucp

Use the report_ucp command to generate a report of all unconstrained
paths in the design.

Example 6–31 shows the report_ucp command and options.

Example 6–31. report_ucp Command
report_ucp
[-append]
[-file <name>]
[-hold]
[-setup]
[-stdout]
[-summary]
[-panel_name <name>]

Table 6–29. report_sdc Command Options

Option Description

-ignored Reports assignments that were ignored.

-append Specifies that the current report be appended to the file specified by the -file
option.

-file Indicates that the current report is written to the file <name>.

-stdout Indicates that the report is sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–67
October 2007 Preliminary

Timing Reports

Table 6–30 describes the options for the report_ucp command.

Table 6–31 summarizes all reporting commands available in the
Quartus II TimeQuest Timing Analyzer.

Table 6–30. Option Descriptions for report_ucp

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-hold Report all unconstrained hold paths.

-setup Report all unconstrained setup paths.

-stdout Indicates the report be sent to stdout.

-summary Generates only the summary panel.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Table 6–31. Reports from the Tasks Pane and Tcl Commands (Part 1 of 2)

Task Pane Report Tcl Command Description

Report Setup Summary create_timing_summary -setup Generates a clock setup summary for
all defined clocks.

Report Hold Summary create_timing_summary -hold Generates a clock hold summary for all
defined clocks.

Report Recovery
Summary

create_timing_summary -recovery Generates a clock recovery summary
for all defined clocks.

Report Removal
Summary

create_timing_summary -removal Generates a clock removal summary
for all defined clocks.

Report Clocks report_clocks Generates a clock summary for all
defined clocks.

Report Clock Transfers report_clock_transfers Generates a clock transfer summary
for all clock-to-clock transfers in the
design.

Report SDC report_sdc Generates a summary of all SDC file
commands read.

Report Unconstrained
Paths

report_ucp Generates a summary of all
unconstrained paths in the design.

Report Timing report_timing Generates a detailed summary for
specific paths in the design.

Report Net Timing report_net_timing Generates a detailed summary for
specific nets in the design.

6–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_path

Use the report_path command to report the longest delay paths and
the corresponding delay value.

Example 6–32 shows the report_path command and options.

Example 6–32. report_path Command
report_path
[-append]
[-file <name>]
[-from <names>]
[-npaths <number>]
[-stdout]
[-through]
[-to <names>]
[-panel_name <name>]

Table 6–32 describes the options for the report_path command.

Report Minimum Pulse
Width

report_min_pulse_width Generates a detailed summary for
specific registers in the design.

Create Slack Histogram create_slack_histogram Generates a detailed histogram for a
specific clock in the design.

Table 6–31. Reports from the Tasks Pane and Tcl Commands (Part 2 of 2)

Task Pane Report Tcl Command Description

Table 6–32. report_path Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-from <names> Specifies the source node for the analysis.

-npaths <number> Specifies the number of paths to report.

-stdout Indicates the report be sent to stdout.

-through <name> Specifies the through node for the analysis.

-to <names> Specifies the destination node for the analysis.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–69
October 2007 Preliminary

Timing Reports

report_datasheet

Use the report_datasheet command to generate a datasheet report
which summarizes the timing characteristics of the entire design. It
reports setup (tsu), hold (th), clock-to-output (tco), minimum
clock-to-output (mintco), propagation delay (tpd), and minimum
propagation delay (mintpd) times. Example 6–33 shows the
report_datasheet command and options.

Example 6–33. report_datasheet Command
report_datasheet
[-append]
[-file <name>]
[-stdout]
[panel_name <name>]

Table 6–33 describes the options for the report_datasheet command.

The delays are reported with respect to a base clock or port for which they
are relevant. If there is a case where there are multiple paths for a clock,
the maximum delay of the longest path is taken for the tsu, th, tco, and
tpd, and the minimum delay of the shortest path is taken for mintco and
mintpd.

Table 6–33. report_datasheet Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

6–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

report_rskm

Use the report_rskm command to generate a report that details the
receiver skew margin for LVDS receivers.

Example 6–34 shows the report_rskm command and options.

Example 6–34. report_rskm Command
report_rskm
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 6–34 describes the options for the report_rskm command.

report_tccs

Use the report_tccs command to generate a report that details the
channel-to-channel skew margin for LVDS transmitters.

Example 6–35 shows the report_tccs command and options.

Example 6–35. report_tccs Command
report_tccs
[-append]
[-file <name>]
[-panel_name <name>]
[-quiet]
[-stdout]

Table 6–34. report_rskm Command Options

Type Name Description

-append Specifies that the current report be appended to the file specified by the
–file option.

-file <name> Indicates that the current report is written to the file <name>.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-stdout Indicates the report be sent to stdout.

Altera Corporation 6–71
October 2007 Preliminary

Timing Reports

Table 6–35 describes the options for the report_tccs command.

report_path

Use the report_path command to generate a report that details the
longest delay paths between any two arbitrary keeper nodes.

Example 6–36 shows the report_path command and options.

Example 6–36. report_path Command
report_path
[-append]
[-file <name>]
[-from <names>]
[-min_path]
[-npaths <number>]
[-nworst <number>]
[-panel_name <name>]
[-stdout]
[-summary]
[-through <names>]
[-to <names>]

Table 6–36 describes the options for the report_path command.

Table 6–35. report_tccs Command Options

Type Name Description

-append Specifies that the current report be appended to the file specified by the
–file option.

-file <name> Indicates that the current report is written to the file <name>.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-quiet Specifies that nothing will be printed if there are no LVDS receivers in the
design.

-stdout Indicates the report be sent to stdout.

Table 6–36. report_path Command Options (Part 1 of 2)

Type Name Description

-append Specifies that the current report be appended to the file specified by the
-file option.

-file <name> Indicates that the current report is written to the file <name>.

6–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The delay path reported cannot pass through a keeper node, for
example, a register or port. Instead, the delay path must be from
the output pin of a keeper node to the input pin of a keeper
node.

Figure 6–32 shows a simple design with a register-to-register path.

Figure 6–32. Simple Register-to-Register Path

Example 6–37 shows the report generated from the following command:

report_path -from [get_pins {reg1|regout}] -to [get_pins \
{reg2|datain}] -npaths 1 -panel_name "Report Path" –stdout

-from <names> The <names> is a collection or list of objects in the design. The <names>
acts as the start point of the path.

-min_path Displays the minimum delay paths.

-npaths <number> Specifies the number of paths to report.

-nworst <number> Specifies the maximum number of paths to report for each endpoint.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-stdout Indicates the report be sent to stdout.

-summary Creates a single table with a summary of each path found.

-through <names> The <names> is a collection or list of objects in the design. Specifies false
path passes through <names>.

-to <names> The <names> is a collection or list of objects in the design. The <names>
acts as the end point of the path.

Table 6–36. report_path Command Options (Part 2 of 2)

Type Name Description

reg1
D Q

reg
D Q

data_in_a

data_in_b

clk_i

c0

c1

PLL

and2 data_out

clk_out

Altera Corporation 6–73
October 2007 Preliminary

Timing Reports

Example 6–37. report_path from Keeper Output Pin to Keeper Input Pin
Info: ===

 Info: From Node : reg1|regout
 Info: To Node : reg2|datain
 Info:
 Info: Path:
 Info:
 Info: Total (ns) Incr (ns) Type Element
 Info: ========== ========= == ==== ===================
 Info: 0.000 0.000 reg1|regout
 Info: 0.206 0.206 RR IC and2|datae
 Info: 0.360 0.154 RR CELL and2|combout
 Info: 0.360 0.000 RR IC reg2|datain
 Info:
 Info: Total Path Delay : 0.360
 Info: ===

Example 6–38 shows the report generated from the following command:

> report_path -from [get_ports data_in_a] -to [get_pins \
{reg2|regout}] -npaths 1

Example 6–38. report_path from Keeper-to-Keeper Output Pin
Info: Report Path: No paths were found
0 0.000

No paths were reported in Example 6–38 because the destination passes
through an input pin of a keeper node.

check_timing

Use the check_timing command to generate a report on any potential
problem with the design or applied constraints. Not all check_timing
results are serious issues, and the results should be examined to see if the
results are desired. Example 6–39 shows the check_timing command
and options.

Example 6–39. check_timing Command
check_timing
[-append]
[-file <name>]
[-include <check_list>]
[-stdout]
[-panel_name <name>]

6–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–37 describes the options for the check_timing command.

Table 6–38 describes the possible checks.

Table 6–37. check_timing Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file option.

-file <name> Indicates that the current report is written to the file <name>.

-include Indicates that a check is to be performed with the <check_list>. Refer to Table 6–38 for a list
of checks.

-stdout Indicates the report be sent to stdout.

-panel_name
<name>

Sends the results to the panel and specifies the name of the new panel.

Table 6–38. Possible Checks (Part 1 of 2)

Option Description

no_clock Checks that registers have at least one clock at their clock pin, and that ports
determined to be clocks have a clock assigned to them.

multiple_clock Checks that registers have at most one clock at their clock pin. When multiple
clocks reach a register's clock pin, both clocks will be used for analysis.

generated_clock Checks that generated clocks are valid. Generated clocks must have a source
that is clocked by a valid clock. They must also not depend on each other in a
loop (clk1 cannot have clk2 as a source if clk2
already uses clk1 as a source).

no_input_delay Checks that every input port that is not determined to be a clock has an input
delay set on it.

no_output_delay Checks that every output port has an output delay set on it.

partial_input_delay Checks that input delays are complete. Makes sure that input delays have a
rise-min, fall-min, rise-max, and fall-max portion set.

partial_output_delay Checks that output delays are complete. Makes sure that output delays have a
rise-min, fall-min, rise-max, and fall-max portion set.

reference_pin Checks if reference pins specified in set_input_delay and
set_output_delay using the reference_pin option are valid. A
reference_pin is valid if the clock option specified in the same
set_input_delay/set_output_delay command matches the clock that
is in the direct fan-in of the reference_pin. Being in the direct fan-in of the
reference_pin means that there must be no keepers between the clock and
the reference_pin.

Altera Corporation 6–75
October 2007 Preliminary

Timing Reports

Example 6–40 shows how the check_timing command can be used.

Example 6–40. The check_timing Command
Constrain design
create_clock -name clk -period 4.000 -waveform { 0.000 2.000 } \

[get_ports clk]
set_input_delay -clock clk2 1.5 [get_ports in*]
set_output_delay -clock clk 1.6 [get_ports out*]
set_false_path -from [get_keepers in] -through [get_nets r1] -to \

[get_keepers out]

Check if there were any problems
check_timing -include {loops latches no_input_delay partial_input_delay}

report_clock_fmax_summary

Use the report_clock_fmax_summary to report potential fMAX for
every clock in the design, regardless of the user-specified clock periods.
fMAX is only computed for paths where the source and destination
registers or ports are driven by the same clock. Paths of different clocks,
including generated clocks, are ignored. For paths between a clock and its
inversion, fMAX is computed as if the rising and falling edges are scaled
along with fMAX, such that the duty cycle (in terms of a percentage) is
maintained.

latency_override Checks if the clock latency constraint that is set on a port or pin overrides the
more generic clock latency set on a clock. Clock latency can be set on a clock,
where the latency applies to all keepers clocked by the clock, whereas clock
latency can also be set on a port or pin, where the latency applies to registers in
the fan-out of the port or pin.

loops Checks that there are no strongly connected components in the design. These
loops prevent a design from being properly analyzed. Indicates that loops exist
but were marked so that they would not be traversed.

latches Checks if there are latches in the design. The Quartus II TimeQuest Timing
Analyzer warns the user that the latches exist and cannot be properly analyzed.

Table 6–38. Possible Checks (Part 2 of 2)

Option Description

6–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 6–41 shows the report_clock_fmax_summary command
and options.

Example 6–41. report_clock_fmax_summary Command
report_clock_fmax_summary
[-append]
[-file <name>]
[-panel_name <name>]
[-stdout]

Table 6–39 describes the options for the
report_clock_fmax_summary command.

create_timing_summary

Reports the worst-case Clock Setup and Clock Hold slacks and endpoint
TNS (total negative slack) per clock domain. Total negative slack is the
sum of all slacks less than zero for each destination register or port in the
clock domain.

Example 6–42 shows the create_timing_summary command and
options.

Example 6–42. create_timing_summary Command
create_timing_summary
[-append]
[-file <name>]
[-hold]
[-panel_name <name>]
[-recovery]
[-removal]
[-setup]
[-stdout]

Table 6–39. report_clock_fmax_summary Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-stdout Indicates the report be sent to stdout.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

Altera Corporation 6–77
October 2007 Preliminary

Timing Analysis Features

Table 6–40 describes the options for the create_timing_summary
command.

Timing Analysis
Features

Multi-Corner Analysis

Multi-corner analysis allows a design to be verified under a variety of
operating conditions (voltage, process, and temperature) while
performing a static timing analysis on the design.

Use the set_operating_conditions command to change the
operating conditions of the device used for static timing analysis.

Example 6–43 shows the set_operating_conditions command and
options.

Example 6–43. set_operating_conditions Command
set_operating_conditions
[-model <fast|slow>]
[-speed <speed grade>]
[-temperature <value in ºC>]
[-voltage <value in mV>]
[<operating condition Tcl object>]

Table 6–40. create_timing_summary Command Options

Option Description

-append Specifies that the current report be appended to the file specified by the -file
option.

-file <name> Indicates that the current report is written to the file <name>.

-hold Generates a clock hold check summary report.

-panel_name <name> Sends the results to the panel and specifies the name of the new panel.

-recovery Generates a recovery check summary report.

-removal Generates a removal check summary report.

-setup Generates a clock setup check summary report.

-stdout Indicates the report be sent to stdout.

6–78 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 6–41 describes the options for the report_net_timing
command.

1 If an operating condition Tcl object is used, the model, speed,
temperature, and voltage options are not required. If an
operating condition Tcl object is not used, the model must be
specified, and the -speed, -temperature, and -voltage options are
optional, using the appropriate defaults for the device where
applicable.

Table 6–42 shows the available operating conditions that can be set for
each device family.

1 Use the command
get_available_operating_conditions to obtain a list of
available operating conditions for the target device.

Table 6–41. report_net_timing Command Options

Option Description

-model <fast|slow> Specifies the timing model.

-speed <speed grade> Specifies the device speed grade.

-temperature <value in ºC> Specifies the operating temperature.

-voltage <value in mV> Specifies the operating voltage.

<operating condition Tcl object> Specifies the operating condition Tcl object that specifies the operating
conditions.

Table 6–42. Device Family Operating Conditions

Device Family
Available Conditions Operating Condition Tcl

ObjectsModel Voltage (mV) Temp (°C)

Stratix III Slow
Slow
Fast

1100
1100
1100

85
0
0

slow_1100mv_85c
slow_1100mv_0c
fast_1100mv_0c

Cyclone III Slow
Slow
Fast

1200
1200
1200

85
0
0

slow_1200mv_85c
slow_1200mv_0c
fast_1200mv_0c

Stratix II Slow
Fast

N/A N/A slow
fast

Cyclone II Slow
Fast

N/A N/A slow
fast

Altera Corporation 6–79
October 2007 Preliminary

Timing Analysis Features

Example 6–44 shows how to set the operating conditions for a Stratix III
design to the slow model, 1100 mV, and 85°C.

Example 6–44. Setting Operating Conditions with Individual Values
set_operating_conditions -model slow -temperature 85 -voltage 1100

Alternatively, the operating conditions in Example 6–44 can be set with
the Tcl object as shown in Example 6–45.

Example 6–45. Setting Operating Conditions with a Tcl Object
set_operating_conditions slow_1100mv_85c

Advanced I/O Timing and Board Trace Model Assignments

The Quartus II TimeQuest Timing Analyzer is able to use Advanced I/O
Timing and Board Trace Model assignments to model I/O buffer delays
in your design. The Advanced I/O Analysis feature can be turned ON or
OFF in the Settings dialog box under the TimeQuest Timing Analyzer
option.

If you turn ON or OFF the Advanced I/O Timing or change Board Trace
Model assignments and do not recompile before you analyze timing, you
must use the -force_dat option when you create the timing netlist.
Type the following command at the Tcl console of the Quartus II
TimeQuest Timing Analyzer:

create_timing_netlist -force_dat r
If you turn ON or OFF the Advanced I/O Timing or change Board Trace
Model assignments and do recompile before you analyze timing, you do
not need to use the -force_dat option when you create the timing
netlist. You can create the timing netlist with the
create_timing_netlist command, or with the Create Timing
Netlist task in the Tasks pane.

f For more information about the Advanced I/O Timing feature, refer to
the I/O Management chapter in volume 2 of the Quartus II Handbook.

Wildcard Assignments and Collections

To simplify the task of applying constraints to many nodes in a design,
the Quartus II TimeQuest Timing Analyzer accepts the “*” and “?”
wildcard characters. Use these wildcard characters to reduce the number
of individual constraints you must specify in your design.

6–80 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The “*” wildcard character matches any string. For example, given an
assignment made to a node specified as reg*, the Quartus II TimeQuest
Timing Analyzer searches for and applies the assignment to all design
nodes that match the prefix reg with none, one, or several characters
following, such as reg1, reg[2], regbank, and reg12bank.

The “?” wildcard character matches any single character. For example,
given an assignment made to a node specified as reg?, the Quartus II
TimeQuest Timing Analyzer searches and applies the assignment to all
design nodes that match the prefix “reg” and any single character
following, for example, reg1, rega, and reg4.

Both the collection commands get_cells and get_pins have three
options that allow you to refine searches that include the wildcard
character. To refine your search results, select the default behavior, the
-hierarchical option, or the -compatibility option.

1 The pipe character is used to separate one hierarchy level from
the next in the Quartus II TimeQuest Timing Analyzer. For
example, <absolute full cell name>|<pin suffix> represents a
hierarchical pin name with the “|” separating the hierarchy
from the pin name.

When you use the collection commands get_cells and get_pins
without an option, the default search behavior is performed on a
per-hierarchical level of the pin name, that is, the search is performed
level by level. A full hierarchical name may contain multiple hierarchical
levels where a “|” is used to separate the hierarchical levels, and each
wildcard character represents only one hierarchical level. For example,
”*” represents the first hierarchical level and “*|*” represents the first
and second hierarchical levels.

When you use the collection commands get_cells and get_pins with
the -hierarchical option, a recursive match is performed on the
relative hierarchical path name of the form <short cell name>|<pin name>.
The search is performed on the node name, for example, the last hierarchy
of the name, and not the hierarchy path. Unlike the default behavior, this
option does not limit the search to each hierarchy level represented by the
pipe character.

1 The pipe character cannot be used in the search with the
get_cells -hierarchical option. The pipe character can
be used with the get_pins collection search.

Altera Corporation 6–81
October 2007 Preliminary

Timing Analysis Features

When you use the collection commands get_cells and get_pins with
the -compatibility option, the search performed is similar to that of
the Quartus II Classic Timing Analyzer. This option searches the entire
hierarchical path, and pipe characters are not treated as special
characters.

Assuming the following cells exist in a design:

foo
foo|bar

and the following pin names:

foo|dataa
foo|datab
foo|bar|datac
foo|bar|datad

Table 6–43 shows the results of using these search strings.

Resetting a Design

Use the reset_design command to remove all timing constraints and
exceptions from the design under analysis. The command removes all
clocks, generated clocks, derived clocks, input delays, output delays,
clock latency, clock uncertainty, clock groups, false paths, multicycle
paths, min delays, and max delays.

Table 6–43. Sample Search Strings and Search Results

Search String Search Result

get_pins *|dataa foo|dataa

get_pins *|datac <empty>

get_pins *|*|datac foo|bar|datac

get_pins foo*|* foo|dataa, foo|datab

get_pins -hierarchical *|*|datac <empty> (1)

get_pins -hierarchical foo|* foo|dataa, foo|datab

get_pins -hierarchical *|datac foo|bar|datac

get_pins -hierarchical foo|*|datac <empty> (1)

get_pins -compatibility *|datac foo|bar|datac

get_pins -compatibility *|*|datac foo|bar|datac

Note to Table 6–43:
(1) Due to the additional *|*| in the search string, the search result is <empty>.

6–82 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

This command provides a convenient way to return to the initial state of
analysis without the need to delete and re-create a new timing netlist.

The TimeQuest
Timing Analyzer
GUI

The Quartus II TimeQuest Timing Analyzer provides an intuitive and
easy-to-use GUI that allows you to efficiently constrain and analyze your
designs. The GUI consists of the following panes:

■ “The Quartus II Software Interface and Options” described on
page 6–83

■ “View Pane” described on page 6–85
■ “Tasks Pane” described on page 6–87
■ “Console Pane” described on page 6–90
■ “Report Pane” described on page 6–90
■ “Constraints” described on page 6–90
■ “Name Finder” described on page 6–92
■ “Target Pane” described on page 6–94
■ “SDC Editor” described on page 6–94

Altera Corporation 6–83
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Each pane provides features that enhance productivity (Figure 6–33).

Figure 6–33. The TimeQuest GUI

The Quartus II Software Interface and Options

The Quartus II software allows you to configure various options for the
Quartus II TimeQuest Timing Analyzer report generation that are
generated in the Compilation Report for the design.

The TimeQuest Timing Analyzer settings, in the Settings dialog box,
allow you to configure the options shown in Table 6–44.

Table 6–44. The Quartus II TimeQuest Timing Analyzer Settings (Part 1 of 2)

Options Description

SDC files to include in the project Adds and removes SDC files associated with the project

Enable Advanced I/O Timing Generates advanced I/O timing results from board trace models
specified for each pin

6–84 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The options shown in Table 6–44 only control the reports
generated in the Compilation Report, and do not control the
reports generated in the Quartus II TimeQuest Timing Analyzer.

Figure 6–34 shows the TimeQuest Timing Analyzer setting.

Figure 6–34. TimeQuest Timing Analyzer Settings

Enable multicorner timing analysis during
compilation

Generates multiple reports for all available operating conditions of
the target device

Report worst-case paths during compilation Generates worst-case path reports per clock domain

Tcl Script File for customizing report during
compilation

Specifies any custom scripts to be sourced for any custom report
generation

Table 6–44. The Quartus II TimeQuest Timing Analyzer Settings (Part 2 of 2)

Options Description

Altera Corporation 6–85
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

View Pane

The View pane is the main viewing area for the timing analysis results.
Use the View pane to view summary reports, custom reports, or
histograms. Figure 6–35 shows the View pane after you select the
Summary (Setup) report from the Report pane.

Figure 6–35. Summary (Setup) Report

View Pane: Splitting

For the proper analysis of timing results, comparison of multiple reports
is extremely important. To facilitate multiple report viewing, the View
pane supports window splitting. Window splitting divides the View
pane into multiple windows, allowing you to view different reports
side-by-side.

You can split the View pane into multiple windows using the split icon
located in the upper right hand corner of the View pane. Drag the icon in
different directions to generate additional window views in the View
pane. For example, if you drag the split icon to the left, the View pane
creates a new window to the right of the current window (Figure 6–36).

Figure 6–36. Splitting the View Pane to the Left (Before and After Split Left)

6–86 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you drag the split icon diagonally, the View pane creates three new
windows in the View pane (Figure 6–37).

Figure 6–37. Splitting the View Pane Diagonally (Before and After Diagonal Split)

Drag the split icon downward to create a new window directly below the
current window.

View Pane: Removing Split Windows

You can remove windows that you create in the View pane using the split
icon by dragging the border of the window over the window you wish to
remove (Figure 6–38).

Altera Corporation 6–87
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Figure 6–38. Removing a Split Window (Before and After Split is Removed)

Tasks Pane

Use the Tasks pane to access common commands such as netlist setup
report generation.

Common commands are located in the Tasks pane: Open Project and
Write SDC File, and Reset Design. The other commands, including
timing netlist setup and the generation of reports, are contained in the
following folders:

■ Netlist Setup
■ Reports

1 Each command in the Tasks pane has an equivalent Tcl
command that is displayed in the Console pane when the
command runs.

Opening a Project and Writing a Synopsys Design Constraints File

To open a project in the Quartus II TimeQuest Timing Analyzer,
double-click the Open Project task. If you launch the Quartus II
TimeQuest Timing Analyzer from the Quartus II software GUI, the
project opens automatically.

6–88 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can add or remove constraints from the timing netlist after the
Quartus II TimeQuest Timing Analyzer reads the initial SDC file. After
the file is read, the initial SDC file becomes outdated compared to the
constraints in the Quartus II TimeQuest Timing Analyzer. Use the Write
SDC File command to generate an SDC file that is up-to-date and reflects
the current state of constraints in the Quartus II TimeQuest Timing
Analyzer.

Netlist Setup Folder

The Netlist Setup folder contains tasks that are used to set up the timing
netlist for timing analysis. The three tasks located in this folder are Create
Timing Netlist, Read SDC File, and Update Timing Netlist.

Use the Create Timing Netlist task to create a netlist that the Quartus II
TimeQuest Timing Analyzer uses to perform static timing analysis. This
netlist is used only for timing analysis by the Quartus II TimeQuest
Timing Analyzer.

1 You must always create a timing netlist before you perform
static timing analysis with the Quartus II TimeQuest Timing
Analyzer.

Use the Read SDC File command to apply constraints to the timing
netlist. By default, the Read SDC File command reads the
<current revision>.sdc file.

1 Use the read_sdc command to read an SDC file that is not
associated with the current revision of the design.

Use the Update Timing Netlist command to update the timing netlist
after you enter constraints. You should use this command if any
constraints are added or removed from the design.

Reports Folder

The Reports folder contains commands to generate timing summary
reports of the static timing analysis results. The nine commands located
in this folder are summarized in Table 6–45.

Table 6–45. Reports Folder Commands (Part 1 of 2)

Report Task Description

Report fMAX Summary Generates a fMAX summary report for all clocks in the design.

Report Setup Summary Generates a clock setup summary report for all clocks in the design.

Altera Corporation 6–89
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Macros Folder

The Macros folder contains commands that perform custom tasks
available in the Quartus II TimeQuest Timing Analyzer utility package.
These commands are: Report All Summaries, Report Top Failing Paths,
and Create All Clock Histograms.

Table 6–46 describes the commands available in the Macros folder.

Report Hold Summary Generates a clock hold summary report for all clocks in the design.

Report Recovery Summary Generates a recovery summary report for all clocks in the design.

Report Removal Summary Generates a removal summary report for all clocks in the design.

Report Clocks Generates a summary report of all created clocks in the design.

Report Clock Transfers Generates a summary report of all clock transfers detected in the design.

Report Minimum Pulse Width Generates a summary report of all minimum pulse widths in the design.

Report SDC Generates a summary report of the constraints read from the SDC file.

Report Unconstrained Paths Generates a summary report of all unconstrained paths in the design.

Report Ignored Constraints Generates a summary report of all ignored SDC constraints for the design.

Report Datasheet Generates a datasheet report for the design.

Table 6–45. Reports Folder Commands (Part 2 of 2)

Report Task Description

Table 6–46. Macros Folder Commands

Macro Task Description

Report All Summaries This command runs the Report Setup Summary, Report Hold Summary,
Report Recovery Summary, Report Removal Summary, and Minimum Pulse
Width commands to generate all summary reports.

Report Top Failing Paths This command generates a report containing a list of top failing paths.

Create All Clock Histograms This command runs the Create Slack Histogram command to generate a clock
histogram for all clocks in the design.

Report All I/O Timings This command generates a report of all timing paths that start or end at a device
port.

Report All Core Timings This command generates a report of all timing paths that start and end at the
device register.

6–90 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Console Pane

The Console pane is both a message center for the Quartus II TimeQuest
Timing Analyzer, and an interactive Tcl. The Console pane has two tabs:
the Console tab and the History tab. All messages, such as info and
warning messages, appear in this pane. Also, the Console tab allows you
to enter and run Synopsys Design Constraints and Tcl commands. The
Console tab shows the Tcl equivalent of all commands that you run in the
Tasks pane. The History tab records all the Synopsys Design Constraints
and Tcl commands that are run.

1 To run the commands located in the History tab after the timing
netlist has been updated, right-click the command, and click
Rerun.

You can copy Tcl commands from the Console and History tabs to easily
generate Tcl scripts to perform timing analysis.

Report Pane

Use the Report pane to access all reports generated from the Tasks pane,
and by any custom report commands. When you select a report in the
Report pane, the report is shown in the active window in the View pane.

1 If a report is out-of-date with respect to the current constraints,
a “?” icon is shown next to the report.

Constraints

Use the Constraints menu to access commonly used constraints,
exceptions, and commands. The following commands are available on
the Constraints menu:

■ Create Clock
■ Create Generated Clock
■ Set Clock Latency
■ Set Clock Uncertainty
■ Set Clock Groups
■ Remove Clock

For example, use the Create Clock dialog box to create clocks in your
design. Figure 6–39 shows the Create Clock dialog box.

Altera Corporation 6–91
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

Figure 6–39. Create Clock Dialog Box

The following commands specify timing exceptions, and are available on
the Constraints menu:

■ Set False Path
■ Set Multicycle Path
■ Set Maximum Delay
■ Set Minimum Delay

All the dialog boxes used to specify timing constraints or exceptions from
commands have an SDC command field. This field contains the SDC
command that is run when you click OK.

1 All commands and constraints created in the Quartus II
TimeQuest Timing Analyzer user interface are echoed in the
Console pane.

The constraints specified with Constraints menu commands are not
saved to the current SDC file automatically. You must run the Write SDC
File command to save your constraints.

The following commands are available on the Constraints menu in the
Quartus II TimeQuest Timing Analyzer:

■ Generate SDC File from QSF
■ Read SDC File
■ Write SDC File

6–92 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Generate SDC File from QSF command runs a Tcl script that
converts the Quartus II Classic Timing Analyzer constraints in a QSF file
to an SDC file for the Quartus II TimeQuest Timing Analyzer. The file
<current revision>.sdc is created by this command.

f For information about the Generate SDC File from QSF command, refer
to the Switching to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

The Generate SDC File from QSF command attempts to convert all
timing constraints and exceptions in the QSF file to their equivalent SDC
file constraints. However, not all QSF file constraints are convertible to
SDC file constraints. Review the SDC file after it is created to ensure that
all constraints have been successfully converted.

The Read SDC File command reads the <current revision>.sdc file.

When you select the Write SDC File command, an up-to-date SDC file
that reflects the current state of constraints in the Quartus II TimeQuest
Timing Analyzer is generated.

Name Finder

Use the Name Finder dialog box to select the target for any constraints or
exceptions in the Quartus II TimeQuest Timing Analyzer GUI. The Name
Finder allows you to specify collections, filters, and filter options. The
Collections field in the Name Finder dialog box allows you to specify the
type of name to select. To select the type, in the Collection list, select the
desired collection API including:

■ get_cells
■ get_clocks
■ get_keepers
■ get_nets
■ get_nodes
■ get_pins
■ get_ports
■ get_registers

For more information about the various collection APIs, refer to
“Collections” on page 6–23.

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

Altera Corporation 6–93
October 2007 Preliminary

The TimeQuest Timing Analyzer GUI

The Filter field allows you to filter names based on your own criteria
including wildcards characters. You can further refine your results using
the following filter options.

■ Case-insensitive
■ Hierarchical
■ Compatibility mode

For more information about the filter options, refer to “Wildcard
Assignments and Collections” on page 6–79.

The Name Finder dialog box also provides an SDC command field that
displays the currently selected name search command. You can copy the
value from this field and use it for other constraint target fields. The
Name Finder dialog box is shown in Figure 6–40.

Figure 6–40. Name Finder Dialog Box

6–94 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Target Pane

When using the TimeQuest GUI, you have the ability to split the View
pane into multiple windows. The splitting feature allows you to display
multiple reports in the View pane. After splitting the View pane, the last
active window is updated with any new reports. You can change this
behavior by changing the state of each split window. You can do this by
clicking on the target circle in the upper right-hand corner (Figure 6–41).
Table 6–47 describes the state of each window.

Figure 6–41. Target Pane

Clicking on the circle in the upper right-hand corner of an active window
changes the state of the window.

SDC Editor

The TimeQuest GUI also provides an SDC editor. The SDC editor
provides an easy and convenient way to write, edit, and read SDC files
directly from the tool. The SDC editor is context sensitive. After an SDC
constraint or exception has been entered, a tooltip appears that shows the
options and format for the constraint or exception, as shown in
Figure 6–42.

View Pane Window State

Table 6–47. View Pane Window State

State Description

Partially Filled Red Circle Indicates that the active window will display any new reports.

Fully Filled Red Circle Indicates that the window, independent of it being the active window, will display
any new reports.

Empty Circle Indicates that the window will not display any new reports.

Altera Corporation 6–95
October 2007 Preliminary

Conclusion

Figure 6–42. SDC Editor

1 The Constraints menu, on the menu bar, allows you to bring up
the Constraints dialog box. After you have finished entering all
required parameters, the SDC is inserted at the current cursor
position.

Conclusion The Quartus II TimeQuest Timing Analyzer caters to the needs of
complex designs, resulting in increased productivity and efficiency
through its intuitive user interface, support of industry-standard
constraints format, and scripting capabilities. The Quartus II TimeQuest
Timing Analyzer is a next-generation timing analysis tool that supports
the industry-standard SDC format and allows designers to create,
manage, and analyze complex timing constraints, and to perform
advanced timing verification.

Referenced
Documents

This chapter references the following documents:

■ Introduction to Quartus II Manual
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ SDC and TimeQuest API Reference Manual
■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in

volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf

6–96 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 6–48 shows the revision history for this chapter.

Table 6–48. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Updated for the Quartus II software version 7.1, including:
● Updated organization flow of the Compilation Flow with

TimeQuest Guidelines, Timing Analysis Overview, and
Specify Design Timing Requirements sections

● Added new information on Clock as Data Analysis

Updated for the Quartus II software
version 7.2.

May 2007
v7.1.0

Updated for the Quartus II software version 7.1, including:
● Added support of report_path in “Timing Reports”

on page 6–57
● Added report_timing information, especially on

page 6-11
● Added new information under the following headings:

● “Derive Clock Uncertainty” on page 6–40
● “report_rskm” on page 6–69
● “report_tccs” on page 6–69
● “report_path” on page 6–70

● Replaced the “Fast Timing Model Analysis” section with
“Multi-Corner Analysis” on page 6–76

● Performed general 7.1 updates

Updated for the Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November
2006 v6.1.0

Updated for the Quartus II software version 6.1, including:
● New “Getting Started” section, including descriptions of

the Create Clock and Create Generated Clock dialog
boxes/commands, sections on Specifying Clock
Requirements, Specifying Input and Output Port
Requirements, and Reporting

● SDC Editor
● Usability enhancements to the GUI
● Updated SDC support
● Numerous changes throughout chapter

Updated for the Quartus II software
version 6.1.

July 2006
v6.0.1

Updated for the Quartus II software version 6.0.1:
● Fixed typo in report_clock_transfers command on page

6-15.

—

May 2006
v6.0.0

Initial release. —

Altera Corporation 7–1
October 2007

7. Switching to the Quartus II
TimeQuest Timing Analyzer

Introduction The Quartus II TimeQuest Timing Analyzer provides more powerful
timing analysis features than the Quartus II Classic Timing Analyzer.
This chapter describes the benefits of switching to the Quartus II
TimeQuest Timing Analyzer, the differences between the Quartus II
TimeQuest and Quartus II Classic Timing Analyzers, and the process you
should follow to switch a design from using the Quartus II Classic Timing
Analyzer to the Quartus II TimeQuest Timing Analyzer.

Benefits of Switching to the Quartus II TimeQuest Analyzer

Increasing design complexity requires a timing analysis tool with greater
capabilities and flexibility. The Quartus II TimeQuest Timing Analyzer
offers the following benefits:

■ Industry-standard Synopsys Design Constraint (SDC) support
increases productivity.

■ Simple, flexible reporting uses industry-standard terminology and
makes timing sign-off faster.

f For more detailed information about the features and capabilities of the
Quartus II TimeQuest Timing Analyzer, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

These features ease constraint and analysis of modern, complex designs.
SDC constraints support complex clocking schemes, high-speed
interfaces, and more logic. An example includes designs that have
multiplexed clocks, regardless of whether they are switched on or off
chip. Designs with source-synchronous interfaces, such as DDR memory
interfaces, are much simpler to constrain and analyze with the Quartus II
TimeQuest Timing Analyzer.

There are three main differences between the Quartus II Classic and
Quartus II TimeQuest Timing Analyzers. Unlike the Quartus II Classic
Timing Analyzer, the Quartus II TimeQuest Timing Analyzer has the
following three benefits:

■ All clocks are related by default. (Refer to “Related and Unrelated
Clocks” on page 7–13.)

■ The default hold multicycle value is zero. (Refer to “Hold
Multicycle” on page 7–24.)

QII53019-7.2.0

7–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ You must constrain all ports and ripple clocks. (Refer to “Automatic
Clock Detection” on page 7–19.)

Chapter Contents

“Switching to the Quartus II TimeQuest Analyzer” describes the
four-step process you should follow to switch a design to the Quartus II
TimeQuest Timing Analyzer.

“Differences Between Quartus II TimeQuest and Quartus II Classic
Timing Analyzers” on page 7–5 covers terminology, constraints, clocks,
hold multicycle, and other differences.

“Timing Assignment Conversion” on page 7–33 is a comprehensive
guide to converting Quartus II Classic QSF timing assignments to
Quartus II TimeQuest SDC constraints.

“Conversion Utility” on page 7–55 describes a utility that helps you
convert Classic QSF timing assignments toQuartus II TimeQuest SDC
constraints.

“Notes” on page 7–68 includes notes about support for specific features
in the current version of the Quartus II TimeQuest Timing Analyzer.

Switching to the
Quartus II
TimeQuest
Analyzer

You should use the following process to switch a design from the
Quartus II Classic Timing Analyzer to the Quartus II TimeQuest Timing
Analyzer. The process is composed of the following steps, which are
described in detail in the next sections:

1. Compile your design and perform timing analysis with the
Quartus II Classic Timing Analyzer (page 7–2).

2. Create an SDC file that contains timing constraints (page 7–3).

3. Perform timing analysis with the Quartus II TimeQuest Timing
Analyzer and examine the reports (page 7–4).

4. Set the default timing analyzer to TimeQuest (page 7–4).

Compile Your Design

To begin, compile your design with the Quartus® II software. You should
run the Quartus II Classic Timing Analyzer during compilation because
it is easier to convert your assignments to SDC constraints when you
create an SDC file. To run the Quartus II Classic Timing Analyzer in the
Quartus II GUI, on the Processing menu, click Start, then click Start

Altera Corporation 7–3
October 2007 Preliminary

Switching to the Quartus II TimeQuest Analyzer

Timing Analyzer. To run the Quartus II Classic Timing Analyzer if you
are a command-line user, type quartus_tan <project> r at a system
command prompt.

Create an SDC File

The Quartus II TimeQuest Timing Analyzer supports SDC format
constraints. If you are familiar with SDC terminology, you can create an
SDC file with any text editor and skip to “Perform Timing Analysis with
the Quartus II TimeQuest Timing Analyzer” on page 7–4. Name the SDC
file <revision>.sdc (<revision> is the current revision of your project) and
save it in your project directory.

f Refer to the SDC and TimeQuest Tcl API Reference Manual for a TimeQuest
SDC command reference.

Alternately, you can use a Quartus II TimeQuest conversion utility to help
you convert the timing assignments in an existing QSF file to
corresponding SDC constraints.

Conversion Utility

To run the Quartus II TimeQuest conversion utility, click Generate SDC
file from QSF on the Constraints menu. You can also run the conversion
utility by typing either of the following commands at a system command
prompt:

v quartus_tan --qsf2sdc <project name> r

or

v quartus_sta --qsf2sdc <project name> r
The SDC file created by the conversion utility is named <revision>.sdc.

For information about how to run the Quartus II TimeQuest Timing
Analyzer, refer to “Run the Quartus II TimeQuest Analyzer” on page 7–4.

1 If you use the conversion utility, you must review the SDC file to
ensure it is correct and complete, and make changes if necessary.
Refer to “Constraint File Priority” on page 7–10 for the
recommended way to make changes.

The conversion utility cannot convert some types of Quartus II Classic
assignments for the following reasons:

■ No corresponding SDC constraint exists

7–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Multiple SDC constraints are valid, so correct conversion requires
knowledge of the intended function of your design

You must manually convert any such assignments based on the
guidelines in “Timing Assignment Conversion” on page 7–33.

Perform Timing Analysis with the Quartus II TimeQuest Timing
Analyzer

When your SDC file is complete, use the reporting capabilities in the
Quartus II TimeQuest Timing Analyzer. If you use the Quartus II
TimeQuest GUI, double-click any of the reports listed in the Task pane.
You can also type commands in the Quartus II TimeQuest Tcl shell to
generate reports.

You should also review “Notes” on page 7–68 to ensure the Quartus II
TimeQuest Timing Analyzer supports all stages of your design flow.

f For complete information about how to use the Quartus II TimeQuest
Timing Analyzer, and descriptions of commands and reports, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook, and the SDC and TimeQuest Tcl API Reference
Manual.

Run the Quartus II TimeQuest Analyzer

If you are using the Quartus II software, to open the Quartus II
TimeQuest GUI, on the Tools menu, click TimeQuest Timing Analyzer.
The Quartus II TimeQuest GUI automatically opens the project you have
open in the Quartus II GUI.

If you use the system command prompt to open the Quartus II
TimeQuest Timing Analyzer, type quartus_staw r to open the
Quartus II TimeQuest GUI, or type quartus_sta -s r to start the
Quartus II TimeQuest Timing Analyzer in Tcl shell mode. Use the
project_open command to open your project, or, on the File menu, click
Open Project.

Set the Default Timing Analyzer

To use the Quartus II TimeQuest Timing Analyzer as the default timing
analyzer for your project, turn on Use TimeQuest Timing Analyzer
during compilation. In the Quartus II GUI, on the Assignments menu,
click Settings, then click the Timing Analysis Settings category, and
select Use TimeQuest Timing Analyzer during compilation. You can
make the same setting in your project's QSF file with the following Tcl
command:

Altera Corporation 7–5
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

set_global_assignment -name \
USE_TIMEQUEST_TIMING_ANALYZER ON

This setting directs the Quartus II software to use the Quartus II
TimeQuest Timing Analyzer instead of the Quartus II Classic Timing
Analyzer.

The setting to make the Quartus II TimeQuest Timing Analyzer the
default Timing Analyzer is specific to each project, so you can decide on
a per-project basis whether to use the Quartus II TimeQuest Timing
Analyzer or the Quartus II Classic Timing Analyzer.

If you want to use the Quartus II Classic Timing Analyzer instead of the
Quartus II TimeQuest timing analyzer, ensure Use Classic Timing
Analyzer during compilation is selected. You can delete the
<revision>.sdc file, because the Quartus II Classic Timing Analyzer does
not use it.

In the Quartus II software, a timing analyzer performs two functions:

■ Processing timing constraints and exceptions that affect how your
design is placed and routed

■ Reporting after place and route is complete so you know whether the
design meets timing requirements

Although you can use one timing analyzer to process timing constraints
during place and route and the other for reporting, you should use the
same timing analyzer for both. The Quartus II Classic Timing Analyzer
uses assignments in the QSF file, and theQuartus II TimeQuest Timing
Analyzer uses constraints in the SDC file. Any differences between the
timing assignments in the two files may cause inconsistent results.

Differences
Between
Quartus II
TimeQuest and
Quartus II
Classic Timing
Analyzers

TheQuartus II TimeQuest Timing Analyzer is different from the
Quartus II Classic Timing Analyzer in the following ways:

■ Terminology (page 7–5)
■ Constraints (page 7–7)
■ Clocks (page 7–13)
■ Hold Multicycle (page 7–24)
■ Fitter Behavior (page 7–27)
■ Reporting (page 7–27)
■ Scripting API (page 7–32)

Terminology

This section introduces the industry-standard SDC terminology that the
Quartus II TimeQuest Timing Analyzer uses.

7–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more detailed information about this terminology, refer to the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Netlist

The Quartus II TimeQuest Timing Analyzer uses SDC naming
conventions for netlists. Netlists consist of cells, pins, nets, ports, and
clocks.

■ Cells are instances of fundamental hardware elements in Altera®
FPGAs (such as logic elements, look-up tables, and registers).

■ Pins are inputs and outputs of cells.
■ Nets are connections between output pins and input pins.
■ Ports are top-level module inputs and outputs (device inputs and

outputs).
■ Clocks are abstract objects outside the netlist.

1 The terminology of pins and ports is opposite to that of the
Quartus II Classic Timing Analyzer. In the Quartus II Classic
Timing Analyzer, ports are inputs and outputs of cells, and pins
are top-level module inputs and outputs (device inputs and
outputs).

Figure 7–1 shows a simple design, and Figure 7–2 shows the Quartus II
TimeQuest netlist representation of the design. Netlist elements in
Figure 7–2 are labeled to illustrate the SDC terminology.

Figure 7–1. Sample Design

ina

clk

inb

inrega

inregb

ab
outreg out

Altera Corporation 7–7
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Figure 7–2. Quartus II TimeQuest Timing Analyzer Netlist

Collections

In addition to standard SDC collections, the Quartus II TimeQuest Timing
Analyzer supports the following Altera-specific collection types:

■ Keepers—Non-combinational nodes in a netlist
■ Nodes—Nodes can be combinational, registers, latches, or ports

(device inputs and outputs)
■ Registers—Registers or latches in the netlist

You can use the get_keepers, get_nodes, or get_registers commands to
access these collections.

Constraints

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers store
constraints in different files, support different methods for constraint
entry, and prioritize constraints differently. The following sections detail
these differences.

Constraint Files

The Quartus II TimeQuest Timing Analyzer stores all SDC timing
constraints in SDC files. The Quartus II Classic Timing Analyzer stores all
timing assignments in your project’s Quartus II Settings File (QSF) file.
The QSF file contains all your project’s assignments and settings except
for the Quartus II TimeQuest Timing Analyzer constraints. The

inb

outreg

combout datain

clk clk~clkctrl

ina inrega

inregb

clk

regout

ab

out

datain

cell=atom/wysiwygpin = iterm
pin = oterm

inclk[0]

combout port = I/O

Sample Pin Names:
 ina|combout
 inrega|datain
 inrega|clk
 inrega|regout
 ab|combout
 ab|datac

Sample Net Names:
 ina~combout
 ab
 clk~clkctrl
 inrega

7–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Quartus II TimeQuest Timing Analyzer ignores the timing assignments
in your QSF file except when the conversion utility converts Quartus II
Quartus II Classic QSF timing assignments to Quartus II TimeQuest SDC
constraints. There is no automatic process that keeps timing constraints
synchronized between your QSF and SDC files. If you want to keep the
constraints synchronized, you must convert them manually.

Constraint Entry

In the Quartus II Classic Timing Analyzer, you enter timing assignments
with the Settings dialog box, the Assignment Editor, or with commands
in Tcl scripts. The Quartus II TimeQuest Timing Analyzer does not use the
Assignment Editor for its constraints, and you cannot use the Assignment
Editor to enter SDC constraints. You must use one of the following
methods to enter Quartus II TimeQuest constraints:

■ Enter constraints at the Tcl prompt in the Quartus II TimeQuest
Timing Analyzer

■ Enter constraints in an SDC file with a text editor or SDC editor
■ Use the constraint entry commands on the Constraints menu in the

Quartus II TimeQuest GUI

You can enter timing assignments for the Quartus II Classic Timing
Analyzer even if no timing netlist exists for your design. The Quartus II
TimeQuest Timing Analyzer requires that a netlist exist for interactive
constraint entry. Each Quartus II TimeQuest Timing Analyzer constraint
is a Tcl command evaluated in real-time, if entered directly in the Tcl
console. As part of this evaluation, the Quartus II TimeQuest Timing
Analyzer validates all names. To do this, SDC commands can only be
evaluated after a netlist is created. An SDC file can be created at any time
using the Quartus II TimeQuest Timing Analyzer or any other text editor,
but a netlist is required before an SDC file can be sourced. You must create
a timing netlist in the Quartus II TimeQuest Timing Analyzer before you
can enter constraints with either of the following interactive methods:

■ At the Tcl console of the Quartus II TimeQuest Timing Analyzer
■ With commands on the Constraints menu in the Quartus II

TimeQuest GUI

If you enter constraints with a text editor separate from the Quartus II
TimeQuest Timing Analyzer, no timing netlist is required.

To create a timing netlist in the Quartus II TimeQuest Timing Analyzer,
use the create_timing_netlist command, or double-click Create Timing
Netlist in the Task pane of the Quartus II TimeQuest GUI.

Altera Corporation 7–9
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

If you have never compiled your design, and you want to use the
Quartus II TimeQuest Timing Analyzer to enter constraints interactively,
you must synthesize your design before you create a timing netlist. To
synthesize your design, type quartus_map <project name> r at a system
command prompt, or, if you use the Quartus II GUI, ensure that your
project is open, then click Start on the Processing menu, and click Start
Analysis and Synthesis.

To create the netlist, open the Quartus II TimeQuest Timing Analyzer.
Then, on the Netlist menu, click Create Timing Netlist..., select Post-map,
and click OK. Alternately, type create_timing_netlist
-post_map r at the Tcl Console.

Time Units
Enter time values are in default time units of nanoseconds (ns) with up to
three decimal places. Note that the Quartus II TimeQuest Timing
Analyzer does not display the default time unit when it displays time
values.

You can specify a different default time unit with the
set_time_format -unit <default time unit> command, or specify another
unit when you enter a time value, for example, 300ps.

1 Specifying time units with the value is not part of the standard
SDC format. This is a Quartus II TimeQuest extension.

You can specify clock constraints with period or frequency in the
Quartus II TimeQuest Timing Analyzer. For example, you can use either
of the following constraints:

■ create_clock -period 10.000
(assuming default units and decimal places)

■ create_clock -period "100 MHz"
■ create_clock -period "10 ns"

MegaCore Functions
If you change any MegaCore function settings and regenerate the core
after you convert your timing assignments to SDC constraints, you must
manually update the SDC constraints or reconvert your assignments. You
must update or reconvert, because changes to MegaCore function
settings can affect timing assignments embedded in the hardware
description language files of the core. The timing assignments are not
converted automatically when the core settings change.

7–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 You should make a backup copy of your SDC file before
reconverting assignments. If you made changes to the SDC file,
you can manually copy the updated MegaCore timing
constraints to your SDC file.

Bus Name Format
In the Quartus II Classic Timing Analyzer, you can make a timing
assignment to all bits in a bus with the bus name (or the bus name
followed by an asterisk enclosed in square brackets) as the target. For
example, to make an assignment to all bits of a bus called address, use
address or address[*] as the target of the assignment.

In the Quartus II TimeQuest Timing Analyzer, you must use the bus name
followed by square brackets enclosing an asterisk, like this: address[*].

Constraint File Priority

The Quartus II TimeQuest Timing Analyzer searches for SDC files with a
specific priority, as shown in Figure 7–3.

Figure 7–3. SDC File Search Order

Are any

SDC files specified in
the Add Files project

dialog box?

No

Yes

Does the SDC file
<revision>.sdc

exist?

No

Yes

Continue with the chosen
SDC file(s)

The TimeQuest Timing
Analyzer

does not create nor
convert any constraints

Altera Corporation 7–11
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

If you specify constraints in multiple SDC files, or if you use a single SDC
file with a name other than <revision>.sdc, you must add the files to your
project so the Quartus II TimeQuest Timing Analyzer can find them. If
you use the Quartus II software, click Add/Remove Files in Project on
the Project menu, and add the appropriate SDC files. You can also add
SDC files to your project with the following Tcl command in your QSF
file, repeated once for each SDC file:

set_global_assignment -name SDC_FILE <SDC file name>

The Quartus II TimeQuest Timing Analyzer reads constraint files from
the files list in the order they are listed, first to last.

1 If you use an SDC file created by the conversion utility, you
should place it before all other SDC files in the list of files. When
conflicting constraints apply to the same node, the last
constraint has the highest priority. Therefore, SDC files with
your additions or changes should be listed after the SDC file
created by the conversion utility, so your constraints have higher
priority.

Beginning with version 6.1, the Quartus II TimeQuest Timing Analyzer
does not run the conversion utility automatically when it cannot find an
SDC file according to the priority shown in Figure 7–3. It may prompt you
to run the conversion utility from the Constraints menu in the Quartus II
TimeQuest GUI.

1 You must review the SDC file as you would when manually
running the conversion utility. Refer to “Reviewing Conversion
Results” on page 7–64 for information about how to review the
converted constraints.

If no SDC file exists when you run the Quartus II Fitter, and you have
turned on Use TimeQuest Timing Analyzer during compilation, the
Fitter does not create an SDC file automatically, but it attempts to meet a
default 1 GHz constraint on all clocks in your design.

Constraint Priority

The Quartus II Classic Timing Analyzer prioritizes assignments based on
the specificity of the nodes to which they are assigned. The more specific
an assignment is, the higher its priority. The Quartus II TimeQuest
Timing Analyzer simplifies these precedence rules. When overlaps occur
in the nodes to which the constraints apply, constraints at the bottom of
the file take priority over constraints at the top of the file.

7–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

As an example, in the Quartus II Classic Timing Analyzer, point-to-point
multicycle assignments have higher priority than single point multicycle
assignments. The two assignments in Example 7–1 result in a multicycle
assignment of 2 between A_reg and all nodes beginning with B,
including B_reg. The single point assignment does not apply to paths
from A_reg to B_reg, because the specific point-to-point assignment
takes priority over the general single point assignment.

Example 7–1. Quartus II Classic Timing Analyzer Multicycle Assignments
set_instance_assignment -name MULTICYCLE -from A_reg -to B* 2
set_instance_assignment -name MULTICYCLE -to B_reg 3

Example 7–2 shows SDC versions of the Quartus II Classic Timing
Analyzer timing assignments above. However, the Quartus II TimeQuest
Timing Analyzer evaluates the constraints top to bottom (regardless of
point-to-point or single point), so the path from A_reg to B_reg receives
a multicycle exception of 3 because it is second in order.

Example 7–2. Quartus II TimeQuest Timing Analyzer Multicycle Exceptions
set_multicycle_path -from [get_keepers A_reg] -to [get_keepers B*] 2
set_multicycle_path -to [get_keepers B_reg] 3

Ambiguous Constraints

Because of new capabilities in the Quartus II TimeQuest Timing
Analyzer, some Quartus II Classic assignments can be ambiguous after
conversion by the conversion utility. These assignments require manual
updating based on your knowledge of your design.

Figure 7–4 shows a ripple clock circuit. The explanation that follows
shows an ambiguous constraint for that circuit, and how to edit the
constraint to remove the ambiguity in the Quartus II TimeQuest Timing
Analyzer.

Figure 7–4. Ripple Clock Circuit

reg_dreg_c

clk_a clk_b

Altera Corporation 7–13
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

In the Quartus II Classic Timing Analyzer, the following QSF multicycle
assignment from clk_a to clk_b with a value of 2 applies to paths
transferring data from the clk_a domain to the clk_b domain.

set_instance_assignment -name MULTICYCLE -from clk_a -to clk_b 2

In Figure 7–4, this assignment applies to the path from reg_c to reg_d.
In the Quartus II TimeQuest Timing Analyzer, the use of the clock node
names in the following equivalent multicycle exception is ambiguous.

set_multicycle_path -setup -from clk_a -to clk_b 2

The exception could apply to the path between clk_a and clk_b, or it
could apply to paths from one ripple clock domain to the other ripple
clock domain (reg_c to reg_d).

The Quartus II TimeQuest exceptions shown in Example 7–3 are not
ambiguous because they use collections to explicitly specify the targets of
the exception.

Example 7–3. Unambiguous Quartus II TimeQuest Timing Analyzer Exceptions
Applies to path from reg_c to reg_d
set_multicycle_path -setup -from [get_clocks clk_a] \

-to [get_clocks clk_b] 2
Applies to path from clk_a to clk_b
set_multicycle_path -setup -from [get_registers clk_a] \

-to [get_registers clk_b] 2

Clocks

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers
detect, analyze, and report clocks differently. The following sections
describe these differences.

Related and Unrelated Clocks

In the Quartus II TimeQuest Timing Analyzer, all clocks are related by
default, and you must add assignments to indicate unrelated clocks.
However, in the Quartus II Classic Timing Analyzer, all base clocks are
unrelated by default. All derived clocks of a base clock are related to each
other, but are unrelated to other base clocks and their derived clocks.

7–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 You can change the default behavior of the Quartus II Classic
Timing Analyzer to treat all clocks as related clocks. On the
Assignments menu, click Timing Analysis Settings. Click More
Settings and then select Cut paths between unrelated clock
domains. Ensure that the setting is off.

Figure 7–5 on page 7–14 shows a simple circuit with a path between two
clock domains. The Quartus II TimeQuest Timing Analyzer analyzes the
path from reg_a to reg_b because all clocks are related by default. The
Quartus II Classic Timing Analyzer does not analyze the path from
reg_a to reg_b by default.

Figure 7–5. Cross Clock Domain Path

To make clocks unrelated in the Quartus II TimeQuest Timing Analyzer,
use the set_clock_groups command with the -exclusive option. For
example, the following command makes clock_a and clock_b
unrelated, so the Quartus II TimeQuest Timing Analyzer does not
analyze paths between the two clock domains.

set_clock_groups -exclusive -group {clock_a} -group {clock_b}

Clock Offset

In the Quartus II TimeQuest Timing Analyzer, clocks can have non-zero
values for the rising edge of the waveform, a feature that the Quartus II
Classic Timing Analyzer does not support. To specify an offset for your
clock, use the waveform option for the create_clock command to specify
the rising and falling edge times, as shown in this example:

-waveform {<rising edge time> <falling edge time>}

data_out

clock_a

data_a
reg_a

clock_b

reg_b

Altera Corporation 7–15
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Figure 7–6 shows a clock constraint with an offset in the Quartus II
TimeQuest Timing Analyzer GUI.

Figure 7–6. Create Clock Screen

Clock offset affects setup and hold relationships. Launch and latch edges
are evaluated after offsets are applied. Depending on the offset, the setup
relationship can be the offset value, or the difference between the period
and offset. You should not use clock offset to emulate latency. You should
use the clock latency constraint instead. Refer to “Offset and Latency
Example” on page 7–15 for an example that illustrates the different effects
of offset and latency.

Clock Latency

The Quartus II TimeQuest Timing Analyzer does not ignore early clock
latency and late clock latency differences when the clock source is the
same, as the Quartus II Classic Timing Analyzer does. When you specify
latencies, you should take common clock path pessimism into account
and use uncertainty to control pessimism differences for clock-to-clock
data transfers. Unlike clock offset, clock latency affects skew, and launch
and latch edges are evaluated before latencies are applied, so the setup
relationship is always equal to the period.

Offset and Latency Example

Figure 7–7 shows a simple register-to-register circuit used to illustrate the
different effects of offset and latency. The examples show why you should
not use clock offset to emulate clock latency. You should always turn on

7–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

the Enable Clock Latency option in the Quartus II Classic Timing
Analyzer. This option is in the More Settings box of the Timing Settings
dialog box.

Figure 7–7. Simple Circuit for Offset and Latency Examples

The period for clk is 10 ns, and the period for the PLL output is 10 ns.
The PLL compensation value is –2 ns. The network delay from the PLL to
reg_a equals the network delay from clk to reg_b. Finally, the delay
from reg_a to reg_b is 3 ns.

Clock Offset Scenario
Treat the PLL compensation value of –2 ns as a clock offset of –2 ns with
a clock skew of 0 ns. Launch and latch edges are evaluated after offsets
are applied, so the setup relationship is 2 ns (Figure 7–8).

Figure 7–8. Setup Relationship Using Offset

reg_breg_a

clk

in out
3 ns

PLL

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Offset

Altera Corporation 7–17
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Equation 1 shows how to calculate the slack value for the path from
reg_a to reg_b.

(1)

The negative slack requires a multicycle assignment with a value of 2 and
a hold multicycle assignment with a value of 1 to correct. With these
assignments from reg_a to reg_b, the setup relationship is then 12 ns,
resulting in a slack of 9 ns.

Clock Latency Scenario
Treat the PLL compensation value of –2 ns as latency with a clock skew of
2 ns. Because launch and latch edges are evaluated before latencies are
applied, the setup relationship is 10 ns (the period of clk and the PLL)
(Figure 7–9).

Figure 7–9. Setup Relationship Using Latency

Equation 2 shows how to calculate the slack value for the path from
reg_a to reg_b.

(2)

The slack of 9 ns is identical to the slack computed in the previous
example, but because this example uses latency instead of offset, no
multicycle assignment is required.

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 2ns 0ns 3ns–+=

slack 1ns–=

PLL

clk

0 2 10 12 20 22

Setup Relationship Using Latency

slack clock arrival data arrival–=

slack setup relationship clock skew reg_to_reg delay–+=

slack 10ns 2ns 3ns–+=

slack 9ns=

7–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Clock Uncertainty

The Quartus II Classic Timing Analyzer ignores Clock Setup Uncertainty
and Clock Hold Uncertainty assignments when you specify a setup or
hold relationship between two clocks. However, the Quartus II
TimeQuest Timing Analyzer does not ignore clock uncertainty when you
specify a setup or hold relationship between two clocks. Figures 7–10 and
7–11 illustrate the different behavior between the Quartus II TimeQuest
and Quartus II Classic Timing Analyzers.

In both figures, the constraints are identical. There is a 20-ns period for
clk_a and clk_b. There is a setup relationship (a set_max_delay
exception in the Quartus II TimeQuest Timing Analyzer) of 7 ns from
clk_a to clk_b, and a clock setup uncertainty constraint of 1 ns from
clk_a to clk_b. The actual setup relationship in the Quartus II
TimeQuest Timing Analyzer is 1 ns less than in the Quartus II Classic
Timing Analyzer because of the way they analyze clock uncertainty.

Figure 7–10. Quartus II Classic Timing Analyzer Behavior

Figure 7–11. Quartus II TimeQuest Timing Analyzer Behavior

0 ns 7 ns 10 ns

Setup Relationship with & without Uncertainty

0 7 106

Setup Relationship with Uncertainty

Setup Relationship without Uncertainty

Clock Setup Uncertainty

Altera Corporation 7–19
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Derived and Generated Clocks

Generated clocks in the Quartus II TimeQuest Timing Analyzer are
different than derived clocks in the Quartus II Classic Timing Analyzer.
In the Quartus II Classic Timing Analyzer, the source of a derived clock
must be a base clock. However, in the Quartus II TimeQuest Timing
Analyzer, the source of a generated clock can be any other clock in the
design (including virtual clocks), or any node to which a clock propagates
through the clock network. Because generated clocks are related through
the clock network, you can specify generated clocks for isolated modules,
such as IP, without knowing the details of the clocks outside of the
module.

In the Quartus II TimeQuest Timing Analyzer, you can specify generated
clocks relative to specific edges and edge shifts of a master clock, a feature
that the Quartus II Classic Timing Analyzer does not support.

Figure 7–12 shows a simple ripple clock that you should constrain with
generated clocks in the Quartus II TimeQuest Timing Analyzer.

Figure 7–12. Generated Clocks Circuit

The Quartus II TimeQuest Timing Analyzer constraints shown in
Example 7–4 constrain the clocks in the circuit above. Note that the source
of each generated clock can be the input pin of the register itself, not the
name of another clock.

Example 7–4. Generated Clock Constraints
create_clock –period 10 –name clk clk
create_generated_clock –divide_by 2 –source reg_a|CLK -name reg_a reg_a
create_generated_clock –divide_by 2 –source reg_b|CLK -name reg_b reg_b

Automatic Clock Detection

The Quartus II Classic and Quartus II TimeQuest Timing Analyzers
identify clock sources of registers that do not have a defined clock source.
The Quartus II Classic Timing Analyzer traces back along the clock

clk

reg_a reg_b

7–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

network, through registers and logic, until it reaches a top-level port in
your design. The Quartus II TimeQuest Timing Analyzer also traces back
along the clock network, but it stops at registers.

You can use two SDC commands in the Quartus II TimeQuest Timing
Analyzer to automatically detect and create clocks for unconstrained
clock sources:

■ derive_clocks—creates clocks on sources of clock pins that do not
already have at least one clock sourcing the clock pin

■ derive_pll_clocks—identifies PLLs and creates generated clocks on
the clock output pins

derive_clocks Command
Figure 7–13 shows a simple circuit with a divide-by-2 register and
indicates the clock network delays as A, B, and C. The following
explanation describes how the Quartus II Classic and Quartus II
TimeQuest Timing Analyzers detect the clocks in Figure 7–13.

Figure 7–13. Circuit for derive_clocks Example

The Quartus II Classic Timing Analyzer detects that clk is the clock
source for registers reg_a, reg_b, and reg_c. It detects that clk is the
clock source for reg_c because it traces back along the clock network for
reg_c through reg_a, until it finds the clk port. The Quartus II Classic
Timing Analyzer computes the clock arrival time for reg_c as A + C.

The derive_clocks command in the Quartus II TimeQuest Timing
Analyzer creates two base clocks, one on the clk port and one on reg_a,
because the command does not trace through registers on the clock
network. The clock arrival time for reg_c is C because the clock starts at
reg_a.

reg_creg_b

reg_a

clk

A

B

C

Altera Corporation 7–21
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

To make theQuartus II TimeQuest Timing Analyzer compute the same
clock arrival time (A + C) as the Quartus II Classic Timing Analyzer for
reg_c, make the following modifications to the clock constraints created
by the derive_clocks command:

■ Change the base clock named reg_a to a generated clock
■ Make the source the clock pin of reg_a (reg_a|clk) or the

port clk
■ Add a -divide_by 2 option

These modifications cause the clock arrival times to reg_c to match
between the Quartus II Classic Timing Analyzer and the Quartus II
TimeQuest Timing Analyzer. However, the clock for reg_c is shown as
reg_a instead of clk, and the launch and latch edges may change for
some paths due to the divide-by-2.

You can use the derive_clocks command at the beginning of your design
cycle when you do not know all of the clock constraints for your design,
but you should not use it during timing sign-off. Instead, you should
constrain each clock in your design with the create_clock or
create_generated_clocks commands.

The derive_clocks command detects clocks in your design using the
following rules:

1. An input clock port is detected as a clock only if there are no other
clocks feeding the destination registers.

a. Input clock ports are not detected automatically if they feed
only other base clocks.

b. If other clocks feed the port’s register destinations, the port is
assumed to be an enable or data port for a gated clock.

c. When no clocks are defined, and multiple clocks feed a
destination register, the auto-detected clock is selected
arbitrarily.

2. All ripple clocks (registers in a clock path) are detected as clocks
automatically using the same rules for input clock ports. If both an
input port and a register feed register clock pins, the input port is
selected as the clock.

7–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following examples show how the derive_clocks command detects
clocks in the simple circuit, shown in Figure 7–14.

Figure 7–14. Simple Circuit 1

■ If you do not make any clock settings, and then you run
derive_clocks, it detects a_in as a clock according to rule 1, because
there are no other clocks feeding the register.

■ If you create a clock with b as its target, and then you run
derive_clocks, it does not detect a_in as a clock according to rule 1a,
because a_in feeds only another clock.

The following examples show how the derive_clocks command detects
clocks in the simple circuit shown in Figure 7–15.

Figure 7–15. Simple Circuit 2

■ If you do not make any clock settings and then you run
derive_clocks, it selects a clock arbitrarily, according to rule 1c.

■ If you create a clock with a_in as its target and then you run
derive_clocks, it does not detect b_in as a clock according to rule 1b,
because another clock (a_in) feeds the register.

derive_pll_clocks Command
The derive_pll_clocks command names the generated clocks according
to the names of the PLL output pins by default, and you cannot change
these generated clock names. If you want to use your own clock names,
you must use the create_generated_clock command for each PLL output
clock and specify the names with the -name option.

If you use the PLL clock-switchover feature, the derive_pll_clocks
command creates additional generated clocks on each output clock pin of
the PLL based on the secondary clock input to the PLL. This may require
set_clock_groups or set_false_path commands to cut the primary and
secondary clock outputs. For information about how to make clocks
unrelated, refer to “Related and Unrelated Clocks” on page 7–13.

ba_in

a_in
b_in

Altera Corporation 7–23
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Hold Relationship

The Quartus II TimeQuest and Quartus II Classic Timing Analyzers
choose the worst-case hold relationship differently. Refer to Figure 7–16
for sample waveforms to illustrate the different effects.

Figure 7–16. Worst-Case Hold

The Quartus II Classic Timing Analyzer first identifies the worst-case
setup relationship. The worst-case setup relationship is Setup B. Then the
Quartus II Classic Timing Analyzer chooses the worst-case hold
relationship (Hold Check B1 or Hold Check B2) for that specific setup
relationship, Setup B. The Quartus II Classic Timing Analyzer chooses
Hold Check B2 for the worst-case hold relationship.

However, the Quartus II TimeQuest Timing Analyzer calculates worst-
case hold relationships for all possible setup relationships and chooses
the absolute worst-case hold relationship. The Quartus II TimeQuest
Timing Analyzer checks two hold relationships for every setup
relationship:

■ Data launched by the current launch edge not captured by the
previous latch edge (Hold Check A1 and Hold Check B1)

■ Data launched by the next launch edge not captured by the current
latch edge (Hold Check A2 and Hold Check B2)

The Quartus II TimeQuest Timing Analyzer chooses Hold Check A2 as
the absolute worst-case hold relationship.

Clock Objects

The Quartus II Classic Timing Analyzer treats nodes with clock settings
assigned to them as special objects in the timing netlist. Any node in the
timing netlist with a clock setting is treated as a clock object, regardless of
its actual type, such as a register. When a register has a clock setting

0 ns 8 ns 16 ns 24 ns 30 ns

Source Clock

Destination Clock

Hold
Check A1

Hold
Check B2

Setup A Setup B
Hold

Check A2
Hold

Check B1

7–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

assigned to it, the Quartus II Classic Timing Analyzer does not analyze
register-to-register paths beginning or ending at that register. Figure 7–17
shows a circuit that illustrates this situation.

Figure 7–17. Clock Objects

With no clock assignments on any of the registers, the Quartus II Classic
Timing Analyzer analyzes timing on the path from reg_a to reg_b, and
from reg_c to reg_d. If you make a clock setting assignment to reg_b,
reg_b is no longer considered a register node in the netlist, and the path
from reg_a to reg_b is no longer analyzed.

In the Quartus II TimeQuest Timing Analyzer, clocks are abstract objects
that are associated with nodes in the timing netlist. The Quartus II
TimeQuest Timing Analyzer analyzes the path from reg_a to reg_b
even if there is a clock assigned to reg_b.

Hold Multicycle

The hold multicycle value numbering scheme is different in the
Quartus II Classic and Quartus II TimeQuest Timing Analyzers. Also,
you can choose between two values for the default hold multicycle value
in the Quartus II Classic Timing Analyzer but you cannot change the
default value in the Quartus II TimeQuest Timing Analyzer. The hold
multicycle value specifies which clock edge is used for hold analysis
when you change the latch edge with a multicycle assignment.

In the Quartus II Classic Timing Analyzer, the hold multicycle value is
based on 1, and is the number of clock cycles away from the setup edge.
In the Quartus II TimeQuest Timing Analyzer, the hold multicycle value
is based on zero, and is the number of clock cycles away from the default
hold edge. In the Quartus II TimeQuest Timing Analyzer, the default hold
edge is one edge before or after the setup edges. Subtract 1 from any hold
multicycle value in theQuartus II Classic Timing Analyzer to compute the
equivalent value for the Quartus II TimeQuest Timing Analyzer.

clk

reg_a reg_b

reg_c reg_d

Altera Corporation 7–25
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

In the Quartus II Classic Timing Analyzer, you can set the default value
of the hold multicycle assignment to One or Same as Multicycle. The
default value applies to any multicycle assignment in your design that
does not also have a multicycle hold assignment. Figure 7–18 illustrates
the difference between One and Same as Multicycle for a multicycle
assignment of 2 using the Quartus II Classic Timing Analyzer.

Figure 7–18. Difference Between One and Same As Multicycle

If the default value is One, the Quartus II Classic Timing Analyzer uses
the clock edge one before the setup edge for hold analysis. If the default
value is Same as Multicycle, the Quartus II Classic Timing Analyzer uses
the clock edge that is <value of multicycle assignment> edges back from the
setup edge.

Figure 7–19 shows simple waveforms for a cross-clock domain transfer
with the indicated setup and hold edges.

Figure 7–19. First Relationship Example

In the Quartus II TimeQuest Timing Analyzer, only a multicycle
exception of 2 is required to constrain the design for the indicated setup
and hold relationships.

Hold Edge for Value of
Same as Multicycle

Hold Edge for Value of One Setup Edge for Multicycle = 2

Hold Edge Setup Edge

7–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is One, only a multicycle assignment of 2 is required to constrain
the design.

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is Same as Multicycle, you must make two assignments to
constrain the design:

■ A multicycle assignment of 2
■ A hold multicycle assignment of 1 to override the default value

Figure 7–20 shows simple waveforms for a different cross-clock domain
transfer with indicated setup and hold edges. The following explanation
shows what exceptions to apply to achieve the desired setup and hold
relationships.

Figure 7–20. Second Relationship Example

In the Quartus II TimeQuest Timing Analyzer, you must use the
following two exceptions:

■ A multicycle exception of 2
■ A hold multicycle exception of 1, because the hold edge is one edge

behind the default hold edge, which is one edge after the setup edge.

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is One, you must make two assignments to constrain the design:

■ A multicycle assignment of 2
■ A hold multicycle assignment of 2 to override the default value

In the Quartus II Classic Timing Analyzer, if the Default Hold Multicycle
value is Same as Multicycle, only a multicycle assignment of 2 is required
to constrain the design.

Hold Edge Setup Edge

Altera Corporation 7–27
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

1 You should always add a hold multicycle assignment for every
multicycle assignment to ensure the correct exceptions are
applied regardless of the timing analyzer you use, or, for the
Quartus II Classic Timing Analyzer, the Default Hold
Multicycle setting.

Fitter Behavior

The behavior for one value of the Optimize hold time Fitter assignment
differs between the Quartus II TimeQuest Timing Analyzer and the
Quartus II Classic Timing Analyzer. When you set the Quartus II
TimeQuest Timing Analyzer as the default timing analyzer, the I/O Paths
and Minimum TPD Paths value directs the Fitter to optimize all hold
time paths, which has the same affect as the All Paths value.

Fitter Performance

If you use the Quartus II TimeQuest Timing Analyzer as your default
timing analyzer, the Fitter memory use and compilation time may
increase. However, the timing analysis time may decrease.

Reporting

The Quartus II TimeQuest Timing Analyzer provides a more flexible and
powerful interface for reporting timing analysis results than the
Quartus II Classic Timing Analyzer. Although the interface and
constraints are more flexible and powerful, both analyzers use the same
device timing models, except for device families that support rise/fall
analysis. The Quartus II Classic Timing Analyzer does not support
rise/fall analysis, but the Quartus II TimeQuest Timing Analyzer does.
Therefore, you may see slightly different delays on identical paths in
device families that support rise/fall analysis if you analyze timing in
both analyzers.

This means that both analyzers report identical delays along identically
constrained paths in your design. The Quartus II TimeQuest Timing
Analyzer allows you to constrain some paths that you could not constrain
with the Quartus II Classic Timing Analyzer. Differently constrained
paths result in different reported values, but for identical paths in your
design that are constrained the same way, the delays are exactly the same.
Both timing analyzers use the same timing models.

f For information about reporting with the Quartus II TimeQuest Timing
Analyzer, refer to the Quartus II TimeQuest Timing Analyzer chapter in
volume 3 of the Quartus II Handbook.

7–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Paths and Pairs

In reporting, the most significant difference between the two analyzers is
that the Quartus II TimeQuest Timing Analyzer reports paths, while the
Quartus II Classic Timing Analyzer reports pairs. Path reporting means
that the analyzer separately reports every path between two registers.
Pair reporting means that the analyzer reports only the worst-case path
between two registers. One benefit of path reporting over pair reporting
is that you can more easily identify common points in failing paths that
may be good targets for optimization.

If your design does not meet timing constraints, this reporting difference
can give the impression that there are many more timing failures when
you use the Quartus II TimeQuest Timing Analyzer. Figure 7–21 shows a
sample circuit followed by a description of the differences between path
and pair reporting.

Figure 7–21. Failing Paths

There is an 8-ns period constraint on clk, resulting in two paths that fail
timing: regA → C → regB and regA → D → regB. The Quartus II
Classic Timing Analyzer reports only worst-case path regA → C→ regB.
The Quartus II TimeQuest Timing Analyzer reports both failing paths
regA → C → regB and regA → D → regB. It also reports path
regA → E → regB with positive slack.

Default Reports

The Quartus II TimeQuest Timing Analyzer generates only a small
number of reports by default, as compared to the Quartus II Classic
Timing Analyzer, which generates every report by default. With the
Quartus II TimeQuest Timing Analyzer, you generate desired reports on
demand.

clk

node C
regA

node D

node E

10 ns

9 ns

7 ns

regB

Altera Corporation 7–29
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

f To learn how to create custom reports, refer to the Quartus II Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Netlist Names

The Quartus II Classic Timing Analyzer uses register names in reporting,
but theQuartus II TimeQuest Timing Analyzer uses register pin names
(with the exception of port names of the top-level module). Buried nodes
or register names are used when necessary.

Example 7–5 shows how register names are used in Quartus II Classic
Timing Analyzer reports.

Example 7–5. Netlist Names in the Quartus II Classic Timing Analyzer
Info: + Shortest register to register delay is 0.538 ns

Info: 1: + IC(0.000 ns) + CELL(0.000 ns) = 0.000 ns; Loc. =
LCFF_X1_Y5_N1;
Fanout = 1; REG Node = 'inst'

Info: 2: + IC(0.305 ns) + CELL(0.149 ns) = 0.454 ns; Loc. =
LCCOMB_X1_Y5_N20; Fanout = 1; COMB Node = 'inst3~feeder'

Info: 3: + IC(0.000 ns) + CELL(0.084 ns) = 0.538 ns; Loc. =
LCFF_X1_Y5_N21; Fanout = 1; REG Node = 'inst3'

Info: Total cell delay = 0.233 ns (43.31 %)
Info: Total interconnect delay = 0.305 ns (56.69 %)

Example 7–6 shows the same information as presented in a Quartus II
TimeQuest Timing Analyzer report. In this example, register pin names
are used in place of register names.

Example 7–6. Netlist Names in the Quartus II TimeQuest Timing Analyzer
Info: 3.788 0.250 uTco inst

 Info: 3.788 0.000 RR CELL inst|regout
 Info: 4.093 0.305 RR IC inst3~feeder|datad
 Info: 4.242 0.149 RR CELL inst3~feeder|combout
 Info: 4.242 0.000 RR IC inst3|datain
 Info: 4.326 0.084 RR CELL inst3

Non-Integer Clock Periods

In some cases when related clock periods are not integer multiples of each
other, a lack of precision in clock period definition in the Quartus II
TimeQuest Timing Analyzer can result in reported setup or hold
relationships of a few picoseconds. In addition, launch and latch times for
the relationships can be very large. If you experience this, use the
set_max_delay and set_min_delay exceptions to specify the correct

7–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

relationships. The Quartus II Classic Timing Analyzer can maintain
additional information about clock frequency that mitigates the lack of
precision in clock period definition.

When the clock period cannot be expressed as an integer in terms of
picoseconds, then you have the problem detailed in Figure 7–22. This
figure shows two clocks: clk_a has a 10 ns period, and clk_b has a
6.667 ns period.

Figure 7–22. Very Small Setup Relationship

There is a 1 ps setup relationship at 20 ns because you cannot specify the
6.667 ns period beyond picosecond precision. You should apply the
maximum and minimum delay exceptions shown in Example 7–7
between the two clocks to specify the correct relationships.

Example 7–7. Minimum and Maximum Delay Exceptions
set_max_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 3.333
set_min_delay -from [get_clocks clk_a] -to [get_clocks clk_b] 0

Other Features

The Quartus II TimeQuest Timing Analyzer reports time values without
units. By default, the units are nanoseconds, and three decimal places are
displayed. You can change the default time unit and decimal places with
the set_time_format command.

When you use the Quartus II TimeQuest Timing Analyzer in a Tcl shell,
output is ASCII-formatted, and columns are aligned for easy reading on
80-column consoles. Example 7–8 shows sample output from a
report_timing command from the Quartus II TimeQuest Timing
Analyzer.

clk_a

clk_b
0 6.667 13.334 20.001

20100

Altera Corporation 7–31
October 2007 Preliminary

Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers

Example 7–8. ASCII-Formatted Quartus II TimeQuest Timing Analyzer Report
tcl> report_timing -from inst -to inst5
Info: Report Timing: Found 1 setup paths (0 violated). Worst case slack is 3.634
 Info: -from [get_keepers inst]
 Info: -to [get_keepers inst5]
Info: Path #1: Slack is 3.634
 Info: ===
 Info: From Node : inst
 Info: To Node : inst5
 Info: Launch Clock : clk_a
 Info: Latch Clock : clk_b
 Info:
 Info: Data Arrival Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ===================================
 Info: 0.000 0.000 launch edge time
 Info: 2.347 2.347 R clock network delay
 Info: 2.597 0.250 uTco inst
 Info: 2.597 0.000 RR CELL inst|regout
 Info: 3.088 0.491 RR IC inst6|datac
 Info: 3.359 0.271 RR CELL inst6|combout
 Info: 3.359 0.000 RR IC inst5|datain
 Info: 3.443 0.084 RR CELL inst5
 Info:
 Info: Data Required Path:
 Info:
 Info: Total (ns) Incr (ns) Type Node
 Info: ========== ========= == ==== ===================================
 Info: 4.000 4.000 latch edge time
 Info: 7.041 3.041 R clock network delay
 Info: 7.077 0.036 uTsu inst5
 Info:
 Info: Data Arrival Time : 3.443
 Info: Data Required Time : 7.077
 Info: Slack : 3.634
 Info: ===
 Info:
1 3.634

7–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Scripting API

In versions of the Quartus II software earlier than 6.0, the
::quartus::project Tcl package contained the following SDC-like
commands for making timing assignments:

■ create_base_clock
■ create_relative_clock
■ get_clocks
■ set_clock_latency
■ set_clock_uncertainty
■ set_input_delay
■ set_multicycle_assignment
■ set_output_delay
■ set_timing_cut_assignment

These commands are not SDC-compliant. Beginning with version 6.0,
these commands are in a new package called
::quartus::timing_assignment. To ensure backward compatibility with
existing Tcl scripts, the ::quartus::timing_assignment package is loaded
by default in the following executables:

■ quartus
■ quartus_sh
■ quartus_cdb
■ quartus_sim
■ quartus_stp
■ quartus_tan

The ::quartus::timing_assignment package is not loaded by default in the
quartus_sta executable. The ::quartus::sdc Tcl package includes
SDC-compliant versions of the commands listed above. That package is
available only in the quartus_sta executable, and it is loaded by default.

Altera Corporation 7–33
October 2007 Preliminary

Timing Assignment Conversion

Timing
Assignment
Conversion

This section describes Quartus II Classic QSF timing assignments and
their equivalent Quartus II TimeQuest constraints. You can convert many
Quartus II Classic timing assignments to SDC constraints. Some
Quartus II Classic timing assignments can be converted to two different
SDC constraints, and you must understand the intended functionality of
the design to make an appropriate conversion. You cannot convert some
Quartus II Classic timing assignments because there is no equivalent SDC
constraint.

This section includes the following topics, arranged alphabetically:

Clock Enable Multicycle . 7–38
Clock Latency . 7–34
Clock Settings . 7–37
Clock Uncertainty . 7–34
Cut Timing Path. 7–52
Default Required fMAX Assignment . 7–35
Hold Relationship . 7–34
Input and Output Delay . 7–39
Inverted Clock . 7–35
Maximum Clock Arrival Skew . 7–53
Maximum Data Arrival Skew . 7–53
Maximum Delay. 7–52
Minimum Delay . 7–52
Minimum tCO Requirement . 7–48
Minimum tPD Requirement . 7–51
Multicycle . 7–37
Not a Clock . 7–35
Setup Relationship. 7–33
tCO Requirement. 7–45
tH Requirement. 7–43
tPD Requirement . 7–50
tSU Requirement . 7–40
Virtual Clock Reference . 7–36

Setup Relationship

The Setup Relationship assignment overrides the setup relationship
between two clocks. By default, the Quartus II Classic Timing Analyzer
automatically calculates the setup relationship based on your clock
settings. The QSF variable for the Setup Relationship assignment is
SETUP_RELATIONSHIP. In the Quartus II TimeQuest Timing Analyzer,
use the set_max_delay command to specify the maximum setup
relationship for a path.

7–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The setup relationship value is the time between latch and launch edges
before the Quartus II TimeQuest Timing Analyzer accounts for clock
latency, source μtCO, or destination μtSU.

Hold Relationship

The Hold Relationship assignment overrides the hold relationship
between two clocks. By default, the Quartus II Classic Timing Analyzer
automatically calculates the hold relationship based on your clock
settings. The QSF variable for the Hold Relationship assignment is
HOLD_RELATIONSHIP. In the Quartus II TimeQuest Timing Analyzer,
use the set_min_delay command to specify the minimum hold
relationship for a path.

Clock Latency

Table 7–1 shows the equivalent SDC constraints for each of these
Quartus II Classic assignments.

For more information about clock latency support in the Quartus II
TimeQuest Timing Analyzer, refer to “Clock Latency” on page 7–15.

Clock Uncertainty

This section describes the conversion for the following Quartus II Classic
assignments:

■ Clock Setup Uncertainty
■ Clock Hold Uncertainty

Table 7–1. Quartus II Classic and SDC Equivalent Constraints

Quartus II Classic Timing Assignment
SDC Constraint

Assignment Name QSF Variable

Early Clock Latency EARLY_CLOCK_LATENCY set_clock_latency -source -late

Late Clock Latency LATE_CLOCK_LATENCY set_clock_latency -source -early

Altera Corporation 7–35
October 2007 Preliminary

Timing Assignment Conversion

Table 7–2 shows the equivalent SDC constraints for each of these
Quartus II Classic assignments.

Inverted Clock

The Quartus II Classic Timing Analyzer detects inverted clocks
automatically when the clock inversion occurs at the input of the LCELL
that contains the register specified in the assignment. You must make an
Inverted Clock assignment in all other situations for Quartus II Classic
Timing Analyzer analysis. The QSF variable for the Inverted Clock
assignment is INVERTED_CLOCK. The Quartus II TimeQuest Timing
Analyzer detects inverted clocks automatically, regardless of the type of
inversion circuit, in designs that target device families that support
unateness: Stratix® II, Cyclone® II, and HardCopy® II. For designs that
target any other device family, you must create a generated clock with the
-invert option on the output of the cell that inverts the clock.

f For more information about unateness, refer to the Quartus II TimeQuest
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Not a Clock

The Not a Clock assignment directs the Quartus II Classic Timing
Analyzer that the specified node is not a clock source when it would
normally be detected as a clock because of a global fMAX requirement. The
QSF variable for the Not a Clock assignment is NOT_A_CLOCK. This
assignment is not supported in the Quartus II TimeQuest Timing
Analyzer and there is no equivalent constraint. Appropriate clock
constraints are created in the Quartus II TimeQuest Timing Analyzer
only.

Default Required fMAX Assignment

The Default Required fMAX assignment allows you to specify an fMAX

requirement for the Quartus II Classic Timing Analyzer for all
unconstrained clocks in your design. The QSF variable for the Default
Required fMAX assignment is FMAX_REQUIREMENT. You can use the

Table 7–2. Quartus II Classic and SDC Equivalent Constraints

Quartus II Classic Timing Assignment
SDC Constraint

Assignment Name QSF Variable

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY set_clock_uncertainty -setup

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY set_clock_uncertainty -hold

7–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

derive_clocks command to create clocks on sources of clock pins in your
design that do not already have clocks assigned to them. You should
constrain each individual clock in your design with the create_clock or
created_generated_clock command, not the derive_clocks command.
Refer to “Automatic Clock Detection” on page 7–19 to learn why you
should constrain individual clocks in your design.

Virtual Clock Reference

The Virtual Clock Reference assignment allows you to define timing
characteristics of a reference clock outside the FPGA. The QSF variable for
the Virtual Clock Reference assignment is
VIRTUAL_CLOCK_REFERENCE. The Quartus II TimeQuest Timing
Analyzer supports virtual clocks by default, while the Quartus II Classic
Timing Analyzer requires the Virtual Clock Reference assignment to
indicate that a clock setting is for a virtual clock. To create a virtual clock
in the Quartus II TimeQuest Timing Analyzer, use the create_clock or
create_generated_clock commands with the -name option and no
targets.

Figure 7–23 shows a simple circuit that requires a virtual clock, and the
following example shows how to constrain the circuit. The circuit shows
data transfer between an Altera FPGA and another device, and the clocks
for the two devices are not related. You can constrain the path with an
output delay assignment, but that assignment requires a virtual clock that
defines the clock characteristics of the destination device.

Figure 7–23. Virtual Clock Sample Circuit

Assume the circuit has the following assignments in the Quartus II
Classic Timing Analyzer:

■ Clock period of 10 ns on system_clk (clock for the Altera FPGA)
■ Clock period of 8 ns on virt_clk (clock for the other device)
■ Virtual Clock Reference setting for virt_clk is on (indicates that

virt_clk is a virtual clock)

reg_b

Other Device
d_in

clk_b
clk_b

reg_a

Altera FPGA

d_out

clk_a
clk_a

Altera Corporation 7–37
October 2007 Preliminary

Timing Assignment Conversion

■ Output Maximum Delay of 5 ns on dataout with respect to
virt_clk (constrains the path between the two devices)

The SDC commands shown in Example 7–9 constrain the circuit the same
way.

Example 7–9. SDC Constraints
Clock for the Altera FPGA
create_clock -period 10 -name system_clk [get_ports system_clk]
Virtual clock for the other device, with no targets
create_clock -period 8 -name virt_clk
Constrains the path between the two devices
set_output_delay -clock virt_clk 5 [get_ports dataout]

Clock Settings

The Quartus II Classic Timing Analyzer includes a variety of assignments
to describe clock settings. These include duty cycle, fMAX, offset, and
others. In the Quartus II TimeQuest Timing Analyzer, use the
create_clock and create_generated_clock commands to constrain clocks.

Multicycle

Table 7–3 shows the equivalent SDC exceptions for each of these
Quartus II Classic Timing Analyzer timing assignments.

The default value and numbering scheme for the hold multicycle value is
different in the Quartus II Classic and Quartus II TimeQuest Timing
Analyzers. Refer to “Hold Multicycle” on page 7–24 for more information

Table 7–3. Quartus II Classic and SDC Equivalent Exceptions

Quartus II Classic Timing Assignment
SDC Exception

Assignment Name QSF Variable

Multicycle (1) MULTICYCLE set_multicycle_path -setup -end

Source Multicycle (2) SRC_MULTICYCLE set_multicycle_path -setup -start

Multicycle Hold (3) HOLD_MULTICYCLE set_multicycle_path -hold -end

Source Multicycle Hold SRC_HOLD_MULTICYCLE set_multicycle_path -hold -start

Notes to Table 7–3:
(1) A multicycle assignment is also known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment is also known as a “source multicycle setup” assignment.
(3) A multicycle hold is also known as a “destination multicycle hold “assignment.

7–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

about the difference between the default value and numbering scheme
for the hold multicycle value in the Quartus II Classic and Quartus II
TimeQuest Timing Analyzers.

f For more information about how to convert the hold multicycle value,
see the Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

Clock Enable Multicycle

The Quartus II Classic Timing Analyzer supports the following clock
enable multicycle assignments. Corresponding types of multicycle
assignments are applied to all registers enabled by the targets of the
specified clock.

■ Clock Enable Multicycle
■ Clock Enable Source Multicycle
■ Clock Enable Multicycle Hold
■ Clock Enable Source Multicycle Hold

The Quartus II TimeQuest Timing Analyzer supports clock-enabled
multicycle constraints with the get_fanouts command. Use the
get_fanouts command to create a collection of nodes that have a common
source signal, such as a clock enable.

I/O Constraints

FPGA I/O timing assignments have typically been made with
FPGA-centric tSU and tCO requirements for the Quartus II Classic Timing
Analyzer. However, the Quartus II Classic Timing Analyzer also supports
input and output delay assignments to accommodate industry-standard,
system-centric timing constraints. Where possible, you should use
system-centric constraints to constrain your designs for the Quartus II
TimeQuest Timing Analyzer. Table 7–4 includes Quartus II Classic I/O
assignments, the equivalent FPGA-centric SDC constraints, and
recommended system-centric SDC constraints.

For setup checks (tSU and tCO), <latch − launch> equals the clock period for
same-clock transfers. For hold checks (tH and Minimum tCO), <latch −
launch> equals 0 for same clock transfers. Conversions from Quartus II
Classic assignments to set_input_delay and set_output_delay
constraints work well only when the source and destination registers’
clocks are the same (same clock and polarity). If the source and

Altera Corporation 7–39
October 2007 Preliminary

Timing Assignment Conversion

destination registers’ clocks are different, the conversion may not be
straightforward and you should take extra care when converting to
set_input_delay and set_output_delay constraints.

Input and Output Delay

Table 7–5 shows the equivalent SDC exceptions for each of these
Quartus II Classic Timing Analyzer timing assignments.

Table 7–4. Quartus II Classic and Quartus II TimeQuest Timing Analyzers Equivalent I/O Constraints

Classic FPGA-centric SDC System-centric SDC

tSU Requirement set_max_delay <tSU requirement> set_input_delay -max <latch −
launch − tSU requirement>

tH Requirement set_min_delay − <tH requirement> (1) set_input_delay -min <latch −
launch + tH requirement>

tCO Requirement set_max_delay <tCO requirement> set_output_delay -max <latch −
launch − tCO requirement>

Minimum tCO Requirement set_min_delay <minimum tCO requirement> set_output_delay -min <latch −
launch − minimum tCO requirement>

tPD Requirement set_max_delay <tPD requirement> (2)

Minimum tPD Requirement set_min_delay <minimum tPD requirement> (2)

Notes to Table 7–4:
(1) Refer to “tH Requirement” on page 7–43 for an explanation about why this exception uses the negative tH

requirement.
(2) The input and output delays can be used for tPD paths, such that they will be analyzed as a system fMAX path. This

is a feature unique to the Quartus II TimeQuest Timing Analyzer.

Table 7–5. Quartus II Classic and SDC Equivalent Exceptions

Quartus II Classic Timing Assignment
SDC Exception

Assignment Name QSF Variable

Input Maximum Delay INPUT_MAX_DELAY set_input_delay -max

Input Minimum Delay INPUT_MIN_DELAY set_input_delay -min

Output Maximum Delay OUTPUT_MAX_DELAY set_output_delay -max

Output Minimum Delay OUTPUT_MIN_DELAY set_output_delay -min

7–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

In some circumstances, you may receive the following warning message
when you update the SDC netlist:

Warning: For set_input_delay/set_output_delay, port
"<port>" does not have delay for flag (<rise|fall>,
<min|max>)

This warning occurs whenever port constraints have maximum or
minimum delay assignments, but not both. In the Quartus II Classic
Timing Analyzer, device inputs can have Input Maximum Delay
assignments, Input Minimum Delay assignments, or both, and device
outputs can have Output Maximum Delay assignments, Output
Minimum Delay assignments, or both.

To avoid receiving the warning, your SDC file must specify both the -max
and -min options for each port, or specify neither. If a device I/O in your
design includes both the maximum and minimum delay assignments in
the Quartus II Classic Timing Analyzer, the conversion utility converts
both, and no warning appears about that device I/O. If a device I/O has
only maximum or minimum delay assignments in the Quartus II Classic
Timing Analyzer, you have the following options:

■ Add the missing minimum or maximum delay assignment to the
device I/O before performing the conversion.

■ Modify the SDC constraint after the conversion to add appropriate
-max or -min values.

■ Modify the SDC constraint to remove the -max or -min option so the
value is used for both by default.

tSU Requirement

The tSU Requirement assignment specifies the maximum acceptable
clock setup time for the input (data) pin. The QSF variable for the tSU
Requirement assignment is TSU_REQUIREMENT. You can convert the
tSU Requirement assignment to the set_max_delay command or the
set_input_delay command with the -max option. The delay value for the
set_input_delay command is <latch − launch − tSU requirement>. Refer to
the labeled paths in Figure 7–24 to understand the names in Equations 3
and 4.

Altera Corporation 7–41
October 2007 Preliminary

Timing Assignment Conversion

Figure 7–24. Path Names

Equation 3 shows the derivation of this conversion.

(3)

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

required arrival 0>–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

input_delay board.srcclk src.clk src.utcu src.out srctodst board.dstclk–+ + + +=

required latch dst.clk dst.utsu–+=

arrival launch input_delay dst.in+ +=

latch dst.clk dst.utsu–+() launch input_delay dst.in+ +() 0>–

tsu requirement actual tsu– 0>

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+()– 0>

tsu requirement latch launch input_delay––=

input_delay latch launch– tsurequirement–=

7–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The delay value is the difference between the period of the clock source
of the register and the tSU Requirement value, as shown in Figure 7–25.

Figure 7–25. tSU Requirement

The delay value for the set_max_delay command is the tSU Requirement
value. Equation 4 shows the derivation of this conversion.

(4)

FPGAOther Device

Input Delay

tsu

clk

required arrival 0>–

required latch board.dstclk dst.clk dst.utsu–+ +=

arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

max_delay latch board.dstclk launch board.srcclk–– src.clk– src.out– srctodst–+ +=

required max_delay dst.clk dst.utsu–+=

arrival dst.in=

max_delay dst.clk dst.utsu–+() dst.in()– 0>

tsu requirement tsu– 0>

actual tsu dst.in dst.utsu dst.clk–+=

tsu requirement dst.in dst.utsu dst.clk–+()– 0>

set_max_delay tsu requirement=

Altera Corporation 7–43
October 2007 Preliminary

Timing Assignment Conversion

Table 7–6 shows the different ways you can make tSU assignments in the
Quartus II Classic Timing Analyzer, and the corresponding options for
the set_max_delay exception.

To convert a global tSU assignment to an equivalent SDC exception, use
the command shown in Example 7–10.

Example 7–10. Converting a Global tSU Assignment to an Equivalent SDC Exception
set_max_delay -from [all_inputs] -to [all_registers] <tSU value>

tH Requirement

The tH Requirement specifies the maximum acceptable clock hold time
for the input (data) pin. The QSF variable for the tH Requirement
assignment is TH_REQUIREMENT. You can convert the tH Requirement
assignment to the set_min_delay command, or the set_input_delay
command with the -min option. The delay value for the set_input_delay
command is <latch − launch + tH requirement>. Refer to the labeled paths in
Figure 7–26 to understand the names in Equations 5 and 6.

Figure 7–26. Path Names

Table 7–6. tSU Requirement and set_max_delay Equivalence

tSU Requirement Options set_max_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to <register> -from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Notes to Table 7–6:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths
properly.

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

7–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Equation 5 shows the derivation of this calculation.

(5)

The delay value for the set_min_delay command is the tH Requirement
value. Equation 6 shows the derivation of this conversion.

(6)

arrival required– 0>
arrival launch board.srcclk src.clk src.utco src.out srctodst dst.in+ + + + + +=

required latch board.dstclk dst.clk dst.uth+ + +=

input_delay board.srcclk src.clk srcutcu src.out srctodst board.dstclk–+ + + +=

arrival launch input_delay dst.in+ +=

required latch dst.clk dst.uth+ +=

launch input_delay dst.in+ +() latch dst.clk dst.uth+ +()– 0>

tH requirement actual tH – 0>

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+()– 0>

tH requirement launch latch input_delay+–=

input_delay latch launch tH requirement+–=

arrival required– 0>
arrival dst.in=

required min_delay dst.clk dst.uth+ +=

dst.in min_delay dst.clk dst.uth+ +()–

tH requirement actual tH – 0>

actual tH dst.clk dst.uth dst.in–+=

tH requirement dst.clk dst.uth dst.in–+()– 0>

set_min_delay tH requirement–=

Altera Corporation 7–45
October 2007 Preliminary

Timing Assignment Conversion

Table 7–7 shows the different ways you can make tH assignments in the
Quartus II Classic Timing Analyzer, and the corresponding options for
the set_min_delay command.

To convert a global tH assignment to an equivalent SDC exception, use the
command shown in Example 7–11.

Example 7–11. Converting a Global tH Assignment to an Equivalent SDC Exception
set_min_delay -from [all_inputs] -to [all registers] <negative tH value>

tCO Requirement

The tCO Requirement assignment specifies the maximum acceptable
clock to output delay to the output pin. The QSF variable for the tCO
Requirement assignment is TCO_REQUIREMENT. You can convert the
tCO Requirement assignment to the set_max_delay command or the
set_output_delay with the -max option. The delay value for the
set_output_delay command is <latch − launch + tCO requirement>. Refer to
the labeled paths in Figure 7–27 to understand the names in Equations 7
and 8.

Table 7–7. tH Requirement and set_min_delay Equivalence

tH Requirement Options set_min_delay Options

-to <pin> -from [get_ports <pin>] -to [get_registers *]

-to <clock> -from [get_ports *] -to [get_clocks <clock>]

-to <register> -from [get_ports *] -to [get_registers <register>]

-from <pin> -to <register> -from [get_ports <pin>] -to [get_registers <register>]

-from <clock> -to <pin> -from [get_ports <pin>] -to [get_clocks <clock>] (1)

Notes to Table 7–7:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, use set_input_delay to constrain the paths
properly. Refer to“Input and Output Delay” on page 7–39 for additional information.

7–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 7–27. Path Names

Equation 7 shows the derivation of this conversion.

(7)

The delay value is the difference between the period of the clock source
of the register and the tCO Requirement value, as illustrated in
Figure 7–28.

Figure 7–28. tCO Requirement

clk

dst.utsu

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

required arrival– 0>
required latch output_delay–=

arrival launch src.clk src.utco src.out+ + +=

output_delay srctodst dst.in dst.utsu dst.clk– board.dstc.k board.srcclk+–+ +=

latch output_delay–() launch src.clk src.utco src.out+ + +()– 0>

tco requirement actual tco– 0>

actual tco launch src.clk src.utco src.out+ + +=

tco requirement src.clk src.utco src.out+ +()– 0>

tco requirement latch launch output_delay––=

output_delay latch launch tco requirement––=

FPGA Other Device

Output Delay

tco

clk

Altera Corporation 7–47
October 2007 Preliminary

Timing Assignment Conversion

The delay value for the set_max_delay command is the tCO Requirement
value. Equation 8 shows the derivation of this conversion.

(8)

Table 7–8 shows the different ways you can make tCO assignments in the
Quartus II Classic Timing Analyzer, and the corresponding options for
the set_max_delay exception.

To convert a global tCO assignment to an equivalent SDC exception, use
the command in Example 7–12.

Example 7–12. Converting a Global tCO Assignment to an Equivalent SDC Exception
set_max_delay -from [all registers] -to [all_outputs] <tCO value>

required arrival– 0>
required set_max_delay=

arrival src.clk src.utco src.out+ +=

set_max_delay src.clk src.utco src.out+ +()– 0>

tco requirement actual tco– 0>

actual tco src.clk src.utco src.out+ +=

tco requirement src.clk src.utco src.out+ +()– 0>

set_max_delay tco requirement=

Table 7–8. tCO Requirement and set_max_delay Equivalence

tCO Requirement Options set_max_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Notes to Table 7–8:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to constrain the
paths properly.

7–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Minimum tCO Requirement

The Minimum tCO Requirement assignment specifies the minimum
acceptable clock to output delay to the output pin. The QSF variable for
the Minimum tCO Requirement assignment is
MIN_TCO_REQUIREMENT. You can convert the Minimum tCO
Requirement assignment to the set_min_delay command or the
set_output_delay command with the -min option. The delay value for
the set_output_delay command is <latch − launch + minimum tCO
requirement>. Refer to the labeled paths in Figure 7–29 to understand the
names in Equations 9 and 10.

Figure 7–29. Path Names

Equation 9 shows the derivation of this conversion.

(9)

clk

dst.uth

src.utco

dst.insrctodstsrc.out

src.clk dst.clk

board.srcclk board.dstclk

arrival required+ 0>
arrival launch src.clk src.utco src.out+ + +=

required latch output_delay–=

output_delay srctodst dst.in dst.uth– dst.clk– board.dstclk– board.srcclk+ +=

launch src.clk src.utco src.out+ + +() latch output_delay–()– 0>

minimum tco minimum tcorequirement– 0>

minimum tco launch src.clk src.utco src.out+ + +=

launch src.clk src.utco src.out+ + +() minimum tco requirement– 0>

minimum tco requirement latch launch– output_delay–=

output_delay latch launch– minimum tco requirement–=

Altera Corporation 7–49
October 2007 Preliminary

Timing Assignment Conversion

The delay value for the set_min_delay command is the Minimum tCO
Requirement. Equation 10 shows the derivation of this conversion.

(10)

Table 7–9 shows the different ways you can make minimum tCO
assignments in the Quartus II Classic Timing Analyzer, and the
corresponding options for the set_min_delay exception.

To convert a global Minimum tCO Requirement to an equivalent SDC
exception, use the command shown in Example 7–13.

Example 7–13. Converting a Global minimum tCO Requirement to an Equivalent SDC Exception
set_min_delay -from [all_registers] -to [all_outputs] <minimum tCO value>

arrival required– 0>
arrival src.clk src.utco src.out+ +=

required min_delay=

src.clk src.utco src.out+ +() set_min_delay()– 0>

minimum tco minimum tco requirement– 0>

minimum tco src.clk src.utco src.out+ +=

src.clk src.utco src.out+ +() minimum tcorequirement– 0>

set_min_delay minimum tco requirement=

Table 7–9. Minimum tCO Requirement and set_min_delay Equivalence

Minimum tCO Requirement Options set_min_delay Options

-to <pin> -from [get_registers *] -to [get_ports <pin>]

-to <clock> -from [get_clocks <clock>] -to [get_ports *]

-to <register> -from [get_registers <register>] -to [get_ports *]

-from <register> -to <pin> -from [get_registers <register>] -to [get_ports <pin>]

-from <clock> -to <pin> -from [get_clocks <clock>] -to [get_ports <pin>] (1)

Notes to Table 7–9:
(1) If the pin in this assignment feeds registers clocked by the same clock, it is equivalent to the first option,

-to <pin>. If the pin feeds registers clocked by different clocks, you should use set_output_delay to constrain
the paths properly.

7–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

tPD Requirement

The tPD Requirement assignment specifies the maximum acceptable
input to non-registered output delay, that is, the time required for a signal
from an input pin to propagate through combinational logic and appear
at an output pin. The QSF variable for the tPD Requirement assignment is
TPD_REQUIREMENT. You can use the set_max_delay command in the
Quartus II TimeQuest Timing Analyzer as an equivalent constraint as
long as you account for input and output delays. The tPD Requirement
assignment does not take into account input and output delays, but the
set_max_delay exception does, so you must modify the set_max_delay
value to take into account input and output delays.

Combinational Path Delay Scenario
Figure 7–30 shows a simple circuit followed by an example of a tPD
Requirement to set_max_delay conversion.

Figure 7–30. tPD Example

Assume the circuit has the following assignments in the Quartus II
Classic Timing Analyzer:

■ Clock period of 10 ns
■ tPD Requirement from a_in to comb_out of 10 ns
■ Input Max Delay on a_in relative to clk of 2 ns
■ Output Max Delay on comb_out relative to clk of 2 ns

The path from a_in to comb_out is not affected by the input and output
delays. The slack is equal to the <tPD Requirement from a_in to
comb_out> − <path delay from a_in to comb_out>.

Assume the circuit has the SDC constraints shown in Example 7–14 in the
Quartus II TimeQuest Timing Analyzer:

clk

reg_out

comb_out

b_in

a_in

Altera Corporation 7–51
October 2007 Preliminary

Timing Assignment Conversion

Example 7–14. SDC Constraints
create_clock -period 10 –name clk [get_ports clk]
set_max_delay -from a_in -to comb_out 10
set_input_delay -clk clk 2 [get_ports a_in]
set_output_delay –clk clk 2 [get_ports comb_out]

The path from a_in to comb_out is affected by the input and output
delays. The slack is equal to:

<set_max_delay value from a_in to comb_out> − <input delay> − <output delay> − <path delay from
a_in to comb_out>

To convert a global tPD Requirement assignment to an equivalent SDC
exception, use the command shown in Example 7–15. You should add the
input and output delays to the value of your converted tPD Requirement
(set_max_delay exception value) to achieve an equivalent SDC exception.

Example 7–15. Converting a Global tPD Requirement Assignment to an Equivalent SDC Exception
set_max_delay -from [all_inputs] -to [all_outputs] <value>

Minimum tPD Requirement

The Minimum tPD Requirement assignment specifies the minimum
acceptable input to non-registered output delay, that is, the minimum
time required for a signal from an input pin to propagate through
combinational logic and appear at an output pin. The QSF variable for the
Minimum tPD Requirement assignment is MIN_TPD_REQUIREMENT.
You can use the set_min_delay command in the Quartus II TimeQuest
Timing Analyzer as an equivalent constraint as long as you account for
input and output delays. The Minimum tPD Requirement assignment
does not take into account input and output delays, but the
set_min_delay exception does.

Refer to “Combinational Path Delay Scenario” on page 7–50 to see how
input and output delays affect minimum and maximum delay
exceptions.

To convert a global Minimum tPD Requirement assignment to an
equivalent SDC exception, use the following command:

Example 7–16. Converting a Global Minimum tPD Requirement Assignment to an Equivalent SDC Exception
set_min_delay -from [all_inputs] -to [all_outputs] <value>

7–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Cut Timing Path

The Cut Timing Path assignment in the Quartus II Classic Timing
Analyzer is equivalent to the set_false_path command in the Quartus II
TimeQuest Timing Analyzer. The QSF variable for the Cut Timing Path
assignment is CUT.

Maximum Delay

The Maximum Delay assignment specifies the maximum required delay
for the following types of paths:

■ Pins to registers
■ Registers to registers
■ Registers to pins

The QSF variable for the Maximum Delay assignment is MAX_DELAY.
This requirement overwrites the requirement computed from the clock
setup relationship and clock skew. There is no equivalent constraint in the
Quartus II TimeQuest Timing Analyzer.

1 The Maximum Delay assignment for the Quartus II Classic
Timing Analyzer is not related to the set_max_delay exception
in the Quartus II TimeQuest Timing Analyzer.

Minimum Delay

The Minimum Delay assignment specifies the minimum required delay
for the following types of paths:

■ Pins to registers
■ Registers to registers
■ Registers to pins

The QSF variable for the Minimum Delay assignment is MIN_DELAY.
This requirement overwrites the requirement computed from the clock
hold relationship and clock skew. There is no equivalent constraint in the
Quartus II TimeQuest Timing Analyzer.

1 The Minimum Delay assignment for the Quartus II Classic
Timing Analyzer is not related to the set_min_delay exception
in the Quartus II TimeQuest Timing Analyzer.

Altera Corporation 7–53
October 2007 Preliminary

Timing Assignment Conversion

Maximum Clock Arrival Skew

The Maximum Clock Arrival Skew assignment specifies the maximum
clock skew between a set of registers. The QSF variable for the Maximum
Clock Arrival Skew assignment is MAX_CLOCK_ARRIVAL_SKEW. In the
Quartus II Classic Timing Analyzer, this assignment is specified between
a clock node name and a set of registers. Maximum Clock Arrival Skew
is not supported in the Quartus II TimeQuest Timing Analyzer.

Maximum Data Arrival Skew

The Maximum Data Arrival Skew assignment specifies the maximum
data arrival skew between a set of registers, pins, or both. The QSF
variable for the Maximum Data Arrival Skew assignment is
MAX_DATA_ARRIVAL_SKEW. In this case, the data arrival delay
represents the tCO from the clock to the given register, pin, or both. This
assignment is specified between a clock node and a set of registers, pins,
or both.

The Quartus II TimeQuest Timing Analyzer does not support a constraint
to specify maximum data arrival skew, but you can specify setup and
hold times relative to a clock port to constrain an interface like this.
Figure 7–31 shows a simplified source-synchronous interface used in the
following example.

Figure 7–31. Source-Synchronous Interface Diagram

Constraining Skew on an Output Bus
This example constrains the interface so that all bits of the data_out bus
go off-chip between 2 and 3 ns after the clk_out signal. Assume that
clock_in and clock_out have a period of 8 ns.

data_in Input Controller Output Controller

clk_in PLL

data_out

clk_out

7–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The following equations and example shows how to create timing
requirements that satisfy the timing relationships shown in Figure 7–32.

Figure 7–32. Source-Synchronous Timing Diagram

Equation 11 shows how to compute the value for the
set_output_delay -min command that creates the 2 ns hold requirement
on the destination. For hold requirement calculations in which source and
destination clocks are the same, <latch> – <launch> = 0.

(11)

Equation 12 shows how to compute the value for the set_output_delay
command that creates the 3 ns setup requirement on the destination. For
setup requirement calculations in which source and destination clocks are
the same, <latch> – <launch> = clock period.

(12)

Refer to “I/O Constraints” on page 7–38 for an explanation of the above
equations.

clk_out

data_out

0 2 3 4 8 10 11 12

latch launch– 0ns=

output delay latch launch– 2ns–=

output delay 2ns–=

latch launch– 8ns=

output delay latch launch– 3ns–=

output delay 5ns=

Altera Corporation 7–55
October 2007 Preliminary

Conversion Utility

Example 7–17 shows the three constraints together.

Example 7–17. Constraining a DDR Interface
set period 8.000
create_clock -period $period \

-name clock_in \
clock_in

derive_pll_clocks
set_output_delay -add_delay \

-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin clk_out \
-min -2.000 \
[get_ports data_out*]

set_output_delay -add_delay \
-clock ddr_pll_1_inst|altpll_component|pll|CLK[0] \
-reference_pin clk_out \
-max [expr $period - 3.000] \
[get_ports data_out*]

Conversion
Utility

The Quartus II TimeQuest Timing Analyzer includes a conversion utility
to help you convert Quartus II Classic timing assignments in a QSF file to
SDC constraints in an SDC file. The utility can use information from your
project report database (in the \db folder), if it exists, so you should
compile your design before the conversion.

1 The conversion utility ignores all disabled QSF assignments.
Disabled assignments say No in the Enabled? column of the
Assignment Editor, and include the -disable option in the
QSF file.

Refer to “Conversion Utility” on page 7–3 to learn how to run the
conversion utility.

7–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Unsupported Global Assignments

The conversion utility checks whether any of the global timing
assignments in Table 7–10 exist in your project. Any global assignments
not supported by the conversion utility are ignored during the
conversion. Refer to the indicated page for information about each
assignment, and how to manually convert these global assignments to
SDC commands.

Recommended Global Assignments

Once any unsupported assignments have been identified, the conversion
utility checks the global assignments in Table 7–11 to ensure they match
the specified values.

Table 7–10. Global Timing Assignments

Assignment Name QSF Variable More Information

tSU Requirement TSU_REQUIREMENT page 7–40

tH Requirement TH_REQUIREMENT page 7–43

tCO Requirement TCO_REQUIREMENT page 7–45

Minimum tCO Requirement MIN_TCO_REQUIREMENT page 7–48

tPD Requirement TPD_REQUIREMENT page 7–50

Minimum tPD Requirement MIN_TPD_REQUIREMENT page 7–51

Table 7–11. Recommended Global Assignments

Quartus II Classic Assignment Name QSF Variable Value

Cut off clear and preset signal paths CUT_OFF_CLEAR_AND_PRESET_PATHS ON

Cut off feedback from I/O pins CUT_OFF_IO_PIN_FEEDBACK ON

Cut off read during write signal paths CUT_OFF_READ_DURING_WRITE_PATHS ON

Analyze latches as synchronous elements ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS ON

Enable Clock Latency ENABLE_CLOCK_LATENCY ON

Display Entity Name PROJECT_SHOW_ENTITY_NAME ON

Altera Corporation 7–57
October 2007 Preliminary

Conversion Utility

The following assignments are checked to ensure the functionality of the
Quartus II Classic Timing Analyzer with the specified values
corresponds to the behavior of the Quartus II TimeQuest Timing
Analyzer.

■ Cut off clear and preset signal paths—Quartus II The TimeQuest
Timing Analyzer does not support this functionality. You should use
Recovery and Removal analysis instead to analyze register control
paths. The Quartus II Classic Timing Analyzer does not support this
option.

■ Cut off feedback from I/O pins—The Quartus II TimeQuest Timing
Analyzer does not match the functionality of the Quartus II Classic
Timing Analyzer when this assignment is OFF.

■ Cut off read during write signal paths—The Quartus II TimeQuest
Timing Analyzer does not match the functionality of the Quartus II
Classic Timing Analyzer when this assignment is OFF.

■ Analyze latches as synchronous elements—The Quartus II
TimeQuest Timing Analyzer analyzes latches as synchronous
elements by default and does not match the functionality of the
Quartus II Classic Timing Analyzer when this assignment is OFF.
Beginning with version 5.1 of the Quartus II software, the Quartus II
Classic Timing Analyzer analyzes latches as synchronous elements
by default.

■ Enable Clock Latency—The Quartus II TimeQuest Timing Analyzer
includes clock latency in its calculations. The Quartus II TimeQuest
Timing Analyzer does not match the functionality of the Quartus II
Classic Timing Analyzer when this assignment is OFF. Latency on a
clock can be viewed as a simple delay on the clock path, and affects
clock skew. This is in contrast to an offset, which alters the setup and
hold relationship between two clocks. Refer to “Offset and Latency
Example” on page 7–15 for an example of the different effects of
offset and latency. When you turn on Enable Clock Latency in the
Quartus II Classic Timing Analyzer, it affects the following aspects of
timing analysis:
● Early Clock Latency and Late Clock Latency assignments are

honored
● The compensation delay of a PLL is analyzed as latency
● For clock settings where you do not specify an offset, the

automatically computed offset is treated as latency.
■ Display Entity Name—Any entity-specific assignments are ignored

in the Quartus II TimeQuest Timing Analyzer because they do not
include the entity name when this option is ON.

If your design meets timing requirements in the Quartus II Classic Timing
Analyzer without all of the settings recommended in Table 7–11 on
page 7–56, you should perform one of the following actions.

7–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Change the settings and re-constrain and re-verify as necessary.
or

■ Add or modify SDC constraints as appropriate because analysis in
the Quartus II TimeQuest Timing Analyzer may be different after
conversion.

Clock Conversion

Next, the conversion utility adds the derive_pll_clocks command to the
SDC file. This command creates generated clocks on all PLL outputs in
your design each time the SDC file is read. The command does not add a
clock on the FPGA port that drives the PLL input.

The conversion utility includes the derive_pll_clocks -use_tan_name
command in the SDC file it creates. The -use_tan_name option
overrides the default clock naming behavior (the PLL pin name) so the
clock name is the same as the net name in the Quartus II Classic Timing
Analyzer.

Including the -use_tan_name option ensures that the conversion
utility converts clock-to-clock exceptions properly. If you remove the
-use_tan_name option, you must also edit references to the clock
names in other SDC commands so that they match the PLL pin names.

If your design includes a global fMAX assignment, the assignment is
converted to a derive_clocks command. The behavior of a global fMAX
assignment is different from the behavior of clocks created with the
derive_clocks command, and you should use the report_clocks
command when you review conversion results to evaluate the clock
settings. Refer to “Automatic Clock Detection” on page 7–19 for an
explanation of the differences. As soon as you know the appropriate clock
settings, you should use create_clock or create_generated_clock
commands instead of the derive_clocks command.

1 The conversion utility adds a post_message command before
the derive_clocks command to remind you that the clocks are
derived automatically. The Quartus II TimeQuest Timing
Analyzer displays the reminder the first time it reads the SDC
file. Remove or comment out the post_message command to
prevent the message from displaying.

Next, the conversion utility identifies and converts clock settings in the
QSF file. If a project database exists, the utility also identifies and converts
any additional clocks in the report file that are not in the QSF, such as PLL
base clocks.

Altera Corporation 7–59
October 2007 Preliminary

Conversion Utility

1 If you change the PLL input frequency, you must modify the
SDC constraint manually.

The conversion utility ignores clock offsets on generated clocks. Refer to
“Clock Offset” on page 7–14 for information about how to use offset
values in the Quartus II TimeQuest Timing Analyzer.

Instance Assignment Conversion

Next, the conversion utility converts the following instance assignments
in Table 7–12. Refer to the indicated page for information about each
assignment.

Depending on input and output delay assignments, you may receive a
warning message when the SDC file is read. The message warns that the
set_input_delay commands, set_output_delay commands, or both are

Table 7–12. Instance Timing Assignments

Assignment Name QSF Variable More Information

Late Clock Latency LATE_CLOCK_LATENCY
page 7–34

Early Clock Latency EARLY_CLOCK_LATENCY

Clock Setup Uncertainty CLOCK_SETUP_UNCERTAINTY
page 7–34

Clock Hold Uncertainty CLOCK_HOLD_UNCERTAINTY

Multicycle (1) MULTICYCLE

page 7–37
Source Multicycle (2) SRC_MULTICYCLE

Multicycle Hold (3) HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Clock Enable Multicycle CLOCK_ENABLE_MULTICYCLE

page 7–38
Clock Enable Source Multicycle CLOCK_ENABLE_SOURCE_MULTICYCLE

Clock Enable Multicycle Hold CLOCK_ENABLE_MULTICYCLE_HOLD

Clock Enable Source Multicycle Hold CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD

Cut Timing Path CUT page 7–52

Input Maximum Delay INPUT_MAX_DELAY

page 7–39
Input Minimum Delay INPUT_MIN_DELAY

Output Maximum Delay OUTPUT_MAX_DELAY

Output Minimum Delay OUTPUT_MIN_DELAY

Notes to Table 7–12:
(1) A multicycle assignment can also be known as a “destination multicycle setup” assignment.
(2) A source multicycle assignment can also be known as a “source multicycle setup” assignment.
(3) A multicycle hold can also be known as a “destination multicycle hold” assignment.

7–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

missing the -max option, -min option, or both. Refer to “Input and
Output Delay” on page 7–39 for an explanation of why the warning
occurs and how to avoid it.

Beginning in version 7.1 of the Quartus II software, the conversion utility
automatically adds multicycle hold exceptions for each multicycle setup
assignment. The value of each multicycle hold exception depends on the
Default hold multicycle assignment value in your project. If the value is
One, the conversion utility uses a value of 0 (zero) for each multicycle
hold exception it adds. If the value is Same as multicycle, the conversion
utility uses a value one less than the corresponding multicycle setup
assignment value for each multicycle hold exception it adds. Refer to
“Hold Multicycle” on page 7–24 for more information on hold multicycle
differences between the Quartus II Classic and Quartus II TimeQuest
Timing Analyzers.

Next, the conversion utility converts the following instance assignments
in Table 7–13. Refer to the indicated page for information about each
assignment. If the tPD and minimum tPD assignment targets also have
input or output delays that apply to them, the tPD and minimum tPD
conversion values may be incorrect. This is described in more detail on
the indicated pages for the appropriate assignments.

Table 7–13. Instance Timing Assignments

Assignment Name QSF Variable More Information

tPD Requirement (1) TPD_REQUIREMENT page 7–50

Minimum tPD Requirement (1) MIN_TPD_REQUIREMENT page 7–51

Setup Relationship SETUP_RELATIONSHIP page 7–33

Hold Relationship HOLD_RELATIONSHIP page 7–34

Note to Table 7–13:
(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 7–71 for more information about how the

conversion utility converts single-point tPD and minimum tPD assignments.

Altera Corporation 7–61
October 2007 Preliminary

Conversion Utility

The conversion utility converts Quartus II Classic I/O timing
assignments to FPGA-centric SDC constraints. Table 7–14 includes
Quartus II Classic assignments, the equivalent FPGA-centric SDC
constraints, and recommended system-centric SDC constraints.

The conversion utility can convert Quartus II Classic I/O timing
assignments only to the FPGA-centric constraints without additional
information about your design. Making system-centric constraints
requires information about the external circuitry interfacing with the
FPGA such as external clocks, clock latency, board delay, and clocking
exceptions. You cannot convert Quartus II Classic timing assignments to
system-centric constraints without that information. If you use the
conversion utility, you can modify the SDC constraints to change the
FPGA-centric constraints to system-centric constraints as appropriate.

PLL Phase Shift Conversion

The conversion utility does not account for PLL phase shifts when it
converts values of the following FPGA-centric I/O timing assignments:

■ tSU Requirement
■ tH Requirement
■ tCO Requirement
■ Minimum tCO Requirement

If any of your paths go through PLLs with a phase shift, you must correct
the converted values for those paths according to the following formula:

(13)

Table 7–14. Quartus II Classic and Quartus II TimeQuest Equivalent Constraints

Quartus II Classic FPGA-Centric SDC System-Centric SDC More Information

tSU Requirement (1) set_max_delay set_input_delay -max page 7–40

tH Requirement (1) set_min_delay set_input_delay -min page 7–43

tCO Requirement (2) set_max_delay set_output_delay -max page 7–45

Minimum tCO Requirement (2) set_min_delay set_output_delay -min page 7–48

Notes to Table 7–14:
(1) Refer to “tPD and Minimum tPD Requirement Conversion” on page 7–71 for more information about how the

conversion utility converts this type of assignment.
(2) Refer to “tCO Requirement Conversion” on page 7–62 for more information about how the conversion utility

converts this type of assignment.

<correct value> <converted value> <pll output period> <phase shift>×()
360

--–=

7–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 7–18 shows the incorrect conversion result for a tCO assignment
and how to correct it. For the example, assume the PLL output frequency
is 200 MHz (period is 5 ns), the phase shift is 90 degrees, the tCO
Requirement value is 1 ns, and it is made to data[0]. The QSF file
contains the following assignment:

Example 7–18. Assignment
set_instance_assignment -name TCO_REQUIREMENT -to data[0] 1.0

The conversion utility generates the SDC command shown in
Example 7–19.

Example 7–19. SDC Command
set_max_delay -from [get_registers *] -to [get_ports data[0]] 1.0

To correct the value, use the formula and values above, as shown in the
following example:

Then, change the value so the SDC command looks like Example 7–20.

Example 7–20. SDC Command with Correct Values
set_max_delay -from [get_registers *] -to [get_ports data[0]] -0.25

tCO Requirement Conversion

The conversion utility uses a special process to convert tCO Requirement
and Minimum tCO Requirement assignments. In addition to the
set_max_delay or set_min_delay commands, the conversion utility adds
a set_output_delay constraint relative to a virtual clock named N/C (Not
a Clock). It also creates the virtual clock named N/C with a period of
10 ns. Adding the virtual clock allows you to report timing on the output
paths. Without the virtual clock N/C, the clock used for reporting would
be blank. Example 7–21 shows how the conversion utility converts a tCO
Requirement assignment of 5.0 ns to data[0].

Example 7–21. Converting a tCO Requirement Assignment of 5.0 ns to data[0]
set_max_delay -from [get_registers *] -to [get_ports data[0]]
set_output_delay -clock "N/C" 0 [get_ports data[0]]

1.0 5 90×()
360

--------------------– 0.25–=

Altera Corporation 7–63
October 2007 Preliminary

Conversion Utility

Entity-Specific Assignments

Next, the conversion utility converts the entity-specific assignments
listed in Table 7–15 that exist in the Timing Analyzer Settings report
panel. This usually occurs if you have any timing assignments in your
Verilog HDL or VHDL source, which can include MegaCore function
files. These entity-specific assignments cannot be automatically
converted unless your project is compiled and a \db directory exists.

1 You must manually convert all other entity-specific timing
assignments.

Paths between Unrelated Clock Domains

Beginning in version 7.1 of the Quartus II software, the conversion utility
can create exceptions that cut paths between unrelated clock domains,
which matches the default behavior of the Quartus II Classic Timing
Analyzer. When Cut paths between unrelated clock domains is on, the
conversion utility creates clock groups with the set_clock_groups
command and uses the -exclusive option to cut paths between the
clock groups.

Table 7–15. Entity-Specific Timing Assignments

Quartus II Classic QSF Variable More Information

Multicycle MULTICYCLE

page 7–37
Source Multicycle SRC_MULTICYCLE

Multicycle Hold HOLD_MULTICYCLE

Source Multicycle Hold SRC_HOLD_MULTICYCLE

Setup Relationship SETUP_RELATIONSHIP page 7–33

Hold Relationship HOLD_RELATIONSHIP page 7–34

Cut Timing Path CUT page 7–52

7–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Unsupported Instance Assignments

Finally, the conversion utility checks for the following unsupported
instance assignments listed in Table 7–16 and warns you if any exist.
Refer to the indicated page for information about each assignment.

1 You can manually convert some of the assignments to SDC
constraints.

Reviewing Conversion Results

You must review the messages that are generated during the conversion
process, and review the SDC file for correctness and completeness.
Warning and critical warning messages identify significant differences
between the Quartus II Classic Timing Analyzer and Quartus II
TimeQuest Timing Analyzer behaviors. In some cases, warning messages
indicate that the conversion utility ignored assignments because it could
not determine the intended functionality of your design. You must add to
or modify the SDC constraints as necessary based on your knowledge of
the design.

The conversion utility creates an SDC file with the same name as your
current revision, <revision>.sdc, and it overwrites any existing
<revision>.sdc file. If you use the conversion utility to create an SDC file,
you should make additions or corrections in a separate SDC file, or a copy
of the SDC file created by the conversion utility. That way, you can re-run
the conversion utility later without overwriting your additions and
changes. If you have constraints in multiple SDC files, refer to“Constraint
File Priority” on page 7–10 to learn how to add constraints to your project.

Warning Messages

The conversion utility may generate any of the following warning
messages. Refer to the information provided for each warning message to
learn what to do in that instance.

Table 7–16. Instance Timing Assignments

Assignment Name QSF Variable More Information

Inverted Clock INVERTED_CLOCK page 7–35

Maximum Clock Arrival Skew MAX_CLOCK_ARRIVAL_SKEW page 7–53

Maximum Data Arrival Skew MAX_DATA_ARRIVAL_SKEW page 7–53

Maximum Delay MAX_DELAY page 7–52

Minimum Delay MIN_DELAY page 7–52

Virtual Clock Reference VIRTUAL_CLOCK_REFERENCE page 7–36

Altera Corporation 7–65
October 2007 Preliminary

Conversion Utility

Ignored QSF Variable <assignment>
The conversion utility ignored the specified assignment. Determine
whether an equivalent constraint is necessary and manually add one if
appropriate. Refer to “Timing Assignment Conversion” on page 7–33 for
information about conversions for all QSF timing assignments.

Global <name> = <value>
The conversion utility ignored the global assignment <name>. Manually
add an equivalent constraint if appropriate. Refer to “Unsupported
Global Assignments” on page 7–56 for information about conversions for
these assignments.

QSF: Expected <name> to be set to <expected value> but it is set to
<actual value>
The behavior of the Quartus II TimeQuest Timing Analyzer is closest to
the Quartus II Classic Timing Analyzer when the value for the specified
assignment is the expected value. Because the actual assignment value is
not the expected value in your project, the Quartus II TimeQuest Timing
Analyzer analysis may be different from the Quartus II Classic Timing
Analyzer analysis. Refer to “Recommended Global Assignments” on
page 7–56 for an explanation about the indicated QSF variable names.

QSF: Found Global Fmax Requirement. Translation will be done using
derive_clocks
Your design includes a global fMAX requirement, and the requirement is
converted to the derive_clocks command. Refer to “Default Required
fMAX Assignment” on page 7–35 for information about how to convert to
an SDC constraint.

TAN Report Database not found. HDL based assignments will not be
migrated
You did not analyze your design with the Quartus II Classic Timing
Analyzer before running the conversion utility. As a result, the
conversion utility did not convert any timing assignments in your HDL
source code to SDC constraints. If you have timing assignments in your
HDL source code, you must find and convert them manually, or analyze
your design with the Quartus II Classic Timing Analyzer and rerun the
conversion utility.

Ignored Entity Assignment (Entity <entity>): <variable> = <value>
-from <from> -to <to>
The conversion utility ignored the specified entity assignment because
the utility cannot automatically convert the assignment. Table 7–15 on
page 7–63 lists the entity-specific assignments the script can convert
automatically.

7–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Refer to “Timing Assignment Conversion” on page 7–33 for information
about how to convert the entity assignment manually.

Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock
<clock>
In some cases, this assignment is used to work around a limitation in how
the Quartus II Classic Timing Analyzer handles some forms of clock
inversion. The conversion script ignores the assignment because it cannot
determine whether the assignment is used as a workaround. Review your
clock setting and add the assignment in your SDC file if appropriate.
Refer to “Clock Offset” on page 7–14 for more information about
converting clock offset.

Clock <clock> has no FMAX_REQUIREMENT - No clock was
generated
The conversion utility did not convert the clock named <clock> because it
has no fMAX requirement. You should add a clock constraint with an
appropriate period to your SDC file.

No Clock Settings defined in QSF file
If your QSF file has no clock settings, ignore this message. You must add
clock constraints in your SDC file manually.

Clocks

Ensure that the conversion utility converted all clock assignments
correctly. Run report_clocks, or double-click Report Clocks in the Tasks
pane in the Quartus II TimeQuest Timing Analyzer GUI. Make sure that
the right number of clocks is reported. If any clock constraints are
missing, you must add them manually with the appropriate SDC
commands (create_clock or create_generated_clock). Confirm that each
option for each clock is correct.

The Quartus II TimeQuest Timing Analyzer can create more clocks, such
as:

■ derive_clocks selecting ripple clocks
■ derive_pll_clocks, adding

● Extra clocks for PLL switchover
● Extra clocks for LVDS pulse-generated clocks (~load_reg)

Clock Transfers

After you confirm that all clock assignments are correct, run
report_clock_transfers, or double-click Report Clock Transfers in the
Tasks pane in the Quartus II TimeQuest Timing Analyzer GUI. The

Altera Corporation 7–67
October 2007 Preliminary

Conversion Utility

command generates a summary table with the number of paths between
each clock domain. If the number of cross-clock domain paths seems
high, remember that all clock domains are related in the Quartus II
TimeQuest Timing Analyzer. You must cut unrelated clock domains.
Refer to “Related and Unrelated Clocks” on page 7–13 for information
about how to cut unrelated clock domains.

Path Details

If you have unexpected differences between the Quartus II Classic and
Quartus II TimeQuest Timing Analyzers on some paths, follow these
steps to identify the cause of the difference.

1. List the path in the Quartus II Classic Timing Analyzer.

2. Report timing on the path in the Quartus II TimeQuest Timing
Analyzer.

3. Compare slack values.

4. Compare source and destination clocks.

5. Compare the launch/latch times in the Quartus II TimeQuest
Timing Analyzer to the setup/hold relationship in the Quartus II
Classic Timing Analyzer. The times are absolute in the Quartus II
TimeQuest Timing Analyzer and relative in the Quartus II Classic
Timing Analyzer.

6. Compare clock latency values.

Unconstrained Paths

Next, run report_ucp, or double-click Report Unconstrained Paths in
the Tasks pane in the Quartus II TimeQuest Timing Analyzer GUI. This
command generates a series of reports that detail any unconstrained
paths in your design. If your design was completely constrained in the
Quartus II Classic Timing Analyzer but there are unconstrained paths in
the Quartus II TimeQuest Timing Analyzer, some assignments may not
have been converted properly. Also, some of the assignments could be
ambiguous. The Quartus II TimeQuest Timing Analyzer analyzes more
paths than the Quartus II Classic Timing Analyzer does, so any
unconstrained paths might be paths you could not constrain in the
Quartus II Classic Timing Analyzer.

7–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Bus Names

If your design includes Quartus II Classic Timing Analyzer timing
assignments to buses, and the bus names do not include square brackets
enclosing an asterisk, such as: address[*], you should review the SDC
constraints to ensure the conversion is correct. Refer to “Bus Name
Format” on page 7–10 for more information.

Other

Review the notes listed in “Conversion Utility” on page 7–71.

Re-Running the Conversion Utility

You can force the conversion utility to run even if it can find an SDC file
according to the priority described in “Constraint File Priority” on
page 7–10. Any method described in “Conversion Utility” on page 7–3
forces the conversion utility to run even if it can find an SDC file.

Notes This section describes notes for the Quartus II TimeQuest Timing
Analyzer.

Output Pin Load Assignments

The Quartus II TimeQuest Timing Analyzer takes Output Pin Load
values into account when it analyzes your design. If you change Output
Pin Load assignments and do not recompile before you analyze timing,
you must use the -force_dat option when you create the timing netlist.
Type the following command at the Tcl console of the Quartus II
TimeQuest Timing Analyzer:

create_timing_netlist -force_dat r
If you change Output Pin Load assignments and recompile before you
analyze timing, do not use the -force_dat option when you create the
timing netlist. You can create the timing netlist with the
create_timing_netlist command, or with the Create Timing Netlist task
in the Tasks pane.

Also note that the SDC set_output_load command is not supported,
so you must make all output load assignments in the Quartus II Settings
File (.qsf).

Altera Corporation 7–69
October 2007 Preliminary

Notes

Constraint Target Types

In version 6.0 of the Quartus II software, the Quartus II TimeQuest
Timing Analyzer did not support constraints between clocks and
non-clocks. Beginning with version 6.1, the Quartus II TimeQuest Timing
Analyzer supports mixed exception types; you can apply an exception of
any clock/node combination.

DDR Constraints with the DDR Timing Wizard

The DDR Timing Wizard (DTW) creates an SDC file that contains
constraints for a DDR interface. You can use that SDC file with the
Quartus II TimeQuest Timing Analyzer to analyze only the DDR interface
part of a design.

You should use the SDC file created by DTW for constraining a DDR
interface in the Quartus II TimeQuest Timing Analyzer. Additionally,
your QSF should not contain timing assignments for the DDR interface if
you plan to use the conversion utility to create an SDC file. You should
run the conversion utility before you use DTW, and you should choose
not to apply assignments to the QSF.

However, if you used DTW and chose to apply assignments to a QSF,
before you used the conversion utility, you should remove the
DTW-generated QSF timing assignments and re-run the conversion
utility. The conversion utility creates some incompatible SDC constraints
from the DTW QSF assignments.

HardCopy Stratix Device Handoff

If you target the HardCopy device family, you should not use the
Quartus II TimeQuest Timing Analyzer. The Quartus II TimeQuest
Timing Analyzer is not supported for the HardCopy Stratix design
process. The Quartus II TimeQuest Timing Analyzer supports
HardCopy II series devices.

Unsupported SDC Features

Some SDC commands and features are not supported by the current
version of the Quartus II TimeQuest Timing Analyzer. The following
commands are included:

■ The get_designs command, because the Quartus II software
supports a single design, so this command is not necessary

■ True latch analysis with time-borrowing feature; it can, however,
convert latches to negative-edge-triggered registers

■ The case analysis feature

7–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Loads, clock transitions, input transitions, and other features

Constraint Passing

The Quartus II software can read constraints generated by other EDA
software, and write constraints to be read by other EDA software.

Other synthesis software can generate constraints that target the QSF file.
If you change timing constraints in synthesis software after creating an
SDC file for the Quartus II TimeQuest Timing Analyzer, you must update
the SDC constraints. You can use the conversion utility, or update the SDC
file manually.

Optimization

Gate-level re-timing is not supported if you turn on the Quartus II
TimeQuest Timing Analyzer as your default timing analyzer.

If you use physical synthesis with the Quartus II TimeQuest Timing
Analyzer, the design may have lower performance.

Clock Network Delay Reporting

In the Quartus II software version 6.0, the Quartus II TimeQuest Timing
Analyzer reports delay on the clock network as a single number, rather
than node-to-node segments, as the Quartus II Classic Timing Analyzer
does. Beginning with version 6.0 SP1, the TimeQuest Timing Analyzer
reports delay on the clock network by node-to-node segments.

PowerPlay Power Analysis

You must perform the following steps to generate an Early Power
Estimator output file when you use the Quartus II TimeQuest Timing
Analyzer and your design targets one of the following device families:

■ Cyclone
■ Stratix
■ HardCopy Stratix

To generate an Early Power Estimator output file for designs targeting
those families, you must perform the following steps.

1. Turn off the Quartus II TimeQuest Timing Analyzer. Refer to “Set
the Default Timing Analyzer” on page 7–4 to learn how to turn off
the Quartus II TimeQuest Timing Analyzer.

Altera Corporation 7–71
October 2007 Preliminary

Notes

2. Manually convert your Quartus II TimeQuest Timing Analyzer
timing constraints in the SDC file to Quartus II Classic Timing
Analyzer timing assignments. You can use the Assignment Editor to
enter your Quartus II Classic Timing Analyzer timing assignments
in your QSF file.

3. Perform Quartus II Classic timing analysis.

4. Generate an Early Power Estimator output file.

5. Turn on the Quartus II TimeQuest Timing Analyzer.

Project Management

If you use the project_open Tcl command in the Quartus II TimeQuest
Timing Analyzer to open a project compiled with an earlier version of the
Quartus II software, the Quartus II TimeQuest Timing Analyzer
overwrites the compilation results (\db folder) without warning.
Opening a project any other way results in a warning, and you can choose
not to open the project.

Conversion Utility

This section describes the notes for the QSF assignment to SDC constraint
conversion utility.

tPD and Minimum tPD Requirement Conversion

The conversion utility treats the targets of single-point tPD and minimum
tPD assignments as device outputs. It does not correctly convert targets of
single-point tPD and minimum tPD assignments that are device inputs.
The following QSF assignment applies to an a device input named d_in:

set_intance_assignment -name TPD_REQUIREMENT -to d_in "3 ns"

The conversion utility creates the following SDC command, regardless of
whether d_in is a device input or device output:

set_max_delay "3 ns" -from [get_ports *] -to [get_ports d_in]

You must update any incorrect SDC constraints manually.

7–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Referenced
Documents

This chapter references the following documents:

■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the
Quartus II Handbook

■ SDC and TimeQuest Tcl API Reference Manual

Document
Revision History

Table 7–17 shows the revision history for this chapter.

Table 7–17. Document Revision History (Part 1 of 2)

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

No changes were made to the content. —

May 2007
v.7.1.0

Updated chapter for Quartus II software version 7.1, including:
● Minor changes to the “Timing Assignment Conversion”

section, including:
● Updated data on Table 7–6 on page 7–43
● Updated data on Table 7–7 on page 7–45
● Updated data on Table 7–8 on page 7–47
● Updated data on Table 7–9 on page 7–49
● Updated data on Table 7–12 on page 7–59
● Added multicycle_hold information on pages 7–60 and

7–60
● Added new section “Paths between Unrelated Clock

Domains” on page 7–63
● Added new section “Ignored Entity Assignment (Entity

<entity>): <variable> = <value> -from <from> -to <to>” on
page 7–65.

Changes made to this
chapter reflect the software
changes made in version
7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No
other changes made to chapter.

—

November 2006
v6.1.0

Minor changes made to reflect the Quartus II software version
6.1.0, including:
● Changed wording on pages 7–4 and 7–5, regarding setting

the default timing analyzer.
● Changed Figure 7–3 on page 7–10 to reflect that the

TimeQuest Timing Analyzer does not create nor convert any
constraints.

● Changed explanation of Figure 7–3 to reflect that
TimeQuest does not create nor convert any constraints.

● Changed wording in “Constraint Target Types” to reflect that
the TimeQuest Timing Analyzer now supports mixed
exception types.

Changes made to this
chapter reflect the software
changes made in version
6.1, GUI changes that were
made to select the default
timing analyzer, and
support for mixed exception
types.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/manual/mnl-sdctmq.pdf

Altera Corporation 7–73
October 2007 Preliminary

Document Revision History

July 2006
v6.0.1

Updated for the Quartus II software version 6.0.1:
● Added section on Clock Objects on page 7-24.
● Added examples of Netlist Names on page 7-29.
● Replaced figure 7-23 and example 7-9 on page 7-36.
● Added note 4 to table 7-6 on page 7-43.
● Added “Display Entity Name” to table 7-11 on page 7-57.
● Added information to Clock Conversion on pages 7-58 and

7-59.
● Added note 3 to table 7-12 on page 7-60.
● Added information to Clocks section on page 7-67.
● Added Path Details and Unconstrained Paths sections on

page 7-68.
● Added information to Clock Network Delay Reporting on

page 7-72.
● Added hand paragraph in Conversion Utility section on

page 7-73.
● Changed “constraint” to “exception” in many places.

—

May 2006
v6.0.0

Initial release. —

Table 7–17. Document Revision History (Part 2 of 2)

Date and
Version Changes Made Summary of Changes

7–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 8–1
October 2007

8. Quartus II Classic Timing
Analyzer

Introduction Static timing analysis is a method for analyzing, debugging, and
validating the timing performance of a design. The classic timing
analyzer analyzes the delay of every design path and analyzes all timing
requirements to ensure correct circuit operation. Static timing analysis,
used in conjunction with functional simulation, allows you to verify
overall design operation.

f For information about switching to the Quartus II TimeQuest Timing
Analyzer, refer to the Switching to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

As part of the compilation flow, the Quartus® II software automatically
performs a static timing analysis so that you do not need to launch a
separate timing analysis tool. The Quartus II Classic Timing Analyzer
checks every path in the design against your timing constraints for timing
violations and reports results in the Timing Analysis reports, giving you
immediate access to the data.

This chapter assumes you have some Tcl expertise; Tcl commands are
used throughout this chapter to describe alternative methods for making
timing analysis assignments. Refer to “Timing Analysis Using the
Quartus II GUI” on page 8–43 for GUI-equivalent timing constraints.

This chapter details the following aspects of timing analysis:

■ “Timing Analysis Tool Setup” on page 8–2
■ “Static Timing Analysis Overview” on page 8–2
■ “Clock Settings” on page 8–8
■ “Clock Types” on page 8–9
■ “Clock Uncertainty” on page 8–11
■ “Clock Latency” on page 8–12
■ “Timing Exceptions” on page 8–15
■ “I/O Analysis” on page 8–26
■ “Asynchronous Paths” on page 8–30
■ “Skew Management” on page 8–34
■ “Generating Timing Analysis Reports with report_timing” on

page 8–36
■ “Other Timing Analyzer Features” on page 8–38
■ “Timing Analysis Using the Quartus II GUI” on page 8–43
■ “Scripting Support” on page 8–52
■ “MAX+PLUS II Timing Analysis Methodology” on page 8–58

QII53004-7.2.0

8–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Timing Analysis
Tool Setup

The Quartus II software version 6.0 and above supports two static timing
analysis tools namely, the classic timing analyzer and the Quartus II
TimeQuest Timing Analyzer. Use the Timing Analysis option under the
Settings menu to set the Timing Analyzer that is used in the compilation
process.

1 Arria GX is not supported by the Quartus II Classic Timing
Analyzer. To perform a static timing analysis for Arria GX, the
Quartus II TimeQuest Timing Analyzer must be enabled.

The following steps set the classic timing analyzer as the default timing
analysis tool in the Quartus II software.

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, click the icon next to Timing Analysis
Settings to expand the folder.

3. Select the Use Classic Timing Analyzer during compilation radio
button.

f Refer to the Quartus II TimeQuest Timing Analyzer chapter of the
Quartus II Handbook for more information about the Quartus II
TimeQuest Timing Analyzer.

Static Timing
Analysis
Overview

This section provides information about static timing analysis concepts
used throughout this chapter and used by the Quartus II Classic Timing
Analyzer. A complete understanding of the concepts presented in this
section allows you to take advantage of the powerful static timing
analysis features available in the Quartus II software.

Various paths exist within any given design which connect design
elements together, including the path from an output of a register to the
input of another register. Timing paths play a significant role during a
static timing analysis. Understanding the types of timing paths is
important for timing closure and optimization. Some of the commonly
analyzed paths are described in this section and are shown in Figure 8–1.

■ Clock paths—Clock paths are the paths from device pins or
internally generated clocks (nodes designated as a clock via a clock
setting) to the clock ports of sequential elements such as registers.

■ Data paths—Data paths are the paths from the data output port of a
sequential element to the data input port of another sequential
element.

Altera Corporation 8–3
October 2007

Static Timing Analysis Overview

■ Asynchronous paths—Asynchronous paths are paths from a node
to the asynchronous set or clear port of a sequential element.

Figure 8–1. Path Types

Once the path types are identified, the classic timing analyzer computes
data and clock arrival times for all valid register-to-register paths. Data
arrival time is the delay from the source clock to the destination register.
TheQuartus II Classic Timing Analyzer calculates this delay by adding
the clock path delay to the source register, the micro clock-to-out (μtCO) of
the source register, and the data path delay from the source register to the
destination register. Clock arrival time is the delay from the destination
clock node to the destination register. Figure 8–2 shows a data arrival
path and a clock arrival path.

Figure 8–2. Data Arrival and Clock Arrival

In addition to identifying various paths within a design, the Quartus II
Classic Timing Analyzer analyzes clock characteristics to compute the
worst-case requirement between any two registers in a single register-to-
register path. You must use timing constraints to specify the
characteristics of all clock signals in the design before this analysis occurs.

The active clock edge that sends data out of a sequential element, acting
as a source for the data transfer, is the launch edge. The active clock edge
that captures data at the data port of a sequential element, acting as a
destination for the data transfer, is the latch edge.

CLRN

D Q

Clock Path Data Path

Async Path

clk

rst

CLRN

D Q

D QD Q

Data Arrival

Clock Arrival

8–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–3 shows a single-cycle system that uses consecutive clock edges
to transmit and capture data, a register-to-register path, and the
corresponding launch and latch edges timing diagram. In this example,
the launch edge sends the data out of register reg1 at 0 ns, and register
reg2 latch edge captures the data at 5 ns.

Figure 8–3. Launch Edge and Latch Edge

By analyzing specific paths relative to the launch and latch edges, the
Quartus II Classic Timing Analyzer performs clock setup and clock hold
checks, validating them against your timing assignments.

Clock Analysis

A comprehensive static timing analysis includes analysis of
register-to-register, I/O, and asynchronous reset paths. Static Timing
Analysis tools use data required times, data arrival times, and clock
arrival times to verify circuit performance and detect possible timing
violations. The Quartus II Classic Timing Analyzer determines the timing
relationships that must be met for the design to correctly function, and
checks arrival times against required times to verify timing.

Clock Setup Check

To determine if a design meets performance, the Quartus II Classic
Timing Analyzer calculates clock timing, timing requirements, and
timing exceptions to perform a clock setup check at each destination
register based on the source and destination clocks and timing
constraints, or exceptions that are applicable to those paths. A clock setup
check ensures that data launched by a source register is latched correctly
by the destination register. To perform a clock setup check, the Quartus II
Classic Timing Analyzer determines the clock arrival time and data
arrival time at the destination register by using the longest path for the

D QD Q

clk

reg1 reg2

0 ns 5 ns 15 ns10 ns

Latch Edge at Destination Register reg2
Launch Edge at Source Register reg1

clk

Altera Corporation 8–5
October 2007

Static Timing Analysis Overview

data arrival time and the shortest path for the clock arrival time. The
Quartus II Classic Timing Analyzer then checks that the difference is
greater than or equal to the micro setup (tSU) of the destination register as
shown in Equation 1.

(1)

1 By default, the Quartus II Classic Timing Analyzer assumes the
launched and latched edges happen on consecutive active clock
edges.

The results of clock setup checks are reported in terms of slack. Slack is
the margin by which a timing requirement is met or not met. Positive
slack indicates the margin by which a requirement is met, and negative
slack indicates the margin by which a requirement is not met. The
Quartus II Classic Timing Analyzer determines clock setup slack using
Equations 2 through 5.

(2)

(3)

(4)

(5) +

The Quartus II Classic Timing Analyzer reports clock setup slack using
Equations 6 through 9 (which are equivalent to Equations 2 through 5).

(6) –

(7)

(8)

(9) –

Both sets of equations can be used to determine the slack value of any
path.

Clock Arrival Time Data Arrival Time– micro tsu≥

Clock Setup Slack Data Required Time Data Arrival Time–=

Data Required Clock Arrival Time micro tsu Setup Uncertainty––=

Clock Arrival Time Latch Edge Shortest Clock Path to Destination Register+=

Data Arrival Time Launch Edge Longest Clock Path to Source Register+=
micro tco Longest Data Delay+

Clock Setup Slack Largest Register-to-Register Requirement=
Longest Register-to-Register Delay

Largest Register-to-Register Requirement Setup Relationship between Source and Destination
Largest Clock Skew micro tco of Source Register micro tsu of Destination Register––+

=

Setup Relationship between Source & Destination Register Latch Edge Launch Edge–=
Setup Uncertainty

Largest Clock Skew Shortest Clock Path to Destination Register=
Longest Clock Path to Source Register

8–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Clock Hold Check

To prevent hold violations, the Quartus II Classic Timing Analyzer
calculates clock timing, timing requirements, and timing exceptions to
perform a clock hold check at each destination register. A clock hold
check ensures data launched from the source register is not captured by
an active clock edge earlier than the setup latch edge, and that the
destination register does not capture data launched from the next active
launch edge. To perform a clock hold check, the Quartus II Classic Timing
Analyzer determines the clock arrival time and data arrival time at the
destination register using the shortest path for the data arrival time and
the longest path for the clock arrival time. The Quartus II Classic Timing
Analyzer checks that the difference is greater than or equal to the micro
hold time (tH) of the destination register, as shown in Equation 10.

(10)

The Quartus II Classic Timing Analyzer determines clock hold slack
using Equations 11 through 14.

(11)

(12)

(13)

(14)

The Quartus II Classic Timing Analyzer reports clock hold slack using
Equations 15 through 18.

(15) –

(16)

(17)

(18) –

These equations can be used to determine the slack value of any path.

Data Arrival Time Clock Arrival Time tH≥–

Clock Hold Slack Data Arrival Time Data Required Time–=

Data Required Time Clock Arrival Time micro tH Hold Uncertainty++=

Clock Arrival Time Latch Edge Longest Clock Path to Destination Register+=

Data Arrival Time Launch Edge Shortest Clock Path to Source Register micro tco
Shortest Data Delay
+ + +=

Clock Hold Slack Shortest Register-to-Register Delay=
Smallest Register-to-Register Requirement

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew micro tco of Source Register micro tH of Destination Register+–

+=

Hold Relationship between Source and Destination Register Latch Launch Hold Uncertainty+–=

Smallest Clock Skew Longest Clock Path from Clock to Destination Register=
Shortest Clock Path from Clock to Source Register

Altera Corporation 8–7
October 2007

Static Timing Analysis Overview

Multicycle Paths

Multicycle paths are data paths that require more than one clock cycle to
latch data at the destination register. For example, a register may be
required to capture data on every second or third rising clock edge.
Figure 8–4 shows an example of a multicycle path between a multiplier’s
input registers and output register where the destination latches data on
every other clock edge.

Refer to “Multicycle” on page 8–15 for more information about
multicycle exceptions.

Figure 8–4. Example Diagram of a Multicycle Path

Figure 8–5 shows the default clock setup analysis launch and latch edges
where multicycle assignment is equal to 1.

Figure 8–5. Default Clock Setup Analysis

D Q

ENA

D Q

ENA

D Q

D Q

ENA

2 cycles

src_clk

dst_clk

8–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–6 shows an analysis similar to Figure 8–5, but with a multicycle
of 2.

Figure 8–6. Multicycle = 2 Clock Setup Analysis

Clock Settings You can use individual and default clock settings to define the clocks in
your design. You can base these clock settings on other clock settings
already defined in your design.

1 To ensure the Quartus II Fitter achieves the desired performance
requirements and the Quartus II Classic Timing Analyzer
performs a thorough static timing analysis, you must specify all
timing assignments prior to compiling the design.

Individual Clock Settings

Individual clock settings allow you to specify clock properties including
performance requirements, offsets, duty cycles, and other properties for
individual clock signals in your design.

You can define individual clock settings using the create_base_clock
Tcl command. The following example defines an individual clock setting
named sys_clk with a requirement of 100 MHz (10 ns), and assigns it to
clock node clk.

create_base_clock -fmax 100MHz -target clk sys_clk

Default Clock Settings

You can assign a project-wide clock requirement to constrain all detected
clocks in a design that do not have individual clock settings.

The set_global_assignment -name FMAX_REQUIREMENT Tcl
command specifies a global default requirement assignment. The
following example defines a 100 MHz default clock requirement:

set_global_assignment -name FMAX_REQUIREMENT "100.0 MHz"

src_clk

dst_clk

Altera Corporation 8–9
October 2007

Clock Types

1 For best placement and routing results, apply individual clock
settings to all clocks in your design. All clocks adopting the
default FMAX are by default unrelated.

Clock Types This section describes the types of clocks recognized by the Timing
Analyzer:

■ Base clocks
■ Derived clocks
■ Undefined clocks
■ PLL clocks

Base Clocks

A base clock is independent of other clocks in a design. For example, a
base clock is typically a clock signal driven directly by a device pin. A
base clock is defined by individual clock settings, or automatically
detected using the default clock setting.

You can use the create_base_clock Tcl command to define a base
clock setting and assign the clock setting to a clock node. The following
Tcl command creates a clock setting called sys_clk with a requirement
of 5 ns (200 MHz) and applies the clock setting to clock node main_clk:

create_base_clock -fmax 5ns –target main_clk sys_clk

Derived Clocks

A derived clock is based on a previously defined base clock. For a derived
clock, you can specify the phase shift, offset, multiplication and division
factors, and duty cycle relative to the base clock.

You can use the create_relative_clock Tcl command to define and
assign a derived clock setting. The following example creates a derived
clock setting named system_clockx2 that is twice as fast as the base
clock system_clock applied to clock node clkx2.

create_relative_clock -base_clock system_clock -duty_cycle 50 \
-multiply 2 -target clkx2 system_clockx2

Undefined Clocks

The Quartus II Classic Timing Analyzer detects undeclared clocks in your
design and displays a warning similar to the following:

Warning: Found pins functioning as undefined clocks and/or memory
enables

8–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

 Info: Assuming node "clk_src" is an undefined clock
 Info: Assuming node "clk_dst" is an undefined clock

The Quartus II Classic Timing Analyzer reports actual data delay for
undefined clocks, but because no clock requirements exist for undefined
clocks, the Quartus II Classic Timing Analyzer does not report slack for
any register-to-register paths driven by an undefined clock.

PLL Clocks

Phase-locked loops (PLLs) are used for clock synthesis in Altera® devices.
This device feature is configured and connected to your design using the
altpll megafunction included with the Quartus II software. Using the
MegaWizard® Plug-In Manager, you can customize the input clock
frequency, multiplication factors, division factors, and other parameters
of the altpll megafunction.

f For more information about using the PLL feature in your design, refer
to the altpll Megafunction User Guide or the handbook for the targeted
device family.

For PLLs, the Quartus II Classic Timing Analyzer automatically creates
derived clock settings based on the parameterization of the PLL and
automatically creates a base clock setting for the input clock pin. For
example, if the input clock frequency to a PLL is 100 MHz and the
multiplication and division ratio is 5:2, the clock period of the PLL clock
is set to 4.0 ns and is automatically calculated by the Quartus II Classic
Timing Analyzer.

For the Stratix® and Cyclone® device families, you can override the PLL
input clock frequency by applying a clock setting to the input clock pin of
the PLL. For example, if the PLL input clock period is set to 10 ns
(100 MHz) with a multiplication and division ratio of 5:2, but a clock
setting of 20 ns (50 MHz) is applied to the input clock pin of the PLL, the
setup relationship is 8.0 ns (125 MHz) and not 4.0 ns (250 MHz). The
Quartus II Classic Timing Analyzer issues a message similar to the
following:

Warning: ClockLock PLL
"mypll_test:inst|altpll:altpll_component|_clk1" input frequency
requirement of 200.0 MHz overrides default required fmax of 100.0
MHz -- Slack information will be reported

1 You cannot override the PLL output clock frequency with a
clock setting in the Quartus II Classic Timing Analyzer.

Altera Corporation 8–11
October 2007

Clock Uncertainty

Clock
Uncertainty

You can use Clock Setup Uncertainty and Clock Hold Uncertainty
assignments to model jitter, skew, or add a guard band associated with
clock signals.

When a clock uncertainty assignment exists for a clock signal, the Timing
Analyzer performs the most conservative setup and hold checks. For
clock setup check, the setup uncertainty is subtracted from the data
required time. Figure 8–7 shows an example of clock sources with a clock
setup uncertainty applied.

Figure 8–7. Clock Setup Uncertainty

You can create clock uncertainty assignments using the Tcl command
set_clock_uncertainty. The set_clock_uncertainty
assignment used with the switch –setup specifies a clock setup
uncertainty assignment. The following example creates a Clock Setup
Uncertainty assignment with a value of 2 ns applied to clock signal clk:

set_clock_uncertainty -to clk -setup 2ns

For the clock hold check, the hold uncertainty is added to the data
required time. Figure 8–8 shows an example of clock setup check with a
clock setup uncertainty and clock hold uncertainty applied.

Clock Setup Check without Uncertainty
Clock Setup Check with Uncertainty

0 ns 5 ns 15 ns10 ns

Source Clock

Destination Clock

8–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–8. Clock Hold Uncertainty

You can use the set_clock_uncertainty Tcl command with the
option –hold to specify a Clock Hold Uncertainty assignment. The
following example creates a Clock Hold Uncertainty assignment with a
value of 2 ns for clock signal clk.

set_clock_uncertainty -to clk -hold 2ns

You can also apply the clock uncertainty assignments between two clock
sources. The following example creates a Clock Setup Uncertainty
assignment for clock setup checks where clk1 is the source clock and
clk2 is the destination clock:

set_clock_uncertainty -from clk1 -to clk2 -setup 2ns

Clock Latency You can use clock latency assignments to model delays from the clock
source. For example, you can use clock latency to model an external delay
from an ideal clock source, such as an oscillator, to the clock pin or port
of the device.

The Early Clock Latency assignment allows you to specify the shortest or
earliest delay of the clock source. Conversely, the Late Clock Latency
assignment allows you to specify the longest or latest delay of the clock
source.

During setup analysis, the Quartus II Classic Timing Analyzer adds the
Late Clock Latency assignment value to the source clock path delay and
adds the Early Clock Latency assignment value to the destination clock
path delay when determining clock skew for the path. During clock hold
analysis, the Quartus II Classic Timing Analyzer adds the Early Clock
Latency assignment value to the source clock path delay and adds the
Late Clock Latency assignment value to the destination clock path delay
when determining clock skew for the path.

Clock Setup Check without Uncertainty
Clock Setup Check with Uncertainty

0 ns 5 ns 15 ns10 ns

Source Clock

Destination Clock

Altera Corporation 8–13
October 2007

Clock Latency

The Early Clock Latency and Late Clock Latency assignments do not
change the latch and launch edges defined by the clock setting and
therefore does not change the setup or hold relationships between source
and destination clocks. The clock latency assignments add only delay to
the clock network and therefore only affects clock skew.

Figure 8–9 shows the clock edges used to calculate clock skew for a setup
check when the Early Clock Latency and Late Clock Latency
assignments are used.

Figure 8–9. Clock Setup Check Clock Skew

Figure 8–10 shows the clock edges used to calculate clock skew for a hold
check when the Early Clock Latency and Late Clock Latency
assignments are used.

Figure 8–10. Clock Hold Check Clock Skew

Source Clock

Destination Clock

Original Clock
Early Clock Latency
Late Clock Latency

Clock Skew Edges Without Latency
Clock Skew Edges With Latency

Source Clock

Destination Clock

Original Clock
Early Clock Latency
Late Clock Latency

Clock Skew Edges Without Latency
Clock Skew Edges With Latency

8–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

1 The Quartus II Classic Timing Analyzer ignores clock latency if
the clock signal at the source and destination registers are the
same.

You can use the set_clock_latency Tcl command with the switches
-early or -late to specify an Early Clock Latency assignment or Late
Clock Latency assignment, respectively. Example 8–1 specifies that the
clock signal at clk2 arrives as early as 1.8 ns and as late as 2.0 ns.

Example 8–1. Specifying Early or Late Clock Latency at clk2
set_clock_latency -early -to clk2 1.8ns
set_clock_latency -late -to clk2 2ns

1 The early clock latency default value is the same as the late clock
latency delay, and the late clock latency default value is the same
as the early clock latency delay, if only one is specified.

The Enable Clock Latency option must be set to ON for the Quartus II
Classic Timing Analyzer to analyze clock latency. When this option is set
to ON, the Quartus II Classic Timing Analyzer reports clock latency as
part of the clock skew calculation for either the source or destination clock
path depending upon the analysis performed. To set the Enable Clock
Latency option to ON, you can use the following Tcl command:

set_global_assignment -name ENABLE_CLOCK_LATENCY ON

When the Enable Clock Latency option is enabled, the Quartus II Classic
Timing Analyzer automatically calculates latencies for derived clocks
instead of automatically calculating offsets; for example, PLL
compensation delays. These clock path delays are accounted for as clock
skew instead of part of the setup or hold relationship as done with offsets.

f For more information about clock latency, refer to AN 411: Understanding
PLL timing for Stratix II Devices.

Altera Corporation 8–15
October 2007

Timing Exceptions

Timing
Exceptions

Timing exceptions allow you to modify the default behavior of the
Quartus II Classic Timing Analyzer. This section describes the following
timing exceptions:

■ Multicycle
■ Setup relationship and hold relationship
■ Maximum delay and minimum delay
■ False paths

1 Not all timing exceptions presented in this chapter are
applicable to the HardCopy® II devices. If you are designing for
the HardCopy II device family, refer to the Timing Constraint for
HardCopy II chapter in the HardCopy II Handbook.

Multicycle

By default, the Quartus II Classic Timing Analyzer performs a
single-cycle analysis for all valid register-to-register paths in the design.
Multicycle assignments specify the number of clock periods before a
source register launches the data or a destination register latches the data.
Multicycle assignments adjust the latch or launch edges, which relaxes
the required clock setup check or clock hold check between the source
and destination register pairs. You can specify multicycles separately for
setup and hold, and multicycles can be based on the source clock or
destination clock. Apply Multicycle exception to time groups, clock
nodes, or common clock enables.

Destination Multicycle Setup Exception

A destination multicycle setup, referred to as a Multicycle exception,
specifies the minimum number of clock cycles required before a register
should latch a value. A Multicycle exception changes the latch edge by
relaxing the required setup relationship. Figure 8–11 shows a timing
diagram for a multicycle path that exists in a design with related clocks,
and with the latch edge label for a clock setup check.

1 By default, the Multicycle exception value is 1.

8–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–11. Multicycle Setup

You can apply Multicycle exception between any two registers or
between any two clock domains. Use the Tcl command
set_multicycle_assingment, and the switch –setup and –end. For
example, to apply a Multicycle exception of 2 between all registers
clocked by source clock clk_src, and all registers clocked by destination
clock clk_dst, enter the following Tcl command:

set_multicycle_assignment –setup –end –from clk_src –to clk_dst 2

To apply a Multicycle exception of 2 between the source register reg1
and the destination register reg2, enter the following Tcl command:

set_multicycle_assignment –setup –end –from reg1 –to reg2 2

Destination Multicycle Hold Exception

A destination multicycle hold, referred to as a Multicycle Hold
exception, modifies the latch edge used for a clock hold check for the
register-to-register path based on the destination clock. A Multicycle
Hold exception changes the latch edge by relaxing the required hold
relationship. Figure 8–12 shows a timing diagram labeling the latching
edge for a clock setup check.

1 If no Multicycle Hold value is specified, the Multicycle Hold
value defaults to the value of the multicycle exception.

-20 ns -10 ns 20 ns10 ns0 ns 30 ns

Source Clock

Destination Clock

Default Clock Setup Check Latch Edge Multicycle = 2

Altera Corporation 8–17
October 2007

Timing Exceptions

Figure 8–12. Multicycle Hold

You can create Multicycle Hold exceptions with the Tcl command
set_multicycle_assingment and the switch –hold and –end. The
following example specifies a Multicycle Hold exception of 3 from
register reg1 to register reg2:

set_multicycle_assignment –hold –end –from reg1 –to reg2 3

By default, the hold multicycle is set to equal that of the setup multicycle
value along the same path. For example, if a setup multicycle of 2 has
been applied to a register-to-register path without a separate hold
multicycle, the hold multicycle value would be set to 2. The default hold
multicycle value can also be changed to a value of 1. This forces all paths
with a setup multicycle assignment to have a default hold multicycle of 1.
To change the default hold multicycle value, in the Settings dialog box,
click the More Timing Settings option.

If your design requires a hold multicycle value not equal to the setup
multicycle or 1, you must explicitly apply a hold multicycle assignment
to the path.

Source Multicycle Setup Exception

A source multicycle setup, referred to as Source Multicycle Setup
exception, is used to extend the required delay by adjusting the source
clock’s launch edge rather than the destination clock’s latch edge; for
example, multicycle setup. Source Multicycle exceptions are useful
when the source and destination registers are clocked by related clocks at
different frequencies. Figure 8–13 shows an example of a Source
Multicycle exception with the launch edge labeled for a clock setup
check.

-20 ns -10 ns 20 ns10 ns0 ns 30 ns

Source Clock

Destination Clock

Multicycle Hold = 2 Default Clock Hold
Check Latch Edge

8–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–13. Source Multicycle

You can create Source Multicycle Setup exceptions with the Tcl
command set_multicycle_assignment and the switches –setup
and –start. The following example specifies a Source Multicycle
exception of 3 from register reg1 to register reg2:

set_multicycle_assignment –setup –start –from reg1 –to reg2 3

By default, the hold multicycle is set to equal that of the setup multicycle
value along the same path. For example, if a setup multicycle of 2 has
been applied to a register-to-register path without a separate hold
multicycle, the hold multicycle value would be set to 2. The default hold
multicycle value can also be changed to a value of 1. This forces all paths
with a setup multicycle assignment to have a default hold multicycle of 1.
To change the default hold multicycle value, in the Settings dialog box,
click the More Timing Settings option.

If your design requires a hold multicycle value not equal to the setup
multicycle or 1, you must explicitly apply a hold multicycle assignment
to the path.

Source Multicycle Hold Exception

The Source Multicycle Hold exception modifies the latch edge used for
a clock hold check for the register-to-register path based on the source
clock. Source Multicycle Hold exceptions increase the required hold
delay by adding source clock cycles. Figure 8–14 shows an example of a
source multicycle hold with launch edge labeled for a clock hold check.

-20 ns -10 ns 20 ns10 ns0 ns

Source Clock

Destination Clock

Source Multicycle = 2
Default Launch Edge for a
Clock Setup Check

Altera Corporation 8–19
October 2007

Timing Exceptions

Figure 8–14. Source Multicycle Hold

You can create Source Multicycle Hold exceptions with the Tcl
command set_multicycle_assingment and the switch –setup and
–start. The following example specifies a Source Multicycle Hold
exception of 3 from register reg1 to register reg2:

set_multicycle_assignment –hold –start –from reg1 –to reg2 3

Default Hold Multicycle

The Quartus II Classic Timing Analyzer sets the hold multicycle value to
equal the multicycle value when a multicycle exception has been entered
without a corresponding hold multicycle. You can change the behavior
with the DEFAULT_HOLD_MULTICYCLE assignment. The value of the
assignment can either be "ONE" or "SAME AS MULTICYCLE".

The assignment has the following syntax:

set_global_assignment -name DEFAULT_HOLD_MULTICYCLE "<value>"

Clock Enable Multicycle

For all enable-driven registers, the setup relationship or hold relationship
can be modified with the Clock Enable Multicycle, Clock Enable
Multicycle Hold, Clock Enable Source Multicycle, or Clock Enable
Multicycle Source Hold.

The Clock Enable Multicycle modifies the latching edge when a clock
setup check is performed for all registers driven by the specified clock
enables, and the Clock Enable Multicycle Hold modifies the latching
edge when a clock hold check is performed for all registers driven by the
specified clock enable. The Clock Enable Source Multicycle modifies the
launching edge when a clock setup check is performed for all enabled
driven registers, and the Clock Enable Source Multicycle Hold modifies
the launching edge when a clock hold check is performed for all enabled
driven registers.

-20 ns -10 ns 20 ns10 ns0 ns

Source Clock

Destination Clock

Source Multicycle Hold = 2
Default Clock Hold

Check Launch Edge

8–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

1 Clock enable-based multicycle exceptions apply only to
registers using dedicated clock enable circuitry. If the enable is
synthesized into a logic cell; for example, due to signal
prioritization, the multicycle does not apply.

The Clock Enable Multicycle, Clock Enable Multicycle Hold, Clock
Enable Source Multicycle, and Clock Enable Multicycle Source Hold
can be either a single-point or a point-to-point assignment. Figure 8–15
shows an example of a single-point assignment. In this example, register
Reg A has the single-point assignment applied. This has the affect of
modifying a register-to-register latching edge whose enable port is driven
by register Reg A. All register-to-register paths with enables driven by
the single-point assignment are affected, even those driven by different
clock sources.

Figure 8–15. Single-Point Clock Enable Multicycle

Point-to-point assignments apply to all paths where the source registers’
enable ports are driven by the source (from) node and the destination
registers’ enable ports are driven by the destination (to) node.
Figure 8–16 shows an example of a point-to-point assignment made to
different source and destination registers. In this example, register Reg A
is specified as the source, and register Reg B is specified as the
destination for the assignment. Only register-to-register paths that have
their enables driven by the assigned point-to-point registers have their
latching edges modified.

D Q

ENA

Reg A

D Q

ENA

Reg C

D Q

ENA

Reg F
D Q

ENA

Reg E

D Q

ENA

Reg B

D Q

ENA

Reg D

D Q

ENA

Reg G

Assignment Affects all Enable-Driven Registers
Paths of Assigned Register:
 Reg C to Reg B
 Reg C to Reg D
 Reg F to Reg GSingle-Point

Assignment to Reg A

Altera Corporation 8–21
October 2007

Timing Exceptions

Figure 8–16. Different Source and Destination Point-to-Point Assignment Clock
Enable Multicycle

Figure 8–17 shows an example of a point-to-point assignment made to the
same source and destination register. In this example, register Reg A has
been specified as both the source and register for the assignment. Only
register-to-register paths that have both the source-enable port and
destination-enable port has the latching edge modified by the
assigned point-to-point assignment.

Figure 8–17. Same Source and Destination Point-to-Point Assignment Clock
Enable Multicycle

D Q

ENA

Reg A
D Q

ENA

Reg B

D Q

ENA

Reg C
D Q

ENA

Reg D

Point-to-point Assignment Made to Source & Destination
Register Feeding Enable-Driven Register(s)
 (Reg A to Reg B)

Affected Path: Reg C to Reg D

D Q

ENA

Reg A

D Q

ENA

Reg C

D Q

ENA

Reg F
D Q

ENA

Reg E

D Q

ENA

Reg B

D Q

ENA

Reg D

D Q

ENA

Reg G

Assignment Affects Paths in Which Both
Source & Destination are Controlled by
the Same Clock Enable Signal:
 Reg C to Reg B
 Reg C to Reg D

Point-to-Point Assignment
From Reg A to Reg A
(From Reg A to Reg A)

8–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

You can use the set_instance_assignment -name
CLOCK_ENABLE_MULTICYCLE and set_instance_assignment
-name CLOCK_ENABLE_MULTICYCLE_HOLD Tcl commands to specify
either a Clock Enable Multicycle or a Clock Enable Multicycle Hold
assignment, respectively. The following example specifies a single-point
Clock Enable Multicycle assignment of 2 ns to reg1:

set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE 2 -to reg1

The following example specifies a point-to-point Clock Enable
Multicycle Hold assignment of 2 from register reg1 to register reg2:

set_instance_assignment -name CLOCK_ENABLE_MULTICYCLE_HOLD 2 \
-from reg1 -to reg2

You can use the set_instance_assignment -name
CLOCK_ENABLE_SOURCE_MULTICYCLE and
set_instance_assignment -name
CLOCK_ENABLE_MULTICYCLE_SOURCE_HOLD Tcl commands to specify
either a Clock Enable Multicycle or Clock Enable Multicycle Hold
assignment, respectively. The following example specifies a single-point
Clock Enable Multicycle assignment of 2 ns to reg1:

set_instance_assignment -name CLOCK_ENABLE_SOURCE_MULTICYCLE \
2 -to reg1

The following example specifies a point-to-point Clock Enable
Multicycle Hold assignment of 2 from register reg1 to register reg2:

set_instance_assignment -name \
CLOCK_ENABLE_SOURCE_MULTICYCLE_HOLD 2 -from reg1 -to reg2

Setup Relationship and Hold Relationship

By default, the Quartus II Classic Timing Analyzer determines all setup
and hold relationships based on clock settings. The Setup Relationship
and Hold Relationship exceptions allow you to override any default
setup or hold relationships. Example 8–2 shows the path details of a
register-to-register path that has a 10 ns clock setting applied to the clock
signal driving the 2 registers.

Altera Corporation 8–23
October 2007

Timing Exceptions

Example 8–2. Default Setup Relationship with 10 ns Clock Setting
Info: Slack time is 9.405 ns for clock "data_clk" between source register "reg9" and
destination register "reg10"
 Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits
 Info: + Largest register to register requirement is 9.816 ns
 Info: + Setup relationship between source and destination is 10.000 ns
 Info: + Latch edge is 10.000 ns
 Info: - Launch edge is 0.000 ns
 Info: + Largest clock skew is 0.000 ns
 Info: - Micro clock to output delay of source is 0.094 ns
 Info: - Micro setup delay of destination is 0.090 ns
 Info: - Longest register to register delay is 0.411 ns

In Example 8–3, a 15 ns Setup Relationship exception is applied to the
register-to-register path, overriding the default 10 ns setup relationship.

Example 8–3. Setup Relationship Assignment of 15 ns
Info: Slack time is 14.405 ns for clock "data_clk" between source register "reg9" and
destination register "reg10"

Info: Fmax is restricted to 500.0 MHz due to tcl and tch limits
Info: + Largest register to register requirement is 14.816 ns
Info: + Setup relationship between source and destination is 15.000 ns
Info: Setup Relationship assignment value is 15.000 ns between source "reg9" and
destination "reg10"
Info: + Largest clock skew is 0.000 ns
Info: Total interconnect delay = 1.583 ns (51.31 %)

Info: - Micro clock to output delay of source is 0.094 ns
Info: - Micro setup delay of destination is 0.090 ns

Info: - Longest register to register delay is 0.411 ns

You can create a Setup Relationship exception with the Tcl command
set_instance_assignment -name SETUP_RELATIONSHIP. The
following example specifies a Setup Relationship exception of 5 ns from
register reg1 to register reg2:

set_instance_assignment -name SETUP_RELATIONSHIP 5ns -from reg1 \
-to reg2

You can use Hold Relationship exception to override the default hold
relationship of any register-to-register paths.

You can use the set_instance_assignment -name
HOLD_RELATIONSHIP Tcl command to specify a hold relationship
assignment. The following example specifies a Hold Relationship
exception of 1 ns from register reg1 to register reg2:

set_instance_assignment -name HOLD_RELATIONSHIP 1ns -from reg1 \
-to reg2

8–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Maximum Delay and Minimum Delay

You can use Maximum Delay and Minimum Delay assignments to
specify delay requirements for pin-to-register, register-to-register, and
register-to-pin paths. The Maximum Delay assignment overrides any
setup relationship for any path. The Minimum Delay assignment
overrides any hold relationship for any path.

1 The Quartus II Classic Timing Analyzer ignores the effects of
clock skew when checking a design against Maximum Delay
and Minimum Delay assignments.

You can use the set_instance_assignment –name MAX_DELAY and
set_instance_assignment –name –MIN_DELAY Tcl commands to
specify a Maximum Delay assignment or a Minimum Delay assignment,
respectively. The following example specifies a maximum delay of 2 ns
between source register reg1 and destination register reg2:

set_instance_assignment -name MAX_DELAY 2ns -from reg1 -to reg2

The following example specifies a minimum delay of 1 ns between input
pin data_in to destination register dst_reg:

set_instance_assignment -name MIN_DELAY 1ns -from data_in -to \
dst_reg

False Paths

A false path is any path that is not relevant to a circuit’s operation, such
as test logic. There are several global assignments to cut different classes
of paths, such as unrelated clock domains and paths through
bidirectional pins, but you can also cut an individual timing path to a
specific false path.

The Timing Analyzer provides the following three global options that
allow you to remove false paths from your design:

■ Cut off feedback from I/O pins
■ Cut off read-during-write signal paths
■ Cut paths between unrelated clock domains

You can use the set_global_assignment -name
CUT_OFF_IO_PIN_FEEDBACK ON Tcl command to cut the feedback
path when a bidirectional I/O pin is connected directly or indirectly to
both the input and output of a latch.

Altera Corporation 8–25
October 2007

Timing Exceptions

You can use the set_global_assignment -name
CUT_OFF_READ_DURING_WRITE_PATHS ON Tcl command to cut the
path from the write-enable register through memory element to a
destination register.

You can use the set_global_assignment -name
CUT_OFF_PATHS_BETWEEN_CLOCK_DOMAINS ON Tcl command to cut
paths between register-to-register where the source and destination
clocks are different.

You can use the set_timing_cut_assignment Tcl command to cut
specific timing paths. In Figure 8–18, the path from inst1 through the
multiplexer to inst2 is used only for design testing. This false path is not
required under normal operation and does not need to be analyzed
during static timing analysis. Figure 8–18 shows an example of a false
path.

Figure 8–18. False Path Signal

To cut the timing path from source register inst1 to destination register
inst2, enter the following Tcl command:

set_timing_cut_assignment -from inst1 -to inst2

You can also use the set_timing_cut_assignment Tcl command as
a single point assignment. When you use the single point assignment, all
fanout of the node is cut. For example, the following Tcl command cuts
all timing paths originating for node src_reg:

set_timing_cut_assignment -to src_reg

D Q

DFF

D Q

DFF

inst

inst1

BUSMX

inst3 sel

result[]
dataa[]

datab[]
0

1
D Q

DFF

Test Enable

Clock

8–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

I/O Analysis The I/O analysis performed by the Quartus II Classic Timing Analyzer
ensures your Altera FPGA design meets all timing specifications for
interfacing with external devices. This section describes assignments
relevant to I/O analysis and other I/O analysis features and options
available with the Quartus II Classic Timing Analyzer.

External Input Delay and Output Delay Assignments

External input and output delays represent delays from or to external
devices or boards traces. You can make Input Delay and Output Delay
assignments to ensure the Quartus II Classic Timing Analyzer can
perform a full system analysis. By providing Input Delays and Output
Delays, the Quartus II Classic Timing Analyzer is able to perform clock
setup and clock hold checks for these paths. This also allows other timing
assignments, such as multicycle or clock uncertainty, to be applied to
input and output paths.

1 Do not combine individual or global tSU, tH, tPD, tCO, minimum
tCO, or minimum tPD assignments with Input Delay or Output
Delay assignments.

Input Delay Assignment

External input delays are specified with either Input Maximum Delay or
Input Minimum Delay assignments. Make Input Maximum Delay
assignments to specify the maximum delay of a signal from an external
register to a specified input or bidirectional pin on the FPGA relative to a
specified clock source. Make Input Minimum Delay assignments to
specify the minimum delay of a signal from an external register to a
specified input or bidirectional pin on the FPGA relative to a specified
clock source.

When performing a clock setup check, the Quartus II Classic Timing
Analyzer adds the Input Maximum Delay assignment value to the data
arrival time (or subtracts the assignment value from the point-to-point
requirement).

When performing a clock hold check, the Quartus II Classic Timing
Analyzer adds the Input Minimum Delay assignment value to the data
arrival time (or subtracts the assignment value from the point-to-point
requirement).

The value of the input delay assignment usually represents the sum of the
tCO of the external device, the actual board delay to the input pin of the
Altera device, and the board clock skew.

Altera Corporation 8–27
October 2007

I/O Analysis

1 The Input Minimum Delay defaults to the Input Maximum
Delay and the Input Maximum Delay defaults to the Input
Minimum Delay if only one is specified.

For example, the Input Maximum Delay and Input Minimum Delay can
be used to model the delay associated with an external device driving into
an Altera FPGA. Figure 8–19 shows an example of the input delay path.
For Figure 8–19, the Input Maximum Delay can be calculated as shown in
Equation 19.

(19)

Figure 8–19. Input Delay

Use the Tcl command set_input_delay to specify an input delay. The
following example specifies an Input Maximum Delay assignment of
1.5 ns from clock node clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -max 1.5ns

The following example specifies an Input Minimum Delay assignment
of 1 ns from clock node clk to input pin data_in:

set_input_delay -clk_ref clk -to "data_in" -min 1ns

When using Input Delay assignments, specify a particular clock
reference. The clock reference is the clock that feeds the external register’s
clock port that feeds the Altera device. This allows the Quartus II Classic
Timing Analyzer to perform the proper analysis for the input path.

1 The tSU, tH, tPD, and min tPD timing paths reported for input pins,
where input delay internal to the Altera FPGA assignments has
been applied, include only the data delay from these pins and do
not account for any clock setup relationships, clock hold
relationships, or slack.

Input Maximum Delay External Device Board Clock Path External Device tco
External Device to Altera Device Board Delay External Clock Path to Altera Device–

+ +=

External Device

Oscillator

Altera Device

8–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Output Delay Assignment

You can specify external output delays with either Output Maximum
Delay or Output Minimum Delay assignments. Make Output
Maximum Delay assignments to specify the maximum delay of a signal
from the specified FPGA output pin to an external register, relative to a
specified clock source. Make Output Minimum Delay assignments to
specify the minimum delay of a signal from the specified FPGA output
pin to an external register relative to a specified clock source.

When performing a clock setup check, the Quartus II Classic Timing
Analyzer subtracts the Output Maximum Delay assignment value from
the data required time (or subtracts the assignment value from the point-
to-point requirement).

When performing a clock hold check, the Quartus II Classic Timing
Analyzer subtracts the Output Minimum Delay assignment value from
the data required time (or subtracts the assignment value from the point-
to-point requirement).

The value of this assignment usually represents the sum of the tSU of the
external device, the actual board delay from the output pin of the Altera
device, and the board clock skew.

1 The Output Minimum Delay default value is the same as the
Output Maximum Delay, and the Output Maximum Delay
default value is the same as the Output Minimum Delay if only
one is specified.

For example, use the Output Maximum Delay and Output Minimum
Delay to model the delay associated with outputs for an Altera FPGA
driving into an external device. Figure 8–20 shows an example of an
output delay path. For Figure 8–20 the Output Maximum Delay can be
calculated, as shown in Equation 20.

(20) Output Maximum Delay Altera Device to External Device Board Delay
External Device tsu External Clock Path to Altera Device

External Device Board Clock Path

–
+

+
=

Altera Corporation 8–29
October 2007

I/O Analysis

Figure 8–20. Output Delay

The Tcl command set_output_delay specifies an Output Delay
assignment. The following example specifies an Output Maximum
Delay assignment of 2 ns from clock clk to output pin data_out:

set_output_delay –clk_ref clk –to data_out –max 2ns

The following example specifies an Output Minimum Delay assignment
of 1 ns from clock clk to output pin data_out:

set_output_delay –clk_ref clk –to data_out –min 1ns

When using output delay assignments, specify a specific clock reference.
The clock reference is the clock that feeds the external register’s clock port
that is fed by the Altera device. This allows the Quartus II Classic Timing
Analyzer to perform the correct static timing analysis on the output path.

1 The tCO, minimum tCO, tPD, and minimum tPD timing paths
reported for output pins, where output delay assignments have
been applied include only the data delay internal to the Altera
FPGA to those pins, and do not account for any clock setup
relationships, clock hold relationships, or slack.

Virtual Clocks

You can use virtual clocks to model clock signals outside of the Altera
FPGA, that is, clocks that do not directly drive anything within the Altera
FPGA. For example, you can use a virtual clock to model a clock signal
feeding an external output register that feeds the Altera FPGA.

Using the –virtual option of the create_base_clock Tcl command
specifies a virtual clock assignment.

1 Before a you can use virtual clock for either an input or output
delay assignment, the virtual clock must have the Virtual Clock
Reference assignment enabled for the virtual clock setting.

External DeviceAltera Device

Oscillator

8–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

The code in Example 8–4 creates a virtual clock named virt_clk, with
a 200 MHz requirement, and uses the virtual clock setting as the clock
reference for the input delay assignment.

Example 8–4. Creating a Virtual Clock Named virt_clk
#create the virtual clock setting
create_base_clock -fmax 200MHz -virtual virt_clk

#enable the virtual clock reference for the virtual clock setting
set_instance_assignment -name VIRTUAL_CLOCK_REFERENCE On -to virt_clk

#use the virtual clock setting as the clock reference for the input delay assignment
set_input_delay –clk_ref virt_clk –to data_in –max 2ns

Asynchronous
Paths

The Quartus II Classic Timing Analyzer can analyze asynchronous
signals that connect to the clear, preset, or load ports of a register. This
section explains how the Quartus II Classic Timing Analyzer analyzes
asynchronous paths.

Recovery and Removal

Recovery time is the minimum length of time an asynchronous control
signal; for example, clear and preset, must be stable before the active
clock edge. Removal time is the minimum length of time an
asynchronous control signal must be stable after the active clock edge.
The Enable Recovery/Removal analysis option reports the results of
recovery and removal checks for paths that end at an asynchronous clear,
preset, or load signal of a register.

Enable the recovery and removal analysis with the following Tcl
command:

set_global_assignment -name ENABLE_RECOVERY_REMOVAL_ANALYSIS ON

With this option enabled, the Quartus II Classic Timing Analyzer reports
the result of the recovery analysis and removal analysis.

1 By default, the recovery and removal analysis is disabled. You
should enable his option for all designs that contain
asynchronous controls signals.

Altera Corporation 8–31
October 2007

Asynchronous Paths

Recovery Report

When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to ON, the
Quartus II Classic Timing Analyzer determines the recovery time as the
minimum amount of time required between an asynchronous control
signal becoming inactive and the next active clock edge, compares this to
your design, and reports the results as slack. The Recovery report alerts
you to conditions where an active clock edge occurs too soon after the
asynchronous input becomes inactive, rendering the register’s data
uncertain.

The recovery slack time calculation is similar to the calculation for clock
setup slack, which is based on data arrival time and data required time
except for asynchronous control signals. If the asynchronous control is
registered, the Quartus II Classic Timing Analyzer calculates the recovery
slack time using Equations 21 through 23.

(21)

(22)

(23) +

Example 8–5 shows recovery time as reported by the Timing Analyzer.

Example 8–5. Recovery Time Reporting for a Registered Asynchronous Reset Signal
Info: Slack time is 8.947 ns for clock "a_clk" between source register "async_reg1" and destination
register "reg_1"
 Info: Requirement is of type recovery
 Info: - Data arrival time is 4.028 ns
 Info: + Launch edge is 0.000 ns
 Info: + Longest clock path from clock "a_clk" to source register is 3.067 ns
 Info: + Micro clock to output delay of source is 0.094 ns
 Info: + Longest register to register delay is 0.867 ns
 Info: + Data required time is 12.975 ns
 Info: + Latch edge is 10.000 ns
 Info: + Shortest clock path from clock "a_clk" to destination register is 3.065 ns
 Info: - Micro setup delay of destination is 0.090 ns

If the asynchronous control is not registered, the Quartus II Classic
Timing Analyzer uses Equations 24 through Equations 26 to calculate the
recovery slack time.

(24)

Recovery Slack Time Data Required Time Data Arrival Time–=

Data Arrival Time Launch Edge Longest Clock Path to Source Register
micro tco of Source Register Longest Register-to-Register Delay

+ +
+

=

Data Required Time Latch Edge Longest Clock Path to Source Register+=
micro tsu of Destination Register

Recovery Slack Time Data Required Time Data Arrival Time–=

8–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

(25)

(26)

Example 8–6 shows recovery time as reported by the Timing Analyzer.

Example 8–6. Recovery Time Reporting for a Non-Registered Asynchronous Reset Signal
Info: Slack time is 8.744 ns for clock "a_clk15" between source pin "a_arst2" and
destination register "inst5"
 Info: Requirement is of type recovery
 Info: - Data arrival time is 4.787 ns
 Info: + Launch edge is 0.000 ns
 Info: + Max Input delay of pin is 1.500 ns
 Info: + Max pin to register delay is 3.287 ns
 Info: + Data required time is 13.531 ns

Info: + Latch edge is 10.000 ns
Info: + Shortest clock path from clock "a_clk15" to destination register
is 3.542 ns

Info: - Micro setup delay of destination is 0.011 ns

1 If the asynchronous reset signal is from a device pin, an Input
Maximum Delay assignment must be made to the
asynchronous reset pin for the Quartus II Classic Timing
Analyzer to perform recovery analysis on that path.

Removal Report

When you set ENABLE_RECOVERY_REMOVAL_ANALYSIS to ON, the
Quartus II Classic Timing Analyzer determines the removal time as the
minimum amount of time required between an active clock edge that
occurs while an asynchronous input is active, and the deassertion of the
asynchronous control signal. The Quartus II Classic Timing Analyzer
then compares this to your design and reports the results as slack. The
Removal report alerts you to a condition in which an asynchronous input
signal goes inactive too soon after a clock edge, thus rendering the
register’s data uncertain.

The removal time slack calculation is similar to the one used to calculate
clock hold slack, which is based on data arrival time and data required
time except for asynchronous control signals. If the asynchronous control
is registered, the Quartus II Classic Timing Analyzer uses Equations 27
through 29 to calculate the removal slack time.

(27)

Data Arrival Time Launch Edge Maximum Input Delay Maximum Pin-to-Register Delay+ +=

Data Required Time Latch Edge Shortest Clock Path to Destination Register Delay
micro tSU of Destination Register

–+=

Removal Slack Time Data Arrival Time Data Required Time–=

Altera Corporation 8–33
October 2007

Asynchronous Paths

(28)

(29)

Example 8–7 shows removal time as reported by the Quartus II Classic
Timing Analyzer.

Example 8–7. Removal Time Reporting for a Registered Asynchronous Reset Signal
Info: Minimum slack time is 814 ps for clock "a_clk" between source register "async_reg1"
and destination register "reg_1"
 Info: Requirement is of type removal
 Info: + Data arrival time is 4.028 ns
 Info: + Launch edge is 0.000 ns
 Info: + Shortest clock path from clock "a_clk" to source register is 3.067 ns
 Info: + Micro clock to output delay of source is 0.094 ns
 Info: + Shortest register to register delay is 0.867 ns
 Info: - Data required time is 3.214 ns
 Info: + Latch edge is 0.000 ns
 Info: + Longest clock path from clock "a_clk" to destination register is 3.065 ns
 Info: + Micro hold delay of destination is 0.149 ns

If the asynchronous control is not registered, the Quartus II Classic
Timing Analyzer uses Equations 30 through 32 to calculate the removal
slack time.

(30)

(31)

(32)

Data Arrival Time Launch Edge Shortest Clock Path from Source Register Delay
micro t

+

co of Source Register Shortest Register-to-Register Delay+
+=

Data Required Time Latch Edge Longest Clock Path to Destination Register Delay
micro tH of Destination Register

+ +=

Removal Slack Time Data Arrival Time Data Required Time–=

Data Arrival Time Launch Edge Input Minimum Delay of Pin
Minimum Pin-to-Register Delay

+ +=

Data Required Time Latch Edge Longest Clock Path to Destination Register Delay
micro tH of Destination Register

+ +=

8–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Example 8–8 shows removal time as reported by the Quartus II Classic
Timing Analyzer.

Example 8–8. Removal Time Reporting for a Non-Registered Asynchronous Reset Signal
Info: Minimum slack time is 1.131 ns for clock "a_clk15" between source pin "a_arst2" and
destination register "inst5"
 Info: Requirement is of type removal
 Info: + Data arrival time is 4.787 ns

Info: + Launch edge is 0.000 ns
Info: + Min Input delay of pin is 1.500 ns
Info: + Min pin to register delay is 3.287 ns

 Info: - Data required time is 3.656 ns
Info: + Latch edge is 0.000 ns
Info: + Longest clock path from clock "a_clk15" to destination register
is 3.542 ns

Info: + Micro hold delay of destination is 0.114 ns

1 If the asynchronous reset signal is from a device pin, an Input
Minimum Delay assignment must be made to the
asynchronous reset pin for the Quartus II Classic Timing
Analyzer to perform a removal analysis on this path.

Skew
Management

Clock skew is the difference in the arrival times of a clock signal at two
different registers, which can be caused by path length differences
between two clock paths, or by using gated or rippled clocks. As clock
periods become shorter and shorter, the skew between data arrival times
and clock arrival times becomes more significant. The Quartus II Classic
Timing Analyzer provides two assignments for analyzing and
constraining skew for data and clock signals.

Maximum Clock Arrival Skew

Make Maximum Clock Arrival Skew assignments to specify the
maximum allowable clock arrival skew between a clock signal and
various destination registers. The Quartus II Classic Timing Analyzer
compares the longest clock path to the registers’ clock port and the
shortest clock path to the registers’ clock port to determine if your
maximum clock arrival skew is achieved. Maximum clock arrival skew is
calculated using Equation 33.

(33)

For example, if the delay from clock pin clk to the clock port of register
reg1 is 1.0 ns, and the delay from clock pin clk to the clock port of
register reg2 is 3.0 ns, as shown in Figure 8–21, the Quartus II Classic
Timing Analyzer provides a clock skew slack time of 2.0 ns.

Maximum Clock Arrival Skew Longest Clock Path Shortest Clock Path–=

Altera Corporation 8–35
October 2007

Skew Management

Figure 8–21. Clock Arrival Paths

1 You should apply the Maximum Clock Arrival Skew
assignment to a clock node and a group of registers. When you
make a Maximum Clock Arrival Skew assignment, the Fitter
attempts to satisfy the skew requirement.

You can use the set_instance_assignment -name
max_clock_arrival_skew Tcl command to specify a Maximum
Clock Arrival Skew assignment. The following example specifies a
maximum clock arrival skew of 1 ns from clock signal clk to the bank of
registers matching reg*:

set_instance_assignment -name max_clock_arrival_skew 1ns -from clk -to reg*

Maximum Data Arrival Skew

Make Maximum Data Arrival Skew assignments to specify the
maximum allowable data arrival skew to various destination registers or
pins. The Quartus II Classic Timing Analyzer compares the longest data
arrival path to the shortest data arrival path to determine if your specified
maximum data arrival skew is achieved. Maximum data arrival skew is
calculated using Equation 34.

(34)

For example, if the data arrival time to output pin out1 is 2.0 ns, the data
arrival time to output pin out2 is 1.5 ns, and the data arrival time to
output pin out3 is 1.0 ns, as shown in Figure 8–22, the Quartus II Classic
Timing Analyzer provides a maximum data arrival skew slack time of
1.0 ns.

data out1reg1 reg2

clk

Maximum Data Arrival Skew Longest Data Arrival Path Shortest Data Arrival Path–=

8–36 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–22. Data Arrival Paths

1 When you make a Maximum Data Arrival Skew assignment,
the Fitter attempts to satisfy the skew requirement.

You can use the set_instance_assignment -name
max_data_arrival_skew Tcl command to specify a maximum data
arrival skew value. The following example specifies a maximum data
arrival skew of 1 ns from clock signal clk to the bank of output pins
dout:

set_instance_assignment -name max_data_arrival_skew 1ns -from clk -to dout[*]

Generating
Timing Analysis
Reports with
report_timing

The Quartus II Classic Timing Analyzer includes the report_timing
Tcl command for generating text-based timing analysis reports. You can
customize the output of report_timing using multiple switches that
allow the generation of both detailed and general timing reports on any
path in the design.

1 The report_timing Tcl command is available in the
quartus_tan executable.

Prior to using the report_timing Tcl command, you must open a
Quartus II project and create a timing netlist. For example, the following
two Tcl commands accomplish this:

project_open my_project
create_timing_netlist

out3reg3

clk

out2reg2

out1reg1

Altera Corporation 8–37
October 2007

Generating Timing Analysis Reports with report_timing

The report_timing Tcl command provides -from and -to switches
for filtering specific source and destination nodes. For example, the
following report_timing Tcl command reports all clock setup paths,
with the switch –clock_setup, between registers src_reg* and
dst_reg*. The –npaths 20 switch limits the report to 20 paths.

report_timing –clock_setup –from src_reg* -to dst_reg* -npaths 20

The switches -clock_filter and -src_clock_filter are also
available for filtering based on specific clock sources. For example, the
following report_timing Tcl command reports all clock setup paths
where the destination registers are clocked by clk:

report_timing -clock_setup -clock_filter clk

The following example reports clock setup paths where the destination
registers are clocked by clk, and the source registers are clocked by
src_clock.

report_timing -clock_setup -clock_filter clk -src_clock_filter \
src_clk

Example 8–9 is an example script that can be sourced by the
quartus_tan executable:

Example 8–9. Source for the quartus_tan Executable
Open a project
project_open my_project
Always create the netlist first
create_timing_netlist
List clock setup paths for clock clk
from registers abc* to registers xyz*
report_timing -clock_setup -clock_filter clk -from abc* -to xyz*
List the top 5 pin-to-pin combinational paths
report_timing -tpd -npaths 5
List the top 5 pin-to-pin combinational paths and
write output to an out.tao file
report_timing -tpd -npaths 5 -file out.tao
Compute min tpd and append results to existing out.tao
report_timing -min_tpd -npaths 5 -file out.tao -append
Show longest path (register to register data path) between a* and b*
report_timing -longest_paths -npaths 1
delete_timing_netlist
project close

8–38 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Other Timing
Analyzer
Features

The Quartus II Classic Timing Analyzer provides many features for
customizing and increasing the efficiency of static timing analysis,
including:

■ Wildcard assignments
■ Assignment groups
■ Fast corner analysis
■ Early timing estimation
■ Timing constraint checker
■ Latch analysis

Wildcard Assignments

To simplify the tasks of making assignments to many node assignments,
the Quartus II software accepts the * and ? wildcard characters. Use these
wildcard characters to reduce the number of individual assignments you
need to make for your design.

The “*” wildcard character matches any string. For example, given an
assignment made to a node specified as reg*, the Quartus II Classic
Timing Analyzer searches and applies the assignment to all design nodes
that match the prefix reg with none, one, or several characters following,
such as reg1, reg[2], regbank, and reg12bank.

The “?” wildcard character matches any single character. For example,
given an assignment made to a node specified as reg?, the Quartus II
Classic Timing Analyzer searches and applies the assignment to all
design nodes that match the prefix reg and any single character
following, such as reg1, rega, and reg4.

Assignment Groups

Assignment groups, also known as time groups, allow you to define a
custom group of nodes to which you can assign timing assignments. You
can also exclude specific nodes, wildcards, and time groups from a time
group.

Use the timegroup Tcl command to create an assignment group. The
following example creates an assignment group srcgrp and adds nodes
with names that match src1* to the group:

timegroup srcgrp –add_member src1*

Altera Corporation 8–39
October 2007

Other Timing Analyzer Features

For example, Figure 8–23 has false paths between source register reg1
and destination register bank sram_reg, external_reg,
internal_reg, and cam_reg that need to be cut. Without the use of
assignment groups, the assignments required are:

set_timing_cut_assignment –from reg1 to sram_reg
set_timing_cut_assignment –from reg1 to external_reg
set_timing_cut_assignment –from reg1 to internal_reg
set_timing_cut_assignment –from reg1 to cam_reg

Figure 8–23. False Path

With an assignment group called dst_reg_bank, the assignments
required are:

#create a time group called dst_reg
timegroup dst_reg_bank –add_member sram_reg
timegroup dst_reg_bank –add_member external_reg
timegroup dst_reg_bank –add_member internal_reg
timegroup dst_reg_bank –add_member cam_reg
#cut timing paths
set_timing_cut_assignment –from reg1 to dst_reg_bank

Once an assignment group has been defined, applicable timing
assignment can be made to the time group without redefining the
assignment group.

1 Assigning individual nodes to time groups and applying timing
assignments to these time groups can improve the performance
of the Quartus II Classic Timing Analyzer.

reg1

sram_reg

external_reg

internal_reg

cam_reg

sram

external

internal

cam

clk

8–40 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Fast Corner Analysis

Fast Corner Analysis uses timing models generated under best-case
conditions (voltage, process, and temperature) for the fastest speed-grade
device.

1 Both Fast Corner and Slow Corner static timing analysis reports
are saved to the <project name>.tan.rpt file, potentially
overwriting previous timing analysis reports. To preserve a
copy of your reports, save the file with a new name before the
next compilation or static timing analysis, or use the Combined
Fast/Slow Analysis report feature.

The Quartus II software also reports minimum delay checks after a slow
corner (default) analysis. These results are generated by reporting
minimum delay checks using worst-case timing models.

To perform fast corner static timing analysis with the best-case timing
models, you can use the switch -–fast_model=on with the
quartus_tan executable. The following Tcl command enables the fast
timing models:

quartus_tan <project_name> --fast_model=on

Early Timing Estimation

The majority of Quartus II software compilation time is consumed by the
place-and-route process used to obtain optimal design results. To
accelerate the design process for large designs, the Quartus II software
provides Early Timing Estimation. This feature provides a quick static
timing analysis in a fraction of the time required for a full compilation by
performing a preliminary place-and-route on the design without full
optimizations, which reduces total compile time by up to five times
compared to a fully fitted design.

1 An Early Timing Estimate fit is not fully optimized or legally
routed. The timing delay report is only an estimate. Typically,
the estimated delays are within 10% of those obtained with a full
fit when the realistic setting is used.

Altera Corporation 8–41
October 2007

Other Timing Analyzer Features

The Early Timing Estimate has three settings for generating timing
estimates: Realistic, Optimistic, and Pessimistic. Table 8–1 describes these
settings.

To use the Early Timing Estimate feature, enter the following Tcl
command when performing a fit:

quartus_fit -–early_timing_estimate[=<realistic|optimistic|pessimistic>]

After Early Timing Estimate is complete, a full timing report is generated
based on the early placement and routing delays. In addition, you can
view the preliminary logic placement in the Timing Closure floorplan.
The early timing placement allows you to perform initial placement and
view the timing interaction of various placement topology.

Timing Constraint Checker

Altera recommends that you enter all timing constraints into the
Quartus II software prior to performing a full compilation. This ensures
that the Fitter targets the correct timing requirements and ensures that the
Quartus II Classic Timing Analyzer reports the correct violations for all
timing paths in the design. To ensure that all constraints have been
applied to design nodes, the Timing Constraint Check feature reports all
unconstraint paths in your design. Example 8–10 shows the timing
constraint check summary generated after a full compilation.

Table 8–1. Early Timing Estimate Setting Options

Setting Description

Realistic (default setting: estimates final
timing using standard fitting)

Generates timing estimates that are likely to be closest to full
compilation results.

Optimistic (estimates best-case final timing) Generates timing estimates that are unlikely to be exceeded by
full compilation.

Pessimistic (estimates worst-case final
timing)

Generates timing estimates that are likely to be exceeded by full
compilation.

8–42 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Example 8–10. Timing Constraint Check Summary
+---+
; Timing Constraint Check Summary ;
+--+--+
; Timing Constraint Check Status ; Analyzed - Tue Feb 28 11:42:31 2006 ;
; Quartus II Version ; 6.1 Internal Build 143 02/20/2006 SJ Full Version ;
; Revision Name ; test ;
; Top-level Entity Name ; Block1 ;
; Unconstrained Clocks ; 0 ;
; Unconstrained Paths (Setup) ; 22 ;
; Unconstrained Reg-to-Reg Paths (Setup) ; 0 ;
; Unconstrained I/O Paths (Setup) ; 22 ;
; Unconstrained Paths (Hold) ; 12 ;
; Unconstrained Reg-to-Reg Paths (Hold) ; 0 ;
; Unconstrained I/O Paths (Hold) ; 12 ;
+--+--+

To perform a timing constraint check, use the switch
–-check_constraints with the quartus_tan executable. The
following Tcl command performs a timing constraint check on both setup
and hold on the design system:

quartus_tan block1 –-check_constraints=both

Latch Analysis

Latches are implemented in the Quartus II software as look-up-tables
(LUTs) feeding back onto themselves. The Quartus II Classic Timing
Analyzer can analyze these latches as synchronous elements rather than
as combinational elements. The clock enables are analyzed as inverted
clocks. The Quartus II Classic Timing Analyzer reports the results of
setup and hold analysis on these latches.

You can turn on the Analyze Latches As Synchronous Elements option
with the following Tcl command:

set_global_assignment -name ANALYZE_LATCHES_AS_SYNCHRONOUS_ELEMENTS ON

Altera Corporation 8–43
October 2007

Timing Analysis Using the Quartus II GUI

Timing Analysis
Using the
Quartus II GUI

In addition to the extensive scripting support available in the Quartus II
Classic Timing Analyzer, the Quartus II software provides the
Assignment Editor and other user interface tools, giving you access to the
Quartus II Classic Timing Analyzer features and assignments.

Assignment Editor

The Assignment Editor is a spreadsheet-style interface used for adding,
modifying, and deleting timing assignments.

To make timing assignments in the Assignment Editor, choose Timing
from the category list to cause the Assignment Name column to display
only timing assignments. Double-click <<new>> in the Assignment
Name field, the Assignment Name list displays. Figure 8–24 shows the
Assignment Editor with the Assignment Name list displaying timing
assignment types.

Figure 8–24. Assignment Editor

f For more information about the Assignment Editor, refer to the
Assignment Editor chapter in volume 2 of the Quartus II Handbook.

8–44 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Timing Settings

You can specify delay requirements and clock settings with the Timing
Analysis Settings page of the Settings dialog box.

To access this page, on the Assignments menu, click Settings. In the
Category list, click the icon next to Timing Analysis Settings to
expand the folder. (Be sure that the Use Classic Timing Analyzer during
compilation radio button is turned on.) Click Classic Timing Analyzer
Settings. The Classic Timing Analysis Settings page displays
(Figure 8–25).

Figure 8–25. Timing Analysis Settings Dialog Box

Altera Corporation 8–45
October 2007

Timing Analysis Using the Quartus II GUI

Clock Settings Dialog Box

You can create or modify base clock settings or derived clock settings
using the Clock Settings dialog box. To access this page, on the
Assignments menu, click Settings. In the Category list, click the icon
next to Timing Analysis Settings to expand the folder. (Be sure that the
Use Classic Timing Analyzer during compilation radio button is turned
on.) Click on Classic Timing Analyzer Settings. The Timing Analysis
Settings page displays. Under Clock Settings, click Individual Clocks.
The Individual Clock dialog box is shown (Figure 8–26).

Figure 8–26. Individual Clocks Dialog Box

Click the New button in the Individual Clocks dialog box to access the
New Clock Settings dialog box and create a base or derived clock setting
(Figure 8–27).

8–46 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–27. New Settings Dialog Box

More Timing Settings Dialog Box

On the Timing Analysis Settings page of the Settings dialog box, click
More Settings to display the More Timing Settings dialog box
(Figure 8–28). The More Timing Settings dialog box provides access to
many global timing analysis options.

Altera Corporation 8–47
October 2007

Timing Analysis Using the Quartus II GUI

Figure 8–28. More Timing Settings Dialog Box

Timing Reports

The Quartus II Classic Timing Analyzer report is a section of the
Compilation Report containing the static timing analysis results. The
Quartus II Classic Timing Analyzer report includes clock setup and clock
hold measurements for all clock sources. The report also shows tCO for all
output pins, tSU and tH for all input pins, and tPD for any pin-to-pin
combinational paths in the design. Other reports are created for different
analyses and device features.

In the Settings dialog box, you can specify the range of information to be
reported in the timing analysis of the Compilation Report. To access this
page, on the Assignments menu, click Settings. In the Category list, click
the icon next to Timing Analysis Settings to expand the folder. (Be
sure that the Use Classic Timing Analyzer during compilation radio
button is turned on.) Click the icon next to Classic Timing Analyzer
Settings to expand the folder. Click Classic Timing Analyzer Reporting.
The Classic Timing Analyzer Reporting dialog box (Figure 8–29)
appears.

8–48 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–29. Classic Analyzer Reporting

If there are no timing assignments for the design, the Quartus II Classic
Timing Analyzer does not generate slack reports for any detected clock
nodes. The Quartus II Classic Timing Analyzer only reports slack
measurements for pins with individual or global tSU, tH, or tCO
assignments. A positive slack indicates the margin by which the path
surpasses the clock timing requirements. A negative slack indicates the
margin by which the path fails the clock timing requirements.

1 This Timing Analysis report is also available in text format
located in the design directory with the file name
<revision name>.tan.rpt.

In the Compilation Report, select an analysis type under the Timing
Analyzer folder to display the analysis report; for example, Clock Setup
or Clock Hold. Figure 8–30 shows an example of a Clock Setup report for
clock signal clk.

Altera Corporation 8–49
October 2007

Timing Analysis Using the Quartus II GUI

Figure 8–30. Timing Analysis Report

Advanced List Path

The Advanced List Paths dialog box provides detailed information about
a specific path, such as interconnect and cell delays between any two
valid register-to-register paths (Figure 8–31).

The Advanced List Paths dialog box allows you to select the type of paths
you want listed. For example, you can obtain detailed information for
Clock Setup and Clock Hold for a specific clock. In addition, the Tcl
command field in the window matches the equivalent Tcl command you
can use in either a custom Tcl script or in the Tcl console.

8–50 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–31. Advanced List Paths Dialog Box

You can perform a list path command directly from the Timing Analysis
report. To do this, right click a path and click List Path (Figure 8–32). To
launch the Advanced List Paths dialog box, right-click a path and in the
menu that appears, and select Advanced List Paths.

The Advanced List Paths dialog box displays only paths that are visible
in the Timing Analysis report. To increase the amount of paths reported
by the Quartus II Classic Timing Analyzer, on the Assignments menu,
click Timing Analysis Settings. In the Category list, expand Timing
Analysis Settings and select Timing Analyzer Reporting. In the Timing
Analyzer Reporting page, specify the range of information to be reported
by the Quartus II Classic Timing Analyzer.

1 Both the Advanced List Paths and the List Path commands
display the path information in the System message window.

Altera Corporation 8–51
October 2007

Timing Analysis Using the Quartus II GUI

Figure 8–32. List Path in the Message Window

1 If the Combined Fast/Slow Timing option is enabled, the List
Path Tcl command displays only path delays reported in the
Slow Model section.

Early Timing Estimate

To start an Early Timing Estimate, on the Processing menu, point to Start
and click Start Early Timing Estimate. To specify the Early Timing
Estimate mode, on the Assignments menu, click Settings. In the
Category list, select Compilation Processes Settings, select Early Timing
Estimate and click the desired timing estimate mode. For more
information about the Early Timing Estimate feature, refer to “Early
Timing Estimation” on page 8–40.

Assignment Groups

To define, modify, and delete assignment groups, also known as time
groups, from a single dialog box, on the Assignments menu, click
Assignment (Time) Groups. The Assignment Groups dialog box
displays (Figure 8–33).

8–52 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 8–33. Assignment Groups Dialog Box

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp

f Refer to the Scripting Reference Manual to view this information in PDF
form.

For more information about Tcl scripting, refer to the Tcl Scripting chapter
in volume 2 of the Quartus II Handbook. Refer to the Quartus II Settings File
Reference Manual for information about all settings and constraints in the
Quartus II software. For more information about command-line
scripting, refer to the Command-Line Scripting chapter in volume 2 of the
Quartus II Handbook.

Altera Corporation 8–53
October 2007

Scripting Support

Creating Clocks

There are two Tcl commands that allow you to define clocks in a design,
create_base clock and create_relative_clock.

Base Clocks

Use the create_base_clock Tcl command to define a base clock:

create_base_clock [-h | -help] [-long_help] -fmax <fmax> [-duty_cycle <integer>] \
[-virtual] [-target <name>] [-no_target] [-entity <entity>] [-disable] \
[-comment <comment>] <clock_name>

To define a base clock setting named sys_clk with a 100 MHz
requirement applied to node clk_src, enter the following Tcl command:

create_base_clock –fmax 100MHz –target clk_src sys_clk

Derived Clocks

Use the create_relative_clock Tcl command to define a relative
clock:

create_relative_clock [-h | -help] [-long_help] -base_clock <Base clock> \
[-duty_cycle <integer>] [-multiply <integer>] [-divide <integer>] [-offset <offset>] \
[-phase_shift <integer>] [-invert] [-virtual] [-target <name>] [-no_target] \
[-entity <entity>] [-disable] [-comment <comment>] <clock_name>

To define a relative clock named aux_clk based upon base clock setting
sys_clk with a multiplication factor of 2 applied to node rel_clk,
enter the following Tcl command:

create_relative_clock –base_clock sys_clk –multiply 2 –target rel_clk aux_clk

Clock Latency

You can use the set_clock_latency Tcl command to create either an
early or late clock latency assignment:

set_clock_latency [-h | -help] [-long_help] [-early] [-late] -to <to> [<value>]

To apply an early clock latency of 1 ns and a late clock latency of 2 ns to
clock node clk, enter the following Tcl commands:

set_clock_latency -early -to clk 2ns

8–54 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Clock Uncertainty

You can use the set_clock_uncertainty Tcl command to create
clock uncertainty assignments as shown in the following example:

set_clock_uncertainty [-h] [-help] [-long_help [-from <source clock name>] -to
<destination clock name> [-setup] [-hold] [-remove] [-disable] [-comment <comment>] <value>

To apply a clock setup uncertainty of 50 ps between source clock node
clk_src and destination clock node clk_dst, enter the following Tcl
command:

set_clock_uncertainty –from clk_src –to clk_dst –setup 50ps

To apply a clock hold uncertainty of 25 ps between to clock node
clk_sys, enter the following Tcl command:

set_clock_uncertainty –to clk_sys –setup 25ps

Cut Timing Paths

You can use the set_timing_cut_assignment Tcl command to create
cut timing assignments:

set_timing_cut_assignment [-h | -help] [-long_help] [-from <from_node_list>]
[-to <to_node_list>] [-remove] [-disable] [-comment <comment>]

To cut the timing path from source register reg1 to destination register
reg2, enter the following Tcl command:

set_timing_cut_assignment -from reg1 -to reg2

Input Delay Assignment

You can use the Tcl command set_input_delay to create input delay
assignments:

set_input_delay [-h | -help] [-long_help] [-clk_ref <clock>] -to <input_pin> [-min] [-max]
[-clock_fall] [-remove] [-disable] [-comment <comment>] [<value>]

To apply an input maximum delay of 2 ns to an input pin named
data_in that feeds a register clocked by clock source clk, enter the
following Tcl command:

set_input_delay -clk_ref clk -to data_in –max 2ns

Altera Corporation 8–55
October 2007

Scripting Support

Maximum and Minimum Delay

The following Tcl commands create the Maximum Delay and Minimum
Relationship assignments, respectively:

set_instance_assignment -name MAX_delay <value> -from <node> -to <node>
set_instance_assignment -name MIN_delay <value> -from <node> -to <node>

To apply a Maximum Delay of 8 ns and a minimum of 5 ns between
source register reg1 and destination register reg2, enter the following
Tcl command:

set_instance_assignment -name MAX_DELAY 8ns -from reg1 -to reg2
set_instance_assignment -name MIN_DELAY 5ns -from reg1 -to reg2

To apply a Maximum Delay of 10 ns for all paths from source clock
clk_src to destination clock clk_dst, enter the following Tcl
command:

set_instance_assignment -name MAX_DELAY 10ns -from clk_src -to clk_dst

Maximum Clock Arrival Skew

The following Tcl command defines the Maximum Clock Arrival Skew
assignment:

set_instance_assignment -name max_clock_arrival_skew <value> -from <clock> -to <node>

To apply a Maximum Clock Arrival Skew of 1 ns for clock source clk to
a predefined timegroup called reg_group, enter the following Tcl
command:

set_instance_assignment -name max_clock_arrival_skew 1ns -from clk -to reg_group

Maximum Data Arrival Skew

To create Maximum Data Arrival Skew assignments, use the Tcl
command set_instance_assignment -name
max_data_arrival:

set_instance_assignment -name max_data_arrival_skew <value> -from <clock> -to <node>

To apply a Maximum Data Arrival Skew of 1 ns for clock source clk to
a predefined timegroup of pins called pin_group, enter the following
Tcl command:

set_instance_assignment -name max_data_arrival_skew 1ns -from clk -to pin_group

8–56 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Multicycle

Use the set_multicycle_assignment Tcl command to create
Multicycle assignments:

set_multicycle_assignment [-h | -help] [-long_help] [-setup] [-hold] [-start] [-end]
[-from <from_list>] [-to <to_list>] [-remove] [-disable] [-comment <comment>]
<path_multiplier>

To apply a Multicycle Setup of 2 and a Hold Multicycle of 1 between
source register reg1 and destination register reg2, enter the following
Tcl commands:

set_multicycle_assignment –setup -end –from reg1 –to reg2 2
set_multicycle_assignment –hold -end –from reg1 –to reg2 1

To apply a Source Multicycle Setup of 2 between source register reg1
and destination register reg2, enter the following Tcl command:

set_multicycle_assignment –setup -start –from reg1 –to reg2 1

To apply a multicycle setup of 2 for all paths from source clock clk_src
to destination clock clk_dst, enter the following Tcl command:

set_multicycle_assignment –setup –end –from clk_src –to clk_dst 2

Output Delay Assignment

Use the Tcl command set_output_delay to create Output Delay
assignments:

set_output_delay [-h | -help] [-long_help] [-clk_ref <clock>] -to <output_pin> [-min]
[-max] [-clock_fall] [-remove] [-disable] [-comment <comment>] [<value>]

To apply an Output Maximum Delay of 3 ns to an output pin named
data_out that is fed to a register clocked by clock source clk, enter the
following Tcl command:

set_output_delay -clk_ref clk -to data_out –max 3ns

Altera Corporation 8–57
October 2007

Scripting Support

Report Timing

Use the report_timing Tcl command to generate timing reports:

report_timing [-h | -help] [-long_help] [-npaths <number>] [-tsu] [-th] [-tco] [-tpd] \
[-min_tco] [-min_tpd] [-clock_setup] [-clock_hold] [-clock_setup_io] [-clock_hold_io] \
[-clock_setup_core] [-clock_hold_core] [-recovery] [-removal] [-dqs_read_capture] \
[-stdout] [-file <name>] [-append] [-table <name>] [-from <names>] [-to <names>] \
[-clock_filter <names>] [-src_clock_filter <names>] [-longest_paths] [-shortest_paths] \
[-all_failures]

The following example generates a list of all clock setup paths for clock
source clk from registers src_reg* to registers dst_reg*:

report_timing -clock_setup -clock_filter clk -from src_reg* -to dst_reg*

Setup and Hold Relationships

The following Tcl commands create Setup Relationship and Hold
Relationship assignments, respectively:

set_instance_assignment -name SETUP_RELATIONSHIP <value> -from <node> -to <node>
set_instance_assignment -name HOLD_RELATIONSHIP <value> -from <node> -to <node>

To apply a Setup Relationship of 12 ns and a Hold Relationship of 2 ns
between source register reg1 and destination registers reg2, enter the
following Tcl command:

set_instance_assignment -name SETUP_RELATIONSHIP 12ns -from reg1 -to reg2
set_instance_assignment -name HOLD_RELATIONSHIP 2ns -from reg1 -to reg2

To apply a setup relationship of 10 ns for all paths from source clock
clk_src to destination clock clk_dst, enter the following Tcl
command:

set_instance_assignment -name SETUP_RELATIONSHIP 10ns -from clk_src -to clk_dst

Assignment Group

Use the timegroup Tcl command to create assignment groups:

timegroup [-h | -help] [-long_help] [-add_member <name>] [-add_exception <name>] \
[-remove_member <name>] [-remove_exception <name>] [-get_members] [-get_exceptions] \
[-overwrite] [-remove] [-disable] [-comment <comment>] <group_name>

The following example creates an assignment group called reg_bank
with members dst_reg*, and excludes register dst_reg5.

timegroup reg_bank -add_member dst_reg* -add_exception dst_reg5

8–58 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Virtual Clock

Use the create_relative_clock with the –virtual switch to create
Virtual Clock assignments:

create_relative_clock [-h | -help] [-long_help] -base_clock <Base clock> \
[-duty_cycle <integer>] [-multiply <integer>] [-divide <integer>] [-offset <offset>] \
[-phase_shift <integer>] [-invert] [-virtual] [-target <name>] [-no_target] \
[-entity <entity>] [-disable] [-comment <comment>] <clock_name>

To define a virtual clock derived from the base clock setting clk_aux
named brd_sys, enter the following Tcl command:

create_relative_clock –base_clock clk_aux -virtual brd_sys

MAX+PLUS II
Timing Analysis
Methodology

This section describes the basic static timing analysis and assignments
available in the Quartus II software that originated in the MAX+PLUS® II
design software.

fMAX Relationships

Maximum clock frequency is the fastest speed at which the design clock
can run without violating internal setup and hold time requirements. The
Quartus II software performs static timing analysis on both single- and
multiple-clock designs.

1 Apply clock settings to all clock nodes in a design to ensure that
you meet all performance requirements. Refer to “Clock
Settings” on page 8–8 for more information.

Slack

Slack is the margin by which a timing requirement such as fMAX is met or
not met. Positive slack indicates the margin by which a requirement is
met. Negative slack indicates the margin by which a requirement is not
met. The Quartus II software determines slack using Equations 35
through 38.

Altera Corporation 8–59
October 2007

MAX+PLUS II Timing Analysis Methodology

(35)

(36)

(37)

(38)

Figure 8–34 shows a slack calculation diagram.

Figure 8–34. Slack Calculation Diagram

Clock Setup Slack Longest Register-to-Register Requirement
Longest Register-to-Register Delay

–=

Register-to-Register Requirement Setup Relationship Largest Clock Skew
micro tco of Source Register micro tsu of Destination Register–

–+=

Clock Hold Slack Shortest Register-to-Register Delay
Smallest Register-to-Register Requirement

–=

Shortest Register-to-Register Requirement Hold Relationship Smallest Clock Skew
micro tco of Source Register micro tH of Destination Register–

–+=

tSUtCO

Register 1 Register 2

Data

clk1 clk2

clk1

clk2

 Slack
Clock Period

Latching Edge

Launching Edge

Point to Point Delay

Logic

8–60 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

I/O Timing

This section describes the basic measurements made for I/O timing in the
Quartus II software.

tSU Timing

tSU specifies the length of time data needs to arrive and be stable at an
external input pin prior to a clock transition on an associated clock I/O
pin. A tSU requirement describes this relationship for an input register
relative to the I/O pins of the FPGA. Figure 8–35 shows a diagram of
clock setup time.

Figure 8–35. Clock Setup Time (tSU)

Micro tSU is the internal setup time of the register. It is a characteristic of
the register and is unaffected by the signals feeding the register.
Equation 39 calculates the tSU of data with respect to clk for the circuit
shown in Figure 8–35.

(39)

tH Timing

tH specifies the length of time data needs to be held stable on an external
input pin after a clock transition on an associated clock I/O pin. A tH
requirement describes this relationship for an input register relative to
the I/O pins of the FPGA. Figure 8–36 shows a diagram of clock hold
time.

tSU

Data Delay

Micro tSU

Clock Delay

data

clk

tsu Longest Data Delay Shortest Clock Delay micro tsu of Input Register+–=

Altera Corporation 8–61
October 2007

MAX+PLUS II Timing Analysis Methodology

Figure 8–36. Clock Hold Time (tH)

Micro tH is the internal hold time of the register. Equation 40 calculates
the tH of data with respect to clk for the circuit shown in Figure 8–36.

(40)

tCO Timing

Clock-to-output delay is the maximum time required to obtain a valid
output at an output pin fed by a register, after a clock transition on the
input pin that clocks the register. Micro tCO is the internal clock-to-output
delay of the register. Figure 8–37 shows a diagram of clock-to-output
delay.

Figure 8–37. Clock-to-Output Delay (tCO)

Equation 41 calculates the tCO for output pin data_out with respect to
clock node clk for the circuit shown in Figure 8–37.

(41)

tH

Data Delay

Micro tH

Clock Delay

data

clk

tH Longest Clock Delay Shortest Data Delay micro tH of Input Register+–=

Data Delay

Micro tCO

Clock Delay

tCO

clk

data_out

tco Longest Clock Delay micro tco of Output Register+=

8–62 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Minimum tCO (min tCO)

Minimum clock-to-output delay is the minimum time required to obtain
a valid output at an output pin fed by a register, after a clock transition on
the input pin that clocks the register. Micro tCO is the internal
clock-to-output delay of registers in Altera FPGAs. Unlike the tCO
assignment, the min tCO assignment looks at the shortest delay paths
(Equation 42).

(42)

tPD Timing

Pin-to-pin delay (tPD) is the time required for a signal from an input pin
to propagate through combinational logic and appear at an external
output pin (Equation 43).

(43)

1 In the Quartus II software, you can make tPD assignments
between an input pin and an output pin.

Minimum tPD (min tPD)

The minimum pin-to-pin delay (tPD) is the time required for a signal from
an input pin to propagate through combinational logic and appear at an
external output pin. Unlike the tPD assignment, the min tPD assignment
applies to the shortest pin-to-pin delay (Equation 44).

(44)

The Timing Analyzer Tool

To facilitate the classic static timing analysis flow and constraint, the
Quartus II software provides a MAX+PLUS II-style Timing Analyzer
Tool available on the Tools menu. The Timing Analyzer Tool provides a
simple interface, similar to the Timing Analyzer tool in MAX+PLUS II,
that reports register-to-register performance, I/O timing, and custom
delay values (Figure 8–38).

min tco Shortest Clock Delay Shortest Data Delay micro tco of Output Register+ +=

tPD Longest Pin-to-Pin Delay=

min tPD Shortest Pin-to-Pin Delay=

Altera Corporation 8–63
October 2007

Conclusion

Figure 8–38. Timing Analyzer Tool

Conclusion Evolving design and aggressive process technologies require larger and
higher-performance FPGA designs. Increasing design complexity
demands enhanced static timing analysis tools that aid designers in
verifying design timing requirements. Without advanced static timing
analysis tools, you risk circuit failure in complex designs. The Quartus II
Classic Timing Analyzer incorporates a set of powerful static timing
analysis features critical in enabling system-on-a-programmable-chip
(SOPC) designs.

Referenced
Documents

This chapter references the following documents:

■ altpll Megafunction User Guide
■ AN 411: Understanding PLL Timing for Stratix II Devices
■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer chapter of the Quartus II

Handbook
■ Scripting Reference Manual

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/an/an411.pdf
http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf

8–64 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 8–2 shows the revision history for this chapter.

Table 8–2. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 8–63. —

May 2007
v7.1.0

● Updated Quartus II software 7.1 revision and date
● Added information about Arria GX
● Added Referenced Document
● No new screenshots were taken

Very minor update
pertaining to Arria GX.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

● Added paragraphs about multicycle assignments on page 8–17
and page 8–18

● Updated Figure 8–24 on page 8–42 (screenshot update)
● Updated Figure 8–25 on page 8–43 (screenshot update)

Minor clarification of
text referring to input
and output delay
assignments.

May 2006
v6.0.0

Chapter title changed to classic timing analyzer.
Updated for the Quartus II software version 6.0.0:
● Updated GUI information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

August 2005
V5.0.1

Document revision 1.0. —

May 2005
V5.0.0

New functionality for Quartus II software 5.0 —

Jan. 2005
v2.2

Updated information pertaining to realistic, optimistic, and pessimistic
settings

—

Dec. 2004
v2.1

● Chapter 5 was formerly Chapter 4.
● Updates to tables and figures.
● New functionality for Quartus II software 4.2.

—

June 2004
v2.0

● Updates to tables and figures.
● New functionality for Quartus II software 4.1.

—

Feb. 2004
v1.0

Initial release. —

May 2006
v6.0.0

Chapter title changed to Classic Timing Analyzer.
Updated for the Quartus II software version 6.0.0:
● Updated GUI information.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

Altera Corporation 9–1
October 2007

9. Synopsys PrimeTime
Support

Introduction PrimeTime is an industry standard sign-off tool that performs static
timing analysis on ASIC designs. The Quartus® II software makes it easy
for designers to analyze their Quartus II projects using the PrimeTime
software. The Quartus II software exports a netlist, design constraints (in
the PrimeTime format), and libraries to the PrimeTime software
environment. Figure 9–1 shows the PrimeTime flow diagram.

Figure 9–1. The PrimeTime Software Flow Diagram

This chapter contains the following sections:

■ “Quartus II Settings for Generating the PrimeTime Software Files”
on page 9–2

■ “Files Generated for the PrimeTime Software Environment” on
page 9–3

■ “Running the PrimeTime Software” on page 9–10
■ “PrimeTime Timing Reports” on page 9–12
■ “Static Timing Analyzer Differences” on page 9–23

Design Netlist
(Verilog or

VHDL Format)

Constraints in
PrimeTime

Format

Standard Delay
Format Output

File (Timing
Information)

Timing Reports Generated

The Quartus II Software

The PrimeTime Software

DB lib
HDL lib

QII53005-7.2.0

9–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Quartus II
Settings for
Generating the
PrimeTime
Software Files

To set the Quartus II software to generate files for the PrimeTime
software, perform the following steps:

1. In the Quartus II software, on the Assignments menu, click EDA
Tool Settings.

2. In the Category list, under EDA Tool Settings, select Timing
Analysis.

3. In the Tool name drop-down list, select PrimeTime, and in the
Format for output netlist drop-down list, select either Verilog or
VHDL, depending on the HDL language you chose for use with the
PrimeTime software (Figure 9–2).

Figure 9–2. Setting the Quartus II Software to Generate the PrimeTime Software Files

Altera Corporation 9–3
October 2007

Files Generated for the PrimeTime Software Environment

When you compile your project after making these settings, the
Quartus II software runs the EDA Netlist Writer to create three files for
the PrimeTime software. These files are saved in the
<revision_name>/timing/primetime directory by default, where
<revision_name> is the name of your Quartus II software revision. If it is
not, you have used the wrong variable name.

Files Generated
for the
PrimeTime
Software
Environment

The Quartus II software generates a flattened netlist, a Standard Delay
Output File (.sdo), and a Tcl script that prepares the PrimeTime software
for timing analysis of the Quartus II project. These files are saved in the
<project directory>/timing/primetime directory.

The Quartus II software uses the EDA Netlist Writer to generate
PrimeTime files based on either the Quartus II Classic Timing Analyzer
or the Quartus II TimeQuest Timing Analyzer static timing analysis
results. When you run the EDA Netlist Writer, the PrimeTime SDO files
are based on delays generated by the currently selected timing analysis
tool in the Quartus II software.

To specify the timing analyzer, on the Assignments menu, click Settings.
The Settings dialog box appears. Under Category, click Timing Analysis
Settings. Select the timing analyzer of your choice.

f For more information about specifying the Quartus II timing analyzers,
refer to either the Quartus II Classic Timing Analyzer or the Quartus II
TimeQuest Timing Analyzer chapters in volume 3 of the Quartus II
Handbook. Also, refer to the Switching to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook to help you
decide which timing analyzer is most appropriate for your design.

The Netlist

Depending on whether Verilog or VHDL is selected as the Format for
output netlist option, in the Tool name list on the Timing Analysis page
of the Settings dialog box, the netlist is written and saved as either
<project name>.vo or <project name>.vho, respectively. This file contains
the flattened netlist representing the entire design.

1 When the Quartus II TimeQuest Timing Analyzer is selected,
only a Verilog PrimeTime netlist is generated.

9–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

The SDO File

The Quartus II software saves the Standard Delay Format Output (.sdo)
File as either <revision_name>_v.sdo or <revision_name>_vhd.sdo,
depending on whether you selected Verilog or VHDL in the Tool name
list on the Timing Analysis page of the Settings dialog box.

This file contains the timing information for each timing path between
any two nodes in the design.

When the Quartus II Classic Timing Analyzer is enabled, the slow-corner
(worst case) timing models are used by default when generating the SDO
file. To generate the SDO file using the fast-corner (best case) timing
models, perform the following steps:

1. In the Quartus II software, on the Processing menu, point to Start
and click Start Classic Timing Analyzer (Fast Timing Model).

2. After the fast-corner timing analysis is complete, on the Processing
menu, point to Start and click Start EDA Netlist Writer to create a
<revision_name>_v_fast.sdo or <revision_name>_vhd_fast.sdo file,
which contains the best-case delay values for each timing path.

1 If you are running a best-case timing analysis, the Quartus II
software generates a Tcl script similar to the following:
<revision_name>_pt_v_fast.tcl.

When TimeQuest is run with the fast-corner netlist or when the Optimize
fast-corner timing check box is selected in the Fitter Settings dialog box,
the fast-corner SDC file is generated.

After the EDA Netlist Writer has finished, two SDO files are created:
<revision_name>_v.sdo (slow-corner) or <revision_name>_v_fast.sdo
(fast-corner).

Generating Multiple Operating Conditions with TimeQuest

Different operating conditions can be specified to the EDA Netlist Writer
for PrimeTime analysis. The different operating conditions are reflected
in the .sdo file generated by the EDA Netlist Writer.

Altera Corporation 9–5
October 2007

Files Generated for the PrimeTime Software Environment

Table 9–1 shows the available operating conditions that can be set for a few
of Altera's device families.

1 From the TimeQuest Console pane, use the command
get_available_operating_conditions to obtain a list of
available operating conditions for the target device.

The following steps shows how to generate the .sdo files for the three
different operating conditions for a Stratix III design. Each command must
be entered at the command prompt.

1 The –tq2pt option for quartus_sta is required only if the
project doesn't specify that PrimeTime tool will be used as the
timing analysis tool.

1. Generate the first slow corner model at the operating conditions:
slow, 1100 mV, and 85º C.

quartus_sta --model=slow --voltage=1100 --
temperature=85 <project name>

2. Generate the fast corner model at the operating conditions: fast,
1100 mV, and 0º C.

quartus_sta --model=fast --voltage=1100 --
temperature=0 --tq2pt <project name>

Table 9–1. Available Operating Condition Combinations

Device Family Available Conditions
(Model, Voltage, Temperature)

Stratix III (slow, 1100 mV, 85º C),
(slow, 1100 mV, 0º C),
(fast, 1100 mV, 0º C)

Cyclone III (slow, 1200 mV, 85º C),
(slow, 1200 mV, 0º C),
(fast, 1200 mV, 0º C)

Stratix II (slow, N/A, N/A), (fast, N/A, N/A)

Cyclone II (slow, N/A, N/A), (fast, N/A, N/A)

9–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

3. Generate the PrimeTime output files for the corners specified above.
The output files will be generated in the
primetime_two_corner_files directory.

quartus_eda --timing_analysis --tool=primetime
--format=verilog --
output_directory=primetime_two_corner_files --
write_settings_files=off <project name>

4. Generate the second slow corner model at the operating conditions:
slow, 1100 mV, and 0º C.

quartus_sta --model=slow --voltage=1100 --
temperature=0 --tq2pt <project name>

5. Generate the PrimeTime output files for the second slow corner.
The output files will be generated in the
primetime_one_slow_corner_files directory.

quartus_eda --timing_analysis --tool=primetime --
format=verilog --
output_directory=primetime_one_slow_corner_files -
-write_settings_files=off $revision

To summarize, the previous steps generate the following files for the
three operating conditions:

■ First slow corner (slow, 1100 mV, 85º C) :
VO File—primetime_two_corner_files/<project name>.vo
SDO File—primetime_two_corner_files/<project name>_v.sdo

■ Fast corner (fast, 1100 mV, 0º C) :
VO File—primetime_two_corner_files/<project name>.vo
SDO File—primetime_two_corner_files/<project name>_v_fast.sdo

■ Second slow corner (slow, 1100 mV, 0º C) :
VO File—primetime_one_slow_corner_files/<project name>.vo
SDO File—primetime_one_slow_corner_files/<project name>_v.sdo

1 The directory primetime_one_slow_corner_files may also have
files for fast corner. These files can be ignored since they were
already generated in the primetime_two_corner_files directory.

Altera Corporation 9–7
October 2007

Files Generated for the PrimeTime Software Environment

The Tcl Script

The Tcl script generated by the Quartus II software contains information
required by the PrimeTime software to analyze the timing and set up
your post-fit design. This script specifies the search path and the names
of the PrimeTime database library files provided with the Quartus II
software. The search_path and link_path variables are defined at
the beginning of the Tcl file. The link_path variable is a space-
delimited list that contains the names of all database files used by the
PrimeTime software.

Depending on whether you selected Verilog or VHDL in the Format for
output netlist list on the Timing Analysis page of the Settings dialog
box, when the Quartus II Classic Timing Analyzer is enabled, the EDA
Netlist Writer generates and saves the script as either
<revision_name>_pt_v.tcl or <revision_name>_pt_vhd.tcl.

To access the EDA Settings dialog box, on the Assignments menu, click
EDA Tool Settings, then expand EDA Tool Settings under the Category
list. In the dialog box, you can specify VHDL or Verilog for the format for
the output netlist.

1 The script also directs the PrimeTime software to use the
<device family>_all_pt.v or <device family>_all_pt.vhd file,
which contains the Verilog or VHDL description of library cells
for the targeted device family.

Example 9–1 shows the search_path and link_path variables
defined in the Tcl script:

Example 9–1. Sample PrimeTime Setup Script
set quartus_root "altera/quartus/"
set search_path [list . [format "%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

set link_path [list * stratixii_lcell_comb_lib.db stratixii_lcell_ff_lib.db
stratixii_asynch_io_lib.db stratixii_io_register_lib.db stratixii_termination_lib.db
bb2_lib.db stratixii_ram_internal_lib.db stratixii_memory_register_lib.db
stratixii_memory_addr_register_lib.db stratixii_mac_out_internal_lib.db
stratixii_mac_mult_internal_lib.db stratixii_mac_register_lib.db
stratixii_lvds_receiver_lib.db stratixii_lvds_transmitter_lib.db
stratixii_asmiblock_lib.db stratixii_crcblock_lib.db stratixii_jtag_lib.db
stratixii_rublock_lib.db stratixii_pll_lib.db stratixii_dll_lib.db alt_vtl.db]

read_vhdl -vhdl_compiler stratixii_all_pt.vhd

The EDA Netlist Writer converts any Quartus II Classic Timing Analyzer
timing assignments to the PrimeTime software constraints and
exceptions when it generates the PrimeTime files. The converted
constraints are saved to the Tcl script. The Tcl script also includes a

9–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

PrimeTime software command that reads the Standard Delay Format
Output (.sdo) file generated by the Quartus II software. You can place
additional commands in the Tcl script to analyze or report on timing
paths.

Table 9–2 shows some examples of timing assignments converted by the
Quartus II software for the PrimeTime software. For example, the
set_input_delay -max command sets the input delay on an input
pin.

When the Quartus II TimeQuest Timing Analyzer is turned on, the EDA
Netlist Writer generates and saves the script as <revision_name>.pt.tcl.

The EDA Netlist Writer converts all Quartus II TimeQuest Timing
Analyzer SDC constraints and exceptions into compatible PrimeTime
software constraints and exceptions when it generates the PrimeTime
files. The constraints and exceptions are saved to the
<revision_name>.constraints.sdc file.

Table 9–2. Equivalent Quartus II and PrimeTime Software Constraints

Quartus II Equivalent PrimeTime Constraint

Clock defined on input pin, clock of
10 ns period and 50% duty cycle

create_clock -period 10.000 -waveform {0 5.000} \
[get_ports clk] -name clk

Input maximum delay of 1 ns on input
pin, din

set_input_delay -max -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Input minimum delay of 1 ns on input
pin, din

set_input_delay -min -add_delay 1.000 -clock \
[get_clocks clk] [get_ports din]

Output maximum delay of 3 ns on
output pin, out

set_output_delay -max -add_delay 3.000 -clock \
[get_clocks clk] [get_ports out]

Altera Corporation 9–9
October 2007

Files Generated for the PrimeTime Software Environment

Generated File Summary

The files that are generated by the EDA Netlist Writer for the PrimeTime
software depend on the Quartus II timing analysis tool you selected.

Table 9–3 shows the files that are generated for the PrimeTime software
when the Quartus II Classic Timing Analyzer is selected.

Table 9–4 shows the files that are generated for the PrimeTime software
when the Quartus II TimeQuest Timing Analyzer is selected. The EDA
Netlist Writer supports the output netlist format only when the
TimeQuest Timing Analyzer is enabled.

Table 9–3. Quartus II Classic Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vho | <revision_name>.vo The PrimeTime software output netlist. Either a VHDL Output File
or a Verilog Output file is generated, depending on the output
netlist language set.

<revision_name>_vhd.sdo |
<revision_name>_v.sdo

The PrimeTime software standard delay file. Either a VHDL
Standard Delay Output file or a Verilog Standard Delay Output
file is generated, depending on the output netlist language set.

<revision_name>_pt_vhd.tcl |
<revision_name>_pt_v.tcl

PrimeTime setup and constraint script. Either a VHDL Tcl script
or a Verilog Tcl script is generated, depending on the output
netlist language set.

Table 9–4. Quartus II TimeQuest Timing Analyzer-Generated PrimeTime Files

File Description

<revision_name>.vo The PrimeTime software output netlist. When the Quartus II
TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog)
is supported.

<revision_name>_v.sdo |
<revision_name>_v_fast.sdo

The PrimeTime software standard delay file. When the Quartus II
TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog)
is supported.

<revision_name>.pt.tcl PrimeTime setup and constraint script. When the Quartus II
TimeQuest Timing Analyzer is enabled, only PrimeTime (Verilog)
is supported.

<revision_name>.collections.sdc Contains the mapping from the Quartus II TimeQuest Timing
Analyzer netlist to the PrimeTime netlist.

<revision_name>.constraints.sdc Contains the converted Quartus II TimeQuest Timing Analyzer
constraints for the PrimeTime software.

9–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Running the
PrimeTime
Software

The PrimeTime software runs only on UNIX operating systems. If the
Quartus II output files for the PrimeTime software were generated by
running the Quartus II software on a PC/Windows-based system, follow
these steps to run the PrimeTime software using Quartus II output files:

1. Install the PrimeTime libraries on a UNIX system by installing
Quartus II software on UNIX.

The PrimeTime libraries are located in the <Quartus II installation
directory>/eda/synopsys/primetime/lib directory.

2. Copy the Quartus II output files to the appropriate UNIX directory.
You may need to run a PC to UNIX program, such as dos2unix, to
remove any control characters.

3. Modify the Quartus II path in Tcl scripts to point to the PrimeTime
libraries, as described in Step 1. In Example 9–1, the first line is:

set quartus_root "altera/quartus/" set search_path [list . [format
"%s%s" $quartus_root "eda/synopsys/primetime/lib"]]

This is the Tcl script that should be modified.

Analyzing Quartus II Projects

The PrimeTime software is controlled with Tcl scripts and can be run
through pt_shell. You can run the <revision_name>_pt_v.tcl script file.
For example, type the following at a UNIX system command prompt:

pt_shell -f <revision_name>_pt_v.tcl r
When the Quartus II TimeQuest Timing Analyzer is selected, type the
following at a UNIX system command prompt:

pt_shell -f <revision_name>.pt.tcl r
After all Tcl commands in the script are interpreted, the PrimeTime
software returns control to the pt_shell prompt, which allows you to
use other commands.

Altera Corporation 9–11
October 2007

Running the PrimeTime Software

Other pt_shell Commands

You can run additional pt_shell commands at the pt_shell prompt,
including the man program. For example, to read documentation about
the report_timing command, type the following at the pt_shell
prompt:

man report_timing r
You can list all commands available in pt_shell by typing the following
at the pt_shell prompt:

help r
Type quit r at the pt_shell prompt to close pt_shell.

1 You can also run pt_shell without a script file by typing
pt_shellr at the UNIX command line prompt.

9–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

PrimeTime
Timing Reports

Sample of the PrimeTime Software Timing Report

After running the script, the PrimeTime software generates a timing
report. If the timing constraints are not met, Violated is displayed at the
end of the timing report. The timing report also gives the negative slack.

The PrimeTime software report is similar to the sample shown in
Example 9–2. The starting point in this report is a register clocked by
clock signal, clock, the endpoint is another register, inst3-I.lereg.

Example 9–2. Hold Path Report in PrimeTime
Startpoint: inst2~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: min
Point IncrPath

clock clock (rise edge)0.0000.000
clock network delay (propagated)3.1663.166
inst2~I.lereg.clk (stratix_lcell_register)0.000 3.166r
inst2~I.lereg.regout (stratix_lcell_register) <-0.176*3.342r
inst2~I.regout (stratix_lcell)0.000*3.342r
inst3~I.datac (stratix_lcell)0.000*3.342r
inst3~I.lereg.datac (stratix_lcell_register)3.413*6.755r
data arrival time6.755
clock clock (rise edge)0.0000.000
clock network delay (propagated)3.0023.002
inst3~I.lereg.clk (stratix_lcell_register)3.002r
library hold time0.100*3.102
data required time 3.102

data required time3.102
data arrival time-6.755

slack (MET)3.653

Altera Corporation 9–13
October 2007

PrimeTime Timing Reports

Comparing Timing Reports from the Quartus II Classic Timing
Analyzer and the PrimeTime Software

Both the Quartus II Classic Timing Analyzer and the Quartus II
TimeQuest Timing Analyzer generate a static timing analysis report for
every successful design compilation. The timing report lists all of the
analyzed timing paths in your design that were analyzed, and indicates
whether these paths have met or violated their timing requirements.
Violations are reported only if timing constraints were specified.

The Quartus II TimeQuest Timing Analyzer uses an equivalent set of
equations as PrimeTime when reporting the static timing analysis result
for a design. However, the Quartus II Classic Timing Analyzer uses
slightly different reporting equations when reporting the static timing
analysis results for a design. This section describes these differences
between the Quartus II Classic Timing Analyzer and the PrimeTime
software.

The timing report generated by the Quartus II Classic Timing Analyzer
differs from the report generated by the PrimeTime software. Both tools
provide the same data but present in different formats. The following
sections show how the PrimeTime software reports the following slack
values differently from the Quartus II Classic Timing Analyzer report:

■ “Clock Setup Relationship and Slack” on page 9–13
■ “Clock Hold Relationship and Slack” on page 9–17
■ “Input Delay and Output Delay Relationships and Slack” on

page 9–21

Clock Setup Relationship and Slack

The Quartus II Classic Timing Analyzer performs a setup check that
ensures that the data launched by source registers is latched correctly at
the destination registers. The Quartus II Classic Timing Analyzer does
this by determining the data arrival time and clock arrival time at the
destination registers, and compares this data with the setup time delay of
the destination register. Equation 1 expresses the inequality that is used
for a setup check. The data arrival time includes the longest path from the
clock to the source register, the clock-to-out micro delay of the source
register, and the longest path from the source register to the destination
register. The clock arrival time is the shortest delay from the clock to the
destination register.

(1) Clock Arrival Data Arrival tsu≥–

9–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Slack is the margin by which a timing requirement is met or not met.
Positive slack indicates the margin by which a requirement is met.
Negative slack indicates the margin by which a requirement was not met.
The Quartus II Classic Timing Analyzer determines the clock setup slack,
with Equation 2:

(2)

1 The longest register-to-register delay in the previous equation is
equal to the register-to-register data delay.

(3)

For a simple three-register design, refer to Figure 9–3.

Figure 9–3. Simple Three-Register Design

Clock Setup Slack Largest Register-to-Register Requirement
Longest Register-to-Register Delay

–=

Largest Register-to-Register Requirement
Setup Relationship between Source and Destination Largest Clock Skew
Micro tco of Destination Register Micro tsu of Destination Register–

–+
=

Setup Relationship between Source and Destination Latch Edge Launch Edge–=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

Altera Corporation 9–15
October 2007

PrimeTime Timing Reports

The Quartus II Classic Timing Analyzer generates a report for the design,
as shown in Figure 9–4.

Figure 9–4. Timing Analyzer Report from Figure 9–3

Equation 1, 2, and 3 are similar to those found in other static timing
analysis tools, such as the PrimeTime software. Equation 4, 5, 6, and 7,
used by the PrimeTime software, are essentially the same as those used by
the Quartus II Classic Timing Analyzer, but they are rearranged.

(4)

(5)

(6)

(7)

1 The longest data delay in the previous equation is equal to
register-to-register data delay.

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Shortest Clock Path to Destination+=

Data Required Clock Arrival Micro tsu–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Longest Data Delay++ +=

9–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Figure 9–5 shows a clock setup check in the Quartus II software.

Figure 9–5. Clock Setup Check Reporting with the Quartus II Classic Timing Analyzer

The following results are obtained by extracting the numbers from the
Quartus II Classic Timing Analyzer report and applying them to the clock
setup slack equations from the Quartus II Classic Timing Analyzer:

(8) Setup Relationship between Source and Destination Latch Edge Launch Edge
Clock Setup Uncertainty

––=

8.0 0.0– 0.0– 8.0ns=

Clock Skew Shortest Clock Path to Destination Longest Clock Path to Source–=

3.002 3.166– 0.164ns–=

Largest Register-to-Register Requirement
Setup Relationship between Source & Destination Largest Clock Skew

Micro tco of Source Register– Micro tsu of Destination Register–
+

=

8 0.164–() 0.176– 0.010–+ 7.650ns=

Clock Setup Slack Largest Register-to-Register Requirement Longest Register-to-Register Delay–=

7.650 3.413– 4.237ns=

Altera Corporation 9–17
October 2007

PrimeTime Timing Reports

For the same register-to-register path, the PrimeTime software generates
a clock setup report as shown in Example 9–3:

Example 9–3. Setup Path Report in PrimeTime
Startpoint: inst2~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: max PointIncrPath
--
clock clock (rise edge)0.0000.000
clock network delay (propagated)3.1663.166
inst2~I.lereg.clk (stratix_lcell_register)0.0003.166r
inst2~I.lereg.regout (stratix_lcell_register) <-0.176*3.342r
inst2~I.regout (stratix_lcell) <- 0.000*3.342r
inst3~I.datac (stratix_lcell) <-0.000*3.342r
inst3~I.lereg.datac (stratix_lcell_register)3.413*6.755r
data arrival time6.755
clock clock (rise edge)8.0008.000
clock network delay (propagated)3.00211.002
inst3~I.lereg.clk (stratix_lcell_register)11.002r
library setup time-0.010*10.992
data required time10.992
--
data required time10.992
data arrival time-6.755
--
slack (MET)4.237

Clock Hold Relationship and Slack

The Quartus II Classic Timing Analyzer performs a hold time check along
every register-to-register path in the design to ensure that no hold time
violations have occurred. The hold time check verifies that data from the
source register does not reach the destination until after the hold time of
the destination register. The condition used for a hold check is shown in
Equation 9:

(9)

The Quartus II Classic Timing Analyzer determines the clock hold slack
with Equation 10, 11, 12, and 13:

(10)

Data Arrival Clock Arrival– tH≥

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirement–=

9–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

(11)

(12)

(13)

Figure 9–6 shows a simple three-register design.

Figure 9–6. A Simple Three-Register Design

The Quartus II Classic Timing Analyzer generates a report as shown in
Figure 9–7.

Figure 9–7. Timing Analyzer Report Generated from the Three Register Design

The previous equations are similar to those found in the Quartus II
software. The following equations are the same equations that are used
by the PrimeTime software, but they are rearranged.

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tsu of Source Micro tH of Destination+–

+=

Hold Relationship between Source & Destination Latch Edge Launch Edge–=

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

Altera Corporation 9–19
October 2007

PrimeTime Timing Reports

(14)

(15)

(16)

(17)

1 The shortest register-to-register delay in the previous
equation is equal to register-to-register data delay.

Figure 9–8 shows a clock setup check with the Quartus II Classic Timing
Analyzer.

Figure 9–8. Clock Hold Check Reporting with the Quartus II Classic Timing Analyzer

The following results are obtained by extracting the numbers from the
Timing Analysis report and applying the clock setup slack equations
from the Quartus II Classic Timing Analyzer.

(18)

Slack Data Required Data Arrival–=

Clock Arrival Latch Edge Longest Clock Path to Destination+=

Data Required Clock Arrival Micro tH–=

Data Arrival Launch Edge Longest Clock Path to Source Micro tco Shortest Data Delay++ +=

Clock Hold Slack Shortest Register-to-Register Delay Smallest Register-to-Register Requirement–=

3.413 0.240–()– 3.653ns=

Smallest Register-to-Register Requirement Hold Relationship between Source & Destination
Smallest Clock Skew Micro tco of Source Micro tH of Destination+–

+=

0 0.164–() 0.176– 0.100+ + 0.240ns–=

9–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

For the same register-to-register path, the PrimeTime software generates
the report shown in Example 9–4:

Example 9–4. Hold Path Report in PrimeTime
Startpoint: inst2~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Path Group: clock
Path Type: min
Point IncrPath

--
 clock clock (rise edge)0.0000.000
 clock network delay (propagated)3.1663.166
 inst2~I.lereg.clk (stratix_lcell_register)0.0003.166r
 inst2~I.lereg.regout (stratix_lcell_register)<-0.176*3.342r
 inst2~I.regout (stratix_lcell)0.000*3.342r
 inst3~I.datac (stratix_lcell)0.000*3.342r
 inst3~I.lereg.datac (stratix_lcell_register)3.413*6.755r
 data arrival time6.755

 clock clock (rise edge)0.0000.000
 clock network delay (propagated)3.0023.002
 inst3~I.lereg.clk (stratix_lcell_register)3.002r
 library hold time0.100*3.102
 data required time 3.102

--
 data required time3.102
 data arrival time-6.755

--
 slack (MET)3.653

Both sets of hold slack equations can be used to determine the hold slack
value of any path.

Hold Relationship between Source & Destination Latch Launch–=

0.0 0.0ns–

Smallest Clock Skew Longest Clock Path from Clock to Destination Register
Shortest Clock Path from Clock to Source Register

–=

3.002 3.166– 0.164ns–=

Altera Corporation 9–21
October 2007

PrimeTime Timing Reports

Input Delay and Output Delay Relationships and Slack

Input delay and output delay reports generated by the Quartus II Classic
Timing Analyzer are similar to the clock setup and clock hold
relationship reports. Figure 9–9 shows the input delay and output delay
report for the design shown in Figure 9–6 on page 9–18.

Figure 9–9. Input and Output Delay Reporting with the Quartus II Classic Timing Analyzer

Figure 9–10 shows the fully expanded view for the output delay path.

Figure 9–10. Output Delay Path Reporting with the Quartus II Classic Timing Analyzer

9–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

For the same output delay path, the PrimeTime software generates a
report similar to Example 9–5:

Example 9–5. Setup Path Report in PrimeTime
Startpoint: inst3~I.lereg
 (rising edge-triggered flip-flop clocked by clock)
Endpoint: data_out
 (output port clocked by clock)
Path Group: clock
Path Type: max PointIncrPath
--
clock clock (rise edge)0.0000.000
clock network delay (propagated)3.0023.002
inst3~I.lereg.clk (stratix_lcell_register)0.0003.002r
inst3~I.lereg.regout (stratix_lcell_register)<- 0.176*3.178r
inst3~I.regout (stratix_lcell)<- 0.0003.178r
data_out~I.datain (stratix_io)<- 0.000 3.178r
data_out~I.out_mux3.A (mux21) <-0.0003.178r
data_out~I.out_mux3.MO (mux21)<- 0.000 3.178r
data_out~I.and2_22.IN1 (AND2)<- 0.0003.178r
data_out~I.and2_22.Y (AND2)<- 0.0003.178r
data_out~I.out_mux1.A (mux21)<-0.0003.178r
data_out~I.out_mux1.MO (mux21)<- 0.0003.178r
data_out~I.inst1.datain (stratix_asynch_io)<-0.902*4.080r
data_out~I.inst1.padio (stratix_asynch_io)<- 2.495*6.575r
data_out~I.padio (stratix_io)<- 0.000 6.575r
data_out (out)0.0006.575r
data arrival time6.575
clock clock (rise edge)8.0008.000
clock network delay (propagated)0.0008.000
output external delay1.2506.750
data required time6.750

data required time6.750
data arrival time6.575

slack (MET) 0.175

To generate a list of the 100 worst paths and place this data into a file
called file.timing, type the following command at the pt_shell
prompt:

report_timing -nworst 100 > file.timing r
Timing paths in the PrimeTime software are listed in the order of
most-negative-slack to most-positive-slack. The PrimeTime software
does not categorize failing paths by default. Timing setup (tSU) and timing
hold (tH) times are not listed separately. In the PrimeTime software, each
path is shown with a start and end point; for example, if it is a

Altera Corporation 9–23
October 2007

Static Timing Analyzer Differences

register-to-register or input-to-register type of path. If you only use the
report_timing part of the command without adding a -delay option,
only the setup-time-related timing paths are reported.

The following command is used to create a minimum timing report or a
list of hold-time-related violations:

report_timing -delay_type min r
Ensure that the correct SDO file, either minimum or maximum delays, is
loaded before running this command.

Static Timing
Analyzer
Differences

Under certain design conditions, several static timing analysis differences
can exist between the Classic Timing Analyzer and the TimeQuest
Timing Analyzer, and the PrimeTime software. The following sections
explain the differences between the two static timing analysis engines
and the PrimeTime software.

The Quartus II Classic Timing Analyzer and the PrimeTime
Software

The following section describes the differences between the Quartus II
Classic Timing Analyzer and the PrimeTime software.

Rise/Fall Support

The Quartus II Classic Timing Analyzer does not support rise/fall
analysis. However, rise/fall support is available in PrimeTime.

Minimum and Maximum Delays

TimeQuest calculates minimum and maximum delays for all device
components with the exception of clock routing. PrimeTime does not
model these delays. This can result in different slacks for a given path on
average by 2 - 3%.

Recovery/Removal Analysis

TimeQuest performs a more pessimistic recovery/removal analysis for
asynchronous path than PrimeTime. This can result in different delays
reported between the two tools.

9–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Encrypted Intellectual Property Blocks

The Quartus II software has the capability to decrypt all intellectual
property (IP) blocks designed for Altera® devices that have been
encrypted by their vendors. The decryption process allows the Quartus II
software to perform a full compilation of the design that contains an
encrypted IP block. This also allows the Quartus II Classic Timing
Analyzer to perform a complete static timing analysis on the design.
However, when the PrimeTime software is designated as the static timing
analysis tool, the Quartus II EDA Netlist Writer does not generate either
a VHDL Output File (.vho) or Verilog Output File (.vo) netlist file for
designs that contain encrypted IP blocks for which the license does not
permit generation of output netlists for third-party tools.

Registered Clock Signals

Registered clock signals are clock signals that pass through a register
before reaching the clock port of a sequential element. Figure 9–11 shows
an example of a registered clock signal.

Figure 9–11. Registered Clock Signal

If no clock setting is applied to the register on the clock path (shown as
register reg_1 in Figure 9–11), the Quartus II Classic Timing Analyzer
treats the register in the clock path as a buffer. The delay of the buffer is
equal to the CELL delay of the register plus the tCO of the register. The
PrimeTime software does not treat the register as a buffer.

1 For more information about creating clock settings, refer to the
Quartus II Classic Timing Analyzer chapter in volume 3 of the
Quartus II Handbook.

D Q

D Q

reg1

reg2

Logic

Altera Corporation 9–25
October 2007

Static Timing Analyzer Differences

Multiple Source and Destination Register Pairs

In any design, multiple paths may exist from a source register to a
destination register. Each path from the source register to the destination
register may have a different delay value due to the different routes
taken. For example, Figure 9–12 shows a sample design that contains
multiple path pairs between the source register and destination register.

Figure 9–12. Multiple Source and Destination Pairs

The Quartus II Classic Timing Analyzer analyzes all source and
destination pairs, but reports only the source and destination register pair
with the worst slack. For example, if the Path 2 pair delay is greater than
the Path 1 pair delay in Figure 9–12, the Quartus II Classic Timing
Analyzer reports the slack value of the Path 2 pair and not the Path 1 pair.
The PrimeTime software reports all possible source and destination
register pairs.

Latches

By default, the Quartus II software implements all latches as
combinational loops. The Quartus II Classic Timing Analyzer can analyze
such latches by treating them as registers with inverted clocks or analyze
latches as a combinational loop modeled as a combinational delay.

1 For more information about latch analysis, refer to the Quartus II
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

The PrimeTime software always analyzes these latches as combinational
loops, as defined in the netlist file.

LVDS I/O

When it analyzes the dedicated LVDS transceivers in your design, the
Quartus II Classic Timing Analyzer generates the Receiver Skew Margin
(RSKM) report and a Channel-to-Channel Skew (TCCS) report. The
PrimeTime software does not generate these reports.

D Q

Path 2

Path 1

D Q

9–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Clock Latency

When a single clock signal feeds both the source and destination registers
of a register-to-register path, and either an Early Clock Latency or a Late
Clock Latency assignment has been applied to the clock signal, the
Quartus II Classic Timing Analyzer does not factor in the clock latency
values when it calculates the clock skew between the two registers. The
Quartus II Classic Timing Analyzer factors in the clock latency values
when the clock signal to the source and destination registers of a register-
to-register path are different. The PrimeTime software applies the clock
latency values when a single clock signal or different clock signals feeds
the source and destination registers of a register-to-register path.

Input and Output Delay Assignments

When a purely combinational (non-registered) path exists between an
input pin and output pin of the Altera FPGA and both pins have been
constrained with an input delay and an output delay assignment applied,
respectively, the Quartus II Classic Timing Analyzer does not perform a
clock setup or clock hold analysis. The PrimeTime software analyzes
these paths.

Generated Clocks Derived from Generated Clocks

The Quartus II Classic Timing Analyzer does not support a generated
clock derived from a generated clock. This situation might occur if a
generated clock feeds the input clock pin of a PLL. The output clock of the
PLL is a generated clock.

The Quartus II TimeQuest Timing Analyzer and the PrimeTime
Software

The following sections describe the static timing analysis differences
between the Quartus II TimeQuest Timing Analyzer and the PrimeTime
software.

Encrypted Intellectual Property Blocks

The Quartus II software has the capability to decrypt all IP blocks,
designed for Altera devices that have been encrypted by their vendors.
The decryption process allows the Quartus II software to perform a full
compilation on the design containing an encrypted IP block. This also
allows the Quartus II TimeQuest Timing Analyzer to perform a complete
static timing analysis on the design. However, when the PrimeTime
software is designated as the static timing analysis tool, the Quartus II

Altera Corporation 9–27
October 2007

Static Timing Analyzer Differences

EDA Netlist Writer does not generate .vho or .vo netlist files for designs
that contain encrypted IP blocks whose license does not permit
generation of output netlists for other tools.

Latches

By default, the Quartus II software implements all latches as
combinational loops. The Quartus II TimeQuest Timing Analyzer can
analyze such latches by treating them as registers with inverted clocks.
The Quartus II TimeQuest Timing Analyzer analyzes latches as a
combinational loop modeled as a combinational delay.

f For more information about latch analysis, refer to the Quartus II Classic
Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

The PrimeTime software always analyzes these latches as combinational
loops, as defined in the netlist file.

LVDS I/O

When it analyzes the dedicated LVDS transceivers in your design, the
Quartus II TimeQuest Timing Analyzer generates a Receiver Skew
Margin (RSKM) report and a Channel-to-Channel Skew (TCCS) report.
The PrimeTime software does not generate these reports.

The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime
Compatibility

Because of differences between node naming conventions with the netlist
generated by the EDA Netlist Writer and the internal netlist used by the
Quartus II software, SDC files generated for the Quartus II software or
the Quartus II TimeQuest Timing Analyzer are not compatible with the
PrimeTime software.

Run the EDA Netlist Writer to generate a compatible SDC file from the
TimeQuest SDC file for the PrimeTime software. After the files have been
generated, <revision_name>.collections.sdc and
<revision_name>.constraints.sdc, both files can be read in by the
PrimeTime software for compatibility of constraints between the
Quartus II TimeQuest Timing Analyzer and the PrimeTime software.

Clock and Data Paths

If a timing path acts both as a clock path (a path that connects to a clock
pin with a clock associated to it), and a data path (a path that feeds into
the data in port of a register), the Quartus II TimeQuest Timing Analyzer
will report the data paths, whereas PrimeTime will not.

9–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Inverting and Non-Inverting Propagation

TimeQuest always propagates non-inverting sense for clocks through
non-unate paths in the clock network.

PrimeTime's default behavior is to propagate both inverting and
non-inverting senses through a non-unate path in the clock network.

Multiple Rise/Fall Numbers For a Timing Arc

For a given timing path with a corresponding set of pins/ports that
make up the path (including source and destination pair), if the
individual components of that path have different rise/fall delays, there
can potentially be many timing paths with different delays using the
same set of pins. If this occurs, TimeQuest reports only one timing path
for the set of pins that make up the path.

Virtual Generated Clocks

PrimeTime does not support generated clocks that are virtual. To
maintain compatibility between TimeQuest and PrimeTime, all
generated clocks should have an explicit target specified.

Generated Clocks Derived from Generated Clocks

The Quartus II Classic Timing Analyzer does not support the creation of
a generated clock derived from a generated clock. This situation might
occur if a generated clock feeds the input clock pin of another generated
clock. The output clock of the PLL is a generated clock.

Conclusion The Quartus II software can export a netlist, constraints, and timing
information for use with the PrimeTime software. The PrimeTime
software can use data from either best-case or worst-case Quartus II
timing models to measure timing. The PrimeTime software is controlled
using a Tcl script generated by the Quartus II software that you can
customize to direct the PrimeTime software to produce violation and
slack reports.

Altera Corporation 9–29
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following document:

■ Quartus II Handbook
■ Quartus II Classic Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Quartus II TimeQuest Timing Analyzer in volume 3 of the Quartus II

Handbook
■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in

volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/hb/qts/qts_qii53004.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

9–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 9–5 shows the revision history for this chapter.

Table 9–5. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 9–29. —

May 2007
v7.1.0

● Added Generating Multiple Operating Conditions with
TimeQuest

● Added Rise/Fall Support
● Added Minimum and Maximum Delays
● Added Recovery/Removal Aanalyis
● Added Generated Clocks Derived from Generated

Clocks
● Added Multiple Rise/Fall Numbers for a Timing Analyzer

SDC
● Virtual Generated Clocks
● Added Referenced Documents

Updates added to the Static
Timing Analyzer Differences
section of this chapter.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only.
No other changes made to chapter.

—

November 2006
v6.1.0

● Noted the differences between the different timing
analyzers

● Explained how to select between the timing analyzers
● Introduced the TimeQuest flow with PrimeTime

Introduction of the TimeQuest
Timing Analyzer updated in
this chapter.

May 2006
v6.0.0

Chapter title changed to Synopsys PrimeTime Support.
Minor updates for the Quartus II software version 6.0.0.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

August 2005
v5.0.1

Minor text updates. —

May 2005
v5.0.0

New functionality for Quartus II software 5.0.0 —

December 2004
v2.0

● Chapter 6 Synopsys PrimeTime moved to section III
Volume 1.

● New functionality for Quartus II software 4.2.

—

Altera Corporation Section III–i
Preliminary

Section III. Power
Estimation and Analysis

As FPGA designs grow larger and processes continue to shrink, power
becomes an ever-increasing concern. When designing a printed circuit
board, the power consumed by a device needs to be accurately estimated
to develop an appropriate power budget, and to design the power
supplies, voltage regulators, heat sink, and cooling system.

The Quartus® II software allows you to estimate the power consumed by
your current design during timing simulation. The power consumption
of your design can be calculated using the Microsoft Excel-based power
calculator, or the Simulation-Based Power Estimation features in the
Quartus II software. This section explains how to use both.

This section includes the following chapter:

■ Chapter 10, PowerPlay Power Analysis

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation
Preliminary

Power Estimation and Analysis Quartus II Handbook, Volume 3

Altera Corporation 10–1
October 2007 Preliminary

10. PowerPlay Power
Analysis

Introduction As designs grow larger and process technology continues to shrink,
power becomes an increasingly important design consideration. When
designing a printed circuit board (PCB), the power consumed by a device
needs to be accurately estimated to develop an appropriate power budget
and to design the power supplies, voltage regulators, heat sink, and
cooling system. The PowerPlay power analysis tools, made available by
Altera®, provide improved power consumption accuracy and the ability
to estimate power consumption from early design concept through
design implementation, as shown in Figure 10–1.

Figure 10–1. PowerPlay Power Analysis

Depending where you are in your design cycle and the accuracy of the
estimation required, you can either use the PowerPlay Early Power
Estimator spreadsheet or the PowerPlay Power Analyzer Tool in the
Quartus® II software. You can use the PowerPlay Early Power Estimator
spreadsheet during the board design and layout phase to obtain a power
estimate and then design for proper power management. The PowerPlay
Power Analyzer Tool is used to obtain an accurate estimation of power
after the design is complete, ensuring that thermal and supply budgets
are not violated.

User Input

Quartus II
Design Profile

Place-and-Route
Results

Simulation
Results

Design Concept Design Implementation

PowerPlay Early Power Estimators Quartus II PowerPlay Power Analyzer

Lower PowerPlay Power Analysis Inputs Higher

Es
tim

at
io

n
Ac

cu
ra

cy

Higher

QII53013-7.2.0

10–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can estimate power consumption for Arria™ GX, Stratix® series
devices, Cyclone® series devices, HardCopy® II, and MAX® II devices
with the Microsoft Excel-based PowerPlay Early Power Estimator
spreadsheet or the PowerPlay Power Analyzer Tool.

f For more information about acquiring the PowerPlay Power Estimator
spreadsheet for Arria GX, Stratix series devices, Cyclone series,
HardCopy II, and MAX II devices and its use, refer to
www.altera.com/support/devices/estimator/pow-powerplay.html.

This chapter discusses the following topics:

■ “Quartus II Early Power Estimator File”
■ “Types of Power Analyses” on page 10–6
■ “Factors Affecting Power Consumption” on page 10–6
■ “Using the PowerPlay Power Analyzer” on page 10–23

Quartus II Early
Power Estimator
File

When entering data into the Early Power Estimator spreadsheet, you
must enter the device resources, operating frequency, toggle rates, and
other parameters. This requires familiarity with the design. If you do not
have an existing design, you must estimate the number of device
resources used in your design and enter it manually.

If you already have an existing design or a partially completed design, the
power estimator file that is generated by the Quartus II software can aid
in completing the PowerPlay Early Power Estimator spreadsheet.

To generate the power estimation file, you must first compile your design
in the Quartus II software. After compilation is complete, on the Project
menu, click Generate PowerPlay Early Power Estimator File
(Figure 10–2). This command instructs the Quartus II software to write
out a power estimator Comma-Separated Value (.csv) file (or a text [.txt]
file for older device families).

Altera Corporation 10–3
October 2007 Preliminary

Quartus II Early Power Estimator File

Figure 10–2. Generate PowerPlay Early Power Estimator File Option

After the Quartus II software successfully generates the power estimator
file, a message appears (Figure 10–3).

Figure 10–3. Generate PowerPlay Early Power Estimator File Message

The power estimator file is named
<name of Quartus II project> _early_pwr.csv. Figure 10–4 is an example of
the contents of a power estimation file generated by the Quartus II
software version 7.2 using a Stratix II device.

10–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–4. Example of Power Estimation File

1 The power estimator file is named
<name of Quartus II project> _early_pwr.txt for older device
families.

The PowerPlay Early Power Estimator spreadsheet includes the Import
Data macro that parses the information in the power estimation file and
transfers it into the spreadsheet. If you do not want to use the macro, you
can transfer the data into the Early Power Estimator spreadsheet
manually.

If the existing Quartus II project represents only a portion of your full
design, you should enter the additional resources used in the final design
manually. Therefore, you can edit the spreadsheet and add additional
device resources after importing the power estimation file information.

Altera Corporation 10–5
October 2007 Preliminary

Quartus II Early Power Estimator File

PowerPlay Early Power Estimator File Generator Compilation
Report

After successfully generating the power estimation file, a PowerPlay
Early Power Estimator File Generator report is created under the
Compilation Report section. This report is divided into the different
sections, such as Summary, Settings, Generated Files, Confidence Metric
Details, and Signal Activities.

For more information about the PowerPlay Early Power Estimator File
Generator report, refer to “PowerPlay Power Analyzer Compilation
Report” on page 10–39.

Table 10–1 lists the main differences between the PowerPlay Early Power
Estimator and the PowerPlay Power Analyzer.

Table 10–1. Comparison of PowerPlay Early Power Estimator and PowerPlay Power Analyzer

Characteristic PowerPlay Early Power Estimator PowerPlay Power Analyzer

Phase in the design cycle Any time After fitting

Tool requirements Spreadsheet program/Quartus II software Quartus II software

Accuracy Medium Medium to very high

Data inputs ● Resource usage estimates
● Clock requirements
● Environmental conditions
● Toggle Rate

● Design after fitting
● Clock requirements
● Register transfer level (RTL)

simulation results (optional)
● Post-fitting simulation results

(optional)
● Signal activities per node or entity

(optional)
● Signal activity defaults
● Environmental conditions

Data outputs (1) ● Total thermal power dissipation
● Thermal static power
● Thermal dynamic power
● Off-chip power dissipation
● Voltage supply currents (2)

● Total thermal power
● Thermal static power
● Thermal dynamic power
● Thermal I/O power
● Thermal power by design hierarchy
● Thermal power by block type
● Thermal power dissipation by clock

domain
● Off-chip (non-thermal) power

dissipation
● Voltage supply currents (2)

Notes to Table 10–1:
(1) Early Power Estimator output varies by device family as some features may not be available.
(2) Available only for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II

device families.

10–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The results of the Power Analyzer are only an estimation of power, not a
specification. The purpose of the estimation is to help establish a guide for
the design’s power budget. Altera recommends that the actual power be
measured on the board. You must measure the device’s total dynamic
current during device operation, because the estimate is very design
dependent and depends on many variable factors, including input vector
quantity, quality, and exact loading conditions of a PCB design. Static
power consumption must not be based on empirical observation. The
values reported by the Power Analyzer or datasheet must be used
because the devices tested may not exhibit worst-case behavior.

Types of Power
Analyses

Understanding the uses of power analysis and the factors affecting power
consumption help you use the Power Analyzer effectively. Power
analysis meets two significant planning requirements:

■ Thermal planning: The designer must ensure that the cooling
solution is sufficient to dissipate the heat generated by the device. In
particular, the computed junction temperature must fall within
normal device specifications.

■ Power supply planning: Power supplies must provide adequate
current to support device operation.

The two types of analyses are closely related because much of the power
supplied to the device is dissipated as heat from the device. However, in
some situations, the two types of analyses are not identical. For example,
when you use terminated I/O standards, some of the power drawn from
the FPGA device power supply is dissipated in termination resistors,
rather than in the FPGA.

Power analysis also addresses the activity of the design over time as a
factor that impacts the power consumption of the device. Static power is
defined as the power consumed regardless of design activity. Dynamic
power is the additional power consumed due to signal activity or
toggling.

Factors Affecting
Power
Consumption

This section describes the factors affecting power consumption.
Understanding these factors lets you use the Power Analyzer and
interpret its results effectively.

Device Selection

Different device families have different power characteristics. Many
parameters affect the device family power consumption, including choice
of process technology, supply voltage, electrical design, and device

Altera Corporation 10–7
October 2007 Preliminary

Factors Affecting Power Consumption

architecture. For example, the Cyclone II device family architecture was
designed to consume less static power than the high-performance,
full-featured, Stratix II device family.

Power consumption also varies within a single device family. A larger
device typically consumes more static power than a smaller device in the
same family, due to its larger transistor count. Dynamic power can also
increase with device size in devices that employ global routing
architectures, such as the MAX device family. Stratix, Cyclone, and
MAX II devices do not exhibit significantly increased dynamic power as
device size increases.

The choice of device package also affects the device’s ability to dissipate
heat. This can impact your cooling solution choice required to meet
junction temperature constraints.

Finally, process variation can affect power consumption. Process
variation primarily impacts static power, since sub-threshold leakage
current varies exponentially with changes in transistor threshold voltage.
As a result, it is critical to consult device specifications for static power
and not rely on empirical observation. Process variation weakly affects
dynamic power.

Environmental Conditions

Operating temperature primarily affects device static power
consumption. Higher junction temperatures result in higher static power
consumption. The device thermal power and cooling solution that you
use must result in the device junction temperature remaining within the
maximum operating range for that device.

The main environmental parameters affecting junction temperature are
the cooling solution and ambient temperature.

Air Flow

Air flow is a measure of how quickly heated air is removed from the
vicinity of the device and replaced by air at ambient temperature. This
can either be specified as “still air” when no fan is used, or as the linear
feet per minute rating of the fan used in the system. Higher air flow
decreases thermal resistance.

Heat Sink and Thermal Compound

A heat sink allows more efficient heat transfer from the device to the
surrounding area because of its large surface area exposed to the air. The
thermal compound that interfaces the heat sink to the device also

10–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

influences the rate of heat dissipation. The case-to-ambient thermal
resistance (θCA) parameter describes the cooling capacity of the heat sink
and thermal compound employed at a given airflow. Larger heat sinks
and more effective thermal compounds reduce θCA.

Ambient Temperature

The junction temperature of a device is equal to:

TJunction = TAmbient + PThermal · θJA

where θJA is the total thermal resistance from the device transistors to the
environment, having units of degrees Celsius per Watt. The value θJA is
equal to the sum of the junction-to-case (package) thermal resistance (θJC)
and the case-to-ambient thermal resistance (θCA) of your cooling solution.

Board Thermal Model

The thermal resistance of the path through the board is referred to as the
junction-to-board thermal resistance (θJB) (the units are in degrees Celsius
per Watt). This is used in conjunction with the board temperature, as well
as the top-of-chip θJA and ambient temperatures, to compute junction
temperature.

Design Resources

The design resource used greatly affects power consumption.

Number, Type, and Loading of I/O Pins

Output pins drive off-chip components, resulting in high-load
capacitance that leads to a high-dynamic power per transition.
Terminated I/O standards require external resistors that generally draw
constant (static) power from the output pin.

Number and Type of Logic Elements, Multiplier Elements, and RAM
Blocks

A design with more logic elements (LEs), multiplier elements, and
memory blocks tends to consume more power than a design with fewer
such circuit elements. Also, the operating mode of each circuit element
affects its power consumption. For example, a digital signal processing
(DSP) block performing 18×18 multiplications and a DSP block
performing multiply-accumulate operations consume different amounts

Altera Corporation 10–9
October 2007 Preliminary

Factors Affecting Power Consumption

of dynamic power due to different amounts of internal capacitance being
charged on each transition. Static power is also affected, to a small degree,
by the operating mode of a circuit element.

Number and Type of Global Signals

Global signal networks span large portions of the device and have high
capacitance, resulting in significant dynamic power consumption. The
type of global signal is important as well. For example, Stratix II devices
support several kinds of global clock networks that span either the entire
device or a specific portion of the device (a regional clock network covers
a quarter of the device). Clock networks that span smaller regions have
lower capacitance and therefore, tend to consume less power. In addition,
the location of the logic array blocks (LABs) that are driven by the clock
network can have an impact, because the Quartus II software
automatically disables unused branches of a clock.

Signal Activities

The final important factor in estimating power consumption is the
behavior of each signal in the design. The two vital statistics are the toggle
rate and the static probability.

The toggle rate of a signal is the average number of times that the signal
changes value per unit time. The units for toggle rate are transitions per
second, and a transition is a change from 1 to 0 or 0 to 1.

The static probability of a signal is the fraction of time that the signal is
logic 1 during the period of device operation that is being analyzed. Static
probability ranges from 0 (always at ground) to 1 (always at logic high).

Dynamic power increases linearly with the toggle rate as the capacitive
load is charged more frequently for logic and routing. The Quartus II
models assume full rail-to-rail switching. For high toggle rates, especially
on circuit output I/O pins, the circuit can transition before fully charging
downstream capacitance. The result is a slightly conservative prediction
of power by the Quartus II PowerPlay Power Analyzer.

The static power consumed by both routing and logic can sometimes be
affected by the static probabilities of their input signals. This effect is due
to state-dependent leakage, and has a larger affect on smaller process
geometries. The Quartus II software models this effect on devices at
90 nm (or smaller) if it is deemed important to the power estimate. The
static power also varies with the static probability of a logic 1 or 0 on the
I/O pin when output I/O standards drive termination resistors.

10–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 To get accurate results from power analysis, the signal activities
that are used for analysis must be representative of the actual
operating behavior of the design. Inaccurate signal toggle rate
data is the largest source of power estimation error.

PowerPlay
Power Analyzer
Flow

The PowerPlay Power Analyzer supports accurate and representative
power estimation by letting you specify all the important design factors
affecting power consumption. Figure 10–5 shows the high-level Power
Analyzer flow.

Figure 10–5. PowerPlay Power Analyzer High-Level Flow

Note to Figure 10–5:
(1) Operating condition specifications are available only for the Arria GX devices,

Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and
MAX II device families.

The PowerPlay Power Analyzer requires that your design is synthesized
and fit to the target device. Therefore, the Power Analyzer knows both
the target device and how the design is placed and routed on the device.
The electrical standard used by each I/O cell and the capacitive load on
each I/O standard must be specified in the design to obtain accurate I/O
power estimates.

PowerPlay
Power Analyzer

Operating
Conditions (1)

User Design
(After Fitting)

Power Analysis
Report

Signal
Activities

Altera Corporation 10–11
October 2007 Preliminary

PowerPlay Power Analyzer Flow

Operating Conditions

For the Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III,
Cyclone II, HardCopy II, and MAX II device families, you can specify the
operating conditions for power analysis in the Quartus II software.

 The following settings are available in the Settings dialog box:

■ Device power characteristics—Should the Power Analyzer assume
typical silicon or maximum power silicon? The typical setting is
useful for comparing to empirical data measured on an average unit.
Worst-case data provides a boundary to the worst-case device that
you could receive.

■ Selectable Core Voltage—You can select a suitable core supply
voltage for your design based on performance and power
requirements using the Core Supply Voltage option, available for
the latest devices with variable voltage support. The power
consumption of a device is heavily dependent on the voltage, so it is
very important to choose the right core supply voltage for your
design. The core supply voltage provides power to device logic
resources such as logic array blocks (LABs), MLABs, DSP functions,
memory, and interconnects.

■ Environmental conditions and junction temperature—By default,
the Power Analyzer automatically computes the junction
temperature based on the specified ambient temperature and the
cooling solution that you selected from a list. For a more accurate
analysis, enter the thermal resistance of your cooling solution. For
some cooling solutions, such as a heat sink with no forced airflow,
the thermal resistance varies with the amount of thermal power that
is dissipated. Air convection increases as the difference between the
device temperature and the ambient temperature increases, reducing
thermal resistance. When entering a thermal resistance in such cases,
it is important to use the thermal resistance that occurs when the heat
flow (Q) is equal to the thermal power generated by the device.
You can also specify a junction temperature in the PowerPlay Power
Analyzer. However, Altera does not recommend this because the
PowerPlay Power Analyzer provides more accurate results by
computing the junction temperature.

■ Board Thermal Modeling—If you want the Power Analyzer thermal
model to take the θJB into consideration, set the board thermal model
to either Typical or Custom. This feature produces more accurate
thermal power estimation.

A Typical board thermal model automatically sets θJB to a value
based on the package and device selected. You only need to specify
a board temperature. If you choose a Custom board thermal model,

10–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

you must specify a value for θJB and a board temperature. If you do
not want the PowerPlay Power Analyzer thermal model to take the
θJB resistance into consideration, set the Board thermal model option
to None (conservative). In this case, the path through the board and
power dissipation is not considered, and a more conservative
thermal power estimate is obtained.

The Board thermal model option is only available if you select the
Auto compute junction temperature option with the pre-set cooling
solution set to some heat sink solution option or custom solution.
This option is disabled when a cooling solution with no heat sink is
selected, as thermal conduction through the board is included in the
θJA value used to compute a junction temperature in that case.

Signal Activities Data Sources

The Power Analyzer provides a flexible framework for specifying signal
activities. This reflects the importance of using representative signal
activity data during power analysis. You can use the following sources to
provide information about signal activity:

■ Simulation results
■ User-entered node, entity, and clock assignments
■ User-entered default toggle rate assignment
■ Vectorless estimation

The PowerPlay Power Analyzer lets you mix and match the signal
activity data sources on a signal-by-signal basis. Figure 10–6 shows the
priority scheme. The data sources are described in the following sections.

Altera Corporation 10–13
October 2007 Preliminary

PowerPlay Power Analyzer Flow

Figure 10–6. Signal Activity Data Source Priority Scheme

Note to Figure 10–6:
(1) Vectorless estimation is available only for the Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone II, HardCopy II,

and MAX II device families.

Simulation Results

The Power Analyzer directly reads the waveforms generated by a design
simulation. The static probability and toggle rate for each signal is
calculated from the simulation waveform. Power analysis is most
accurate when simulations are generated using representative input
stimuli.

The Power Analyzer reads the results generated by the following
simulators:

■ Quartus II Simulator
■ ModelSim® VHDL, Active HDL, ModelSim Verilog HDL,

ModelSim-Altera VHDL, ModelSim-Altera Verilog
■ NC-Verilog, NC-VHDL
■ VCS

Signal activity and static probability information are stored in a Signal
Activity File (.saf) or may be derived from a Value Change Dump File
(.vcd), described in “Signal Activities” on page 10–9. The Quartus II
simulator generates a Signal Activity File (SAF) or a Value Change Dump
(VCD) file which is then read by the Power Analyzer.

Node or entity
assignment?

Simulation
data?

Is primary
input?

Vectorless
supported and

enabled?

Use vectorless
estimation

Use default
assignment

Use simulation
data

Use node or
entity assignment

Start

Yes Yes Yes No

YesNoNoNo

(1)

10–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For third-party simulators, use the Quartus II EDA Tool Settings for
Simulation to specify a Generate Value Change Dump file script. These
scripts instruct the third-party simulators to generate a VCD file that
encodes the simulated waveforms. The Quartus II Power Analyzer reads
this file directly to derive toggle rate and static probability data for each
signal.

Third-party EDA simulators, other than those listed above, can generate
a VCD file that can then be used with the Power Analyzer. For those
simulators, it is necessary to manually create a simulation script to
generate the appropriate Value Change Dump File.

1 You can use a SAF or VCD file created for power analysis to
optimize the design for power during fitting by utilizing the
appropriate settings in the PowerPlay power optimization list,
available in Fitter Settings page of the Settings dialog box.

f For more information about power optimization, refer to the Power
Optimization chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 10–15
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

Using
Simulation Files
in Modular
Design Flows

A common design practice is to create modular or hierarchical designs in
which you develop each design entity separately and then instantiate it in
a higher-level entity, forming a complete design. Simulation is performed
on a complete design or on each modular design for verification. The
Quartus II PowerPlay Power Analyzer Tool supports modular design
flows when reading the signal activities generated from these simulation
files, as shown in Figure 10–7.

Figure 10–7. Modular Simulation Flow

When specifying a simulation file, an associated design entity name may
be given, such that the signal activities derived from the simulation file
(VCD file or SAF) can be imported into the Power Analyzer for that
particular design entity. The PowerPlay Power Analyzer Tool also
supports the specification of multiple SAFs for power analysis with each
having an associated design entity name to allow the integration of
partial design simulations into a complete design power analysis. When
specifying multiple SAFs for your design, it is possible that more than one
simulation file will contain signal activity information for the same signal.
In the case where multiple SAFs are applied to the same design entity, the
signal activity used in the power analysis is the equal-weight arithmetic
average of each SAF. Also in the case where multiple simulation files are
applied to design entities at different levels in the design hierarchy, the
signal activity used in the power analysis is derived from the simulation
file that is applied to the most specific design entity.

Figure 10–8 shows an example of a hierarchical design. The design Top
consists of three 8b/10b Decoders, followed by a multiplexer whose
output is then encoded again before being output from the design. There
is also an error-handling module that handles any 8b/10b decoding
errors. The top-level module, called Top, automatically contains the
design’s top-level entity and any logic not defined as part of another
module. The design file for the top-level module may be just a wrapper

Parameter
Input

Video
Processing

Column
Driver

Memory
Interface

Video
Source

Interface

Timing
Control

system.vcd

video_gizmo.saf

output_driver.vcd

video_input.vcd

10–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

for the hierarchical entities below it, or it may contain its own logic. The
following usage scenarios show common ways that you may simulate
your design and import SAFs into the PowerPlay Power Analyzer Tool.

Figure 10–8. Example Hierarchical Design

Complete Design Simulation

You can simulate the entire design Top, generating a VCD file if you use
a third-party simulator, or generating a SAF or VCD if you use the
Quartus II Simulator. The VCD file or SAF can then be imported
(specifying Entity Top) into the power analyzer. The resulting power
analysis uses all the signal activities information from the generated VCD
file or SAF, including those that apply to submodules, such as
decode[1-3], err1, mux1, and encode1.

Modular Design Simulation

You can simulate submodules of the design Top independently, and then
import all of the resulting SAFs into the Power Analyzer. For example,
you may simulate the 8b10b_dec independent of the entire design, as
well as multiplexer, 8b10b_rxerr, and 8b10b_enc. You can then
import the VCD file or SAF generated from each simulation by specifying

8b10b_dec:decode1

8b10b_dec:decode2

8b10b_dec:decode3

8b10b_rxerr:err1

mux:mux1

8b10b_enc:encode1

Top

Altera Corporation 10–17
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

the appropriate instance name. For example, if the files produced by the
simulations are 8b10b_dec.vcd, 8b10b_enc.vcd, 8b10b_rxerr.vcd, and
mux.saf, the import specifications in Table 10–2 are used.

The resulting power analysis applies the simulation vectors found in each
file to the assigned entity. Simulation provides signal activities for the
pins and for the outputs of functional blocks. If the inputs to an entity
instance are input pins for the entire design, the simulation file associated
with that instance does not provide signal activities for the inputs of that
instance. For example, an input to an entity such as mux1 has its signal
activity specified at the output of one of the decode entities.

Multiple Simulations on the Same Entity

You can perform multiple simulations of an entire design or specific
modules of a design. For example, in the process of verifying the Top
design, you may have three different simulation testbenches: one for
normal operation, and two for corner cases. Each of these simulations
produces a separate VCD file or SAF. In this case, apply the different VCD
file or SAF names to the same top-level entity, shown in Table 10–3.

The resulting power analysis uses an arithmetic average of the signal
activities calculated from each simulation file to obtain the final signal
activities used. Thus, if a signal err_out has a toggle rate of 0 toggles per

Table 10–2. Import Specifications

File Name Entity

8b10b_dec.vcd Top|8b10b_dec:decode1

8b10b_dec.vcd Top|8b10b_dec:decode2

8b10b_dec.vcd Top|8b10b_dec:decode3

8b10b_rxerr.vcd Top|8b10b_rxerr:err1

8b10b_enc.vcd Top|8b10b_enc:encode1

mux.saf Top|mux:mux1

Table 10–3. Multiple Simulation File Names and Entities

File Name Entity

normal.saf Top

corner1.vcd Top

corner2.vcd Top

10–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

second in normal.saf, 50 toggles per second in corner1.vcd, and 70
toggles per second in corner2.vcd, the final toggle rate that is used in the
power analysis is 40 toggles per second.

Overlapping Simulations

You can perform a simulation on the entire design Top and more
exhaustive simulations on a submodule, such as 8b10b_rxerr.
Table 10–4 shows the import specification for overlapping simulations.

In this case, signal activities from error_cases.vcd are used for all of the
nodes in the generated SAF, and signal activities from full_design.vcd
are used for only those nodes that do not overlap with nodes in
error_cases.vcd. In general, the more specific hierarchy (the most
bottom-level module) is used to derive signal activities for overlapping
nodes.

Partial Simulations

You can perform a simulation where the entire simulation time is not
applicable to signal activity calculation. For example, suppose you run a
simulation for 10,000 clock cycles and you reset the chip for the first 2,000
clock cycles. If the signal activity calculation is performed over all 10,000
cycles, the toggle rates are typically only 80% of their steady state value
(since the chip is in reset for the first 20% of the simulation). In this case,
you should specify the useful parts of the VCD file for power analysis.
The Limit VCD Period option enables you to specify a start and end time
to be used when performing signal activity calculations.

Node Name Matching Considerations

Node name mismatches happen when you have SAFs or VCD files
applied to entities other than the top-level entity. In a modular design
flow, the gate-level simulation files created in different Quartus II
software projects may not match their node names properly with the
current Quartus II project.

Table 10–4. Overlapping Simulation Import Specifications

File Name Entity

full_design.vcd Top

error_cases.vcd Top|8b10b_rxerr:err1

Altera Corporation 10–19
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

For example, if you have a file named 8b10b_enc.vcd, which was
generated in a separate project called 8b10b_enc and is simulating the
8b10b encoder, and you import that VCD file into another project called
Top, you may encounter name mismatches when applying the VCD file
to the 8b10b_enc module in the Top project. This is because all of the
combinational nodes in the 8b10b_enc.vcd file may be named differently
in the Top project.

You can avoid name mismatching by using only register transfer level
(RTL) simulation data, where register names usually do not change, or by
using an incremental compile flow that preserves node names in
conjunction with a gate-level simulation. To ensure the best accuracy,
Altera recommends using an incremental compile flow to preserve your
design’s node names.

f For more information about the incremental compile flow, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

Glitch Filtering

The Power Analyzer defines a glitch as two signal transitions that are so
closely spaced in time that the pulse, or glitch, occurs faster than the logic
and routing circuitry can respond. The output of a transport delay model
simulator (the default mode of the Quartus II simulator) generally
contains glitches for some signals. The device’s logic and routing
structures form a low-pass filter that filters out glitches that are tens to
hundreds of picoseconds long, depending on the device family.

Some third-party simulators use different simulator models than the
transport delay model as default. Different models cause differences in
signal activity estimation and power estimation. The inertial delay
model, which is the ModelSim default model, filters out many more
glitches than the transport delay model; therefore, it usually yields a
lower power estimate. Altera recommends using the transport simulation
model when using the Quartus II glitch filtering support with third-party
simulators. If the inertial simulation model is used, simulation glitch
filtering has little effect.

f For more information about how to set the simulation model type for
your specific simulator, refer to the Quartus II Help.

Glitch filtering in a simulator can also filter a glitch on one LE (or other
circuit element) output from propagating to downstream circuit elements
so that the glitch will not affect simulated results. This prevents a glitch
on one signal from producing non-physical glitches on all downstream
logic, which would result in a signal toggle rate that is too high and a

10–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

power estimate that is too high. Circuit elements in which every input
transition produces an output transition, including multipliers and logic
cells configured to implement XOR functions, are especially prone to
glitches. Therefore, circuits with many such functions can have power
estimates that are too high when glitch filtering is not used.

Altera recommends that the glitch filtering feature be used to obtain the
most accurate power estimates. For VCD files, the Power Analyzer flows
support two types of glitch filtering, both of which are recommended for
power estimation. In the first, glitches are filtered during simulation. To
enable this level of glitch filtering in the Quartus II software for
supported third-party simulators, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. Select the Tool Name to use for the simulation.

4. Turn on the Enable glitch filtering option.

To enable this level of glitch filtering in the Quartus II software using the
Quartus II Simulator, refer to “Generating a SAF or VCD File Using the
Quartus II Simulator” on page 10–24.

The second level of glitch filtering occurs while the Power Analyzer is
reading the VCD file generated by the third-party simulator or Quartus II
Simulator. Enable this level of glitch filtering by performing the following
steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select PowerPlay Power Analyzer Settings.
The PowerPlay Power Analyzer Settings page appears.

3. Under Input File(s), turn on the Perform glitch filtering on VCD
files option.

Altera recommends that you use both forms of glitch filtering.

The VCD file reader performs complementary filtering to the filtering
performed during simulation and is often not as effective. While the VCD
file reader can remove glitches on logic blocks, it has no way of
determining how downstream logic and routing are affected by a given

Altera Corporation 10–21
October 2007 Preliminary

Using Simulation Files in Modular Design Flows

glitch, and may not eliminate the impact of the glitch completely.
Filtering the glitches during simulation avoids switching downstream
routing and logic automatically.

1 When running simulation for design verification (rather than to
produce input to the Quartus PowerPlay Power Analyzer),
Altera recommends leaving glitch filtering turned off. This
produces the most rigorous and conservative simulation from a
functionality viewpoint. When performing simulation to
produce input for the Quartus II PowerPlay Power Analyzer,
Altera recommends turning on glitch filtering to produce the
most accurate power estimates.

Node and Entity Assignments

You can assign specific toggle rates and static probabilities to individual
nodes and entities in the design. These assignments have the highest
priority, overriding data from all other signal activity sources.

Use the Assignment Editor or tool command language (Tcl) commands to
make the Power Toggle Rate and Power Static Probability assignments.
You can specify the power toggle rate as an absolute toggle rate in
transitions using the Power Toggle Rate assignment or you can use the
Power Toggle Rate Percentage assignment to specify a toggle rate
relative to the clock domain of the assigned node for more specific
assignment made in terms of hierarchy level.

1 If the Power Toggle Rate Percentage assignment is used, and
the given node does not have a clock domain, a warning is
issued and the assignment is ignored.

f For more information about how to use the Assignment Editor in the
Quartus II software, refer to the Assignment Editor chapter in volume 2 of
the Quartus II Handbook.

This method is appropriate for special-case signals where you have
specific knowledge of the signal or entity being analyzed. For example, if
you know that a 100-MHz data bus or memory output produces data that
is essentially random (uncorrelated in time), you can directly enter a 0.5
static probability and a toggle rate of 50 million transitions per second.

Bidirectional I/O pins are treated specially. The combinational input port
and the output pad for a given pin share the same name. However, those
ports might not share the same signal activities. For the purpose of
reading signal activity assignments, the Power Analyzer creates a distinct
name <node_name~output> when the bidirectional signal is
configured as an output and <node_name~result> when the signal is

10–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

configured as an input. For example, if a design has a bidirectional pin
named MYPIN, assignments for the combinational input use the name
MYPIN~result, and the assignments for the output pad use the name
MYPIN~output.

1 When making the logic assignment in the Assignment Editor,
you will not find the MYPIN~result and MYPIN~output node
names in the Node Finder. Therefore, to make the logic
assignment, you must manually enter the two differentiating
node names to make the specific assignment for the input and
output port of the bidirectional pin.

Timing Assignments to Clock Nodes

For clock nodes, the Power Analyzer uses the timing requirements to
derive the toggle rate when neither simulation data nor user entered
signal activity data is available.

1 fMAX requirements specify full cycles per second, but each cycle
represents a rising transition and a falling transition. For
example, a clock fMAX requirement of 100 MHz corresponds to
200 million transitions per second.

Default Toggle Rate Assignment

You can specify a default toggle rate for primary inputs and all other
nodes in the design. The default toggle rate is used when no other method
has specified the signal activity data.

The toggle rate can be specified in absolute terms (transitions per second)
or as a fraction of the clock rate in effect for each particular node. The
toggle rate for a given clock is derived from the timing settings for the
clock. For example, if a clock is specified with an fMAX constraint of
100 MHz and a default relative toggle rate of 20%, nodes in this clock
domain transition in 20% of the clock periods, or 20 million transitions
occur per second. In some cases, the Power Analyzer cannot determine
the clock domain for a given node because there is either no clock domain
for the node or it is ambiguous. In these cases, the Power Analyzer
substitutes and reports a toggle rate of zero.

Altera Corporation 10–23
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Vectorless Estimation

For some device families, the Power Analyzer automatically derives
estimates for signal activity on nodes with no simulation or user-entered
signal-activity data. Vectorless estimation is available and enabled by
default for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III,
Cyclone II, HardCopy II, and MAX II device families. Vectorless
estimation statistically estimates the signal activity of a node based on the
signal activities of all nodes feeding that node, and on the actual logic
function that is implemented by the node. The PowerPlay Power
Analyzer Settings dialog box lets you disable vectorless estimation.
When enabled, vectorless estimation takes priority over default toggle
rates. Vectorless estimation does not override clock assignments.

1 Vectorless estimation cannot derive signal activities for primary
inputs. Vectorless estimation is generally accurate for
combinational nodes, but not for registered nodes. Therefore,
simulation data for at least the registered nodes and I/O nodes
is needed for accuracy.

Using the
PowerPlay
Power Analyzer

For all flows that use the PowerPlay Power Analyzer, synthesize your
design first and then fit it to the target device. You must either provide
timing assignments for all clocks in the design or use a simulation-based
flow to generate activity data. The I/O standard used on each device
input or output and the capacitive load on each output must be specified
in the design.

Common Analysis Flows

You can use the analysis flows in this section with the PowerPlay Power
Analyzer. However, vectorless activity estimation is only available for
some device families.

Signal Activities from Full Post-Fit Netlist (Timing) Simulation

This flow provides the highest accuracy because all node activities reflect
actual design behavior, provided that supplied input vectors are
representative of typical design operation. Results are better if the
simulation filtered glitches. The disadvantage with this method is that
simulation times can be long.

10–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Signal Activities from RTL (Functional) Simulation, Supplemented by
Vectorless Estimation

In this flow, simulation provides toggle rates and static probabilities for
all pins and registers in the design. Vectorless estimation fills in the
values for all the combinational nodes between pins and registers. This
method yields good results, since vectorless estimation is accurate, given
that the proper pin and register data is provided. This flow usually
provides a compilation time benefit to the user in the third-party RTL
Simulator.

1 RTL simulation may not provide signal activities for all registers
in the post-fitting netlist because some register names may be
lost during synthesis. For example, synthesis may automatically
transform state machines and counters, thus changing the
names of registers in those structures.

Signal Activities from Vectorless Estimation, User-Supplied Input Pin
Activities

This option provides a low level of accuracy, because vectorless
estimation for registers is not entirely accurate.

Signal Activities from User Defaults Only

This option provides the lowest degree of accuracy.

Generating a SAF or VCD File Using the Quartus II Simulator

While performing a timing or functional simulation using the Quartus II
Simulator, you can generate a SAF or VCD file. These files store the toggle
rate and static probability for each connected output signal based on the
simulation vectors that are entered in the Vector Waveform File (.vwf) or
the Vector File (.vec). You can use the SAF(s) or VCD file(s) as input to the
PowerPlay Power Analyzer to estimate power for your design.

1 For more accurate results, Altera recommends that you use the
SAF created from the Quartus II simulator as the input to the
PowerPlay Power Analyzer.

To create a SAF or VCD file for your design, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Simulator Settings. The Simulator
Settings page appears (Figure 10–9).

Altera Corporation 10–25
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Figure 10–9. Simulator Settings Page

3. In the Simulation mode list, select either Timing or Functional.
Refer to “Common Analysis Flows” on page 10–23 for a description
of the difference in accuracy between the two types of simulation
modes.

4. (Optional) Click More Settings. The More Simulator Settings
dialog box appears.

5. (Optional) Turn on glitch filtering. To turn on glitch filtering, in the
Glitch filtering options list, select Always.

6. In the Category list, click the icon to expand Simulator Settings
and select Simulation Output Files (Figure 10–10).

10–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 10–10. Simulator Output Files Page of the Settings Dialog Box

7. Turn on Generate Signal Activity File and enter the file name for
the SAF file.

f For more information about the Quartus II Simulator and how to create a
SAF file, refer to the Quartus II Simulator chapter in volume 3 of the
Quartus II Handbook.

Altera Corporation 10–27
October 2007 Preliminary

Using the PowerPlay Power Analyzer

1 When generating a VCD file from the Quartus Simulator, you
must make sure that you add all nodes to the input vector wave
file. Only the nodes that have been added to your vector file will
be output to the Quartus-generated VCD file. This is not the case
when generating a SAF. The Quartus II Simulator will create a
SAF including all the internal nodes of your design even if the
stimuli file contains only the input vectors for your simulation.

8. (Optional) Click Signal Activity File Options. The Signal Activity
File Options dialog box appears (Figure 10–11).

Figure 10–11. Signal Activity File Options Dialog Box

9. (Optional) Turn on the Limit signal activity period option to
specify the simulation period to use when calculating the signal
activities.

Power estimation can be performed for the entire simulation time or
for a portion of the simulation time. This allows you to look at the
power consumption at different points in your overall simulation
without having to rework your testbenches. This feature is also
useful when multiple clock cycles are necessary to initialize the state
of the design, but you want to measure the signal activity only
during the normal operation of the design, not during its
initialization phase. You can specify the start time and end time in
the Signal Activity File Options dialog box by turning on the Limit
signal activity period option. Simulation information is used during
this time interval only to calculate toggle rates and static
probabilities. If no time interval is specified, the whole simulation is
used to compute signal activity data.

10. After the simulation is complete, a SAF is generated with the
specified filename and stored in the main project directory.

f For more information about how to perform simulations in the
Quartus II software, see the Quartus II Help.

10–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Generating a VCD File Using a Third-Party Simulator

You can use other EDA simulation tools, such as the Model Technology™
ModelSim® software, to perform a simulation and create a VCD file. You
can use this file as input to the PowerPlay Power Analyzer to estimate
power for your design. To do this, you must tell the Quartus II software
to generate a script file that is used as input to the third-party simulator.
This script tells the third-party simulator to generate a VCD file that
contains all the output signals. For more information about the supported
third-party simulators, refer to “Simulation Results” on page 10–13.

To create a VCD file for your design, perform the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears, as shown in Figure 10–12.

Figure 10–12. Simulation Page of the Settings Dialog Box

3. In the Tool name list, select the appropriate EDA simulation tool.

Altera Corporation 10–29
October 2007 Preliminary

Using the PowerPlay Power Analyzer

4. In the Format for output netlist list, select VHDL or Verilog.

5. Turn on Generate Value Change Dump (VCD) file script.

1 This turns on the Map illegal HDL character and Enable
glitch filtering options.

6. (Optional) Map illegal HDL characters ensures that all signals have
legal names and that signal toggle rates are available later in the
PowerPlay Power Analyzer.

7. (Optional) By turning on Enable glitch filtering, glitch filtering
logic is the output when you generate an EDA netlist for simulation.
This option is always available, regardless of whether or not you
want to generate the VCD file scripts. For more information about
glitch filtering, refer to “Glitch Filtering” on page 10–19.

1 When performing simulation using ModelSim, the +nospecify
option given to the vsim command disables specify path delays
and timing checks in ModelSim. By enabling glitch filtering on
the Simulation page, the simulation models include specify
path delays. Thus, ModelSim can fail to simulate a design if
glitch filtering is enabled and the +nospecify option is specified.
Altera recommends the removal of the +nospecify option from
the ModelSim vsim command to ensure accurate simulation for
power estimation.

8. Click Script Settings. The Script Settings dialog box appears,
shown in Figure 10–13.

Figure 10–13. Script Settings Dialog Box

Select which signals should be output to the VCD file. With All
signals selected, the generated script instructs the third-party
simulator to write all connected output signals to the VCD file. With
All signals except combinational lcell outputs selected, the

10–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

generated script tells the third-party simulator to write all connected
output signals to the VCD file, except logic cell combinational
outputs. You may not want to write all output signals to the file
because the file can become extremely large (since its size depends
on the number of output signals being monitored and the number of
transitions that occur).

9. Click OK.

10. Type a name for your testbench in the Design instance name box.

11. Compile your design with the Quartus II software and generate the
necessary EDA netlist and script that tells the third-party simulator
to generate a VCD file.

f For more information about NativeLink use, refer to Section I. Simulation
in volume 3 of the Quartus II Handbook.

12. Perform a simulation with the third-party EDA simulation tool. Call
the generated script in the simulation tool before running the
simulation. The simulation tool generates the VCD file and places it
in the project directory.

The following example provides step-by-step instructions to successfully
produce a VCD file with the ModelSim software:

1. In the Quartus II software, on the Assignments menu, click Settings.

2. In the Settings dialog box, on the Simulator Settings page, choose
the appropriate ModelSim selection in the Tool Name list, and turn
on the Generate Value Change Dump File Script option.

3. To generate the VCD file, perform a full compilation.

4. In the ModelSim software, compile the files necessary for
simulation.

5. Load your design by clicking Start Simulation on the Tools menu,
or use the vsim command.

6. Source the Quartus II VCD script created in step 3 using the
following command:
source <design>_dump_all_vcd_nodes.tcl

7. Run the simulation (for example, run 2000ns or run -all).

8. Quit the simulation using the quit -sim command, if needed.

Altera Corporation 10–31
October 2007 Preliminary

Using the PowerPlay Power Analyzer

9. Exit the ModelSim software. If you do not exit the software, the
ModelSim software may end the writing process of the VCD files
improperly, resulting in a corrupted VCD file.

f For more information about how to call the VCD file generation script in
the respective third-party EDA simulation tools, refer to the Quartus II
Help. For more information about how to perform simulations in other
EDA simulation tools, see the relevant documentation for that tool.

Running the PowerPlay Power Analyzer Using the Quartus II GUI

To run the PowerPlay Power Analyzer using the Quartus II GUI, perform
the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select PowerPlay Power Analyzer Settings,
shown in Figure 10–14.

Figure 10–14. PowerPlay Power Analyzer Settings

10–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

3. (Optional) If you want to use either SAF(s) or VCD file(s) or both as
an input to the PowerPlay Power Analyzer, turn on Use input
file(s) to initialize toggle rates and static probabilities during
power analysis.

(Optional) The Edit button allows you to change the settings for a
selected file from the list. The Remove button allows you to remove
a selected file from the list.

4. Click Add. The Add Power Input File dialog box appears, as shown
in Figure 10–15.

Figure 10–15. Add Power Input File Dialog Box

5. Add your SAF(s) or VCD file(s) by clicking the browse button for
the File name box.

6. The Entity box enables you to specify the design entity (hierarchy)
to which the entered power input file applies. To enter the entity,
you can type in the box or browse through the list of your design
entities. To browse your design entities, click the browse button.
The Select Hierarchy dialog box appears, shown in Figure 10–16.
You can specify multiple entities in the entity text box by using
comma delimiters.

Altera Corporation 10–33
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Figure 10–16. Select Hierarchy Dialog Box

7. You can specify whether the input file is a VCD file or SAF under
Input File Type.

8. (Optional) Limit VCD period is enabled only when the VCD file is
selected. This enables you to specify the simulation period to use
when calculating the signal activities. For more information, refer to
step 9 of “Generating a SAF or VCD File Using the Quartus II
Simulator” on page 10–24.

9. Click OK.

10. Click OK in the Add Power Input File dialog box.

11. (Optional) Turn on Perform glitch filtering on VCD files. This
option is recommended. For more information, refer to “Glitch
Filtering” on page 10–19.

12. (Optional) Turn on Write out signal activities used during power
analysis. In the Output file name list, select the output file name.
This file contains all the signal activities information used during
the power estimation of your design. This is recommended if you

10–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

used a VCD file as input into the PowerPlay Power Analyzer,
because it reduces the run time of any subsequent power estimation.
You can use the generated SAF as input instead of the original VCD
file.

13. (Optional) Turn on Write signal activities to report file.

14. (Optional) Turn on Write power dissipation by block to report file
to enable the output of detailed thermal power dissipation by block
to be included in the PowerPlay Power Analyzer report.

15. (Optional) You can also use the Assignment Editor to enter the
Power Toggle Rate or Power Toggle Rate Percentage, and the Power
Static Probability for a node or entity in your design, shown in
Figure 10–17.

Figure 10–17. Assignment Editor Notes (1), (2)

Notes to Figure 10–17:
(1) The assignments made with the Assignment Editor override the values already existing in the SAF or VCD file.
(2) You can also use Tcl script commands to make these assignments.

f For more information about how to use the Assignment Editor in the
Quartus II software, see the Assignment Editor chapter in volume 2 of the
Quartus II Handbook. For information about scripting, see the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 10–35
October 2007 Preliminary

Using the PowerPlay Power Analyzer

16. Specify the toggle rate in the Default toggle rate used for input I/O
signals field. This toggle rate is used for all unspecified input I/O
signal toggle rates regardless of whether or not the device family
supports vectorless estimation. By default, its value is set to 12.5%.
The default static probability for unspecified input I/O signals is 0.5
and cannot be changed.

17. Select either Use default value or Use vectorless estimation for
Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III, Cyclone II,
HardCopy II, or MAX II device families. For all other device
families, only Use default value is available. This setting controls
how the remainder of the unspecified signal activities are
calculated. For more information, refer to “Vectorless Estimation”
on page 10–23 and “Default Toggle Rate Assignment” on
page 10–22.

18. In the Category list, select Operating Settings and Conditions. This
option is available only for the Arria GX, Stratix III, Stratix II,
Stratix II GX, Cyclone III, Cyclone II, HardCopy II, and MAX II
device families (Figure 10–18).

Figure 10–18. Operating Conditions

10–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

19. In the Device power characteristics list, select Typical or
Maximum. The default is Typical.

20. In the Category list, click the icon to expand Operating Settings
and Conditions and click Voltage. The Voltage page appears.

21. For the devices with selectable core voltage support, in the Core
supply voltage list, select the core supply voltage for your device.
This option is available for the latest devices with variable voltage
selection.

22. In the Category list, under Operating Settings and Conditions,
select Temperature. The Temperature page appears (Figure 10–19).

Figure 10–19. Temperature Settings Page

Altera Corporation 10–37
October 2007 Preliminary

Using the PowerPlay Power Analyzer

23. Under Junction temperature range, specify a junction temperature
in degrees Celsius and specify the junction temperature range.
Select the Low temperature and High temperature range for your
selected device.

24. Specify the junction temperature and cooling solution settings. You
can select Specify junction temperature or Auto compute junction
temperature using cooling solution.

25. (Optional) Under Board thermal modeling, select the Board
thermal model and type the Board temperature. This feature can
only be turned on when you have selected Auto compute junction
temperature using cooling solution.

For more information about how to use the operating condition
settings, refer to “Operating Conditions” on page 10–11.

26. Click OK to close the Settings dialog box.

27. On the Processing menu, click PowerPlay Power Analyzer Tool.
The PowerPlay Power Analyzer Tool dialog box appears
(Figure 10–20).

Figure 10–20. PowerPlay Power Analyzer Tool Dialog Box

10–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

28. Click Start to run the PowerPlay Power Analyzer. Be sure that all
the settings are correct.

1 You can also make changes to some of your settings in this
dialog box. For example, you can click the Add Power
Input File(s) button to make changes to your input file(s).

29. After the PowerPlay Power Analyzer runs successfully, a message
appears (Figure 10–21).

Figure 10–21. PowerPlay Power Analyzer Message

30. Click OK.

31. In the PowerPlay Power Analyzer Tool dialog box, click Report to
open the PowerPlay Power Analyzer Summary window. You can
also view the summary in the PowerPlay Power Analyzer
Summary page of the Compilation Report (Figure 10–22).

Figure 10–22. PowerPlay Power Analyzer Summary

Altera Corporation 10–39
October 2007 Preliminary

Using the PowerPlay Power Analyzer

PowerPlay Power Analyzer Compilation Report

The PowerPlay Power Analyzer section of the Compilation Report is
divided into the following sections.

Summary

This section of the report shows your design’s estimated total thermal
power consumption. This includes dynamic, static, and I/O thermal
power consumption. The report also includes a confidence metric that
reflects the overall quality of the data sources for the signal activities.

Settings

This section of the report shows your design’s PowerPlay Power
Analyzer settings information. This includes default input toggle rates,
operating conditions, and other relevant setting information.

Simulation Files Read

This section of the report lists simulation output files (VCD file or SAF)
used for power estimation.

Operating Conditions Used

This section of the report shows device characteristics, voltages,
temperature, and cooling solution, if any, that were used during the
power estimation. It also shows the entered junction temperature or
auto-computed junction temperature that was used during the power
analysis. This page is created only for Arria GX, Stratix II, Stratix II GX,
Cyclone III, Cyclone II, HardCopy II, and MAX II device families.

Thermal Power Dissipated by Block

This section of the report shows estimated thermal dynamic power and
thermal static power consumption categorized by atoms. This
information provides designers with an estimated power consumption
for each atom in their design.

Thermal Power Dissipation by Block Type (Device Resource Type)

This section of the report shows the estimated thermal dynamic power
and thermal static power consumption categorized by block types. This
information is further categorized by estimated dynamic and static
power that was used, as well as providing an average toggle rate by block
type. Thermal power is the power dissipated as heat from the FPGA
device.

10–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Thermal Power Dissipation by Hierarchy

This section of the report shows an estimated thermal dynamic power
and thermal static power consumption categorized by design hierarchy.
This is further categorized by the dynamic and static power that was used
by the blocks and routing within that hierarchy. This information is very
useful in locating problem modules in your design.

Core Dynamic Thermal Power Dissipation by Clock Domain

This section of the report shows the estimated total core dynamic power
dissipation by each clock domain. This provides designs with estimated
power consumption for each clock domain in their design. If the clock
frequency for a domain is unspecified by a constraint, the clock frequency
is listed as “unspecified.” For all the combinational logic, the clock
domain is listed as no clock with 0 MHz.

Current Drawn from Voltage Supplies

This section of the report lists the current that was drawn from each
voltage supply. The VCCIO voltage supply is further categorized by I/O
bank and by voltage. The minimum safe power supply size (current
supply ability) is also listed for each supply voltage. This page is created
only for Arria GX, Stratix III, Stratix II, Stratix II GX, Cyclone III,
Cyclone II, HardCopy II, and MAX II device families.

Confidence Metric Details

The confidence metric indicates the quality of the signal toggle rate data
used to compute a power estimate. The confidence metric is low if the
signal toggle rate data comes from sources that are considered poor
predictors of real signal toggle rates in the device during an operation.
Toggle rate data that comes from simulation, or user-entered assignments
on specific signals, or entities are considered reliable. Toggle rate data
from default toggle rates (for example, 12.5% of the clock period) or
vectorless estimation are considered relatively inaccurate. This section
gives an overall confidence rating in the toggle rate data, from low to
high. It also summarizes how many pins, registers, and combinational
nodes obtained their toggle rates from each of simulation, user entry,
vectorless estimation, or default toggle rate estimations. This detailed
information can help you understand how to increase the confidence
metric, letting you decide on your own confidence in the toggle rate data.

Altera Corporation 10–41
October 2007 Preliminary

Using the PowerPlay Power Analyzer

Signal Activities

This section lists toggle rate and static probabilities assumed by power
analysis for all signals with fan-out and pins. The signal type is provided
(Pin, Registered, or Combinational), as well as the data source for the
toggle rate and static probability. By default, all signal activities are
reported. This may be turned off on the PowerPlay Power Analyzer
Settings page by turning off the Write signal activities to report file
option. Turning this option off may be advisable for a large design
because of the large number of signals present. You can use the
Assignment Editor to specify that activities for individual nodes or
entities are reported by assigning an on value to those nodes for the
Power Report Signal Activities assignment.

Messages

This section lists any messages generated by the Quartus II software
during the analysis.

Specific Rules for Reporting

In the Stratix GX device, the XGM II State Machine block is always used
together with GXB transceivers, so its power is lumped into the power for
the transceivers. Therefore, the power for the XGM II State Machine block
is reported as 0 Watts.

Scripting Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp

The Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

10–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running the PowerPlay Power Analyzer from the Command Line

The separate executable that can be used to run the PowerPlay Power
Analyzer is quartus_pow. For a complete listing of all command line
options supported by quartus_pow, type the following at a system
command prompt:

quartus_pow --help or quartus_sh --qhelp r
The following is an example of using the quartus_pow executable with
project sample.qpf:

■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay
Early Power Estimator file, type the following at a system command
prompt:

quartus_pow sample --output_epe=sample.csv r
■ To instruct the PowerPlay Power Analyzer to generate a PowerPlay

Early Power Estimator file without doing the power estimate, type
the following command at a system command prompt:

quartus_pow sample --output_epe=sample.csv --estimate_power=off r
■ To instruct the PowerPlay Power Analyzer to use a SAF as input

(sample.saf), type the following at a system command prompt:

quartus_pow sample --input_saf=sample.saf r
■ To instruct the PowerPlay Power Analyzer to use two VCD files as

input (sample1.vcd and sample2.vcd), perform glitch filtering on the
VCD file, and use a default input I/O toggle rate of 10,000
transitions/second, type the following at a system command
prompt:

quartus_pow sample --input_vcd=sample1.vcd
--input_vcd=sample2.vcd --vcd_filter_glitches=on
--default_input_io_toggle_rate=10000transitions/s r

■ To instruct the PowerPlay Power Analyzer to not use any input file,
a default input I/O toggle rate of 60%, no vectorless estimation, and
a default toggle rate of 20% on all remaining signals, type the
following at a system command prompt:

quartus_pow sample --no_input_file --default_input_io_toggle_rate=60%
--use_vectorless_estimation=off --default_toggle_rate=20% r

Altera Corporation 10–43
October 2007 Preliminary

Conclusion

1 There are no command line options to specify the information
found on the PowerPlay Power Analyzer Settings Operating
Conditions page. The easiest way to specify these options is to
use the Quartus II GUI.

A report file, <revision name>.pow.rpt, is created by the quartus_pow
executable and saved in the main project directory. The report file
contains the same information as described in the “PowerPlay Power
Analyzer Compilation Report” on page 10–39.

Conclusion PowerPlay power analysis tools are designed for accurate estimation of
power consumption from early design concept through design
implementation. Designers can use the PowerPlay Early Power Estimator
to estimate power consumption during the design concept stage. Power
estimations can be refined during design implementation using the
Quartus II PowerPlay Power Analyzer feature. The Quartus II PowerPlay
Power Analyzer produces detailed reports that you can use to optimize
designs for lower power consumption and verify that the design is within
your power budget.

Referenced
Documents

This chapter references the following documents:

■ Assignment Editor chapter in volume 2 of the Quartus II Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Power Optimization chapter in volume 2 of the Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Quartus II Simulator chapter in volume 3 of the Quartus II Handbook
■ Section I. Simulation in volume 3 of the Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52001.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

10–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 10–5 shows the revision history for this chapter.

Table 10–5. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Figures 10–4, 10–9, 10–10, 10–11, and 10–22.
● Updated “Generating a SAF or VCD File Using the Quartus II

Simulator” on page 10–24.
● Updated “Generating a VCD File Using a Third-Party

Simulator” on page 10–28.

Updated for the
Quartus II software
version 7.2.

May 2007
v7.1.0

● Updated procedures for “Generating a SAF or VCD File Using
the Quartus II Simulator” on page 10–24.

● Updated figures.
● Added “Document Revision History” on page 10–45.

Added support for
Arria GX devices.

March 2007
v7.0.0

Added Cyclone III to list of devices supported (page 10-2) —

November 2006
v6.1.0

● Updated “Generating a SAF or VCD File Using the Quartus II
Simulator” by changing steps in certain processes to
accommodate new functionality.

● Updated “Operating Conditions” by adding Selectable Core
Voltage option.

● Updated Figure 10-2, 10-9, 10-10, 10-12, 10-14, 10-18, and
10-19.

Figure changes were
made to accommodate
the changes to the
GUI. Also, added
information for Stratix
III devices.

May 2006
v6.0.0

Chapter title changed to PowerPlay Power Analysis.
Updated for the Quartus II software version 6.0.0:
● Added information about the EPE tools.
● Added information about the power analyzer.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Updated figures.
● New functionality for Quartus II software 5.0.

—

December 2004
v1.0

Initial release. —

Altera Corporation Section IV–i
Preliminary

Section IV. Signal
Integrity

As FPGA usage expands into more high-speed applications, signal
integrity becomes an increasingly important factor to consider for an
FPGA design.

Signal integrity issues must be taken into account as part of FPGA I/O
planning and assignments, as well as in the design and layout of the
printed circuit board (PCB) that must support the FPGA. Early design
simulation is essential for preventing issues that may require a board
redesign. The Quartus II software provides a number of features that will
help you make smart board design decisions to ensure good signal
integrity on all your high-speed interfaces.

This section includes the following chapter:

■ Chapter 11, Signal Integrity Analysis with Third-Party Tools

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section IV–ii Altera Corporation
Preliminary

Signal Integrity Quartus II Handbook, Volume 3

Altera Corporation 11–1
October 2007

11. Signal Integrity Analysis
with Third-Party Tools

Introduction As FPGA devices are used in more high-speed applications, signal
integrity and timing margin between the FPGA and other devices on the
printed circuit board (PCB) become increasingly important
considerations to ensure proper system operation. To avoid time
consuming redesigns and expensive board respins, the topology and
routing of critical signals must be simulated. The high-speed interfaces
available on current FPGA devices must be modeled accurately and
integrated into timing models and board-level signal integrity
simulations. To do this, the tools used in the design of an FPGA and its
integration into a PCB must be “board-aware,” able to take into account
properties of the board routing as well as the connected devices on the
board.

The Quartus® II software provides a number of methodologies,
resources, and tools to assist in ensuring good signal integrity and timing
margin between an Altera® FPGA device and other components on the
board. Three types of analysis are possible with the Quartus II software:

■ I/O timing with a default or user-specified capacitive load and no
signal integrity analysis (default)

■ The Quartus II Advanced I/O Timing option utilizing a user-defined
board trace model to produce enhanced timing reports from accurate
“board-aware” simulation models

■ Full board routing simulation in third-party tools using Altera
provided or generated IBIS or HSPICE I/O models

I/O timing using a specified capacitive test load requires no special
configuration other than setting the size of the load. I/O timing reports
from Quartus II TimeQuest or the Quartus II Classic Timing Analyzer are
generated based only on point-to-point delays within the I/O buffer and
assume the presence of the capacitive test load with no other details about
the board specified. The default size of the load is based on the I/O
standard selected for the pin. Timing is measured to the FPGA pin with
no signal integrity analysis details.

The Advanced I/O Timing option expands the details in I/O timing
reports by taking board topology and termination components into
account. A complete point-to-point board trace model is defined and
accounted for in the timing analysis. This ability to define a board trace
model is an example of how the Quartus II software is “board-aware.”

QII53020-7.2.0

11–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

In this case, timing and signal integrity metrics between the I/O buffer
and the defined far end load are analyzed and reported in enhanced
reports generated by the Quartus II TimeQuest Timing Analyzer.

f For more information about defining capacitive test loads or how to use
the Advanced I/O Timing option to configure a board trace model, refer
to the I/O Management chapter in volume 2 of the Quartus II Handbook.

This chapter focuses on the third type of analysis. The Quartus II software
can export accurate HSPICE models with the built-in HSPICE Writer.
You can run signal integrity simulations with these complete HSPICE
models in Synopsys HSPICE. Input/Output Buffer Information
Specification (IBIS) models of the FPGA I/O buffers are also created
easily with the Quartus II IBIS Writer. You can integrate IBIS models into
any third-party simulation tool that supports them, such as Mentor
Graphics Hyperlynx software. With the ability to create
industry-standard model definition files quickly, you can build accurate
simulations that can provide data to help improve board-level signal
integrity.

This chapter describes some of the basics of board-level signal integrity
and why it should be taken into consideration as part of the general FPGA
design flow. You will see that it is easy to produce accurate I/O models
in the Quartus II software that take into account the unique properties of
timing and signal integrity found in FPGA devices. You will learn how to
add these models to your board routing simulations in the most widely
used third-party simulation tools. Finally, you will find out where to go
for more information about board-level signal integrity and how the
Quartus II software and Altera FPGA devices fit into an overall high-
speed system design.

This chapter is intended for FPGA and board designers. FPGA designers
will learn about the concepts and steps involved in getting their designs
simulated and how to adjust their designs to improve board-level timing
and signal integrity. Board designers will learn how to get accurate
models from the Quartus II software and how to use those models in their
simulation software. To get the most out of this chapter, you should be
familiar with the use of the Quartus II software. It is also helpful if you are
familiar with some of the basic concepts involved in signal integrity and
the design techniques and components required to have good signal
integrity on a PCB. Finally, you should know how to set up simulations
and use your selected third-party simulation tool. This chapter gives a
basic overview of how to use the output from the IBIS Writer and HSPICE
Writer in these tools, but it does not provide detailed instructions on their
use.

Altera Corporation 11–3
October 2007 Preliminary

The Need for FPGA to Board Signal Integrity Analysis

f For information about basic signal integrity concepts and signal integrity
details pertaining to Altera FPGA devices, refer to the Altera Signal
Integrity Center.

The Need for
FPGA to Board
Signal Integrity
Analysis

When creating an FPGA design, the designer usually focuses on the
FPGA logic design and functionality. A main focus for the design of the
PCB to support the FPGA is to make sure FPGA I/O assignments match
the correct pads and routing to ensure the FPGA signals are correctly
connected to the rest of the circuit. In the past, this was all that was
necessary to ensure proper operation. However, FPGA devices can now
be configured with a wide assortment of high-speed interfaces that
communicate with many other devices on the board.

With the introduction of high-speed interfaces to traditional FPGA
design, it becomes necessary to make sure that timing and signal integrity
margins between the FPGA and other devices on the board are within
specification and tolerance before a single PCB is built. If the board trace
is designed poorly or the route is too heavily loaded, noise in the signal
can cause data corruption, while overshoot and undershoot can
potentially damage input buffers over time if allowed to continue.

The use of the I/O model creation and analysis tools available in the
Quartus II software early in the design process can help prevent
problems before a costly board respin is needed. In general, creating and
running accurate simulations is difficult and time consuming. The tools
in the Quartus II software help by automating the I/O model setup and
creation process by configuring the models specifically for your design.
You will be able to set up and run accurate simulations quickly and
acquire data that helps guide your FPGA and board design, using either
the Advanced I/O Timing feature for analysis in the Quartus II software
environment or the output from the IBIS and HSPICE Writers in third-
party simulation tools.

1 The discussion of signal integrity in this chapter refers to
board-level signal integrity based on I/O buffer configuration
and board parameters, not simultaneous switching noise (SSN),
also known as ground bounce or VCC sag. SSN is a product of
multiple output drivers switching at the same time, causing an
overall drop in the voltage of the chip’s power supply. This can
cause temporary glitches in the specified level of ground or VCC
for the device. For a more thorough discussion of SSN and ways
to prevent it, refer to application note AN 315: Guidelines for
Designing High-Speed FPGA PCBs.

http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html
http://www.altera.com/technology/signal/sgl-index.html

11–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Double
Counting
Problem for
FPGA Output
Timing

Simulating I/Os using accurate models is extremely helpful for finding
and fixing FPGA I/O timing and board signal integrity issues before any
boards are built. However, the usefulness of such simulations is directly
related to the accuracy of the models used and whether the simulations
are set up and performed correctly. To ensure accuracy in models and
simulations created for FPGA output signals, the timing hand-off
between tCO timing in the Quartus II software and simulation-based
board delay must be taken into account. If this hand-off is not handled
correctly, the calculated delay could either count some of the delay twice
or even miss counting some of the delay entirely.

Defining the Double Counting Problem

The double counting problem is inherent to the way output timing is
analyzed versus the method used for HSPICE models. The timing
analyzer tools in the Quartus II software measure delay timing for an
output signal from the core logic of the FPGA design through the output
buffer ending at the FPGA pin with a default capacitive load or a
specified value for the selected I/O standard. This measurement is the tCO
timing variable as shown in Figure 11–1.

Figure 11–1. Double Counting Problem

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin

HSPICE Reported Delay

Quartus II tCO

HSPICE tPD with
User Board Trace Model

Overlap (Double Counting)

Termination Network/
Trace Model

Signal
Destination

Altera Corporation 11–5
October 2007 Preliminary

The Double Counting Problem for FPGA Output Timing

HSPICE models for board simulation measure tPD (propagation delay)
from an arbitrary reference point in the output buffer, through the device
pin, out along the board routing, and ending at the signal destination (the
red bar in Figure 11–1).

It is immediately apparent that if these two delays were simply added
together, the delay between the output buffer and the device pin would
be counted twice in the calculation (the black bar in Figure 11–1). A model
or simulation that does not account for this double count would create
overly pessimistic simulation results, since the double counted delay can
artificially limit I/O performance. To fix the problem, it may seem like
simply subtracting the overlap between tCO and tPD would account for the
double count. However, this adjustment would not be accurate because
each measurement is based on a different load.

1 Input signals do not exhibit this problem because the HSPICE
models for inputs stop at the FPGA pin instead of at the input
buffer. In this case, simply adding the delays together produces
an accurate measurement of delay timing.

The Solution to Double Counting

To adjust the measurements to account for the double counting, the delay
between the arbitrary point in the output buffer selected by the HSPICE
model and the FPGA pin must be subtracted from either tCO or tPD before
adding the results together. The subtracted delay must also be based on a
common load between the two measurements. This is done by repeating
the HSPICE model measurement but with the same load used by the
Quartus II software for the tCO measurement. This second measurement,
called tTESTLOAD, is illustrated with the top circuit in Figure 11–2.

11–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–2. Common Test Loads Used for Output Timing

With tTESTLOAD known, the total delay for the output signal from the
FPGA logic to the signal destination on the board, accounting for the
double count, is calculated as shown in Equation 1.

(1)

The preconfigured simulation files generated by the HSPICE Writer in
the Quartus II software are designed to automatically account for the
double counting problem based on this calculation. This makes it easy to
perform accurate timing simulations without the need to manually make
adjustments for double counting.

FPGA Core
Logic

FPGA Output
Buffer

FPGA Pin Quartus
Test Load

HSPICE Netlist with
Quartus Test Load

HSPICE tPD
 with User

Specified Board Trace Model

Quartus II tCO

HSPICE Netlist with
User Board Trace Model

Overlap (HSPICE Delay
with Test Load)

Total Delay

HSPICE tPD Adjusted by tTESTLOAD

Termination Network/
Trace Model

Signal
Destination

tdelay tCO tPD tTESTLOAD–()+=

Altera Corporation 11–7
October 2007 Preliminary

I/O Model Selection: IBIS or HSPICE

I/O Model
Selection: IBIS
or HSPICE

The Quartus II software can export two different types of I/O models that
are useful for different simulation situations. IBIS models define the
behavior of input or output buffers through the use of voltage-current
(V-I) and voltage-time (V-t) data tables. HSPICE models, often referred to
as HSPICE decks, include complete physical descriptions of the
transistors and parasitic capacitances that make up an I/O buffer along
with all the parameter settings needed to run a simulation. The HSPICE
decks generated by the Quartus II software are preconfigured with the
I/O standard, voltage, and pin loading settings for each pin in your
design.

The choice of I/O model type is based on a number of factors. Table 11–1
provides a more detailed comparison of the two I/O model types as well
as information and examples of situations about where and when they
might be used.

f For more information about IBIS files created by the Quartus II IBIS
Writer and IBIS files in general, as well as links to websites with detailed
information, refer to AN 283: Simulating Altera Devices with IBIS Models.
For more information about HSPICE model files created by the
Quartus II HSPICE Writer, refer to AN 424: I/O Simulations Using
HSPICE.

Table 11–1. IBIS and HSPICE Model Comparison

Feature IBIS Model HSPICE Model

I/O Buffer
Description

Behavioral—I/O buffers are described by
voltage-current and voltage-time tables in
typical, minimum, and maximum supply
voltage cases.

Physical—I/O buffers and all components in a
circuit are described by their physical
properties, such as transistor characteristics
and parasitic capacitances, as well as their
connections to one another.

Model
Customization

Simple and limited—The model
completely describes the I/O buffer and
does not usually need to be customized.

Fully customizable—Unless connected to an
arbitrary board description, the description of
the board trace model must be customized in
the model file. All parameters of the simulation
are also adjustable.

Simulation Set Up
and Run Time

Fast—Simulations run quickly once set up
correctly.

Slow—Simulations take time to set up and take
longer to run and complete.

Simulation
Accuracy

Good—For most simulations, accuracy is
sufficient to make useful adjustments to the
FPGA and/or board design to improve
signal integrity.

Excellent—Simulations are highly accurate,
making HSPICE simulation almost a
requirement for any high-speed design where
signal integrity and timing margins are tight.

Third-Party Tool
Support

Excellent—Almost all third-party board
simulation tools support IBIS.

Good—Most third-party tools that support
SPICE support HSPICE. However, Synopsys
HSPICE is required for simulations of Altera’s
encrypted HSPICE models.

11–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

FPGA to Board
Signal Integrity
Analysis Flow

Board signal integrity analysis can take place at any point in the FPGA
design process and is often performed both before and after board layout.
If it is performed early in the process as part of a pre-PCB layout analysis,
the models used for simulations can be more generic and can be changed
as much as needed to see how adjustments improve timing or signal
integrity and help with the design and routing of the PCB. Simulations
and the resulting changes made at this stage allow you to analyze “what
if” scenarios to better plan and implement your design. To assist with
early board signal integrity analysis, you can download generic IBIS
model files for each device family from the Altera website. If board signal
integrity analysis is performed late in the design, it is typically used for a
post-layout verification. The inputs and outputs of the FPGA are defined,
and required board routing topologies and constraints are known.
Simulations can help you find problems that may still exist in the FPGA
or board design before fabrication and assembly. In either case, a simple
process flow illustrates how to create accurate IBIS and HSPICE models
from a design in the Quartus II software and transfer them to third-party
simulation tools. Figure 11–3 shows this flow.

1 This chapter is organized around the type of model, IBIS or
HSPICE, that you use for your simulations. Once you
understand the steps in the analysis flow, refer to the section of
this chapter that corresponds to the model type you are using.

Altera Corporation 11–9
October 2007 Preliminary

FPGA to Board Signal Integrity Analysis Flow

Figure 11–3. Third-Party Board Signal Integrity Analysis Flow

Make I/O Assignments

Create a Quartus II Project

Continue Design with
Existing I/O Assignments

Enable IBIS or HSPICE
File Generation

Customize Files

Yes

No

Using
Stratix II?

Configure Board Trace
Models (Optional)

Compile and Generate
Files (EDA Netlist Writer)

IBIS or
HSPICE?

Apply Models to Buffers
in Board Model Simulations

Run Simulations as
Defined in HSPICE Deck

Run Simulation

Results
OK?

No
Make Adjustments to

Models or Simulation Parameters
and Simulate Again

Yes

IBIS HSPICE

Changes
to FPGA I/O

required?

Yes

No

11–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Create I/O and Board Trace Model Assignments

If your design uses a Stratix II device, you can configure a board trace
model for output signals or for bidirectional signals in output mode and
automatically transfer its description to HSPICE decks generated by the
HSPICE Writer. This helps improve simulation accuracy. To do this, turn
on the Enable Advanced I/O Timing option in the TimeQuest Timing
Analyzer page in the Settings dialog box and configure the board trace
model assignment settings for each I/O standard used in your design.
You can add series or parallel termination, specify the transmission line
length, and set the value of the far-end capacitive load. You can configure
these parameters in either the Board Trace Model view in the Pin Planner
or by clicking Device and Pin Options in the Device page of the Settings
dialog box.

f For information about how to use Advanced I/O Timing and configure
board trace models for the I/O standards used in your design, refer to
the I/O Management chapter in volume 2 of the Quartus II Handbook.

The Quartus II software can generate IBIS models and HSPICE decks
without the need to configure a board trace model with the Advanced
I/O Timing option. In fact, IBIS models ignore any board trace model
settings other than the far-end capacitive load. If any load value is set
other than the default, the delay given by IBIS models generated by the
IBIS Writer cannot be used to account correctly for the double counting
problem. The load value mismatch between the IBIS delay and the tCO
measurement of the Quartus II software prevents the delays from being
safely added together. Warning messages displayed when the EDA
Netlist Writer runs indicate when this mismatch occurs.

Enable Output File Generation

IBIS and HSPICE model files are not generated by the Quartus II software
by default. To generate or update the files automatically during each
project compilation, select the type of file to generate and a location
where to save the file in the project settings. These settings can also be
specified with commands in a Tcl script.

Generate the Output Files

The IBIS and HSPICE Writers in the Quartus II software are run as part of
the EDA Netlist Writer during normal project compilation. If either writer
is turned on in the project settings, IBIS or HSPICE files are created and
stored in the specified location. For IBIS, a single file is generated
containing information about all assigned pins, while HSPICE file
generation creates separate files for each assigned pin. You can run the
EDA Netlist Writer separately from a full compilation in the Quartus II

Altera Corporation 11–11
October 2007 Preliminary

FPGA to Board Signal Integrity Analysis Flow

software or at the command line. However, you must fully compile the
project or perform I/O Assignment Analysis at least once for the IBIS and
HSPICE Writers to have information about the I/O assignments and
settings in the design.

Customize the Output Files

The files generated by either the IBIS or HSPICE Writer are text files that
you can edit and customize easily for design or experimentation
purposes. IBIS files downloaded from the Altera website must be
customized with the correct RLC values for the specific device package
you have selected for your design. IBIS files generated by the IBIS Writer
do not require this customization since they are automatically configured
with the RLC values for your selected device. HSPICE decks require
modification to include a detailed description of your board. With Enable
Advanced I/O Timing turned on and a board trace model defined in the
Quartus II software, generated HSPICE decks automatically include that
model’s parameters. However, it is recommended that you replace that
model with a more detailed model that more accurately describes your
board design. A default simulation included in the generated HSPICE
decks measures delay between the FPGA and the far-end device. You can
make additions or adjustments to the default simulation in the generated
files to change the parameters of the default simulation or to perform
additional measurements.

Set Up and Run Simulations in Third-Party Tools

Once you have generated the files, you can use them to perform
simulations in your selected simulation tool. With IBIS models, you can
apply them to input, output, or bidirectional buffer entities and quickly
set up and run simulations. For HSPICE decks, the simulation parameters
are included in the files. Open the files in Synopsys HSPICE and run
simulations for each pin as needed. With HSPICE decks generated from
the HSPICE Writer, the double counting problem is accounted for,
ensuring that your simulations are accurate. Simulations that involve IBIS
models created with anything other than the default loading settings in
the Quartus II software must take the change in the size of the load
between the IBIS delay and the Quartus II tCO measurement into account.
Warning messages during compilation alert you to this change.

11–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Interpret Simulation Results

After running your simulations, you may find timing or signal integrity
issues with your high-speed signals. Based on your simulation results,
you can make adjustments to I/O assignment settings in the Quartus II
software, such as drive strength or I/O standard, or make changes to
your board routing or topology. After regenerating models in the
Quartus II software based on the changes you have made, rerun the
simulations to see if your changes corrected the problem.

Simulation with
IBIS Models

IBIS models provide a way to run accurate signal integrity simulations
quickly. IBIS models describe the behavior of I/O buffers with voltage-
current and voltage-time data curves. Because of their behavioral nature,
IBIS models do not have to include any information about the internal
circuit design of the I/O buffer. Most component manufacturers,
including Altera, provide IBIS models for free download and use in
signal integrity analysis simulation tools. You can download generic
device family IBIS models from the Altera website for early design
simulation or use the IBIS Writer to create custom IBIS models for your
existing design.

Elements of an IBIS Model

An IBIS model file (.ibs) is a text file that describes the behavior of an I/O
buffer across minimum, typical, and maximum temperature and voltage
ranges with a specified test load. The tables and values specified in the
IBIS file describe five basic elements of the I/O buffer. Figure 11–4
highlights each of these elements in the I/O buffer model.

Figure 11–4. Five Basic Elements in IBIS Models

Rise
Fall L_pkg R_pkg

C_comp C_pkg

1

2

4

3

5

Altera Corporation 11–13
October 2007 Preliminary

Simulation with IBIS Models

The following elements correspond to each numbered block in
Figure 11–4.

1. Pulldown—A voltage-current table describes the current when the
buffer is driven low based on a pull-down voltage range of -VCC to
2VCC.

2. Pullup—A voltage-current table describes the current when the
buffer is driven high based on a pull-up voltage range of -VCC to
VCC.

3. Ground and Power Clamps—Voltage-current tables describe the
current when clamping diodes for electrostatic discharge (ESD) are
present. The ground clamp voltage range is -VCC to VCC, and the
power clamp voltage range is -VCC to ground.

4. Ramp and Rising/Falling Waveform—A voltage-time (dv/dt) ratio
describes the rise and fall time of the buffer during a logic transition.
Optional rising and falling waveform tables can be added to more
accurately describe the characteristics of the rising and falling
transitions.

5. Total Output Capacitance and Package RLC—The total output
capacitance includes the parasitic capacitances of the output pad,
clamp diodes (if present), and input transistors. The package RLC is
device package-specific and defines the resistance, inductance, and
capacitance of the bond wire and pin of the I/O.

f For more information about IBIS models and Altera-specific features,
including links to the official IBIS specification, refer to AN 283:
Simulating Altera Devices with IBIS Models.

Creating Accurate IBIS Models

There are two ways to obtain Altera device IBIS files for your board-level
signal integrity simulations. You can download generic IBIS models from
the Altera website or you can use the IBIS writer in the Quartus II
software to create design-specific models.

Download IBIS Models

Altera provides IBIS models for almost all FPGA and FPGA configuration
devices. Check the Download Center at www.altera.com to see if models
for your selected device are available. You can use the IBIS models from
the website to perform early simulations of the I/O buffers you expect to
use in your design as part of a pre-layout analysis.

11–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Downloaded IBIS models have the RLC package values set to one
particular device in each device family. To accurately simulate your
design with the model, you must adjust the RLC values in the IBIS model
file to match the values for your particular device package by performing
the following steps:

1. Download and expand the ZIP file (.zip) of the IBIS model for the
device family you are using for your design. The .zip file contains
the IBIS model file along with an IBIS model user guide and a model
data correlation report.

2. Download the Package RLC Values spreadsheet for the same device
family.

3. Open the spreadsheet and locate the row that describes the device
package used in your design.

4. Copy the minimum, maximum, and typical values of resistance,
inductance, and capacitance for your device package from the
package’s I/O row.

5. Open the IBIS model file in a text editor and locate the [Package]
section of the file.

6. Overwrite the listed values copied with the values from the
spreadsheet and save the file.

The IBIS model file is now customized for your device package and can
be used for any simulation. IBIS models downloaded and used for
simulations in this manner are generic. They describe only a certain set of
models listed for each device on the IBIS model Download Center page
on the Altera website. To create customized models for your design, use
the IBIS Writer as described in the next section.

Generate Custom IBIS Models with the IBIS Writer

If you have started your FPGA design and have created custom I/O
assignments, such as drive strength settings or the enabling of clamping
diodes for ESD protection, you can use the Quartus II IBIS Writer to
create custom IBIS models to more accurately reflect your assignments.
IBIS models created with the IBIS Writer take I/O assignment settings
into account.

If the Enable Advanced I/O Timing option is turned off, the generated
IBIS model files are based on the load value setting for each I/O standard
on the Capacitive Loading tab of the Device and Pin Options dialog box
in the Device page of the Settings dialog box. With the Enable Advanced

Altera Corporation 11–15
October 2007 Preliminary

Simulation with IBIS Models

I/O Timing option turned on, IBIS models use an effective capacitive load
based on settings found in the board trace model on the Board Trace
Model tab in the Device and Pin Options dialog box or the Board Trace
Model view in the Pin Planner. The effective capacitive load is based on
the sum of the Near capacitance, Transmission line distributed
capacitance, and the Far capacitance settings in the board trace model.
Resistances and transmission line inductance values are ignored.

1 If any changes are made from the default load settings, the delay
in the generated IBIS model cannot safely be added to the
Quartus II tCO measurement to account for the double counting
problem. This is because the load values between the two delay
measurements do not match. When this happens, the Quartus II
software displays warning messages when the EDA Netlist
Writer runs to remind you about the load value mismatch.

When the IBIS Writer is enabled, it generates a custom IBIS model file
whenever the EDA Netlist Writer is run in the Quartus II software. To
turn on the IBIS Writer and create custom IBIS model files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click the icon to expand EDA Tool Settings
and select Board-Level.

3. Under Board-Level Signal Integrity Analysis Format, in the
Format list, select IBIS (Figure 11–5).

11–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–5. Enabling IBIS Model Generation in the Settings Dialog Box

4. IBIS models are stored in the <project directory>/board/ibis directory
by default. To change the directory, click the browse button next to
the Output directory box, and browse to the desired location.

5. Click OK to close the Settings dialog box.

6. If the project has not been compiled, run a full compilation to create
a netlist and establish I/O assignments. On the Processing menu,
click Start Compilation. The IBIS model file, named
<project name>.ibs, is saved in the specified location.

7. If the project has been compiled before, you only need to run the
EDA Netlist Writer to create or update the IBIS model file. On the
Processing menu, point to Start and click Start EDA Netlist Writer.
The IBIS model file is created or updated in the specified location.

Altera Corporation 11–17
October 2007 Preliminary

Simulation with IBIS Models

1 You can save compilation time when creating the IBIS model file
the first time for early design simulation by performing only
required steps of the compilation process instead of a full
compilation of your project. Run Analysis and Synthesis and
I/O Assignment Analysis before creating the IBIS model file
with the EDA Netlist Writer.

f For more information about IBIS model generation, refer to the AN 283:
Simulating Altera Devices with IBIS Models application note or the
Quartus II Help.

Design Simulation Using the Mentor Graphics HyperLynx
Software

You must integrate IBIS models downloaded from the Altera website or
created with the Quartus II IBIS Writer into board design simulations to
accurately model timing and signal integrity. The HyperLynx software
from Mentor Graphics is one of the most popular tools for design
simulation. HyperLynx software makes it easy to integrate IBIS models
into simulations.

The HyperLynx software is a PCB analysis and simulation tool for high-
speed designs, consisting of two products, LineSim and BoardSim.
LineSim is an early simulation tool. Before any board routing takes place,
LineSim is used to simulate “what if” scenarios to assist in creating
routing rules and defining board parameters. BoardSim is a post-layout
tool used to analyze existing board routing. Specific nets are selected
from a board layout file and simulated in a manner similar to LineSim.
With board and routing parameters, and surrounding signal routing
known, highly accurate simulations of the final fabricated PCB are
possible. This section focuses on LineSim. Since the process of creating
and running simulations is very similar for both LineSim and BoardSim,
the details of IBIS model use in LineSim applies to simulations in
BoardSim.

Simulations in LineSim are configured using a schematic GUI to create
connections and topologies between I/O buffers, route trace segments,
and termination components. LineSim provides two methods, cell-based
and free-form, for creating routing schematics. Cell-based schematics are
based on fixed cells consisting of typical placements of buffers, trace
impedances, and components. Parts of the grid-based cells are filled with
the desired objects to create the topology. A topology in a cell-based
schematic is limited by the available connections within and between the
cells.

11–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

A more robust and expandable way to create a circuit schematic for
simulation is to use the free-form schematic format in LineSim as shown
in Figure 11–6. The free-form schematic format makes it easy to place
parts into any configuration and edit them as needed. This section
describes the use of IBIS models with free-form schematics, but the
process is nearly identical for cell-based schematics.

Figure 11–6. HyperLynx LineSim Free-Form Schematic Editor

Altera Corporation 11–19
October 2007 Preliminary

Simulation with IBIS Models

When you use HyperLynx software to perform simulations, you typically
perform the following steps:

1. Create a new LineSim free-form schematic document and set up the
board stackup for your PCB using the Stackup Editor. In this editor,
you specify board layer properties including layer thickness,
dielectric constant, and trace width.

2. Create a circuit schematic for the net you want to simulate. The
schematic represents all the parts of the routed net including source
and destination I/O buffers, termination components, transmission
line segments, and representations of impedance discontinuities
such as vias or connectors.

3. Assign IBIS models to the source and destination I/O buffers to
represent their behavior during operation.

4. Attach probes from the digital oscilloscope that is built in to
LineSim to points in the circuit that you want to monitor during
simulation. Typically, at least one probe is attached to the pin of a
destination I/O buffer. For differential signals, you can attach a
differential probe to both the positive and negative pins at the
destination.

5. Configure and run the simulation. You can simulate a rising or
falling edge and test the circuit under different drive strength
conditions.

6. Interpret the results and make adjustments. Based on the
waveforms captured in the digital oscilloscope, you can adjust
anything in the circuit schematic to correct any signal integrity
issues, such as overshoot or ringing. If necessary, you can make I/O
assignment changes in the Quartus II software, regenerate the IBIS
file with the IBIS Writer, and apply the updated IBIS model to the
buffers in your HyperLynx software schematic.

7. Repeat the simulations and circuit adjustments until you are
satisfied with the results. Once the operation of the net meets your
design requirements, implement changes to your I/O assignments
in the Quartus II software and/or adjust your board routing
constraints, component values, and placement to match the
simulation.

f For more information about HyperLynx software, including schematic
creation, simulation setup, model usage, product support, licensing, and
training, refer to HyperLynx Help or the Mentor Graphics website at
www.mentor.com.

11–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Configuring LineSim to Use Altera IBIS Models

You must configure LineSim to find and use the downloaded or
generated IBIS models for your design. To do this, you add the location
of your IBIS model file(s) to the LineSim Model Library search path. Then
you apply a selected model to a buffer in your schematic.

To add the Quartus II software’s default IBIS model location, <project
directory>/board/ibis, to the HyperLynx LineSim model library search
path, perform the following steps in LineSim:

1. From the Options menu, click Directories. The Set Directories
dialog box appears (Figure 11–7). The Model-library file path(s) list
displays the order in which LineSim searches file directories for
model files.

Figure 11–7. LineSim Set Directories Dialog Box

2. Click Edit. A dialog box appears where you can add directories and
adjust the order in which LineSim searches them (Figure 11–8).

Altera Corporation 11–21
October 2007 Preliminary

Simulation with IBIS Models

Figure 11–8. LineSim Select Directories Dialog Box

3. Click Add and browse to the default IBIS model location, <project
directory>/board/ibis. Click OK.

4. Click Up to move the IBIS model directory to the top of the list, and
click Generate Model Index to update LineSim’s model database
with the models found in the added directory.

5. Click OK. The IBIS model directory for your project is added to the
top of the Model-library file path(s) list. Click OK to close the Set
Directories dialog box.

Integrating Altera IBIS Models into LineSim Simulations

Once the location for IBIS files is set, you can assign the downloaded or
generated IBIS models to the buffers in your schematic. To do this,
perform the following steps:

1. Double-click a buffer symbol in your schematic to open the Assign
Models dialog box (Figure 11–9). You can also click Assign Models
from the buffer symbol’s right-click menu.

11–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–9. LineSim Assign Model Dialog Box

2. The pin of the buffer symbol you selected should be highlighted in
the Pins list. If you want to assign a model to a different symbol or
pin, select it from the list.

3. Click Select. The Select IC Model dialog box appears
(Figure 11–10).

Altera Corporation 11–23
October 2007 Preliminary

Simulation with IBIS Models

Figure 11–10. LineSim Select IC Model Dialog Box

4. To filter the list of available libraries to display only IBIS models,
select .IBS. Scroll through the Libraries list, and click the name of
the library for your design. By default, this is <project name>.ibs.

5. The device for your design should be selected as the only item in the
Devices list. If not, select your device from the list.

6. From the Signal list, select the name of the signal you want to
simulate. You can also choose to select by device pin number.

7. Click OK. The Assign Models dialog box displays the selected IBIS
model file and signal.

8. If applicable to the signal you chose, adjust the buffer settings as
needed for the simulation.

9. Select and configure other buffer pins from the Pins list in the same
manner. Click OK when all I/O models are assigned.

11–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running and Interpreting LineSim Simulations

You can now run any desired simulations and make adjustments to the
I/O assignments or simulation parameters as needed. For example, if
after running a simulation you see too much overshoot in the simulated
signal at the destination buffer as seen in Figure 11–11, you could adjust
the drive strength I/O assignment setting to a lower value. Regenerate
the IBIS model file, and run the simulation again to verify if the change
fixed the problem.

Figure 11–11. Example of Overshoot in HyperLynx with IBIS Models

If you see a discontinuity or other anomalies at the destination, such as
slow rise and fall times as shown in Figure 11–12, adjust the termination
scheme or termination component values. After making these changes,
rerun the simulation to check whether your adjustments solved the
problem. In this case, it is not necessary to regenerate the IBIS model file.

Altera Corporation 11–25
October 2007 Preliminary

Simulation with HSPICE Models

Figure 11–12. Example of Signal Integrity Anomaly in HyperLynx with IBIS
Models

f For more information about board-level signal integrity and to learn
about ways to improve it with simple changes to your design, visit the
Altera Signal Integrity Center at www.altera.com.

Simulation with
HSPICE Models

HSPICE decks are used to perform highly accurate simulations by
precisely describing the physical properties of all aspects of a circuit.
HSPICE decks describe I/O buffers, board components, and all the
connections between them, as well as defining the parameters of the
simulation to be run. By their nature, HSPICE decks are highly
customizable and require a detailed description of the circuit under
simulation to be effective. For Stratix II devices, when Enable Advanced
I/O Timing is turned on, the HSPICE decks generated by the Quartus II
HSPICE Writer automatically include board components and topology
defined in the Board Trace Model that you configure in the Pin Planner
or in the Board Trace Model tab of the Device and Pin Options dialog
box. All HSPICE decks generated by the Quartus II software include
compensation for the double count problem (for more information about
the double count problem, refer to “The Double Counting Problem for
FPGA Output Timing” on page 11–4). You can simulate with the default
simulation parameters built in to the generated HSPICE decks or make
adjustments to customize your simulation.

11–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more detailed information about the HSPICE model files created by
the Quartus II HSPICE Writer, refer to AN 424: I/O Simulations Using
HSPICE.

Supported Devices and Signaling

The HSPICE Writer in the Quartus II software version 6.1 supports the
devices and signaling defined in Table 11–2. Only Stratix II devices
support the creation of a board trace model in the Quartus II software for
automatic inclusion in an HSPICE deck. Other devices require the board
description to be manually added to the HSPICE file.

If you are using a Stratix II device for your design, you can turn on Enable
Advanced I/O Timing and configure the board trace model for each I/O
standard used in your design. The HSPICE files will include the board
trace description you create in the Board Trace Model view in the Pin
Planner or the Board Trace Model tab in Device and Pin Options dialog
box.

f For more information about Advanced I/O Timing and configuring
board trace models for the I/O standards in your design, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Creating Accurate HSPICE Models

The HSPICE Writer must be turned on before HSPICE model files are
created. HSPICE models are not generated by default in the Quartus II
software. When enabled, the HSPICE Writer operates as part of the EDA
Netlist Writer in the compilation process. When a project is fully
compiled or the EDA Netlist Writer is run, the HSPICE Writer generates
or updates the HSPICE model files.

Table 11–2. HSPICE Writer Device and Signaling Support

Device Input Output Single-Ended Differential

Automatic
Board Trace

Model
Description

Stratix® II v v v v v
Stratix II GX
(non-HSSI signals)

v v v v —

HardCopy® II v v v v —

Altera Corporation 11–27
October 2007 Preliminary

Simulation with HSPICE Models

Creating HSPICE Model Files Using the Quartus II GUI

To turn on the HSPICE Writer and create HSPICE deck files for each pin
in your design, perform the following steps:

1. On the Assignments menu, click Settings.

2. In the Category list, click the icon to expand EDA Tool Settings
and select Board-Level.

3. Under Board-Level Signal Integrity Analysis Format, in the
Format list, select HSPICE (Figure 11–13).

Figure 11–13. Enabling HSPICE Deck and Model Generation in the Settings Dialog Box

11–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. HSPICE decks are stored in the <project directory>/board/hspice
directory by default. To change the directory, click the browse
button next to the Output directory box, and browse to the desired
location.

5. Click OK to close the Settings dialog box.

6. If the project has not been compiled, run a full compilation to create
a netlist and establish I/O assignments. On the Processing menu,
click Start Compilation. HSPICE decks for each assigned pin, along
with required model library subdirectories, are saved in the
specified location.

7. If the project has been compiled, you only need to run the EDA
Netlist Writer to create or update the HSPICE deck and model files.
On the Processing menu, point to Start and click Start EDA Netlist
Writer. The HSPICE decks and models are created or updated in the
specified location.

1 You can save compilation time when creating HSPICE decks the
first time for early design simulation by performing only
required steps of the compilation process instead of a full
compilation of your project. Run Analysis and Synthesis and
I/O Assignment Analysis before creating the HSPICE deck files
with the EDA Netlist Writer.

Preconfigured HSPICE simulation files generated by the HSPICE Writer
are named <device pin #>_<signal name>_<in|out>.sp. Both an “in” and
an “out” file are generated for bidirectional pins. HSPICE files are text
files and can be edited with any ASCII text editor.

Two folders, named lib and cir, are also generated. These folders contain
the encrypted I/O buffer descriptions and other information needed for
running simulations. If you want to move the HSPICE model files to a
different location, be sure to move these folders as well. The HSPICE
model files include direct references to files in the lib and cir folders. If
they are not in the same location, your HSPICE simulations will not run.

Creating HSPICE Model Files Using Tcl Scripting and the Command Line

If you use a script-based flow to compile your project, you can turn on the
creation of HSPICE model files by including the following commands in
your Tcl script (.tcl file):

set_global_assignment -name EDA_BOARD_DESIGN_SIGNAL_INTEGRITY_TOOL "HSPICE
(Signal Integrity)"
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT HSPICE -section_id
eda_board_design_signal_integrity

Altera Corporation 11–29
October 2007 Preliminary

Simulation with HSPICE Models

set_global_assignment -name EDA_NETLIST_WRITER_OUTPUT_DIR <output_directory> -
section_id eda_board_design_signal_integrity

The <output directory> option specifies the location where HSPICE model
files are saved. By default, the following directory is used:

<project directory>/board/hspice

You can run the HSPICE Writer at a command prompt by running the
EDA Netlist Writer with the following command:

quartus_eda.exe <project name> --board_signal_integrity=on --format=HSPICE --
output_directory=<output directory>

The <project name> should match the name of the Quartus II Settings File
(.qsf) for your project.

Customizing HSPICE Model Files

HSPICE models generated by the HSPICE Writer can be used for
simulation as generated. A default board description is included, and a
default simulation is set up to measure rise and fall delays for both input
and output simulations which compensates for the double counting
problem. However, Altera recommends that you customize the board
description to more accurately represent your routing and termination
scheme. To do this, open the generated HSPICE model files for all pins
you want to simulate, and locate the following commented section:

*///
* I/O Board Trace and Termination Description
* - Replace this with your board trace and termination description
*///

Replace the board description in this section with a description of your
board or the board topology you would like to simulate in each HSPICE
file.

For input simulations, you must include a description of the device that
provides the stimulus for the signal. Locate the following comments that
indicate where to place the stimulus device description in the file:

*///
* Sample source stimulus placeholder
* - Replace this with your I/O driver model
*///

f For more information about configuring and customizing HSPICE
model files for simulation, refer to the HSPICE manual.

11–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Design Simulation Using Synopsys HSPICE

Synopsys HSPICE is an industry standard SPICE simulation tool; it is
required for running SPICE simulation with Altera’s encrypted HSPICE
models. While you can use HSPICE model files in other tools, such as
Mentor Graphics HyperLynx software, Synopsys HSPICE is still required
to decrypt the models. You can use Synopsys HSPICE along with the
included Avanwaves viewer to run simulations and view the results as
waveforms.

f For more information about Synopsys HSPICE, including licensing,
installation, usage, support, and training, refer to the HSPICE manual or
the Synopsys website at www.synopsys.com.

Running HSPICE Simulations

Since simulation parameters are configured directly in the HSPICE model
files, running a simulation requires only that you open an HSPICE file in
the HSPICE User Interface (hspui) and start the simulation. The hspui
window is shown in Figure 11–14.

Figure 11–14. HSPICE hspui Window

Click Open and browse to the location of the HSPICE model files
generated by the Quartus II HSPICE Writer. The default location for
HSPICE model files is <project directory>/board/hspice. Select the .sp file,
generated by the HSPICE Writer, for the signal you want to simulate and
click OK.

Click Simulate to run the simulation. The status of the simulation is
displayed in the window and saved in a .lis file with the same name as
the .sp file when the simulation is complete. Check the .lis file if an error
occurs during the simulation requiring a change in the .sp file to fix.

Altera Corporation 11–31
October 2007 Preliminary

Simulation with HSPICE Models

Viewing and Interpreting Tabular Simulation Results

The .lis file stores the collected simulation data in tabular form. The
default simulation configured by the HSPICE Writer produces delay
measurements for rising and falling transitions on both input and output
simulations. These measurements are found in the .lis file and named
tpd_rise and tpd_fall. For output simulations, these values are
already adjusted for the double count. Add either of these measurements
to the Quartus II tCO delay to determine the complete delay from the
FPGA logic to the load pin. For input simulations, add either of these
measurements to the Quartus II tSU and tH delay values to calculate the
complete delay from the far end stimulus to the FPGA logic. Other values
found in the .lis file, such as tpd_uncomp_rise, tpd_uncomp_fall,
t_dblcnt_rise, and t_dblcnt_fall, are parts of the double count
compensation calculation. These values are not needed for further
analysis.

Viewing Graphical Simulation Results

You can quickly view the results of the simulation as a graphical
waveform display using the Avanwaves viewer included with HSPICE.
With the default simulation configured by the HSPICE Writer, you can
view the simulated waveforms at both the source and destination in input
and output simulations.

To see the waveforms for the simulation, in the HSPICE hspui window,
click Avanwaves. The Avanwaves viewer opens and displays the Results
Browser as shown in Figure 11–15.

11–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–15. HSPICE Avanwaves Results Browser

The Results Browser lets you quickly select which waveform to view in
the main viewing window. If multiple simulations are run on the same
signal, the list at the top of the Results Browser displays the results of each
simulation. Click the simulation description to select which simulation to
view. By default, the descriptions are derived from the first line of the
HSPICE file, so the description may appear as a line of asterisks.

Select the type of waveform to view. With the default simulation, select
Voltages from the Types list to see the source and destination
waveforms. On the Curves list, double-click the waveform you want to
view. The waveform appears in the main viewing window. You can
zoom in and out and adjust the view as desired (Figure 11–16).

Altera Corporation 11–33
October 2007 Preliminary

Simulation with HSPICE Models

Figure 11–16. Avanwaves Waveform Viewer

Making Design Adjustments Based on HSPICE Simulations

Based on the results of your simulations, you can make adjustments to the
I/O assignments or simulation parameters if required. For example, after
you run a simulation and see overshoot or ringing in the simulated signal
at the destination buffer as shown in the example in Figure 11–17, you can
adjust the drive strength I/O assignment setting to a lower value.
Regenerate the HSPICE deck, and run the simulation again to verify that
the change fixed the problem.

11–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 11–17. Example of Overshoot in the Avanwaves Waveform Viewer

If there is a discontinuity or any other anomalies at the destination as
shown in the example in Figure 11–18, adjust the board description in the
Quartus II Board Trace Model (for Stratix II devices) or in the generated
HSPICE model files to change the termination scheme or adjust
termination component values. After making these changes, regenerate
the HSPICE files, if necessary, and rerun the simulation to verify whether
your adjustments solved the problem.

Altera Corporation 11–35
October 2007 Preliminary

Conclusion

Figure 11–18. Example of Signal Integrity Anomaly in the Avanwaves Waveform Viewer

f For more information about board-level signal integrity and to learn
about ways to improve it with simple changes to your FPGA design,
refer to the Altera Signal Integrity Center.

Conclusion As FPGA devices are used in more high-speed applications, it becomes
increasingly necessary to perform board-level signal integrity analysis
simulations. You must run such simulations to ensure good signal
integrity between the FPGA and any connected devices. The Quartus II
software helps to simplify this process with the ability to automatically
generate I/O buffer description models easily with the IBIS and HSPICE
Writers. IBIS models can be integrated into a third party signal integrity
analysis workflow using a tool such as Mentor Graphics HyperLynx
software, generating quick and accurate simulation results. HSPICE
decks include preconfigured simulations and only require descriptions of
board routing and stimulus models to create highly accurate simulation

11–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

results using Synopsys HSPICE. Either type of simulation helps prevent
unnecessary board spins, increasing your productivity and decreasing
your costs.

Referenced
Documents

This chapter references the following documents:

■ AN 283: Simulating Altera Devices with IBIS Models
■ AN 424: I/O Simulations Using HSPICE
■ I/O Management chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 11–3 shows the revision history for this chapter.

Table 11–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 11–36. —

May 2007
v7.1.0

Added Referenced Documents. —

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Initial Release —

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/an/an283.pdf
http://www.altera.com/literature/an/an424.pdf

Altera Corporation Section V–i
Preliminary

Section V. In-System
Design Debugging

Debugging today's FPGA designs can be a daunting task. As your
product requirements continue to increase in complexity, the time you
spend on design verification continues to rise. To get your product to
market as quickly as possible, you must minimize design verification
time. To help alleviate the time-to-market pressure, you need a set of
verification tools that are powerful, yet easy to use.

The Quartus® II software SignalTap® II Logic Analyzer and the
SignalProbe™ features analyze internal device nodes and I/O pins while
operating in-system and at system speeds. The SignalTap II Logic
Analyzer uses an embedded logic analyzer to route the signal data
through the JTAG port to either the SignalTap II Logic Analyzer or an
external logic analyzer or oscilloscope. The SignalProbe feature uses
incremental routing on unused device routing resources to route selected
signals to an external logic analyzer or oscilloscope. A third Quartus II
software feature, the Chip Editor, can be used in conjunction with the
SignalTap II and SignalProbe debugging tools to speed up design
verification and incrementally fix bugs uncovered during design
verification. This section explains how to use each of these features.

This section includes the following chapters:

■ Chapter 12, Quick Design Debugging Using SignalProbe
■ Chapter 13, Design Debugging Using the SignalTap II Embedded

Logic Analyzer
■ Chapter 14, In-System Debugging Using External Logic Analyzers
■ Chapter 15, In-System Updating of Memory and Constants
■ Chapter 16, Design Debugging Using In-System Sources and Probes

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section V–ii Altera Corporation
Preliminary

In-System Design Debugging Quartus II Handbook, Volume 3

Altera Corporation 12–1
October 2007

12. Quick Design Debugging
Using SignalProbe

Introduction Hardware verification can be a lengthy and expensive process. The
SignalProbe incremental routing feature helps reduce the hardware
verification process and time-to-market for
system-on-a-programmable-chip (SOPC) designs.

Easy access to internal device signals is important in design or
debugging. The SignalProbe feature makes design verification more
efficient by quickly routing internal signals to I/O pins without affecting
the design. Starting with a fully routed design, you can select and route
signals for debugging to either previously reserved or currently unused
I/O pins.

You can use the SignalProbe feature with the Stratix® series, Cyclone®
series, MAX® II, and APEX™ series device families.

This chapter is divided into two sections. If you are using the SignalProbe
feature to debug your Stratix series, Cyclone series, and MAX II device,
then refer to “Debugging Using the SignalProbe Feature” on page 12–4. If
you are using the SignalProbe feature to debug your APEX series device,
refer to “Using SignalProbe with the APEX Device Family” on
page 12–19.

QII53008-7.2.0

12–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

On-Chip
Debugging Tool
Comparison

The Quartus® II software provides a number of different ways to help
debug your FPGA design after programming the device. The
SignalTap® II Logic Analyzer, SignalProbe, and the Logic Analyzer
Interface (LAI) share some similar features, but each has advantages. In
some debugging situations, it can be difficult to decide which tool is best
to use or whether multiple tools are required. Table 12–1 compares
common debugging features between these tools and provides
suggestions for which is the best tool to use for a given feature.

Note that “v” indicates the suggested best tool for the feature, “—”
indicates that while the tool is available for that feature, that tool may not
give the best results, and “N/A” indicates that the feature is not
applicable for the selected tool.

Table 12–1. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 1 of 2)

Feature SignalProbe
Logic

Analyzer
Interface (LAI)

SignalTap II
Embedded
Analyzer

Description

Large Sample
Depth

N/A v — An external logic analyzer used with the
LAI has a bigger buffer to store more
captured data than the SignalTap II
Logic Analyzer. No data is captured or
stored with SignalProbe.

Ease in Debugging
Timing Issue

N/A v — An external logic analyzer used with the
LAI provides you with access to timing
mode, enabling you to debug combined
streams of data.

Minimal Effect
on Logic Design

v v(2) v (2) SignalProbe incrementally routes nodes to
pins, not affecting the design at all. The LAI
adds minimal logic to a design, requiring
fewer device resources. The SignalTap II
Logic Analyzer has little effect on the
design when it is set as a separate design
partition using incremental compilation.

Short Compile and
Recompile Time

v v (2) v (2) SignalProbe attaches incrementally routed
signals to previously reserved pins,
requiring very little recompilation time to
make changes to source signal selections.
The SignalTap II Logic Analyzer and the
LAI can take advantage of incremental
compilation to refit their own design
partitions to decrease recompilation time.

Altera Corporation 12–3
October 2007 Preliminary

On-Chip Debugging Tool Comparison

Triggering
Capability

N/A v — Although advanced triggering is available
in the SignalTap II Logic Analyzer, many
additional triggering options are only
available on an external logic analyzer
when used with the LAI.

I/O Usage — — v No additional output pins are required with
the SignalTap II Logic Analyzer. Both the
LAI and SignalProbe require I/O pin
assignments.

Acquisition
Speed

N/A — v The SignalTap II Logic Analyzer can
acquire data at speeds of over 200 MHz.
The same acquisition speeds are
obtainable with an external logic analyzer
used with the LAI, but signal integrity
issues may limit this.

No JTAG
Connection
Required

v — — An FPGA design with the SignalTap II
Logic Analyzer or the LAI requires an active
JTAG connection to a host running the
Quartus II software. SignalProbe does not
require a host for debugging purposes.

External
Equipment

— — v The SignalTap II Logic Analyzer logic is
completely internal to the programmed
FPGA device. No extra equipment is
required other than a JTAG connection
from a host running the Quartus II software
or the stand-alone SignalTap II software.
SignalProbe and the LAI require the use of
external debugging equipment, such as
multimeters, oscilloscopes, or logic
analyzers.

Notes to Table 12–1:
(1) v indicates the suggested best tool for the feature.

— indicates that while the tool is available for that feature, that tool may not give the best results.
N/A indicates that the feature is not applicable for the selected tool.

(2) When used with incremental compilation.

Table 12–1. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 2 of 2)

Feature SignalProbe
Logic

Analyzer
Interface (LAI)

SignalTap II
Embedded
Analyzer

Description

12–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Debugging
Using the
SignalProbe
Feature

The SignalProbe feature enables you to reserve available pins and route
internal signals to those reserved pins, while preserving the behavior of
your design. SignalProbe is an effective debugging tool providing
visibility into your FPGA.

1 This section describes the SignalProbe process for the Stratix
series, Cyclone series, and MAX II device families. Using
SignalProbe with APEX devices is described in “Using
SignalProbe with the APEX Device Family” on page 12–19.
APEX devices do not support post-fit netlist changes made as
engineering change orders (ECOs).

You can reserve pins for SignalProbe and assign I/O standards before or
after a full compilation. Each SignalProbe source to SignalProbe pin
connection is implemented as an ECO change that is applied to your
netlist after a full compilation.

To route the internal signals to the device’s reserved pins for SignalProbe,
perform the following tasks:

1. Reserve the SignalProbe Pins, described on page 12–4.

2. Perform a Full Compilation, described on page 12–6.

3. Assign a SignalProbe Source, described on page 12–6.

4. Add Registers to the Pipeline Path to SignalProbe Pin, described on
page 12–7.

5. Perform a SignalProbe Compilation, described on page 12–9.

6. Analyze the Results of the SignalProbe Compilation, described on
page 12–10.

7. Generate the Programming File, described on page 12–11.

Reserve the SignalProbe Pins

You can reserve SignalProbe pins before or after compiling your design.
Reserving SignalProbe pins before a compilation is optional. You can also
reserve any unused I/Os of the device for SignalProbe pins after
compilation. You can assign sources easily after reserving your
SignalProbe pins. The sources for SignalProbe pins are the internal nodes
and registers in the post-compilation netlist that you want to probe.

Altera Corporation 12–5
October 2007 Preliminary

Debugging Using the SignalProbe Feature

1 Although you can reserve SignalProbe pins using many features
within the Quartus II software, including the Pin Planner and
the Tcl interface, you should use the SignalProbe Pins dialog
box to create and edit your SignalProbe pins.

To reserve an available package pin as a SignalProbe pin using the
SignalProbe Pins dialog box, perform the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears (Figure 12–1). The SignalProbe pin name and
I/O standard appear as the only fields that are editable if a place
and route, or fit, has not been performed.

Figure 12–1. Reserving a SignalProbe Pin in the SignalProbe Pins Dialog Box

2. In the Current and potential SignalProbe pins list, click on a pin
from the Number column and type your SignalProbe pin name into
the Pin name box.

3. Select an I/O standard from the I/O standard drop-down list.

12–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. Click Add to add the new SignalProbe pin or Change if you are
editing a previously reserved pin for SignalProbe. (Figure 12–1
shows the dialog box editing a previously reserved pin; if you were
adding a new SignalProbe pin, the Add button appears instead of
the Change button.)

5. Click OK.

Perform a Full Compilation

You must complete a full compilation to generate an internal netlist
containing a list of internal nodes to probe to a SignalProbe outpin.

To perform a full compilation, on the processing menu, click Start
Compilation.

Assign a SignalProbe Source

A SignalProbe source can be any combinational node, register, or pin in
your post-compilation netlist. To find a SignalProbe source, use the
SignalProbe filter in the Node Finder to filter out all sources that cannot
be probed. You may not be able to find a particular internal node because
the node may be optimized away during synthesis, or the node cannot be
routed to the SignalProbe pin, as it is untappable. For example, internal
nodes and registers within the Gigabit transceivers can not be probed
because there are no physical routes to the pins available.

1 To probe virtual I/O pins generated in low-level partitions in an
incremental compilation flow, select the source of the logic that
feeds the Virtual Pin as your SignalProbe source pin.

To assign a SignalProbe source to your SignalProbe reserved pin, perform
the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears (Figure 12–1 on page 12–5).

2. If a SignalProbe reserved pin is shown, click on the pin in the
Current and potential SignalProbe pins list. Alternately, you can
click on an available pin number in the Current and potential
SignalProbe pins list and type a new SignalProbe pin name into the
Pin name box.

3. In the Source box, specify the source name. Click the browse button.
The Node Finder dialog box appears.

Altera Corporation 12–7
October 2007 Preliminary

Debugging Using the SignalProbe Feature

4. When you open the Node Finder dialog box from the SignalProbe
Pins dialog box, SignalProbe is selected by default in the Filter list.
Click List to show a set of nodes that can be probed in the Nodes
Found list.

5. Select your source node in the Nodes Found list and click the “>”
button. The selected node appears in the Selected Nodes list.

6. Click OK.

7. After a source is selected, the SignalProbe enable option is turned
on. Click Change or Add to accept the changes.

1 Because SignalProbe pins are implemented and routed as ECOs,
turning the SignalProbe enable option on or off is the same as
selecting Apply Selected Change or Restore Selected Change
in the Change Manager window. (If the Change Manager
window is not visible at the bottom of your screen, from the
View menu, point to Utility Windows and click Change
Manager.)

f For more information about the Change Manager for the Chip Planner
and Resource Property Editor, refer to the Engineering Change
Management with the Chip Planner chapter in volume 2 of the Quartus II
Handbook.

Add Registers to the Pipeline Path to SignalProbe Pin

You can specify the number of registers placed between a SignalProbe
source and a SignalProbe pin to synchronize the data with a clock and to
control the latency of the SignalProbe outputs. The SignalProbe feature
automatically inserts the number of registers specified into the
SignalProbe path.

Figure 12–2 shows a single register between the SignalProbe source
Reg_b_1 and SignalProbe SignalProbe_Output_2 output pin added
to synchronize the data between the two SignalProbe output pins.

1 When you add a register to a SignalProbe pin, the SignalProbe
compilation attempts to place the register to best fit timing
requirements. You can place SignalProbe registers near the
SignalProbe source to meet fMAX requirements, or you can place
the register near the I/O to meet tCO requirements.

12–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 12–2. Synchronizing SignalProbe Outputs with a SignalProbe Register

To pipeline an existing SignalProbe, perform the following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears.

2. Select a SignalProbe pin and in the Clock box, type the clock name
used to drive your registers, or click the browse button to use the
Node Finder to select your clock source.

3. In the Registers box, specify the number of registers you want to
add in between the SignalProbe source and the SignalProbe output.

4. Click Change.

5. Click OK.

1 In addition to the clock input for the pipeline registers, you can
also specify a reset signal pin for the pipeline registers. To
specify a reset pin for the pipeline registers, use the Tcl
command make_sp as described in “Scripting Support” on
page 12–17.

Reg_b_1 Reg_b_2

SignalProbe
Pipeline
Register

SignalProbe_Output_1

SignalProbe_Output_2

D Q

DFF

D Q

DFF

D Q

DFF

D Q

DFF

D Q

DFF
Reg_a_1 Reg_a_2

Logic

Logic

Logic

Logic

Altera Corporation 12–9
October 2007 Preliminary

Debugging Using the SignalProbe Feature

Perform a SignalProbe Compilation

Perform a SignalProbe compilation to route your SignalProbe pins. On
the Processing menu, point to Start and click Start SignalProbe
Compilation (Figure 12–3). A SignalProbe compilation saves and checks
all netlist changes without recompiling the other parts of the design, and
completes compilation in a fraction of the time of a full compilation. The
design’s current placement and routing are preserved.

Figure 12–3. Performing the SignalProbe Compilation

Begin SignalProbe
Compilation

12–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Analyze the Results of the SignalProbe Compilation

After a SignalProbe compilation, you can view the results in the
compilation report file. Each SignalProbe pin is displayed in the
SignalProbe Fitting Result page in the Fitter section of the Compilation
Report (Figure 12–4). To view the status of each SignalProbe pin in the
SignalProbe Pins dialog box, click SignalProbe Pins on the Tools menu.

Figure 12–4. SignalProbe Fitting Results Page in the Compilation Report Window

You can also view the status of each SignalProbe pin the Change Manager
window (Figure 12–5). (If the Change Manager window is not visible at
the bottom of your GUI, from the View menu, point to Utility Windows
and click Change Manager.)

Figure 12–5. Change Manager Window with SignalProbe Pins

Altera Corporation 12–11
October 2007 Preliminary

Debugging Using the SignalProbe Feature

1 For more information about how to use the Change Manager,
refer to the Engineering Change Management with the Chip Planner
chapter in volume 2 of the Quartus II Handbook.

To view the timing results of each successfully routed SignalProbe pin, on
the Processing menu, point to Start and click Start Timing Analysis.

Generate the Programming File

After a SignalProbe compilation, generate the new programming file
containing your successfully routed SignalProbe pins. To generate a
programming file, on the Processing menu, point to Start and click Start
Assembler.

SignalProbe ECO flows

Beginning with the Quartus II software version 6.0, SignalProbe pins are
implemented using the same flow as other post-compilation changes
made as ECOs. The following section describes SignalProbe ECO flows
with and without the Quartus II incremental compilation feature.

SignalProbe ECO Flow with Quartus II Incremental Compilation

Beginning with the Quartus II software version 6.1, the incremental
compilation feature is turned on by default. The top-level design is
automatically set to a design partition when the incremental compilation
feature is on. A design partition during incremental compilation can have
different netlist types. (Netlist types can be set to source HDL, post
synthesis, or post-fit.) The netlist type indicates whether that partition
should be resynthesized or refit during Quartus II incremental
compilation. Incremental compilation saves you time and preserves the
placement of unchanged partitions in your design if small changes must
be made to some partitions late in the design cycle.

f For more information about the Quartus II incremental compilation
feature, refer to the Quartus Incremental Compilation Feature for Hiearchical
and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

The behavior of SignalProbe pins during an incremental compilation
depends on the Netlist Type setting. If the top-level partition netlist type
is set to post-fit, SignalProbe ECOs are retained when you recompile the
design.

If some SignalProbe sources from lower-level partitions are set to a netlist
type other than post-fit, then during re-compilation the Quartus II fitter
uses the post-fit netlist type for those partitions as well, and a warning
message appears in the message window.

12–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

All of the partitions containing SignalProbe ECOs are linked together and
must use the post-fit netlist type. The same rule applies when your
top-level partition is set to post-synthesis and one of the lower-level
partitions’ netlist type is set to post-fit. When you recompile your design,
the Quartus II fitter uses the post-fit netlist for the top-level partition and
SignalProbe ECOs are retained.

The behavior is different in the case that your top-level partition netlist
type is set to post–synthesis and you have no other lower-level partitions
defined, or the lower-level partition netlist types are also set to
post-synthesis. If you create SignalProbe ECOs and re-compile the
design, your SignalProbe ECOs are not retained and a warning message
appears in the messages window. The warning indicates that ECO
modifications are discarded; however, all of the ECO information is
retained in the Change Manager. In this case, you can apply SignalProbe
ECOs from the Change Manager and perform the Check and Save All
Netlist Changes step as described in “SignalProbe ECO Flow without
Quartus Incremental Compilation” on page 12–12.

SignalProbe ECO Flow without Quartus Incremental Compilation

If you do not use the Quartus II incremental compilation feature and you
implement SignalProbe pins after the initial compilation of your design,
then SignalProbe ECOs are not retained during recompilation. However,
all of the SignalProbe ECOs remain in the Change Manager.

To apply a SignalProbe ECO, right-click the Change Manager and select
Apply Selected Change (Figure 12–6). (If the Change Manager window
is not visible at the bottom of your screen, from the View menu, point to
Utility Windows and click Change Manager.)

Altera Corporation 12–13
October 2007 Preliminary

Debugging Using the SignalProbe Feature

Figure 12–6. Applying SignalProbe ECOs

Alternately, you can use the SignalProbe Pins dialog box to enable the
ECOs (Figure 12–7). This has the same effect as applying the SignalProbe
ECOs within the Change Manager.

Figure 12–7. Enabling ECOs in the SignalProbe Pins Dialog Box

After applying the selected SignalProbe ECO, you can either click Check
and Save All Netlist Changes from the menu within the Change
Manager (Figure 12–8) or from Processing menu, point to Start and click
Start Check and Save All Netlist Changes to perform the ECO
compilation.

SignalProbe Enable
Checkbox

12–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 12–8. Check and Save All Netlist Changes

Common Questions About the SignalProbe Feature

The following are answers to common questions about the SignalProbe
feature.

Why Did I Get the Following Error Message, “Error: There are No Enabled
SignalProbes to Process”?

This error message is generated when a SignalProbe compilation was
attempted with either no SignalProbe pins to route, or with all
SignalProbe pins disabled.

This may occur if you perform a SignalProbe compilation after a full
compilation. For example, when a full compilation is performed, all
SignalProbe pins are disabled. You can create or re-enable your
SignalProbe pins in the SignalProbe Pins dialog box.

How Can I Retain My SignalProbe ECOs during Re-compilation of My
Design?

To retain your existing ECOs during recompilation of your design, you
must use Quartus II incremental compilation. To learn more about the
flow, refer to “SignalProbe ECO Flow with Quartus II Incremental
Compilation” on page 12–11.

Why Did My SignalProbe Source Disappear in the Change Manager?

The SignalProbe source information for each SignalProbe is stored in the
project database (db directory). SignalProbe pins are post-compilation
changes to your netlist and are interpreted as ECOs. These changes are
stored in the project db and if the project database is removed, the
SignalProbe source information is lost and will not appear in the

Altera Corporation 12–15
October 2007 Preliminary

Debugging Using the SignalProbe Feature

SignalProbe Pins dialog box. To restore your SignalProbe pins after the
design compilation step, source the signalprobe_qsf.tcl script located in
your project directory.

You can restore your SignalProbe source information by typing the
following command from a command prompt:

quartus_cdb -t signalprobe_qsf.tcl

1 After the compilation with Quartus II software, you must close
your design project before typing the above command. Once the
command finishes, you can open your design project again and
the change manager shows the sources for SignalProbe pins.

What is an ECO and Where Can I Find More Information on ECO?

ECOs are late design cycle changes made to your design that do not alter
functionality and timing. For more information about ECO and using the
Change Manager, refer to the Engineering Change Management with the
Chip Planner chapter in volume 2 of the Quartus II Handbook.

How Do I Migrate My Previous SignalProbe Assignments in the
Quartus II Software Versions 5.1 and below to Versions 6.0 and Higher?

In earlier versions of the Quartus II software, SignalProbe pins were
stored in the Quartus II Settings File (.qsf). These assignments are
automatically converted into ECO changes when you open the
SignalProbe dialog box or when you start a SignalProbe compilation in
the Quartus II software versions 6.0 and higher.

For example, the SignalProbe source assignment from a Quartus II
Settings File is removed and added to the Change Manager as an ECO
after the SignalProbe dialog box is opened, or when you perform a
SignalProbe compilation.

Example 12–1. SignalProbe Assignments in the Quartus II Settings File
set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_SOURCE inst5[0] -to my_signalprobe_pi

12–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 12–2. SignalProbe Assignments in the Quartus II Settings File after Opening the SignalProbe Pins
Dialog Box
set_location_assignment PIN_C22 -to my_signalprobe_pin
set_instance_assignment -name RESERVE_PIN "AS SIGNALPROBE OUTPUT" -to my_signalprobe_pin
set_instance_assignment -name IO_STANDARD LVTTL -to my_signalprobe_pin
set_instance_assignment -name SIGNALPROBE_ENABLE ON -to my_signalprobe_pin

What are all the Changes for the SignalProbe Feature between the
Quartus II Software Version 5.1 and Earlier, and Version 6.0 and Later?

The following list of changes affect users of the SignalProbe feature in the
Quartus II software versions 5.1 and below with Stratix series, Cyclone
series, and MAX II device families.

■ In Quartus II software versions 5.1 and earlier, the SignalProbe Pins
dialog box was accessed on the Assignments menu. To access it with
the Quartus II software version 6.0 and later, on the Tools menu,
click SignalProbe Pins.

■ A full compilation is required before making SignalProbe
connections. However, you can still reserve pins before compilation
for later use by SignalProbe. You can reserve pins by creating a
SignalProbe in the SignalProbe dialog box without specifying a
source. This is the same behavior as in the Quartus II software
version 5.1.

■ To route the SignalProbe pins, you must perform a SignalProbe
compilation after a full compilation. The Automatically route
SignalProbe signals during compilations and Modify latest fitting
results during SignalProbe compilation options are no longer
supported.

■ After subsequent compiles, full or incremental, existing SignalProbe
pins are disabled and are not present in the post-compilation netlist.
To add them back, enable the SignalProbe pins and perform a
SignalProbe compilation.

■ SignalProbe pins are not controlled via assignments in the Quartus II
Settings File because they are now ECOs. Existing Quartus II Settings
Files automatically convert to ECOs when a SignalProbe compilation
is performed or when the SignalProbe dialog box is opened.

■ The Tcl interface for creating SignalProbe pins has improved and is
a part of the Chip Planner package ::quartus::chip_editor.
Refer to “Scripting Support” on page 12–17.

■ Previously, the quartus_fit –-signalprobe command was
used to perform a SignalProbe compilation. This is not supported in
the Quartus II software version 6.0 and later, and is replaced by the
improved Tcl interface and the check_netlist_and_save Tcl
command.

Altera Corporation 12–17
October 2007 Preliminary

Debugging Using the SignalProbe Feature

■ The SignalProbe timing report generated after a successful
SignalProbe compilation is not available in the Quartus II software
version 6.0 and later. You can view the timing results of your
SignalProbe pins in the SignalProbe Fitting Results, under the Fitter
report, or in the tCO results page of the Timing report.

■ You can not make SignalProbe pins in the Assignment Editor. Use
the SignalProbe Pins dialog box to make and edit your SignalProbe
pins.

Scripting Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II command-line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about all settings and constraints in the Quartus II software, refer to the
Quartus II Settings File Reference Manual. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Make a SignalProbe Pin

You can make a SignalProbe pin by typing the following command:

make_sp [-h | -help] [-long_help] [-clk <clk>] [-io_std <io_std>] \
-loc <loc> -pin_name <pin name> [-regs <regs>] [-reset <reset>] \
-src_name <source name> r

Delete a SignalProbe Pin

You can delete a SignalProbe pin by typing the following command:

delete_sp [-h | -help] [-long_help] -pin_name <pin name> r

12–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Enable a SignalProbe Pin

You can enable a SignalProbe pin by typing the following command:

enable_sp [-h | -help] [-long_help] -pin_name <pin name> r

Disable a SignalProbe Pin

You can disable a SignalProbe pin by typing the following command:

disable_sp [-h | -help] [-long_help] -pin_name <pin name> r

Perform a SignalProbe Compilation

You can perform a SignalProbe compilation by typing the following
command:

check_netlist_and_save r

Migrating Previous SignalProbe Pins to the Quartus II Software Versions
6.0 and Later

You can migrate previous SignalProbe pins to the Quartus II software
versions 6.0 and later by typing the following command:

convert_signal_probes r

Script Example

Example 12–3 is a script that creates a SignalProbe pin called sp1 and
connecting it to source node reg1 in a project that was already compiled.

Example 12–3. Creating a SignalProbe Pin Called sp1
Package require ::quartus::chip_editor
Project_open project
Read_netlist
Make_sp –pin_name sp1 –src_name reg1
Check_netlist_and_save
Project_close

Altera Corporation 12–19
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

Using
SignalProbe
with the APEX
Device Family

APEX devices do not support post-fit netlist changes made as ECOs. You
can use SignalProbe compilation to route internal signals to output pins
incrementally. The SignalProbe incremental routing feature does not
affect design behavior.

To use the SignalProbe feature, follow these steps:

1. Reserve SignalProbe pins. For more information, refer to “Reserve
the SignalProbe Pins” on page 12–4.

2. Assign a SignalProbe source to each SignalProbe pin.

3. Perform a SignalProbe compilation.

4. Analyze the results of a SignalProbe compilation.

Adding SignalProbe Sources

A SignalProbe source is a signal in the post-compilation design database
with a possible route to an output pin. You can assign a SignalProbe
source to a SignalProbe pin, or an unused output pin by performing the
following steps:

1. On the Tools menu, click SignalProbe Pins. The SignalProbe Pins
dialog box appears.

2. In the Current and potential SignalProbe pins list, select the
SignalProbe pin to which you want to add a SignalProbe source.

3. Click Browse and select a SignalProbe source.

4. Click OK.

The Node Finder dialog box displays with the SignalProbe filter
selected (Figure 12–9). Click List to view all of the available
SignalProbe sources. If you cannot find a specific node with the

12–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalProbe filter, then the node either has either been removed by
the Quartus II software during optimization, or placed in the device
where there are no possible routes to a pin.

Figure 12–9. Available SignalProbe Sources in the Node Finder

5. In the Assign SignalProbe Pins dialog box, click Add if a source has
not been assigned to the SignalProbe pin.

or

Click Change for a SignalProbe pin that has a source already
assigned.

1 When the source of the SignalProbe pin is added or changed, the
SignalProbe pin is automatically enabled. To disable a
SignalProbe pin, turn off SignalProbe enable.

6. Click OK.

Performing a SignalProbe Compilation

You can start a SignalProbe compilation manually or automatically after
a full compilation. A SignalProbe compilation includes the following:

■ Validates SignalProbe pins.
■ Validates your specified SignalProbe sources.
■ If applicable, adds registers into SignalProbe paths.
■ Attempts to route from SignalProbe sources through registers to

SignalProbe pins.

To run the SignalProbe compilation automatically after a full
compilation, on the Tools menu, click SignalProbe Pins. In the
SignalProbe Pins dialog box, turn on Automatically route SignalProbe
signals during compilation.

Altera Corporation 12–21
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

To run a SignalProbe compilation manually after a full compilation, on
the Processing menu, point to Start and click Start SignalProbe
Compilation.

1 You must run the Fitter before a SignalProbe compilation. The
Fitter generates a list of all internal nodes that can be used as
SignalProbe sources.

You can enable and disable each SignalProbe pin by turning the
SignalProbe enable option on and off in the SignalProbe Pins dialog
box.

Running SignalProbe with Smart Compilation

Optimally, you can run a smart compilation, which reduces compilation
time by running only necessary modules during compilation. However,
a full compilation is required if any design files, Analysis and Synthesis
settings, or Fitter settings have changed.

To turn on smart compilation, on the Assignments menu, click Settings.
In the Category list, select Compilation Process Settings and turn on Use
Smart compilation.

If you run a SignalProbe compilation with smart compilation turned on,
and there are changes to a design file or settings related to the Analysis
and Synthesis or Fitter modules, the following message is displayed:

Error: Can't perform SignalProbe compilation because design
requires a full compilation.

1 You should turn smart compilation on, which allows you to
work with the latest settings and design files.

Understanding the Results of a SignalProbe Compilation

After a SignalProbe compilation, the results appear in two sections of the
compilation report file. The fitting results and status (Table 12–2) of each
SignalProbe pin is displayed in the SignalProbe Fitting Result page in the
Fitter section of the compilation report (Figure 12–10).

The timing results of each successfully routed SignalProbe pin is
displayed in the SignalProbe source to output delays page in the Timing
Analysis section of the compilation report (Figure 12–11).

12–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 After a SignalProbe compilation, the processing page of the
Messages window also provides the results of each SignalProbe
pin and displays slack information for each successfully routed
SignalProbe pin.

Figure 12–10. SignalProbe Fitting Results Page in the Compilation Report Window

Figure 12–11. SignalProbe Source to Output Delays Page in the Compilation Report Window

Table 12–2. Status Values

Status Description

Routed Connected and routed successfully

Not Routed Not enabled

Failed to Route Failed routing during last SignalProbe compilation

Need to Compile Assignment changed since last SignalProbe compilation

Altera Corporation 12–23
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

Analyzing SignalProbe Routing Failures

The SignalProbe can begin compilation; however, one of the following
reasons can prevent complete compilation:

■ Route unavailable—the SignalProbe compilation failed to find a
route from the SignalProbe source to the SignalProbe pin because of
routing congestion

■ Invalid or nonexistent SignalProbe source—you entered a
SignalProbe source that does not exist or is invalid

■ Unusable output pin—the output pin selected is found to be
unusable

Routing failures can occur if the SignalProbe pin’s I/O standard conflicts
with other I/O standards in the same I/O bank.

If routing congestion prevents a successful SignalProbe compilation, you
can allow the compiler to modify the routing to the specified SignalProbe
source. On the Tools menu, click SignalProbe Pins and turn on Modify
latest fitting results during SignalProbe compilation. This setting
allows the Fitter to modify existing routing channels used by your design.

1 Turning on Modify latest fitting results during SignalProbe
compilation can change the performance of your design.

SignalProbe Scripting Support for APEX Devices

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

12–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Reserving SignalProbe Pins

Use the following Tcl commands to reserve a SignalProbe pin.

set_location_assignment <location> -to <SignalProbe pin name>

set_instance_assignment -name RESERVE_PIN \
"AS SIGNALPROBE OUTPUT" -to <SignalProbe pin name> r
Valid locations are pin location names, such as Pin_A3.

For more information about reserving SignalProbe pins, refer to “Reserve
the SignalProbe Pins” on page 12–4.

Adding SignalProbe Sources

Use the following Tcl commands to add SignalProbe sources. For more
information about adding SignalProbe sources, refer to “Adding
SignalProbe Sources” on page 12–19. The following command assigns the
node name to a SignalProbe pin:

set_instance_assignment -name SIGNALPROBE_SOURCE \
<node name> -to <SignalProbe pin name> r
The next command turns on the SignalProbe routing. You can turn off
individual SignalProbe pins by specifying OFF instead of ON with the
following command:

set_instance_assignment -name SIGNALPROBE_ENABLE ON \
-to <SignalProbe pin name> r

Assigning I/O Standards

Use the following Tcl command to assign an I/O standard to a pin:

set_instance_assignment -name IO_STANDARD \
<I/O standard> -to <SignalProbe pin name> r

f For a list of valid I/O standards, refer to the I/O Standards general
description in the Quartus II Help.

Adding Registers for Pipelining

Use the following Tcl commands to add registers for pipelining:

set_instance_assignment -name SIGNALPROBE_CLOCK \
<clock name> -to <SignalProbe pin name>

Altera Corporation 12–25
October 2007 Preliminary

Using SignalProbe with the APEX Device Family

set_instance_assignment \
-name SIGNALPROBE_NUM_REGISTERS <number of registers> \
-to <SignalProbe pin name> r

Run SignalProbe Automatically

Use the following Tcl command to run SignalProbe automatically after a
full compile.

set_global_assignment -name \
SIGNALPROBE_DURING_NORMAL_COMPILATION ON

For more information about running SignalProbe automatically, refer to
“Performing a SignalProbe Compilation” on page 12–20.

Run SignalProbe Manually

You can run SignalProbe manually with a Tcl command or the
quartus_fit command at a command prompt.

execute_flow -signalprobe r
The execute_flow command is in the flow package. At a command
prompt, type the following command:

quartus_fit <project name> --signalprobe r
For more information about running SignalProbe manually, refer to
“Performing a SignalProbe Compilation” on page 12–20.

Enable or Disable All SignalProbe Routing

Use the Tcl command in Example 12–4 to turn on or turn off SignalProbe
routing. In the set_instance_assignment command, specify ON to
turn on SignalProbe routing or OFF to turn off SignalProbe routing.

Example 12–4. Turning SignalProbe On or Off with Tcl
set spe [get_all_assignments -name SIGNALPROBE_ENABLE] \
foreach_in_collection asgn $spe {

set signalprobe_pin_name [lindex $asgn 2]
set_instance_assignment -name SIGNALPROBE_ENABLE -to \

$signalprobe_pin_name <ON|OFF> } r

For more information about enabling or disabling SignalProbe routing,
refer to page 12–20.

12–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running SignalProbe with Smart Compilation

Use the following Tcl command to turn on Smart Compilation:

set_global_assignment -name SMART_RECOMPILE ON r
For more information, refer to “Running SignalProbe with Smart
Compilation” on page 12–21.

Allow SignalProbe to Modify Fitting Results

Use the following Tcl command to turn on Modify latest fitting results.

set_global_assignment -name \
SIGNALPROBE_ALLOW_OVERUSE ON r
For more information, refer to “Analyzing SignalProbe Routing Failures”
on page 12–23.

Conclusion Using the SignalProbe feature can significantly reduce the time required
compared to a full recompilation. You can use the SignalProbe feature to
get quick access to internal design signals to perform system-level
debugging.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Engineering Change Management with the Chip Planner chapter in
volume 2 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hiearchical and Team-Based
Design chapter in volume 1 of the Quartus II Handbook

■ Quartus II Settings File Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii53010.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Altera Corporation 12–27
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 12–3 shows the revision history for this chapter.

Table 12–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 12–26. —

May 2007
v7.1.0

Added Referenced Documents, minor updates to address
ADoQS issues.

—

March 2007 v7.0.0 Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Updated for the Quartus II software version 6.1.0:
● New section (SignalProbe ECO flows) added to explain how

SignalProbe pins’ ECOs are affected during Quartus II
Incremental Compilation.

● QandA added to answer: How Can I Retain My SignalProbe
ECOs during Re-compilation of My Design.

Quartus II software
version 6.1.0 added
more ECO features;
the chapter updated to
reflect this change.

May 2006
v6.0.0

Updated for the Quartus II software version 6.0.0:
● Documented new SignalTap features.

—

December 2005
v5.1.1

Added SMART_RECOMPILE assignment. —

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Minor updates for Quartus II software 5.0 —

December 2004
v2.1

● Chapter 9 was formerly Chapter 8.
● Updates to tables and figures.
● New functionality for Quartus II software 4.2.

—

June 2004
v2.0

● Updates to tables, figures.
● New functionality for Quartus II software 4.1.

—

February 2004
v1.0

Initial release. —

12–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 13–1
October 2007

13. Design Debugging Using
the SignalTap II Embedded

Logic Analyzer

Introduction The phenomenal growth in design size and complexity continues to make
design verification a critical bottleneck for current FPGA systems.
Limited access to internal signals, complex FPGA packages, and PCB
electrical noise all contribute to making design debugging the most
challenging process of the design cycle. More than 50% of the design cycle
time can be spent on debugging and verifying the design. To help with
the process of design debugging, Altera® provides a solution that enables
a designer to examine the behavior of internal signals, without using
extra I/O pins, while the design is running at full speed on an FPGA
device.

The SignalTap® II Embedded Logic Analyzer is scalable, easy to use, and
is included with the Quartus® II software subscription. This logic
analyzer helps debug an FPGA design by probing the state of the internal
signals in the design without the use of external equipment. Defining
custom trigger-condition logic provides greater accuracy and improves
the ability to isolate problems. The SignalTap II Embedded Logic
Analyzer does not require external probes, or changes to the design files
to capture the state of the internal nodes or I/O pins in the design. All
captured signal data is conveniently stored in device memory until the
designer is ready to read and analyze the data.

The topics in this chapter include:

■ “On-Chip Debugging Tool Comparison” on page 13–5
■ “Design Flow Using the SignalTap II Logic Analyzer” on page 13–7
■ “SignalTap II Logic Analyzer Task Flow” on page 13–8
■ “Add the SignalTap II Logic Analyzer to Your Design” on page 13–10
■ “Configure the SignalTap II Logic Analyzer” on page 13–18
■ “Define Triggers” on page 13–30
■ “Program the Target Device or Devices” on page 13–57
■ “Run the SignalTap II Logic Analyzer” on page 13–59
■ “View, Analyze, and Use Captured Data” on page 13–63
■ “Other Features” on page 13–67
■ “SignalTap II Scripting Support” on page 13–72
■ “Design Example: Using SignalTap II Logic Analyzers in SOPC

Builder Systems” on page 13–77
■ “Custom Triggering Flow Application Examples” on page 13–77

QII53009-7.2.0

13–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The SignalTap II Embedded Logic Analyzer is a next-generation,
system-level debugging tool that captures and displays real-time signal
behavior in a system-on-a-programmable-chip (SOPC) or any FPGA
design. The SignalTap II Embedded Logic Analyzer supports the highest
number of channels, largest sample depth, and fastest clock speeds of any
embedded logic analyzer in the programmable logic market. Figure 13–1
shows a block diagram of the components that make up the SignalTap II
Embedded Logic Analyzer.

Figure 13–1. SignalTap II Logic Analyzer Block Diagram Note (1)

Note to Figure 13–1:
(1) This diagram assumes that the SignalTap II Logic Analyzer was compiled with the design as a separate design

partition using the Quartus II Incremental Compilation feature. This is the default setting for new projects in the
Quartus II software. If incremental compilation is disabled or not used, the SignalTap II logic is integrated with the
design. For information about the use of incremental compilation with SignalTap II, refer to “Faster Compilations
with Quartus II Incremental Compilation” on page 13–51.

This chapter is intended for any designer who wants to debug their FPGA
design during normal device operation without the need for external lab
equipment. Because the SignalTap II Embedded Logic Analyzer is
similar to traditional external logic analyzers, familiarity with external
logic analyzer operations is helpful but not necessary. To take advantage
of faster compile times when making changes to the SignalTap II Logic
Analyzer, knowledge of the Quartus II Incremental Compilation feature
is helpful.

Design Logic

1 2 30

1 2 30

SignalTap II
 Instances

JTAG
Hub

Altera
Programming

Hardware

Quartus II
Software

Buffers (Device Memory)

FPGA Device

Altera Corporation 13–3
October 2007 Preliminary

Introduction

f For information about using the Quartus II Incremental Compilation
feature, refer to the Incremental Compilation for Hierarchical and
Team-Based Design chapter in the Quartus II Handbook.

Hardware and Software Requirements

The following components are required to perform logic analysis with the
SignalTap II Embedded Logic Analyzer:

■ Quartus II design software
or
Quartus II Web Edition (with TalkBack feature enabled)
or
SignalTap II Logic Analyzer standalone software

■ Download/Upload Cable
■ Altera development kit or user design board with JTAG connection

to device under test

Captured data is stored in the device’s memory blocks and transferred to
the Quartus II software waveform display with a JTAG communication
cable, such as EthernetBlaster or USB-BlasterTM. Table 13–1 summarizes
some of the features and benefits of the SignalTap II Embedded Logic
Analyzer.

Table 13–1. SignalTap II Features and Benefits (Part 1 of 2)

Feature Benefit

Multiple logic analyzers in a single device Captures data from multiple clock domains in a design at the same
time

Multiple logic analyzers in multiple
devices in a single JTAG chain

Simultaneously captures data from multiple devices in a JTAG chain

Plug-In Support Easily specifies nodes, triggers, and signal mnemonics for IP, such as

the Nios® II embedded processor

Up to 10 basic or advanced trigger
conditions for each analyzer instance

Enables more complex data capture commands to be sent to the logic
analyzer, providing greater accuracy and problem isolation

Power-Up Trigger Captures signal data for triggers that occur after device programming
but before manually starting the logic analyzer

State-Based Triggering Flow Enables you to organize your triggering conditions to precisely define
what your embedded logic analyzer will capture

Incremental Compilation Modifies the SignalTap II Logic Analyzer monitored signals and
triggers without performing a full compilation, saving time

Flexible buffer acquisition modes Allows more accurate data collection by setting each trigger to
sample at different ranges relative to the triggering event, in circular
or segmented modes

13–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For a list of supported device families, refer to the Quartus II Help.

MATLAB integration with included MEX
function

Acquires the SignalTap II Logic Analyzer captured data into a
MATLAB integer matrix

Up to 1,024 channels in each device Samples many signals and wide bus structures

Up to 128K samples in each device Captures a large sample set for each channel

Fast clock frequencies Collects sample data at up to 270 MHz

Resource usage estimator Provides estimate of logic and memory device resources used by
SignalTap II Embedded Logic Analyzer configurations

No additional cost The SignalTap II Logic Analyzer is included with a Quartus II
subscription and with the Quartus II Web Edition (with TalkBack
enabled)

Table 13–1. SignalTap II Features and Benefits (Part 2 of 2)

Feature Benefit

Altera Corporation 13–5
October 2007 Preliminary

On-Chip Debugging Tool Comparison

On-Chip
Debugging Tool
Comparison

The Quartus II software provides a number of different ways to help
debug your FPGA design after programming the device. The SignalTap II
Logic Analyzer, SignalProbe, and the Logic Analyzer Interface (LAI)
share some similar features, but each has its own advantages. In some
debugging situations, it can be difficult to decide which tool is best to use
or whether multiple tools are required. Table 13–2 compares common
debugging features between these tools and provides suggestions about
which is the best tool to use for a given feature.

Table 13–2. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 1 of 2)

Feature SignalProbe
Logic Analyzer

Interface
(LAI)

SignalTap II
Embedded
Analyzer

Description

Large Sample
Depth

N/A v — An external logic analyzer used with the
LAI has a bigger buffer to store more
captured data than the SignalTap II
Logic Analyzer. No data is captured or
stored with SignalProbe.

Ease in Debugging
Timing Issue

N/A v — An external logic analyzer used with the
LAI provides you with access to timing
mode, enabling you to debug combined
streams of data.

Minimal Effect
on Logic Design

v v(2) v (2) The LAI adds minimal logic to a design,
requiring fewer device resources. The
SignalTap II Logic Analyzer has little effect
on the design when it is set as a separate
design partition using incremental
compilation. SignalProbe incrementally
routes nodes to pins, not affecting the
design at all.

Short Compile and
Recompile Time

v v (2) v (2) SignalProbe attaches incrementally routed
signals to previously reserved pins,
requiring very little recompilation time to
make changes to source signal selections.
The SignalTap II Logic Analyzer and the
LAI can take advantage of incremental
compilation to refit their own design
partitions to decrease recompilation time.

Triggering
Capability

N/A v v The SignalTap II Logic Analyzer offers
triggering capabilities that are comparable
to commercial logic analyzers.

I/O Usage — — v No additional output pins are required with
the SignalTap II Logic Analyzer. Both the
LAI and SignalProbe require I/O pin
assignments.

13–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you have signals that you want to monitor with external equipment
without adding the logic resources required by the SignalTap II Logic
Analyzer, consider the use of these other tools available in the Quartus II
software. Signals can be quickly routed out to reserved I/O pins as part
of an ECO change using SignalProbe, while multiplexed banks of many
signals can be made visible on only a few pins with the use of the LAI.

f For information about the use of these tools, refer to the Quick Design
Debugging Using SignalProbe and In-System Debugging Using External
Logic Analyzers chapters in volume 3 of the Quartus II Handbook.

Acquisition
Speed

N/A — v The SignalTap II Logic Analyzer can
acquire data at speeds of over 200 MHz.
The same acquisition speeds are
obtainable with an external logic analyzer
used with the LAI, but signal integrity
issues may limit this.

No JTAG
Connection
Required

v — — An FPGA design with the SignalTap II
Logic Analyzer or the LAI requires an active
JTAG connection to a host running the
Quartus II software. SignalProbe does not
require a host for debugging purposes.

External
Equipment

— — v The SignalTap II Logic Analyzer logic is
completely internal to the programmed
FPGA device. No extra equipment is
required other than a JTAG connection
from a host running the Quartus II software
or the stand-alone SignalTap II software.
SignalProbe and the LAI require the use of
external debugging equipment, such as
multimeters, oscilloscopes, or logic
analyzers.

Notes to Table 13–2:
(1) v indicates the suggested best tool for the feature. — indicates that while the tool is available for that feature, that

tool may not give the best results. N/A indicates that the feature is not applicable for the selected tool.
(2) When used with incremental compilation.

Table 13–2. Suggested On-Chip Debugging Tools for Common Debugging Features Note (1) (Part 2 of 2)

Feature SignalProbe
Logic Analyzer

Interface
(LAI)

SignalTap II
Embedded
Analyzer

Description

Altera Corporation 13–7
October 2007 Preliminary

Design Flow Using the SignalTap II Logic Analyzer

Design Flow
Using the
SignalTap II
Logic Analyzer

Figure 13–2 shows a typical overall FPGA design flow for using the
SignalTap II Logic Analyzer in your design. A SignalTap II file (.stp) is
added to and enabled in your project, or a SignalTap II HDL function,
created with the MegaWizard® Plug-In Manager, is instantiated in your
design. The diagram shows the flow of operations from initially adding
the SignalTap II Logic Analyzer to your design to the final device
configuration, testing, and debugging.

Figure 13–2. SignalTap II FPGA Design and Debugging Flow

Fitter
Place-and-Route

Verilog
HDL
(.v)

VHDL
(.vhd)

AHDL
(.tdf)

Block
Design File

(.bdf)

EDIF
Netlist
(.edf)

VQM
Netlist
(.vqm)

Analysis & Synthesis

Assembler

Timing Analyzer

Functionality
Satisfied?

Yes

Configuration

SignalTap II File (.stp)
or SignalTap II

MegaWizard File

Debug Source File No

End

13–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II
Logic Analyzer
Task Flow

To use the SignalTap II Logic Analyzer to debug your design, you
perform a number of tasks to add, configure, and run the logic analyzer.
Figure 13–3 shows a typical flow of the tasks you complete to debug your
design. Refer to the appropriate section of this chapter for more
information about each of these tasks.

Figure 13–3. SignalTap II Logic Analyzer Task Flow

Add SignalTap II
to Design

Create New Project or
Open Existing Project

End

Yes

Yes

No

No

Functionality
Satisfied or Bug

Fixed?

Recompilation
Necessary?

Configure
SignalTap II

Program Target
Device(s)

View, Analyze &
Use Captured Data

Define Triggers

Compile Design

Run SignalTap II
Adjust Options
and/or Triggers

Continue Debugging

Altera Corporation 13–9
October 2007 Preliminary

SignalTap II Logic Analyzer Task Flow

Add the SignalTap II Logic Analyzer to Your Design

Create a SignalTap II file or create a parameterized HDL instance
representation of the logic analyzer using the MegaWizard Plug-In
Manager. If you want to monitor multiple clock domains simultaneously,
you can add additional instances of the logic analyzer to your design,
limited only by the available resources in your device.

Configure the SignalTap II Logic Analyzer

Once the SignalTap II Logic Analyzer is added to your design, you
configure it to monitor the signals you want. You can manually add
signals or use a plug-in, such as the Nios II plug-in, to quickly add entire
sets of associated signals for a particular IP. You can also specify settings
for the data capture buffer, such as its size, the method in which data is
captured and stored, and the device memory type to use for the buffer in
devices that support memory type selection.

Define Triggers

The SignalTap II Logic Analyzer continuously captures data while it is
running. To capture and store specific signal data, you set up triggers that
tell the logic analyzer under what conditions to stop capturing data. The
SignalTap II Logic Analyzer lets you define Runtime Triggers that range
from very simple, such as the rising edge of a single signal, to very
complex, involving groups of signals, extra logic, and multiple
conditions. Power-Up Triggers give you the ability to capture data from
trigger events occurring immediately after the device enters user-mode
after configuration.

Compile the Design

With the SignalTap II file configured and triggers defined, you compile
your project as usual to include the logic analyzer in your design. Since
you may need to frequently change monitored signal nodes or adjust
trigger settings during debugging, it is recommended that you use the
incremental compilation feature built into the SignalTap II Logic
Analyzer, along with Quartus II incremental compilation, to reduce
recompile times.

Program the Target Device or Devices

When you are debugging a design with the SignalTap II Logic Analyzer,
you can program a target device directly from the SignalTap II file
without using the Quartus II Programmer. You can also program
multiple devices with different designs and simultaneously debug them.

13–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Run the SignalTap II Logic Analyzer

In normal device operation, you control the logic analyzer through the
JTAG connection, specifying when to start looking for your trigger
conditions to begin capturing data. With Runtime or Power-Up Triggers,
you read and transfer the captured data from the on-chip buffer to the
SignalTap II file for analysis.

View, Analyze, and Use Captured Data

Once you have captured data and read it into the SignalTap II file, it is
available for analysis and use in the debugging process. Either manually
or with a plug-in, you can set up mnemonic tables to make it easier to
read and interpret the captured signal data. To speed up debugging, use
the Locate feature in the SignalTap II node list to find the locations of
problem nodes in other tools in the Quartus II software. Save the
captured data for later analysis, or convert it to other formats for sharing
and further study.

Add the
SignalTap II
Logic Analyzer
to Your Design

Because the SignalTap II Logic Analyzer is implemented in logic on your
target device, it must be added to your FPGA design as another part of
the design itself. There are two ways to generate the SignalTap II Logic
Analyzer and add it to your design for debugging:

■ Create a SignalTap II file (.stp) and use the SignalTap II Editor to
configure the details of the logic analyzer

■ Create and configure the SignalTap II file with the MegaWizard

Plug-In Manager and instantiate it in your design

Creating and Enabling a SignalTap II File

To create an embedded logic analyzer, you can use an existing
SignalTap II file or create a new file. Once a file is created or selected, it
must be enabled in the project where it is used.

Creating a SignalTap II File

The SignalTap II file contains the SignalTap II Logic Analyzer settings
and the captured data for viewing and analysis. To create a new
SignalTap II file, perform the following steps:

1. On the File menu, click New.

2. In the New dialog box, click the Other Files tab, and select
SignalTap II Logic Analyzer File.

Altera Corporation 13–11
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

3. Click OK.

To open an existing SignalTap II file already associated with your project,
on the Tools menu, click SignalTap II Logic Analyzer. You can also use
this method to create a new SignalTap II file if no SignalTap II file exists
for the current project.

To open an existing file, on the File menu, click Open and select a
SignalTap II file (Figure 13–4).

Figure 13–4. SignalTap II Editor

Enabling and Disabling a SignalTap II File for the Current Project

Whenever you save a new SignalTap II file, the Quartus II software asks
you if you want to enable the file for the current project. However, you
can add this file manually, change the selected SignalTap II file, or
completely disable the logic analyzer by performing the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select SignalTap II Logic Analyzer. The
SignalTap II Logic Analyzer page appears.

13–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

3. Turn on Enable SignalTap II Logic Analyzer. Turn off this option
to disable the logic analyzer, completely removing it from your
design.

4. In the SignalTap II File name box, type the name of the
SignalTap II file you want to include with your design, or browse to
and select a file name.

5. Click OK.

Using the MegaWizard Plug-In Manager to Create Your
Embedded Logic Analyzer

Alternatively, you can create a SignalTap II Logic Analyzer instance by
using the MegaWizard Plug-In Manager. The MegaWizard Plug-In
Manager generates an HDL file that you instantiate in your design. You
can also use a hybrid approach in which you instantiate the MegaWizard
Plug-In Manager file in your HDL, and then use the method described in
“Creating and Enabling a SignalTap II File” on page 13–10.

Creating an HDL Representation Using the MegaWizard Plug-In Manager

The Quartus II software allows you to easily create your SignalTap II
Logic Analyzer using the MegaWizard Plug-In Manager. To implement
the SignalTap II megafunction, perform the following steps:

1. On the Tools menu, click MegaWizard Plug-In Manager. Page 1 of
the MegaWizard Plug-In Manager dialog box appears.

2. Select Create a new custom megafunction variation.

3. Click Next.

4. In the Installed Plug-Ins list, expand the JTAG-accessible
Extensions folder, and select SignalTap II Logic Analyzer. Select
an output file type and enter the desired name of the SignalTap II
megafunction. You can choose AHDL (.tdf), VHDL (.vhd), or
Verilog HDL (.v) as the output file type (Figure 13–5).

Altera Corporation 13–13
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

Figure 13–5. Creating the SignalTap II Logic Analyzer in the MegaWizard
Plug-In Manager

5. Click Next.

6. Configure the analyzer by specifying the Sample depth, RAM
Type, Data input port width, Trigger levels, Trigger input port
width, and whether to enable an external Trigger in or Trigger out
(Figure 13–6).

For information about these settings, refer to “Configure the
SignalTap II Logic Analyzer” on page 13–18 and “Define Triggers”
on page 13–30.

13–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–6. Select Logic Analyzer Parameters

7. Click Next.

8. Set the Trigger level options by selecting Basic or Advanced
(Figure 13–7). If you select Advanced for any trigger level, the next
page of the MegaWizard Plug-In Manager displays the Advanced
Trigger Condition Editor. You can configure an advanced trigger
expression using the number of signals you specified for the trigger
input port width.

1 You cannot define a Power-Up Trigger using the
MegaWizard Plug-In Manager. Refer to “Define Triggers”
on page 13–30 to learn how to do this using the SignalTap II
file.

Altera Corporation 13–15
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

Figure 13–7. MegaWizard Basic and Advanced Trigger Options

9. On the final page of the MegaWizard Plug-In Manager, select any
additional files you want to create and click Finish to create an HDL
representation of the SignalTap II Logic Analyzer.

For information about the configuration settings options in the
MegaWizard Plug-In Manager, refer to “Configure the SignalTap II
Logic Analyzer” on page 13–18. For information about defining
triggers, refer to “Define Triggers” on page 13–30.

13–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II Megafunction Ports

Table 13–3 provides information about the SignalTap II megafunction
ports.

f For the most current information about the ports and parameters for this
megafunction, refer to the latest version of the Quartus II Help.

Instantiating the SignalTap II Logic Analyzer in Your HDL

Instantiating the logic analyzer in your HDL is similar to instantiating
any other Verilog HDL or VHDL megafunction in your design. Add the
code from the files that are generated by the MegaWizard Plug-In
Manager to your design, mapping the signals in your design to the
appropriate SignalTap II megafunction ports. You can instantiate up to
127 analyzers in your design, or as many as physically fit in the FPGA.
Once you have instantiated the SignalTap II file in your HDL file, compile
your Quartus II project to fit the logic analyzer in the target FPGA.

To capture and view the data, you must create a SignalTap II file from
your SignalTap II HDL output file. To do this, on the File menu, point to
Create/Update, and click Create SignalTap II File from Design
Instance(s).

If you make any changes to your design or the SignalTap II instance,
recreate or update the SignalTap II file with this command. This ensures
that the SignalTap II file is always compatible with the SignalTap II
instance in your design. If the SignalTap II file is not compatible with the
SignalTap II instance in your design, you may not be able to control the
SignalTap II Logic Analyzer after it is programmed into your device.

Table 13–3. SignalTap II Megafunction Ports

Port Name Type Required Description

acq_data_in Input No This set of signals represents the set of signals that are monitored in
the SignalTap II Logic Analyzer.

acq_trigger_in Input No This set of signals represents the set of signals that are used to
trigger the analyzer.

acq_clk Input Yes This port represents the sampling clock that the SignalTap II Logic
Analyzer uses to capture data.

trigger_in Input No This signal is used to trigger the SignalTap II Logic Analyzer.

trigger_out Output No This signal is enabled when the trigger event occurs.

Altera Corporation 13–17
October 2007 Preliminary

Add the SignalTap II Logic Analyzer to Your Design

For information about SignalTap II file compatibility with programmed
SignalTap II instances, refer to “Program the Target Device or Devices” on
page 13–57.

Embedding Multiple Analyzers in One FPGA

The SignalTap II Logic Analyzer includes support for multiple logic
analyzers in an FPGA device. This feature allows you to create a unique
logic analyzer for each clock domain in the design. As multiple instances
of the analyzer are added to the SignalTap II file, the resource usage
increases proportionally.

In addition to debugging multiple clock domains, this feature allows you
to apply the same SignalTap II settings to a group of signals in the same
clock domain. For example, if you have a set of signals that must use a
sample depth of 64K and another set of signals in the same clock domain
requires a sample depth of 1K, you can create two instances to meet these
needs.

To create multiple analyzers, on the Edit menu, click Create Instance, or
right-click in the Instance Manager window and click Create Instance.

Each instance of the SignalTap II Logic Analyzer can be configured
independently. The icon in the Instance Manager for the currently active
instance that is available for configuration is highlighted in color and
surrounded by a blue box. To configure a different instance, double-click
the icon or name of another instance in the Instance Manager.

Monitoring FPGA Resources Used by the SignalTap II Logic
Analyzer

The SignalTap II Logic Analyzer has a built-in resource estimator that
calculates the logic resources and amount of memory that each
SignalTap II Logic Analyzer uses. You can see the resource usage of each
logic analyzer instance and the total resources used in the columns of the
Instance Manager section of the SignalTap II Editor. This feature is useful
when device resources are limited and you must know what device
resources the SignalTap II Logic Analyzer uses. The value reported in the
resource usage estimator may vary by as much as 5% from the actual
resource usage.

13–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Table 13–4 shows the SignalTap II Logic Analyzer M4K memory block
resource usage for the listed devices per signal width and sample depth.

Configure the
SignalTap II
Logic Analyzer

The SignalTap II file provides many options for configuring instances of
the logic analyzer. Some of the settings are similar to those found on
traditional external logic analyzers. Other settings are unique to the
SignalTap II Logic Analyzer because of the requirements for configuring
an embedded logic analyzer. All settings give you the ability to configure
the logic analyzer the way you want to help debug your design.

1 Some settings can only be adjusted when you are viewing
Run-Time Trigger conditions instead of Power-Up Trigger
conditions. To learn about Power-Up Triggers and viewing
different trigger conditions, refer to “Creating a Power-Up
Trigger” on page 13–45.

Assigning an Acquisition Clock

You must assign a clock signal to control the acquisition of data by the
SignalTap II Logic Analyzer. The logic analyzer samples data on every
rising edge of the acquisition clock. You can use any signal in your design
as the acquisition clock. However, for best results, Altera recommends
that you use a global, non-gated clock for data acquisition. Using a gated
clock as your acquisition clock can result in unexpected data that does not
accurately reflect the behavior of your design. The Quartus II Classic
Timing Analyzer shows the maximum acquisition clock frequency at
which you can run your design.

Table 13–4. SignalTap II Logic Analyzer M4K Block Utilization for Stratix II, Stratix, Stratix GX, and
Cyclone Devices Note (1)

Signals (Width)
Samples (Depth)

256 512 2,048 8,192

8 < 1 1 4 16

16 1 2 8 32

32 2 4 16 64

64 4 8 32 128

256 16 32 128 512

Note to Table 13–4:
(1) When you configure a SignalTap II Logic Analyzer, the Instance Manager reports an estimate of the memory bits

and logic elements required to implement the given configuration.

Altera Corporation 13–19
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

To assign an acquisition clock, perform the following steps:

1. In the SignalTap II Logic Analyzer window, click the Setup tab.

2. Click Browse next to the Clock field in the Signal Configuration
pane. The Node Finder dialog box appears.

3. From the Filter list, select SignalTap II: post-fitting
or
SignalTap II: pre-synthesis.

4. In the Named field, type the exact name of a node that you want to
use as your sample clock, or search for a node using a partial name
and wildcard characters.

5. To start the node search, click List.

6. In the Nodes Found list, select the node that represents the design’s
global clock signal.

7. Add the selected node name to the Selected Nodes list by clicking
“>” or by double-clicking the node name.

8. Click OK. The node is now specified as the acquisition clock in the
SignalTap II Editor.

If you do not assign an acquisition clock in the SignalTap II Editor, the
Quartus II software automatically creates a clock pin called
auto_stp_external_clk.

You must make a pin assignment to this pin independently from the
design. You must ensure that a clock signal in your design drives the
acquisition clock.

f For information about assigning signals to pins, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Adding Signals to the SignalTap II File

While configuring the logic analyzer, you add signals to the node list in
the SignalTap II file to select which signals in your design you want to
monitor. Selected signals are also used to define triggers. You can assign
the following two types of signals to your SignalTap II file:

■ Pre-synthesis—This signal exists after design elaboration, but before
any synthesis optimizations are done. This set of signals should
reflect your Register Transfer Level (RTL) signals.

13–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Post-fitting—This signal exists after physical synthesis
optimizations and place-and-route.

1 If you are not using incremental compilation, add only
pre-synthesis signals to your SignalTap II file. Using
pre-synthesis is particularly useful if you want to add a new
node after you have made design changes. To do this, on the
Processing menu, point to Start and click Start Analysis &
Elaboration.

Signals shown in blue text are post-fit node names. Signals shown in
black text are pre-synthesis node names.

After successful Analysis and Elaboration, the signals shown in red text
are invalid signals. Unless you are certain that these signals are valid, you
must remove them from the SignalTap II file for correct operation. The
SignalTap II Health Monitor also indicates if an invalid node name exists
in the SignalTap II file.

As a general guideline, signals can be tapped if a routing resource (row
or column interconnects) exists to route the connection to the SignalTap
II instance. For example, signals that exist in the I/O element (IOE) cannot
be directly tapped because there are no direct routing resources from the
signal in an IOE to a core logic element. For input pins, you can tap the
signal that is driving a Logic Array Block (LAB) from an IOE, or, for
output pins, you can tap the signal from the LAB that is driving an IOE.

When adding pre-synthesis signals, all connections made to the
SignalTap II Logic Analyzer are made prior to synthesis. Logic and
routing resources are allocated during recompilation to make the
connection as if a change in your design files had been made. As such,
pre-synthesis signal names for signals driving to and from IOEs will
coincide with the signal names assigned to the pin.

In the case of post-fit signals, connections that you make to the
SignalTap II Logic Analyzer are the signal names from the actual atoms
in your post-fit netlist. A connection can only be made if the signals are
part of the existing post-fit netlist and existing routing resources are
available from the signal of interest to the SignalTap II Logic Analyzer. In
the case of post-fit output signals, tap the COMBOUT or REGOUT signal that
drives the IOE block. For post-fit input signals, signals driving into the
core logic will coincide with the signal name assigned to the pin.

Altera Corporation 13–21
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

1 If you are tapping the signal from the atom that is driving an
IOE, be aware that the signal may be inverted due to NOT-gate
push back. You can check this by locating the signal in either the
Resource Property Editor or the Technology Map Viewer. The
Technology Map viewer and the Resource Property Editor are
also helpful in finding post-fit node names.

f For information about cross-probing to source design file and other
Quartus II windows, refer to the Analyzing Designs with Quartus II Netlist
Viewers chapter in volume 1 of the Quartus II Handbook.

For more information about the use of incremental compilation with the
SignalTap II Logic Analyzer, refer to “Faster Compilations with
Quartus II Incremental Compilation” on page 13–51.

Signal Preservation

Many of your RTL signals are optimized during the process of synthesis
and place-and-route. The RTL signal names frequently may not appear in
the post-fit netlist after optimizations. This can cause a problem when
you use the incremental compilation flow with the SignalTap II Logic
Analyzer. Since only post-fitting signals can be added to the SignalTap II
Logic Analyzer in partitions of type post-fit, RTL signals that you want
to monitor may not be available, preventing their usage. To avoid this
issue, you can use synthesis attributes to preserve signals during
synthesis and place-and-route. When the Quartus II software encounters
these synthesis attributes, it does not perform any optimization on the
specified signals, forcing them to continue to exist in the post-fit netlist.
However, if you do this, you could see an increase in resource utilization
or a decrease in timing performance. The two attributes you can use are:

■ keep—Ensures that combinational signals are not removed
■ preserve—Ensures that registers are not removed

f For more information about using these attributes, refer to the Quartus II
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

If you are debugging an IP core, such as the Nios II CPU, or other
encrypted IP, you may need to preserve nodes from the core to make
them available for debugging with the SignalTap II Logic Analyzer. This
is often necessary when a plug-in is used to add a group of signals for a
particular IP. To do this, on the Assignments menu, click Settings. In the
Category list, select Analysis & Synthesis Settings. Turn on Create
debugging nodes for IP cores to make these nodes available to the
SignalTap II Logic Analyzer.

13–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Assigning Data Signals

To assign data signals, perform the following steps:

1. Perform Analysis and Elaboration, Analysis and Synthesis, or
compile your design.

2. In the SignalTap II Logic Analyzer window, click the Setup tab.

3. Double-click anywhere in the node list of the SignalTap II Editor to
open the Node Finder dialog box.

4. In the Fitter list, select SignalTap II: pre-synthesis or SignalTap II:
post-fitting. Only signals listed under one of these filters can be
added to the SignalTap II node list. Signals cannot be selected from
any other filters.

1 If you use Incremental Compilation flow with SignalTap II,
pre-synthesis nodes will not be connected to the
SignalTap II Logic Analyzer if the affected partition is of the
post-fit type. Any pre-synthesis nodes added to a partition
of type post-fit may not be connected to the SignalTap II
Logic Analyzer. A critical warning is issued for all pre-
synthesis node names that are not found in the post-fit
netlist. Altera recommends that you do not add a mix of
pre-synthesis and post-fitting signals within the same
partition. For more details, refer to “Using Incremental
Compilation with the SignalTap II Logic Analyzer” on
page 13–52.

5. In the Named field, type a node name, or search for a particular
node by entering a partial node name along with wildcard
characters. To start the node name search, click List.

6. In the Nodes Found list, select the node or bus you want to add to
the SignalTap II file.

7. Add the selected node name(s) to the Selected Nodes list by
clicking “>” or by double-clicking the node name(s).

8. To insert the selected nodes in the SignalTap II file, click OK. With
the default colors set for the SignalTap II Logic Analyzer, a
pre-synthesis signal in the list is shown in black, and a post-fitting
signal is shown in blue.

1 You can also drag and drop signals from the Node Finder
dialog box into a SignalTap II file.

Altera Corporation 13–23
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Node List Signal Use Options

Once a signal is added to the node list, you can select options that specify
how the signal is used with the logic analyzer. You can turn off the ability
of a signal to trigger the analyzer by disabling the Trigger Enable for that
signal in the node list in the SignalTap II file. This option is useful when
you want to see only the captured data for a signal, and you are not using
that signal as part of a trigger.

You can turn off the ability to view data for a signal by disabling the Data
Enable column. This option is useful when you want to trigger on a
signal, but have no interest in viewing data for that signal.

For information about using signals in the node list to create SignalTap II
trigger conditions, refer to “Define Triggers” on page 13–30.

Untappable Signals

Not all of the post-fitting signals in your design are available in the
SignalTap II: post-fitting filter in the Node Finder dialog box. The
following signal types cannot be tapped:

■ Post-fit output pins—You cannot tap a post-fit output pin directly.
To make an output signal visible, tap the register or buffer that drives
the output pin.

■ Signals that are part of a carry chain—You cannot tap the carry out
(cout0 or cout1) signal of a logic element. Due to architectural
restrictions, the carry out signal can only feed the carry in of another
logic element (LE).

■ JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and
TMS) signals.

■ altgxb megafunction—You cannot directly tap any ports of an
altgxb instantiation.

■ LVDS—You cannot tap the data output from a
serializer/deserializer (SERDES) block.

Adding Signals with a Plug-In

Instead of adding individual or grouped signals through the Node
Finder, you can add groups of relevant signals of a particular type of IP
through the use of a plug-in. The SignalTap II Logic Analyzer comes with
one plug-in already installed for the Nios II processor. Besides easy signal
addition, plug-ins also provide a number of other features, such as
pre-designed mnemonic tables, useful for trigger creation and data
viewing, as well as the ability to disassemble code in captured data.

13–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Nios II plug-in, for example, creates one mnemonic table in the Setup
tab, and two tables in the Data tab:

■ Nios II Instruction (Setup tab) —Capture all the required signals for
triggering on a selected instruction address.

■ Nios II Instance Address (Data tab)—Display address of executed
instructions in hexadecimal format or as a programming symbol
name if defined in an optional Executable and Linking Format (.elf)
file.

■ Nios II Disassembly (Data tab)—Displays disassembled code from
the corresponding address.

For information about the other features plug-ins provided, refer to
“Define Triggers” on page 13–30 and “View, Analyze, and Use Captured
Data” on page 13–63.

To add signals to the SignalTap II file using a plug-in, perform the
following steps after running Analysis and Elaboration on your design:

1. Right-click in the node list. On the Add Nodes with Plug-In
submenu, click the name of the plug-in you want to use, such as the
included plug-in named Nios II.

1 If the intellectual property (IP) for the selected plug-in does
not exist in your design, a message appears informing you
that you cannot use the selected plug-in.

2. The Select Hierarchy Level dialog box appears showing the IP
hierarchy of your design (Figure 13–8). Select the IP that contains
the signals you want to monitor with the plug-in, and click OK.

Altera Corporation 13–25
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Figure 13–8. IP Hierarchy Selection

3. If all the signals in the plug-in are available, a dialog box may
appear, depending on the plug-in selected, where you can set any
available options for the plug-in. With the Nios II plug-in, you can
optionally select an Executable and Linking Format (.elf) file
containing program symbols from your Nios II Integrated
Development Environment (IDE) software design. Set options for
the selected plug-in as desired, and click OK.

1 To make sure all the required signals are available, turn on the
Create debugging nodes for IP cores option in the Quartus II
Analysis & Synthesis settings.

All the signals included in the plug-in are added to the node list.

Specifying the Sample Depth

The sample depth specifies the number of samples that are captured and
stored for each signal in the captured data buffer. To set the sample
depth, select the desired number of samples to store in the Sample Depth
list. The sample depth ranges from 0 to 128K.

If device memory resources are limited, you may not be able to
successfully compile your design with the sample buffer size you have
selected. Try reducing the sample depth to reduce resource usage.

13–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Capturing Data to a Specific RAM Type

When you use the SignalTap II Logic Analyzer with some devices, you
have the option to select the RAM type where acquisition data is stored.
RAM selection allows you to preserve a specific memory block for your
design and allocate another portion of memory for SignalTap II data
acquisition. For example, if your design implements a large buffering
application such as a system cache, it is ideal to place this application into
M-RAM blocks so that the remaining M512 or M4K blocks are used for
SignalTap II data acquisition.

To select the RAM type to use for the SignalTap II buffer, select it from the
RAM type list. Use this feature when the acquired data (as reported by
the SignalTap II resource estimator) is not larger than the available
memory of the memory type that you have selected in the FPGA.

Choosing the Buffer Acquisition Mode

The buffer acquisition type selection feature in the SignalTap II Logic
Analyzer lets you choose how the captured data buffer is organized and
can potentially reduce the amount of memory that is required for
SignalTap II data acquisition. You can choose to use either a circular
buffer, which allocates the entire sample depth to a single buffer, or a
segmented buffer, which splits the buffer space into a number of separate
even sized segments. Figure 13–9 illustrates the differences between the
two buffer types.

Figure 13–9. Buffer Type Comparison in the SignalTap II Logic Analyzer Note (1)

Note to Figure 13–9:
(1) Both circular and segmented buffers can use a predefined trigger position or define a custom trigger position using

the State-Based Triggering tab. Refer to “Specifying the Trigger Position” on page 13–44 for more details.

1 1 1 11 0 100 00(a) Circular Buffer

(b) Segmented Buffer

Newly
Captured

Data

Pre-Trigger Center Trigger Post-Trigger

Oldest Data
Removed (1)

1 1 1 11 0 1 1 00 00 1 0 11...

Segment
Trigger

Segment
Trigger

Segment
Trigger

Segment
Trigger

Segment 1 Segment 2 Segment 3 Segment 4

Altera Corporation 13–27
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Circular Buffer

The circular buffer (Figure 13–9 (a)) is the default buffer type used by the
SignalTap II Logic Analyzer. While the logic analyzer is running, data is
stored in the buffer until it fills up, at which point new data replaces the
oldest data. This continues until a specified trigger event occurs. When
this happens, the logic analyzer continues to capture data after the trigger
event until the buffer is full, based on the circular buffer trigger position
setting in the Signal Configuration pane in the SignalTap II file. Select a
setting from the list to choose whether to capture the majority of the data
before (Post trigger position) or after (Pre trigger position) the trigger
occurs or to center the trigger position in the data (Center trigger
position). Another option is to use the custom state-based triggering flow
to define your desired triggering position precisely. You can also choose
to continuously capture data until the logic analyzer is stopped.

For more information, refer to “Specifying the Trigger Position” on
page 13–44.

Segmented Buffer

The segmented buffer (Figure 13–9 (b)) organizes the buffer into a
number of separate, evenly sized segments. This type of buffer
organization makes it easier to debug systems that contain relatively
infrequent recurring events. Figure 13–10 shows an example of this type
of buffer system.

Figure 13–10. Example System that Generates Recurring Events

The SignalTap II Logic Analyzer verifies the functionality of the design
shown in Figure 13–10 to ensure that the correct data is written to the
SRAM controller. The buffer acquisition in the SignalTap II Logic

QDR SRAM
Controller

WADDR[17..0]

RADDR[17..0]

WDATA[35..0]

RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]

Q[17..0]

D[17..0]

BWSn[1..0]

RPSn

WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers
(Optional)

K_FB_OUT

K_FB_IN

C, Cn

SRAM Interface Signals

13–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Analyzer allows you to monitor the RDATA port when H'0F0F0F0F is sent
into the RADDR port. You can monitor multiple read transactions from the
SRAM device without running the SignalTap II Logic Analyzer again.
The buffer acquisition feature allows you to segment the memory so that
you can capture the same event multiple times without wasting the
allocated memory. The number of cycles that are captured depends on
the number of segments that you have specified under the Data settings.

To enable and configure buffer acquisition, select Segmented in the
SignalTap II Editor, and select the number of segments to use. In the
example, selecting sixty-four, 64-sample segments allows you to capture
64 read cycles when the RADDR signal is H'0F0F0F0F.

f For more information about the buffer acquisition mode, refer to Setting
the Buffer Acquisition Mode in the Quartus II Help.

Managing Multiple SignalTap II Files and Configurations

In some cases you may have more than one SignalTap II file in one
design. Each file potentially has a different group of monitored signals.
These signal groups make it possible to debug different blocks in your
design. In turn, each group of signals may also be used to define different
sets of trigger conditions. Along with each SignalTap II file, there is also
an associated programming file (SRAM Object File (SOF)). The settings in
a selected SignalTap II file must match the SignalTap II logic design in the
associated SOF file for the logic analyzer to run properly when the device
is programmed. Managing all of the SignalTap II files and their
associated settings and programming files is a challenging task. To help
you manage everything, you can use the Data Log feature and the
SOF Manager.

The Data Log allows you to store multiple SignalTap II configurations
within a single SignalTap II file. Figure 13–11 shows two signal set
configurations with multiple trigger conditions in one SignalTap II file. To
toggle between the active configurations, double-click on an entry in the
Data Log. As you toggle between the different configurations, the signal
list and trigger conditions change in the Setup tab of the SignalTap II file.
The active configuration displayed in the SignalTap II file is indicated by
the blue square around the signal set in the Data log. To store a
configuration in the data log, on the Edit menu, click Save to Data Log,
or click the Save to Data Log button at the top of the Data Log.

Altera Corporation 13–29
October 2007 Preliminary

Configure the SignalTap II Logic Analyzer

Figure 13–11. Data Log

The SOF Manager allows you to embed multiple SOFs into one
SignalTap II file. Embedding an SOF in a SignalTap II file lets you move
the SignalTap II file to a different location, either on the same computer
or across a network, without the need to include the associated SOF as a
separate file. To embed a new SOF in the SignalTap II file, right-click in
the SOF Manager, and click Attach SOF File (Figure 13–12).

Figure 13–12. SOF Manager

As you switch between configurations in the Data Log, you can extract
the SOF that is compatible with that particular configuration and use the
programmer in the SignalTap II Logic Analyzer to download the new
SOF to the FPGA. In this way, you ensure that the configuration of your
SignalTap II file always matches the design programmed into the target
device.

13–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Define Triggers To capture the data you want at the right time, you need to specify
conditions under which the signals you are monitoring display that data.
In the SignalTap II Logic Analyzer, these conditions are referred to as
triggers, just as they are in conventional external logic analyzers and
oscilloscopes. You have many options for creating different types of
triggers to help in your debugging.

Creating Basic Trigger Conditions

The simplest kind of trigger condition you can use is a basic trigger. You
select this from the list at the top of the Trigger Conditions column in the
node list in the SignalTap II Editor. With the trigger type set to Basic, you
must set the trigger pattern for each signal you have added in the
SignalTap II file. To set the trigger pattern, right-click in the Trigger
Conditions column and click the desired pattern. You can set the trigger
pattern to any of the following conditions:

■ Don’t Care
■ Low
■ High
■ Falling Edge
■ Rising Edge
■ Either Edge

For buses, you can type a pattern in binary, or right-click and select Insert
Value to enter the pattern in other number formats. For signals added to
the SignalTap II file that have an associated mnemonic table, you can
right-click and select an entry from the table to set pre-defined conditions
for the trigger.

For more information about the creation and use of mnemonic tables,
refer to “View, Analyze, and Use Captured Data” on page 13–63 and in
the Quartus II Help.

For signals added with certain plug-ins, you can easily create basic
triggers using pre-defined mnemonic table entries. For example, with the
Nios II plug-in, if you have specified an executable software (.elf) file
from your Nios II IDE design, you can type the name of a function from
your Nios II code. The logic analyzer triggers when the Nios II instruction
address matches the address of the specified code function name.

Data capture stops and the data is stored in the buffer when the logical
AND of all the signals for a given trigger condition evaluates to TRUE.

Altera Corporation 13–31
October 2007 Preliminary

Define Triggers

Creating Advanced Trigger Conditions

Along with the SignalTap II Logic Analyzer’s basic triggering
capabilities, you can build more complex triggers utilizing extra logic that
enable you to capture data when a particular combination of conditions
exist. If you set the trigger type to Advanced at the top of the Trigger
Conditions column in the node list of the SignalTap II Editor, a new tab
named Advanced Trigger appears where you can build a complex trigger
expression using a simple GUI. You can drag and drop operators into the
Advanced Trigger Configuration Editor window to build the complex
trigger condition in an expression tree. Double-click operators that you
have placed or right-click them and select Properties to configure the
operator's settings. Table 13–5 lists the operators you can use.

Table 13–5. Advanced Triggering Operators Note (1)

Name of Operator Type

Less Than Comparison

Less Than or Equal To Comparison

Equality Comparison

Inequality Comparison

Greater Than Comparison

Greater Than or Equal To Comparison

Logical NOT Logical

Logical AND Logical

Logical OR Logical

Logical XOR Logical

Reduction AND Reduction

Reduction OR Reduction

Reduction XOR Reduction

Left Shift Shift

Right Shift Shift

Bitwise Complement Bitwise

Bitwise AND Bitwise

Bitwise OR Bitwise

Bitwise XOR Bitwise

Edge and Level Detector Signal Detection

Note to Table 13–5:
(1) For more information about each of these operators, refer to the Quartus II Help.

13–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

You can configure some of the settings for certain operators at run-time.
This enables you to change one operator type to another operator type or
adjust other settings for an operator without recompiling your design.
Operator settings that have a white background on the operator symbol
can be changed without recompiling the design.

Adding many objects to the Advanced Trigger Condition Editor can
make the workspace cluttered and difficult to read. To keep objects
organized while you build your advanced trigger condition, use the
right-click menu and select Arrange All Objects. You can also use the
Zoom-Out command to fit more objects into the Advanced Trigger
Condition editor window.

Examples of Advanced Triggering Expressions

The following examples show how to use Advanced Triggering:

■ Trigger when bus outa is greater than or equal to outb
(Figure 13–13).

Figure 13–13. Bus outa is Greater Than or Equal to Bus outb

■ Trigger when bus outa is greater than or equal to bus outb, and
when the enable signal has a rising edge (Figure 13–14).

Altera Corporation 13–33
October 2007 Preliminary

Define Triggers

Figure 13–14. Enable Signal has a Rising Edge

■ Trigger when bus outa is greater than or equal to bus outb, or when
the enable signal has a rising edge. Or, when a bitwise AND operation
has been performed between bus outc and bus outd, and all bits of
the result of that operation are equal to 1 (Figure 13–15).

Figure 13–15. Bitwise AND Operation

13–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Trigger Condition Flow Control

SignalTap II offers multiple triggering conditions to give you more
precise control of the method in which data is captured into the
acquisition buffers. Trigger Condition Flow control allows you to define
the relationship between a set of triggering conditions. SignalTap II gives
you two flow control mechanisms for organizing trigger conditions:

■ Sequential Triggering—The default triggering flow. This flow allows
you to define up to ten triggering levels that must be satisfied before
the acquisition buffer finishes capturing.

■ Custom State-Based Triggering—This flow allows you the greatest
control over your acquisition buffer. This method allows you to
organize trigger conditions into states based on a conditional flow
that you define.

Both methods can be used with either a circular buffer or a segmented
buffer.

Sequential Triggering

The sequential triggering flow allows you to cascade up to ten levels of
triggering conditions. The SignalTap II Logic Analyzer sequentially
evaluates each of the triggering conditions. When the last triggering
condition evaluates to TRUE, the SignalTap II Logic Analyzer triggers the
acquisition buffer. For segmented buffers, every acquisition segment
after the first segment triggers on the last triggering condition that you
have specified. You can use the simple sequential triggering feature with
basic triggers, advanced triggers, or a mix of both. Figure 13–16 illustrates
the simple sequential triggering flow for circular and segmented buffers.

1 Note that the external trigger in is considered as trigger level 0.
The external trigger must be evaluated before the main trigger
levels are evaluated.

Altera Corporation 13–35
October 2007 Preliminary

Define Triggers

Figure 13–16. Sequential Triggering Flow Notes (1), (2)

Note to Figure 13–16:
(1) The Acquisition buffer stops capture when all n triggering levels are satisfied, where .
(2) An external trigger input, if defined, will be evaluated before all other defined trigger conditions are evaluated. For

more information about external triggers refer to “Using External Triggers” on page 13–47.

To configure the SignalTap II Logic Analyzer for Sequential triggering,
on the Trigger flow control list in the SignalTap II editor, select
Sequential. You can select the desired number of trigger conditions by
using the Trigger Conditions pull-down list. After you select the desired
number of trigger conditions, you can configure each trigger condition in
the node list. To disable any trigger condition, click the check box next to
the trigger condition at the top of the column in the node list. Figure 13–17
shows the setup tab for Sequential Triggering.

Circular Buffer Segmented Buffer

Trigger Condition n Acquisition Segment 1
trigger

Trigger Condition n Acquisition Segment 2
trigger

Trigger Condition n Acquisition Segment m
trigger

Acquisition Buffer
trigger

m - 2 transitions

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

n - 2 transitions

n - 2 transitions

Trigger Condition 1

Trigger Condition 2

n 10≤

13–36 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–17. Setup Tab

Custom State-Based Triggering

The custom state-based triggering method gives you the most control of
triggering condition arrangement. This flow gives you the ability to
describe the relationship between triggering conditions precisely, using
an intuitive GUI and the SignalTap II Trigger Flow Description
Language, a simple description language based upon conditional
expressions. Tooltips within the custom triggering flow GUI allow you to
describe your desired flow quickly. The custom state-based triggering
flow allows for more efficient use of the space available in the acquisition
buffer because only specific samples of interest are captured.

Figure 13–18 illustrates the custom state-based triggering flow. Events
that trigger the acquisition buffer are organized by a user-defined state
diagram. All actions performed by the acquisition buffer are captured by
the states and all the transition conditions between the states are defined
by the conditional expressions that you specify within each state.

Setup Tab

Trigger Conditions Pull-Down List

Altera Corporation 13–37
October 2007 Preliminary

Define Triggers

Figure 13–18. Custom State-Based Triggering Flow Note (1), (2)

Note to Figure 13–18:
(1) You are allowed up to twenty different states.
(2) An external trigger input, if defined, will be evaluated before any conditions in the custom state-based triggering

flow are evaluated. For more information, refer to “Using External Triggers” on page 13–47.

Each state allows you to define a set of conditional expressions. Each
conditional expression is a Boolean expression dependent upon a
combination of triggering conditions (configured within the Setup tab),
counters, and status flags. Counters and status flags are resources
provided by the Signal Tap II custom-based triggering flow.

Within each conditional expression you define a set of “actions”. Actions
include triggering the acquisition buffer to stop capture, a modification to
either a counter or status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented
acquisition buffer or to the entire circular acquisition buffer. Each trigger
action provides you with an optional count that specifies the number of
samples to be captured before stopping acquisition of the current
segment. The count argument allows you to control the amount of data
captured precisely before and after triggering event.

Resource manipulation actions allow you to increment and decrement
counters or set and clear status flags. The counter and status flag
resources are used as optional inputs in the conditional expressions.
Counters and status flags are useful for counting the number of
occurrences of particular events and for aiding in the triggering flow
control.

User-Defined Triggering Flow

Segmented Acquisition Buffer

Trigger Condition Set a

State 1:

Trigger Condition Set b

State 2:

Trigger Condition Set c

State 3:

Trigger Condition Set d

State n (last state):

First Acquisition Segment Acquisition Segment y Acquisition Segment z Last Acquisition Segment

Transition Condition i Transition Condition j Transition Condition l

segment_triggersegment_trigger segment_trigger segment_trigger

Transition Condition k

13–38 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

This Signal Tap II custom state-based triggering flow allows you to
capture a sequence of events that may not necessarily be contiguous in
time; for example, capturing a communication transaction between two
devices that includes a handshaking protocol containing a sequence of
acknowledgements.

The State-Based Trigger Flow tab is the control interface for the custom
state-based triggering flow. To enable this tab, on the Trigger Flow
Control pull-down list, select State-based. (Note that when the Trigger
Flow control option is set to Sequential, the State-Based Trigger Flow
tab is hidden.)

Figure 13–19 shows the Custom Trigger Flow tab.

Figure 13–19. State-Based Trigger Flow Tab

The State-Based Trigger Flow tab is partitioned into the following three
panes.

■ State Diagram Pane
■ Resources Pane
■ State Machine Pane

State-Based Trigger Flow Tab

Altera Corporation 13–39
October 2007 Preliminary

Define Triggers

State Diagram Pane
The State Diagram pane provides a graphical overview of the triggering
flow that you define. It shows the number of states available and the state
transitions between all of the states. You can adjust the number of
available states by using the pull-down menu above the graphical
overview.

State Machine Pane
The State Machine pane contains the text entry boxes where you can
define the triggering flow and the actions associated with each state. You
can define the triggering flow using the Signal Tap II Trigger Flow
Description Language, a simple language based upon if-else conditional
statements. Tooltips appear when you move the mouse over the cursor,
to guide command entry into the state boxes. The GUI provides a syntax
check on your flow description in real-time and highlights any errors in
the text flow.

1 Refer to “SignalTap II Trigger Flow Description Language” on
page 13–40 for a full description of the SignalTap II Trigger Flow
Description Language. You can also refer to the Quartus II Help.

The State Machine description text boxes default to show one text box per
state. You can optionally have the entire flow description be shown in a
single text field. This option can be useful when copying and pasting a
flow description from a template or an external text editor. To toggle
between one window per state, or all states in one window, select the
appropriate option under State Display mode.

Resources Pane
The Resources pane allows you to declare Status Flags and Counters for
use in the conditional expressions in the Custom Triggering Flow.
Actions to decrement and increment counters or to set and clear status
flags are performed within the triggering flow that you define.

You can set up to 20 counters and 20 status flags for use. Counter and
status flags values may be initialized by right-clicking the status flag or
counter name after selecting a number of them from the respective
drop-down list, and selecting Set Initial Value. Counter width can be set
by right-clicking the counter name and selecting Set Width.

13–40 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Runtime Reconfigurability—The configurable at runtime options in the
Resources pane allows you to configure the custom-flow control options
that can be changed at runtime without requiring a recompilation.
Table 13–6 contains a description of options that can be reconfigured at
runtime.

You can restrict changes to your SignalTap configuration to include only
the options that do not require a recompilation by using the pull-down
menu above the trigger list in the Setup tab. The option Allow trigger
condition changes only restricts changes to only the configuration
settings that the runtime configurable option set. You can then modify
Trigger Flow conditions in the Custom Trigger Flow tab by clicking the
desired parameter in the text box, and selecting a new parameter from the
menu that appears.

1 The runtime configurable settings for the Custom Trigger Flow
tab are on by default. You may get some performance
advantages by disabling some of the runtime configurable
options. Refer to “Performance and Resource Considerations”
on page 13–55 for details about the effects of turning off the
runtime modifiable options.

SignalTap II Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional
expressions per state to define a set of actions. Each line in Example 13–1
shows a language format. Keywords are shown in bold. Non-terminals
are delimited by “<>” and are further explained in the following sections.
Optional arguments are delimited by “[] “.

1 Examples of Triggering Flow descriptions for common
scenarios using the Signal Tap II Custom Triggering Flow are
provided in the section, “Custom Triggering Flow Application
Examples” on page 13–77.

Table 13–6. Runtime Configurable Settings

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows comparison values in Boolean expressions to be modifiable at runtime. In
addition, it allows the segment_trigger and trigger action post-fill count
argument to be modifiable at runtime.

Comparison operators Allows comparison operators in Boolean expressions to be modifiable at runtime.

Logical operators Allows the logical operators in Boolean expressions to be modifiable at runtime.

Altera Corporation 13–41
October 2007 Preliminary

Define Triggers

Example 13–1. Trigger Flow Description Language Format Note (1)
state <State_label>:
<action_list>

or

state <State_label>:
if(<Boolean_expression>)
<action_list>
[else if (<boolean_expression>)
 <action_list>] (1)
[else
 <action_list>]

Notes to Example 13–1:
(1) Multiple else if conditions are allowed.

The priority for evaluation of conditional statements is assigned from top
to bottom. The <boolean_expression> in an if statement can contain a
single event, or it can contain multiple event conditions. The
action_list embedded within an if or an else if clause must be
delimited by the begin and end tokens when the action list contains
multiple statements. When the boolean expression is evaluated true, the
logic analyzer analyzes all of the commands in the action list
concurrently. The possible actions include:

■ Triggering the acquisition buffer
■ Manipulating a counter or status flag resource
■ Defining a state transition

State Labels

State Labels are identifiers that can be used in the action goto.

state <state_label>: begins the description of the actions evaluated
when this state is reached.

The description of a state ends with the beginning of another state or the
end of the whole trigger flow description.

Boolean_expression

Boolean_expression is a collection of logical operators, relational
operators, and their operands that evaluate into a Boolean result.
Depending on the operator, the operand can be a reference to a trigger
condition, a counter and a register, or a numeric value. Within an
expression, parentheses can be used to group a set of operands.

13–42 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Logical operators accept any boolean expression as an operand. The
supported Logical operators are shown in Table 13–7.

Relational operators are performed on counters or status flags. The
comparison value—the right operator—must be a numerical value. The
supported Relational operators are shown in Table 13–8.

Action_list

Action_list is a list of actions that can be performed when a state is
reached and a condition is also satisfied. If more than one action is
specified, they must be enclosed by begin and end. The actions can be
categorized as resource manipulation actions, buffer control actions and
state transition actions. Actions must be embedded within a condition
statement if condition statements are used in a state. Each action is
terminated by a semicolon.

Table 13–7. Logical Operators

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 13–8. Relational Operators

Operator Description Syntax Notes (1) (2)

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal to <identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to Table 13–8:
(1) <identifier> indicates a counter or status flag
(2) <numerical_value> indicates an integer

Altera Corporation 13–43
October 2007 Preliminary

Define Triggers

Resource Manipulation Action

The resources used in the trigger flow description can be either counters
or status flags. Table 13–9 shows the description and syntax of each
action.

Buffer Control Action

Buffer control actions specify an action to control the acquisition buffer.
Table 13–10 shows the description and syntax of each action,

Both trigger and segment_trigger actions accept an optional
post-fill count argument. If provided, the current acquisition acquires the
number of samples provided by post-fill count and then stops
acquisition. If no post-count value is specified, the trigger position for the
affected buffer defaults to the trigger position specified in the setup tab.

Table 13–9. Resource Manipulation Action

Action Description Syntax

Increment Increments a counter resource by 1 increment <counter_identifier>;

Decrement Decrements a counter resource by 1 decrement <counter_identifier>;

Reset Resets counter resource to initial value reset <counter_identifier>;

Set Sets a status Flag to 1 set <register_flag_identifier>;

Clear Sets a status Flag to 0 clear <register_flag_identifier>;

Table 13–10. Buffer Control Action

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in
every flow definition.

trigger <post-fill_count>;

segment_trigger Ends the acquisition of the current segment.
The Signal Tap II Logic Analyzer starts
acquiring from the next segment upon
evaluating this command. If all segments are
filled, the oldest segment is overwritten with the
latest sample. The acquisition stops when a
trigger action is evaluated.
This action cannot be used in non-segmented
acquisition mode.

segment_trigger <post-fill_count>;

13–44 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 Note that in the case of segment_trigger, acquisition of the
current buffer stops immediately if a subsequent triggering
action is issued in the next state, regardless of whether or not the
post-fill count has been satisfied for the current buffer. The
remaining unfilled post-count acquisitions in the current buffer
are discarded and displayed as grayed-out samples in the data
window.

State Transition Action

State transition action specifies the next state in the custom state control
flow. It is specified by the goto command. The syntax is as follows:

goto <state_label>;

Specifying the Trigger Position

The SignalTap II Logic Analyzer allows you to specify the amount of data
that is acquired before and after a trigger event. You can set the trigger
position independently between a Runtime and Power-Up Trigger. Select
the desired ratio of pre-trigger data to post-trigger data by choosing one
of the following ratios:

■ Pre—This selection saves signal activity that occurred after the
trigger (12% pre-trigger, 88% post-trigger).

■ Center—This selection saves 50% pre-trigger and 50% post-trigger
data.

■ Post—This selection saves signal activity that occurred before the
trigger (88% pre-trigger, 12% post-trigger).

These pre-defined ratios apply to both circular buffers and segmented
buffers.

If you use the custom-state based triggering flow, you can specify a
custom trigger position. The segment_trigger and trigger actions
accept a post-fill count argument. The post-fill count specifies the number
of samples to capture before stopping data acquisition for the circular
buffer or a data segment when using the trigger and
segment_trigger commands, respectively. When the captured data is
displayed in the SignalTap II data window, the trigger position appears
as the number of post-count samples from the end of the acquisition
segment or buffer. Refer to Equation 1:

(1)

In this case, N is the sample depth of either the acquisition segment or
circular buffer.

Sample Number of Trigger Position N Post-Fill Count–()=

Altera Corporation 13–45
October 2007 Preliminary

Define Triggers

For segmented buffers, the acquisition segments that have a post-count
argument defined use the post-count setting. Segments that do not have
a post-count setting default to the trigger position ratios defined in the
Setup tab.

For more details about the Custom-State based triggering flow, refer to
“Custom State-Based Triggering” on page 13–36.

Creating a Power-Up Trigger

Typically, the SignalTap II Logic Analyzer is used to trigger on events
that occur during normal device operation. You start an analysis
manually once the target device is fully powered on and the device’s
JTAG connection is available. However, there may be cases when you
would like to capture trigger events that occur during device
initialization immediately after the FPGA is powered on or reset. With
the SignalTap II Power-Up Trigger feature, you can capture data from
triggers that occur after device programming but before the logic
analyzer is started manually.

Enabling a Power-Up Trigger

A different Power-Up Trigger can be added to each logic analyzer
instance in the SignalTap II Instance Manager. To enable the Power-Up
Trigger for a logic analyzer instance, right-click the instance, and click
Enable Power-Up Trigger, or select the instance, and on the Edit menu,
click Enable Power-Up Trigger. To disable a Power-Up Trigger, click
Disable Power-Up Trigger in the same locations. Power-Up Trigger is
shown as a child instance below the name of the selected instance with
the default trigger conditions set in the node list. Figure 13–20 shows the
SignalTap II Editor when a Power-Up Trigger is enabled.

13–46 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–20. SignalTap II Editor with Power-Up Trigger Enabled

Managing and Configuring Power-Up and Runtime Trigger Conditions

When the Power-Up Trigger is enabled for a logic analyzer instance, you
create basic and advanced trigger conditions for it in the same way you
do with the regular trigger, also called the Runtime Trigger. Power-Up
Trigger conditions that you can adjust are color coded light blue, while
Run-Time Trigger conditions remain white. Since each instance now has
two sets of trigger conditions, the Power-Up Trigger and the Run-Time
Trigger, you can differentiate between the two with the color coding. To
switch between the trigger conditions of the Power-Up Trigger and the
Runtime Trigger, double-click the instance name or the Power-Up
Trigger name in the Instance Manager.

You cannot make changes to the Power-Up Trigger conditions that would
normally require a full recompile with Runtime Trigger conditions, such
as adding signals, deleting signals, or changing between basic and
advanced triggers. For these changes to be applied to the Power-up
Trigger conditions, you must first make the changes using the Runtime
Trigger conditions.

Altera Corporation 13–47
October 2007 Preliminary

Define Triggers

1 Any change made to the Power-Up Trigger conditions requires
that the SignalTap II Logic Analyzer be recompiled, even if a
similar change to the Runtime Trigger conditions does not
require a recompilation.

While creating or making changes to the trigger conditions for the
Run-Time Trigger or the Power-Up Trigger, you may want to copy these
conditions to the other trigger. This makes it easy to look for the same
trigger during both power-up and runtime. To do this, right-click the
instance name or the Power-Up Trigger name in the Instance Manager,
and click Duplicate Trigger, or select the instance name or the Power-Up
Trigger name and, on the Edit menu, click Duplicate Trigger.

For information about running the SignalTap II Logic Analyzer instance
with a Power-Up Trigger enabled, refer to “Running with a Power-Up
Trigger” on page 13–60.

Using External Triggers

You can create a trigger input that allows you to trigger the SignalTap II
Logic Analyzer from an external source. The external trigger input
behaves like trigger condition 1. It is evaluated and must be true before
any other configured trigger conditions are evaluated. The analyzer can
also supply a signal to trigger external devices or other SignalTap II
instances. These features allow you to synchronize external logic analysis
equipment with the internal logic analyzer. Power-Up Triggers can use
the external triggers feature, but they must use the same source or target
signal as their associated Run-Time Trigger.

Trigger In

To use Trigger In, perform the following steps:

1. In the SignalTap II Editor, click the Setup tab.

2. If a Power-Up Trigger is enabled, make sure you are viewing the
Runtime Trigger conditions.

3. In the Signal Configuration pane, turn on Trigger In.

4. In the Pattern list, select the condition you want to act as your
trigger event. You can set this separately for a Runtime or a
Power-Up Trigger.

5. Click Browse next to the Source field in the Trigger In pane
(Figure 13–22 on page 13–50). The Node Finder dialog box appears.

13–48 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

6. In the Node Finder dialog box, select the signal (either an input pin
or an internal signal) that you want to drive the Trigger In source,
and click OK.

If you type a new signal name in the Source field, you create a new
node that you can assign to an input pin in the Pin Planner or
Assignment editor. If you leave the Source field blank, a default
name is entered in the form auto_stp_trigger_in_<SignalTap
instance number>.

Trigger Out

To use Trigger Out, perform the following steps:

1. In the SignalTap II Editor, click the Setup tab.

2. If a Power-Up trigger is enabled, make sure you are viewing the
Runtime Trigger conditions.

3. In the Signal Configuration pane, turn on Trigger Out (refer to
Figure 13–21 on page 13–49)

4. In the Level list, select the condition you want to signify that the
trigger event is occurring. You can set this separately for a
Run-Time or a Power-Up Trigger.

5. Type a new signal name in the Target field. A new node name is
created that you must assign to an output pin in the Pin Planner or
Assignment editor.

If you leave the Target field blank, a default name is entered in the
form auto_stp_trigger_out_<SignalTap instance number>.
When the logic analyzer triggers, a signal at the level you indicated
will be output on the pin you assigned to the new node.

Using the Trigger Out of One Analyzer as the Trigger In of Another
Analyzer

An advanced feature of the SignalTap II Logic Analyzer is the ability to
use the Trigger Out of one analyzer as the Trigger In to another analyzer.
This feature allows you to synchronize and debug events that occur
across multiple clock domains.

Altera Corporation 13–49
October 2007 Preliminary

Define Triggers

To perform this operation, first enable the Trigger Out of the source logic
analyzer instance. On the Trigger out Target list, select the targeted logic
analyzer instance. For example, if the instance named
auto_signaltap_0 should trigger auto_signaltap_1, select
auto_signaltap_1|trigger_in from the list (Figure 13–21).

Figure 13–21. Configuring the Trigger Out Signal

■ This automatically enables the Trigger In of the targeted logic
analyzer instance and fills in the Trigger In Source field with the
Trigger Out signal from the source logic analyzer instance. In this
example, auto_signaltap_0 is targeting auto_signaltap_1.
The Trigger In Source field of auto_signaltap_1 is automatically
filled in with auto_signaltap_0|trigger_out (Figure 13–22).

Target Set to Trigger in of
auto_signaltap_1

13–50 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–22. Configuring the Trigger In Signal

Compile the
Design

When you add a SignalTap II file to your project, the SignalTap II Logic
Analyzer becomes part of your design. You must compile your project to
incorporate the SignalTap II logic and enable the JTAG connection that is
used to control the logic analyzer. When you are debugging with a
traditional external logic analyzer, it is often necessary to make changes
to the signals monitored as well as the trigger conditions. Since these
adjustments often translate into recompilation time when using the
SignalTap II Logic Analyzer, you can use the SignalTap II Logic Analyzer
feature along with incremental compilation in the Quartus II software to
reduce time spent recompiling.

Source Set to Trigger out of
auto_signaltap_1

Enabling
Trigger in

Altera Corporation 13–51
October 2007 Preliminary

Compile the Design

Faster Compilations with Quartus II Incremental Compilation

To use Incremental compilation with the SignalTap II Logic Analyzer,
you must perform the following steps:

■ Enable Full Incremental Compilation for your design
■ Assign design partitions
■ Set partitions to the proper preservation levels
■ Enable SignalTap for your design
■ Add signals to SignalTap using the appropriate netlist filter in the

node finder (either SignalTap II: pre-synthesis or SignalTap II:
post-fitting).

When you compile your design with a SignalTap II file, the
sld_signaltap and sld_hub entities are automatically added to the
compilation hierarchy. These two entities are the main components of the
SignalTap II Logic Analyzer, providing the trigger logic and JTAG
interface required for operation.

Incremental compilation enables you to preserve the synthesis and fitting
results of your original design and add the SignalTap II Logic Analyzer
to your design without recompiling your original source code. This
feature is also useful when you want to modify the configuration of the
SignalTap II file. For example, you can modify the buffer sample depth or
memory type without performing a full compilation after the change is
made. Only the SignalTap II Logic Analyzer, configured as its own
design partition, must be recompiled to reflect the changes.

To use incremental compilation, you must first enable Full Incremental
Compilation for your design if it is not already enabled, assign design
partitions if necessary, and set the design partitions to the correct
preservation levels. Incremental compilation is the default setting for
new projects in the Quartus II software, so you can establish design
partitions immediately in a new project. However, it is not necessary to
create any design partitions to use the SignalTap II Incremental
Compilation feature. Once your design is set up to use full incremental
compilation, the SignalTap II Logic Analyzer acts as its own separate
design partition. You can begin taking advantage of incremental
compilation by using the SignalTap II: post-fitting filter in the Node
Finder to add signals for logic analysis.

Enabling Incremental Compilation for your Design

To enable Incremental Compilation if it is not already enabled, perform
the following steps:

1. On the Assignments menu, click Design Partitions window.

13–52 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

2. In the Incremental Compilation list, select Full Incremental
Compilation.

3. Create user-defined partitions if desired and set the Netlist Type to
Post-fit for all partitions.

1 The netlist type for the top-level partition defaults to source. To
take advantage of incremental compilation, you must set the
Netlist types for the partitions you wish to tap as post-fit.

4. On the Processing menu, click Start Compilation, or click Start
Compilation on the toolbar.

Your project is fully compiled the first time, establishing the design
partitions you have created. When enabled for your design, the
SignalTap II Logic Analyzer will always be a separate partition. After the
first compilation, you can use the SignalTap II Logic Analyzer to analyze
signals from the post-fit netlist. If your partitions are set correctly,
subsequent compilations due to SignalTap II settings are able to take
advantage of the shorter compilation times.

f For more information about configuring and performing Incremental
Compilation, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

Using Incremental Compilation with the SignalTap II Logic Analyzer

The SignalTap II Logic Analyzer is automatically configured to work
with the incremental compilation flow. For all signals that you want to
connect to the SignalTap II Logic Analyzer from the post-fit netlist, set the
netlist type of the partition containing the desired signals to Post-Fit or
Post-Fit (Strict) with a Fitter Preservation Level of Placement and Routing
using the Design Partitions window. Use the SignalTap II: post-fitting
filter in the Node Finder to add the signals of interest to your
SignalTap II configuration file. If you want to add signals from the pre-
synthesis netlist, set the netlist type to Source File and use the
SignalTap II: pre-synthesis filter in the Node Finder. Do not use the
netlist type Post-Synthesis with the SignalTap II Logic Analyzer.

c Be sure to conform to the following guidelines when using
post-fit/pre-synthesis nodes:

● Read all incremental compilation guidelines to ensure the
proper partition of a project.

● To speed compile time, use only post-fit nodes for partitions set
to preservation level post-fit.

Altera Corporation 13–53
October 2007 Preliminary

Compile the Design

● Do not mix pre-synthesis and post-fit nodes in any partition. If
you must tap presynthesis nodes for a particular partition, make
all tapped nodes in that partition presynthesis nodes and change
the netlist type to source in the design partitions window.

Node names may be different between a pre-synthesis netlist and a post-
fit netlist. In general, registers and user input signals share common
names between the two netlists. During compilation, certain
optimizations will change the names of combinational signals in your
RTL. If the type of node name chosen does not match the netlist type, the
compiler may not be able to find the signal to connect to your SignalTap II
Logic Analyzer instance for analysis. The compiler will issue a critical
warning to warn you of this scenario. The signal that is not connected is
tied to ground in the SignalTap II data tab.

If you do use incremental compile flow with the SignalTap II Logic
Analyzer and source file changes are necessary, be aware that you may
have to remove compiler-generated post-fit net names. Source code
changes force the affected partition to go through a resynthesis. During
synthesis, the compiler cannot find compiler-generated net names from a
previous compilation. Altera recommends you use only registered and
user input signals as debugging taps in your STP file whenever possible.
Both registered and user-supplied input signals share common node
names in the pre-synthesis and post-fit netlist. As a result, using only
registered and user-supplied input signals in your STP file limits the
changes you need to make to your SignalTap configuration.

To verify that your original design was not modified, examine the
messages in the Partition Merge section of the Compilation Report.
Figure 13–23 shows an example of the messages displayed.

13–54 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 13–23. Compilation Report Messages

Unless you make changes to your design partitions that require
recompilation, only the SignalTap II design partition is recompiled. If you
make subsequent changes to only the SignalTap II file, only the
SignalTap II design partition must be recompiled, reducing your
recompilation time.

Preventing Changes Requiring Recompilation

You can configure the SignalTap II file to prevent changes that normally
require a recompilation. You do this by selecting a lock mode from above
the node list in the Setup tab. Whether or not you are using incremental
compilation, you can lock your configuration by choosing to allow only
trigger condition changes.

f For more information about the use of lock modes, refer to the Quartus II
Help.

Timing Preservation with the SignalTap II Logic Analyzer

In addition to verifying functionality, timing closure is one of the most
crucial processes in successfully completing a design. When you compile
a project with a SignalTap II Logic Analyzer without the use of
incremental compilation, you add IP to your existing design. Therefore,
you can affect the existing placement, routing, and timing of your design.
To minimize the effect that the SignalTap II Logic Analyzer has on your
design, Altera recommends that you use incremental compilation for

Altera Corporation 13–55
October 2007 Preliminary

Compile the Design

your project. Incremental compilation is the default setting in new
designs and can be easily enabled and configured in existing designs.
With the SignalTap II Logic Analyzer in its own design partition, it has
little to no affect on your design.

In addition to using the incremental compilation flow for your design,
you can use the following techniques to help maintain timing:

■ Avoid adding critical path signals to your SignalTap II file.
■ Minimize the number of combinational signals you add to your

SignalTap II file, and add registers whenever possible.
■ Specify an fMAX constraint for each clock in your design.

f For an example of timing preservation with the SignalTap II Logic
Analyzer, refer to the Area and Timing Optimization chapter in volume 2
of the Quartus II Handbook.

Performance and Resource Considerations

There is an inherent trade-off between runtime flexibility of the
SignalTap II Logic Analyzer, timing performance of the Signal Tap II
Logic Analyzer, and the resource usage. The SignalTap II Logic Analyzer
allows you to select the runtime configurable parameters to balance the
need for runtime flexibility, speed, and area. The default values have
been chosen to provide maximum flexibility so you can reach debugging
closure as quickly as possible; however, you can adjust these settings to
determine whether there is a more optimal configuration for your design.

The suggestions in this section provide some tips to provide extra timing
slack if you have determined that the SignalTap II logic is in your critical
path, or to alleviate the resource requirements that the SignalTap II Logic
Analyzer consumes if your design is resource-constrained.

If the SignalTap II logic is part of your critical path, the following
suggestions can help to speed up the performance of the SignalTap II
Logic Analyzer:

■ Disable runtime configurable options—Certain resources are
allocated to accommodate for run-time flexibility. If you are using
either advanced triggers or the state-based triggering flow, you can
disable run-time configurable parameters for a boost in fMAX of the
SignalTap II logic. If you are using the state-based triggering flow,
try disabling the Goto state destination option and performing a
recompilation before disabling the other runtime configurable
options. The Goto state destination option has the greatest impact
on fMAX as compared to the other runtime configurable options.

13–56 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Minimize the number of signals that have Trigger Enable
selected—All of the signals that you add to the SignalTap II file have
Trigger Enable turned on. Turn off Trigger Enable for signals that
you do not plan to use as triggers.

■ Turn on Physical Synthesis for register retiming—If you have a
large number of triggering signals enabled (greater than the number
of inputs that would fit in a LAB) that fan-in to logic gate-based
triggering condition, such as a basic trigger condition or a logical
reduction operator in the advanced trigger tab, turn on the Perform
register retiming. This can help balance combinational logic across
LABs.

If your design is resource constrained, the following suggestions can help
to reduce the amount of logic or memory used by the SignalTap II Logic
Analyzer:

■ Disable runtime configurable options—Disabling runtime
configurability for the advanced trigger conditions or the runtime
configurable options in the state-based triggering flow will result in
less LE usage.

■ Minimize the number of segments in the acquisition buffer—You
can reduce the number of logic resources used for the SignalTap II
Logic Analyzer by limiting the number of segments in your sampling
buffer to only that which is required.

■ Disable the Data Enable for signals that are used for triggering
only—By default, both the data enable and trigger enable options are
selected for all signals. Turning off the data enable option for signals
used as trigger inputs only will save on memory resources used by
the SignalTap II Logic Analyzer.

Because performance results are design-dependent, try these options in
different combinations until you achieve the desired balance between
functionality, performance, and utilization.

f For more information about area and timing optimization, refer the Area
and Timing Optimization chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 13–57
October 2007 Preliminary

Program the Target Device or Devices

Program the
Target Device or
Devices

Once your project, including the SignalTap II Logic Analyzer, is
compiled, you must configure the FPGA target device. When you are
using the SignalTap II Logic Analyzer for debugging, you can configure
the device from the SignalTap II file instead of the Quartus II
Programmer. Because you configure from the SignalTap II file, you can
open more than one SignalTap II file and program multiple devices to
debug multiple designs simultaneously.

The settings in a SignalTap II file must be compatible with the
programming (SOF) file used to program the device. A SignalTap II file is
considered compatible with an SOF when the settings for the logic
analyzer, such as the size of the capture buffer and the signals selected for
monitoring or triggering, match the way the target device will be
programmed. If the files are not compatible, you will still be able to
program the device, but you will not be able to run or control the logic
analyzer from the SignalTap II Editor.

To ensure programming compatibility, make sure to program your
device with the latest SOF created from the most recent compilation.

Before starting a debugging session, do not make any changes to the
SignalTap II file settings that would require the project to be recompiled.
You can check the SignalTap II status display at the top of the Instance
Manager to see if a change you made requires the design to be
recompiled, producing a new SOF. This gives you the opportunity to
undo the change, so that a recompilation is not necessary. To prevent any
such changes, enable a lock mode in the SignalTap II file.

Programming a Single Device

To configure a single device for use with the SignalTap II Logic Analyzer,
perform the follow steps:

1. In the JTAG Chain Configuration pane in the SignalTap II Editor,
select the connection you use to communicate with the device from
the Hardware list. If you need to add your communication cable to
the list, click Setup to configure your connection.

2. Click Browse in the JTAG Chain Configuration pane, and select
the SOF file that includes the compatible SignalTap II Logic
Analyzer.

3. Click Scan Chain. The Scan Chain operation enumerates all of the
JTAG devices within your JTAG chain.

13–58 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

4. In the Device list, select the device to which you want to download
the design. The device list shows an ordered list of all devices in the
JTAG chain.

All of the devices are numbered sequentially according to their
position in the JTAG chain, prefixed with the “@”. For example:
@1 : EP3C25 (0x020F30DD) lists a Cyclone III device as the first
device in the chain, with the JTAG ID code of 0x020F30DD.

5. Click the Program Device icon.

Programming Multiple Devices to Debug Multiple Designs

You can simultaneously debug multiple designs using one instance of the
Quartus II software by performing the following steps:

1. Create, configure, and compile each project that includes a
SignalTap II file.

2. Open each SignalTap II file.

1 You do not have to open a Quartus II project to open a
SignalTap II file.

3. Use the JTAG Chain Configuration pane controls to select the
target device in each SignalTap II file.

4. Program each FPGA.

5. Run each analyzer independently.

Figure 13–24 shows a JTAG chain and its associated SignalTap II files.

Figure 13–24. JTAG Chain

Stratix FPGA1

STP1

Stratix FPGA2

STP2

Stratix FPGA3

STP3

Communication
Cable

Altera Corporation 13–59
October 2007 Preliminary

Run the SignalTap II Logic Analyzer

Run the
SignalTap II
Logic Analyzer

After the device is configured with your design that includes the
SignalTap II Logic Analyzer, you can perform debugging operations in a
manner similar to the use of an external logic analyzer. You “arm” the
logic analyzer by starting an analysis. When your trigger event occurs,
the captured data is stored in the memory buffer on the device and then
transferred to the SignalTap II file over the JTAG connection. You can
also perform the equivalent of a “force trigger” that lets you view the
captured data currently in the buffer without a trigger event occurring.
Figure 13–25 illustrates a flow that shows how you operate the
SignalTap II Logic Analyzer. The flowchart indicates where Power-Up
and Run-Time Trigger events occur and when captured data from these
events is available for analysis.

Figure 13–25. Power-Up and runtime Trigger Events Flowchart

Compile Design

Start

End

Yes

NoTrigger
Occurred?

No

Yes

Yes

No
Changes
Require

Recompile?

Continue
Debugging?

Program Device

Manually Run
SignalTap II

Logic Analyzer

Analyze Data:
Power-Up or

Run-Time Trigger

No

Yes Data
Downloaded?

Manually Read
Data from Device

Make Changes
to Setup

(If Needed)

Possible Missed
Trigger

(Unless Power-Up
Trigger Enabled)

Manually
Stop Analyzer

13–60 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The SignalTap II toolbar in the Instance Manager has four options for
running the analyzer:

■ Run Analysis—The SignalTap II Logic Analyzer runs until the
trigger event occurs. When the trigger event occurs, monitoring and
data capture stops once the acquisition buffer is full.

■ AutoRun Analysis—The SignalTap II Logic Analyzer continuously
captures data until the Stop Analysis button is clicked, ignoring all
trigger event conditions.

■ Stop Analysis—SignalTap II analysis stops. The acquired data does
not appear automatically if the trigger event has not occurred.

■ Read Data—Captured data is displayed. This button is useful if you
want to view the acquired data even if the trigger has not occurred.

Running with a Power-Up Trigger

If you have enabled and set up a Power-Up Trigger for an instance of the
SignalTap II Logic Analyzer, the captured data may already be available
for viewing if the trigger event occurred after device configuration. To
download the captured data or to check if the Power-Up Trigger is still
running, click Run Analysis in the Instance Manager. If the Power-Up
Trigger occurred, the logic analyzer immediately stops, and the captured
data is downloaded from the device. The data can now be viewed on the
Data tab of the SignalTap II Editor. If the Power-Up Trigger did not occur,
no captured data is downloaded, and the logic analyzer continues to run.
You can wait for the Power-Up Trigger event to occur, or, to stop the logic
analyzer, click Stop Analysis.

Running with Runtime Triggers

You can arm and run the SignalTap II Logic Analyzer manually after
device configuration to capture data samples based on the Runtime
Trigger. You can do this immediately if there is no Power-Up Trigger
enabled. If a Power-Up Trigger is enabled, you can do this after the
Power-Up Trigger data is downloaded from the device or once the logic
analyzer is stopped because the Power-Up Trigger event did not occur.
Click Run Analysis in the SignalTap II Editor to start monitoring for the
trigger event. You can start multiple SignalTap II instances at the same
time by selecting all of the required instances before you click Run
Analysis on the toolbar.

Unless the logic analyzer is stopped manually, data capture begins when
the trigger event evaluates to TRUE. When this happens, the captured
data is downloaded from the buffer. You can view the data in the Data
tab of the SignalTap II Editor.

Altera Corporation 13–61
October 2007 Preliminary

Run the SignalTap II Logic Analyzer

Performing a Force Trigger

Sometimes when you use an external logic analyzer or oscilloscope, you
want to see the current state of signals without setting up or waiting for a
trigger event to occur. This is referred to as a “force trigger” operation,
because you are forcing the test equipment to capture data without
regard to any set trigger conditions. With the SignalTap II Logic
Analyzer, you can choose to run the analyzer and capture data
immediately or run the analyzer and capture data when you want.

f For more information, refer to the Design Debugging Using In-System
Sources and Probes chapter in volume 3 of the Quartus II Handbook.

To run the analyzer and immediately capture data, disable the trigger
conditions by turning off each Trigger Condition column in the node list.
This operation does not require a recompilation. Click Run Analysis in
the Instance Manager. The SignalTap II Logic Analyzer immediately
triggers, captures, and downloads the data to the Data tab of the
SignalTap II Editor. If the data does not download automatically, click
Read Data in the Instance Manager.

If you want to choose when to capture data manually, it is not required
that you disable the trigger conditions. Click Autorun Analysis to start
the logic analyzer, and click Stop Analysis to capture data. If the data
does not download to the Data tab of the SignalTap II Editor
automatically, click Read Data.

Finally, you can choose to capture data manually after a trigger event has
occurred. This is useful if you still want the trigger event to occur, but you
want to capture data about the signals at some point after the trigger
without capturing the trigger event itself. To do this, set the Buffer
acquisition mode to Circular and Continuous, and click Run Analysis.
When the trigger event occurs, the status in the SignalTap II Health
Monitor is shown as Acquiring post-trigger data, but the logic
analyzer does not stop. When you want to capture and download the
data, click Stop Analysis. If the data does not download automatically,
click Read Data.

f You can also use In-System Sources and Probes in conjunction with the
SignalTap II Logic Analyzer to force trigger conditions. The In-System
Sources and Probes feature allows you to drive and sample values on to
selected nets over the JTAG chain. For more information, refer to the
Design Debugging Using In-System Sources and Probes chapter in volume 3
of the Quartus II Handbook.

13–62 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II Status Messages

Table 13–11 describes the text messages that may appear in the
SignalTap II Health Monitor in the Instance Manager before, during, and
after a data acquisition. Use these messages to know the state of the logic
analyzer or what operation it is performing.

1 In segmented acquisition mode, pre-trigger and post-trigger do
not apply.

Table 13–11. Text Messages in the SignalTap II Health Monitor

Message Message Description

Not running The SignalTap II Logic Analyzer is not running. There is no
connection to a device or the device is not configured.

(Power-Up Trigger) Waiting
for clock (1)

The SignalTap II Logic Analyzer is performing a Runtime or
Power-Up Trigger acquisition and is waiting for the clock signal to
transition.

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data
is collected if the circular buffer acquisition mode is selected.

Trigger In conditions met Trigger In condition has occurred. The SignalTap II Logic Analyzer is
waiting for the condition of the first trigger condition to occur. This
can appear if Trigger In is specified.

Waiting for (Power-up)
trigger (1)

The SignalTap II Logic Analyzer is now waiting for the trigger event
to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The SignalTap II
Logic Analyzer is waiting for the condition specified in condition x + 1
to occur.

Acquiring (power-up)
post-trigger data (1)

The whole trigger event has occurred. The SignalTap II Logic
Analyzer is acquiring the post-trigger data. The amount of
post-trigger data collected is user-defined between 12%, 50%, and
88% when the circular buffer acquisition mode is selected.

Offload acquired (Power-Up)
data (1)

Data is being transmitted to the Quartus II software through the
JTAG chain.

Ready to acquire The SignalTap II Logic Analyzer is waiting for the user to arm the
analyzer.

Note to Table 13–11:
(1) This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger,

the text in parentheses is added.

Altera Corporation 13–63
October 2007 Preliminary

View, Analyze, and Use Captured Data

View, Analyze,
and Use
Captured Data

Once a trigger event has occurred or you capture data manually, you can
use the SignalTap II interface to examine the data, and use your findings
to help debug your design. The SignalTap II Logic Analyzer provides a
number of features that makes it easy to do this.

Viewing Captured Data

You can view captured SignalTap II data in the Data tab of the
SignalTap II file (Figure 13–26). Each row of the Data tab displays the
captured data for one signal or bus. Buses can be expanded to show the
data for each individual signal on the bus. Click on the data waveforms
to zoom in on the captured data samples, and right-click to zoom out.

Figure 13–26. Captured SignalTap II Data

When you are viewing captured data, it is often useful to know the time
interval between two events. Time bars enable you to see the number of
clock cycles between two samples of captured data in your system. There
are two types of time bars:

■ Master Time Bar—The master time bar’s label displays the absolute
time of its location in bold. The master time bar is a thick black line
in the Data tab. The captured data has only one master time bar.

■ Reference Time Bar—The reference time bar’s label displays the
time relative to the master time bar. You can create an unlimited
number of reference time bars.

To help you find a transition of signals relative to the master time bar
location, use either the Next Transition or the Previous Transition
button. This aligns the master time bar with the next or previous

13–64 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

transition of a selected signal or group of selected signals. This feature is
very useful when the sample depth is very large and the rate at which
signals toggle is very low.

Creating Mnemonics for Bit Patterns

The mnemonic table feature allows you to assign a meaningful name to a
set of bit patterns, such as a bus. To create a mnemonic table, right-click
in the Setup or Data tab of a SignalTap II file, and click Mnemonic Table
Setup. You create a mnemonic table by entering sets of bit patterns and
specifying a label to represent each pattern. Once you have created a
mnemonic table, you assign it to a group of signals. To assign a mnemonic
table, right-click on the group, click Bus Display Format, and select the
desired mnemonic table.

The labels you create in a table are used in different ways on the Setup
and Data tabs. On the Setup tab, you can create basic triggers with
meaningful names by right-clicking an entry in any Trigger Conditions
column and selecting a label from the table you assigned to the signal
group. On the Data tab, if any captured data matches a bit pattern
contained in an assigned mnemonic table, the signal group data is
replaced with the appropriate label, making it easy to see when expected
data patterns occur.

Automatic Mnemonics with a Plug-In

When you use a plug-in to add signals to a SignalTap II file, mnemonic
tables for the added signals are automatically created and assigned to the
signals defined in the plug-in. If you ever need to manually enable these
mnemonic tables, right-click on the name of the signal or signal group.
On the Bus Display Format submenu, click the name of the mnemonic
table that matches the plug-in.

As an example, the Nios II plug-in makes it easy to monitor your design’s
signal activity as code is executed. If you have set up the logic analyzer to
trigger on a function name in your Nios II code based on data from an
ELF file, you can see the function name in the Instance Address signal
group at the trigger sample, along with the corresponding disassembled
code in the Disassembly signal group, as shown in Figure 13–27 on
page 13–65. Captured data samples around the trigger are referenced as
offset addresses from the trigger function name.

Altera Corporation 13–65
October 2007 Preliminary

View, Analyze, and Use Captured Data

Figure 13–27. Data Tab when the Nios II Plug-In is Used

Locating a Node in the Design

When you find the source of a bug in your design using the SignalTap II
Logic Analyzer, you can use the node locate feature to locate that signal
in many of the tools found in the Quartus II software, as well as in your
design files. This lets you find the source of the problem quickly so you
can modify your design to correct the flaw. To locate a signal from the
SignalTap II Logic Analyzer in one of the Quartus II software tools or
your design files, right-click on the signal in the SignalTap II file, and click
Locate in <tool name>. You can locate a signal from the node list in any of
the following locations:

■ Assignment Editor
■ Pin Planner
■ Timing Closure Floorplan
■ Chip Planner
■ Resource Property Editor
■ Technology Map Viewer
■ RTL Viewer
■ Design File

f For more information about using these tools, refer to the appropriate
chapters in the Quartus II Handbook.

13–66 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Saving Captured Data

The data log shows the history of captured data and the triggers used to
capture the data. The analyzer acquires data, stores it in a log, and
displays it as waveforms. When the logic analyzer is in auto-run mode
and a trigger event occurs more than once, captured data for each time
the trigger occurred is stored as a separate entry in the data log. This
makes it easy to go back and review the captured data for each trigger
event. The default name for a log is based on the time when the data was
acquired. Altera recommends that you rename the data log with a more
meaningful name.

The logs are organized in a hierarchical manner; similar logs of captured
data are grouped together in trigger sets. If the Data Log pane is closed,
on the View menu, select Data Log to reopen it. To enable data logging,
turn on Enable data log in the Data Log (Figure 13–11). To recall a data
log for a given trigger set and make it active, double-click the name of the
data log in the list.

The Data Log feature is useful for organizing different sets of trigger
conditions and different sets of signal configurations. Refer to “Managing
Multiple SignalTap II Files and Configurations” on page 13–28.

Converting Captured Data to Other File Formats

You can export captured data in the following file formats, some of which
can be used with other EDA simulation tools:

■ Comma Separated Values File (.csv)
■ Table File (.tbl)
■ Value Change Dump File (.vcd)
■ Vector Waveform File (.vwf)
■ Graphics format files (.jpg, .bmp)

To export the SignalTap II Logic Analyzer’s captured data, on the File
menu, click Export and specify the File Name, the Export Format, and the
Clock Period.

Altera Corporation 13–67
October 2007 Preliminary

Other Features

Creating a SignalTap II List File

Captured data can also be viewed in a SignalTap II list file. A SignalTap II
list file is a text file that lists all the data captured by the logic analyzer for
a trigger event. Each row of the list file corresponds to one captured
sample in the buffer. Columns correspond to the value of each of the
captured signals or signal groups for that sample. If a mnemonic table
was created for the captured data, the numerical values in the list are
replaced with a matching entry from the table. This is especially useful
with the use of a plug-in that includes instruction code disassembly. You
can immediately see the order in which the instruction code was executed
during the same time period of the trigger event. To create a SignalTap II
list file, on the File menu, select Create/Update, and click Create
SignalTap II List File.

Other Features The SignalTap II Logic Analyzer has a number of other features that do
not necessarily belong to a particular task in the task flow.

Using the SignalTap II MATLAB MEX Function to Capture Data

If you use MATLAB for DSP design, you can call the MATLAB MEX
function alt_signaltap_run, built into the Quartus II software, to
acquire data from the SignalTap II Logic Analyzer directly into a matrix
in the MATLAB environment. If you use the MEX function repeatedly in
a loop, you can perform as many acquisitions as you can when using
SignalTap II in the Quartus II software environment in the same amount
of time.

1 The SignalTap II MATLAB MEX function is available only in the
Windows version of the Quartus II software. It is compatible
with MATLAB Release 14 Original Release Version 7 and later.

To set up the Quartus II software and the MATLAB environment to
perform SignalTap II acquisitions, perform the following steps:

1. In the Quartus II software, create a SignalTap II file.

2. In the node list in the Data tab of the SignalTap II Editor, organize
the signals and groups of signals into the order in which you want
them to appear in the MATLAB matrix. Each column of the
imported matrix represents a single SignalTap II acquisition sample,
while each row represents a signal or group of signals in the order
they are organized in the Data tab.

13–68 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 Signal groups acquired from the SignalTap II Logic
Analyzer and transferred into the MATLAB environment
with the MEX function are limited to a width of 32 signals.
If you want to use the MEX function with a bus or signal
group that contains more than 32 signals, split the group up
into smaller groups that do not exceed the 32 signal limit.

3. Save the SignalTap II file and compile your design. Program your
device and run the SignalTap II Logic Analyzer to make sure your
trigger conditions and signal acquisition are working correctly.

4. In the MATLAB environment, add the Quartus II binary directory
to your path with the following command:

addpath <Quartus install directory>\win r
You can view the help file for the MEX function by entering
alt_signaltap_run in MATLAB without any operators.

You use the MEX function in the MATLAB environment to open the
JTAG connection to the device and run the SignalTap II Logic Analyzer
to acquire data. When you finish acquiring data, you must close the
connection.

To open the JTAG connection and begin acquiring captured data directly
into a MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[,/
'<signalset name>'[,'<trigger name>']]]]); r

When capturing data, <stp filename> is the name of the SignalTap II file
you want to use. This is required for using the MEX function. The other
MEX function options are defined in Table 13–12.

Table 13–12. SignalTap II MATLAB MEX Function Options (Part 1 of 2)

Option Usage Description

signed
unsigned

'signed'
'unsigned'

The signed option turns signal group data into
32-bit two’s complement signed integers. The
most significant bit (MSB) of the group as
defined in the SignalTap II Data tab is the sign
bit. The unsigned option keeps the data as an
unsigned integer. The default is signed.

Altera Corporation 13–69
October 2007 Preliminary

Other Features

You can enable or disable verbose mode to see the status of the logic
analyzer while it is acquiring data. To enable or disable verbose mode,
use the following commands:

alt_signaltap_run('VERBOSE_ON'); r
alt_signaltap_run('VERBOSE_OFF'); r
When you finish acquiring data, you must close the JTAG connection.
Use the following command to close the connection:

alt_signaltap_run('END_CONNECTION'); r
f For more information about the use of MEX functions in MATLAB, refer

to the MATLAB Help.

Using SignalTap II in a Lab Environment

You can install a stand-alone version of the SignalTap II Logic Analyzer.
This version is particularly useful in a lab environment where you do not
have a workstation that meets the requirements for a complete Quartus II
installation, or if you do not have a license for a full installation of the
Quartus II software. The stand-alone version of the SignalTap II Logic
Analyzer is included with the Quartus II stand-alone Programmer and is
available from the Downloads page of the Altera website,
www.altera.com.

Remote Debugging Using the SignalTap II Logic Analyzer

You can use the SignalTap II Logic Analyzer to debug a design that is
running on a device attached to a PC in a remote location.

<instance name> 'auto_signaltap_0' Specify a SignalTap II instance if more than
one instance is defined. The default is the first
instance in the SignalTap II file,
auto_signaltap_0.

<signal set name>
<trigger name>

'my_signalset'
'my_trigger'

Specify the signal set and trigger from the
SignalTap II data log if multiple configurations
are present in the SignalTap II file. The default
is the active signal set and trigger in the file.

Table 13–12. SignalTap II MATLAB MEX Function Options (Part 2 of 2)

Option Usage Description

13–70 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To perform a remote debugging session, you must have the following
setup:

■ The Quartus II software installed on the local PC
■ Stand-alone SignalTap II Logic Analyzer or the full version of the

Quartus II software installed on the remote PC
■ Programming hardware connected to the device on the PCB at the

remote location
■ TCP/IP protocol connection

Equipment Setup

On the PC in the remote location, install the stand-alone version of the
SignalTap II Logic Analyzer or the full version of the Quartus II software.
This remote computer must have Altera programming hardware
connected, such as the EthernetBlaster or USB-Blaster.

On the local PC, install the full version of the Quartus II software. This
local PC must be connected to the remote PC across a LAN with the
TCP/IP protocol.

Software Setup on the Remote PC

To setup the software on the remote PC, perform the following steps:

1. In the Quartus II programmer, click Hardware Setup.

2. Click the JTAG Settings tab (Figure 13–28 on page 13–70).

Figure 13–28. Configure JTAG on Remote PC

Altera Corporation 13–71
October 2007 Preliminary

Other Features

3. Click Configure local JTAG Server.

4. In the Configure Local JTAG Server dialog box (Figure 13–29), turn
on Enable remote clients to connect to the local JTAG server, and
type your password in the password box. Type your password
again in the Confirm Password box and click OK.

Figure 13–29. Configure Local JTAG Server on Remote

Software Setup on the Local PC

To set up your software on your local PC, perform the following steps:

1. Launch the Quartus II programmer.

2. Click Hardware Setup.

3. On the JTAG settings tab, click Add server.

4. In the Add Server dialog box (Figure 13–30), type the network name
or IP address of the server you want to use and the password for the
JTAG server that you created on the remote PC.

Figure 13–30. Add Server Dialog Box

5. Click OK.

13–72 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

SignalTap II Setup on the Local PC

To connect to the hardware on the remote PC, perform the following
steps:

1. Click the Hardware Settings tab and select the hardware on the
remote PC (Figure 13–31).

Figure 13–31. Selecting Hardware on Remote PC

2. Click Close.

You can now control the logic analyzer on the device attached to the
remote PC as if it was connected directly to the local PC.

SignalTap II
Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r
f The Quartus II Scripting Reference Manual includes the same information

in PDF format.

Altera Corporation 13–73
October 2007 Preliminary

SignalTap II Scripting Support

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

f For more information about command-line scripting, refer to the
Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

SignalTap II Command Line Options

To compile your design with the SignalTap II Logic Analyzer using the
command prompt, you must use the quartus_stp command.
Table 13–13 shows the options that help you better understand how to
use the quartus_stp executable.

Table 13–13. SignalTap II Command-Line Options (Part 1 of 2)

Option Usage Description

stp_file quartus_stp
--stp_file <stp_filename>

Assigns the specified SignalTap II
file to the
USE_SIGNALTAP_FILE in the
Quartus II Settings File (QSF).

enable quartus_stp --enable Creates assignments to the
specified SignalTap II file in the
QSF, and changes
ENABLE_SIGNALTAP to ON. The
SignalTap II Logic Analyzer is
included in your design the next
time the project is compiled. If no
SignalTap II file is specified in the
QSF, the --stp_file option
must be used. If the --enable
option is omitted, the current value
of ENABLE_SIGNALTAP in the
QSF is used.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

13–74 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 13–2 illustrates how to compile a design with the SignalTap II
Logic Analyzer at the command line:

Example 13–2.
quartus_stp filtref --stp_file stp1.stp --enable r
quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_tan filtref r
quartus_asm filtref r

The quartus_stp --stp_file stp1.stp --enable command
creates the QSF variable and instructs the Quartus II software to compile
the stp1.stp file with your design.

disable quartus_stp --disable Removes the SignalTap II file
reference from the QSF and
changes ENABLE_SIGNALTAP to
OFF. The SignalTap II Logic
Analyzer is removed from the
design database the next time you
compile your design. If the
--disable option is omitted, the
current value of
ENABLE_SIGNALTAP in the QSF
is used.

create_signaltap_hdl_file quartus_stp
--
create_signaltap_hdl_file

Creates a SignalTap II file
representing the SignalTap II
instance in the design generated by
the SignalTap II Logic Analyzer
megafunction created with the
MegaWizard Plug-in Manager. The
file is based on the last compilation.
You must use the --stp_file
option to properly create a
SignalTap II file. Analogous to
Create SignalTap II File from
Design Instance(s) command in
the Quartus II software.

Table 13–13. SignalTap II Command-Line Options (Part 2 of 2)

Option Usage Description

Altera Corporation 13–75
October 2007 Preliminary

SignalTap II Scripting Support

Example 13–3 shows how to create a new SignalTap II file after building
the SignalTap II Logic Analyzer instance with the MegaWizard Plug-In
Manager:

Example 13–3.
quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp r

f For information about the other command line executables and options
refer to the Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook.

SignalTap II Tcl Commands

The quartus_stp executable supports a Tcl interface that allows you to
capture data without running the Quartus II GUI. You cannot execute
SignalTap II Tcl commands from within the Tcl console in the GUI. They
must be run from the command line with the quartus_stp executable. To
run a Tcl file that has SignalTap II Tcl commands, use the following
command:

quartus_stp -t <Tcl file> r
Table 13–14 shows the Tcl commands that you can use with SignalTap II.

Table 13–14. SignalTap II Tcl Commands (Part 1 of 2)

Command Argument Description

open_session -name <stp_filename> Opens the specified SignalTap II file. All
captured data is stored in this file.

run -instance <instance_name>
-signal_set <signal_set>

(optional)
-trigger <trigger_name>

(optional)
-data_log <data_log_name>

(optional)
-timeout <seconds>

(optional)

Starts the analyzer. This command must be
followed by all the required arguments to
properly start the analyzer. You can optionally
specify the name of the data log you want to
create. If the Trigger condition is not met, you
can specify a timeout value to stop the
analyzer.

13–76 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

f For more information about SignalTap II Tcl commands, refer to the
Quartus II Help.

Example 13–4 is an excerpt from a script that is used to continuously
capture data. Once the trigger condition is met, the data is captured and
stored in the data log.

Example 13–4.
#opens signaltap session
open_session -name stp1.stp
#start acquisition of instance auto_signaltap_0 and
#auto_signaltap_1 at the same time
#calling run_multiple_end will start all instances
#run after run_multiple_start call
run_multiple_start
run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger /
trigger_1 -data_log log_1 -timeout 5
run_multiple_end
#close signaltap session
close_session

run_multiple_start None Defines the start of a set of run commands.
Use this command when multiple instances of
data acquisition are started simultaneously.
Add this command before the set of run
commands that specify data acquisition. You
must use this command with the
run_multiple_end command. If the
run_multiple_end command is not
included, the run commands will not execute.

run_multiple_end None Defines the end of a set of run commands.
Use this command when multiple instances of
data acquisition are started simultaneously.
Add this command after the set of
run_commands.

stop None Stops data acquisition.

close_session None Closes the currently open SignalTap II file. You
cannot run the analyzer after the SignalTap II
file is closed.

Table 13–14. SignalTap II Tcl Commands (Part 2 of 2)

Command Argument Description

Altera Corporation 13–77
October 2007 Preliminary

Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems

Once the script is completed, you should open the SignalTap II file that
you used to capture data to examine the contents of the Data log.

Design Example:
Using
SignalTap II
Logic Analyzers
in SOPC Builder
Systems

Altera Application Note, AN 323: Using SignalTap II Embedded Logic
Analyzers in SOPC Builder Systems describes how to use the SignalTap II
Logic Analyzer to monitor signals located inside a system module
generated by SOPC Builder. The system in this example contains many
components, including a Nios processor, a direct memory access (DMA)
controller, on-chip memory, and an interface to external SDRAM
memory. In this example, the Nios processor executes a simple C
program from on-chip memory and waits for a button push. After a
button is pushed, the processor initiates a DMA transfer, which you
analyze using the SignalTap II Logic Analyzer.

f For more information about this example and using the SignalTap II
Logic Analyzer with SOPC builder systems refer to AN 323: Using
SignalTap II Embedded Logic Analyzers in SOPC Builder Systems and
AN 446: Debugging NIOS II Systems with the SignalTap II Logic Analyzer.

Custom
Triggering Flow
Application
Examples

The custom triggering flow in the SignalTap II Logic Analyzer is most
useful for organizing a number of triggering conditions and for precise
control over the acquisition buffer. This section provides two application
examples for defining a custom triggering flow within the SignalTap II
Logic Analyzer. Both examples can be easily copied and pasted directly
into the state machine description box by using the state display mode
All states in one window.

1 For additional triggering flow design examples, refer to the
Quartus II On-Chip Debugging Support Resources page for
on-chip debugging.

Design Example 1: Specifying a Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count
argument. This post-count argument enables you to define a custom
triggering position for each segment in the acquisition buffer.
Example 13–5 shows an example that applies a trigger position to all
segments in the acquisition buffer. The example describes a triggering
flow for an acquisition buffer split into four segments. If each acquisition
segment is 64 samples in depth, the trigger position for each buffer will
be at sample #34. The acquisition stops after all four segments are filled
once.

http://www.altera.com/support/software/quartus2/debugging/sof-qts-debugging.html

13–78 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Example 13–5.
if (c1 == 3 && condition1)

trigger 30;
else if (condition1)
begin

segment_trigger 30;
increment c1;

end

Each segment acts as a circular buffer, that continuously updates the
memory contents with the signal values. The last acquisition before
stopping the buffer is the displayed on the data tab as the last sample
number in the affected segment. The trigger position in the affected
segment is then defined by N – post count fill, where N is the number of
samples per segment. Figure 13–32 illustrates the triggering position.

Figure 13–32. Specifying a Custom Trigger Position

Design Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of
events before triggering the acquisition buffer. Example 13–6 on
page 13–79 shows such a sample flow. This example uses three basic
triggering conditions configured in the SignalTap II setup tab.

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample

Altera Corporation 13–79
October 2007 Preliminary

Custom Triggering Flow Application Examples

This example triggers the acquisition buffer when condition1 occurs
after condition3 and occurs ten times prior to condition3. If
condition3 occurs prior to ten repetitions of condition1, the state
machine transitions to a permanent wait state.

Example 13–6.
state ST1:

if (condition2)
begin
 reset c1;
 goto ST2;
end

State ST2 :
if (condition1)

increment c1;

else if (condition3 && c1 < 10)
goto ST3;

else if (condition3 && c1 >= 10)
trigger;

ST3:
goto ST3;

13–80 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Conclusion As the FPGA industry continues to make technological advancements,
outdated methodologies need to be replaced with new technologies that
maximize productivity. The SignalTap II Logic Analyzer gives you the
same benefits as a traditional logic analyzer, without the many
shortcomings of a piece of dedicated test equipment. This version of the
SignalTap II Logic Analyzer provides many new and innovative features
that allow you to capture and analyze internal signals in your FPGA,
allowing you to find the source of a design flaw in the shortest amount of
time.

Referenced
Documents

This chapter references the following documents:

■ AN 323: Using SignalTap II Embedded Logic Analyzers in SOPC Builder
System

■ Area and Timing Optimization chapter in volume 2 of the Quartus II
Handbook

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ In-System Debugging Using External Logic Analyzers chapter in

volume 3 of the Quartus II Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
■ Quartus II Settings File Reference Manual
■ Quick Design Debugging Using SignalProbe chapter in volume 3 of the

Quartus II Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/an/an323.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii53016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Altera Corporation 13–81
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 13–15 shows the revision history for this chapter.

Table 13–15. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v.7.2.0

Updated for the Quartus II software version 7.2:
● Added new section: “Trigger Condition Flow Control” on

page 13–34
● Documented the new feature for State-machine-based

triggering
● Documented changes to “Using Incremental Compilation with

the SignalTap II Logic Analyzer” on page 13–52
● Added additional information about node tappability
● Added section “Performance and Resource Considerations”

on page 13–55, with information about performance and
resource utilization considerations for the SignalTap II Logic
Analyzer

Updated for the
Quartus II software
version 7.2

May 2007
v7.1.0

Added “Referenced Documents” on page 13–71, minor updates
to address ADoQS issues.

—

March 2007
v7.0.0

Added Cyclone III device support listed on page 13–4. —

November 2006
v6.1.0

Updated for the Quartus II software version 6.1:
● Updated Figure 13-4, 13-11,13-16, 13-17, 13-18. Added new

Figure 13-23.
● Miscellaneous changes throughout.
● Removed information about incremental routing (feature

removed).
● Added more detail about the use of incremental compilation.
● Added more detail about the use of the Nios II plug-in.
● Added more information about SignalTap II file/SOF

compatibility.
● Updated method for triggering one logic analyzer with another

using trigger in/out.

Updated for the
Quartus II software
version 6.1.

May 2006
v6.0.0 Updated for the Quartus II software version 6.0.

—

October 2005
v5.1.0

Updated for the Quartus II software version 5.1. —

May 2005
v5.0.0

● Updated information.
● Updated figures.
● New functionality for Quartus II software 5.0.

—

December 2004
v1.0

Initial release. —

13–82 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 14–1
October 2007 Preliminary

14. In-System Debugging
Using External Logic

Analyzers

Introduction The phenomenal growth in design size and complexity continues to make
the process of design verification a critical bottleneck for today’s FPGA
systems. Limited access to internal signals, advanced FPGA packages,
and printed circuit board (PCB) electrical noise are all contributing factors
in making design debugging and verification the most difficult process of
the design cycle. You can easily spend more than 50% of your design
cycle time debugging and verifying your design. To help you with the
process of design debugging and verification, Altera® provides a solution
that allows you to examine the behavior of internal signals using an
external logic analyzer and using a minimal number of FPGA I/O pins,
while your design is running at full speed on your FPGA.

1 This chapter's use of ‘logic analyzer’ includes both logic
analyzers and oscilloscopes equipped with digital channels,
commonly referred to as mixed signal analyzers or MSOs.

The Logic Analyzer Interface is an application within the Quartus II
software used to connect a large set of internal device signals to a small
number of output pins. You can connect these output pins to an external
logic analyzer for debugging purposes. The Logic Analyzer Interface
enables you to connect to and transmit internal signals buried within
your FPGA to an external logic analyzer for analysis. The Quartus II
Logic Analyzer Interface allows you to debug a large set of internal
signals using a small number of output pins. In the Quartus II Logic
Analyzer Interface, the internal signals are grouped together, distributed
to a user-configurable multiplexer, and then output to available I/O pins
on your FPGA. Instead of having a one-to-one relationship between
internal signals to output pins, the Quartus II Logic Analyzer Interface
enables you map many internal signals to a smaller number of output
pins. The exact number of internal signals that you can map to an output
pin varies based on the multiplexer settings in the Quartus II Logic
Analyzer Interface.

Optionally, you can use the Logic Analyzer Interface with the Quartus II
Incremental Compilation.

QII53016-7.2.0

14–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Choosing a Logic Analyzer

During the debugging phase of your project, you have the choice of
using:

■ SignalTap® II, the embedded logic analyzer.
■ An external logic analyzer, which connects to internal signals in your

FPGA, by using the Quartus II Logic Analyzer Interface.

Table 14–1 describes the advantages to both debugging technologies.

Table 14–1. Comparing the SignalTap II Embedded Logic Analyzer with the Logic Analyzer Interface

Feature Logic Analyzer Interface SignalTap II Embedded
Logic Analyzer

Sample Depth—You will have access to a wider sample
depth with an external logic analyzer. In SignalTap II,
the maximum sample depth is set to 128 Kb, which is a
device constraint. However, with an external logic
analyzer, there are no device constraints, providing you
a wider sample depth.

v —

Debugging Timing Issues—Using an external logic
analyzer provides you with access to a “timing” mode,
which enables you to debug combined streams of data.

v —

Performance—You frequently have limited routing
resources available to place-and-route when you use
SignalTap II with your design. An external logic analyzer
adds minimal logic, which removes resource limits on
place-and-route.

v —

Triggering Capability—Although advanced triggering
is available in SignalTap II, many additional triggering
options are available on an external logic analyzer.

v —

Use of Output Pins—Using the SignalTap II Logic
Analyzer, no additional output pins are required. Using
an external logic analyzer requires the use of additional
output pins.

— v

Acquisition Speed—With the SignalTap II Logic
Analyzer, you can acquire data at speeds of over
200 MHz. You can achieve the same acquisition speeds
with an external logic analyzer, however you have to
consider signal integrity issues.

— v

Altera Corporation 14–3
October 2007 Preliminary

Introduction

Required Components

You must have the following components to perform analysis using the
Quartus II Logic Analyzer Interface:

■ The Quartus II software starting with version 5.1 and later
■ The device under test
■ An external logic analyzer
■ An Altera communications cable
■ A cable to connect the FPGA to the external logic analyzer

Figure 14–1 shows the Logic Analyzer Interface and the hardware setup.

Figure 14–1. Logic Analyzer Interface and Hardware Setup

Notes to Figure 14–1:
(1) Configuration and control of the LAI using computer loaded with Quartus II via the JTAG port.
(2) Configuration and control of the LAI using a third-party vendor logic analyzer via the JTAG port. Support varies

by vendor.

FPGA Device Support

You can use the Quartus II Logic Analyzer Interface with the following
FPGA device families:

■ Arria™ GX
■ Stratix® III
■ Stratix II
■ Stratix II GX
■ Stratix
■ Stratix GX

JTAG

(1)

(2)

FPGA

Connected to
Unused FPGA Pins

LAI

Altera Programming
Hardware Quartus II Software

Logic Analyzer
Board

14–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Cyclone® III
■ Cyclone II
■ Cyclone
■ MAX® II
■ APEX™ 20K
■ APEX II

Debugging Your
Design Using
the Logic
Analyzer
Interface

Figure 14–2 shows the steps you must follow to debug your design with
the Quartus II Logic Analyzer Interface.

Figure 14–2. Logic Analyzer Interface Process Flow

Creating a Logic Analyzer Interface File

The Logic Analyzer Interface File (.lai), defines the interface that builds a
connection between internal FPGA signals and your external logic
analyzer. An example of a Logic Analyzer Interface File is shown in
Figure 14–3.

Enable Logic Analyzer
Interface File

Configure Logic Analyzer
Interface File

Create New Logic
Analyzer Interface File

Compile Project

Program Device

Control Output Pin

Debug Project

Start the Quartus II Software

Altera Corporation 14–5
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

Figure 14–3. Example of a Logic Analyzer Interface Editor

To define the Quartus II Logic Analyzer Interface, you can create a new
Logic Analyzer Interface File or use an existing Logic Analyzer Interface
File.

Creating a New Logic Analyzer Interface File

To create a new Logic Analyzer Interface File, perform the following
steps:

1. In the Quartus II software, on the File menu, click New. The New
dialog box opens.

2. Click the Other Files tab and select Logic Analyzer Interface File
(Figure 14–4).

14–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–4. Creating a New Logic Analyzer File

3. Click OK. The Logic Analyzer Interface editor opens. The file name
is assigned by the Quartus II software (refer to Figure 14–3 on
page 14–5). When you save the file, you will be prompted for a file
name. Refer to “Saving the External Analyzer Interface File” on
page 14–7.

Opening an Existing External Analyzer Interface File

To open an existing Logic Analyzer Interface File, on the Tools menu,
click Logic Analyzer Interface Editor. If no Logic Analyzer Interface File
is enabled for the current project, the editor automatically creates a new
Logic Analyzer Interface File. If a Logic Analyzer Interface File is
currently enabled for the project, that file opens when you select the Logic
Analyzer Interface Editor.

Another way to open an existing Logic Analyzer Interface File is on the
File Menu, click Open, and select the Logic Analyzer Interface File you
want to open.

Altera Corporation 14–7
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

Saving the External Analyzer Interface File

To save your Logic Analyzer Interface File, perform the following steps:

1. In the Quartus II software, on the File menu, click Save As, The
Save As dialog box opens (Figure 14–5).

2. In the File name box, enter the desired file name. Click Save
(Figure 14–5).

Figure 14–5. Saving the Logic Analyzer Interface File

Configuring the Logic Analyzer Interface File Core Parameters

After you have created your Logic Analyzer Interface File, you must
configure the Logic Analyzer Interface File core parameters.

To configure the Logic Analyzer Interface File core parameters, select
Core Parameters from the Setup View list. Refer to Figure 14–6.

14–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–6. Logic Analyzer Interface File Core Parameters

Table 14–2 lists the Logic Analyzer Interface File core parameters.

Table 14–2. Logic Analyzer Interface File Core Parameters (Part 1 of 2)

Parameter Description

Pin Count The Pin Count parameter signifies the number of pins you want dedicated to your Logic
Analyzer Interface. The pins need to be connected to a debug header on your board. Within
the FPGA, each pin is mapped to a user-configurable number of internal signals.

The Pin Count parameter can range from 1 to 256 pins.

Bank Count The Bank Count parameter signifies the number of internal signals that you want to map to
each pin. For example, a Bank Count of 8 implies that you will connect eight internal signals
to each pin.

The Bank Count parameter can range from 1 to 256 banks.

Output/
Capture Mode

The Output/Capture Mode parameter signifies the type of acquisition you perform. There are
two options that you can select:

Combinational/Timing—This acquisition uses your external logic analyzer’s internal clock to
determine when to sample data. Because Combinational/Timing acquisition samples data
asynchronously to your FPGA, you need to properly determine the sample frequency you
should use to debug and verify your system. This mode is effective if you want to measure
timing information such as channel-to-channel skew. For more information on the sampling
frequency, and what speeds it can run at refer to the data sheet for your external logic
analyzer.

Registered/State—This acquisition uses a signal from your system under test to determine
when to sample. Because Registered/State acquisition samples data synchronously with your
FPGA, it provides you with a functional view of your FPGA while it is running. This mode is
effective when you want to verify the functionality of your design.

Altera Corporation 14–9
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

Mapping the Logic Analyzer Interface File Pins to Available I/O
Pins

To configure the Logic Analyzer Interface File I/O pins parameters, select
Pins from the Setup View list (Figure 14–7).

Figure 14–7. Logic Analyzer Interface File Pins Parameters

To assign pin locations for the Logic Analyzer Interface, double-click the
Location column next to the reserved pins in the Names column. This
opens the Pin Planner.

For information on how to use the Pin Planner, refer to the Pin Planner
section in the I/O Management chapter in volume 2 of the Quartus II
Handbook.

Mapping Internal Signals to the Logic Analyzer Interface Banks

After you have specified the number of banks to use in the Core
Parameters settings page, you must assign internal signals for each bank
in the Logic Analyzer Interface. Click the Setup View arrow and select
Bank n or ALL Banks (Figure 14–8).

Clock The clock parameter is available only when Output/Capture Mode is set to Registered State.
You must specify the sample clock in the Core Parameters view. The sample clock can be
any signal in your design. However, for best results, Altera recommends that you use a clock
with an operating frequency fast enough to sample the data you would like to acquire.

Power-Up State The Power-Up State parameter specifies the power-up state of the pins you have designated
for use with the Logic Analyzer Interface. You have the option of selecting tri-stated for all
pins, or selecting a particular bank that you have enabled.

Table 14–2. Logic Analyzer Interface File Core Parameters (Part 2 of 2)

Parameter Description

14–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–8. Logic Analyzer Interface Bank Parameters

To view all of your bank connections, click Setup View and select All
Banks (Figure 14–9).

Figure 14–9. Logic Analyzer Interface All Bank Parameters

Using the Node Finder

Before making bank assignments, on the View menu, point to Utility
Windows, and click Node Finder. Find the signals that you want to
acquire, then drag and drop the signals from the Node Finder dialog box

Altera Corporation 14–11
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

into the bank Setup View. When adding signals, use SignalTap II:
pre-synthesis for non-incrementally routed instances and SignalTap II:
post-fitting for incrementally routed instances.

As you continue to make assignments in the bank Setup View, the
schematic of your Logic Analyzer Interface in the Logical View of your
Logic Analyzer Interface File begins to reflect your assignments
(Figure 14–10).

Figure 14–10. A Logical View of the Logic Analyzer Interface Schematic

Continue making assignments for each bank in the Setup View until you
have added all of the internal signals for which you wish to acquire data.

1 You can right-click to switch between the Logic Analyzer
Interface schematic and the Logic Analyzer Interface Setup
view.

Enabling the Logic Analyzer Interface Before Compiling Your
Quartus II Project

Compile your project after you have completed the following steps:

■ Configure your Logic Analyzer Interface parameters
■ Map the Logic Analyzer Interface pins to available I/O pins
■ Map the internal signals to the Logic Analyzer Interface banks

14–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Compiling Your Quartus II Project

Before compilation, you must enable the Logic Analyzer Interface.

1. On the Assignments menu, click Settings. The Settings dialog box
opens. Under Category, click Logic Analyzer Interface. The Logic
Analyzer Interface displays. Turn on Enable Logic Analyzer
Interface.

2. Click Logic Analyzer Interface file name and specify the full path
name to your Logic Analyzer Interface File (Figure 14–11).

Figure 14–11. Settings Dialog Box—Logic Analyzer Interface Settings

After you have specified the name of your Logic Analyzer Interface File,
you must compile your project. To compile your project, on the
Processing menu, click Start Compilation.

Altera Corporation 14–13
October 2007 Preliminary

Debugging Your Design Using the Logic Analyzer Interface

To ensure the Logic Analyzer Interface is properly compiled with your
project, expand the entity hierarchy in the Project Navigator. (To display
the Project Navigator, on the View menu, point to Utility Windows, and
click Project Navigator.) If the Logic Analyzer Interface compiled with
your design, the sld_hub and sld_multitap entities are shown in the
project navigator.

Figure 14–12. Project Navigator

Programming Your FPGA Using the Logic Analyzer Interface

After compilation completes, you must configure your FPGA before
using the Logic Analyzer Interface. To configure a device for use with the
Logic Analyzer Interface, follow these steps:

1. Open the Logic Analyzer Interface File Editor (Figure 14–13).

2. Under JTAG Chain Configuration, click Hardware and select your
hardware communications device. You may have to click Settings
to configure your hardware.

3. Click Device and select the FPGA device to which you want to
download the design (it may be automatically detected). You may
have to click Scan Chain to configure your device.

4. Click File and select the SRAM Object File (.sof) that includes the
Logic Analyzer Interface File (it may be automatically detected).

5. If desired, turn on Incremental Compilation.

6. Save the Logic Analyzer Interface File.

7. Click the Program Device icon to program the device.

14–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 14–13. The JTAG Section of the Logic Analyzer Interface File

Using the Logic Analyzer Interface with Multiple Devices

You can use the Logic Analyzer Interface with multiple devices in your
JTAG chain. Your JTAG chain can also consist of devices that do not
support the Logic Analyzer Interface or non-Altera, JTAG-compliant
devices. To use the Logic Analyzer Interface in more than one FPGA,
create a Logic Analyzer Interface and configure a Logic Analyzer
Interface File for each FPGA that you want to analyze. To perform multi-
FPGA analysis, perform the following steps:

1. Open the Quartus II software.

2. Create, configure, and compile a Logic Analyzer Interface File for
each design.

3. Open one Logic Analyzer Interface File at a time.

1 You do not have to open a Quartus II project to open a Logic
Analyzer Interface File.

4. Follow Steps 2 through 6 under “Programming Your FPGA Using
the Logic Analyzer Interface” on page 14–13.

5. Click the Program Device icon to program the device.

6. Control each Logic Analyzer Interface File independently.

Altera Corporation 14–15
October 2007 Preliminary

Advanced Features

Configuring Banks in the Logic Analyzer Interface File

When you have programmed your FPGA, you can control which bank is
mapped to the reserved Logic Analyzer Interface File output pins. To
control which bank is mapped, right-click on the bank in the schematic in
the logical view and click Connect Bank.

Figure 14–14. Configuring Banks

Acquiring Data on Your Logic Analyzer

To acquire data on your logic analyzer, you must establish a connection
between your device and the external logic analyzer.

f For more information on this process, and for guidelines on how to
establish connections between debugging headers and logic analyzers,
refer to the documentation for your logic analyzer.

Advanced
Features

This section describes the following advanced features:

■ Using the Logic Analyzer Interface with Incremental Compilation
■ Creating Multiple Logic Analyzer Interface Instances in One FPGA

Using the Logic Analyzer Interface with Incremental Compilation

Using the Logic Analyzer Interface with Incremental Compilation
enables you to preserve the synthesis and fitting of your original design
and add the Logic Analyzer Interface to your design without recompiling
your original source code.

To use the Logic Analyzer Interface with Incremental Compilation,
perform the following steps:

1. Start the Quartus II software.

14–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

2. Enable Design Partitions. To enable Partitions, perform the
following steps:

a. On the Assignments menu, click, Design Partitions.

b. In the Incremental Compilation list, select Full Incremental
Compilation.

c. Create Design Partitions for the entities in your design, and set
the Netlist Type to Post-fit.

d. On the Processing menu, click Start Compilation.

3. Enable Logic Analyzer Interface Incremental Compilation by
performing these steps:

a. In your Logic Analyzer Interface File, under Instance Manager,
click Incremental Compilation.

1 When you enable Incremental Compilation, all existing
presynthesis signals will be converted into post-fitting signals.
Only post-fitting signals can be used with the Logic Analyzer
Interface with Incremental Compilation.

b. Add Post-Fitting nodes to your Logic Analyzer Interface File.

c. On the Processing menu, click Start Compilation.

Creating Multiple Logic Analyzer Interface Instances in One
FPGA

The Logic Analyzer Interface includes support for multiple interfaces in
one FPGA. This feature is particularly useful when you want to build
Logic Analyzer Interface configurations that contain different settings.
For example, you can build one Logic Analyzer Interface instance to
perform Registered/State analysis and build another instance that
performs Combinational/Timing analysis on the same set of signals.

Another example would be if you want to perform Registered/State
analysis on portions of your design that are in different clock domains.

To create multiple Logic Analyzer Interfaces, on the Edit menu, click
Create Instance. Alternatively, you can right-click in the Instance
Manager window, and click Create Instance.

Altera Corporation 14–17
October 2007 Preliminary

Conclusion

Figure 14–15. Creating Multiple Logic Analyzer Interface Instances in One FPGA

Conclusion As the FPGA industry continues to make technological advancements,
outdated debugging methodologies must be replaced with new
technologies that maximize productivity. The Logic Analyzer Interface
feature enables you to connect many internal signals within your FPGA
to an external logic analyzer with the use of a small number of I/O pins.
This new technology in the Quartus II software enables you to use
feature-rich external logic analyzers to debug your FPGA design,
ultimately enabling you to delver your product in the shortest amount of
time.

14–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 14–3 shows the revision history for this chapter.

Table 14–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

No changes to content. —

May 2007
v7.1.0

Minor updates to address ADoQS issues. —

March 2007
v7.0.0

Added Cyclone III device support listed on page 14–3. —

November 2006
v6.1.0

Added new revision history table format to this document. —

May 2006
v6.0.0

Chapter title changed.
Minor updates for the Quartus II software version 6.0.0.

—

October 2005
v5.1.0

Initial release. —

Altera Corporation 15–1
October 2007 Preliminary

15. In-System Updating of
Memory and Constants

Introduction FPGA designs are growing larger in density and are becoming more
complex. Designers and verification engineers require more access to the
design that is programmed in the device to quickly identify, test, and
resolve issues. The in-system updating of memory and constants
capability of the Quartus® II software provides read and write access to
in-system FPGA memories and constants through the Joint Test Action
Group (JTAG) interface, making it easier to test changes to memory
contents in the FPGA while the FPGA is functioning in the end system.

This chapter explains how to use the Quartus II In-System Memory
Content Editor as part of your FPGA design and verification flow.

This chapter contains the following sections:

■ “Device Megafunction Support” on page 15–2
■ “Using In-System Updating of Memory Constants with Your

Design” on page 15–3
■ “Creating In-System Modifiable Memories Constants” on page 15–3
■ “Running the In-System Memory Content Editor” on page 15–4

Overview The ability to read and update memories and constants in a programmed
device provides more insight into and control over your design. The
Quartus II In-System Memory Content Editor gives you access to device
memories and constants. When used in conjunction with the
SignalTap® II embedded logic analyzer, this feature provides you the
visibility required to debug your design in the hardware lab.

f For more information on the SignalTap II embedded logic analyzer, refer
to the Design Debugging Using the SignalTap II Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook.

The ability to read data from memories and constants allows you to
quickly identify the source of problems. In addition, the write capabilities
allow you to bypass functional issues by writing expected data. For
example, if a parity bit in your memory is incorrect, you can use the
In-System Content Editor to write the correct parity bit values into your
RAM, allowing your system to continue functioning. You can also
intentionally write incorrect parity bit values into your RAM to check
your design’s error handling functionality.

QII53012-7.2.0

15–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Device
Megafunction
Support

The following tables list the devices and types of memories and constants
that are currently supported by the Quartus II software. Table 15–1 lists
the types of memory supported by the MegaWizard® Plug-In Manager
and the In-System Memory Content Editor.

Table 15–2 lists support for in-system updating of memory and constants
for the Stratix® series, Arria™ GX, Cyclone® series, APEX™ II, APEX 20K,
and Mercury™ device families.

Table 15–1. MegaWizard Plug-In Manager Support

Installed Plug-Ins Category Megafunction Name

Gates LPM_CONSTANT

Memory Compiler RAM: 1-PORT, ROM: 1-PORT

Storage ALTSYNCRAM, LPM_RAM_DQ, LPM_ROM

Table 15–2. Supported Megafunctions

MegaFunction

Arria GX / Stratix Series
Cyclone
Series APEX II APEX

20K MercuryM512
Blocks

M4K
Blocks

MegaRAM
Blocks

LPM_CONSTANT Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

LPM_ROM Write Read/
Write

N/A Read/
Write

Read/
Write

Write Read/
Write

LPM_RAM_DQ N/A Read/
Write

Read/
Write

Read/
Write

Read/
Write

N/A (1) Read/
Write

ALTSYNCRAM (ROM) Write Read/
Write

N/A Read/
Write

N/A N/A N/A

ALTSYNCRAM
(Single-Port RAM Mode)

N/A Read/
Write

Read/
Write

Read/
Write

N/A N/A N/A

Note to Table 15–2:
(1) Only write-only mode is applicable for this single-port RAM. In read-only mode, use LPM_ROM instead of

LPM_RAM_DQ.

Altera Corporation 15–3
October 2007 Preliminary

Using In-System Updating of Memory Constants with Your Design

Using In-System
Updating of
Memory
Constants with
Your Design

Using the In-System Updating of Memory and Constants feature requires
the following steps:

1. Identify the memories and constants that you want to access.

2. Edit the memories and constants to be run-time modifiable.

3. Perform a full compilation.

4. Program your device.

5. Launch the In-System Memory Content Editor.

Creating
In-System
Modifiable
Memories
Constants

When you specify that a memory or constant is run-time modifiable, the
Quartus II software changes the default implementation. A single-port
RAM is converted to dual-port RAM, and a constant is implemented in
registers instead of look-up tables (LUTs). These changes enable run-time
modification without changing the functionality of your design. For a list
of run-time modifiable megafunctions, refer to Table 15–1.

To enable your memory or constant to be modifiable, perform the
following steps:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. If you are creating a new megafunction, select Create a new custom
megafunction variation. If you have an existing megafunction,
select Edit an existing custom megafunction variation.

3. Make the necessary changes to the megafunction based on the
characteristics required by your design, turn on Allow In-System
Memory Content Editor to capture and update content
independently of the system clock and type a value in the Instance
ID text box. These parameters can be found on the last page of the
wizard for megafunctions that support in-system updating.

1 The Instance ID is a four-character string used to
distinguish the megafunction from other in-system
memories and constants.

4. Click Finish.

5. On the Processing menu, click Start Compilation.

15–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If you instantiate a memory or constant megafunction directly using
ports and parameters in VHDL or Verilog HDL, add or modify the
lpm_hint parameter as shown below.

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
"ENABLE_RUNTIME_MOD = YES,
INSTANCE_NAME = <instantiation name>";

Running the
In-System
Memory Content
Editor

The In-System Memory Content Editor is separated into the Instance
Manager, JTAG Chain Configuration, and the Hex Editor (Figure 15–1).

Figure 15–1. In-System Memory Content Editor

The Instance Manager displays all available run-time modifiable
memories and constants in your FPGA device. The JTAG Chain
Configuration section allows you to program your FPGA and select the
Altera® device in the chain to update.

Altera Corporation 15–5
October 2007 Preliminary

Running the In-System Memory Content Editor

Using the In-System Memory Content Editor does not require that you
open a project. The In-System Memory Content Editor retrieves all
instances of run-time configurable memories and constants by scanning
the JTAG chain and sending a query to the specific device selected in the
JTAG Chain Configuration section.

Each In-System Memory Content Editor can access the in-system
memories and constants in a single device. If you have more than one
device containing in-system configurable memories or constants in a
JTAG chain, you can launch multiple In-System Memory Content Editors
within the Quartus II software to access the memories and constants in
each of the devices.

Instance Manager

Scan the JTAG chain to update the Instance Manager with a list of all
run-time modifiable memories and constants in the design. The Instance
Manager displays the Index, Instance, Status, Width, Depth, Type, and
Mode of each element in the list.

You can read and write to in-system memory using the Instance Manager
as shown in Figure 15–2.

Figure 15–2. Instance Manager Controls

The following buttons are provided in the Instance Manager:

■ Read data from In-System Memory—reads the data from the device
independently of the system clock and displays it in the Hex Editor

■ Continuously Read Data from In-System Memory—Continuously
reads the data asynchronously from the device and displays it in the
Hex Editor

■ Stop In-System Memory Analysis—Stops the current read or write
operation

Read Data from In-System Memory
Continuously Read Data from In-System Memory

Stop In-System Memory Analysis
Write Data to In-System

15–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Write Data to In-System Memory—Asynchronously writes data
present in the Hex Editor to the device

1 In addition to the buttons available in the Instance Manager, you
can also read and write data by selecting the command from the
Processing menu, or the right button pop-up menu in the
Instance Manager or Hex Editor.

The status of each instance is also displayed beside each entry in the
Instance Manager. The status indicates if the instance is Not running,
Offloading data or Updating Data. The health monitor provides useful
information about the status of the editor.

The Quartus II software assigns a different index number to each
in-system memory and constant to distinguish between multiple
instances of the same memory or constant function. View the In-System
Memory Content Editor Setting section of the compilation report to
match an index with the corresponding instance ID (Figure 15–3).

Figure 15–3. Compilation Report In-System Memory Content Editor Setting Section

Altera Corporation 15–7
October 2007 Preliminary

Running the In-System Memory Content Editor

Editing Data Displayed in the Hex Editor

You can edit the data read from your in-system memories and constants
displayed in the Hex Editor by typing values directly into the editor or by
importing memory files.

To modify the data displayed in the Hex Editor, click a location in the
editor and type or paste in the new data. The new data appears as blue
indicating modified data that has not been written into the FPGA. On the
Edit menu, choose Value, and click Fill with 0's, Fill with 1's, Fill with
Random Values, or Custom Fills to update a block of data by selecting a
block of data.

Importing Exporting Memory Files

Importing and exporting memory files lets you quickly update in-system
memories with new memory images and record data for future use and
analysis.

On the Edit menu, click Import Data from File to import a memory file,
select an in-system memory or constant from the instance manager. You
can only import a memory file that is in either a Hexadecimal
(Intel-Format) file (.hex) or memory initialization file (.mif) format.

On the Edit menu, click Export Data to File to export data displayed in
the Hex Editor to a memory file, to select an in-system memory or
constant from the instance manager. You can export data to a .hex, .mif,
Verilog Value Change Dump file (.vcd), or RAM Initialization file (.rif)
format.

Viewing Memories Constants in the Hex Editor

For each instance of an in-system memory or constant, the Hex Editor
displays data in hexadecimal representation and ASCII characters (if the
word size is a multiple of 8 bits). The arrangement of the hexadecimal
numbers depends on the dimensions of the memory. For example, if the
word width is 16 bits, the Hex Editor displays data in columns of words
that contain columns of bytes (Figure 15–4).

15–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 15–4. Editing 16-Bit Memory Words Using the Hex Editor

Unprintable ASCII characters are represented by a period (.). The color of
the data changes as you perform reads and writes. Data displayed in
black indicates the data in the Hex Editor was the same as the data read
from the device. If the data in the Hex Editor changes color to red, the
data previously shown in the Hex Editor was different from the data read
from the device.

As you analyze the data, you can use the cursor and the status bar to
quickly identify the exact location in memory. The status bar is located at
the bottom of the In-System Memory Content Editor and displays the
selected instance name, word position, and bit offset (Figure 15–5).

Figure 15–5. Status Bar in the In-System Memory Content Editor

The bit offset is the bit position of the cursor within the word. In the
following example, a word is set to be 8-bits wide.

With the cursor in the position shown in Figure 15–6, the word location is
0x0000 and the bit position is 0x0007.

Altera Corporation 15–9
October 2007 Preliminary

Running the In-System Memory Content Editor

Figure 15–6. Hex Editor Cursor Positioned at Bit 0×0007

With the cursor in the position shown in Figure 15–7, the word location
remains 0x0000 but the bit position is 0x0003.

Figure 15–7. Hex Editor Cursor Positioned at Bit 0×0003

Scripting Support

The In-System Memory Content Editor supports reading and writing of
memory contents via a Tcl script or Tcl commands entered in a command
prompt. For detailed information about scripting command options, refer
to the Quartus II command-line and Tcl API Help browser.

To run the Help browser, type the following command at the command
prompt:

quartus_sh --qhelp r

The Quartus II Scripting Reference Manual includes the same information
in PDF form.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about command-line scripting, refer to the Command-Line Scripting
chapter in volume 2 of the Quartus II Handbook.

The commonly used commands for the In-System Memory Content
Editor are as follows:

■ Reading from memory:
read_content_from_memory
[-content_in_hex]
-instance_index <instance index>
-start_address <starting address>
-word_count <word count>

15–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

■ Writing to memory:
write_content_to_memory

■ Save memory contents to file:
save_content_from_memory_to_file

■ Update memory contents from File:
update_content_to_memory_from_file

f For descriptions about the command options and scripting examples,
refer to the Tcl API Help Browser and the Quartus II Scripting Reference
Manual.

Programming the Device Using the In-System Memory Content
Editor

If you make changes to your design, you can program the device from
within the In-System Memory Content Editor. To program the device,
follow these steps:

1. On the Tools menu, click In-System Memory Content Editor.

2. In the JTAG Chain Configuration panel of the In-System Memory
Content Editor, select the SRAM object file (.sof) that includes the
modifiable memories and constants.

3. Click Scan Chain.

4. In the Device list, select the device you want to program.

5. Click Program Device.

Example: Using the In-System Memory Content Editor with the
SignalTap II Embedded Logic Analyzer

The following scenario describes how you can use the In-System
Updating of Memory and Constants feature with the SignalTap II
embedded logic analyzer to efficiently debug your design in-system.
Although both the In-System Content Editor and the SignalTap II
embedded logic analyzer use the JTAG communication interface, you are
able to use them simultaneously.

After completing your FPGA design, you find that the characteristics of
your FIR filter design are not as expected.

Altera Corporation 15–11
October 2007 Preliminary

Conclusion

1. To locate the source of the problem, change all your FIR filter
coefficients to be in-system modifiable and instantiate the
SignalTap II embedded logic analyzer.

2. Using the SignalTap II embedded logic analyzer to tap and trigger
on internal design nodes, you find the FIR filter to be functioning
outside of the expected cut-off frequency.

3. Using the In-System Memory Content Editor, you check the
correctness of the FIR filter coefficients. Upon reading each
coefficient, you discover that one of the coefficients is incorrect.

4. Since your coefficients are in-system modifiable, you update the
coefficients with the correct data using the In-System Memory
Content Editor.

In this scenario, you are able to quickly locate the source of the problem
using both the In-System Memory Content Editor and the SignalTap II
embedded logic analyzer. You are also able to verify the functionality of
your device by changing the coefficient values before modifying the
design source files.

An extension to this example would be to modify the coefficients with the
In-System Memory Content Editor to vary the characteristics of the FIR
filter (for example, filter attenuation, transition bandwidth, cut-off
frequency, and windowing function).

Conclusion The In-System Updating of Memory and Constants feature provides
access into a device for efficient debug in a hardware lab. You can use
In-System Memory Updating of Memory and Constants with the
SignalTap II embedded logic analyzer to maximize the visibility into an
Altera FPGA. By increasing visibility and access to internal logic of the
device, you are able to more quickly identify and resolve problems with
your design or its implementation.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer
chapter in volume 3 of the Quartus II Handbook

■ Quartus II Scripting Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

15–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Document
Revision History

Table 15–3 shows the revision history of this chapter.

Table 15–3. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 15–11. —

May 2007
v7.1.0

● Added Scripting Support section on page 15–9.
● Added Referenced Documents on page 15–11.

Updates made for Quartus II
version 7.1.

March 2007
v7.0.0

Added Cyclone III device support listed on page 15–2. —

November 2006
v6.1.0

● Added revision history to the document.
● Updated Table 15–2.

Added information for Stratix III
support.

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0 —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 13 was formerly Chapter 12 in version 5.0.

—

May 2005
v5.0.0

● Chapter 12 was formerly in Section V of Vol 3 in 4.2. —

December 2004
v1.2

● Chapter 12 was formerly Chapter 11.
● Updated tables.
● Corrected the Verilog code for the lpm_hint

parameter.
● Re-organized the “Making Changes” segment into the

Editing Data Displayed in the Hex Editor and Importing
and Exporting Memory Files segments. Added the Edit
value menu.

● Added Example: Using the In-System Memory Content
Editor with the SignalTap II Embedded Logic Analyzer.

—

Aug. 2004 v1.1 Minor typographical corrections. —

June 2004 v1.0 Initial release. —

Altera Corporation 16–1
October 2007

16. Design Debugging Using
In-System Sources and

Probes

Introduction Traditional debugging techniques often involve using an external pattern
generator to exercise the logic and a logic analyzer to study the output
waveforms during run-time. The SignalTap® II Logic Analyzer and
SignalProbe allow you to read or “tap” internal logic signals during
run-time as a way to debug your logic on-chip. While this is useful, the
debugging cycle efficiency may be enhanced with the ability to drive any
internal signal manually within your design. By doing this you can
perform the following activities:

■ Force the occurrence of trigger conditions setup in the SignalTap II
Logic Analyzer

■ Create simple test vectors to exercise your design without using
external test equipment

■ Dynamically control run-time control signals with the JTAG chain

With the introduction of the In-System Sources and Probes feature in the
Quartus® II software beginning with version 7.1, Altera extends the
portfolio of verification tools. The In-System Sources and Probes feature
allows you to easily control any internal signal, providing you with a
completely dynamic debugging environment. Coupled with either the
SignalTap II Logic Analyzer or SignalProbe, the In-System Sources and
Probes feature gives you a powerful debugging environment in which to
generate stimuli and solicit responses from your logic design.

This chapter addresses the following topics:

■ “Design Flow Using In-System Sources and Probes” on page 16–4
■ “Running the In-System Sources and Probes Editor” on page 16–9
■ “TCL Support” on page 16–14
■ “Design Example: Dynamic PLL Reconfiguration” on page 16–18

Overview The In-System Sources and Probes feature consists of the altsource_probe
megafunction and an interface to control the altsource_probe
megafunction instances during run-time. Each altsource_probe
megafunction instance provides you with source output ports and probe
input ports, where source ports drive selected signals and probe ports
sample selected signals. Upon compilation, the altsource_probe
megafunction sets up a register chain to either drive or sample the
selected nodes in your logic design. During runtime, the In-System
Sources and Probes interface uses a JTAG connection to shift data to and

QII53021-7.2.0

16–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

from the altsource_probe megafunction instances. Figure 16–1 shows a
block diagram of the components that make up the In-System Sources
and Probes feature.

Figure 16–1. In-System Sources and Probes Block Diagram

The altsource_probe megafunction hides the detailed transactions
between the JTAG Hub and the registers instrumented in your design to
give you a basic building block for stimulating and probing your design.
Moreover, the In-System Sources and Probes feature provides single-
cycle samples and single-cycle writes to the selected logic nodes. This
provides an easy way to input simple virtual stimuli and an easy way to
capture the current value on instrumented nodes. Because In-System
Sources and Probes gives you access to logic nodes within your design,
this feature can be used during the debugging process to toggle the inputs
of low-level components. If used in conjunction with the SignalTap II
Logic Analyzer, you can force trigger conditions to help isolate your
problem and shorten your debugging process.

D QD QD QD Q

D QD QD QD Q

Design Logic

altsource_probe
Megafunction

Probes Sources

JTAG
Hub

Altera
Programming

Hardware

Quartus II
Software

FPGA

Altera Corporation 16–3
October 2007 Preliminary

Overview

Additionally, the ease of use of the In-System Sources and Probes feature
makes it ideal for implementing control signals as virtual stimuli. This
feature can be especially helpful during for prototyping your design.
Examples of such applications could include the ability to do the
following:

■ Create virtual push buttons
■ Create a virtual front panel to interface with your design
■ Mimic external sensor data
■ Monitor and change run-time constants on the fly

In-System Sources and Probes supports Tcl commands to interface with
all your altsource_probe instances to increase the level of automation.

1 The Virtual JTAG Megafunction and the In-System Memory
Content Editor also give you the capability to drive virtual
inputs into your design. The Virtual JTAG Megafunction gives
you a greater level of control (compared to In-system Sources
and Probes) in how your design communicates with the JTAG
Hub at the cost of greater complexity. With the Virtual JTAG
megafunction, you can design your own customized register
scan chain to drive and control your logic through the JTAG
port. The In-System Memory Content Editor is used specifically
for reading and writing memory contents at runtime.

f For more details about the Virtual JTAG Megafunction, refer to the
sld_virtual_jtag Megafunction User Guide. For information about the
In-System Memory Content Editor, refer to the In-System Updating of
Memory and Constants chapter in volume 3 of the Quartus II Handbook.

Hardware and Software Requirements

The following components are required to use In-System Sources and
Probes:

■ Quartus II design software
or

■ Quartus II Web Edition (with TalkBack feature enabled)

■ Download Cable (USB-BlasterTM download cable or ByteBlasterTM
cable)

■ Altera® development kit or user design board with JTAG connection
to device under test

16–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The In-System Sources and Probes feature supports the following device
families:

■ ArriaTM GX
■ Stratix® III
■ Stratix II
■ Stratix II GX
■ Stratix
■ Stratix GX
■ HardCopy® II
■ HardCopy Stratix
■ Cyclone® III
■ Cyclone® II
■ Cyclone
■ MAX® II
■ APEXTM II
■ APEX 20KE
■ APEX 20KC
■ APEX 20K

Design Flow
Using In-System
Sources and
Probes

In-System Sources and Probes supports an RTL flow in which your
design nodes are instrumented in your HDL code via instantiation of the
altsource_probe megafunction. After your device is compiled with the
design nodes that you want instrumented, you can control your
altsource_probe instances via the Sources and Probes Editor GUI or via a
Tcl interface. The complete design flow is shown in Figure 16–2.

Altera Corporation 16–5
October 2007 Preliminary

Design Flow Using In-System Sources and Probes

Figure 16–2. FPGA Design Flow Using In-System Sources and Probes

Yes

No

Start

End

Functionality
Satisfied?

Create a New Project
or Open an Existing

Project

Configure
altsource_probe

Megafunction

Instrument selected logic
nodes by Instantiating the

altsource_probe
Megafunction variation file

into the HDL Design

Compile the design

Program Target
Device(s)

Control Source and
Probe Instance(s)

Debug/Modify HDL

16–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Configuring the altsource_probes Megafunction

To add in-system sources and probes functionality to your design, you
must first instantiate the altsource_probe megafunction variation file. The
altsource_probe megafunction can be easily configured using the
MegaWizard® Plug-In Manager. Each source or probe port can be up to
256 bits wide. You can have up to 128 instances of the altsource_probe
megafunction in your design. The following steps will guide you through
the steps necessary to configure the altsource_probe megafunction:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. Select Create a new custom megafunction variation.

3. Click Next.

4. On Page 2a, make the following selections:

a. In the Installed Plug-Ins list, expand the JTAG-accessible
Extensions folder. In the JTAG-accessible Extensions list, select
In-System Sources and Probes.

b. Make sure that the currently selected device family matches the
device you are targeting.

c. Select an output file type and enter the desired name of the
altsource_probe megafunction. You can choose AHDL (.tdf),
VHDL (.vhd), or Verilog HDL (.v) as the output file type.

5. Click Next.

6. On Page 3, make the following selections:

a. Make sure that the currently selected device family matches the
device that you are targeting.

b. Under Do you want to specify an Instance Index?, turn on Yes.

c. Specify the Instance ID of this instance.

d. Specify the width of the probe port. The width can be from
1 bit to 256 bits wide.

e. Specify the width of the source port. The width can be from
1 bit to 256 bits wide.

Altera Corporation 16–7
October 2007 Preliminary

Design Flow Using In-System Sources and Probes

7. On Page 3, you can click Advanced Options and specify other
parameters. The following options are included:

● What is the initial value of the source port, in hexadecimal?
This option allows you to specify the initial value driven on the
source port at run-time.

● Write data to the source port synchronously to the source
clock. This allows you to synchronize your source port write
transactions with the clock domain of your choice.

● Create an enable signal for the registered source port. When
enabled, this creates a clock enable input for the synchronization
registers. This option is enabled only when the Write data to the
source port synchronously to the source clock option is
enabled.

Table 16–1 summarizes the configurable fields for the altsource_probe
megafunction.

Table 16–1. MegaWizard Plug-In Manager —altsource_probe (page 3) Options

Options Description

Currently selected device family Specifies the device family.

Do you want to specify an Instance Index? Specifies the numeric index of the megafunction
instance during run-time (from 0 to 127).

The 'Instance ID' of this Instance (optional): Specifies the four character ID tag of the megafunction
in the instance manager window of the Sources and
Probes Editor.

How wide should the probe port be? Specifies the number of signals to be read by
In-System Sources and Probes.

How wide should the source port be? Specifies the number of signals to be driven by
In-System Sources and Probes.

What is the initial value of the source port (under
Advanced Options)

Specifies the initial value driven on the source port at
run time.

Write data to the source port synchronously to the
source clock. Each bit in the source port will utilize two
additional registers to achieve metastability (under
Advanced Options)

Turning on this option allows you to synchronize your
source port write transactions with the clock domain of
your choice.

Create an enable signal for the registered source port
(configured under Advanced Options)

Turning on this option creates a clock enable input for
the synchronization registers.

16–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Instantiating the altsource_probe Megafunction

The MegaWizard Plug-in Manager produces the necessary variation file
and the instantiation template based on your inputs to the MegaWizard.
Use the template to instantiate the altsource_probe megafunction
variation file in your design. The port information is shown in Table 16–2.

You can include up to 128 instances of the altsource_probe megafunction
in your design, provided that there are available logic resources in your
device. Each instance of the altsource_probe megafunction uses a pair of
registers per signal for the width of the widest port it contains.
Additionally, there will be some fixed overhead logic to accommodate
communication between the altsource_probe instances and the JTAG
controller. An additional pair of registers per source port is added for
synchronization if it is specified.

Compiling the Design

When you compile your design with the In-System Sources and Probes
megafunction instantiated, an instance of the altsource_probe instance
and sld_hub megafunctions are added to your compilation hierarchy
automatically. These two instances allow communication between the
JTAG controller and your instrumented logic.

To modify your In-System Sources and Probes connections, you can
modify the number of connections to your design by editing the
altsource_probe megafunction. You can open the MegaWizard Plug-In
Manager for the design instance you want to modify by double-clicking
the desired instance in the Project Navigator. You can then modify the
connections in the HDL source file. You must recompile your design
when you are finished editing it.

Table 16–2. altsource_probe Megafunction Port Information

Port Name Required? Direction Comments

Probe[] No Input The outputs from the user’s design.

Source_clk No Input Source Data is written synchronously to this clock.
This input is required if the Source Clock option is
turned on in the Advanced Options box in the
MegaWizard Plug-in Manager.

Source_ena No Input Clock enable signal for source_clk. This input is
required if specified in the Advanced Options box in
the MegaWizard Plug-in Manager.

Source[] No Output Used to drive inputs to user design.

Altera Corporation 16–9
October 2007 Preliminary

Running the In-System Sources and Probes Editor

Because the design cycle is iterative in nature, you can use the Quartus II
incremental compilation feature to reduce compilation time. Incremental
compilation allows you to organize your design into logical partitions.
During recompilation of a design, incremental compilation preserves the
compilation results and performance of unchanged partitions and
reduces design iteration time by compiling only modified design
partitions.

f For more information about Incremental Compilation, refer to the
Quartus II Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

Running the
In-System
Sources and
Probes Editor

The In-System Sources and Probes Editor is a GUI that gives you control
over all of the altsource_probe megafunction instances within your
design. It displays all available run-time controllable instances of the
altsource_probe megafunction in your design, provides a push-button
interface to drive all of your source nodes, and a logging feature to store
your probe and source data.

To run the In-System Sources and Probes Editor, from the Tools menu,
click In-System Sources and Probes Editor.

Figure 16–3 shows the Editor window.

16–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 16–3. In-System Sources and Probes Editor

The In-System Sources and Probes Editor is made up of three panes:

■ JTAG Chain configuration—Allows you to specify programming
hardware, device, and file settings that the In-System Sources and
Probes Editor uses to program and acquire data from a device.

■ Instance Manager—Displays information about the instances
generated when you compile a design, and allows you to control the
data the In-System Sources and Probes Editor acquires.

■ Sources and Probes Editor—Logs all the data read from the selected
instance and allows you to modify source data to be written to your
device.

Using the In-System Sources and Probes Editor does not require you to
open a Quartus II project. The In-System Sources and Probes Editor
retrieves all instances of the altsource_probe megafunction by scanning
the JTAG chain and sending a query to the specific device selected in the
JTAG Chain Configuration pane. Also, you can use a previously saved
configuration to run the In-System Sources and Probes Editor.

Altera Corporation 16–11
October 2007 Preliminary

Running the In-System Sources and Probes Editor

Each In-System Sources and Probes Editor window can access the
altsource_probe megafunction instances in a single device. If you have
more than one device containing megafunction instances in a JTAG chain,
you can launch multiple In-System Sources and Probes Editor windows
to access the megafunction instances in each of the devices.

Programming Your Device Using the JTAG Chain Configuration
Window

After compilation is complete, you must configure your FPGA before
using In-System Sources and Probes. To configure a device for use with
the In-System Sources and Probes, perform the following steps:

1. Open the In-System Sources and Probes Editor.

2. Under JTAG Chain Configuration, point to Hardware and select the
desired hardware communications device. You may be prompted to
configure your hardware; in this case, click Setup.

3. From the Device list, select the FPGA device to which you want to
download the design (it may be automatically detected). You may
have to click Scan Chain to detect your target device.

4. In the JTAG Configuration window, click Browse and select the
SRAM Object File (.sof) that includes the In-System Sources and
Probes instance or instances. (Note that it may be automatically
detected).

5. Click Program Device (next to File:) to program the target device.

16–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Instance Manager

The Instance Manager provides a list of all altsource_probe instances in
the design and allows you to configure how data is acquired from or
written to those instances.

The Instance Manager is shown in Figure 16–4.

Figure 16–4. Instance Manager

The following buttons and sub-panes are provided in the Instance
Manager:

■ Read Probe Data—Samples the probe data in the selected instance
and displays it in the Sources and Probes Editor Window

■ Continuously Read Probe Data—Continuously samples the probe
data of the selected instance and displays it in the Sources and Probes
Editor Window; you can modify the sample rate via the Probe read
interval setting

■ Stop Continuously Reading Probe Data—Cancels continuous
sampling of probe of selected instance

■ Write Source Data sub-pane —Writes data to all source nodes of the
selected instance

■ Probe Read Interval sub-pane—Displays the sample interval of all
the In-system Sources and Probe instances in your design; you can
modify the sample interval by clicking Manual

■ Event Log sub-pane—controls the event log in the Sources and
Probes Editor Window

■ Write Source Data sub-pane—Allows you to manually or
continuously write data to the system

Read Probe
Data

Continuously Read
Probe Data Stop

Reading
Probe Data

Health
Monitor

Write
Source Data

Read Source
Data

Write Source
Data

Altera Corporation 16–13
October 2007 Preliminary

Running the In-System Sources and Probes Editor

The status of each instance is also displayed beside each entry in the
Instance Manager. The status indicates if the instance is Not running
Offloading data, Updating data, or if an “Unexpected JTAG
communication error” occurs. The health monitor provides useful
information about the status of the editor.

Sources and Probes Editor Window

The Sources and Probes Editor window organizes and displays the data
from all sources and probes in your design, organized according to the
index number of the instance. The editor provides an easy way to manage
your signals, allowing you to rename signals or to group them into buses.
All data collected from source and probe nodes is recorded in the event
log and displayed as a timing diagram.

Reading Probe Data

You can read data by selecting the desired altsource_probe instance in the
Instance Manager and clicking Read Probe Data. This produces a single
sample of the probe data and updates the data column of the selected
index in the Sources and Probes Editor window. You can save the data to
an event log by turning on the Save data to event log option in the
Instance Manager.

If you want to sample data from your probe instance continuously, in the
Instance Manager, click the instance you want to read, and then click
Continuously read probe data. While reading, the status of the active
instance will show Unloading. You can read continuously from multiple
instances.

You can access read data by using the right-click menus in the Instance
Manager.

To adjust the probe read interval, in the Instance Manager, turn on the
Manual option in the Probe read interval sub-pane, and specify the
desired sample rate in the text field next to the Manual option. The
maximum sample rate depends on your computer setup. The actual
sample rate is shown in the Current interval box. The event log window
buffer size can be adjusted in the Maximum Size box.

Writing Data

To modify the source data to be written into the altsource_probe instance,
click in the name field of the signal you want to change. For buses of
signals, you can double-click on the data field and type in the value to be
driven out to the altsource_probe instance. The In-System Sources and
Probes Editor stores the modified source data values into a temporary

16–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

buffer. Modified values that have not been written out to the
altsource_probe instances appear in red. To update the altsource_probe
instance, highlight the instance in the Instance Manager and click Write
source data. The Write source data function is also available via the
shortcut menus in the Instance Manager.

You can choose to have the values stored in the In-System Sources and
Probes Editor continuously update the altsource_probe instances. By
doing so, any modifications you make to the source data buffer are
written immediately to the altsource_probe instances. To continuously
update the altsource_probe instances, change the Write source data field
from Manually to Continuously.

Data Organization

The main editor window allows you to group signals into buses, and
allows you to modify the display options of the data buffer.

To create a group of signals, select the node names you want to group,
right-click and select Group. You can modify the display format in the
Bus Display Format and the Bus Bit order submenus.

The Sources and Probes Editor Window allows you to rename any signal.
To rename a signal, double-click the name of the desired signal and type
in the new name.

The event log contains a record of the most recent samples. The buffer
size is adjustable, up to 128k samples. The time stamp for each sample is
logged and is displayed above the event log of the instance being
examined as you move your mouse pointer over the data samples.

You can save the changes that you have made and the recorded data into
a Sources and Probes File (.spf). To save changes, on the File menu, click
Save. The file contains all of the modifications you made to the signal
groups, as well as the current data event log.

TCL Support To support automation, In-system Sources and Probes supports the
procedures described in this chapter in the form of Tcl commands. The
Tcl package for In-System Sources and Probes is included by default
when you run quartus_stp.

The Tcl interface for In-System Sources and Probes provides a powerful
platform to help you debug your design. It is especially helpful for
debugging designs that require toggling multiple sets of control inputs.
You can aggregate multiple commands using a Tcl script to define your
own custom command set.

Altera Corporation 16–15
October 2007 Preliminary

TCL Support

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. For more information
about all settings and constraints in the Quartus II software, refer to the
Quartus II Settings File Reference Manual. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Table 16–3 shows the Tcl command you can use with In-System Sources
and Probes.

Example 16–1 shows an excerpt from a Tcl script with procedures that
control the altsource_probe instances of the design as shown in
Figure 16–5. The example design contains a DCFIFO with
altsource_probe instances to read from and to write to the DCFIFO. A set
of control muxes are added into the design to control the flow of data to

Table 16–3. In-System Sources and Probes Tcl Commands

Command Argument Description

start_insystem_source
_probe

-device_name <device name>
-hardware_name <hardware name>

Opens a handle to a device using the
specified hardware.
Call this command before starting
any transactions.

get_insystem_source_
probe_instance_info

-device_name <device name>
-hardware_name <hardware name>

Returns a list of all
altsource_probe instances in
your design. Each record returned
will be in the following format:
{<instance Index>, <source width>,
<probe width>, <instance name>}

read_probe_data -instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the
probe.
A string is returned specifying the
status of each probe, with the MSB as
the left-most bit.

read_source_data -instance_index
<instance_index>
-value_in_hex (optional)

Retrieves the current value of the
sources.
A string is returned specifying the
status of each source, with the MSB
as the left-most bit.

write_source_data -instance_index
<instance_index>
-value <value>
-value_in_hex (optional)

Sets the value of the sources.
A binary string is sent to the source
ports, with the MSB as the left-most
bit.

end_interactive_probe None Releases the JTAG chain.
Issue this command when all
transactions are finished.

16–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

the DCFIFO between the input pins and the altsource_probe instances. A
pulse generator is added to the read request and write request control
lines to guarantee a single sample read or write. The altsource_probe
instances, when used with the script in Example 16–1, provides visibility
into the contents of the FIFO by performing single sample write and read
operations and reporting the state of the full and empty status flags.

The Tcl script can be useful in debugging situations where you may want
to either empty or preload the FIFO in your design. As an example, you
can use this feature to preload the FIFO to match a trigger condition you
have set up within the Signal Tap II Logic Analyzer.

Figure 16–5. A DCFIFO Example Design Controlled by the Tcl Script in Example 16–1

D Q

D Q

Write_clock

Write_req
Data[7..0]

Write_clock

Read_req

Read_clock

Wr_full

Q[7..0]

Rd_empty

Data_out

Read_clock

Source_read_sel

S_read_req

S_write_req

Rd_req_in

Wr_req_in

Data_in[7..0]

altsource_probe
(instance 1)

altsource_probe
(instance 0)

Source_write_sel

S_data[7..0]

 DCFIFO

Altera Corporation 16–17
October 2007 Preliminary

TCL Support

Example 16–1. Tcl Script Procedures for Reading and Writing to the DCFIFO in Figure 16–5
Setup USB hardware - assumes only USB Blaster is installed and
an FPGA is the only device in the JTAG chain

set usb [lindex [get_hardware_names] 0]
set device_name [lindex [get_device_names -hardware_name $usb] 0]
write procedure : argument value is integer

proc write {value} {

global device_name usb
variable full

start_insystem_source_probe -device_name $device_name -hardware_name \
$usb

#read full flag
set full [read_probe_data -instance_index 0]

if {$full == 1} {end_insystem_source_probe
return "Write Buffer Full"
}

##toggle select line, drive value onto port, toggle enable
##bits 7:0 of instance 0 is S_data[7:0]; bit 8 = S_write_req;
##bit 9 = Source_write_sel

##int2bits is custom procedure that returns a bitstring from an integer
argument

write_source_data -instance_index 0 -value /[int2bits [expr 0x200 | \
$value]]
write_source_data -instance_index 0 -value [int2bits [expr 0x300 | \
$value]]

##clear transaction

write_source_data -instance_index 0 -value 0

end_insystem_source_probe
}

proc read {} {

global device_name usb
variable empty
start_insystem_source_probe -device_name $device_name -hardware_name \
$usb

16–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

##read empty flag : probe port[7:0] reads FIFO output; bit 8 reads
##empty_flag

set empty [read_probe_data -instance_index 1]

if {[regexp {1........} $empty]} { end_insystem_source_probe
return "FIFO empty" }

toggle select line for read transaction
Source_read_sel = bit 0; s_read_reg = bit 1

pulse read enable on DC FIFO
write_source_data -instance_index 1 -value 0x1 -value_in_hex
write_source_data -instance_index 1 -value 0x3 -value_in_hex

set x [read_probe_data -instance_index 1]

end_insystem_source_probe

return $x
}

Design Example:
Dynamic PLL
Reconfiguration

The ease of use of the In-System Sources and Probes feature can be
extremely helpful in creating a virtual front panel during the prototyping
phase of your design. Relatively simple designs of high functionality can
be created in a short amount of time. The following PLL reconfiguration
example demonstrates how the In-System Sources and Probes feature is
used to provide a GUI to dynamically reconfigure a Stratix PLL.

Stratix PLLs allows you to dynamically update PLL coefficients during
run-time. Each enhanced PLL within the Stratix device contains a register
chain that allows you to modify the pre-scale counters (m and n values),
output divide counters, and delay counters. In addition, the
altpll_reconfig megafunction provides an easy interface to access the
register chain counters. The altpll_reconfig megafunction provides a
cache containing all modifiable PLL parameters. After you have updated
all of the PLL parameters in the cache, the alt_pll_reconfig megafunction
drives the PLL register chain to update the PLL with the updated
parameters. Figure 16–6 shows a Stratix enhanced PLL with
reconfigurable coefficients.

Altera Corporation 16–19
October 2007 Preliminary

Design Example: Dynamic PLL Reconfiguration

1 Stratix II and Stratix III devices also allow you to dynamically
reconfigure PLL parameters. For more information about these
families, refer to the appropriate data sheet. For more
information about dynamic PLL reconfiguration, refer to
AN 282: Implementing PLL Reconfiguration in Stratix & Stratix GX
Devices or AN 367: Implementing PLL Reconfiguration in Stratix II
Devices.

Figure 16–6. Stratix-Enhanced PLL with Reconfigurable Coefficients

The following design example uses an altsource_probe instance to update
the PLL parameters in the altpll_reconfig megafuntion cache. The
altpll_reconfig megafunction connects to an enhanced PLL in a Stratix
FPGA to drive the register chain containing the PLL reconfigurable
coefficients. This design example uses a Tcl/Tk script to generate a GUI
where you can enter in new m and n values for the enhanced PLL. The Tcl
script extracts the m and n values from the GUI, shifts the values out to
the altsource_probe instances to update the values in the altpll_reconfig
megafunction cache and asserts the reconfig signal on the altpll_reconfig
megafunction. The reconfig signal on the altpll_reconfig megafunction

÷n Δtn

Δtm÷m

÷g0 Δtg0

÷e3 Δte3

÷g3 Δtg3

PFD VCOCharge
Pump

Loop
Filter

fREF

scandata

scanclk

scanaclr

Counters and Clock
Delay Settings are
Programmable

All Output Counters and
Clock Delay Settings can
be Programmed Dynamically

LSB MSB

LSB MSB

LSB MSB

LSB MSB

LSB

MSB

(1) (2)

16–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

starts the register chain transaction to update all PLL reconfigurable
coefficients. A block diagram of design example is shown in Figure 16–7.
The Tk GUI is shown in Figure 16–8.

Figure 16–7. Block Diagram of Dynamic PLL Reconfiguration Design Example

Figure 16–8. Interactive PLL Reconfiguration GUI Created with Tk and In-System Sources and Probes Tcl
Package

This design example was created using a NIOS® Development Kit, Stratix
Edition. The file sourceprobe_DE_dynamic_pll.zip contains all of the
necessary files for running this design example:

■ Readme.txt—A text file that describes the files contained in the
Design Example and provides instructions on running the Tk GUI
shown in Figure 16–8.

■ Interactive_Reconfig.qar—The archived Quartus II project for this
Design Example

You can download the sourceprobe_DE_dynamic_pll.zip file in the
Quartus II Handbook volume 3 section of the Altera Literature web page.

Altera Corporation 16–21
October 2007 Preliminary

Conclusion

Conclusion In-System Sources and Probes can provide stimuli and get responses
from the target design during run-time. With its simple and intuitive
interface, you can provide virtual inputs into your design during run-
time without using external equipment. When used in conjunction with
SignalTap II, you can use In-System Sources and Probes to provide
greater control of the signals in your design, and thus help shorten the
verification cycle. Also, with its ability to create virtual inputs into your
design, you can create simple, yet powerful applications to interact with
your design.

Referenced
Documents

This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II
Handbook

■ sld_virtual_jtag Megafunction User Guide
■ Quartus II Incremental Compilation for Hierarchical & Team-Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Settings File Reference Manual
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 16–4 shows the revision history for this chapter.

Table 16–4. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 16–21. —

May 2007
v7.1.0

Initial Release. —

http://www.altera.com/literature/ug/ug_virtualjtag.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf

16–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation Section VI–i
Preliminary

Section VI. Formal
Verification

The Quartus® II software easily interfaces with EDA formal design
verification tools such as the Cadence Incisive Conformal and Synplicity
Synplify software. In addition, the Quartus II software has built-in
support for verifying the logical equivalence between the synthesized
netlist from Synplicity Synplify and the post-fit Verilog Quartus Mapped
(.vqm) files using Incisive Conformal software.

This section discusses formal verification, how to set-up the
Quartus II software to generate the VQM file and Incisive Conformal
script, and how to compare designs using Incisive Conformal software.

This section includes the following chapters:

■ Chapter 17, Cadence Encounter Conformal Support
■ Chapter 18, Synopsys Formality Support

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section VI–ii Altera Corporation
Preliminary

Formal Verification Quartus II Handbook, Volume 3

Altera Corporation 17–1
October 2007

17. Cadence Encounter
Conformal Support

Introduction The Quartus® II software provides formal verification support for
Altera® designs through interfaces with a formal verification EDA tool,
the Cadence Encounter Conformal software.

Use the Encounter Conformal software to verify the functional
equivalence of a post-synthesis Verilog Quartus Mapping netlist from the
Synplicity Synplify Pro software and the post-fit Verilog Output File from
the Quartus II software. You can also use the Encounter Conformal
software to verify the functional equivalence of the register transfer level
(RTL) source code and post-fit Verilog Output File from the Quartus II
software when using Quartus II integrated synthesis. These formal
verification flows support designs for the Cyclone®, Cyclone II, Stratix®,
Stratix II, Stratix GX, Stratix II GX, Stratix III, Arria™ GX, and
HardCopy® II device families.

There are two types of formal verification—equivalence checking and
model checking. This chapter discusses equivalence checking using the
Cadence Encounter Conformal software.

This chapter contains the following sections:

■ “Formal Verification Design Flow” on page 17–2
■ “RTL Coding Guidelines for Quartus II Integrated Synthesis” on

page 17–5
■ “Generating the Post-Fit Netlist Output File and the Encounter

Conformal Setup Files” on page 17–10
■ “Understanding the Formal Verification Scripts for Encounter

Conformal” on page 17–18
■ “Comparing Designs Using Encounter Conformal” on page 17–21
■ “Known Issues and Limitations” on page 17–24
■ “Black Box Models” on page 17–28
■ “Conformal Dofile/Script Example” on page 17–30

Equivalence checking uses mathematical techniques to compare the
logical equivalence of the two versions of the same design rather than
using test vectors to perform simulation. The two compared versions
could be post-map design and post-fit design, or RTL design and post-fit
design. Equivalence checking greatly shortens the verification cycle of the
design.

QII53011-7.2.0

17–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Formal Verification Versus Simulation

Formal verification cannot be considered as a replacement to the
vector-based simulation. Formal verification only complements the
existing vector-based simulation techniques to speed up the verification
cycle. Vector-based simulation techniques of gate level designs can take a
considerable amount of time.

Vector-based simulation techniques can be used to do the following:

■ Verify design functionality
■ Verify timing specifications
■ Debug designs

Formal Verification: What You Need to Know

If you use formal verification techniques to verify logic equivalence of
your design, you can save time by forgoing a comprehensive
vector-based simulation of the gate level design. However, there may be
impact on area and performance during recompilation of your design
with the Quartus II software if you have chosen to use formal verification
flow for Cadence Conformal LEC software. The area and performance of
your design may be affected by the following factors:

■ Hierarchy preservation
■ ROM implementation by logic elements (LEs)
■ Retiming is disabled

Refer to “Known Issues and Limitations” on page 17–24 before you
consider using the formal verification flow in your design methodology.

Formal
Verification
Design Flow

Altera supports formal verification using the Encounter Conformal
software for the following two synthesis tools:

■ Quartus II Integrated Synthesis
■ Synplify Pro

The following sections describe the supported design flows for these
synthesis tools.

Altera Corporation 17–3
October 2007 Preliminary

Formal Verification Design Flow

Quartus II Integrated Synthesis

The design flow for formal verification using the Quartus II integrated
synthesis is shown in Figure 17–1. This flow performs equivalency
checking for the RTL source code and the post-fit netlist generated by the
Quartus II software. The RTL source code can be in Verilog or VHDL
format. The post-fit netlist generated by the Quartus II software is always
in Verilog format.

Figure 17–1. Formal Verification Using Quartus II Integrated Synthesis and the
Encounter Conformal Software

EDA Tool Support for Quartus II Integrated Synthesis

The formal verification flow using the Quartus II software and Cadence
Encounter Conformal software supports the following software versions
and operating systems:

■ Quartus II software beginning with version 4.2
■ Cadence Encounter Conformal software beginning with 4.3.5A
■ Solaris and Linux operating systems

Synplify Pro

The design flow for formal verification using Synplify Pro Synthesis
performs equivalency checking for the post-synthesis netlist from
Synplify Pro and the post fit netlist generated by Quartus II software, as
shown in Figure 17–2.

f For additional information about performing equivalency checking
between RTL and post-synthesis netlist generated from Synplify Pro
software, refer to the Synplify Pro documentation.

Synthesis

Place-and-Route

Equivalence
Checking

RTL

Quartus II
Software

Post-Fit
Verilog Output

Encounter Conformal
Software

Formal Verification
Library

17–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 17–2. Formal Verification Flow Using Synplify Pro and the Encounter
Conformal Software

EDA Tool Support for Synplify Pro

The formal verification flow using the Quartus II software, the Synplicity
Synplify Pro, and the Cadence Encounter Conformal software supports
the software versions and operating systems shown in Table 17–1.

Table 17–1. Compatible Software Versions

Quartus II
Software Version

Cadence Conformal
LEC Version Synplify Pro Version

4.1 4.3.0.a 7.6.1

4.2 4.3.5.a 8.0

5.0 5.1 8.1

5.1 5.1 8.4

6.0 5.2 8.5

6.1 6.1 8.6.2

7.0 6.1 8.6.2

7.1 6.2 8.8.1

7.2 7.1 9.0

Synplify Pro

Quartus II

Synthesized
Netlist

Equivalence Checking/
Encounter Conformal

Equivalence Checking/
Encounter Conformal

Formal Verification
 Library

P&R
Netlist

RTL

Altera Corporation 17–5
October 2007 Preliminary

RTL Coding Guidelines for Quartus II Integrated Synthesis

RTL Coding
Guidelines for
Quartus II
Integrated
Synthesis

The Cadence Encounter Conformal software can compare the RTL code
against the post-fit netlist generated by the Quartus II software. The
Encounter Conformal software and the Quartus II integrated synthesis
parse and compile the RTL description in slightly different ways. The
Quartus II software supports some RTL features that the Encounter
Conformal software does not support, and vice versa. The style of the
RTL code is of particular concern because neither tool supports some
constructs, leading to potential formal verification mismatches; for
example, state machine extraction, wherein different encoding
mechanisms can result in different structures. Therefore, for successful
verification, both tools must interpret the RTL code in the same manner.

The following section provides information on recognizing and
preventing problems that can arise in the formal verification flow.

f For more details about RTL coding styles for Quartus II Integrated
Synthesis, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook.

1 Some of the coding guidelines apply to both Quartus II
Integrated Synthesis and Synplify Pro flow, as indicated in each
of the guidelines in the following sections.

Synthesis Directives and Attributes

Synthesis directives, also known as pragmas, play an important role in
successful verification of RTL against the post-fit Verilog Output netlist
from the Quartus II software.

Pragmas and trigger keywords that are supported in Quartus II
integrated synthesis and Encounter Conformal are also supported in the
formal verification flow. The Quartus II integrated synthesis and
Encounter Conformal both support the trigger keywords synthesis and
synopsys. When the Quartus II software does not recognize a keyword
such as verplex, the keyword is disabled in the formal verification scripts
produced for use with the Cadence Conformal software. Therefore, it is
important to use caution with unsupported pragmas because they can
lead to verification mismatches.

17–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

For example, you can use the Quartus II integrated synthesis to
synthesize RTL code with the synthesis directive
read_comments_as_HDL.

Example 17–1. Verilog HDL Example of Read Comments as HDL

// synthesis read_comments_as_HDL on
// my_rom lpm_rom (.address (address),
// .data (data));
// synthesis read_comments_as_HDL off

Example 17–2. VHDL Example of Read Comments as HDL

-- synthesis read_comments_as_HDL on
-- my_rom : entity lpm_rom
-- port map (
-- address => address,
-- data => data,);
-- synthesis read_comments_as_HDL off

1 The Encounter Conformal software does not support the
synthesis directive read_comments_as_HDL, and the
directive has no affect on the Encounter Conformal software.

Table 17–2 lists supported pragmas and trigger keywords for formal
verification.

Table 17–2. Supported Pragmas and Trigger Keywords for Formal
Verification

Pragmas (1) Trigger Keywords

full_case
parallel_case
pragma
synthesis_off
synthesis_on
translate_off
translate_on

synthesis
synopsys

Note to Table 17–2:
(1) Do not use Verilog 2001-style pragma declarations. The Quartus II software and

the Encounter Conformal software support this style of pragma in different
manners.

Altera Corporation 17–7
October 2007 Preliminary

RTL Coding Guidelines for Quartus II Integrated Synthesis

Stuck-at Registers

Quartus II integrated synthesis eliminates registers that have their output
stuck at a constant value. Quartus II integrated synthesis gives a warning
message and adds an entry to the corresponding report panel in the
formal verification folder of the Analysis and Synthesis section of the
Compilation Report. If Conformal LEC does not find the same
optimizations, it can lead to unmapped points in the golden netlist.
Example 17–3 illustrates the issue:

Example 17–3. Verilog HDL Example Showing Stuck at Registers

module stuck_at_example {clk, a,b,c,d,out};
input a,b,c,d,clk;
output out;
reg e,f,g;

always @(posedge clk) begin
e <= a and g;// e is stuck at 0
g <= c and e;// g is stuck at 0
f <= e | b;

end
assign out = f and d;
endmodule

In this module description, registers e and g are tied to logic 0. In this
example, the Quartus II software generates the following warning
message:

Warning: Reduced register "g" with stuck data_in port to stuck value GND
Warning: Reduced register "e" with stuck data_in port to stuck value GND

Quartus II integrated synthesis then adds a command to the formal
verification scripts telling Conformal LEC that a register is stuck at a
constant value, as shown in Example 17–4:

Example 17–4. Conformal LEC Script Showing Commands for Instance Equivalence

// report floating signals
// Instance-constraints commands for constant-value registers removed
// during compilation
// add instance constraints 0 e -golden
// add instance constraints 0 g -golden

17–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The command is commented in the formal verification script, forcing the
Encounter Conformal software to treat the register as stuck at a constant
value, and potentially hiding a compilation error. You must verify that
input to the e and g registers is constant in the design and uncomment
the command to obtain accurate results.

1 Altera recommends recoding your design to eliminate
“stuck-at” registers.

The stuck-at register information in this section also applies to
the Synplify Pro flow.

ROM, LPM_DIVIDE, and Shift Register Inference

For the purpose of formal verification, the Quartus II integrated synthesis
implements both ROM and shift registers in the form of LEs instead of
using dedicated on-chip memory resources. Using LEs can be less
area-efficient than inferring a megafunction that can be implemented in a
RAM block. However, the Quartus II software generates a warning
message indicating that the megafunction was not inferred. Quartus II
integrated synthesis also reports a suggested ROM or shift register
instantiation that enables you to either use the MegaWizard® Plug-In
Manager to create the appropriate megafunction explicitly, or to isolate
the corresponding logic in a separate entity that you can set as a black
box. By setting black box properties on a particular module or entity, you
are telling the formal verification tool not to peek inside the module or
entity for formal verification. If the black box properties are set on the
corresponding megafunction before synthesis, you can verify the
megafunction with the Encounter Conformal software.

If the design contains division functionality, the Quartus II software
infers an lpm_divide megafunction, which is treated as a black box for the
purpose of formal verification.

RAM Inference

When the Quartus II software infers the LPM megafunction altsyncram
from the RTL code, the Quartus II software generates the following
warning message:

Created node "<mem_block_name>" as a RAM by generating altsyncram megafunction to implement
register logic with M512 or M4K memory block or M-RAM. Expect to get an error or a mismatch
for this block in the formal verification tool.

Altera Corporation 17–9
October 2007 Preliminary

RTL Coding Guidelines for Quartus II Integrated Synthesis

This warning is generated because the memory block (altsyncram) is a
new instance in the post-fit netlist that is handled as a black box by the
formal verification tool. However, no such instance exists in the original
RTL design, resulting in mismatch or error reporting in the formal
verification tool.

Latch Inference

A latch is implemented in the Quartus II integrated synthesis using a
combinational feedback loop. The Encounter Conformal software infers a
latch primitive in the Encounter Conformal library (DLAT) to implement
a latch. This results in having a DLAT on the golden side and a
combinational loop with a cut point on the revised side, leading to
verification mismatches. The Quartus II software issues a warning
message whenever a latch is inferred, and the Quartus II software adds
an entry to the report panel in the Formal Verification folder of the
Analysis and Synthesis report. Altera recommends that you avoid latches
in your design; however, if latches are necessary, Altera recommends
using the corresponding lpm_latch megafunction.

f For more information about the problems related to latches, refer to the
Recommended HDL Coding Styles chapter in volume 1 of the
Quartus II Handbook.

Combinational Loops

If the design consists of an intended combinational loop, you must define
an appropriate cut point for both the RTL and the post-fit Verilog Output
netlist. A warning that a combinational loop exists in the design is found
in the Formal Verification subfolder of the Quartus II software
Analysis and Synthesis report.

For more information on issues with combinational loops, see “Known
Issues and Limitations” on page 17–24.

17–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Finite State Machine Coding Styles

When a state machine is inferred by the Encounter Conformal software,
it uses sequential encoding as the default encoding when no user
encoding is present. The Quartus II software selects the encoding most
suited for the inferred state machine if the State Machine Processing
Settings on the Analysis and Synthesis Settings page of the Settings
dialog box is set to the default value Auto. Therefore, it is important to use
the coding style described in the Recommended HDL Coding Styles chapter
in volume 1 of the Quartus II Handbook on RTL when writing finite state
Machines (FSMs). This allows the Quartus II integrated synthesis and the
Encounter Conformal software to infer a similar state machine for the
same RTL code.

Generating the
Post-Fit Netlist
Output File and
the Encounter
Conformal Setup
Files

The following steps describe how to set up the Quartus II software
environment to generate the post-fit Verilog Output netlist and the
Encounter Conformal script for use in formal verification. With the
exception of step 3, the steps are identical for both of the Synthesis tools:

1. Create a new Quartus II project or open an existing project.

2. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

3. In the Category list, click EDA Tool Settings.

If you are using the Quartus II integrated synthesis, perform the
following steps:

a. In the Category list, under EDA Tool Settings, select Design
Entry/Synthesis. Select <None> from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal
Verification. Select Conformal LEC from the Tool name list
(Figure 17–3).

Altera Corporation 17–11
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

Figure 17–3. Compilation Process Settings

If you are using Synplify Pro, perform the following steps:

a. In the Category list, under EDA Tool Settings, select Design
Entry/Synthesis. Select Synplify Pro from the Tool name list.

b. In the Category list, under EDA Tool Settings, select Formal
Verification. Select Conformal LEC from the Tool name list.

4. In the Category list, select Compilation Process Settings. Under
Compilation Process Settings, select Incremental Compilation.

In the Incremental Compilation page, click Full Incremental
Compilation to turn on Incremental Compilation.

or

17–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Turn on Incremental Compilation by typing the following Tcl
command in the Quartus II software Tcl console:

Example 17–5. TcL Command to Turn On Full Incremental Compilation

set_global_assignment -name INCREMENTAL_COMPILATION \
FULL_INCREMENTAL_COMPILATION

1 Altera requires that Incremental Compilation be turned On
for Formal Verification, and that your design does not
contain any user created partitions. Starting with Quartus II
version 6.1 and later, the incremental compilation feature is
On by default.

5. In the Category list, select Analysis and Synthesis Settings to
expand the options list, and click Synthesis Netlist Optimizations.
In the Synthesis Netlist Optimizations page, turn off Perform
gate-level register retiming (Figure 17–4).

1 If Perform gate-level register retiming is not turned off, the
Encounter Conformal script can display a different set of
compare points, making the resulting netlist difficult to
compare against the reference netlist file.

Altera Corporation 17–13
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

Figure 17–4. Synthesis Netlist Optimizations

6. In the Category list, select Fitter Settings, and select Physical
Synthesis Optimizations.

a. Under Physical synthesis for registers, turn off Perform
register retiming.

b. Under Physical Synthesis for Fitting, turn off both Perform
physical synthesis for combinational logic and Perform logic
to memory mapping to prevent logic from being mapped to
RAMs (Figure 17–5).

17–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 17–5. Fitter Settings

Retiming a design, either during the synthesis step or during the fitting
step, usually results in moving and merging registers along the critical
path and is not well supported by the equivalence checking tools. Because
equivalence checkers compare the cone of logic terminating at registers,
do not use retiming to move the registers during optimization in the
Quartus II software.

1 If the options Perform gate-level register retiming
(Figure 17–4) and Perform register retiming (Figure 17–5)
are not turned off, the Encounter Conformal script can
display a different set of compare points, making the
resulting netlist difficult to compare against the reference
netlist file. If you use retiming in your design during
compilation, then you cannot generate a netlist for formal
verification.

f To learn more about physical synthesis, refer to the Netlist Optimizations
and Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

Altera Corporation 17–15
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

7. Perform a full compilation of the design. On the Processing menu,
click Start Compilation, or click the Start Compilation icon on the
Toolbar.

If your golden netlist (VQM netlist from Synplify Pro or RTL)
includes any design entity not having a corresponding formal
verification model, that entity is handled as a black box whose
boundary interface is preserved. There are three types of black boxes
and required user actions, depending upon each circumstance.
Table 17–3 describes these three types of black boxes and the
required user actions in detail.

You can also use Tcl commands or Quartus II GUI to set the black box
property on the entities, which the formal verification tool does not
compare.

Tcl Command

Use the following Tcl commands to preserve the boundary interface of a
black box entity: dram.

Example 17–6. TcL Command to Create a Black Box

set_instance_assignment -name PRESERVE_HIERARCHICAL_BOUNDARY FIRM -to | -entity dram
set_instance_assignment -name EDA_FV_HIERARCHY BLACKBOX -to | -entity dram

GUI

To preserve the boundary interface of an entity using the GUI, follow
these steps:

1. Make an EDA Formal Verification Hierarchy assignment to the
entity with the value BLACKBOX.

Table 17–3. Black Boxes and Required User Action

Type of Black Box Required User Action

Altera library of parameterized modules (LPMs) and
megafunctions (refer to Table 17–5 for a complete list).

No action required. The Quartus II software
automatically black boxes the list of components
and preserves the hierarchy.

Any parametrized entity other than those listed in
Table 17–5.

User must black box the wrapper that instantiates
the parameterized entity.

Non parameterized entities that the user wants to black box. User can black box the entity itself.

17–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

2. Make a Preserve Hierarchical Boundary assignment to the entity
with the value Firm (Figure 17–6).

Figure 17–6. Setting the Black-Box Property on a Module

The Quartus II Software Generated Files, Formal Verification
Scripts, and Directories

After successful compilation, the Quartus II software generates a list of
files, formal verification scripts, and directories in the
<project_directory>fv/conformal/ directory (Table 17–4).

Table 17–4. The Quartus II Software Compiler-Generated Files and Directories (Part 1 of 2)

File or
Directory Name Details

Verilog
Output File

<proj rev>.vo The Quartus II software-generated netlist for formal verification.

Altera Corporation 17–17
October 2007 Preliminary

Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files

The script file contains the setup and constraints information to be used
with the formal verification tool. The file <entity>.v in the blackboxes
directory contains the module description of entities that are not defined
in the formal verification library. The file also contains entities that you

Script file <proj rev>.ctc The <proj rev>.ctc file references <proj rev>.clg and <proj rev>.clr
that read the library files and black box descriptions. The <proj
rev>.ctc file also references the <proj rev>.cmc file containing
information about the mapped points. (1)

<proj rev>.cec The <proj rev>.cec file contains the information for instance
equivalences.

<proj rev>.cep The <proj rev>.cep file contains the information for black box pin
equivalences in the design.

<proj rev>.cmp The <proj rev>.cmp file contains the information for the black box pin
mapping between the golden and revised sides. (2)

<proj rev>.cmc The <proj rev>.cmc file contains information about the additional
points to be mapped in addition to the points selected by the tool.

<proj rev>_trivial.cmc This <proj rev>_trivial.cmc file contains mapping information
for all the key points in the design. (3)

<proj rev>.clr The <proj rev>.clr file contains information about the macros and
libraries for the revised design.

<proj rev>.clg The <proj rev>.clg file contains information about the macros and
libraries for the golden design.

blackboxes
directory

<project directory>/fv/
conformal/<project rev>_
blackboxes

This directory contains top-level module descriptions for all the
user-defined black box entities and contains modules with definitions
other than Verilog or VHDL, for example, Block Design File (.bdf) in
the design directory
<project directory>/fv/conformal/<project rev>_blackboxes

Notes to Table 17–4:
(1) This file is used with the Encounter Conformal software.
(2) This file is called from the <proj rev>.ctc script file. By default, the line where this file is called is commented out.

These files are only useful for HardCopy II device families.
(3) In some cases, Encounter Conformal software performs incorrect key point mapping, resulting in formal

verification mismatches. To overcome the verification mismatches, the Quartus II software writes out the
<proj rev>_trivial.cmc file that contains mapping information for all the key points in the design. Reading this
file during the formal verification setup can result in increased run time. Therefore, the Quartus II software writes
out the top-level script file <proj rev>.ctc with the command to read the <proj rev>_trivial.cmc file commented.
If the formal verification results are not acceptable, the user can uncomment the command and read the
<proj rev>_trivial.cmc file. The command in the <proj rev>.ctc file is:

//Trivial mappings with same name registers
//read mapped points $PROJECT/fv/conformal/<proj rev>_trivial.cmc

Table 17–4. The Quartus II Software Compiler-Generated Files and Directories (Part 2 of 2)

File or
Directory Name Details

17–18 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

specify as black boxes. For example, if there is a reference to a black box
for an instance of the altdpram megafunction in the design, the
blackboxes directory does not contain a module description for the
altdpram megafunction because it is defined in the altdpram.v file of the
formal verification library. When a module does not have an RTL
description, or the description exists only in the formal verification
library and you do not want to compare the module using formal
verification, a file containing only the top-level module description with
port declaration is written out to the blackboxes directory and read into
the Encounter Conformal software.

Understanding
the Formal
Verification
Scripts for
Encounter
Conformal

The Quartus II software generates scripts to use with the Encounter
Conformal Logic Equivalence Check (LEC) software. This section
elaborates on the details of the Encounter Conformal commands used
within the scripts to help you compare the revised netlist with the golden
netlist. In most cases, you do not need to add any more Encounter
Conformal constraints to verify your netlists. Also, a sample script
generated by the Quartus II software is provided at the end of the
chapter.

The Encounter Conformal Commands within the Quartus II
Software-Generated Scripts

The value for the variable QUARTUS is the path to the Quartus II software
installation directory:

setenv QUARTUS <Quartus Installation Directory>

The Quartus II software assigns the current working directory of the
project to the PROJECT variable. Use this variable to change the project
directory to the directory where the design files are installed when
moving from a UNIX to a Windows environment, or vice versa:

setenv PROJECT <Quartus Project Directory>

The following command reads both the golden and the revised netlists,
along with the appropriate library models:

read design <design files>

1 You must update the project location when the files are moved
from the Windows environment to the UNIX environment.

The post place-and-route netlist from the Quartus II software might
contain net and instance names that are slightly different from those of
the golden netlist. By using the following command, the Quartus II

Altera Corporation 17–19
October 2007 Preliminary

Understanding the Formal Verification Scripts for Encounter Conformal

software defines temporary substitute string patterns enabling the
Encounter Conformal software to automatically map key points when the
names are not the same:

add renaming rule <rule>

The Encounter Conformal LEC software employs three name-based
methods to map key points to compare the revised netlist with the golden
netlist. Scripts set the correct method to get the best results.

set mapping method <mapping_rule>

The Quartus II software performs several optimizations, including
optimizing the registers whose input is driven by a constant. Under these
circumstances, for the formal verification software to compare the netlists
properly, the command set flatten model is used with the option
seq_constant.

set flatten model <flattening_rule>

When you use the command report black box, verify that the
following modules are listed as black boxes, along with any of the
modules black boxed by the user, in both the golden and revised netlists:

■ LPMs and megafunctions without the formal verification models
■ Encrypted IP functions
■ Entities not implemented in Verilog HDL or VHDL

Use the following command to set the same implementation on
multipliers for both the golden and revised netlists:

set multiplier implementation <implementation_name>

If there are any combinational loops or instances of LPM_LATCH, the
Quartus II software cuts the loop at the same point using the following
command on both the golden and revised netlists:

add cut point

17–20 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

The Encounter Conformal software does not always automatically map
all the keypoints, or can incorrectly map some keypoints. To help the
Encounter Conformal software successfully complete the mapping
process, the Quartus II software records optimizations performed on the
netlist as a series of add mapped points in the Encounter Conformal
<file_name>.cmc script.

add mapped points <key_points>

There are situations where the inverter in front of the register gets moved
after the register. In this situation, the following command is used:

add mapped points <key_points> -invert

The following command reads in the mapped point information from the
specified file:

read mapped points <file_name>.cmc

Figure 17–7. Instance Equivalence

During the process of optimization, the Quartus II software might merge
two registers into one (Figure 17–7). The Quartus II software informs the
formal verification tool that the U1 and U2 registers are equivalent to each
other using the following command:

add instance equivalence <instance_pathname ..> [-Golden]

If the register duplication takes place, the following command is used:

add instance equivalence <instance_pathname ..>
[-revised]

Golden Revised

U1

U2

DFF

DFF

PO PO
DFF

U1

Altera Corporation 17–21
October 2007 Preliminary

Comparing Designs Using Encounter Conformal

The following command is used when the inverter is moved beyond the
register along with either register duplication or merging:

add instance equivalences <instance_pathname>
[-invert <instance_pathname>]

At times, the register output is driven to a constant, either logic 0
or logic 1. The Quartus II software sets the value of the register to
a constraint using the add instance constraint command. For
more information about this command, refer to “Stuck-at Registers”
on page 17–7.

add instance constraint <constraint_value>

Comparing
Designs Using
Encounter
Conformal

This section addresses using the Encounter Conformal software to
compare designs; that is, how to prove logical equivalence between two
versions of the design.

Black Boxes in the Encounter Conformal Flow

The Quartus II software usually generates a flattened netlist. However,
there are some modules in the design that must be treated differently. The
following is a list of some of these modules:

■ LPMs and megafunctions without formal verification models
■ Encrypted IP functions
■ Entities not implemented in Verilog HDL or VHDL

To perform equivalence checking of a design between its version
consisting of the modules listed above and its implemented version, the
modules have to be treated as black boxes by the Encounter Conformal
software. To facilitate the formal verification flow, the Quartus II
software reconstructs the hierarchy on the black boxes with a port
interface that is identical to the module on the golden side of the design.

Verilog Output netlist files written by the Quartus II software also
contain the black box hierarchy when you make the following
assignments for a module:

■ An EDA Formal Verification Hierarchy assignment with the value
BLACKBOX

■ A Preserve Hierarchical Boundary assignment with the value Firm
(Figure 17–6)

17–22 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

If these two assignments are not made for a module, the Quartus II
software implements that module with logic cells. When this happens,
the Verilog Output netlist file no longer contains the black box hierarchy
and does not preserve the port interface, resulting in a mismatch within
the Encounter Conformal software.

Running the Encounter Conformal Software

To run the Encounter Conformal software, use its GUI or a system
command prompt, and use the CTC script generated by the Quartus II
software.

Running the Encounter Conformal Software from the GUI

To run the Encounter Conformal software from the GUI, follow these
steps:

1. Open the Encounter Conformal software.

2. On the File menu, click Do Dofile.

3. Select the file <path to project directory>/fv/conformal/<proj rev>.ctc.

The Encounter Conformal software GUI displays the comparison results
(Figure 17–8). The Golden window displays the original RTL description
or the post synthesis VQM netlist from Synplify Pro, and the Revised
window displays the information of the post-fit netlist generated by the
Quartus II software. The message section at the bottom of the window
reports the verification results and the number of unmapped and
non-equivalent points found in the design.

Altera Corporation 17–23
October 2007 Preliminary

Comparing Designs Using Encounter Conformal

Figure 17–8. Encounter Conformal Software GUI Display of Functional
Comparisons

To investigate the verification results, click the Mapping Manager icon in
the toolbar, or on the Tools menu, click Mapping Manager. The
Encounter Conformal software reports the mapped, unmapped, and
compared points in the Mapped Points, Unmapped Points, and
Compared Points windows, respectively.

f For more information about how to diagnose non-equivalent points,
refer to the Encounter Conformal software user documentation.

17–24 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Running the Encounter Conformal Software From a System Command
Prompt

To run the Encounter Conformal Software without using the GUI, type
the command shown in Example 17–7 at a system command prompt.

Example 17–7. Conformal LEC Command to Run Formal Verification

lec -dofile /<path to project directory>/fv/conformal/<proj rev>.ctc -nogui r

To get a downloadable design example showing the formal verification
flow with Quartus II software, go to
www.altera.com/support/examples/quartus/exm-formal-
verification.html.

f To learn more about the latest debugging tips and solutions for formal
verification flow between Cadence Conformal LEC tool and Quartus II
software, go to www.altera.com and perform an advanced search with
keywords “formal verification.”

Known Issues
and Limitations

The following known issues and limitations can occur when using the
formal verification flow described in this chapter:

■ When a port on a black box entity drives two or more signals within
the black box, the Quartus II software pushes the connections
outside of the black box, and creates that many ports on the black
box. This problem is only associated with Stratix II and HardCopy II
designs.

The additional ports on the black box are named
_unassoc_inputs_[] and _unassoc_outputs_[]
(Figure 17–9). This issue is generally associated with reset and enable
signals. Figure 17–9 shows an example in which the reset pin is split
into two ports outside of the black box and the
_unassoc_inputs_[] is driven by the clkctrl block. In such
situations, the Verilog Output netlist generated by the Quartus II
software has signals driving these black box ports, but golden RTL
does not contain any signals to drive the _unassoc_inputs_[],
resulting in a formal verification mismatch of the black box. The
black box module definition generated by the Quartus II software in
the directory <Quartus_project>\fv\conformal*_blackboxes
contains these additional _unassoc_inputs_[] and
_unassoc_outputs_[] ports. This black box module is read on

Altera Corporation 17–25
October 2007 Preliminary

Known Issues and Limitations

both the golden and revised sides of the design, which results in
unconnected ports on the golden side and formal verification
mismatches.

Figure 17–9 shows the creation of _unassoc_inputs_[] and
_unassoc_outputs_[] for the reset signal.

Figure 17–9. Creation of _unassoc_inputs_[] and _unassoc_outputs_[]

Another common occurrence of this issue is in HardCopy II designs.
Whenever a port drives large fan-out within the black box, the Quartus II
software inserts a buffer on the net and moves the logic outside of the
black box (Figure 17–10).

To fix the problem of unassoc_input_[] ports causing blackbox
mismatches, use Cadence Conformal commands to change the type of the
blackbox unassoc_input_[] keypoint to a primary output keypoint,
and then marking the appropriate pin equivalences. Similarly, to fix the
problem of register mismatches due to unassoc_output_[] pins from
blackboxes, use Conformal commands to change the type of the blackbox
unassoc_output_[] keypoint to a primary input, and then marking
equivalent pins as such. The commands to perform these actions are
written in the <proj rev>.cep file.

reset

clkctrl _unassoc_inputs_[]

reset

_unassoc_outputs_[]

17–26 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Figure 17–10 shows the creation of _unassoc_inputs_[] for a signal
with large fan-out.

Figure 17–10. Creation of _unassoc_inputs_[] for a Signal with Large Fan-out

■ In designs with combinational feedback loops, the Encounter
Conformal software can insert extra cut points in the revised netlist,
causing unmapped points and ultimately verification mismatches.

■ For Cyclone II designs, Conformal LEC may report non-equivalent
flipflops and extra cut points for the revised (post-fit) design when
your HDL source code instantiates the lpm_ff primitive with an
asynchronous load signal aload (with or without any other
asynchronous control signals) and when the asynchronous clear
signal aclr and asynchronous set signal aset are used together. To
avoid this problem, ensure that there is a wrapper module or entity
around the lpm_ff instantiation, and black box the module or entity
that instantiates the lpm_ff primitive.

■ For Stratix III designs, the Cadence Conformal LEC software creates
cut points for the combinational loops on the golden side and may
fail equivalence checking due to improper mapping. The
combinational loops are due to logic around the registers emulating
multiple set, resets, or both. These cut points are also reported during
the mapping step in Quartus II software with Warning messages.
You can manually add Cadence Conformal commands to add cut
points, which result in proper mapping and formal verification.

■ To perform formal verification, certain synthesis optimization
options, such as register retiming, optimization through black box
hierarchy boundaries, and disabling the ROM and shift register
inference, are turned off, which can have an impact on the area
resource and performance.

■ RAM and ROM instantiations, inferences, or both are not verified
using formal verification.

Signal A

_unassoc_inputs_[] Black Box

Signal A

Altera Corporation 17–27
October 2007 Preliminary

Conclusion

■ Incremental Compilation for the purpose of formal verification does
not support user-created design partitions.

■ Formal verification does not support clear box netlist due to
unconnected ports on its WYSIWYG instances.

■ Formal verification does not support VHDL megafunction variations
due to undriven ports on the megafunctions.

■ When a black box contains bidirectional ports, the Quartus II
software fails to reconstruct the hierarchy. For this reason, the black
box is represented by a flat netlist, resulting in formal verification
mismatches.

■ ROMs in the design have to be black boxed before compilation using
Quartus Integrated Synthesis, because the Quartus II software may
perform some optimizations on the ROM, resulting in Formal
Verification mismatches.

■ Conformal may report mismatches or abort comparison of some key
points when a DSP megafunction is implemented in LEs by the
Quartus II software due to implicit optimizations within the DSP
and the complexity of the multiplier logic in terms of LEs.

■ Unused logic optimized within and around a black box by the
Quartus II software can result in a black-box interface different from
the interface in the synthesized VQM netlist.

Conclusion Formal verification software enables verification of the design during all
stages from RTL to placement and routing. Verifying designs takes more
time as designs increase in size. Formal verification is a technique that
helps reduce the time needed for your design verification cycle.

17–28 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Black Box
Models

The black box models are interface definitions of entities, such as
primitives, atoms, LPMs, and megafunctions. These models have a
parameterized interface, and do not contain any definition of behavior.
They are specifically designed and tested to work with the Encounter
Conformal software, which uses these models along with your design to
generate black boxes for instances of the entity with varying sets of
parameters in the design. Table 17–5 describes the supported black box
models. Besides these black box models, you can set a black box property
on a specific module or entity as explained earlier in this chapter.

Table 17–5. Supported Black Box Models (Part 1 of 3)

Entity Type Entity Names

Megafunctions alt3pram, altaccumulate, altfp_mult, altsqrt, altlvds_rx, altlvds_tx, altshift_taps, sld_virtual_jtag
sld_virtual_jtag_basic dcfifo, scfifo, altsyncram, altsqrt

LPMs lpm_add_sub, lpm_divide

Altera Corporation 17–29
October 2007 Preliminary

Black Box Models

Atoms (1)

Cyclone:
cyclone_crcblock, cyclone_jtag, cyclone_pll, cyclone_ram_block,
cyclone_asmiblock, cyclone_dll

Stratix:
stratix_crcblock, stratix_jtag, stratix_lvds_receiver,
stratix_lvds_transmitter, stratix_pll, stratix_rublock,
stratix_ram_block, stratix_dll

Stratix II:
stratixii_crcblock, stratixii_jtag, stratixii_lvds_receiver,
stratixii_lvds_transmitter, stratixii_pll, stratixii_rublock,
stratixii_ram_block, stratixii_asm_block, stratixii_dll,
stratixii_termination, stratixii_asmiblock

Stratix GX:
stratixgx_crcblock, stratixgx_jtag, stratixgx_lvds_receiver,
stratixgx_lvds_transmitter, stratixgx_pll, stratixgx_rublock,
stratixgx_ram_block, stratixgx_dll

Stratix II GX:
stratixiigx_hssi_receiver, stratixiigx_hssi_transmitter,
stratixiigx_hssi_central_management_unit,
stratixiigx_hssi_cmu_pll, stratixiigx_hssi_cmu_clock_divider,
stratixiigx_hssi_refclk_divider,
stratixiigx_hssi_calibration_block, stratixiigx_crcblock,
stratixiigx_ram_block, stratixiigx_lvds_transmitter,
stratixiigx_lvds_receiver, stratixiigx_pll, stratixiigx_dll,
stratixiigx_jtag, stratixiigx_asmiblock, stratixiigx_termination,
stratixiigx_rublock

Cyclone II:
cycloneii_asmiblock, cycloneii_clk_delay_ctrl, cycloneii_clkctrl,
cycloneii_jtag, cycloneii_pll, cycloneii_ram_block

Arria GX:
arriagx_asmiblock, arriagx_crcblock, arriagx_dll,
arriagx_hssi_calibration_block,
arriagx_hssi_central_management_unit,
arriagx_hssi_cmu_clock_divider, arriagx_hssi_cmu_pll,
arriagx_hssi_receiver, arriagx_hssi_refclk_divider,
arriagx_hssi_transmitter, arriagx_jtag, arriagx_lvds_receiver,
arriagx_lvds_transmitter, arriagx_pll, arriagx_ram_block,
arriagx_rublock, arriagx_termination

HardCopy II:
hardcopyii_crcblock, hardcopyii_dll, hardcopyii_jtag,
hardcopyii_lvds_receiver, hardcopyii_lvds_transmitter,
hardcopyii_pll, hardcopyii_ram_block, hardcopyii_termination

Table 17–5. Supported Black Box Models (Part 2 of 3)

Entity Type Entity Names

17–30 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Conformal
Dofile/Script
Example

The following example script (17–8), generated by the Quartus II
software, lists some of the setup commands used in Conformal LEC
software:

Example 17–8. Conformal LEC Script

// Copyright (C) 1991-2007 Altera Corporation
// Your use of Altera Corporation's design tools, logic functions
// and other software and tools, and its AMPP partner logi
// functions, and any output files from any of the foregoing
// (including device programming or simulation files), and any
// associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License
// Subscription Agreement, Altera MegaCore Function License
// Agreement, or other applicable license agreement, including,
// without limitation, that your use is for the sole purpose of
// programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the
// applicable agreement for further details.

// Script generated by Quartus II

reset
set system mode setup
set log file mfs_3prm_1a.fv.log -replace
set naming rule "%s" -register -golden
set naming rule "%s" -register -revised
// Naming rules for Verilog
set naming rule "%L.%s" "%L[%d].%s" "%s" -instance
set naming rule "%L.%s" "%L[%d].%s" "%s" -variable
// Naming rules for VHDL
// set naming rule "%L:%s" "%L:%d:%s" "%s" -instance
// set naming rule "%L:%s" "%L:%d:%s" "%s" -variable
// set undefined cell black_box -both
// These are the directives that are not supported by the QIS RTL to gates FV flow
set directive off verplex ambit
set directive off assertion_library black_box clock_hold compile_off compile_on
set directive off dc_script_begin dc_script_end divider enum infer_latch
set directive off mem_rowselect multi_port multiplier operand state_vector template
add notranslate module alt3pram -golden

Stratix III:
stratixiii_asmiblock, stratixiii_crcblock, stratixiii_jtag,
stratixiii_lvds_receiver, stratixiii_lvds_transmitter,
stratixiii_mlab_cell,
stratixiii_pll, stratixiii_ram_block, stratixiii_rublock,
stratixiii_termination, stratixiii_tsdblock

Note to Table 17–5:
(1) The entity names are given for the specific device family listed.

Table 17–5. Supported Black Box Models (Part 3 of 3)

Entity Type Entity Names

Altera Corporation 17–31
October 2007 Preliminary

Conformal Dofile/Script Example

add notranslate module alt3pram -revised
setenv QUARTUS /data/quark/build/ajaishan/quartus
setenv PROJECT
/net/quark/build/ajaishan/quartus_regtest/eda/fv/conformal/synplify/stratix/mfs_3prm_1a_v1
_/mfs_3prm_1a/qu_allopt
read design \

$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -golden

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clg \
$PROJECT/p3rm_block.v \
$PROJECT/mfs_3prm_1a.v \
-verilog2k -merge none -golden

read design \
$QUARTUS/eda/fv_lib/vhdl/dummy.vhd \
-map lpm $QUARTUS/eda/fv_lib/vhdl/lpms \
-map altera_mf $QUARTUS/eda/fv_lib/vhdl/mfs \
-map stratix $QUARTUS/eda/fv_lib/vhdl/stratix \
-vhdl -noelaborate -revised

read design \
-file $PROJECT/fv/conformal/mfs_3prm_1a.clr \
$PROJECT/fv/conformal/mfs_3prm_1a.vo \
-verilog2k -merge none -revised

// add ignored inputs _unassoc_inputs_* -all -revised
add renaming rule r1 "~I\/" "\/" -revised
add renaming rule r2 "_I\/" "\/" -revised
set multiplier implementation rca -golden
set multiplier implementation rca -revised
set mapping method -name first
set mapping method -nounreach
set mapping method -noreport_unreach
set mapping method -nobbox_name_match
set flatten model -seq_constant
set flatten model -nodff_to_dlat_zero
set flatten model -nodff_to_dlat_feedback
set flatten model -nooutput_z
set root module mfs_3prm_1a -golden
set root module mfs_3prm_1a -revised
report messages
report black box
report design data
// report floating signals
dofile $PROJECT/fv/conformal/mfs_3prm_1a.cec
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cep
// Instance-constraints commands for constant-value registers removed
// during compilation
set system mode lec -nomap
read mapped points $PROJECT/fv/conformal/mfs_3prm_1a.cmc
// Trivial mappings with same name registers
// read mapped points $PROJECT/fv/conformal/mfs_3prm_1a_trivial.cmc
// dofile $PROJECT/fv/conformal/mfs_3prm_1a.cmp
map key points
remodel -seq_constant -repeat
add compare points -all
compare
usage
// exit -f

17–32 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Referenced
Documents

This chapter references the following documents:

■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook

■ Netlist Optimizations and Physical Synthesis chapter in volume 2 of the
Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf

Altera Corporation 17–33
October 2007 Preliminary

Document Revision History

Document
Revision History

Table 17–6 shows the revision history for this chapter.

Table 17–6. Document Revision History

Date and
Version Changes Made Summary of Changes

October 2007
v7.2.0

● Updated Introduction section on page 17–1.
● Updated Known Issues and Limitations section on

page 17–24.
● Updated Table 17–1.
● Updated Table 17–5.
● Updated Figure 17–10.

Updated for Quartus II software
version 7.2.

May 2007
v7.1.0

● Updated Formal Verification Design Flow section
on page 17–2.

● Updated Generating the Post-Fit Netlist Output
File and Encounter Conformal Setup Files section
on page 17–10.

● Updated Understanding the Formal Verification
Scripts for Encounter Conformal section title on
page 17–18.

● Updated Known Issues and Limitations on
page 17–24.

● Renamed Tcl Sample Script to Conformal
Dofile/Script Example and updated section
on page 17–29.

● Added Referenced Documents on page 17–31.
● Removed Debugging Tips section.
● Updated Figure 17–3.
● Updated Figure 17–5.
● Updated Table 17–1.
● Updated Table 17–4.
● Updated Table 17–5.

Updated for Quartus II software
version 7.1.

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date
only. No other changes made to chapter.

—

November 2006
v6.1.0

Changed date only. Updated for Quartus II software
version 6.1

May 2006
v6.0.0

Minor updates for the Quartus II software version
6.0.0.

—

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 15 was previously Chapter 13 in version

5.0.

—

May 2005
v5.0.0

New functionality for Quartus II software 5.0. —

January 2005
v1.0

Initial release. —

17–34 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation 18–1
October 2007

18. Synopsys Formality
Support

Introduction Formal verification of FPGA designs is gaining momentum as
multi-million System-on-a-Chip (SoC) designs are targeted at FPGAs.
Use the Formality software to easily verify logic equivalency between the
RTL and DC FPGA post-synthesis netlist, and between the DC FPGA
post-synthesis netlist and Quartus II post-place-and-route netlist.
Beginning with version 4.2, the Quartus® II software interfaces with EDA
tools including the Formality and DC FPGA software from Synopsys.

This chapter discusses the following:

■ “Formal Verification”
■ “Formal Verification Support” on page 18–2
■ “Generating Post-Synthesis Netlist for Formal Verification” on

page 18–3
■ “Generating the VO File and Formality Script” on page 18–4
■ “Quartus II Scripts for Formality” on page 18–11
■ “Comparing Designs Using the Formality Software” on page 18–11
■ “Known Issues and Limitations” on page 18–12

Formal
Verification

Formal verification uses exhaustive mathematical techniques to verify
design functionality. There are two types of formal verification:
equivalence checking and model checking. This section discusses
equivalence checking.

Equivalence Checking

Equivalence checking compares the logical equivalence between the
original design and the modified or revised design using mathematical
techniques. This method reduces the verification time several-fold
compared to the traditional method of performing verification using test
vectors. Using a formal verification methodology provides the following
key advantages:

■ Faster time-to-market
■ No testbenches or test vectors
■ Results in hours compared to days using traditional verification

methods

QII53015-7.2.0

18–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Formal
Verification
Support

The Quartus II software supports formal verification using the Formality
software for the DC FPGA Synthesis tool as shown in Figure 18–1.

Figure 18–1. Equivalence Checking in the FPGA Design Flow

EDA Tools and Device Support

The formal verification flow using the Quartus II software and Synopsys
Formality software requires the following software versions:

■ Quartus II software, beginning with version 4.2
■ Synopsys DC FPGA software, beginning with version

W2005.03_EA1
■ Synopsys Formality software, beginning with version 2004.12

The formal verification flow, using the Quartus II and Synopsys
Formality software, supports Solaris and Linux platforms, and supports
Stratix series devices.

Formal Verification Between RTL and Post-Synthesis Netlist

The first step in the FPGA design flow is to synthesize the RTL code using
the DC FPGA to generate the synthesized verilog netlist. Equivalence
checking using formal verification is performed between the RTL and the
synthesized netlist to make sure the synthesis tool has not altered the
original functionality of the design.

RTL

Synthesized
Netlist

Post-Place-
and-Route

DC FPGA

Quartus II

Equivalence Checking/
Formality

Altera Corporation 18–3
October 2007 Preliminary

Generating Post-Synthesis Netlist for Formal Verification

1 For more information on how to use the DC FPGA software for
synthesizing Altera device designs, refer to the Synopsys Design
Compiler FPGA Support chapter in volume 1 of the Quartus II
Handbook.

Generating
Post-Synthesis
Netlist for
Formal
Verification

During the synthesis process, the DC FPGA synthesis tool performs
operations such as:

■ Modifying the net/instance names
■ Register duplication
■ State machine extraction by different methods

Changes caused by these synthesis operations cause comparison point
matching issues and false verification failures. In order to make sure that
the Formality software is aware of the design transformations performed
during the synthesis, the DC FPGA software writes out a Synopsys setup
verification file (.svf) to be read into the Formality software. To ensure the
SVF constraint file contains all the formal verification setup constraints,
you need to set certain commands in the DC FPGA software before
compiling the design as detailed in the following section.

DC FPGA Software Settings

The Formality software does not support the register merging or register
retiming synthesis operations, which are off by default, but it is necessary
to verify that these settings are turned off during synthesis. Some of the
commands necessary to turn off these options and generate a valid
Verilog netlist for the formal verification purpose are described in this
section.

1 For more information on creating the Tcl script file to perform
synthesis, refer to the DC FPGA User Guide or the Synopsys
Design Compiler FPGA Support chapter in volume 1 of the
Quartus II Handbook.

To set most of the required synthesis settings to generate a valid formal
verification netlist, use the following command:

set_fpga_defaults -formality <architecture_name>

For example:

set_fpga_defaults -formality altera_stratix

18–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

To view all of the settings performed by this command, add -verbose
to this command. In addition, you will need to execute the additional
commands shown in Table 18–1.

For a sample DC FPGA script that is ready for compilation, refer to “Tcl
Sample Script” on page 18–13.

Post synthesis Verilog netlist for formal verification can be generated by
executing the Tcl script either in fpga_vision (GUI) or fpga_shell-t
(command line).

1 For comparing RTL against post-synthesis netlist using the
Formality software, refer to the DC FPGA Software User Guide.

Generating the
VO File and
Formality Script

The following steps describe how to set up the Quartus II software
environment to generate the place-and-route, post-place-and-route VO
netlist file, and Formality script compatible for formal verification.

1. Create a new Quartus II project or open an existing project.

2. On the Assignments menu, click Settings. The Settings dialog box
is shown.

3. In the Category list, select Files. The Files page is shown.

4. Highlight the input file by clicking on it, then click Properties and
select Verilog Quartus Mapping File. Click OK.

Table 18–1. Commands and Affect of Each Command

Command Affect

set verilogout_write_constant_nets true Add this command at the beginning
of the script to allow unconnected
nets to be driven by either power or
ground.

change_names -rule verilog -hierarchy This command must be added after
the compile command to set the
Verilog naming rule to the output
netlist for all levels of hierarchy.

set_verification_friendly_mode -filename \
<top_level>.svf -append -allow_override

This command helps DC_FPGA to
write out a SVF constraint file to be
read into the Formality software.

write -hier -f verilog -o $outputdir/<top_level>.v This command writes out a Verilog
netlist for Formal Verification.

Altera Corporation 18–5
October 2007 Preliminary

Generating the VO File and Formality Script

5. In the Category list, select Design entry/synthesis under EDA Tool
Settings.

6. In the Tool name list, select Design Compiler FPGA (Figure 18–2).

These settings can also be performed using the following Tcl commands:

set_global_assignment -name VQM_FILE
<verilog_file_from_dc_fpga>

set_global_assignment -name \
EDA_DESIGN_ENTRY_SYNTHESIS_TOOL "Design Compiler FPGA"

set_global_assignment -name EDA_LMF_FILE \
dc_fpga.lmf -section_id eda_design_synthesis

Figure 18–2. EDA Tools Selection

18–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

7. In the Category list, select Formal verification. In the Tool name
list, select Formality (Figure 18–3).

Figure 18–3. EDA Tools Selection

8. Click OK.

9. From the Assignments menu, click Settings. The Settings dialog
box is shown.

10. In the Category list, click the + icon to expand Analysis and
Synthesis Settings and select Synthesis Netlist Optimizations. The
Synthesis Netlist Optimizations page is shown.

Altera Corporation 18–7
October 2007 Preliminary

Generating the VO File and Formality Script

11. Turn off the Perform gate-level register retiming option
(Figure 18–4).

Figure 18–4. Synthesis Netlist Optimizations

12. In the Category list, click the + icon to expand Fitter Settings and
select Physical Synthesis Optimizations. The Physical Synthesis
Optimizations page is shown.

18–8 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

13. Turn off the Perform register retiming option (Figure 18–5).

Figure 18–5. Setting Parameters for Netlist Optimizations

Performing register retiming on a design usually results in moving and
merging/duplicating registers along the critical path. Because
equivalence checkers compare the cones of logic terminating at registers,
you should not move or duplicate the registers during optimization by
the Quartus II software. If the options in this section are not selected, the
Formality software script could be presented with a different set of
compare points, and the resulting netlist is difficult to compare against
the reference netlist file.

The Quartus II software, beginning with version 4.2, supports register
duplication to improve the timing by duplicating the logic.

Altera Corporation 18–9
October 2007 Preliminary

Generating the VO File and Formality Script

f To learn more about register duplication, refer to the Analyzing and
Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

14. Perform a full compilation of the design either on the Processing
menu by clicking Start Compilation or by clicking on the start
compilation arrow icon located in the tool bar.

Handling Black Boxes

Every design entity in the golden netlist must have a corresponding
formal verification model in order to successfully run formal verification.
Design entities in the golden netlist without a corresponding formal
verification model are handled as black boxes whose boundary interfaces
must be preserved. These design entities appear in the netlist if one of the
following situations apply:

■ Altera megafunctions including library of parameterized modules
(LPM’s)

1 The black-box property is only applied to LPM modules
that do not have a formal verification model.

■ Encrypted intellectual property (IP) cores
■ Entities that are defined in the design format other than Verilog HDL

or VHDL

The Quartus II software has the capability of automatically identifying
the black boxes and sets the property Preserve Hierarchical Boundary to
Firm to preserve the boundary interfaces of the black boxes which helps
the formal verification.

You can also specify the black box property on entities that should be
compared by the Formality software. To do this make the following
assignments either using Tcl commands or GUI for the entities in
question:

Tcl Command

The following two commands preserves the boundary interface of the
entity: dram.

set_instance_assignment -name\
PRESERVE_HIERARCHICAL_BOUNDARY FIRM -to | -entity dram
set_instance_assignment -name EDA_FV_HIERARCHY\
BLACKBOX -to | -entity dram

18–10 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

GUI

Preserving the boundary interface of an entity using GUI.

■ Assign the EDA Formal Verification Hierarchy value as blackbox.

■ Assign the Preserve Hierarchical Boundary assignment with a value
of Firm to the entity (Figure 18–6).

Figure 18–6. Making a Black Box Assignment to an Entity

The Quartus II software compiler generates the following files and
directories:

■ VO file: <design_name>.vo.
■ Script file: <design_name>.fms used with Formality software.
■ A black-box directory: black boxes that contains all the user defined

black-box entities in the design which is located in the following
directory: /<project directory>/fv/formality/blackboxes.

The script file contains the setup constraints used along with the
Formality software. The <entity>.v file in the black-boxes directory
contains the module description of only those entities that are not defined
in the formal verification library.

For a sample script containing the setup commands generated by the
Quartus II software, refer to “Tcl Sample Script” on page 18–13.

Altera Corporation 18–11
October 2007 Preliminary

Quartus II Scripts for Formality

Quartus II
Scripts for
Formality

The Quartus II software generates scripts to use with the Formality
software. This section describes the Formality software commands used
within the scripts to help customers comparing the implementation and
reference netlists. Table 18–2 describes the Formality software commands
within Quartus II generated scripts.

Comparing
Designs Using
the Formality
Software

To verify the functional equivalence between post-synthesis and
post-place-and-route netlists, use the script file <file_name>.fms since it
contains references to the macros defined in the Altera formal verification
library. Some of the macros used are:

■ _ALTERA_FAMILY_IS_STRATIX_
■ POST_FIT
■ FORMALITY
■ GATES_TO_GATES

An example on the use of these macros is shown in the read_verilog
command in the previous section. This script file <file_name>.fms is
executed from either the GUI or using the following command:

%formality -file <file_name>.fms

f For more information about using the Formality software, refer to the
Formality User Guide.

Table 18–2. Formality Software Commands within Quartus II Generated Scripts

Command Affect

read_verilog <design files> This command reads both the reference and
implementation netlists in addition to the appropriate
library models.

set_compare_rule <rule> Adds a name matching rule that Formality software
applies to a design before creating compare points.

set signature_analysis_matching <value> Use this command to specify whether or not to use
signature analysis to match previously compared
points.

set_constant <value> This command allows you to set the logic state of a
design object to either 0 or 1.

set hdlin_altera_generate_naming <value> This command directs Formality software to apply alter
naming conventions for registers.

Set_user_match <mapping_point_name> Use this command to create pairs of matched points to
compare those that Formality software could not match
during its matching process.

18–12 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

1 The Formality software does not support inferred RAMs in RTL
while performing RTL-to-Gates verification. Therefore, you
should apply the black box property to RAM that is instantiated
by the RTL code.

Known Issues
and Limitations

This section discusses known issues and limitations of the formal
verification flow using the DC FPGA, Quartus II, and Formality software:

1. Formal verification of post synthesis verses post-place-and-route
netlist does not support latches because latches are implemented
using combinational logic with a feedback loop which poses a
problem to the Formality software.

2. If an LPM or an Altera megafunction module is inferred and all the
ports of the module are not used, then unused ports should be
connected to default values in the post-synthesis Verilog HDL
netlist.

3. The Quartus II software may optimize away logic feeding a black
box, resulting in mismatches on the blackbox inputs. For example, if
certain bits of a RAM output are not being used, then the Quartus II
software optimizes away the logic feeding the corresponding data
inputs.

Conclusion Formal verification enables verification of the design during all stages
from RTL to place-and-route. As designs become larger, design
verification using traditional methods becomes too time consuming.
Thus, formal verification easily verifies that any modifications to the
netlist in the physical domain have not altered from the Golden netlist.
Advanced debugging capabilities within Formality software pinpoints
the source of the differences between the Reference and Implementation
netlists, enabling the user to easily fix the differences.

Related Links Altera website: About Using the DC FPGA Software with the Quartus II
Software

http://www.altera.com/support/software/nativelink/synthesis/dcfpga/eda_view_using_dcfpga.html
http://www.altera.com/support/software/nativelink/synthesis/dcfpga/eda_view_using_dcfpga.html

Altera Corporation 18–13
October 2007 Preliminary

Tcl Sample Script

Tcl Sample
Script

This section provides an example of the DC FPGA software script to
perform synthesis and an example formal verification script generated by
the Quartus II software.

DC FPGA Synthesis Script

The following example script presents the Altera recommended settings
in the DC FPGA software for synthesizing the design for the Stratix
architecture. The script also generates the Verilog netlist file for formal
verification using the Formality software. These tasks are performed in
the following five sections of the script:

■ Setting up the library
■ Default synthesis settings for Altera Stratix
■ Analyzing the design files
■ Compiling the design
■ Generating the Verilog netlist for formal verification

Setup file for Altera Stratix Devices
Tcl style setup file but will work for
original DC shell as well
Need to define the root location of the
libraries by changing
the variable $dcfpga_lib_path
set dcfpga_lib_path "<dcfpga_rootdir>\
/libraries/fpga/altera"
set search_path ". $dcfpga_lib_path
$dcfpga_lib_path/STRATIX $search_path"
set target_library "stratix.db"
set synthetic_library "tmg.sldb altera_mf.sldb\
lpm.sldb"
set link_library "* stratix.db tmg.sldb\
altera_mf.sldb\ lpm.sldb"
set cache_dir_chmod_octal "1777"
set hdlin_enable_vpp "true"
set post_compile_cost_check "false"
set_fpga_defaults -formality altera_stratix
set formality_altera_debug true
set_verification_friendly_mode -filename
<top_level>.svf -append \
-allow_override
set verilogout_no_tri true
set verilogout_write_constant_nets true
set compile_fix_multiple_port_nets true
Setup design directory for database, temporary files
and netlist
#</OUTPUTDIR>#
set outputdir <directory_name>
file mkdir $outputdir/WORK
define_design_lib WORK -path $outputdir/WORK

18–14 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Setup the Top-level design name
set top <top_level_module>
##Setup synthesis optimization options
set dcfsm_force_encoding neutral
#<READFILES>#
##Analyze source files
##Elaborate design
elaborate $top
#</ELABORATE>#
##Specify Target device
current_design $top
set_fpga_target_device AUTOFASTEST
Insert pad during synthesis
set_port_is_pad [get_ports "*"]
#<FPGACONST>#
Specify clock constraints
#</FPGACONST>#
#<COMPILE>#
##Setup compile options
ungroup -small 500
Compile design
compile
change_names -rule verilog -hierarchy
#<REPORT>#
##Generate netlist/reports/constraints for PAR
write -hier -f verilog -o $outputdir/$top.v
report_fpga > $outputdir/fpga.rpt

Quartus II Software-Generated Formal Verification Script

The following example script shows the sample setup commands
generated by Quartus II software:

read_verilog -i -vcs \
"+define+_ALTERA_FAMILY_IS_STRATIX_ \
+define+POST_FIT \
+define+FORMALITY -y $QUARTUS/eda/fv_lib/verilog \
+libext+.v -y \
/home/formality/testcases/mult/quartus/fv/ \
formality/blackboxes" \
$PROJECT/fv/formality/mult_ram.vo
set_top mult_ram
set_black_box i:/WORK/altsyncram
report_black_box
set_compare_rule i:/WORK/mult_ram -from "_aI$" -to ""
set_compare_rule r:/WORK/mult_ram -from "\/" -to "_a"
set_compare_rule i:/WORK/mult_ram -from "\/" -to "_a"
match
verify

Altera Corporation 18–15
October 2007 Preliminary

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Formality User Guide
■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of

the Quartus II Handbook

Document
Revision History

Table 18–3 shows the revision history for this chapter.

Table 18–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Reorganized “Referenced Documents” on page 18–15. —

May 2007
v7.1.0

Added Referenced Documents. —

March 2007
v7.0.0

Updated Quartus II software 7.0 revision and date only. No other
changes made to chapter.

—

November 2006
v6.1.0

Added new revision history table format to the document. —

May 2006
v6.0.0

Minor updates for the Quartus II software version 6.0.0. —

October 2005
v5.1.0

● Updated for the Quartus II software version 5.1.
● Chapter 15 was previously Chapter 13 in version 5.0.

—

May 2005
v5.0.0

New functionality for Quartus II software 5.0. —

January 2005
v1.0

Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.synopsys.com/

18–16 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 3

Altera Corporation Section VII–i
Preliminary

Section VII. Device
Programming

The Quartus® II software offers a complete software solution for system
designers who design with Altera® FPGA and CPLD devices. The
Quartus II Programmer is part of the Quartus II software package that
allows you to program Altera CPLD and configuration devices, and
configure Altera FPGA devices. This section describes how you can use
the Quartus II Programmer to program or configure your device after you
successfully compile your design.

This section includes the following chapter:

■ Chapter 19, Quartus II Programmer

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section VII–ii Altera Corporation
Preliminary

Device Programming Quartus II Handbook, Volume 3

Altera Corporation 19–1
October 2007

19. Quartus II Programmer

Introduction The Quartus® II software offers a complete software solution for system
designers who design with Altera® FPGA and CPLD devices. The
Quartus II Programmer is part of the Quartus II software package that
allows you to program Altera CPLD and configuration devices, and
configure Altera FPGA devices. After your design successfully compiles,
you can use the Quartus II Programmer to program or configure your
device.

This chapter contains the following sections:

■ “Programming Flow”
■ “Programming and Configuration Modes” on page 19–4
■ “Programmer Overview” on page 19–6
■ “Hardware Setup” on page 19–12
■ “Device Programming and Configuration” on page 19–14
■ “Optional Programming Files” on page 19–18
■ “Flash Loaders” on page 19–21
■ “Other Programming Tools” on page 19–22
■ “Scripting Support” on page 19–22

Programming
Flow

The programming flow begins with design compilation, in which the
Quartus II Assembler generates the programming or configuration file,
then proceeds with the programming or configuration file conversion for
different configuration devices, or optional programming and
configuration file creation. The flow ends with the configuration or
programming of the FPGA, CPLD, or configuration devices with the
programming or configuration file using the Quartus II Programmer.

Figure 19–1 shows the programming file generation flow. This flow
covers the types of configuration and programming files that are used by
the Quartus II Programmer. Refer to “Optional Programming Files” on
page 19–18 for information on other optional programming files.

QII53022-7.2.0

19–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Figure 19–1. Programming File Generation Flow

Table 19–1 shows the programming and configuration file formats
supported by Altera FPGAs, CPLDs, configuration devices, enhanced
configuration devices, and serial configuration devices.

Table 19–1. Programming and Configuration File Format

File Format FPGA CPLD

Configuration
Device and
Enhanced

Configuration
Device

Serial
Configuration

Device

SOF v — — —

POF — v v v
Jam v v v —

JBC v v v —

FPGA
.sof

Quartus II
Assembler

Quartus II Programmer

CPLD
.pof

EPC or
EPCS

.pof

.jam/
.jbc

Convert
programming

 files

Create optional
programming

files

.cdf

Altera Corporation 19–3
October 2007

Quartus II Programmer

Figure 19–2 shows the programming flow using the Quartus II
Programmer. Refer to “Generating Optional Programming Files” on
page 19–20 for detailed information about converting or creating
different programming files. Refer to “Device Programming and
Configuration” on page 19–14 for information about programming or
configuring the device.

Figure 19–2. Programming Flow

Start

Finish

Yes

No

Yes

Open the Quartus II
Programmer

Hardware Setup

Specify Programming/
Configuration File

Need to bypass
other device
in the chain?

Add device to
the programmer

Start Operation

Select Programming/
Configuration Mode

Select Programming/
Configuration Options

19–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Programming
and
Configuration
Modes

The Quartus II Programmer supports the following four programming or
configuration modes: JTAG, passive serial, active serial, and in-socket
programming.

JTAG Mode

You can use the Joint Test Action Group (JTAG) mode to configure FPGA
devices and program CPLDs, configuration devices, or enhanced
configuration devices. The JTAG mode allows multiple FPGAs, CPLDs,
and configuration devices connected in a JTAG chain to be configured or
programmed at the same time. JTAG programming or configuration uses
four JTAG pins: TCK, TDI, TMS, and TDO. The JTAG interface also allows
you to perform boundary-scan test using third-party boundary scan
tools.

POF files are used for programming CPLDs, and configuration or
enhanced configuration devices, while SOF files are used for configuring
FPGA devices. Jam and JBC files can be used for both programming and
configuration. Serial configuration devices do not support JTAG
programming.

f For more information about JTAG configuration or programming mode
and JTAG pin connection, refer to the Configuration Handbook, or the
device handbook or data sheet for the respective FPGA, CPLD, or
configuration devices.

Passive Serial Mode

You can use the passive serial (PS) mode to configure Altera FPGAs. PS
configuration uses the DCLK, CONF_DONE, nCONFIG, nSTATUS, and
DATA0 configuration pins. Unlike the JTAG scheme, the PS configuration
scheme can be used to configure the FPGA with a configuration device or
enhanced configuration device, not necessarily through a download
cable. If you are using the configuration device or enhanced configuration
device to configure the FPGA through PS mode, you can route the
configuration signals out to a header so that you can also configure the
FPGA through the download cable with the Quartus II Programmer.
Configuration through PS mode with a download cable is useful in the
design stage. This configuration method allows you to configure your
FPGA device directly from the Quartus II Programmer as you make
changes to your design for debugging and testing.

PS mode supports configuration of an FPGA chain. SOF files are used for
configuration through PS. Every FPGA device in the chain requires a
SOF, so the number of SOF files used depends on the number of FPGA
devices in the chain.

Altera Corporation 19–5
October 2007

Quartus II Programmer

f For more information about PS configuration mode and PS pin
connection, refer to the Configuration Handbook or the chapter on
configuration in the appropriate FPGA device handbook.

Active Serial Mode

You can use the active serial (AS) mode to program serial configuration
devices. After programming completes, the serial configuration device
then configures the FPGA. AS programming uses the DATA, DCLK, nCS,
and ASDI pins. If the download cable is connected to the nCONFIG and
nCE pins of the FPGA, the download cable disables the FPGA’s access to
the AS interface by holding the nCE pin high and the nCONFIG pin low.
Upon completion of the programming, the nCE and nCONFIG pins are
released and the FPGA configuration begins.

f For more information about programming the serial configuration
device, configuring the FPGA with the serial configuration device
through AS mode, or the AS pin connection, refer to the Serial
Configuration Data Sheet in the Configuration Handbook or the chapter on
configuration in the appropriate FPGA device handbook.

In-Socket Programming Mode

The in-socket programming mode is used for programming a single
device. This programming mode supports programming the MAX® 7000
and MAX 3000 CPLD families, configuration devices, enhanced
configuration devices, and serial configuration devices. Instead of using
a download cable, in-socket programming mode uses the Altera
Programming Unit (APU) hardware together with the programming
adapter for the corresponding device to program the device. The
programming unit with the programming adapter has a socket for the
device and the hardware powers the device for programming. In-socket
programming is normally used in the production environment to
pre-program devices before they are mounted on the printed circuit
boards on the assembly line.

1 Refer to www.altera.com or the Quartus II Help for a list of
programming adapters available for Altera devices.

19–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 19–2 shows the programming and configuration modes supported
by Altera devices.

Programmer
Overview

The Quartus II Programmer graphical user interface (GUI) is a window in
which you can add your programming and configuration files, specify
the programming options and hardware, and then proceed with the
programming or configuration of the device.

To open the Programmer window, on the Tools menu, click Programmer.
Figure 19–3 shows the programmer GUI. The status of each operation,
whether programming is successful or not, is reported in the Quartus II
message window. Figure 19–4 shows a typical programming message
after the programmer has successfully programmed a device.

Table 19–2. Programming and Configuration Modes

Mode FPGA CPLD

Configuration
Device and
Enhanced

Configuration
Device

Serial
Configuration

Device

JTAG v v v —

PS v — — —

AS — — — v
In-Socket
Programming

— v(1) v v
Note to Table 19–2:
(1) MAX II CPLDs do not support in-socket programming mode.

Altera Corporation 19–7
October 2007

Quartus II Programmer

Figure 19–3. The Programmer Window

Figure 19–4. Status Report in the Message Window

Setup Progress IndicatorProgramming
 Options

Action
Buttons

File/Chain
Information

19–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 19–3 describes the items available in the programmer window.

Table 19–3. Programmer Window Items (Part 1 of 3)

Items Description

Hardware Setup Opens the Hardware Setup dialog box in the programmer and enables you to
perform the following:
● add and remove hardware items from the Hardware list.
● add and remove JTAG servers from the JTAG Servers list.
● configure your local JTAG server.
● specify a programming hardware or download cable for device

programming and configuration.

Mode Specifies the programming or configuration mode (either JTAG, In-Socket
Programming, Passive Serial, or Active Serial Programming).

Progress Shows the progress of a specific operation.

Action Buttons

Start Starts the operations of the specified programming options.

Stop Stops all operations in progress.

Auto Detect Scans the JTAG chain to check for devices in the chain and the chain
connection.

Delete Removes the selected programming or configuration files from the
programmer.

Add File Adds programming or configuration files to the programmer.

Change File Replaces the selected programming or configuration file with another file.

Save File Allows you to save the data read out from CPLD or configuration devices using
the “examine” process into a POF file.

Add Device Adds a device into the JTAG device chain in the programmer. If no
programming or configuration file is specified, the programmer will bypass this
device during programming or configuration. You can also add your
user-defined device into the chain.

Up Moves the selection up to another programming or configuration file or device
in the programmer window.

Down Moves the selection down to another programming or configuration file or
device in the programmer window.

File or Device Chain Information

File Displays the programming or configuration file name.

Device The Device column shows:
● the target device of the file, if you add a programming or configuration file

into the programmer.
● the devices in the JTAG chain detected by the programmer, if you click Auto

Detect in JTAG mode.
● the device added to the programmer, if you manually add a device into the

programmer.

Altera Corporation 19–9
October 2007

Quartus II Programmer

Checksum The Checksum column shows:
● the checksum of the file, if you add a programming or configuration file into

the programmer.
● the checksum for the data read out, if you examine a device.

The checksum is calculated by the Quartus II software. The programmer does
not display the checksum for the Jam or JBC files generated for a multi-device
JTAG chain.

Usercode The Usercode column shows:
● the usercode of the file, if you add a programming or configuration file into

the programmer.
● the usercode read out from the device, if you examine a device.

You can specify the usercode before design compilation, or use the Auto
usercode feature that uses the checksum as the usercode. The programmer
does not show the usercode information in PS configuration mode or for the
Jam or JBC files generated for a multi-device JTAG chain.

Programming Options

Enable real-time ISP to allow
background programming

Can only be turned on if you are targeting a MAX II device, and is turned off for
all other device families. When this option is turned on, you can do the real-time
in-system programming (ISP) for the MAX II device. The existing design in the
MAX II device functions normally during and after the real-time ISP is
completed. The new design starts to function after a power cycle to the device
occurs.

Program or Configure Can be used for programming CPLDs, configuration devices, or configuring
FPGA devices.

Verify Verifies the content of the CPLD and all configuration devices against the
respective programming files. This option is not available for FPGAs.
Verification fails if the data in the file is different from the data in the device.
Stand-alone verification for the CPLD with the programming file used for the
programming will fail if the security bit is set when the device is programmed
initially.

Blank-Check Checks whether the CPLD or configuration device is blank or not.

Examine Reads back the contents of the CPLD or configuration device. You can then
save the examined data as a POF file. Examining a CPLD with the security bit
set does not produce a usable POF file. MAX 7000S devices require you to add
a valid MAX 7000S POF file that targets the same device before you can
examine the data back from the device.

Security Bits Protects the design in the CPLD from being examined. If the security bit is set
when the CPLD is programmed, you cannot read the correct data out using the
examine process. Security bits cannot be set for the configuration devices or
FPGAs.

Table 19–3. Programmer Window Items (Part 2 of 3)

Items Description

19–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Table 19–4 shows the programming and configuration options supported
by Altera devices.

Erase Erases the contents of the CPLD and all configuration devices. You can also
erase the user flash memory (UFM) of the MAX II CPLD. MAX 7000S devices
require you to add a valid MAX 7000S POF file that targets the same device
before you can erase the device.

ISP CLAMP Allows the MAX II or MAX 7000B CPLD’s I/O pins to be clamped to certain
states during normal programming. ISP CLAMP can only be turned on if certain
pins of the device have the ISP Clamp State assignment enabled, or you have
added an I/O Pin State (IPS) file in the programmer.

IPS File Shows the IPS file used for ISP Clamp of the MAX II or MAX 7000B CPLDs.
The IPS File column only appears if your programmer window has a MAX II or
MAX 7000B POF file. To add in the IPS file, click once on the row of the
programming file and on the Edit menu, click Add IPS File.

Table 19–3. Programmer Window Items (Part 3 of 3)

Items Description

Table 19–4. Programming and Configuration Options

Option FPGA CPLD

Configuration
Device and
Enhanced

Configuration
Device

Serial
Configuration

Device

Program or
Configure v v v v
Verify — v v v
Blank-Check — v v v
Examine — v v v
Security Bit — v — —

Erase — v v v
ISP Clamp — v(1) — —

IPS File (2) — v — —

Real-time ISP — v(3) — —

Notes to Table 19–4:
(1) Only MAX II and MAX 7000B CPLDs support the ISP Clamp feature.
(2) IPS file is used for ISP Clamp.
(3) Only MAX II CPLDs support the real-time ISP feature.

Altera Corporation 19–11
October 2007

Quartus II Programmer

Tools Menu

More programmer options are available from the Tools menu. On the
Tools menu, click Options and then click Programmer. For descriptions
of these options, refer to Table 19–5.

Table 19–5. Programmer Options

Option Description

Show checksum without usercode Determines whether the checksum values displayed in the
programmer are calculated with or without JTAG usercodes. This
option allows you to have multiple versions of a programming or
configuration file with different user codes, but share the same
checksum.

Initiate configuration after
programming

Specifies that configuration devices configure attached FPGA devices
automatically after the programmer completes programming the
configuration devices.

Display message when
programming finishes

Displays a message when programming or other operation such as
examining or blank-checking is complete.

Enable real-time ISP to allow
background programming (for
MAX II devices)

Can only be turned on if you are targeting a MAX II device. This option
is turned off for all other device families. When this option is turned on,
you can do the real-time in-system programming (ISP) for the MAX II
device. The existing design in the MAX II device functions normally
during and after the real-time ISP is completed. The new design starts
to function after a power cycle to the device occurs.
This option is also available in the programmer window.

Halt on-chip configuration controller Halts the on-chip auto-configuration controller of the FPGA device for
AS configuration, or the configuration device for PS or Fast Passive
Parallel (FPP) configuration to allow JTAG configuration through a
download cable. If you want to configure your FPGA through JTAG
while the FPGA MSEL pins are set to AS mode, you should halt the
on-chip configuration controller if any of the following occurs:
● the active serial configuration device connected to your FPGA is

blank
● the active serial configuration device is not present
● an error occurs during AS configuration prior to JTAG configuration

If the MSEL pins are set to PS or FPP mode, halt the configuration
controller of the configuration device if an error occurs during PS or
FPP configuration prior to JTAG configuration. The FPGA pulls the
nSTATUS pin (which is connected to the OE pin of the configuration
device) low to disable the configuration device.

Automatically check the
Program/Configure checkbox when
adding SOF

Automatically enables the program or configuration operation when
adding an SRAM Object File (.sof) to the file list in the programmer
window.

19–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Hardware Setup The Quartus II Programmer provides the flexibility to choose the
download cable or programming hardware. Before you can program or
configure your device, you must have the correct hardware setup.

Hardware Settings

Click Hardware Setup to bring up the Hardware Setup dialog box. On
the Hardware Settings tab (Figure 19–5), you can select a download cable
or programming hardware available from the Currently selected
hardware list. If the download cable or programming hardware you
require is not displayed, click Add Hardware and specify the download
cable or programming hardware. Make sure that you have installed the
download cable driver before adding the hardware.

1 You do not need to manually add the USB-Blaster™ download
cable to the list. After installing the driver, simply connect the
download cable to the PC before opening the Hardware Setup
dialog box. The USB-Blaster appears automatically in the list
when the dialog box is opened.

Figure 19–5. Hardware Settings

f More information about programming hardware driver installation is
available in the Design Software section under Support on the Altera
website (www.altera.com/support).

Altera Corporation 19–13
October 2007

Quartus II Programmer

JTAG Settings

The JTAG server allows programs such as the Quartus II Programmer to
access the JTAG hardware. This application software is installed together
with the Quartus II software. You can also access the JTAG download
cable or programming hardware connected to a remote computer
through the JTAG server of that computer. With the JTAG server, you can
control the programming or configuration of devices from a single
computer through other computers at remote locations. The JTAG server
uses the TCP/IP communications protocol.

Click Hardware Setup to bring up the Hardware Setup dialog box. On
the JTAG Settings tab (Figure 19–6), you can add or remove JTAG servers
from the list. By default, you have only the local JTAG server (which is on
your computer) in the list. By adding a remote JTAG server, you can
access the JTAG hardware in that remote computer from your computer.
You need the password of the remote JTAG server to add the server to
your list. Click Add Server, then enter the IP address of that computer in
the Server name field and the password in the Server password field.

Figure 19–6. JTAG Settings

You can also allow remote clients to access the JTAG server on your
computer and program or configure devices connected to your computer
through the JTAG interface of your computer. Click Configure Local
JTAG Server to enable the server and then enter the password that the
remote clients require to access your JTAG server.

19–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Device
Programming
and
Configuration

The Quartus II Programmer supports single- or multi-device
programming and configuration. This section describes the steps
required to program or configure Altera devices, as well as how to bypass
Altera and non-Altera devices in a JTAG chain.

Single Device Programming and Configuration

To program or configure a single device with the Quartus II Programmer,
perform the following steps:

1. On the Tools menu, click Programmer to open the Programmer
window.

2. Click Hardware Setup and select the programming hardware or
download cable. If you are using JTAG mode, you can specify the
correct JTAG settings for programming or configuration involving
remote JTAG servers. Click Close.

3. From the Mode list, select the programming or configuration mode.

4. Click Add File to add the POF or SOF file to the programmer (you
can omit this step if the file is already displayed). To change the file,
select it and click Change File. To remove the file from the
programmer, select it and click Delete.

1 If you are using JTAG, AS, or in-socket programming mode,
after the file has been added to the programmer, select the
programming or configuration option by turning on the
corresponding check box in the programmer.

5. Click Start.

Multi-Device Programming and Configuration

JTAG and PS modes allow you to program or configure a device chain. A
JTAG chain can consist of a combination of FPGA, CPLD, and
configuration devices that support JTAG mode. A PS chain consists of
FPGAs that support PS mode. The steps for programming or configuring
a device chain is similar to the steps for programming or configuring a
single device. One exception is that in a device chain you must specify all
the programming or configuration files for the devices you want to
program or configure. JTAG mode allows you to bypass some of the
devices in the JTAG chain while programming or configuring the rest of
the devices. PS mode does not allow you to bypass devices in the FPGA
chain.

Altera Corporation 19–15
October 2007

Quartus II Programmer

Bypassing an Altera Device

If you have the programming or configuration file for the Altera device
you want to bypass, in the programmer, turn off all the options in the row
for that device before you program or configure other devices. If you do
not have the programming or configuration file for that device, click Add
Device to specify the device.

Bypassing a Non-Altera Device

The JTAG chain of the device you want to program or configure may
contain non-Altera devices. To program or configure your Altera device
in the JTAG chain, you must bypass those non-Altera devices. The
non-Altera devices are not in the list of devices that you can select when
you click Add Device in the programmer.

To bypass the devices, you must manually define these devices. Click
Add Device to open the Select Device dialog box. Click New to define a
device. In the New Device dialog box (Figure 19–7), enter the name of the
device and the JTAG instruction register length of the device. You can find
the JTAG instruction register length in the device’s data sheet. You can
also specify the JTAG ID code for the device by clicking Add JTAG ID.
This is optional and you can turn on Allow none to set the ID code to all
0s. If you do not specify the JTAG ID code, the default value is all 0s.

Figure 19–7. New Device Dialog Box

19–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

After defining the device, the device appears in the device list
(Figure 19–8). Click Export to save the information in a Quartus
User-Defined Device (QUD) file. This file saves the information for the
user-defined devices that appear under Device name in the dialog box
and can be used by other Quartus II projects as well. To obtain
information on the user-defined devices from the QUD file, click Import
and the devices are listed under Device name.

Figure 19–8. Select Devices

Altera Corporation 19–17
October 2007

Quartus II Programmer

Figure 19–9 shows the programmer window for a JTAG chain.

Figure 19–9. Multi-Device JTAG Chain

Chain Description File

All the information in the Quartus II Programmer, including the
programming or configuration mode, programming or configuration
files used, device chain information, and the programming options
specified can be saved in a chain description file (CDF). You do not have
to specify the information each time you program the device chain.
Simply open the CDF in the Quartus II software and information appears
in the Quartus II Programmer GUI.

Design Security Key Programming

The Quartus II Programmer supports the generation of encryption key
programming files and encrypted configuration files for Altera FPGAs
that support the design security feature. You can also use the Quartus II
Programmer to program the encryption key into the FPGA.

f Refer to AN 341: Using the Design Security Feature in Stratix II Devices for
more information about using the design security feature with the
Quartus II software.

Program MAX II CPLD

Bypass Stratix II FPGA
Configure Cyclone FPGA

Bypass MAX 7000AE CPLD
Bypass User-defined Device

19–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Optional
Programming
Files

The Quartus II software is able to generate optional programming or
configuration files in various formats to be used with programming tools
other than the Quartus II Programmer. In addition, you can convert the
FPGA configuration files to programming files for configuration devices.

Types of Programming and Configuration Files

The Quartus II software generates programming files of various formats
for use with different programming tools. Table 19–6 shows the
programming and configuration files generated by the Quartus II
software.

Table 19–6. Types of Programming and Configuration Files (Part 1 of 2)

File Format
Generated by
the Quartus II

Software

Supported by
the Quartus II
Programmer

Description

SOF v v This configuration data file is used for configuring FPGA
devices. The Quartus II Assembler generates this file
when you compile your FPGA design.

POF v v This programming data file is used for programming
CPLDs and configuration devices. The Quartus II
Assembler generates the CPLD POF file when you
compile your CPLD design. The configuration device
POF file is converted from the FPGA SOF file.

Jam v v This ASCII-format file is used for configuring or
programming one or more FPGAs, CPLDs, and
configuration devices in a JTAG chain. The Jam file
includes both programming algorithm and data.
Apart from the Quartus II Programmer, you can use
Altera’s Jam Standard Test and Programming Language
(STAPL) player, the quartus_jli executable, or other
third-party programming tools together with the Jam file.
The Jam file is also suitable for embedded
processor-type programming environments.

JBC v v Similar to the Jam file, this binary-format file is used for
configuring or programming one or more FPGAs,
CPLDs, and configuration devices in a JTAG chain. The
JBC file includes both the programming algorithm and
data, and the size is smaller than the Jam file.
In addition to the Quartus II Programmer, you can use
Altera’s Jam Byte-Code player, the quartus_jli
executable, or other third-party programming tools
together with the JBC file. The JBC file is also suitable for
embedded processor-type programming environments.

Altera Corporation 19–19
October 2007

Quartus II Programmer

SVF v — This ASCII-format file is used for configuring,
programming, blank-checking, and verifying one or more
FPGAs, CPLDs, and configuration devices in a JTAG
chain. The SVF file, which includes programming
algorithm and data, is suitable for an automated test
equipment (ATE) environment that requires a fixed
programming algorithm.

ISC v — This data file is used with the IEEE 1532 BSDL file for
programming a single device that supports IEEE 1532
programming.
The Quartus II software supports generating the ISC file
for MAX 7000AE, MAX 7000B, and MAX 3000A CPLDs.

Hexout v — The Hexout file is used for programming FPGA
configuration data into enhanced configuration devices
or other storage devices. For enhanced configuration
devices, use the enhanced configuration device POF to
generate the Hexout file. Use the FPGA SOF file to
generate the Hexout file for other storage devices (for
example, the flash or EEPROM devices). You can use a
microcontroller to read back the data from the storage
device and configure the FPGA.
To program the enhanced configuration device or other
storage devices with the Hexout file, you can use other
third-party programming tools.

RBF v — This binary file contains configuration data for one or
more FPGAs. You can use Altera’s JRunner software to
configure your FPGA device with the RBF file. The RBF
file is also suitable for embedded processor configuration
environments.

TTF v — This ASCII file contains configuration data for one or
more FPGAs. The TTF file is used for embedded
processor-type configuration.

RPD v — This binary file is used for programming serial
configuration devices. Use the serial configuration
device POF file to generate this file. You can use Altera’s
SRunner software to program your serial configuration
device with the RPD file.

JIC v v The JIC file is used for programming serial configuration
devices through JTAG with the Quartus II Programmer
and Altera FPGAs that support AS configuration mode.

Table 19–6. Types of Programming and Configuration Files (Part 2 of 2)

File Format
Generated by
the Quartus II

Software

Supported by
the Quartus II
Programmer

Description

19–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

f Refer to the Quartus II Help or the Configuration File Formats chapter of
the Configuration Handbook for more information about the programming
and configuration file formats.

f Refer to AN 425: Using Command-Line Jam STAPL Solution for Device
Programming for more information about using the Jam and JBC
programming files with the Jam STAPL Player, Jam STAPL Byte-Code
Player, and the quartus_jli command-line executable.

Generating Optional Programming Files

When you compile your design, the Quartus II Assembler generates the
SOF file for an FPGA or a POF file for a CPLD. With the SOF or POF for
your design, you can then create other optional programming or
configuration files, or convert the SOF to target a particular configuration
device.

Create Programming Files

The Quartus II software allows you to create optional Jam, JBC, SVF, or
ISC programming or configuration files. In addition, you can create Jam,
JBC, and SVF files for a JTAG chain that consists of more than one device.

To create the files, open the Quartus II Programmer, set the programming
or configuration mode to JTAG, and then add the programming or
configuration files or devices to the programmer. On the File menu, click
Create/Update and then click Create JAM, SVF, or ISC File. Select the file
format and name the file accordingly.

For SVF files, you can create an SVF file for programming or verification
only. In addition, you can specify whether or not to do the optional
blank-check operation with the SVF file.

Convert Programming Files

To store the FPGA data into configuration devices, you can convert the
SOF data to another format and program the configuration device. The
Quartus II software supports converting the data into POF, Hexout, RBF,
TTF, RPD, or JIC format.

f For more information about converting programming files with the
Quartus II software, refer to the Configuration File Formats chapter of the
Configuration Handbook.

Altera Corporation 19–21
October 2007

Quartus II Programmer

Generating Optional Programming or Configuration Files During
Compilation

The Quartus II software can generate optional programming or
configuration files automatically when you compile your design. To
select the format of the optional programming or configuration files to be
generated during compilation, on the Assignments menu, click Settings.
Under Device, click Device and Pin Options.

You can select the configuration device from the Configuration tab for
the configuration device POF generation. For other optional
programming and configuration file generation, you can select the file
format under the Programming Files tab.

Flash Loaders Serial configuration devices and the common flash interface (CFI) flash
devices do not support JTAG interface and cannot be programmed
directly through the normal JTAG programming. Flash loaders allow the
programming of the serial configuration device and the CFI flash from
the Quartus II Programmer through JTAG.

Parallel Flash Loader

The parallel flash loader (PFL) performs two functions:

■ Allows the programming of the CFI flash through the JTAG interface
■ Acts as the configuration controller that reads the configuration data

from the CFI flash and configures the FPGA

To program the CFI flash, the PFL uses the MAX II device as a bridge
between the JTAG interface of the Quartus II Programmer and the CFI of
the CFI flash device. You can program FPGA configuration data and user
data into the flash with a flash POF generated by the Quartus II software.
After the flash is programmed with the FPGA configuration data, the PFL
is then used to read the configuration data back from the CFI flash to
configure the FPGA.

f Refer to AN 386: Using the MAX II Parallel Flash Loader with the Quartus II
Software for more information about PFL.

Serial Flash Loader

The serial flash loader (SFL) allows programming of the serial
configuration devices through JTAG. The SFL uses the FPGA device that
supports AS configuration mode as a bridge between the active serial
memory interface (ASMI) of the serial configuration device and the JTAG

19–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

interface of the programmer. The Quartus II Programmer uses the JIC file
converted from the FPGA SOF file to program the serial configuration
device though JTAG.

f Refer to AN 370: Using the Serial Flash Loader with the Quartus II Software
for more information about SFL.

Other
Programming
Tools

This section covers other programming tools that are related to the
Quartus II Programmer and can be used for programming or debugging
programming problems.

Quartus II Stand-Alone Programmer

If you do not have the full version of the Quartus II software, Altera offers
the free Quartus II Stand-Alone Programmer. This stand-alone
programmer has the full function of the normal Quartus II Programmer,
and enables you to create or convert programming files from the SOF or
POF of your design. You can download the Quartus II Stand-Alone
Programmer from the Download Center page found through the
Support page on the Altera website at www.altera.com.

jtagconfig Debugging Tool

The jtagconfig command-line utility is included with the Quartus II
software. You can use this utility (which is similar to the auto detect
operation in the Quartus II Programmer) to check the devices in a JTAG
chain and the user-defined devices.

For more information about the jtagconfig utility, type one of the
following commands at the command prompt:

jtagconfig –h r
jtagconfig –-help r

Scripting
Support

Apart from the Quartus II Programmer GUI, you can perform
programming with the Quartus II command-line programmer
(quartus_pgm). This quartus_pgm command-line programmer comes
with the Quartus II Programmer. You can run this programmer
separately from the Quartus II software. You can also run the procedures
for the programmer in a Tcl script. The programmer accepts the POF,
SOF, and JIC programming or configuration files. You can also use the
CDF.

Altera Corporation 19–23
October 2007

Quartus II Programmer

For more information about the command-line syntax, type one of the
following commands at the command prompt:

quartus_pgm -h r
quartus_pgm --help r
For more information about a specific programmer option or topic, type
the following command at the command prompt:

quartus_pgm --help=<option|topic> r
The following is an example of a command that programs a device:

quartus_pgm –c byteblasterII –m jtag –o bpv;design.pof r
where:

-c byteblasterII specifies the ByteBlaster II download cable
-m jtag specifies the JTAG programming mode
-o bpv represents the blank-check, program, and verify operations
design.pof represents the POF file used for the programming

The programmer automatically executes the erase operation before
programming the device.

For detailed information about scripting command options, you can also
refer to the Quartus II Command-Line and Tcl API Help browser. To run
the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r
The Scripting Reference Manual includes the same information in PDF
format.

f For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information on all settings and
constraints in the Quartus II software. Refer to the Command-Line
Scripting chapter in volume 2 of the Quartus II Handbook for more
information about command-line scripting.

Conclusion The Quartus II Programmer offers you a wide variety of options to
program and configure your Altera devices. With the Quartus II
Programmer, the Quartus II software provides you with a complete
solution for your FPGA or CPLD design prototyping, which can even be
performed in the production environment.

19–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 1

Referenced
Documents

This chapter references the following documents:

■ AN 341: Using the Design Security Feature in Stratix II and Stratix II GX
Devices

■ AN 370: Using the Serial FlashLoader with the Quartus II Software
■ AN 386: Using the MAX II Parallel Flash Loader with the Quartus II

Software
■ AN 425: Using Command-Line Jam STAPL Solution for Device

Programming
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Configuration File Formats chapter of the Configuration Handbook
■ Configuration Handbook
■ Quartus II Scripting Reference Manual
■ Quartus II Settings File Reference Manual
■ Serial Configuration Devices (EPCS1, EPCS4, EPCS16, and EPCS64) and

EPCS128) Data Sheet of the Configuration Handbook
■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 19–7 shows the revision history for this chapter.

Table 19–7. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007,
v7.2.0

Reorganized “Referenced Documents”. —

May 2007
v7.1.0

Initial release —

http://www.altera.com/literature/lit-config.jsp
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
http://www.altera.com/literature/hb/cfg/cfg_cf52007.pdf
http://www.altera.com/literature/an/an425.pdf
http://www.altera.com/literature/an/an425.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an386.pdf
http://www.altera.com/literature/an/an370.pdf
http://www.altera.com/literature/an/an341.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/manual/mnl_qsf_reference.pdf

Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 4: SOPC Builder

QII5V4-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation

Altera Corporation iii
Quartus II Handbook, Volume 4

Contents

Chapter Revision Dates .. xi

About this Handbook.. xiii
How to Contact Altera .. xiii
Typographic Conventions .. xiii

Section I. SOPC Builder Features

Chapter 1. Introduction to SOPC Builder
Overview ... 1–1
Architecture of SOPC Builder Systems .. 1–2

SOPC Builder Components .. 1–2
Example System .. 1–3
Custom Components .. 1–4

System Interconnect Fabric ... 1–5
Functions of SOPC Builder ... 1–5

Defining and Generating the System Hardware ... 1–5
Creating a Memory Map for Software Development ... 1–6
Creating a Simulation Model and Test Bench .. 1–6

Getting Started ... 1–7
Referenced Documents ... 1–7
Document Revision History ... 1–8

Chapter 2. System Interconnect Fabric for Memory-Mapped Interfaces
Introduction .. 2–1

High-Level Description ... 2–1
Fundamentals of Implementation ... 2–4
Functions of System Interconnect Fabric .. 2–4

Address Decoding ... 2–5
Datapath Multiplexing .. 2–6
Wait-State Insertion ... 2–7
Pipeline Read Transfers .. 2–8
Native Address Alignment and Dynamic Bus Sizing .. 2–9

Dynamic Bus Sizing ... 2–9
Wider Master ... 2–10
Narrower Master ... 2–10

Native Address Alignment ... 2–11
Arbitration for Multimaster Systems .. 2–12

iv Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Traditional Shared Bus Architectures ... 2–12
Slave-Side Arbitration ... 2–13
Arbiter Details ... 2–14
Arbitration Rules .. 2–15

Setting Arbitration Parameters in SOPC Builder ... 2–15
Fairness-Based Shares .. 2–16
Round-Robin Scheduling ... 2–17
Burst Transfers .. 2–17
Minimum Share Value ... 2–17

Burst Management .. 2–18
Clock Domain Crossing .. 2–19

Description of Clock Domain-Crossing Logic ... 2–19
Location of Clock Domain Crossing Logic ... 2–21
Duration of Transfers Crossing Clock Domains .. 2–22
Implementing Multiple Clock Domains in SOPC Builder ... 2–22
Component Overview ... 2–23
Functional Description .. 2–23

Interfaces .. 2–24
Clock Domain Crossing Logic and FIFOs ... 2–24
Burst Support ... 2–25
Example System with Avalon-MM Clock-Crossing Bridges ... 2–26

Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder 2–28
Interrupts .. 2–29

Software Priority .. 2–29
Hardware Priority .. 2–30
Assigning IRQs in SOPC Builder ... 2–30

Reset Distribution .. 2–31
Referenced Documents ... 2–31
Document Revision History ... 2–32

Chapter 3. System Interconnect Fabric for Streaming Interfaces
Introduction .. 3–1

High-Level Description ... 3–1
Avalon Streaming and Avalon Memory-Mapped Interfaces .. 3–2

Adapters .. 3–3
Data Format Adapter ... 3–4
Timing Adapter .. 3–4
Channel Adapter .. 3–5

Multiplexer Examples ... 3–5
Example to Double Clock Frequency .. 3–5
Example to Double Data Width and Maintain Frequency ... 3–6
Example to Boost the Frequency .. 3–6

Referenced Documents ... 3–7
Document Revision History ... 3–7

Chapter 4. SOPC Builder Components
Introduction .. 4–1

Altera Corporation v
Quartus II Handbook, Volume 4

Contents

New Component Structure in v7.1 of the Quartus II Software ... 4–1
Component Providers ... 4–2
Component Hardware Structure ... 4–2

Components That Include Logic Inside the System Module ... 4–3
Components That Interface to Logic Outside the System Module ... 4–4

List of Available Components in SOPC Builder ... 4–4
Tcl Components ... 4–5

Component Description File (_hw.tcl) .. 4–5
Component File Organization .. 4–5

Referenced Document ... 4–6
Document Revision History ... 4–6

Chapter 5. Component Editor
Introduction .. 5–1
Component Hardware Structure ... 5–2
Starting the Component Editor ... 5–2
HDL Files Tab .. 5–2
Signals Tab .. 5–3

Naming Signals for Automatic Type and Interface Recognition .. 5–4
Templates for Interfaces to External Logic ... 5–5

Interfaces Tab ... 5–6
Component Wizard Tab ... 5–6

Identifying Information ... 5–6
Parameters ... 5–7

Saving a Component ... 5–7
Editing a Component .. 5–8
Referenced Documents ... 5–8
Document Revision History ... 5–9

Chapter 6. Building a Component Interface with Tcl Scripting Commands
Organization of a Component Tcl File ... 6–2
Set and Add Commands .. 6–3
Module Properties ... 6–4
Clock Interface ... 6–4
Avalon-MM Master Interface .. 6–5
Avalon-MM Slave Interface ... 6–5
Avalon-ST Source Interface .. 6–6
Avalon-ST Sink Interface .. 6–7
Avalon-MM Tristate Interface ... 6–7
Nios II Custom Instruction Interface .. 6–8
Interrupt Interface ... 6–9
Conduit Interface ... 6–10
Document Revision History ... 6–10

Chapter 7. Archiving SOPC Builder Projects
Introduction .. 7–1
Scope .. 7–1

vi Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Required Files ... 7–2
SOPC Builder Design Files .. 7–3
Nios II Application Software Project Files .. 7–3
Nios II System Library Project .. 7–4

File Write Permissions .. 7–4
Referenced Documents ... 7–4
Document Revision History ... 7–5

Section II. Building Systems with SOPC Builder

Chapter 8. Building Memory Subsystems Using SOPC Builder
Introduction .. 8–1

Example Design ... 8–2
Example Design Structure ... 8–2
Example Design Starting Point ... 8–4

Hardware and Software Requirements .. 8–5
Design Flow ... 8–5

Component-Level Design in SOPC Builder ... 8–6
SOPC Builder System-Level Design .. 8–6
Simulation ... 8–7
Quartus II Project-Level Design ... 8–7
Board-Level Design .. 8–7
Simulation Considerations ... 8–7

Generic Memory Models ... 8–7
Vendor-Specific Memory Models .. 8–8

On-Chip RAM and ROM ... 8–8
Component-Level Design for On-Chip Memory ... 8–8

Memory Type .. 8–8
Size .. 8–9
Read Latency ... 8–9
Non-Default Memory Initialization ... 8–9
Enable In-System Memory Content Editor Feature ... 8–10

SOPC Builder System-Level Design for On-Chip Memory ... 8–10
Simulation for On-Chip Memory ... 8–10
Quartus II Project-Level Design for On-Chip Memory .. 8–10
Board-Level Design for On-Chip Memory ... 8–11
Example Design with On-Chip Memory ... 8–11

EPCS Serial Configuration Device .. 8–12
Component-Level Design for an EPCS Device .. 8–12
SOPC Builder System-Level Design for an EPCS Device ... 8–12
Simulation for an EPCS Device .. 8–13
Quartus II Project-Level Design for an EPCS Device .. 8–13
Board-Level Design for an EPCS Device .. 8–13
Example Design with an EPCS Device .. 8–13

SDRAM .. 8–14

Altera Corporation vii
Quartus II Handbook, Volume 4

Contents

Component-Level Design for SDRAM ... 8–15
SOPC Builder System-Level Design for SDRAM .. 8–15
Simulation for SDRAM .. 8–15
Quartus II Project-Level Design for SDRAM ... 8–15

Connecting and Assigning the SDRAM-Related Pins ... 8–16
Accommodating Clock Skew ... 8–16

Board-Level Design for SDRAM .. 8–16
Example Design with SDRAM .. 8–16

Off-Chip SRAM and Flash Memory ... 8–19
Component-Level Design for SRAM and Flash Memory .. 8–20

Avalon-MM Tristate Bridge .. 8–21
Flash Memory .. 8–21
SRAM .. 8–22

SOPC Builder System-Level Design for SRAM and Flash Memory 8–22
Simulation for SRAM and Flash Memory .. 8–23
Quartus II Project-Level Design for SRAM and Flash Memory .. 8–23
Board-Level Design for SRAM and Flash Memory ... 8–24

Aligning the Least-Significant Address Bits ... 8–24
Aligning the Most-Significant Address Bits .. 8–25

Example Design with SRAM and Flash Memory ... 8–25
Adding the Avalon-MM Tristate Bridge ... 8–26
Adding the Flash Memory Interface .. 8–26
Adding the SRAM Interface .. 8–26
Adding the PLL ... 8–29
SOPC Builder System Contents Tab .. 8–30
Connecting and Assigning Pins in the Quartus II Project .. 8–31
Connecting FPGA Pins to Devices on the Board .. 8–33

Referenced Documents ... 8–34
Document Revision History ... 8–34

Chapter 9. Developing Components for SOPC Builder
Introduction .. 9–1

SOPC Builder Components and the Component Editor .. 9–1
Prerequisites .. 9–2
Hardware and Software Requirements .. 9–2

Component Development Flow .. 9–3
Typical Design Steps .. 9–3
Hardware Design ... 9–4
Software Design .. 9–6
Verifying the Component ... 9–8

Unit Verification .. 9–8
System-Level Verification .. 9–8

Design Example: Checksum Master ... 9–9
Install the Design Files ... 9–9
Review the Example Design Specifications .. 9–10

Checksum Design Files .. 9–11
Master Task Logic ... 9–11

viii Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Register File .. 9–12
Avalon-MM Clock Interface .. 9–12
Avalon-MM Master Interface .. 9–13
Avalon-MM Slave Interface ... 9–13
Software API .. 9–14

Create an SOPC Builder component ... 9–14
Open the Quartus II Project and Start the Component Editor ... 9–14
HDL Files Tab .. 9–15
Signals Tab ... 9–15
Interfaces Tab ... 9–18
Component Wizard Tab ... 9–23
Save the Component ... 9–23

Instantiate the Component in Hardware .. 9–24
Add the checksum Master Component to the SOPC Builder System 9–24
Compile the Hardware Design and Download to the Target Board 9–25

Exercise the Hardware Using Nios II Software ... 9–25
Start the Nios II IDE and Create a New IDE Project .. 9–26
Compile the Software Project and Run on the Target Board ... 9–28

Sharing Components ... 9–29
Referenced Documents ... 9–31
Document Revision History ... 9–31

Section III. Interconnect Components

Chapter 10. Avalon Memory-Mapped Bridges
Introduction to Bridges ... 10–1

Structure of a Bridge .. 10–1
Reasons for Using a Bridge ... 10–3
Address Mapping for Systems with Avalon-MM Bridges .. 10–7

Tools for Visualizing the Address Map ... 10–8
Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges 10–8

Avalon-MM Pipeline Bridge .. 10–9
Component Overview ... 10–9
Functional Description .. 10–10

The following sections describe the component’s hardware functionality. 10–11
Interfaces .. 10–11
Pipeline Stages and Effects on Latency .. 10–11
Burst Support ... 10–12
Example System with Avalon-MM Pipeline Bridges .. 10–12

Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder .. 10–13
Device Support ... 10–14
Installation and Licensing .. 10–14
Hardware Simulation Considerations .. 10–15
Software Programming Model .. 10–15
Referenced Documents ... 10–15

Altera Corporation ix
Quartus II Handbook, Volume 4

Contents

Document Revision History ... 10–15

Chapter 11. Avalon Streaming Interconnect Components
Introduction to Interconnect Components .. 11–1

Interconnect Component Usage ... 11–1
Address Mapping ... 11–3

Timing Adapter .. 11–3
Resource Usage and Performance ... 11–4

Instantiating the Timing Adapter in SOPC Builder ... 11–5
Input Interface Parameters .. 11–5
Output Interface Parameters .. 11–5
Common to Input and Output Interfaces ... 11–5

Channel Signal Width (Bits) .. 11–6
Max Channel .. 11–6
Bits Per Symbol .. 11–6
Symbols Per Beat ... 11–6
Include Packet Support .. 11–6
Error Signal Width (Bits) .. 11–6

Data Format Adapter .. 11–6
Resource Usage and Performance ... 11–7
Instantiating the Data Format Adapter in SOPC Builder ... 11–9
Input Interface Parameters .. 11–9

Data Symbols Per Beat ... 11–9
Output Interface Parameters .. 11–9

Data Symbols Per Beat ... 11–9
Common to Input and Output ... 11–9

Support Backpressure with the Ready Signal .. 11–9
Data Bits Per Symbol .. 11–9
Channel Signal Width (Bits) .. 11–9
Max Channel .. 11–9
Include Packet Support .. 11–10
Error Signal Width (Bits) .. 11–10

Channel Adapter ... 11–10
Resource Usage and Performance ... 11–10
Instantiating the Channel Adapter in SOPC Builder .. 11–11
Input Interface Parameters .. 11–11

Channel Signal Width (Bits) .. 11–11
Max Channel .. 11–11

Output Interface Parameters .. 11–11
Channel Signal Width (Bits) .. 11–11
Max Channel .. 11–11

Common to Input and Output Interfaces ... 11–11
Data Bits Per Symbol .. 11–11
Symbols Per Beat ... 11–12
Include Packet Support .. 11–12
Error Signal Width (Bits) .. 11–12

Device Support ... 11–12

x Altera Corporation
Quartus II Handbook, Volume 4

Quartus II Handbook, Volume 4

Installation and Licensing .. 11–13
Hardware Simulation Considerations .. 11–13
Software Programming Model .. 11–13
Referenced Documents ... 11–13
Document Revision History ... 11–13

Altera Corporation xi

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 4, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Introduction to SOPC Builder
Revised: October 2007
Part number: QII54001-7.2.0

Chapter 2. System Interconnect Fabric for Memory-Mapped Interfaces
Revised: October 2007
Part number: QII54003-7.2.0

Chapter 3. System Interconnect Fabric for Streaming Interfaces
Revised: October 2007
Part number: QII54019-7.2.0

Chapter 4. SOPC Builder Components
Revised: October 2007
Part number: QII54004-7.2.0

Chapter 5. Component Editor
Revised: October 2007
Part number: QII54005-7.2.0

Chapter 6. Building a Component Interface with Tcl Scripting Commands
Revised: October 2007
Part number: QII54022-7.2.0

Chapter 7. Archiving SOPC Builder Projects
Revised: October 2007
Part number: QII54017-7.2.0

Chapter 8. Building Memory Subsystems Using SOPC Builder
Revised: October 2007
Part number: QII54006-7.2.0

Chapter 9. Developing Components for SOPC Builder
Revised: October 2007
Part number: QII54007-7.2.1

xii Altera Corporation

Chapter Revision Dates Quartus II Handbook, Volume 4

Chapter 10. Avalon Memory-Mapped Bridges
Revised: October 2007
Part number: QII54020-7.2.0

Chapter 11. Avalon Streaming Interconnect Components
Revised: October 2007
Part number: QII54021-7.2.0

Altera Corporation xiii

About this Handbook

This handbook provides comprehensive information about the Altera®
SOPC Builder tool.

How to Contact
Altera

For the most up-to-date information about Altera products, refer to the
following table.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA and Canada

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/
custrain@altera.com

Product literature www.altera.com/literature

Altera literature services literature@altera.com

FTP site ftp.altera.com

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN
75: High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

mailto:custrain@altera.com
http://www.altera.com/literature/lit-index.html
mailto:literature@altera.com
ftp://ftp.altera.com
https://mysupport.altera.com/etraining/
http://www.altera.com/mysupport/

xiv Altera Corporation

Typographic Conventions Quartus II Handbook, Volume 4

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning

Altera Corporation Section I–i

Section I. SOPC Builder
Features

Section I of this volume introduces the SOPC Builder system integration
tool, and describes the main features of the SOPC Builder tool. Chapters
in this section serve to answer the following questions:

■ What is SOPC Builder?
■ What features does SOPC Builder provide?

This section includes the following chapters:

■ Chapter 1, Introduction to SOPC Builder
■ Chapter 2, System Interconnect Fabric for Memory-Mapped

Interfaces
■ Chapter 3, System Interconnect Fabric for Streaming Interfaces
■ Chapter 4, SOPC Builder Components
■ Chapter 5, Component Editor
■ Chapter 6, Building a Component Interface with Tcl Scripting

Commands
■ Chapter 7, Archiving SOPC Builder Projects

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation

SOPC Builder Features Quartus II Handbook, Volume 4

Altera Corporation 1–1
October 2007

1. Introduction to SOPC
Builder

Overview SOPC Builder is a powerful system development tool for creating
systems including processors, peripherals, and memories. SOPC Builder
enables you to define and generate a complete
system-on-a-programmable-chip (SOPC) in much less time than using
traditional, manual integration methods. SOPC Builder is included in the
Quartus® II software.

Many designers already know SOPC Builder as the tool for creating
systems based on the Nios® II processor. However, SOPC Builder is more
than a Nios II system builder; it is a general-purpose tool for creating
systems that may or may not contain a processor.

SOPC Builder automates the task of integrating hardware components
into a larger system. Using traditional system-on-chip (SOC) design
methods, you must manually write top-level HDL files that wire together
the pieces of the system. Using SOPC Builder, you specify the system
components in a GUI, and SOPC Builder generates the interconnect logic
automatically. SOPC Builder outputs HDL files that define all
components of the system, and a top-level HDL design file that connects
all the components together. SOPC Builder generates both Verilog HDL
and VHDL equally, and does not favor one over the other. This chapter
includes the following sections:

■ “Architecture of SOPC Builder Systems” on page 1–2
■ “Functions of SOPC Builder” on page 1–5
■ “Getting Started” on page 1–7

In addition to its role as a system generation tool, SOPC Builder provides
features to ease writing software and to accelerate system simulation.

This chapter introduces you to the architectural structure of systems built
with SOPC Builder, and describes the primary functions of SOPC Builder.

QII54001-7.2.0

1–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Architecture of
SOPC Builder
Systems

This section describes the fundamental architecture of an SOPC Builder
system.

An SOPC Builder component is a design module that SOPC Builder
recognizes and can automatically integrate into a system. You can also
define and add custom components. SOPC Builder connects multiple
components together to create a top-level HDL file called the system
module. SOPC Builder generates system interconnect fabric that contains
logic to manage the connectivity of all components in the system.

SOPC Builder Components

SOPC Builder components are the building blocks for creating an SOPC
Builder system. SOPC Builder components use Avalon® interfaces for the
physical connection of components, and you can use SOPC Builder to
connect any logical device (either on-chip or off-chip) that has an Avalon
interface. There are two different Avalon interfaces:

■ The Avalon® Memory-Mapped (Avalon-MM) interface uses an
address-mapped read/write protocol that enables flexible topologies
for connecting master components to read and/or write any slave
components.

■ The Avalon Streaming (Avalon-ST) interface is a high-speed,
unidirectional, system interconnect that enables point-to-point
connections between streaming components that send and receive
data using source and sink ports.

SOPC builder components can use either Avalon-MM or Avalon-ST
interfaces or both.

f For details on the Avalon-MM interface, refer to the Avalon Memory-
Mapped Interface Specification chapter in volume 4 of the Quartus II
Handbook. For details about the Avalon-ST interface, refer to the System
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus II Handbook. For details about the Avalon-ST interface protocol,
refer to Avalon Streaming Interface Specification. All are available at
www.altera.com.

Altera Corporation 1–3
October 2007

Architecture of SOPC Builder Systems

Example System

Figure 1–1 shows an FPGA design including an SOPC Builder system
module and custom logic modules. You can integrate custom logic inside
or outside the system module. In this example, the custom component
inside the system module is an SOPC Builder component that
communicates with other modules through an Avalon-MM master
interface. The custom logic outside of the system module is connected to
the system module through a PIO interface. The system module includes
two SOPC Builder components with Avalon-ST source and sink
interfaces. The system interconnect fabric connects all of the SOPC
Builder components using the Avalon-MM or Avalon-ST system
interconnect as appropriate.

Figure 1–1. Example of an FPGA with a System Module Generated by SOPC Builder

FPGA

Custom
Logic

Printed Circuit Board

System Module

System Interconnect Fabric

Co-Processor 2
Bus Bridge

DDR2
Memory

DDR2
Memory

M Avalon-MM Master Port

S Avalon-MM Slave Port

S

SNK

S SRC

SNK

SRC Avalon-ST Source Port

Avalon-ST Sink Port

Custom
Component

M M

Processor
(32-bit
Master)

Streaming
Data
Sink

DDR2
Memory

Controller

PIO
(8-bit
slave)

Streaming
Data

Source

1–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

A component can be a logical device that is entirely contained within the
system module, such as the processor component shown in Figure 1–1.
Alternately, a component can act as an interface to an off-chip device,
such as the DDR2 interface component in Figure 1–1. In addition to the
Avalon interface, a component can have other signals that connect to logic
outside the system module. Non-Avalon signals can provide a special-
purpose interface to the system module, such as the PIO in Figure 1–1. A
component can be instantiated more than once per design.

Altera and third-party developers provide ready-to-use SOPC Builder
components, including:

■ Microprocessors, such as the Nios II processor
■ Microcontroller peripherals, such as a scatter-gather DMA controller
■ Timers
■ Serial communication interfaces, such as a UART and a serial

peripheral interface (SPI)
■ General purpose I/O
■ Digital signal processing (DSP) functions
■ Communications peripherals, such as a 10/100/1000 Ethernet MAC
■ Interfaces to off-chip devices, such as:

● Buses and bridges
● Application-specific standard products (ASSP)
● Application-specific integrated circuits (ASIC)
● Processors

Custom Components

SOPC Builder provides an easy method for you to develop and connect
your own components. Your components can use either the Avalon-MM
or Avalon-ST interfaces, or both. With the Avalon-MM interface, custom
logic need only adhere to a simple interface based on address, data, read-
enable, and write-enable signals. With the Avalon-ST interface, custom
logic follows the configurable Avalon-ST interface protocol.

You use the following design flow to integrate custom logic into an SOPC
Builder system:

1. Define the interface to the custom component.

2. Write HDL files describing the component in either Verilog HDL or
VHDL.

3. Use the SOPC Builder component editor wizard to specify the
interface and optionally package your HDL files into an SOPC
Builder component.

Altera Corporation 1–5
October 2007

Functions of SOPC Builder

4. Instantiate your component in the same manner as other SOPC
Builder components.

Once you have created an SOPC Builder component, you can reuse the
component in other SOPC Builder systems, and share the component
with other design teams.

f For instructions on developing a custom SOPC Builder component, refer
to the Developing SOPC Builder Components chapter in volume 4 of the
Quartus II Handbook. For complete details about the file structure of a
component, refer to the SOPC Builder Components chapter in volume 4 of
the Quartus II Handbook. For details about the SOPC Builder component
editor, refer to the Component Editor chapter in volume 4 of the Quartus II
Handbook.

System Interconnect Fabric

The system interconnect fabric connects the components in SOPC
Builder-generated systems. For Avalon-MM components, the system
interconnect fabric is the collection of signals and logic that connects
master and slave components, including address decoding, data-path
multiplexing, wait-state generation, arbitration, interrupt controller, and
data-width matching. For Avalon-ST components, the system
interconnect fabric creates point-to-point connections between streaming
components that send and receive data using source and sink ports.

f For further details, refer to the System Interconnect Fabric for Memory-
Mapped Interfaces and System Interconnect Fabric for Streaming Interfaces
chapters in volume 4 of the Quartus II Handbook.

Functions of
SOPC Builder

This section describes the fundamental functions of SOPC Builder.

Defining and Generating the System Hardware

The purpose of SOPC Builder is to allow you to easily define the structure
of a hardware system, and then generate the system. The GUI allows you
to add components to a system, configure the components, and specify
how they connect together.

1–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

After you add all components and system parameters, SOPC Builder
generates the system interconnect fabric and output HDL files. During
system generation, SOPC Builder outputs the following items:

■ An HDL file for the top-level system module and for each
component in the system

■ A Block Symbol File (.bsf) representation of the top-level system
module for use in Quartus II Block Diagram Files (.bdf)

■ Software files for embedded software development, such as a
memory-map header file and component driver

■ (Optional) Testbench for the system module and ModelSim®
simulation project files

After you generate the system module, you can compile it with the
Quartus II software, or you can instantiate it in a larger FPGA design.

Creating a Memory Map for Software Development

When connected to the Nios II processor, SOPC Builder generates a
header file that defines the address of each Avalon-MM slave component.
In addition, each slave component can provide software drivers and
other software functions and libraries for the processor.

How you write software for the system depends heavily on the nature of
the processor in the system. For example, Nios II processor systems use
Nios II processor-specific software development tools. These tools are
separate from SOPC Builder, but they do use the output of SOPC Builder
as the foundation for software development.

Creating a Simulation Model and Test Bench

You can simulate your custom systems with minimal effort immediately
after generating the system with SOPC Builder. During system
generation, SOPC Builder optionally outputs a push-button simulation
environment that eases the system simulation effort. SOPC Builder
generates both a simulation model and a testbench for the entire system.
The testbench includes the following functionality:

● Instantiates the system module
● Drives all clocks and resets appropriately
● Optionally instantiates simulation models for off-chip devices

Altera Corporation 1–7
October 2007

Getting Started

Getting Started One of the easiest ways to get started using SOPC Builder is to read the
Nios II Hardware Development Tutorial which guides you step by step in
building a microprocessor system, including CPU, memory, and
peripherals. This tutorial and other SOPC Builder example designs are
included in the Nios II Embedded Design Suite (EDS). You can download
this design suite for free from the Altera Download Center at
www.altera.com/download.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ System Interconnect Fabric for Streaming Interfaces
■ Avalon Streaming Interface Specification
■ SOPC Builder Components
■ Component Editor
■ System Interconnect Fabric for Memory-Mapped Interfaces
■ Nios II Hardware Development Tutorial

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf

1–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Document
Revision History

Table 1–1 shows the revision history for this chapter.

Table 1–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.0 ● Updated with new 7.2 functionality and
terminology. Deleted unneeded description of
SOPC Builder Ready Components.

—

May 2007,
v7.1.0

● Updated Avalon terminology because of
changes to Avalon technologies. Changed old
“Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped
interface.”

● Added new information on Avalon Streaming
(Avalon-ST) interface.

● Revised system module block diagram
● Added Referenced Documents section.

This chapter was revised to
introduce the Avalon streaming
interface in addition to the Avalon
Memory-Mapped interface. The
block diagram was made more
comprehensive.

March 2007,
v7.0.0

No change from previous release —

November 2007,
v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 No change from previous release. —

February 2005, v1.0 Initial release. —

Altera Corporation 2–1
October 2007

2. System Interconnect
Fabric for Memory-Mapped

Interfaces

Introduction System interconnect fabric for memory-mapped interfaces is a
high-bandwidth interconnect structure for connecting components that
use the Avalon® Memory-Mapped (Avalon-MM) interface. System
interconnect fabric consumes minimal logic resources and provides
greater flexibility than a typical shared system bus. This is a cross-connect
fabric and not a tristated or time-sliced shared medium.This chapter
describes the functions of system interconnect fabric for
memory-mapped interfaces and the implementation of those functions.

High-Level Description

System interconnect fabric is the collection of interconnect and logic
resources that connects Avalon-MM master and slave ports on
components in a system. SOPC Builder generates system interconnect
fabric to match the needs of the specific components in a system. System
interconnect fabric encapsulates the connection details of a system. It
guarantees that signals travel correctly between master and slave ports,
as long as the ports adhere to the rules of the Avalon Memory-Mapped
interface specification. This chapter provides information on the
following topics:

■ “Address Decoding” on page 2–5
■ “Datapath Multiplexing” on page 2–6
■ “Wait-State Insertion” on page 2–7
■ “Pipeline Read Transfers” on page 2–8
■ “Native Address Alignment and Dynamic Bus Sizing” on page 2–9
■ “Arbitration for Multimaster Systems” on page 2–12
■ “Burst Management” on page 2–18
■ “Clock Domain Crossing” on page 2–19
■ “Interrupts” on page 2–29
■ “Reset Distribution” on page 2–31

f For details about the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification

System interconnect fabric for memory-mapped interfaces supports:

■ Any number of master and slave components. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or
many-to-many.

■ On-chip components

QII54003-7.2.0

2–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

■ Interfaces to off-chip devices
■ Master and slave ports of differing data widths
■ Big-endian or little-endian components
■ Components operating in different clock domains
■ Components using multiple Avalon-MM ports

Figure 2–1 shows a simplified diagram of the system interconnect fabric
in an example memory-mapped system with multiple masters.

1 All figures in this chapter are simplified to show only the
particular function being discussed. In a complete system, the
system interconnect fabric might alter the address, data, and
control paths beyond what is shown in any one particular figure.

Altera Corporation 2–3
October 2007

Introduction

Figure 2–1. System Interconnect Fabric—Example System

SOPC Builder supports components with multiple Avalon-MM ports,
such as the processor component shown in Figure 2–1. Because SOPC
Builder can create system interconnect fabric to connect components with
multiple ports, you can create complex interfaces that provide more
functionality than a single Avalon-MM port. For example, you can create
a component with two different Avalon-MM slaves, each with an
associated interrupt interface.

Processor

M

DMA Controller

SDRAM
Controller

SDRAM Chip

S

Arbitrator

Data
Memory

SS

Tri-State Bridge

S

Instruction

M

Data

MM

Control

Read Write

Arbitrator

Instruction
Memory

System
Interconnect

Fabric

Write Data & Control Signals

Read Data

Interface to Off-Chip Device

M

S

Avalon-MM Master Port

Avalon-MM Slave Port

MUX

Flash
Memory

Chip

S

Ethernet
MAC/PHY

Chip

S

2–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

System interconnect fabric can connect any topology of component
connections, as long as each port conforms to the Avalon interface
specification. It can, for example, connect a system comprised of only two
components with unidirectional dataflow between them. Avalon-MM
interfaces are suitable for random addressable transactions, such as to
memories or embedded peripherals. Avalon-ST interfaces are suitable for
dataflow interconnection, as found in packet processing or DSP pipelines.

f For more information, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook and the Avalon
Streaming Interface Specification.

Generating system interconnect fabric is SOPC Builder’s primary
purpose. SOPC Builder can be used to manage and edit your design.
Because SOPC Builder automatically generates system interconnect
fabric, you may not be required to interact directly with it or the HDL that
describes it; however, a basic understanding of how it works can help you
optimize your components and systems. For example, knowledge of the
arbitration mechanism can help designers of multimaster systems
minimize the impact of arbitration on the system throughput.

Fundamentals of Implementation

System interconnect fabric for memory-mapped interfaces implements a
switched interconnect structure that provides concurrent paths between
master and slave ports. System interconnect fabric consists of
synchronous logic and routing resources inside the FPGA.

For each port interface on components, system interconnect fabric
manages Avalon-MM transfers, interacting with and responding to
signals on the connected component. The signals that appear on the
master port and corresponding slave port of a master-slave pair can be
different. In the path between master and slave ports, the system
interconnect fabric might introduce registers for timing synchronization,
finite state machines for event sequencing, or nothing at all, depending on
the services required by the specific ports.

Functions of System Interconnect Fabric

System interconnect fabric logic provides the following functions:

■ “Address Decoding” on page 2–5
■ “Datapath Multiplexing” on page 2–6
■ “Wait-State Insertion” on page 2–7
■ “Pipeline Read Transfers” on page 2–8
■ “Native Address Alignment and Dynamic Bus Sizing” on page 2–9
■ “Arbitration for Multimaster Systems” on page 2–12

Altera Corporation 2–5
October 2007

Address Decoding

■ “Burst Management” on page 2–18
■ “Clock Domain Crossing” on page 2–19
■ “Interrupts” on page 2–29
■ “Reset Distribution” on page 2–31

The behavior of these functions in a specific SOPC Builder system
depends on the design of the components in the system and the settings
made in SOPC Builder. The remaining sections of this chapter describe
how SOPC Builder implements each function.

Address
Decoding

Address decoding logic in the system interconnect fabric distributes an
appropriate address and produces a chipselect signal for each slave
port. Address decoding logic simplifies component design in the
following ways:

■ The system interconnect fabric selects a slave port whenever it is
being addressed by a master. Slave components do not need to
decode the address to determine when they are selected.

■ Slave port addresses are properly aligned for the slave port.
■ SOPC Builder automatically generates address decoding logic to

implement the memory map specified in the GUI. Therefore,
changing the system memory map does not involve manually
editing HDL.

Figure 2–2 shows a block diagram of the address-decoding logic for one
master and two slave ports. Separate address-decoding logic is generated
for every master port in a system.

As shown in Figure 2–2, the address decoding logic handles the
difference between the master address width (M) and the individual
slave address widths (S and T). It also maps only the necessary master
address bits to access words in each slave port’s address space.

Figure 2–2. Block Diagram of Address Decoding Logic

Slave
Port 1
(8-bit)

Slave
Port 2
(32-bit)

chipselect1
address [S..0]

chipselect2

address [T..2]

address [M..0] Address
Decoding

Logic
Master

Port

2–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

In SOPC Builder, the user-configurable aspects of address decoding logic
are controlled by the Base setting in the list of active components on the
System Contents tab, as shown in Figure 2–3.

Figure 2–3. Base Settings in SOPC Builder Control Address Decoding

Datapath
Multiplexing

Datapath multiplexing logic in the system interconnect fabric drives the
writedata from the granted master to the selected slave, and from the
readdata from the selected slave back to the requesting master.

Figure 2–4 shows a block diagram of the datapath multiplexing logic for
one master and two slave ports. SOPC Builder generates separate
datapath multiplexing logic for every master port in the system.

Figure 2–4. Block Diagram of Datapath Multiplexing Logic

Data
Path
MUX

Master
Port

readdata

address

writedata

control

Slave
Port 2

Slave
Port 1

readdata2

readdata1

Altera Corporation 2–7
October 2007

Wait-State Insertion

In SOPC Builder, the generation of datapath multiplexing logic is
specified using the connections panel on the System Contents page, as
shown in Figure 2–5.

Figure 2–5. Connection Panel Settings in SOPC Builder Control Datapath
Multiplexing

Wait-State
Insertion

Wait states extend the duration of a transfer by one or more cycles.
Wait-state insertion logic accommodates the timing needs of each slave
port, and coordinates the master port to wait until the slave can proceed.
System interconnect fabric inserts wait states into a transfer when the
target slave port cannot respond in a single clock cycle. System
interconnect fabric also inserts wait states in cases when slave read-enable
and write-enable signals have setup or hold time requirements.

Wait-state insertion logic is a small finite-state machine that translates
control signal sequencing between the slave side and the master side.
Figure 2–6 shows a block diagram of the wait-state insertion logic
between one master and one slave.

Figure 2–6. Block Diagram of Wait-State Insertion Logic

System interconnect fabric can force a master port to wait for several
reasons in addition to the wait state needs of a slave port. For example,
arbitration logic in a multimaster system can force a master port to wait
until it is granted access to a slave port.

SOPC Builder generates wait-state insertion logic based on the properties
of all slave ports in the system.

Connection Panel
Settings

Master
Port

Slave
Port

Wait-State
Insertion
Logic control

wait request

address

data

control

2–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Pipeline Read
Transfers

The Avalon-MM interface supports pipelined read transfers, allowing a
pipelined master port to start multiple read transfers in succession
without waiting for the prior transfers to complete. Pipelined transfers
allow master-slave pairs to achieve higher throughput, even though the
slave port might require one or more cycles of latency to return data for
each transfer.

SOPC Builder generates system interconnect fabric with pipeline
management logic to take advantage of pipelined components wherever
possible, based on the pipeline properties of each master-slave pair in the
system. Regardless of the pipeline latency of a target slave port, SOPC
Builder guarantees that read data arrives at each master port in the order
requested. Because master and slave ports often have mismatched
pipeline latency, system interconnect fabric often contains logic to
reconcile the differences. Many cases are possible, as shown in Table 2–1.

SOPC Builder generates logic to handle pipeline latency based on the
properties of the master and slave ports in the system. When configuring
a system in SOPC Builder, there are no settings that directly control the
pipeline management logic in the system interconnect fabric.

Table 2–1. Various Cases of Pipeline Latency in a Master-Slave Pair

Master Port Slave Port Pipeline Management Logic Structure

No Pipeline No Pipeline The system interconnect fabric does not instantiate logic to handle
pipeline latency.

No Pipeline Pipelined with
Fixed or Variable
Latency

The system interconnect fabric forces the master port to wait through
any slave-side latency cycles. This master-slave pair gains no benefits
of pipelining, because the master port is not pipelined and therefore
waits for each transfer to complete before beginning a new transfer.
However, while the master port is waiting, the slave port can accept
transfers from a different master port.

Pipelined No Pipeline The system interconnect fabric carries out the transfer as if neither
port were pipelined, forcing the master port to wait until the slave port
returns data.

Pipelined Pipelined with
Fixed Latency

The system interconnect fabric coordinates the master port to capture
data at the exact clock cycle when data is valid on the slave port. This
case enables this master-slave pair to achieve maximum throughput
performance.

Pipelined Pipelined with
Variable Latency

This is the simplest pipelined case, in which the slave port asserts a
signal when its readdata is valid, and the master port captures the
data. This case enables this master-slave pair to achieve maximum
throughput performance.

Altera Corporation 2–9
October 2007

Native Address Alignment and Dynamic Bus Sizing

Native Address
Alignment and
Dynamic Bus
Sizing

SOPC Builder generates system interconnect fabric to accommodate
master and slave ports with unmatched data widths. Address alignment
affects how slave data is aligned in a master port's address space, in the
case that the master and slave data widths are different. Address
alignment is a property of each slave port, and can be different for each
slave port in a system. A slave port can declare itself to use one of the
following:

■ Native address alignment
■ Dynamic bus sizing

Table 2–2 demonstrates native address alignment and dynamic bus sizing
for a 32-bit master port connected to a 16-bit slave port (a 2:1 ratio). In this
example, the slave port is mapped to base address BASE in the master
port’s address space. In Table 2–2, OFFSET refers to the offset into the
16-bit slave address space.

SOPC Builder generates appropriate address-alignment logic based on
the properties of the master and slave ports in the system. When
configuring a system in SOPC Builder, there are no settings that directly
control the address alignment in the system interconnect fabric.

Dynamic Bus Sizing

Dynamic bus sizing hides the details of interfacing a narrow component
device to a wider master port, and vice versa. When an N-bit master port
accesses a slave port with dynamic bus sizing, the master port operates
exclusively on full N-bit words of data, without awareness of the slave
data width.

1 When using dynamic bus sizing, the slave data width with units
of bytes must be a power of two.

Table 2–2. 32-Bit Master View of 16-Bit Slave Data

32-bit Master Address Data with Native Alignment Data with Dynamic Bus Sizing

BASE + 0x0 (word 0) 0×0000:OFFSET[0] OFFSET[1]:OFFSET[0]

BASE + 0x4 (word 1) 0×0000:OFFSET[1] OFFSET[3]:OFFSET[2]

BASE + 0x8 (word 2) 0×0000:OFFSET[2] OFFSET[5]:OFFSET[4]

BASE + 0xC (word 3) 0×0000:OFFSET[3] OFFSET[7]:OFFSET[6]

...

BASE + 4N (word N) 0×0000:OFFSET[N] OFFSET[2N+1]:OFFSET[2N]

2–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Dynamic bus sizing provides the following benefits:

■ Eliminates the need to create address-alignment hardware manually.
■ Reduces design complexity of the master component.
■ Enables any master port to access any memory device, regardless of

the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes
a small finite state machine that reconciles the difference between master
and slave data widths. The behavior is different depending on whether
the master data width is wider or narrower than the slave.

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a
single, wide transfer on the master side, and then performs multiple
narrow transfers on the slave side. For a data-width ratio of N:1, the
dynamic bus-sizing logic generates up to N slave transfers for each
master transfer. The master port waits while multiple slave-side transfers
complete; the master transfer ends when all slave-side transfers end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to
generate appropriate slave transfers. The dynamic bus-sizing logic
performs as many slave-side transfers as necessary to write or read the
specified byte lanes.

Narrower Master

In the case of a narrower master, one transfer on the master side generates
one transfer on the slave side. In this case, multiple master word
addresses map to a single offset in the slave memory space. The dynamic
bus-sizing logic maps each master address to a subset of byte lanes in the
appropriate slave offset. All bytes of the slave memory are accessible in
the master address space.

Table 2–3 demonstrates the case of a 32-bit master port accessing a 64-bit
slave port with dynamic bus sizing. In the table, offset refers to the offset
into the slave port memory space.

Table 2–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
(Part 1 of 2)

32-bit Address Data

0×00000000 (word 0) OFFSET[0]31..0

0×00000004 (word 1) OFFSET[0]63..32

Altera Corporation 2–11
October 2007

Native Address Alignment and Dynamic Bus Sizing

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the
appropriate byte lanes of the slave data to the narrow master port. In the
case of a write transfer, the dynamic bus-sizing logic uses slave-side
byte-enable signals to write only to the appropriate byte lanes.

Native Address Alignment

Slave ports that access address-mapped registers inside the component
generally use native address alignment. The defining properties of native
address alignment are:

■ Each slave offset (that is, word) maps to exactly one master word,
regardless of the data width of the ports.

■ One transfer on the master port generates exactly one transfer on the
slave port.

In the case of native address alignment, system interconnect fabric maps
all slave data bits to the lower bits of the master data, and fills any
remaining upper bits with zero. System interconnect fabric performs
simple wire-mapping in the datapath, but nothing else.

Native address alignment is only valid if the master data width is equal
to or wider than the slave data width. If an N-bit master port is connected
to a wider slave with native alignment, then the master port can access
only the lower N data bits at each offset in the slave.

w Native address alignment prevents use of the slave with narrow
masters and some bridge implementations, and is not
recommended for new components.

0×00000008 (word 2) OFFSET[1]31..0

0×0000000C (word 3) OFFSET[1]63..32

Table 2–3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
(Part 2 of 2)

32-bit Address Data

2–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Arbitration for
Multimaster
Systems

System interconnect fabric supports systems with multiple master
components. In a system with multiple master ports, such as the system
pictured in Figure 2–1 on page 2–3, the system interconnect fabric
provides shared access to slave ports using a technique called slave-side
arbitration. Slave-side arbitration determines which master port gains
access to a specific slave port in the event that multiple master ports
attempt to access the same slave port at the same time.

The multimaster architecture used by system interconnect fabric offers
the following benefits:

■ Eliminates the need to create arbitration hardware manually.
■ Allows multiple master ports to transfer data simultaneously. Unlike

traditional host-side arbitration architectures in which each master
must wait until it is granted access to the shared bus, multiple
Avalon-MM masters can simultaneously perform transfers with
independent slaves. Arbitration logic stalls a master port only when
multiple master ports attempt to access the same slave port during
the same cycle.

■ Eliminates unnecessary master-slave connections. The connection
between a master port and a slave port exists only if it is specified in
SOPC Builder. If a master port never initiates transfers to a specific
slave port, no connection is necessary, and therefore SOPC Builder
does not waste logic resources to connect the two ports.

■ Provides configurable arbitration settings, and arbitration for each
slave port is specified independently. For example, you can grant
one master port the most access to a particular slave port, while other
master ports have more access to other slave ports.

■ Simplifies master component design. The details of arbitration are
encapsulated inside the system interconnect fabric. Each
Avalon-MM master port connects to the system interconnect fabric
as if it is the only master port in the system. As a result, you can reuse
a component in single-master and multimaster systems without
requiring design changes to the component.

This section discusses the architecture of the system interconnect fabric
generated by SOPC Builder for multimaster systems.

Traditional Shared Bus Architectures

As a frame of reference for the discussion of multiple masters and
arbitration, this section describes traditional bus architectures.

In traditional bus architectures, one or more bus masters and bus slaves
connect to a shared bus, consisting of wires on a printed circuit board. A
single arbiter controls the bus (that is, the path between bus masters and
bus slaves), so that multiple bus masters do not simultaneously drive the

Altera Corporation 2–13
October 2007

Arbitration for Multimaster Systems

bus. Each bus master requests control of the bus from the arbiter, and the
arbiter grants access to a single master at a time. Once a master has
control of the bus, the master performs transfers with a bus slave. If
multiple masters attempt to access the bus at the same time, the arbiter
allocates the bus resources to a single master based on fixed arbitration
rules, forcing all other masters to wait. For example, the priority
arbitration scheme—in which the arbiter always grants control to the
master with the highest priority—is used in many existing bus
architectures.

Figure 2–7 illustrates the bus architecture for a traditional processor
system. Access to the shared system bus becomes the bottleneck for
throughput: only one master has access to the bus at a time, which means
that other masters are forced to wait and only one slave can transfer data
at a time.

Figure 2–7. Bus Architecture in a Traditional Microprocessor System

Slave-Side Arbitration

The multimaster architecture used by system interconnect fabric
eliminates the bottleneck for access to a shared bus, because the system
does not have shared bus signals. Avalon-MM master-slave pairs are
connected by dedicated paths. A master port never waits to access a slave
port, unless a different master port attempts to access the same slave port
at the same time. As a result, multiple master ports can be active at the
same time, simultaneously transferring data with independent slave
ports.

Master 1
System CPU

Master 2
DMA

Controller

Program
Memory

Data
Memory

PIOUART

Arbiter

System Bus

Masters

Slaves

Bottleneck

2–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

A multimaster Avalon-MM system requires arbitration, but only when
two masters contend for the same slave port. This arbitration is called
slave-side arbitration, because it is implemented at the point where two
(or more) master ports connect to a single slave. Master ports contend for
individual slave ports, not for a shared bus resource.

For example, Figure 2–1 on page 2–3 demonstrates a system with two
master ports (a CPU and a DMA controller) sharing a slave port (an
SDRAM controller). Arbitration is performed at the SDRAM slave port;
the arbiter dictates which master port gains access to the slave port if both
master ports initiate a transfer with the slave port in the same cycle.

Figure 2–8 focuses on the two master ports and the shared slave port, and
shows additional detail of the data, address, and control paths. The
arbiter logic multiplexes all address, data, and control signals from a
master port to a shared slave port.

Figure 2–8. Detailed View of Multimaster Connections

Arbiter Details

SOPC Builder generates an arbiter for every slave port, based on
arbitration parameters specified in SOPC Builder. The arbiter logic
performs the following functions for its slave port:

■ Evaluates the address and control signals from each master port and
determines which master port, if any, gains access to the slave next.

■ Grants access to the chosen master port and forces all other
requesting master ports to wait.

■ Uses multiplexers to connect address, control, and datapaths
between the multiple master ports and the slave port.

Master 1

Master 2

Slave

A
rb

itr
at

or

Write Data
Control

Request Control
M1 Write Data

M2 Write Data
Request Control

Slave Read Data

Address

M2 Address

M1 Address

Altera Corporation 2–15
October 2007

Arbitration for Multimaster Systems

Figure 2–9 shows the arbiter logic in an example multimaster system with
two master ports, each connected to two slave ports.

Figure 2–9. Block Diagram of Arbiter Logic

Arbitration Rules

This section describes the rules by which the arbiter grants access to
master ports when they contend.

Setting Arbitration Parameters in SOPC Builder

You specify the arbitration shares for each master using the connection
panel on the System Contents tab of SOPC Builder, as shown in
Figure 2–10.

Figure 2–10. Arbitration Settings on the System Contents Tab

Master 1
System CPU

Master 2
DMA

Controller

Program
Memory

Data
Memory

PIOUART

Arbitrator

System Bus

Masters

Slaves

Bottleneck

2–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The arbitration settings are hidden by default. To see them, on the View
menu, click Show Arbitration.

Fairness-Based Shares

Arbiter logic uses a fairness-based arbitration scheme. In a fairness-based
arbitration scheme, each master port pair has an integer value of transfer
shares with respect to a slave port. One share represents permission to
perform one transfer.

For example, assume that two master ports continuously attempt to
perform back-to-back transfers to a slave port. Master 1 is assigned three
shares and Master 2 is assigned four shares. In this case, the arbiter grants
Master 1 access for three transfers, then Master 2 for four transfers. This
cycle repeats indefinitely. Figure 2–11 demonstrates this case, showing
each master port’s transfer request output, wait request input (which is
driven by the arbiter logic), and the current master with control of the
slave.

Figure 2–11. Arbitration of Continuous Transfer Requests from Two Master Ports

If a master stops requesting transfers before it exhausts its shares, it
forfeits all its remaining shares, and the arbiter grants access to another
requesting master. See Figure 2–12. After completing one transfer, Master
2 stops requesting for one clock cycle. As a result, the arbiter grants access
back to Master 1, which gets a replenished supply of shares.

Figure 2–12. Arbitration of Two Masters with a Gap in Transfer Requests

Altera Corporation 2–17
October 2007

Arbitration for Multimaster Systems

Round-Robin Scheduling

When multiple master ports contend for access to a slave port, the arbiter
grants shares in round-robin manner. Round-robin scheduling drives a
request interface according to space available and data available credit
interfaces. At every slave transfer, only requesting master ports are
included in the arbitration.

Burst Transfers

Avalon-MM burst transfers grant a master port uninterrupted access to a
slave port for a specified number of transfers. The master port specifies
the number of transfers when it initiates the burst. Once a burst begins
between a master-slave pair, arbiter logic does not allow any other master
port to access the slave port until the burst completes. For further
information, refer to “Burst Management” on page 2–18.

Minimum Share Value

A component design can declare the minimum number of shares in each
round-robin cycle, which affects how the arbiter grants access. For
example, if a slave port has a minimum share value of ten, then the arbiter
will grant at least ten shares to any master port when it begins a sequence
of transfer requests. The arbiter might grant more shares, if the master
port is assigned more shares in SOPC Builder.

By declaring a minimum share value of N, a slave port declares that it is
more efficient at handling continuous sequential transfers of length N.
Accessing the slave port in sequences less than N incurs performance
penalties that might prevent the slave port from achieving higher
performance. By nature, continuous back-to-back master transfers tend to
access sequential addresses. However, there is no requirement that the
master port perform transfers to sequential addresses.

1 Burst transfers provide even higher performance for continuous
transfers when they are guaranteed to access sequential
addresses. The minimum share value does not apply to slave
ports that support bursts; the burst length takes precedence over
minimum share value. Refer to “Burst Management” on
page 2–18 for information.

2–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

You specify the arbitration shares for each master using the connection
panel on the System Contents tab of SOPC Builder, as shown in
Figure 2–13.

Figure 2–13. Arbitration Settings on the System Contents Tab

1 The arbitration settings are hidden by default. To see them, on
the View menu, click Show Arbitration.

Burst
Management

System interconnect fabric provides burst management logic to
accommodate the burst capabilities of each port in the system, including
ports that do not support burst transfers. Burst management logic is a
finite state machine that translates the sequencing of address and control
signals between the slave side and the master side.

The maximum burst length for each port is determined by the component
design and is independent of other ports in the system. Therefore, a
particular master port might be capable of initiating a burst longer than a
slave port’s maximum supported burst length. In this case, the burst
management logic translates the master burst into smaller slave bursts, or
into individual slave transfers if the slave port does not support bursts.
Until the master port completes the burst, the arbiter logic prevents other
master ports from accessing the target slave port.

For example, if a master port initiates a burst of 16 transfers to a slave port
with maximum burst length of 8, the burst management logic initiates
two bursts of length 8 to the slave port. If a master port initiates a burst of
16 transfers to a slave port that does not support bursts, the burst
management logic initiates 16 separate transfers to the slave port.

Altera Corporation 2–19
October 2007

Clock Domain Crossing

Clock Domain
Crossing

SOPC Builder generates clock-domain crossing (CDC) logic that hides the
details of interfacing components operating in asynchronous clock
domains. The system interconnect fabric upholds the Avalon-MM
protocol with each port independently, and therefore each Avalon-MM
port need only be aware of its own clock domain. The system
interconnect fabric logic propagates transfers across clock domain
boundaries automatically.

The CDC logic in system interconnect fabric provides the following
benefits that simplify system design efforts:

■ Allows component interfaces to operate at a different clock
frequency than system logic.

■ Eliminates the need to design CDC hardware manually.
■ Each Avalon-MM port operates in only one clock domain, which

reduces design complexity of components.
■ Enables master ports to access any slave port without

communication with the slave clock domain.
■ Allows you to focus performance optimization efforts only on

components that require fast clock speed.

Description of Clock Domain-Crossing Logic

The CDC logic consists of two finite state machines (FSM), one in each
clock domain, that use a simple hand-shaking protocol to propagate
transfer control signals (read request, write request, and the master
wait-request signals) across the clock boundary. Figure 2–14 shows a
block diagram of the clock domain crossing logic between one master and
one slave port.

2–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 2–14. Block Diagram of Clock Domain-Crossing Logic

The Synchronizer blocks in Figure 2–14 use multiple stages of flip-flops
to eliminate the propagation of metastable events on the control signals
that enter the handshake FSMs.

The CDC logic works with any clock ratio. Altera® tests the CDC logic
extensively on a variety of system architectures, both in simulation and in
hardware, to ensure that the logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is
described below:

1. Master port asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and
immediately forces the master port to wait.

waitrequest

control

Master
Handshake

FSM

transfer
request

acknowledge

address

readdata

writedata & byte enable

control

Slave
Handshake

FSM

waitrequest

Synchro-
nizer

Master
Port

Slave
Port

Master clock domain Slave clock domain

Synchro-
nizer

readdata

CDC Logic

Altera Corporation 2–21
October 2007

Clock Domain Crossing

1 The FSM uses only the control signals, not address and data. For
example, the master port simply holds the address signal
constant until the slave side has safely captured it.

3. Master handshake FSM initiates a transfer request to the slave
handshake FSM.

4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the
requested transfer with the slave port.

6. When the slave transfer completes, the slave handshake FSM sends
an acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing
the master port from the wait condition.

Transfers proceed as normal on the slave and the master side, without a
special protocol to handle crossing clock domains. From the perspective
of a slave port, there is nothing different about a transfer initiated by a
master port in a different clock domain. From the perspective of a master
port, a transfer across clock domains simply requires extra clock cycles.
Similar to other transfer delay cases (for example, arbitration delay or
wait states on the slave side), the system interconnect fabric simply forces
the master port to wait until the transfer terminates. As a result,
latency-aware master ports do not benefit from pipelining when
performing transfers to a different clock domain.

Location of Clock Domain Crossing Logic

SOPC Builder automatically determines where to insert the CDC logic,
based on the system contents and the connections between components.
SOPC Builder places CDC logic to maintain the highest transfer rate for
all components. SOPC Builder evaluates the need for CDC logic on each
slave port independently, and generates CDC logic wherever necessary.

2–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain
boundaries. In the worst case, each transfer is extended by five master
clock cycles and five slave clock cycles. The components of this delay are
the following:

■ Four additional master clock cycles, due to the master-side clock
synchronizer

■ Four additional slave clock cycles, due to the slave-side clock
synchronizer

■ One additional clock in each direction, due to potential metastable
events as the control signals cross clock domains

1 Systems that require higher performance clock crossing logic
should use the Avalon-MM clock crossing bridge instead of the
automatically inserted CDC logic. The clock-crossing bridge
includes a buffering mechanism, so that multiple reads and
writes can be pipelined. After paying the initial penalty for the
first read or write, there is no additional latency penalty for
pending reads and writes, increasing throughput by up to four
times, at the expense of added logic resources.

f For more information, refer to the System Interconnect Fabric for Streaming
Interfaces chapter in volume 4 of the Quartus II Handbook.

Implementing Multiple Clock Domains in SOPC Builder

You specify the clock domains used by your system on the System
Contents tab of SOPC Builder. You define the input clocks to the system
with the Clock Settings table, shown in Figure 2–15. Clock sources can be
driven by external input signals to the system module, or by PLLs inside
the system module. Clock domains are differentiated based on the name
of the clock. It is possible to create multiple asynchronous clocks with the
same frequency.

Figure 2–15. Clock Settings on the System Contents Tab

Altera Corporation 2–23
October 2007

Clock Domain Crossing

You specify which clock drives which components using the table of
active components after you define the system clocks, as shown in
Figure 2–16.

Figure 2–16. Assigning Clocks to Components

Alternatively, the clock patch panel can be used.

This section describes the hardware structure and functionality of the
Avalon-MM clock-crossing bridge component.

Component Overview

The Avalon-MM clock-crossing bridge allows you to connect Avalon-MM
master and slave ports that operate in different clock domains. Without a
bridge, SOPC Builder automatically includes generic CDC logic in the
system interconnect fabric, but it does not provide optimal performance
for high-throughput applications. The CDC logic uses a four-way
handshake mechanism so that each read and write takes multiple cycles
in each direction. Because the clock-crossing bridge includes a buffering
mechanism, you can pipeline multiple reads and writes. After an initial
penalty for the first read or write, there is no additional latency penalty
for pending reads and writes, increasing throughput by up to four times,
at the expense of additional logic resources. The clock-crossing bridge has
parameterizeable FIFOs for master-to-slave and slave-to-master signals,
which allows burst transfers across clock domains.

The Avalon-MM clock-crossing bridge component is SOPC Builder-ready
and integrates easily into any SOPC Builder-generated system.

Functional Description

Figure 2–17 shows a block diagram of the Avalon-MM clock-crossing
bridge component. The following sections describe the component’s
hardware functionality.

2–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 2–17. Avalon-MM Clock-Crossing Bridge Block Diagram

Interfaces

The bridge interface comprises an Avalon-MM slave port and an
Avalon-MM master port. The data width of the ports is configurable,
which affects the size of the bridge hardware and how SOPC Builder
generates dynamic bus sizing logic in the system interconnect fabric. Both
ports support Avalon-MM pipelined transfers with variable latency. Both
ports optionally support bursts of user-configurable length.

Clock Domain Crossing Logic and FIFOs

Two FIFOs in the bridge transport address, data, and control signals
across the clock-domains. One FIFO captures data traveling in the
master-to-slave direction, and the other FIFO captures data in the
slave-to-master direction. CDC logic surrounding the FIFOs coordinates
the details of passing data across the clock-domain boundaries and
ensures that the FIFOs do not overflow or underflow.

Avalon-MM Clock-Crossing Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

master_clkslave_clk

Connects to
Avalon-MM

Slave
Interface

Connects to
Avalon-MM

Master
Interface

Wait
Request

Logic

Master-to-Slave
FIFO

outin

Slave-to-Master
FIFO

out in

Slave
I/F

Master
I/F

Altera Corporation 2–25
October 2007

Clock Domain Crossing

The signals that pass through the master-to-slave FIFO include:

■ writedata
■ address
■ read
■ write
■ nativeaddress
■ byteenable
■ burstcount, when bursts are allowed.

The signals that pass through the slave-to-master FIFO include:

■ readdata
■ readdatavalid
■ endofpacket

The depth of each FIFO is configurable. Because there are more signals
traveling in the master-to-slave direction, changing the depth of the
master-to-slave FIFO has a greater impact on the memory utilization of
the bridge.

For read transfers across the bridge, the FIFOs in both directions incur
latency for data to return from the slave. To avoid paying a latency
penalty for each transfer, the master can issue multiple reads which are
queued in the FIFO. The slave of the bridge asserts readdatavalid
when it drives valid data and asserts waitrequest when it is not ready
to accept more reads.

For write transfers, the master-to-slave FIFO causes a delay between the
master-to-bridge transfers and the corresponding bridge-to-slave
transfers. Because Avalon-MM write transfers do not require an
acknowledge from the slave, multiple write transfers from
master-to-bridge might complete by the time the bridge initiates the
corresponding bridge-to-slave transfers.

Burst Support

The bridge can optionally support bursts with configurable maximum
burst length. When configured to support bursts, the bridge propagates
bursts between master-slave pairs, up to the maximum burst length. Not
having burst support is equivalent to a maximum burst length of one. In
this case, the system interconnect fabric automatically deconstructs
master-to-bridge bursts into a sequence of individual transfers.

2–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

When the bridge is configured to support bursts, the slave-to-master
FIFO depth must be configured deeply enough to capture all burst read
data without overflowing. The master ports connected to the bridge
could potentially fill the master-to-slave FIFO with read burst requests;
therefore, the minimum slave-to-master FIFO depth is described in the
following equation:

(1)

1 In both cases, the minimum depth is rounded up to the nearest
power of two.

Example System with Avalon-MM Clock-Crossing Bridges

Figure 2–18 uses Avalon-MM clocking crossing bridges to separate slave
components into two groups. The low-performance slave components
are placed behind a single bridge and clocked at a low speed. The high
performance components are placed behind a second bridge and clocked
at a higher speed. By inserting clock-crossing bridges in the system, you
optimize the interconnect fabric and allow the Quartus II Fitter to expend
effort optimizing paths that require minimal propagation delay.

No Bursts:
minimum depth = master-to-slave FIFO depth + max slave latency;

With Bursts:
minimum depth

= (master-to-slave FIFO depth + max slave latency) * (max burst size);

Altera Corporation 2–27
October 2007

Clock Domain Crossing

Figure 2–18. One Avalon-MM Master with Two Groups of Avalon-MM Slaves

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon-MM
Clock-Crossing

Bridge

S

M

S

DDR
SDRAM

S

Flash
Memory

S

External
SRAM

JTAG Debug
Module

S

UART

S S

System ID

S

Seven Segment
PIO

S

LCD
Display

CPU

M

Avalon-MM
Clock-Crossing

Bridge

S

M

Avalon
Tristate
Bridge

S

M

Avalon
Tristate
Bridge

S

M

2–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC
Builder

You use the Avalon-MM Clock-Crossing Bridge MegaWizard® interface
in SOPC Builder to specify the hardware features. This section describes
the options available on the Parameter Settings page of the Megawizard
interface.

■ Master-to-Slave FIFO—These options specify the size and structure
of the master-to-slave FIFO.
● FIFO Depth—Determines the depth of the FIFO.
● Construct FIFO from registers—When this option is on, the

FIFO uses registers as storage instead of embedded memory
blocks. Turning on this option can considerably increase the size
of the bridge hardware and lower the fMAX.

■ Slave-to-Master FIFO—These options specify the size and structure
of the slave-to-master FIFO.
● FIFO Depth—Determines the depth of the FIFO.
● Construct FIFO from registers—When this option is on, the

FIFO uses registers as storage instead of embedded memory
blocks. Turning on this option can considerably increase the size
of the bridge hardware.

■ Data Width—Determines the data width of the master and slave
ports on the bridge, and affects the size of both FIFOs.

For the highest bandwidth, set Data Width to be as wide as the
widest master port connected to the bridge.

■ Allow Bursts—Includes logic for the bridge’s master and slave ports
to support bursts. This option restricts the minimum depth for the
slave-to-master FIFO.

■ Maximum Burst Size—Determines the maximum length of bursts
for the bridge to support, when Allow Bursts is turned on.

Altera Corporation 2–29
October 2007

Interrupts

Interrupts In systems with slave ports that generate interrupt requests (IRQs), the
system interconnect fabric includes interrupt controller logic. A separate
interrupt controller is generated for each master port that accepts
interrupts. The interrupt controller aggregates IRQ signals from all slave
ports, and maps slave IRQ outputs to user-specified values on the master
IRQ inputs.

Software Priority

In the software priority configuration, the system interconnect fabric
passes IRQs directly from slave to master port, without making any
assumptions about IRQ priority. In the event that multiple slave ports
assert their IRQs simultaneously, the master logic (presumably under
software control) determines which IRQ has highest priority, then
responds appropriately.

Using software priority, the interrupt controller can handle up to 32 slave
IRQ inputs. The interrupt controller generates a 32-bit signal
irq[31..0] to the master port, and simply maps slave IRQ signals to
the bits of irq[31..0]. Any unassigned bits of irq[31..0] are
permanently disabled. Figure 2–19 shows an example of the interrupt
controller mapping the IRQs on four slave ports to irq[31..0] on a
master port.

Figure 2–19. IRQ Mapping Using Software Priority

irq0
irq1
irq2

irq4
irq5
irq6

irq3

irq31

Slave
1

Slave
2

Slave
3

Slave
4

Interrupt
Controller

irq

irq

irq

irq

Master

2–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Hardware Priority

In the hardware priority configuration, in the event that multiple slaves
assert their IRQs simultaneously, the system interconnect fabric (that is,
hardware logic) identifies the IRQ of highest priority and passes only that
IRQ number to the master port. An IRQ of lesser priority is undetectable
until a master port clears all IRQs of higher priority.

Using hardware priority, the interrupt controller can handle up to 64
slave IRQ signals. The interrupt controller generates a 1-bit irq signal to
the master port, signifying that one or more slave ports have generated an
IRQ. The controller also generates a 6-bit irqnumber signal, which
outputs the encoded value of the highest pending IRQ. See Figure 2–20.

Figure 2–20. IRQ Mapping Using Hardware Priority

Assigning IRQs in SOPC Builder

You specify IRQ settings on the System Contents tab of SOPC Builder.
After adding all components to the system, you make IRQ settings for all
slave ports that can generate IRQs, with respect to each master port. For

Slave
2

Slave
3

Slave
4

Interrupt
Controller

Master

irq

irq

irq

irq

irq1
irq2

irq4
irq5
irq6

irq3

irq0

irq63

Priority
Encoder

irqnumber [5..0]

Slave
1

irq

Altera Corporation 2–31
October 2007

Reset Distribution

each slave port, you can either specify an IRQ number, or specify not to
connect the IRQ. Figure 2–21 shows the IRQ settings for multiple slave
IRQs that drive the master component named cpu.

Figure 2–21. Assigning IRQs in SOPC Builder

Reset
Distribution

The system interconnect fabric generates and distributes a system-wide
reset pulse to all logic in the system module. The system interconnect
fabric distributes the reset signal conditioned for each clock domain. The
duration of the reset signal is at least one clock period.

The system interconnect fabric asserts the system-wide reset in the
following conditions:

■ The global reset input to the system module is asserted.
■ Any slave port asserts its resetrequest signal.

All components must enter a well-defined reset state whenever the
system interconnect fabric asserts the system-wide reset. The timing of
the reset signal is asynchronous to the operation of transfers. Resets are
asserted asynchronously and deasserted synchronously to the associated
clock.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ System Interconnect Fabric for Streaming Interfaces
■ Avalon Streaming Interface Specification
■ Avalon Memory-Mapped Bridges

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii540020pdf

2–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Document
Revision History

Table 2–4 shows the revision history for this chapter.

Table 2–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Updated to match 7.2 features. Deleted paragraphs
discussing “Pipelining for High Performance”, “Endian
Conversion”, and added new screenshots.

● Moved clock-crossing bridge discussion to this chapter
from chapter 10.

—

May 2007,
v7.1.0

● Chapter 3 was previously titled Avalon Switch Fabric.
● Updated Avalon terminology because of changes to

Avalon technologies. Changed old “Avalon switch fabric”
term to “system interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped interface.”

● Rearranged content in section “Introduction” on page 2–1
to enhance clarity and to acknowledge the existence of
the new Avalon Streaming interface.

● In section “Pipelining for High Performance” on page 2–7,
noted that automatic pipelining for high performance is a
deprecated feature. Added the recommendation to use
the Avalon-MM Pipeline Bridge component instead.

● Updated Table 2–2 on page 2–9 for improved clarity.
● Updated section “Dynamic Bus Sizing” on page 2–9 to

reflect new behavior of system interconnect fabric with
respect to byte enables during read transfers. For a
master-to-slave data-width ratio of N:1, the system
interconnect fabric might not need to perform N slave-
side read transfers, depending on how the master port
asserts its byte-enable signals.

● Added three paragraphs explaining when clock signals
are automatically connected to SOPC Builder
components.

● Added paragraph referencing the higher performance
Avalon-MM Clock-Crossing Bridge which can be used
instead of the CDC logic for systems requiring higher
throughput.

For the 7.1 release, Altera
released the Avalon Streaming
Interface, which necessitated
some re-phrasing of existing
Avalon terminology.
The newly-released
Avalon-MM Pipeline Bridge
component provides a more
effective means to improve
fMAX performance than the
traditional pipeline option in
SOPC Builder. The behavior of
byteenable signals in the
Avalon Interface Specification
was updated, necessitating
changes to this document.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

No change from previous release. —

May 2006,
v6.0.0

No change from previous release. —

October 2005,
v5.1.0

No change from previous release. —

August 2005,
v5.0.1

Updated for the Quartus II software version 5.1. —

Altera Corporation 2–33
October 2007

Document Revision History

May 2005,
v5.0.0

● Added burst transfer management details.
● Updated pipeline management details.

—

February 2005,
v1.0

Initial release. —

Table 2–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

2–34 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 3–1
October 2007

3. System Interconnect
Fabric for Streaming

Interfaces

Introduction Avalon® Streaming interconnect fabric connects high-bandwidth, low
latency components that use the Avalon Streaming (Avalon-ST) interface.
It creates datapaths for unidirectional traffic including multichannel
streams, packets, and DSP data. This chapter describes the Avalon-ST
interconnect fabric and its use in connecting components with Avalon-ST
interfaces. Descriptions of specific adapters and their use in streaming
systems can be found in the following sections:

■ “Adapters” on page 3–3
■ “Multiplexer Examples” on page 3–5

High-Level Description

Avalon-ST interconnect fabric is logic generated by SOPC Builder. Using
SOPC Builder, you specify how Avalon-ST source and sink ports connect.
SOPC Builder creates a high performance point-to-point interconnect
between the two components. The Avalon-ST interconnect is flexible and
can be used to implement on-chip interfaces for industry standard
telecommunications and data communications cores, such as Ethernet
IEEE 802.3 MAC and SPI 4.2. In all cases, bus widths, packets, and error
conditions are custom-defined.

Figure 3–1 illustrates the simplest system example that generates an
interconnect between the source and sink. This source-sink pair includes
only the data and valid signals.

Figure 3–1. Interconnect for a Simple Avalon Streaming Source-Sink Pair

Figure 3–2 illustrates a more extensive interface that includes signals
indicating the start and end of packets, channel numbers, error
conditions, and back pressure.

Data
Sink

valid
data

Data
Source

QII54019-7.2.0

3–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 3–2. Avalon Streaming Interface for Packet Data

All data transfers using Avalon-ST interconnect occur synchronously to
the rising edge of the associated clock interface. All outputs from the
source interface, including the data, channel, and error signals, must be
registered on the rising edge of the clock. Registers are not required for
inputs at the sink interface. Registering signals at the source provides for
high frequency operation while eliminating back-to-back registration
with no intervening logic. There is no inherent maximum performance of
the interconnect. Throughput for a system depends on the components
and how they are connected.

1 Although you do not have to register signals in the sink-to-
source direction, register such signals if more than a trivial
amount of logic is needed to generate them. Registering signals
at both ends of the source-to-sink connection can increase the
fMAX at which the system can run.

f For details about the Avalon-ST interface protocol, refer to the Avalon
Streaming Interface Specification available at www.altera.com.

Avalon Streaming and Avalon Memory-Mapped Interfaces

The Avalon-ST and Avalon Memory-Mapped (Avalon-MM) interfaces
are complimentary. High bandwidth components with streaming data
typically use Avalon-ST interfaces for the high thoughput datapath.
These components can also use Avalon Memory-Mapped interfaces to
provide an access point for control. In contrast to the Avalon-MM
interconnect, which can be used to create a wide variety of topologies, the
Avalon-ST interconnect fabric always creates a point-to-point between a
single data source and data sink, as Figure 3–3 illustrates. There are two
connection pairs in this figure:

■ The Data Source in the RX Interface transfers data to the Data Sink in
the FIFO.

Data
Source

Data
Sink

valid

data

ready

channel
startofpacket
endofpacket
empty
error

Altera Corporation 3–3
October 2007

Adapters

■ The Data Source in the FIFO transfers data to the TX Interface Data
Sink.

In Figure 3–3, the Avalon-MM interface allows a processor to access the
data source, FIFO, or data sink to provide system control.

Figure 3–3. Use of the Avalon Memory-Mapped and Streaming Interfaces

Adapters Adapters are configurable SOPC Builder components that are part of
streaming interconnect fabric. They are used to connect source and sink
interfaces that are not exactly the same without affecting the semantics of
the data. SOPC Builder includes the following three adapters:

■ Data Format Adapter
■ Timing Adapter
■ Channel Adapter

The Insert Avalon-ST Adapters command on the System menu allows
you to insert an adapter so that you can connect a data source to a data
sink of differing byte sizes in the SOPC Builder system.

f For complete information about these adapters, refer to the Avalon
Streaming Interconnect Components chapter in volume 4 of the Quartus II
Handbook.

 FIFO

Data
Sink

Data
Source

Data
Source channel

Data Source
(Rx Interface)

Data Sink
(Tx Interface)

Data
Sink

Data
Source

ready
valid

data

ready
valid

data
channel

Control
Slave

Control
Slave

Control
Slave

Processor RAM UART Timer

Control Plane: Avalon Memory Mapped Inteface

Data Plane: Avalon Streaming Interface

3–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The following sections provide an overview of these adapters.

Data Format Adapter

The data format adapter allows you to connect interfaces that have
different values for the parameters defining the data signal. One of the
most common uses of this adapter is to convert buses of different widths.
Figure 3–4 shows an adapter that allows a connection between a 128-bit
input bus and three 32-bit output buses.

Figure 3–4. Avalon Streaming Interconnect Fabric with Data Format Adapter

Timing Adapter

The timing adapter allows you to connect component interfaces that
require a different number of cycles before driving or receiving data. This
adapter inserts a FIFO between the source and sink to buffer data or
pipeline stages to delay the backpressure signals. The timing adapter can
also be used to connect interfaces that support the ready signal and those
that do not.

128 bits

128 bits

128-bit RX
Interface

Data
 Format
Adapter

Data
 Format
Adapter

Data
 Format
Adapter

128 bits

32 bits 32-bit TX
Interface

32 bits 32-bit TX
Interface

32 bits 32-bit TX
Interface

Altera Corporation 3–5
October 2007

Multiplexer Examples

Channel Adapter

The channel adapter provides adaptations between interfaces that have
different support for the channel signal or channel-related parameters.
For example, if the source channel is narrower than the sink channel, you
can use this adapter to connect them. The high-order bits of the sink
channel are connected to zero. You can also use this adapter to connect a
source with a wider channel to a sink with a narrower channel; however,
this usage produces a warning that data may be lost.

Multiplexer
Examples

You can combine the three adapters referenced above with streaming
components to create datapaths whose input and output streams have
different properties. The following sections provide three examples of
datapaths constructed using SOPC Builder whose output stream is
higher performance than the input stream:

■ The first example shows an output with double the throughput of
each interface with a corresponding doubling of the clock frequency.

■ The second example doubles the data width.
■ The third boosts the frequency of a stream by 10% multiplexing input

data from 2 sources.

Example to Double Clock Frequency

Figure 3–5 illustrates a datapath that uses the dual clock version of the
on-chip FIFO memory and Avalon-ST channel multiplexer to merge the
100 MHz input from two streaming data sources into a single 200 MHz
streaming output. As Figure 3–5 illustrates, this example increases
throughput by increasing the frequency and combining inputs.

Figure 3–5. Datapath that Doubles the Clock Frequency

sinksrc

Data Source

sink src100 MHz 200 MHz

sink
src

Data Source

100 MHz 200 MHz

On-Chip FIFO
Memory – Dual Clk

src

On-Chip FIFO
Memory – Dual Clk

sink sink

input

input

output
200 MHz

src

3–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Example to Double Data Width and Maintain Frequency

Figure 3–6 illustrates a datapath that uses the data format adapter and
Avalon-ST channel multiplexer to convert two, 8-bit inputs running at
100 MHz to a single 16-bit output at 100 MHz.

Figure 3–6. Datapath to Double Data Width and Maintain Original Frequency

Example to Boost the Frequency

Figure 3–7 illustrates a datapath that uses the dual clock version of the
on-chip FIFO memory to boost the frequency of input data from 100 MHz
to 110 MHz by sampling two input streams at differential rates. In this
example, the on-chip FIFO memory has an input clock frequency of
100 MHz and an output clock frequency of 110 MHz. The channel
multiplexer runs at 110 MHz and samples one input stream 27.3 percent
of the time and the second 72.7 percent of the time.

Figure 3–7. Datapath to Boost the Clock Frequency

sinksrc

Data Source

sink src8 bits
@100 MHz

sink
src

Data Source

Data Format
Adapter

srcData Format
Adaptersink sink

input

input

16 bits
@100 MHz

src

8 bits
@100 MHz

16 bits
@100 MHz

16 bits
@100 MHz

src

Data Source

sink src8 bits
@100 MHz

110 MHz

sink
src

Data Source

8 bits
@100 MHz

110 MHz

On-Chip FIFO
Memory – Dual Clk

src

On-Chip FIFO
Memory – Dual Clk

sink

input

input

27.3%
sample rate

72.7%
sample rate

output
110 MHz

src

sink

sink

30%
channel utilization

80%
channel utilization

100%
channel

utilization

Altera Corporation 3–7
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Avalon Streaming Interface Specification
■ Avalon Streaming Interconnect Components chapter in volume 4 of the

Quartus II Handbook.

Document
Revision History

Table 3–1 shows the revision history for this chapter.

Table 3–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.0 No changes for this release. —

May 2007,
v7.1.0

Initial release. The Avalon-ST Data Format Adapter,
Timing Adapter and Channel Adapter
are new components provided in the
Quartus II software v7.1 release.

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/hb/qts/qts_qii54021.pdf

3–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 4–1
October 2007

4. SOPC Builder Components

Introduction An SOPC Builder component is a hardware design block available within
SOPC Builder that can be instantiated in an SOPC Builder system. This
chapter defines SOPC Builder components, with emphasis on the
structure of custom components.

A component includes the following:

■ The HDL description of the component’s hardware
■ A description of the interface to the component hardware, such as

the names and types of I/O signals.
■ A description of any parameters that specify the structure of the

component logic and component.
■ A GUI for configuring an instance of the component in SOPC

Builder.
■ Scripts and other information SOPC Builder needs to generate the

hardware description language (HDL) files for the component and
integrate the component instance into the system module.

■ Other component-related information, such as reference to software
drivers, necessary for development steps downstream of SOPC
Builder.

This chapter discusses the design flow for new and legacy custom-
defined SOPC Builder components, in the following sections:

■ “Component Providers” on page 4–2
■ “Component Hardware Structure” on page 4–2
■ “List of Available Components in SOPC Builder” on page 4–4
■ “Tcl Components” on page 4–5

New Component Structure in v7.1 of the Quartus II Software

Version 7.1 of the Quartus® II software provided a new mechanism for
storing and finding component files located on your computer.

c If you use components created with a previous version of the
Quartus II software, read through this chapter to familiarize
yourself with the differences. This document uses the term
“legacy components” to refer to components created with a
previous version of the Quartus II software.

QII54004-7.2.0

4–2 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 4

Legacy components are compatible with newer versions of SOPC
Builder, with the following caveats:

■ Legacy components that use a More Options tab in SOPC Builder,
such as complex IP components provided by third-party IP
developers, cannot be instantiated or used in version 7.1 and beyond.
If your component has a “bind” program, you cannot use the
component.

■ To edit a legacy component using the component editor in version
7.1 and beyond, you must first upgrade the component to the new
component editor flow. The process is automatic. However, the
result is not backward compatible with previous versions.

Component
Providers

SOPC Builder components can be installed on your computer by several
possible providers, including the following:

■ The Quartus II software, which includes SOPC Builder, can install
components as part of the fundamental functionality of the software.

■ The Altera® MegaCore IP Library provides several intellectual
property (IP) design blocks that are SOPC Builder ready.

■ Third-party IP developers can provide IP blocks as SOPC Builder
ready components, including software drivers and documentation.

■ Altera development kits, such as the Nios® II Development Kit, can
provide SOPC Builder components as features.

■ The SOPC Builder component editor can turn your own HDL files
into custom components.

Component
Hardware
Structure

There are two types of components, based on where the associated
component logic resides:

■ Components that include their associated logic inside the system
module

■ Components that interface to logic outside the system module

Altera Corporation 4–3
October 2007 Preliminary

Component Hardware Structure

Figure 4–1 shows an example of both types of components.

Figure 4–1. Component Logic Inside and Outside the System Module

Components That Include Logic Inside the System Module

For components that include logic inside the system module, the
component provides a full description of its hardware by specifying an
HDL file. During system generation, SOPC Builder instantiates the
component in the system and connects it to the rest of the system. The
component can include export signals, which become ports on the system
itself, so that you can manually connect them to logic outside the system
module.

In general, components connect to the system interconnect fabric using
either the Avalon® Memory-Mapped (Avalon-MM) interface or the
Avalon Streaming (Avalon-ST) interface. A single component can
provide more than one Avalon port. For example, a component might
provide an Avalon-ST source port for high-throughput data, in addition
to an Avalon-MM slave port for control.

 Application-Specific
 Interface
 Signals

System Module

Component
Logic

External
Logic

or
Off-Chip
Device

Signals
Unrelated
to SOPC
Builder

Avalon Interface
(Automatically connected

by SOPC Builder)

Avalon Interface
(Manually connected
by system designer)

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

Rest of
the System

S
ys

te
m

In
te

rc
on

ne
ct

F
ab

ric

4–4 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 4

Components That Interface to Logic Outside the System Module

For components that interface to logic outside the system module, the
component files describe only the interface to the external logic. During
system generation, SOPC Builder only exports an interface for the
component to the top-level system module. You must manually connect
the interface to the component outside the system.

List of Available
Components in
SOPC Builder

Each time SOPC Builder starts, it searches for component files. The
components that SOPC Builder finds are displayed in the list of available
components on the SOPC Builder System Contents tab. There are several
mechanisms that SOPC Builder uses to populate the list of available
components:

■ SOPC Builder automatically searches the /ip subdirectory of your
Quartus II project directory. Adding a component to a project is as
easy as copying it to a subdirectory here. This mechanism is
recommended for all project-specific components.

■ SOPC Builder searches all of the paths entered in SOPC
Builder/Tools/Options/IP Search Path to support a global library of
components. This mechanism is recommended for all global
components.

■ Quartus II project directory and user library paths—SOPC Builder
identifies component files stored in the current Quartus II project
directory and user library paths.

■ Legacy component search paths—SOPC Builder searches the paths
where previous versions of SOPC Builder expected to find
component files.

The rest of this section focuses on Tcl components.

Altera Corporation 4–5
October 2007 Preliminary

Tcl Components

Tcl Components Tcl components are components where interaction with SOPC Builder is
defined with a simple text file written in the Tcl scripting language. This
section describes the structure of Tcl components and how they are
stored.

f For details on the SOPC Builder component editor, refer to the
Component Editor chapter in volume 4 of the Quartus II Handbook.

Component Description File (_hw.tcl)

At a minimum, a Tcl component consists of the following files:

■ A Verilog, HDL, or VHDL file that defines the top-level module of
the custom component (optional).

■ A component description file, which is a Tcl file with file name of the
form <entity name>_hw.tcl.

The _hw.tcl file defines everything that SOPC Builder requires about the
name and location of component design files.

The SOPC component editor can generate components without Verilog
HDL or VHDL files.

Component File Organization

A typical component uses the following directory structure. The names of
the directories are not significant.

■ component_library/
● hdl/— a directory that contains the component HDL design files

and the _hw.tcl file
• <component name>_hw.tcl—the component description

file
• <component name>.v or .vhd—the HDL file that contains

the top-level module
■ There is no expectation of an HDL folder, even for components that

are created with the component editor. If you want to bundle your
component in a directory, the basic structure is as follows:

• component_dir/
• <name>_hw.tcl
• <name>.v or .vhd
• <name>_sw.tcl

■ software/—a directory that contains software drivers or libraries
related to the component, if any

4–6 Altera Corporation
Preliminary October 2007

Quartus II Handbook, Volume 4

The component directory will often include a _sw.tcl file and the software
definitions and drivers it refers to. Refer to the component software
specification for further details.

Referenced
Document

This chapter references Chapter 5, Component Editor.

Document
Revision History

Table 4–1 shows the revision history for this chapter.

Table 4–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● Description added of Tcl components and
removal of custom-defined components.

● Added warning that SOPC Builder does not
support parameter values > 31 bits

—

May 2007,
v7.1.0

● Described the new structure of components
which is new in 7.1.

● Added and updated the sources of
components list.

● Reorganized content of the chapter.
● Updated Avalon terminology because of

changes to Avalon technologies. Changed old
“Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped
interface.”

● Removed description of SOPC Builder
MegaWizard® Plug-In Manager component
discovery mechanism that was inaccurate.

Version 7.1 of the Quartus II
software provides a new
mechanism for storing and
finding SOPC Builder component
files located on your computer,
which necessitates significant
changes to this chapter.

March 2007,
v.7.0.0

No change from previous release. —

November 2006,
v.6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

October 2005, v5.1.0 No change from previous release. —

August 2005, v5.0.1 Corrected reference to figure. —

May 2005,
v5.0.0

No change from previous release. —

February 2005, v1.0 Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Altera Corporation 5–1
October 2007

5. Component Editor

Introduction This chapter describes the SOPC Builder component editor. The
component editor provides a GUI to support the creation and editing of
the _hw.tcl file that describes a component to SOPC Builder. You use the
component editor to do the following:

■ Specify a hardware description language (HDL) file that describes
the modules that compose your component hardware.

■ Define the interfaces on the component and provide information
about how the interface functions.

■ Specify the hardware interface or interfaces to the component, and
define the behavior of each interface signal. Assign module signals to
interfaces and determine signal roles.

■ Specify relationships between interfaces, such as determining which
clock interface is used by a slave interface.

■ Declare any parameters that alter the component structure or
functionality, and define a user interface to let users parameterize
instances of the component.

For information on the use of the component editor, see the following
sections:

■ To start the component editor, refer to “Starting the Component
Editor” on page 5–2.

■ For information about specifying HDL files that describe a
component, refer to “HDL Files Tab” on page 5–2.

■ For information about specifying interface signals, refer to “Signals
Tab” on page 5–3.

■ For information about specifying the Avalon-MM type of interface
signals, refer to “Interfaces Tab” on page 5–6.

■ For information about specifying parameters, refer to “Component
Wizard Tab” on page 5–6.

■ To save a component, refer to “Saving a Component” on page 5–7.
■ For information about changing a component after it has been saved,

refer to “Editing a Component” on page 5–8.

f For more information about components, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook. For more
information about the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification.

QII54005-7.2.0

5–2 Altera Corporation
October 2007

Component Hardware Structure

Component
Hardware
Structure

The component editor creates components with the following hardware
characteristics:

■ A component has one or more interfaces. Typically, an interface
means an Avalon-MM master port or slave port. The component
editor lets you build a component with any combination of
Avalon-MM master or slave ports. You can also specify component
signals that must appear at the top-level of the SOPC Builder system
module, which you can manually connect to the logic outside the
system module. Interfaces include:
● Avalon-MM master/slave
● Avalon Streaming source/sink
● Interrupt sender/receiver
● Clock input and output
● Nios II Custom Instruction Conduit (for export only)

■ Each interface is comprised of one or more signals.
■ The component can represent a component that is instantiated inside

the SOPC Builder system, and can represent a component outside the
system with an interface to it on the generated system.

Starting the
Component
Editor

To start the component editor in SOPC Builder, on the File menu, click
New Component. When the component editor starts, the Introduction
tab displays, which describes how to use the component editor.

The component editor presents several tabs that group related settings. A
message window at the bottom of the component editor displays
warning and error messages.

1 Each tab in the component editor provides on-screen
information that describes how to use the tab. Click the triangle
labeled About at the top-left of each tab to view these
instructions. You can also refer to Quartus® II Online Help for
additional information about the component editor.

You navigate through the tabs from left to right as you progress through
the component creation process.

HDL Files Tab The first row of the table on the HDL Files tab must include the file with
the top-level module and must specify all the HDL files.You use the HDL
Files tab to specify an existing Verilog HDL, or VHDL file that describes
the interface to the component hardware. If your component is an
interface to external logic, then do not specify an HDL file.

You can also use the component editor to define logic interfaces to
external logic. In this case, you do not provide HDL files, and instead you
use the component editor to manually define the hardware interface.

Altera Corporation 5–3
October 2007

Component Editor

After you specify an HDL file, the component editor immediately
analyzes the file by invoking the Quartus II Analysis and Elaboration
module. The component editor analyzes signals and parameters declared
for all modules in the specified files. If the file is successfully analyzed,
the component editor’s Signals tab lists all design modules in the Top
Level Module list. If your HDL contains more than one module, you
must select the appropriate top-level module from the Top Level Module
list.

If your design requires extra simulation files, you can specify them in the
Simulation Files table. All files used in the simulation must be specified,
even those already included for synthesis. SOPC Builder includes these
files in the system test bench so they can provide special functionality
during simulation. The simulation files do not affect the generated system
hardware.

c When the top-level module is changed, the component editor
performs best-effort signal matching against the existing port
definitions. If a port is absent from the module, it is removed
from the port list.

Signals Tab You use the Signals tab to specify the purpose of each signal on the
top-level component module. If you specified a file on the HDL Files tab,
the signals on the top-level module appear on the Signals tab.

If the component is an interface to external logic, you must manually add
the signals that comprise the interface to the external logic. The Interface
list also allows creation of a new interface.

Each signal must belong to an interface and be assigned a signal type. The
signal type for new signals that have not been assigned a signal type is
Export, which means that SOPC Builder does not connect the signal
internally to the system module, and instead exposes the signal on the
top-level system module.

You assign each signal to an interface using the Interface list. In addition
to Avalon Memory-Mapped and Streaming interfaces, components
typically have a conduit interface for exported signals.

5–4 Altera Corporation
October 2007

Signals Tab

Naming Signals for Automatic Type and Interface Recognition

The component editor recognizes signal types and interfaces based on the
names of signals in the source HDL file, if they follow naming
conventions. Table 5–1 lists the signal naming conventions.

For any value of Interface Name the component editor automatically
creates an interface by that name, if necessary, and assigns the signal to it.
The Signal Type must match one of the valid signal types for the type of
interface. You can append _n to indicate an active-low signal. Table 5–2
lists the valid values for Interface Type.

Example 5–1 shows a Verilog HDL module declaration with signal names
that infer two Avalon-MM slave ports.

Table 5–1. Conventions of Automatically Recognized Signal Names

Type of Signal Name Convention

Signal associated with a specific interface <interface type>_<interface name>_<signal type>[_n]

Table 5–2. Valid Values for <Interface Type>

Value Meaning

avs Avalon-MM slave

avm Avalon-MM master

ats Avalon-MM tristate slave

atm Avalon-MM Tristate Master

aso Avalon-ST Source

asi Avalon-ST Sink

cso Clock Output

csi Clock Input

inr Interrupt Receiver

ins Interrupt Sender

cos Conduit Start

coe Conduit End

ncm Nios II Custom Instruction Master

ncs Nios II Custom Instruction Slave

csi_clockreset_clk Clock Reset

csi_clockreset_reset_n Clock Reset N

Altera Corporation 5–5
October 2007

Component Editor

Example 5–1. Verilog Module With Automatically Recognized Signal Names

module my_multiport_component (
// Signals for Avalon-MM slave port "s1"
avs_s1_clk,
avs_s1_reset_n,
avs_s1_address,
avs_s1_read,
avs_s1_write,
avs_s1_writedata,
avs_s1_readdata,
avs_s1_export_dac_output,

// Signals for Avalon-MM slave port "s2"
avs_s2_address,
avs_s2_read,
avs_s2_readdata,
avs_s2_export_dac_output,

// Clock/Reset Interface csi_clockreset_clk
);

Templates for Interfaces to External Logic

If you are creating an interface to external logic, you can use the
Templates menu in the component editor to add a set of signals, such as
the following:

■ Avalon-MM Slave
■ Avalon-MM Slave with Interrupt
■ Avalon-MM Master
■ Avalon-MM Master with Interrupt
■ Avalon-ST Source
■ Avalon-ST Sink

After adding a template, you can add or delete signals to customize the
interface to meet your needs.

5–6 Altera Corporation
October 2007

Interfaces Tab

Interfaces Tab The Interfaces tab allows you to configure the interfaces on your
component, and specify a name for each interface. The interface name
identifies the interface, and also appears in the SOPC Builder connection
panel. The interface name is also used to uniquely identify any signals
that are exposed on the top-level system module.

The Interfaces tab also allows you to configure the type and properties of
each interface. For example, an Avalon-MM slave interface has timing
parameters which you must set appropriately.

If you convert an older Avalon-MM slave to the new model, you may
require three interfaces: a clock input, the Avalon slave, and an interrupt
sender. A parameter in the interrupt sender must be set to reference the
Avalon slave.

Component
Wizard Tab

The Component Wizard tab provides options that affect the presentation
of your new component.

Identifying Information

You can specify information that identifies the component as follows:

■ Folder—Specifies the location of the component, determined by the
location of the top-level HDL file.

■ Component Display Name—Specifies the internal name of the
component. The internal name is used when saving a system
containing an instance of this component, and is the name use for the
component type when you create a system using a script..

■ Component Version—Specifies which version of the component
you are using.

■ Component Group—Specifies which group in SOPC Builder
displays your component in the list of available components. If you
enter a previously unused group name, SOPC Builder creates a new
group by that name.

■ Description—Allows you to describe the component (optional).
■ Created By—Allows you to specify the author of the component

(optional).
■ Icon—Allows you to associate the component with a file path

relative to the component. The icon can be a .jpg, .gif, or .png file
(optional).

■ Parameters—Allows you to specify the parameters for creating the
component. See further description below.

The component editor assigns the class name to be the same name as the
top-level HDL module. The class name is the name SOPC Builder uses to
identify the component.

Altera Corporation 5–7
October 2007

Component Editor

Parameters

The Parameters table allows you to specify the user-configurable
parameters for the component.

If the top-level module of the component HDL declares any parameters
(parameters for Verilog, HDL, or generics for VHDL), those parameters
appear in the Parameters table. These parameters are presented to you
when you create or edit an instance of your component. Using the
Parameters table, you can specify whether or not each parameter is
user-editable.

The following rules apply to HDL parameters exposed via the component
GUI:

■ Editable parameters cannot contain computed expressions.
■ If a parameter N defines the width of a signal, the signal width must

be of the form N-1..0.
■ When a VHDL component is used in a Verilog HDL system module,

or vice versa, numeric parameters must be 32-bit decimal integers.
Passing other numeric parameter types might fail.

Click Preview the Wizard at any time to see how the component GUI will
appear.

Saving a
Component

You can save the component by clicking Finish on any of the tabs, or by
clicking Save on the File menu. Based on the settings you specify in the
component editor, the component editor creates a component description
file with the file name <name of top-level module>_hw.tcl. The
component editor saves the file in the same directory as the HDL file that
describes the component’s hardware interface. If you did not specify an
HDL file, you can save the component description file to any location you
choose.

You can relocate component files later. For example, you could move
component files into a subdirectory and store it in a central network
location so that other users can instantiate the component in their
systems.

5–8 Altera Corporation
October 2007

Editing a Component

Editing a
Component

After you save a component and exit the component editor, you can edit
it in SOPC Builder. To edit a component, right-click it in the list of
available components on the System Contents tab and click Edit
Component.

1 You cannot edit components that were created outside of the
component editor, such as Altera®-provided components.

If you edit the HDL for a component and change the interface to the
top-level module, you need to edit the component with the component
editor to reflect the changes you made to the HDL.

Referenced
Documents

This chapter references the following documents:

■ SOPC Builder Components chapter in volume 4 of the Quartus II
Handbook

■ Avalon Memory-Mapped Interface Specification
■ Building a Component Interface with TCL Scripting Commands chapter

in volume 4 of the Quartus II Handbook
■ Nios II Software Developer's Handbook

http://www/literature/hb/qts/qts_qii54004.pdf
http://www/literature/hb/qts/qts_qii54022.pdf
http://www/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Altera Corporation 5–9
October 2007

Component Editor

Document
Revision History

Table 5–3 shows the revision history for this chapter.

Table 5–3. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● Updated several paragraphs describing
the latest GUI.

—

May 2007,
v7.1.0

● Updated all sections to reflect significant
functional differences in version 7.1.

● Added section “Changes to Component
Editor in Version 7.1” on page 5–2.

● Updated section “Component Editor
Output” and “Re-editing Components” to
accommodate new component structure
with 7.1 release.

● Updated Avalon terminology because of
changes to Avalon technologies. Changed
old “Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-
Mapped interface.”

● Removed screen shots that simply reflect
what user sees when using the tool without
illustrating a particular point.

● Added Referenced Documents section
which links to all referenced documents.

● Added statement that all simulation files,
not just top-level file, must be added using
the HDL files tab.

The file structure of SOPC Builder
components changed significantly
in this release, which required
substantial functional change to
the component editor. This
document changed significantly to
reflect the functional changes.
Updated to improve readability.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

No change from previous release. —

May 2006, v6.0.0 No change from previous release. —

December 2005, v5.1.1 ● Added section “Naming Signals for
Automatic Type and Interface
Recognition” on page 5–4.

● Added section “Templates for Interfaces to
External Logic” on page 5–6.

● Clarified operation of the Save command.
● Updated all screenshots.

—

October 2005, v5.1.0 No change from previous release. —

May 2005, v5.0.0 Initial release. —

5–10 Altera Corporation
October 2007

Document Revision History

Altera Corporation 6–1
October 2007

6. Building a Component
Interface with Tcl Scripting

Commands

This chapter describes the Tcl scripting commands that you can use to
define custom components for use in an SOPC Builder system. You can
also use the scripting interface to declare and set parameter values for
your components.

The Tcl scripting commands provide a programmatic interface that you
might prefer to the graphical user interface (GUI) of the component
editor. If you need to make global updates to multiple components, Tcl
scripts allow you to make the changes without accessing each component
through the GUI.

You can use the Tcl scripting commands or the component editor to create
a component description file with the file name <name of top-level
module>_hw.tcl. This file is stored in the same directory as the HDL file
that provides the top-level description of the component. You can edit
this file using the text editor of you choice.

You can download sample *_hw.tcl files from the Altera website by
clicking the Design Example hyperlink located under this chapter,
Building a Component Interface with Tcl Scripting Commands.

The remainder of this chapter describes the commands and properties
you can use to describe components, component interfaces and
parameters. These include:

■ “Organization of a Component Tcl File” on page 6–2
■ “Set and Add Commands” on page 6–3
■ “Module Properties” on page 6–4
■ “Clock Interface” on page 6–4
■ “Avalon-MM Master Interface” on page 6–5
■ “Avalon-MM Slave Interface” on page 6–5
■ “Avalon-MM Tristate Interface” on page 6–7
■ “Nios II Custom Instruction Interface” on page 6–8
■ “Interrupt Interface” on page 6–9
■ “Conduit Interface” on page 6–10

QII54022-7.2.0

Altera Corporation 6–2
October 2007

Organization of a Component Tcl File

Organization of
a Component Tcl
File

The following steps describe how to organize a component Tcl file.

1. Start the component definition with the set_source command,
followed by the set_module command. The name of the module
must match the component’s top-level Verilog or VHDL entity
name.

Example 6–1. Example of Set Module Command

set_module “my_module”

2. Define the module properties, which are pieces of static information
about a module. The following example illustrates some of the set
command and module properties. See Table 6–5.

Example 6–2. The Set Command and Module Properties

set_source_file "./my_component.v"
set_module_description "My Component"
set_module_property version "1.0"
set_module_property group "My Components"
set_module_property simulationFiles [list "./my_component.v"]

3. Define the module parameters, which are settings that the user of
the component makes when parameterizing it. The following
example illustrates how to define module parameters.

Example 6–3. Example of Parameters

Module parameters
add_parameter "DWIDTH" "integer" "32" ""
add_parameter "AWIDTH" "integer" "32" ""

4. Add interfaces. For each interface, first add the interface, then set its
properties and define its ports. Refer to the Avalon-MM
specification for port types. The following example defines an
Avalon-MM slave interface using only the required properties.

Example 6–4. Avalon-MM Slave Interface

Interface my_slave
all interfaces must specify an associated clock interface
add_interface "my_slave" "avalon" "slave" "my_clock_interface"

set_interface_property "my_slave" "timingUnits" "cycles"

Altera Corporation 6–3
October 2007

Set and Add Commands

set_interface_property "my_slave" "writeWaitTime" "0"
set_interface_property "my_slave" "readLatency" "0"
set_interface_property "my_slave" "holdTime" "0"
set_interface_property "my_slave" "readWaitTime" "0"
set_interface_property "my_slave" "setupTime" "0"

Ports in interface my_slave
add_port_to_interface "my_slave" "my_slave_write" "write"
add_port_to_interface "my_slave" "my_slave_writedata" "writedata"
add_port_to_interface "my_slave" "my_slave_waitrequest" "waitrequest"

Set and Add
Commands

The set and add commands establish basic information about a
component.

Table 6–1. Set and Add Commands

Command Arguments

set_module <name of the module> (1)

set_source_file <path to HDL file> (2)

set_module_description <description of the module>

set_module_property <name of property> <value of property>

add_interface <name of interface> <type of interface> <direction> <associated
clock>(3)

set_interface_property <name of interface> <name of property> <value of property>

add_port_to_interface <name of interface> <port name> <type of port>

set_port_direction_and_width <name of port> <direction> <width>

Notes to Table 6–1:
(1) Declares a new module. Must match the top-level Verilog HDL module or VHDL entity.
(2) If the component is not based on HDL, set_source_file should be used with an empty string, such as

“set_source_file”.
(3) This command is only required when a source file is not set. If a source file is set, the Quartus II software analyzes

the file and determines the port widths and directions.

Altera Corporation 6–4
October 2007

Module Properties

Module
Properties

The module properties are the arguments to the
set_module_property command. Table 6–2 lists the module
properties.

Clock Interface There are no special properties for clock interfaces. A clock interface
should not specify an associated clock interface. Clock interface
directions are “source” and “input”. The following example defines a
clock interface.

Example 6–5. Clock Interface

Clock Interface <my_clk_interface>
add_interface "my_clk_interface" "clock" "input"
set_interface_property "clock" "externallyDriven" "false"
set_interface_property "clock" "clockRateKnown" "false"
set_interface_property "clock" "clockRate" "0"
Ports in interface clock
add_port_to_interface "clock" "clk" "clk"
add_port_to_interface "clock" "reset_n" "reset_n"

Table 6–2. Module Properties

Name Legal Values Description

version dotted integers A version string, for example: 1.2.3

group string A string that represents the category under which the component
should be listed.

simulationFiles list of strings The name of HDL files for use in simulation. This parameter is
required even if the same file is used for synthesis and simulation. All
files required for simulation must be specified, not just the top-level
file.

synthesisFiles list of strings The name of HDL files for use in synthesis.

author string Name of the component author.

iconPath string Path to an image file, which contains an icon to show in the default
editor. When referring to local files, they are relative to the Tcl File
(.tcl).

datasheetURL string URL pointing to the component datasheet. Can be local or on a
network. When referring to local files, they are relative to the TCL file.

Altera Corporation 6–5
October 2007

Avalon-MM Master Interface

Avalon-MM
Master Interface

Table 6–3 describes the properties that characterize an Avalon-MM
master interface. The direction of an Avalon-MM master interface is
“master”.

Avalon-MM
Slave Interface

Table 6–4 describes the properties that characterize an Avalon-MM slave
interface. The direction of an Avalon-MM slave interface is “slave”.

Table 6–3. Avalon-MM Master Interface Properties

Name Default
Value Legal Values Description

doStreamReads false (true,false) Specifies whether the master supports Avalon
flow control read accesses. (This propertry is

optional).

doStreamWrites false (true,false) Specifies whether the master supports Avalon
flow control write accesses. (This property is

optional).—

burstOnBurstBoundaries
Only

false (true,false) If true, bursts are aligned on burst size. (This
property is optional.)

Table 6–4. Avalon-MM Slave Interface Properties (Part 1 of 2)

Name Default
Value Legal Values Description

readLatency 0 [0 - 63] Read latency for fixed-latent slaves.

timingUnits cycles (cycles,
nanoseconds)

Specifies the unit for writeWaitTime,
readWaitTime.

writeWaitTime 0 [1000 - 0] Specifies additional time in units of
timeUnits for write to be asserted.

holdTime 0 - Specifies time in timeUnits between
deassertion of read/write and deassertion
of chipselect, address and data.

readWaitTime 1 [1000 - 0] Specifies additional time in units of
timeUnits for read to be asserted.

setUpTime 0 [1000 - 0] Specifies time in timeUnits between
assertion of chipselect, address and
data and assertion of read/write.

maximumPendingReadTran
sactions

0 position The maximum number of pending read
accesses which can be queued up by the
slave.

burstOnBurstBoundaries
Only

false (true,false) If true, bursts are aligned on burst size.

6–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Avalon-ST
Source Interface

Table 6–5 lists the properties that characterize an Avalon-ST source
interface. Refer to the Avalon-ST specification for port types. The
direction of an Avalon-ST source interface is “source”.

isNonVolatileStorage false (true,false) For software environment purposes.
Indicates if the memory is a non-volatile
storage device.

printableDevice false (true,false) For software environment purposes.
Indicates if the memory is a non-volatile
storage device.

isMemoryDevice false (true,false) For software environment purposes. States
that the slave is a reasonable target for code
and data.

Table 6–4. Avalon-MM Slave Interface Properties (Part 2 of 2)

Name Default
Value Legal Values Description

Table 6–5. Avalon-ST Source Interface Properties

Name Default
Value

Legal
Values Description

symbolsPerBeat 1 [1-512] The number of symbols that are transferred on every
valid cycle.

dataBitsPerSymbol 8 [1-512] Defines the number of bits per symbol. Most interfaces
are byte-oriented so that a symbol is 8 bits.

readyLatency 0 [8-0] Defines the relationship between assertion/deassertion
of the ready signal, and cycles which are considered to
be ready for data transfer, separately for each
interface.

maxChannel 0 [low-high] The maximum number of channels that a data interface
can support.

Altera Corporation 6–7
October 2007

Avalon-ST Sink Interface

Avalon-ST Sink
Interface

Table 6–6 lists the properties that characterize an Avalon-ST sink
interface. Refer to the Avalon-ST specification for port types. The
direction of an Avalon-ST sink interface is “sink”.

Avalon-MM
Tristate
Interface

Table 6–7 lists the properties that characterize an Avalon-MM tristate
interface. The Avalon-MM tristate interface properties include all the
properties that define the Avalon-MM slave interface, plus two additional
properties: activeCSThroughReadLatency and
maximumPendingReadTransactions.

1 Note that maximumPendingReadTransactions is not
tristate specific. This property can also be assigned to an Avalon
State.

The direction of an Avalon-MM tristate interface is “slave”.

Table 6–6. Avalon-ST Sink Interface Properties

Name Default
Value

Legal
Values Description

symbolsPerBeat 1 [512-1] The number of symbols that are transferred on every valid
cycle.

dataBitsPerSymbol 8 [512-1] Defines the number of bits per symbol. Most interfaces are
byte-oriented so that a symbol is 8 bits.

readyLatency 0 [8-0] Defines the relationship between assertion/deassertion of
the ready signal, and cycles which are considered to be
ready for data transfer, separately for each interface.

maxChannel 0 [255-0] The maximum number of channels that a data interface
can support.

Table 6–7. Avalon-MM Tristate Interface Properties (Part 1 of 2)

Name Default
Value Legal Values Description

readLatency 0 num_cycles Read latency for fixed-latency slaves.

writeLatency 0 num_cycles Delay in cycles between acceptance of a write
access and acceptance of valid writedata.

timingUnits cycles (cycles,
nanoseconds)

Specifies the unit for writeWaitTime and
readWaitTime.

writeWaitTime 0 [1000-0] Specifies additional time in units of timeUnits for
write to be asserted.

6–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Nios II Custom
Instruction
Interface

Table 6–8 lists all the properties that characterize Nios II custom
instructions.

The following example illustrates all the properties for a custom
instruction.

holdTime 0 — Specifies time in timeUnits between deassertion
of read/write and deassertion of
chipselect, address and data.

readWaitTime 1 [1000-0] Specifies additional time in units of timeUnits for
read to be asserted.

setupTime 0 — Specifies time in timeUnits between assertion of
chipselect, address, and data and
assertion of read/write.

activeCSThroughRead
Latency

false (true,false) If true, assert chipselect while readdata is
pending.

maximumPendingRead
Transactions

false — States the maximum number of pending read
transactions.

minimumUninterrupted
RunLength

1 an integer Specifies a minimum arbitration share value.

isNonVolatileStorage false (true,false) For software environment purposes. True for flash
memories.

printableDevice false (true,false) For software environment purposes. States that the
slave is a reasonable sink for printf() data.

isMemoryDevice false (true,false) For software environment purposes. States that the
slave is a reasonable target for code and data.

Table 6–7. Avalon-MM Tristate Interface Properties (Part 2 of 2)

Name Default
Value Legal Values Description

Table 6–8. Nios II Custom Instruction Interface

Name Default Value Legal Values Description

operands 0 [2-0] Number of operands used by the custom
instruction module.

clockCycle 0 — Number of clock cycles the custom
instruction requires before a valid result is
returned—used by multicycle custom
instructions.

Altera Corporation 6–9
October 2007

Interrupt Interface

Example 6–6. Custom Instruction Example

set_source_file "custominstruction.v"
set_module "custominstruction"
set_module_description "A custom instruction"
set_module_property version "1.0"
set_module_property group "User Logic"

Module parameters
Interface nios_custom_instruction_slave_0
add_interface "nios_custom_instruction_slave_0" "nios_custom_instruction" "slave"
"asynchronous"
set_interface_property "nios_custom_instruction_slave_0" "operands" "2"
set_interface_property "nios_custom_instruction_slave_0" "clockCycle" "2"

Ports in interface nios_custom_instruction_slave_0
add_port_to_interface "nios_custom_instruction_slave_0" "clk" "clk"
add_port_to_interface "nios_custom_instruction_slave_0" "reset" "reset"
add_port_to_interface "nios_custom_instruction_slave_0" "clk_en" "clk_en"
add_port_to_interface "nios_custom_instruction_slave_0" "start" "start"
add_port_to_interface "nios_custom_instruction_slave_0" "n" "n"
add_port_to_interface "nios_custom_instruction_slave_0" "dataa" "dataa"
add_port_to_interface "nios_custom_instruction_slave_0" "datab" "datab"
add_port_to_interface "nios_custom_instruction_slave_0" "a" "a"
add_port_to_interface "nios_custom_instruction_slave_0" "b" "b"
add_port_to_interface "nios_custom_instruction_slave_0" "c" "c"
add_port_to_interface "nios_custom_instruction_slave_0" "readra" "readra"
add_port_to_interface "nios_custom_instruction_slave_0" "readrb" "readrb"
add_port_to_interface "nios_custom_instruction_slave_0" "writerc" "writerc"
add_port_to_interface "nios_custom_instruction_slave_0" "result" "result"
add_port_to_interface "nios_custom_instruction_slave_0" "done" "done"

Interrupt
Interface

Slave components in an SOPC Builder system typically generate
interrupts. A processor typically clears the interrupt bits in the slave’s
control and status registers after servicing the interrupt. Table 6–9
lists the properties that characterize interrupts. The direction of an
interupt interface is “sender” and “receiver”.

Table 6–9. Interrupt Interface Properties

Name Default
Value

Legal
Values Description

associatedAddressablePoint — an
interface

name

This parameter takes the name of the
component interface that provides access to
the registers that should be cleared after the
interrupt is serviced.

6–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The following example defines an interrupt interface.

Example 6–7. Interrupt Interface

IRQ Interface my_slave_irq
legal values for the third parameter <direction> are sender and receiver
add_interface my_slave_irq "interrupt" "sender" "global_signals_clock"

set_interface_property "my_slave_irq" "associatedAddressablePoint" "my_slave"

Ports in interface my_slave_irq
Generally there is only one signal of type interrupt
add_port_to_interface "my_slave_irq" "my_irq" "irq"

Conduit
Interface

A conduit interface is used to export arbitrary input and output signals
outside of an SOPC Builder system. There are no special properties
associated with conduit interfaces.

The following example illustrates the conduit interface.

Example 6–8. Conduit nterface

Wire Interface global_signals_export
add_interface "global_signals_export" "conduit" "output" "my_clk_interface"

Ports in interface global_signals_export
add_port_to_interface "global_signals_export" "prbs_test_error" "export"
add_port_to_interface "global_signals_export" "prbs_test_done" "export"

Document
Revision History

Table 6–10 shows the revision history for this chapter.

Table 6–10. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.0 Major reorganization of chapter to better reflect
work flow when using tcl scripting. Includes new
commands, properties, and parameters.

—

May 2007,
v7.1.0

Initial release. —

Altera Corporation 6–11
October 2007

Document Revision History

6–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 7–1
October 2007

7. Archiving SOPC Builder
Projects

Introduction This chapter helps you identify the files you must include when archiving
an SOPC Builder project. With this information, you can archive:

■ The SOPC Builder system module
■ The associated Nios® II software project, if any
■ The associated Nios II system library project, if any

You may want to archive your SOPC Builder system for one of the
following reasons:

■ To place an SOPC Builder design under source control
■ To create a backup
■ To bundle a design for transfer to another location

To use this information, you must decide what source control or
archiving tool to use, and you must know how to use it. This chapter does
not provide step-by-step instructions. It does cover the following
information:

■ How to find and identify the files that you must include in an
archived SOPC Builder design, refer to “Required Files” on page 7–2.

■ Which files must have write permission to allow the design to be
generated and the software projects compiled, refer to “File Write
Permissions” on page 7–4.

Scope This chapter provides information about archiving SOPC Builder system
modules, including their Nios II software applications, if any. If your
SOPC Builder system does not contain a Nios II processor, you can
disregard information about Nios II software applications.

This chapter does not cover archiving SOPC Builder components, for two
reasons:

■ SOPC Builder components can be recovered, if necessary, from the
original Quartus® II and Nios II installations.

■ If your SOPC Builder system was developed with an earlier version
of the Quartus II software and Nios II Embedded Design Suite
(EDS), when you restore it for use with the current version, you
normally use the current, installed components.

QII54017-7.2.0

7–2 Altera Corporation
October 2007

Required Files

If your SOPC Builder system was developed with an earlier version of the
Quartus II and Nios II development software and you restore it for use
with the current version, the regenerated system is functionally identical
to the original system. However, there might be differences in details
such as Quartus II timing, component implementation, or HAL
implementation.

f For details of version changes, refer to the release notes for the
Quartus II software and the Nios II EDS.

To ensure that you can regenerate your exact original design, maintain a
record of the tool and IP version(s) originally used to develop the design.
Retain the original installation files or media in a safe place.

The archival process addressed by this chapter is different than
Quartus II project archiving. A Quartus II project archive contains the
complete Quartus II project, including the SOPC Builder module, but not
including any Nios II software. Quartus II adds all HDL files to the
archive, including HDL files generated by SOPC Builder, although these
files are not strictly necessary.

This chapter is only concerned with archiving the SOPC Builder system,
without the generated HDL files, but with all files needed to regenerate
them and rebuild the Nios II software (if any).

f For more details about archiving Quartus II projects, refer to volume 2 of
the Quartus II Handbook.

Required Files This section describes the files required by an SOPC Builder system and
its associated Nios II software projects (if any). This is the minimum set of
files needed to completely recompile an archived system, both the SRAM
Object File (.sof) and the executable software (.elf).

If you have Nios II software projects, archive them together with the
SOPC Builder system on which they are based. You cannot rebuild a
Nios II software project without its associated SOPC Builder system.

Altera Corporation 7–3
October 2007

Archiving SOPC Builder Projects

SOPC Builder Design Files

The files listed in Table 7–1 are located in the Quartus II project directory.

Nios II Application Software Project Files

The files listed in Table 7–2 are located in the Nios II software project
directory.

f For more information about Nios II software projects, refer to the Nios II
Software Developer's Handbook.

Table 7–1. Files Required for an SOPC Builder System

File description File name Write permission required? (1)

SOPC Builder system description <sopc_builder_system>.sopc Yes

SOPC Builder legacy system description
(2)

<sopc_builder_system>.ptf Yes

All non-generated HDL source files (3) for example:
top_level_schematic.bdf,

customlogic.v

No

Quartus II project file <project_name>.qpf No

Quartus II settings file <project_name>.qsf No

Notes to Table 7–1:
(1) For further information about write permissions, refer to “File Write Permissions” on page 7–4.
(2) The <sopc_builder_system>.ptf file is only required if you intend to edit or view the system in a version of SOPC

Builder prior to version 7.1.
(3) Include all HDL source files not generated by SOPC Builder. This includes HDL source files you create or copy

from elsewhere. To identify a file generated by SOPC Builder, open the file and look for the following header:
Legal Notice: (C)2007 Altera Corporation. All rights reserved.

Table 7–2. Files Required for a Nios II Application Software Project

File Description File Name Write Permission Required? (1)

All source files for example: app.c, header.h,
assembly.s, lookuptable.dat

No

Eclipse project file .project No

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

Software configuration file application.stf No

Note to Table 7–2:
(1) For further information about write permissions, refer to “File Write Permissions” on page 7–4.

7–4 Altera Corporation
October 2007

File Write Permissions

Nios II System Library Project

The files listed in Table 7–3 are located in the Nios II system library project
directory.

f For more information about Nios II system libraries, refer to the Nios II
Software Developer's Handbook.

f Archiving for projects that use Tcl scripting and java to create a Board
Support Package (BSP) is covered in chapter 3 of the Nios II Software
Developer’s Handbook, Common BSP Tasks.

File Write
Permissions

You must have write permission for certain files. The tools write to these
files as part of the generation and compilation process. If the files are not
writable, the toolchain fails.

Many source control tools mark local files read-only by default. In this
case, you must override this behavior. You do not have to check the files
out of source control unless you are modifying the SOPC Builder design
or Nios II software project.

Referenced
Documents

This chapter references the following documents:

■ The Quartus II Handbook, Volume 2
■ Nios II Software Developer's Handbook, Common BSP Tasks

Table 7–3. Files Required for a Nios II System Library Project

File description File name Write permission required? (1)

Eclipse project file .project Yes

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

System software configuration file system.stf Yes

Note to Table 7–3:
(1) For further information about write permissions, see “File Write Permissions” on page 7–4.

http://www.altera.com/literature/quartus2/lit-qts-implementation.jsp
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 7–5
October 2007

Archiving SOPC Builder Projects

Document
Revision History

Table 7–4 shows the revision history for this chapter.

Table 7–4. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007,
v7.2.0

● No change from previous release. —

May 2007,
v7.1.0

● Chapter 7 was previously chapter 6
● Added information about new .sopc file

type to Table 7–1
● Added information about legacy .ptf file

type to Table 7–1
● Added Referenced Documents section
● Added reference to new Common BSP

Tasks chapter for archiving of Tcl projects

Updates to this chapter include
replacing the legacy .ptf file type
with the new .sopc file type.

March 2007,
v7.0.0

● No change from previous release —

November 2007,
v6.1.0

● No change from previous release —

May 2006,
v6.0.0

Initial release. —

7–6 Altera Corporation
October 2007

Document Revision History

Altera Corporation Section II–i

Section II. Building
Systems with SOPC Builder

This section provides instructions on how to use SOPC Builder to achieve
specific goals. Chapters in this section serve to answer the question, "How
do I use SOPC Builder?" Many chapters in this handbook provide design
examples that you can download free from www.altera.com. Design file
hyperlinks are located with individual chapters linked from the Altera
web site.

This section includes the following chapters:

■ Chapter 8, Building Memory Subsystems Using SOPC Builder
■ Chapter 9, Developing Components for SOPC Builder

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation

Building Systems with SOPC Builder Quartus II Handbook, Volume 4

Altera Corporation 8–1
October 2007

8. Building Memory
Subsystems Using SOPC

Builder

Introduction Most systems generated with SOPC Builder require memory. For
example, embedded processor systems require memory for software
code, while digital signal processing (DSP) systems require memory for
data buffers. Many systems use multiple types of memories. For example,
a processor-based DSP system can use off-chip SDRAM to store software
code, and on-chip RAM for fast access to data buffers. You can use SOPC
Builder to integrate almost any type of memory into your system.

This chapter describes how to build a memory subsystem as part of a
larger system created with SOPC Builder. This chapter focuses on the
following kinds of memory most commonly used in SOPC Builder
systems for:

■ “On-Chip RAM and ROM” on page 8–8
■ “EPCS Serial Configuration Device” on page 8–12
■ “SDRAM” on page 8–14
■ “Off-Chip SRAM and Flash Memory” on page 8–19

This chapter assumes that you are familiar with the following:

■ Creating FPGA designs and making pin assignments with the
Quartus® II software. For details, refer to the Introduction to the
Quartus II Software manual.

■ Building simple systems with SOPC Builder. For details, refer to the
Introduction to SOPC Builder in volume 4 of the Quartus II Handbook.

■ SOPC Builder components. For details, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon® interfaces. You do not need extensive
knowledge of the Avalon interfaces, such as transfer types or signal
timing. However, to create your own custom memory subsystem
with external memories, you need to understand the Avalon®
Memory-Mapped (Avalon-MM) interface. For details, refer to the
System Interconnect Fabric for Memory-Mapped Interfaces chapter in
volume 4 of the Quartus II Handbook and the Avalon Memory-Mapped
Interface Specification.

QII54006-7.2.0

8–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Example Design

This chapter demonstrates the process for building a system that contains
one of each type memory as shown in Figure 8–1. Each section of the
chapter builds on previous sections, culminating in a complete system.

By following the example design in this chapter, you will learn how to
create a complete customized memory subsystem for your system or
design. The memory components in the example design are independent.
For a custom system, you can instantiate exactly the memories you need,
and skip the memories you do not need. Furthermore, you can create
multiple instantiations of the same type of memory, limited only by
on-chip memory resources or FPGA pins to interface with off-chip
memory devices.

Example Design Structure

Figure 8–1 shows a block diagram of the example system.

Altera Corporation 8–3
October 2007

Introduction

Figure 8–1. Example Design Block Diagram

In Figure 8–1, all blocks shown below the system interconnect fabric
comprise the memory subsystem. For demonstration purposes, this
system uses a Nios® II processor core to master the memory devices, and
a JTAG UART core to communicate with the processor. However, the
memory subsystem could be connected to any master component, either
on-chip or off-chip.

System Interconnect Fabric

8M x 8 bit
CFI

Flash
Memory Chip

S

4M x 32 bit
SDRAM

Memory Chip

EPCS
Serial

Configuration
Device

256K x 32 bit
SRAM

Memory
Chip

S

SDRAM
Interface

EPCS
Interface

SDRAM
Controller

S

EPCS
Device

Controller
Core

1K x 32 bit
On-chip

RAM

S

Altera FPGA

JTAG
UART

S

SOPC Builder System

Avalon-MM
Tristate Bridge

M

S

Nios II
Processor

MM JT
A

G
 D

eb
ug

M
od

ul
e

JTAG
Controller

JTAG Interface

Data Instr.

S

Avalon-MM Master Port

Avalon-MM Slave Port

M

S

8–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Example Design Starting Point

The example design consists of the following elements:

■ A Quartus II project named quartus2_project. A Block Design File
(.bdf) named toplevel_design. toplevel_design is the top-level
design file for quartus2_project. toplevel_design instantiates the
SOPC Builder system module, as well as other pins and modules
required to complete the design.

■ An SOPC Builder system named sopc_memory_system.
sopc_memory_system is a subdesign of toplevel_design.
sopc_memory_system instantiates the memory components and
other SOPC Builder components required for a functioning system
module.

The starting point for this chapter assumes that the quartus2_project
already exists, sopc_memory_system has been started in SOPC Builder,
and the Nios II core and the JTAG UART core are already instantiated.
This example design uses the default settings for the Nios II/s core and
the JTAG UART core; these settings do not affect the rest of the memory
subsystem. Figure 8–2 shows the starting point in the SOPC Builder.

Figure 8–2. Starting Point for the Example Design

All sections in this chapter build on this starting point.

Altera Corporation 8–5
October 2007

Design Flow

Hardware and Software Requirements

To build a memory subsystem similar to the example design in this
chapter, you need the following:

■ Quartus II Software version 5.0 or higher—Both Quartus II Web
Edition and the fully licensed version support this design flow.

■ Nios II Embedded Design Suite (EDS) version 5.0 or higher—Both
the evaluation edition and the fully licensed version support this
design flow. The Nios II EDS provides the SOPC Builder memory
components described in this chapter. It also provides several
complete example designs which demonstrate a variety of memory
components instantiated in working systems.

1 The Quartus II Web Edition software and the Nios II EDS,
Evaluation Edition are available free for download from the
Altera® website. Visit www.altera.com/download.

This chapter does not describe downloading and verifying a working
system in hardware. Therefore, there are no hardware requirements for
the completion of this chapter. However, the example memory subsystem
has been tested in hardware.

Design Flow This section describes the design flow for building memory subsystems
with SOPC Builder.

The design flow for building a memory subsystem is similar to other
SOPC Builder designs. After starting a Quartus II project and an SOPC
Builder system, there are five steps to completing the system, as shown in
Figure 8–3:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design

3. Simulation

4. Quartus II project-level design

5. Board-level design

8–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–3. Design Flow

Component-Level Design in SOPC Builder

In this step, you specify which memory components to use and configure
each component to meet the needs of the system. All memory
components are available from the Memory and Memory Controllers
category in the SOPC Builder list of available components.

SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC
Builder system as a whole. Similar to the process of adding non-memory
SOPC Builder components, you use the SOPC Builder System Contents
tab to do the following:

■ Rename the component instance (optional).
■ Connect the memory component to master ports in the system. Each

memory component must be connected to at least one master port.
■ Assign a base address.
■ Assign a clock domain. A memory component can operate on the

same or different clock domain as the master port(s) that access it.

Start a
Quartus II

project

Start an
SOPC
Builder
system

Add memory
component 1

Add memory
component 2

Add memory
component N

Add other
components

Connect
components

&
generate
SOPC
Builder
system

Simulation

Connect SOPC
Builder system

module to
Quartus II project

Component-Level
Design

SOPC Builder
system-level

design

Assign FPGA
pins & compile

Quartus II
project

Connect
FPGA pins
to memory

chips

Board-Level DesignQuartus II Project
Level Design

Altera Corporation 8–7
October 2007

Design Flow

Simulation

In this step, you verify the functionality of the SOPC Builder system
module. For systems with memories, this step depends on simulation
models for each of the memory components, in addition to the system test
bench generated by SOPC Builder. Refer to “Simulation Considerations”
for more information.

Quartus II Project-Level Design

In this step, you integrate the SOPC Builder system module with the rest
of the Quartus II project. This step includes wiring the system module to
FPGA pins, and wiring the system module to other design blocks (such
as other HDL modules) in the Quartus II project.

1 In the example design in this chapter, the SOPC Builder system
module comprises the entire FPGA design. There are no other
design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on
the board. If the SOPC Builder system interfaces with off-chip memory
devices, you must make board-level design choices.

Simulation Considerations

SOPC Builder can automatically generate a test bench for register transfer
level (RTL) simulation of the system. This test bench instantiates the
system module and can also instantiate memory models for external
memory components. The test bench is plain text HDL, located at the
bottom of the top-level system module HDL design file. To explore the
contents of the auto-generated test bench, open the top-level HDL file and
search on keyword test_bench.

Generic Memory Models

The memory components described in this chapter, except for the SRAM,
provide generic simulation models. Therefore, it is very easy to simulate
an SOPC Builder system with memory components immediately after
generating the system.

The generic memory models store memory initialization files, such as
Data [file name extension] (.dat) and Hexadecimal (.hex) files, in a
directory named <Quartus II project directory>/<SOPC Builder system

8–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

name>_sim. When generating a new system, SOPC Builder creates empty
initialization files. You can manually edit these files to provide custom
memory initialization contents for simulation.

1 For Nios II processor designs, the Nios II integrated
development environment (IDE) generates initialization
contents automatically.

Vendor-Specific Memory Models

You can also manually connect vendor-specific memory models to the
system module. In this case, you must manually edit the testbench and
connect the vendor memory model. You might also need to edit the
vendor memory model slightly for time delays. The SOPC Builder
testbench assumes zero delay.

On-Chip RAM
and ROM

Altera FPGAs include on-chip memory blocks that can be used as RAM
or ROM in SOPC Builder systems. On-chip memory has the following
benefits for SOPC Builder systems:

■ On-chip memory has fast access time, compared to off-chip memory.
■ SOPC Builder automatically instantiates on-chip memory inside the

system module, so you do not have to make any manual connections.
■ Certain memory blocks can have initialized contents when the FPGA

powers up. This feature is useful, for example, for storing data
constants or processor boot code.

FPGAs have limited on-chip memory resources, which limits the
maximum practical size of an on-chip memory to approximately one
megabyte in the largest FPGA family.

Component-Level Design for On-Chip Memory

In SOPC Builder you instantiate on-chip memory by clicking the On-chip
Memory (RAM or ROM) in the component. The configuration wizard for
the On-chip Memory (RAM or ROM) component has the following
options: Memory Type, Size, and Read Latency.

Memory Type

The Memory Type options define the structure of the on-chip memory:

■ RAM (writable)—This setting creates a readable and writable
memory.

■ ROM (read only)—This setting creates a read-only memory.

Altera Corporation 8–9
October 2007

On-Chip RAM and ROM

■ Dual-port access—Turning on this setting creates a memory
component with two slave ports, which allows two master ports to
access the memory simultaneously.

■ Block type—This setting directs the Quartus II software to use a
specific type of memory block when fitting the on-chip memory in
the FPGA. The following choices are available:
● Auto—This setting allows the Quartus II software to choose the

most appropriate memory resource.
● M512—This setting directs the Quartus II software to use M512

blocks.
● M4K—This setting directs the Quartus II software to use M4K

blocks.
● M-RAM—This setting directs the Quartus II software to use

M-RAM blocks. The 64 Kbit M-RAM blocks are appropriate for
larger RAM data buffers. However, M-RAM blocks do not allow
pre-initialized contents at power up.

Size

The Size options define the size and width of the memory.

■ Data width—This setting determines the data width of the memory.
The available choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits.
Assign Data width to match the width of the master port that
accesses this memory the most frequently or has the most critical
timing requirements.

■ Total memory size—This setting determines the total size of the
on-chip memory block. The total memory size must be less than the
available memory in the target FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM
slave ports. Pipelined access improves fMAX performance, but also adds
latency cycles when reading the memory. The Read latency option allows
you to specify the number of read latency cycles required to access data.
If the Dual-port access setting is turned on, you can specify a different
read latency for each slave port.

Non-Default Memory Initialization

For ROM memories, you can specify your own initialization file by
selecting Enable non-default initialization file. If this option is selected,
the file you specify will be used to initialize the ROM in place of the
default initialization file created by SOPC Builder.

8–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Enable In-System Memory Content Editor Feature

Allows you to enable the In-System Memory Content Editor, which
allows you to read data from and write data to in-system memory in a
device while the device is running at speed and independently of system
clocks with a JTAG interface.

SOPC Builder System-Level Design for On-Chip Memory

There are few SOPC Builder system-level design considerations for
on-chip memories. See “SOPC Builder System-Level Design” on
page 8–6.

When generating a new system, SOPC Builder creates a blank
initialization file in the Quartus II project directory for each on-chip
memory that can power up with initialized contents. The name of this file
is <name of memory component>.hex.

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model
for the on-chip memory. This model is embedded inside the system
module, and there are no user-configurable options for the simulation
testbench.

You can provide memory initialization contents for simulation in the file
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat.

Quartus II Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there are no signals to connect to the Quartus II
project.

To provide memory initialization contents, you must fill in the file <name
of memory component>.hex. The Quartus II software recognizes this file
during design compilation and incorporates the contents into the
configuration files for the FPGA.

1 For Nios II processor users, the Nios II integrated development
environment (IDE) generates the memory initialization file
automatically.

Altera Corporation 8–11
October 2007

On-Chip RAM and ROM

Board-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there is nothing to connect at the board level.

Example Design with On-Chip Memory

This section demonstrates adding a 4 Kbyte on-chip RAM to the example
design. This memory uses a single slave port with read latency of one
cycle.

Figure 8–4 shows the SOPC Builder system after adding an instance of the
on-chip memory component, renaming it to onchip_ram, and assigning
it a base address.

Figure 8–4. SOPC Builder System with On-Chip Memory

For demonstration purposes, Figure 8–5 shows the result of generating
the system module at this stage. (In a normal design flow, you generate
the system only after adding all system components.)

Figure 8–5. System Module with On-Chip Memory

Because the on-chip memory is contained entirely within the system
module, sopc_memory_system has no I/O signals associated with
onchip_ram. Therefore, you do not need to make any Quartus II project
connections or assignments for the on-chip RAM, and there are no
board-level considerations.

8–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

EPCS Serial
Configuration
Device

Many systems use an Altera EPCS serial configuration device to
configure the FPGA. Altera provides the EPCS device controller core,
which allows SOPC Builder systems to access the memory contents of the
EPCS device. This feature provides flexible design options:

■ The FPGA design can reprogram its own configuration memory,
providing a mechanism for in-field upgrades.

■ The FPGA design can use leftover space in the EPCS as nonvolatile
storage.

Physically, the EPCS device is a serial flash memory device, which has
slow access time. Altera provides software drivers to control the EPCS
core for the Nios II processor only. Therefore, EPCS controller core
features are available only to SOPC Builder systems that include a Nios II
processor.

f For further details about the features and usage of the EPCS device
controller core, refer to the EPCS Device Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an
EPCS Serial Flash Controller component. There are no settings for this
component.

f For details, refer to the Nios II Flash Programmer User Guide.

SOPC Builder System-Level Design for an EPCS Device

There are not many SOPC Builder system-level design considerations for
EPCS devices:

■ Assign a base address.
■ Set the IRQ connection to NC (disconnected). The EPCS controller

hardware is capable of generating an IRQ. However, the Nios II
driver software does not use this IRQ, and therefore you can leave
the IRQ signal disconnected.

There can only be one EPCS controller core per FPGA, and the instance of
the core is always named epcs_controller.

Altera Corporation 8–13
October 2007

EPCS Serial Configuration Device

Simulation for an EPCS Device

The EPCS controller core provides a limited simulation model:

■ Functional simulation does not include the FPGA configuration
process, and therefore the EPCS controller does not model the
configuration features.

■ The simulation model does not support read and write operations to
the flash region of the EPCS device.

■ A Nios II processor can boot from the EPCS device in simulation.
However, the boot loader code is different during simulation. The
EPCS controller boot loader code assumes that all other memory
simulation models are pre-initialized, and therefore the boot load
process is unnecessary. During simulation, the boot loader simply
forces the Nios II processor to jump to start, skipping the boot load
process.

Verification in the hardware is the best way to test features related to the
EPCS device.

Quartus II Project-Level Design for an EPCS Device

The Quartus II software automatically connects the EPCS controller core
in the SOPC Builder system to the dedicated configuration pins on the
FPGA. This connection is invisible to the user. Therefore, there are no
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera
Configuration Handbook. No other connections are necessary.

Example Design with an EPCS Device

This section demonstrates adding an EPCS device controller core to the
example design.

Figure 8–6 shows the SOPC Builder system after adding an instance of the
EPCS controller core and assigning it a base address.

8–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–6. SOPC Builder System with EPCS Device

For demonstration purposes only, Figure 8–7 shows the result of
generating the system module at this stage.

Figure 8–7. System Module with EPCS Device

Because the Quartus II software automatically connects the EPCS
controller core to the FPGA pins, the system module has no I/O signals
associated with epcs_controller. Therefore, you do not need to make any
Quartus II project connections or assignments for the EPCS controller
core.

f This chapter does not cover the details of configuration using the EPCS
device. For further information, refer to Altera’s Configuration Handbook.

SDRAM Altera provides a free SDRAM controller core, which allows you to use
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDRAM
controller core is necessary, because Avalon-MM signals cannot describe
the complex interface on an SDRAM device. The SDRAM controller acts
as a bridge between the system interconnect fabric and the pins on an
SDRAM device. The SDRAM controller can operate in excess of 100 MHz.

f For further details about the features and usage of the SDRAM controller
core, refer to the SDRAM Controller Core with Avalon Interface chapter in
volume 5 of the Quartus II Handbook.

Altera Corporation 8–15
October 2007

SDRAM

Component-Level Design for SDRAM

The choice of SDRAM device(s) and the configuration of the device(s) on
the board heavily influence the component-level design for the SDRAM
controller. Typically, the component-level design task involves
parameterizing the SDRAM controller core to match the SDRAM
device(s) on the board. You must specify the structure (address width,
data width, number of devices, number of banks, and so on) and the
timing specifications of the device(s) on the board.

f For complete details about configuration options for the SDRAM
controller core, refer to the SDRAM Controller Core with Avalon Interface
chapter in volume 5 of the Quartus II Handbook.

SOPC Builder System-Level Design for SDRAM

In the SOPC Builder System Contents tab, the SDRAM controller looks
like any other memory component. Similar to on-chip memory, there are
few SOPC Builder system-level design considerations for SDRAM. See
“SOPC Builder System-Level Design” on page 8–6.

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM
simulation model and include the model in the system testbench. To use
the generic SDRAM simulation model, you must turn on a setting in the
SDRAM controller configuration wizard. You can provide memory
initialization contents for simulation in the file <Quartus II project
directory>/<SOPC Builder system name>_sim/<Memory component
name>.dat.

Alternately, you can provide a specific vendor memory model for the
SDRAM. In this case, you must manually wire up the vendor memory
model in the system testbench.

f For further details, refer to “Simulation Considerations” on page 8–7 and
the SDRAM Controller Core with Avalon Interface chapter in volume 5 of
the Quartus II Handbook.

Quartus II Project-Level Design for SDRAM

SOPC Builder generates a system module with top-level I/O signals
associated with the SDRAM controller. In the Quartus II project, you
must connect these I/O signals to FPGA pins, which connect to the
SDRAM device on the board. In addition, you might have to
accommodate clock skew issues.

8–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Connecting and Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

Accommodating Clock Skew

As SDRAM frequency increases, so does the possibility that you must
accommodate skew between the SDRAM clock and I/O signals. This
issue affects all synchronous memory devices, including SDRAM. To
accommodate clock skew, you can instantiate an altpll megafunction in
the top-level Quartus II design to create a phase-locked loop (PLL) clock
output. You use a phase-shifted PLL output to drive the SDRAM clock
and reduce clock-skew issues. The exact settings for the altpll
megafunction depend on your target hardware; you must experiment to
tune the phase shift to match the board.

f For details, refer to the altpll Megafunction User Guide.

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the
SDRAM device(s). The SDRAM controller core can accommodate various
configurations of SDRAM on the board, including multiple banks and
multiple devices.

f For further details, refer to the SDRAM Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

Example Design with SDRAM

This section demonstrates adding a 16-Mbyte SDRAM device to the
example design. This SDRAM is a single device with 32-bit data.
Figure 8–8 shows the SDRAM Controller configuration wizard settings
for the example design.

Altera Corporation 8–17
October 2007

SDRAM

Figure 8–8. SDRAM Controller Configuration Wizard

Figure 8–9 shows the SOPC Builder system after adding an instance of the
SDRAM controller, renaming it to sdram, and assigning it a base address.

Figure 8–9. SOPC Builder System with SDRAM

For demonstration purposes, Figure 8–10 shows the result of generating
the system module at this stage, and connecting it in
toplevel_design.bdf.

8–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–10. toplevel_design.bdf with SDRAM

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of SDRAM-related I/O signals
which must be connected to FPGA pins:

 output [11: 0] zs_addr_from_the_sdram;
 output [1: 0] zs_ba_from_the_sdram;
 output zs_cas_n_from_the_sdram;
 output zs_cke_from_the_sdram;
 output zs_cs_n_from_the_sdram;
 inout [31: 0] zs_dq_to_and_from_the_sdram;
 output [3: 0] zs_dqm_from_the_sdram;
 output zs_ras_n_from_the_sdram;
 output zs_we_n_from_the_sdram;

As shown in Figure 8–10, toplevel_design.bdf uses an instance of
sdram_pll to phase shift the SDRAM clock by –63 degrees.
toplevel_design.bdf also uses a subdesign delay_reset_block to
insert a delay on the reset_n signal for the system module. This delay is
necessary to allow the PLL output to stabilize before the SOPC Builder
system begins operating.

Figure 8–11 shows pin assignments in the Quartus II Assignment Editor
for some of the SDRAM pins. The correct pin assignments depend on the
target board.

Altera Corporation 8–19
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–11. Pin Assignments for SDRAM

Off-Chip SRAM
and Flash
Memory

SOPC Builder systems can directly access many off-chip RAM and ROM
devices, without a controller core to drive the off-chip memory.
Avalon-MM signals can exactly describe the interfaces on many standard
memories, such as SRAM and flash memory. In this case, I/O signals on
the SOPC Builder system module can connect directly to the memory
device.

While off-chip memory usually has slower access time than on-chip
memory, off-chip memory provides the following benefits:

■ Off-chip memory is less expensive than on-chip memory resources.
■ The size of off-chip memory is bounded only by the 32-bit

Avalon-MM address space.
■ Off-chip ROM, such as flash memory, can be used for bulk storage of

nonvolatile data.
■ Multiple off-chip RAM and ROM memories can share address and

data pins to conserve FPGA I/O resources.

Adding off-chip memories to an SOPC Builder system also requires the
Avalon-MM Tristate Bridge component.

8–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

This section describes the process of adding off-chip flash memory and
SRAM to an SOPC Builder system.

Component-Level Design for SRAM and Flash Memory

There are several ways to instantiate an interface to an off-chip memory
device:

■ For common flash interface (CFI) flash memory devices, add the
Flash Memory (Common Flash Interface) component in SOPC
Builder.

■ For Altera development boards, Altera provides SOPC Builder
components that interface to the specific devices on each
development board. For example, the Nios II EDS includes the
components Cypress CY7C1380C SSRAM and IDT71V416 SRAM,
which appear on Nios II development boards.

■ For further details about the features and usage of the SSRAM
controller core, refer to the SDRAM Controller Core with Avalon
Interface chapter in volume 5 of the Quartus II Handbook.

■ For further details about the features and usage of the SDRAM
controller core, refer to the Building Memory Subsystems Using SOPC
Builder chapter in volume 4 of the Quartus II Handbook.

These components make it easy for you to create memory systems
targeting Altera development boards. However, these components target
only the specific memory device on the board; they do not work for
different devices.

■ For general memory devices, RAM or ROM, you can create a custom
interface to the device with the SOPC Builder component editor.
Using the component editor, you define the I/O pins on the memory
device and the timing requirements of the pins.

In all cases, you must also instantiate the Avalon-MM Tristate Bridge
component. Multiple off-chip memories can connect to a single tristate
bridge.

Altera Corporation 8–21
October 2007

Off-Chip SRAM and Flash Memory

Avalon-MM Tristate Bridge

A tristate bridge connects off-chip devices to on-chip system interconnect
fabric. The tristate bridge creates I/O signals on the SOPC Builder system
module, which you must connect to FPGA pins in the top-level Quartus II
project. These pins represent the system interconnect fabric to off-chip
devices.

The tristate bridge creates address and data pins which can be shared by
multiple off-chip devices. This feature lets you conserve FPGA pins when
connecting the FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

■ The off-chip device has bidirectional data pins.
■ Multiple off-chip devices share the address and/or data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the
Avalon-MM Tristate Bridge component. The Avalon-MM Tristate
Bridge configuration wizard has a single option: To register incoming (to
the FPGA) signals or not.

■ Registered—This setting adds registers to all FPGA input pins
associated with the tristate bridge (outputs from the memory
device).

■ Not Registered—This setting does not add registers between the
memory device output pins and the system interconnect fabric.

The Avalon-MM tristate bridge automatically adds registers to output
signals from the tristate bridge to off-chip devices.

Registering the input and output signals shortens the register-to-register
delay from the memory device to the FPGA, resulting in higher system
fMAX performance. However, in each direction, the registers add one
additional cycle of latency for Avalon-MM master ports accessing
memory connected to the tristate bridge. The registers do not affect the
timing of the transfers from the perspective of the memory device.

f For details about the Avalon-MM tristate interface, refer to the Avalon
Memory-Mapped Interface Specification.

Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by
adding a Flash Memory (Common Flash Interface) component. If the
flash memory is not CFI compliant, you must create a custom interface to
the device with the SOPC Builder component editor.

8–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The choice of flash device(s) and the configuration of the device(s) on the
board heavily influence the component-level design for the flash memory
configuration wizard. Typically, the component-level design task
involves parameterizing the flash memory interface to match the
device(s) on the board. Using the Flash Memory (Common Flash
Interface) configuration wizard, you must specify the structure (address
width and data width) and the timing specifications of the device(s) on
the board.

f For details about features and usage, refer to the Common Flash Interface
Controller Core with Avalon Interface chapter in volume 5 of the Quartus II
Handbook.

For an example of instantiating the Flash Memory (Common Flash
Interface) component in an SOPC Builder system, see “Example Design
with SRAM and Flash Memory” on page 8–25.

SRAM

To instantiate an interface to off-chip RAM, perform the following steps:

1. Create a new component with the SOPC Builder component editor
that defines the interface.

2. Instantiate the new interface component in the SOPC Builder
system.

The choice of RAM device(s) and the configuration of the device(s) on the
board determine how you create the interface component. The
component-level design task involves entering parameters into the
component editor to match the device(s) on the board.

f For details about using the component editor, refer to the Component
Editor chapter in volume 4 of the Quartus II Handbook.

SOPC Builder System-Level Design for SRAM and Flash Memory

In the SOPC Builder System Contents tab, the Avalon-MM tristate bridge
has two ports:

■ Avalon-MM slave port—This port faces the on-chip logic in the
SOPC Builder system. You connect this slave port to on-chip master
ports in the system.

■ Avalon-MM tristate master port—This port faces the off-chip
memory devices. You connect this master port to the Avalon-MM
tristate slave ports on the interface components for off-chip
memories.

Altera Corporation 8–23
October 2007

Off-Chip SRAM and Flash Memory

You assign a clock to the Avalon-MM tristate bridge that determines the
Avalon-MM clock cycle time for off-chip devices connected to the tristate
bridge.

You must assign base addresses to each off-chip memory. The
Avalon-MM tristate bridge does not have an address; it passes
unmodified addresses from on-chip master ports to off-chip slave ports.

Simulation for SRAM and Flash Memory

The SOPC Builder output for simulation depends on the type of memory
component(s) in the system:

■ Flash Memory (Common Flash Interface) component—This
component provides a generic simulation model. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Flash memory
component name>.dat.

■ Custom memory interface created with the component editor—In
this case, you must manually connect the vendor simulation model
to the system test bench. SOPC Builder does not automatically
connect simulation models for custom memory components to the
system module.

■ Altera-provided interfaces to memory devices—Altera provides
simulation models for these interface components. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat. Alternately, you can provide a specific vendor
simulation model for the memory. In this case, you must manually
wire up the vendor memory model in the system test bench.

For further details, see “Simulation Considerations” on page 8–7.

Quartus II Project-Level Design for SRAM and Flash Memory

SOPC Builder generates a system module with top-level I/O signals
associated with the tristate bridge and the memory interface components.
In the Quartus II project, you must connect the I/O signals to FPGA pins,
which connect to the memory device(s) on the board.

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

8–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

SOPC Builder inserts synthesis directives in the top-level system module
HDL to assist the Quartus II fitter with signals that interface with off-chip
devices. The following is an example:

reg [22: 0] tri_state_bridge_address /* synthesis
ALTERA_ATTRIBUTE = "FAST_OUTPUT_REGISTER=ON" */;

Board-Level Design for SRAM and Flash Memory

Memory requirements largely dictate the board-level configuration of the
SRAM and flash memory device(s). You can lay out memory devices in
any configuration, as long as the resulting interface can be described with
Avalon-MM signals.

c Special consideration is required when connecting the
Avalon-MM address signal to the address pins on the memory
devices.

The system module presents the smallest number of address lines
required to access the largest off-chip memory, which is usually less than
32 address bits. Not all memory devices connect to all address lines.

Aligning the Least-Significant Address Bits

The Avalon-MM tristate address signal always presents a byte address.
Each address location in many memory devices contains more than one
byte of data. In this case, the memory device must ignore one or more of
the least-significant Avalon-MM address lines. For example, a 16-bit
memory device must ignore Avalon-MM address[0] (which is a byte
address), and connect Avalon-MM address[1] to the least-significant
address line.

Altera Corporation 8–25
October 2007

Off-Chip SRAM and Flash Memory

Table 8–1 shows the relationship between Avalon-MM address lines
and off-chip address pins for all possible Avalon-MM data widths.

Aligning the Most-Significant Address Bits

The Avalon-MM address signal contains enough address lines for the
largest memory on the tristate bridge. Smaller off-chip memories might
not use all of the most-significant address lines.

For example, a memory device with 210 locations uses 10 address bits,
while a memory with 220 locations uses 20 address bits. If both these
devices share the same tristate bridge, the smaller memory ignores the ten
most significant Avalon-MM address lines.

Example Design with SRAM and Flash Memory

This section demonstrates adding a 1-Mbyte SRAM and an 8-Mbyte flash
memory to the example design. These memory devices connect to the
system interconnect fabric through an Avalon-MM tristate bridge.

Table 8–1. Connecting the Least-Significant Avalon-MM Address Line

Avalon-MM Address
Line

Address Line on Memory Device

8-bit Memory 16-bit Memory 32-bit Memory 64-bit Memory 128-bit Memory

address[0] A0 No connect No connect No connect No connect

address[1] A1 A0 No connect No connect No connect

address[2] A2 A1 A0 No connect No connect

address[3] A3 A2 A1 A0 No connect

address[4] A4 A3 A2 A1 A0

address[5] A5 A4 A3 A2 A1

address[6] A6 A5 A4 A3 A2

address[7] A7 A6 A5 A4 A3

address[8] A8 A7 A6 A5 A4

address[9] A9 A8 A7 A6 A5

address[10] A10 A9 A8 A7 A6

...

8–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Adding the Avalon-MM Tristate Bridge

In the Avalon-MM Tristate Bridge configuration wizard, check the
Registered inputs and outputs option to maximize system fMAX, which
increases the read latency by two for both the SRAM and flash memory.

Adding the Flash Memory Interface

The flash memory is 8M × 8-bit, which requires 23 address bits and 8 data
bits. Figure 8–12 shows the Flash Memory (Common Flash Interface)
configuration wizard settings for the example design.

Figure 8–12. Flash Memory Configuration Wizard

Adding the SRAM Interface

The SRAM device is 256K × 32-bit, which requires 18 address bits and 32
data bits. The example design uses a custom memory interface created
with the SOPC Builder component editor. Figures 8–13 through 8–18
shows the settings required on the various component editor tabs to
implement an interface to this SRAM.

Altera Corporation 8–27
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–13. SRAM Interface Component Editor HDL Files Tab

Figure 8–14. SRAM Interface Component Editor Signals Tab

8–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–15. SRAM Interface Component Editor Interfaces Tab

Altera Corporation 8–29
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–16. SRAM Interface Component Editor Component Wizard Tab

Adding the PLL

To reduce clock skew, all components in this example design connect to
sys_clk generated by the PLL component. Select the PLL from the list
of available components. To configure the PLL, select Launch Altera’s
ALTPLL MegaWizard. For this example design you configure pll.c0 as
a 50 MHz clock. Figure 8–17 illustrates the configuration of this
component.

8–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–17. PLL Parameters

SOPC Builder System Contents Tab

Figure 8–18 shows the SOPC Builder system after adding the Tristate
bridge and memory interface components, and configuring them
appropriately on the System Contents tab. Figure 8–18 represents the
complete example design in SOPC Builder.

Altera Corporation 8–31
October 2007

Off-Chip SRAM and Flash Memory

Figure 8–18. SOPC Builder System with SRAM and Flash Memory

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of I/O signals for SRAM and
flash memory that must be connected to FPGA pins:

 output chipselect_n_to_the_ext_ram;
 output read_n_to_the_ext_ram;
 output select_n_to_the_ext_flash;
 output [22: 0] tri_state_bridge_address;
 output [3: 0] tri_state_bridge_byteenablen;
 inout [31: 0] tri_state_bridge_data;
 output tri_state_bridge_readn;
 output write_n_to_the_ext_flash;
 output write_n_to_the_ext_ram;

The Avalon-MM tristate bridge signals that can be shared are named after
the instance of the tristate bridge component, such as
tri_state_bridge_data[31:0].

Connecting and Assigning Pins in the Quartus II Project

Figure 8–19 shows the result of generating the system module for the
complete example design.

8–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 8–19. System Module with SDRAM and External Flash Memory

Figure 8–20 shows the pin assignments in the Quartus II assignment
editor for some of the SRAM and flash memory pins. The correct pin
assignments depend on the target board.

Figure 8–20. Pin Assignments for SRAM and Flash Memory

Altera Corporation 8–33
October 2007

Off-Chip SRAM and Flash Memory

Connecting FPGA Pins to Devices on the Board

Table 8–2 shows the mapping between the Avalon-MM address lines and
the address pins on the SRAM and flash memory devices.

Table 8–2. FPGA Connections to SRAM and Flash Memory

Avalon-MM Address Line Flash Address
(8M × 8-bit Data)

SRAM Address
(256K × 32-bit data)

tri_state_bridge_address[0] A0 No connect

tri_state_bridge_address[1] A1 No connect

tri_state_bridge_address[2] A2 A0

tri_state_bridge_address[3] A3 A1

tri_state_bridge_address[4] A4 A2

tri_state_bridge_address[5] A5 A3

tri_state_bridge_address[6] A6 A4

tri_state_bridge_address[7] A7 A5

tri_state_bridge_address[8] A8 A6

tri_state_bridge_address[9] A9 A7

tri_state_bridge_address[10] A10 A8

tri_state_bridge_address[11] A11 A9

tri_state_bridge_address[12] A12 A10

tri_state_bridge_address[13] A13 A11

tri_state_bridge_address[14] A14 A12

tri_state_bridge_address[15] A15 A13

tri_state_bridge_address[16] A16 A

tri_state_bridge_address[17] A17 A15

tri_state_bridge_address[18] A18 A16

tri_state_bridge_address[19] A19 A17

tri_state_bridge_address[20] A20 No connect

tri_state_bridge_address[21] A21 No connect

tri_state_bridge_address[22] A22 No connect

8–34 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Referenced
Documents

This chapter references the following documents:

■ Introduction to Quartus II Manual
■ Introduction to SOPC Builder
■ SOPC Builder Components
■ System Interconnect Fabric for Memory-Mapped Interfaces
■ Avalon Memory-Mapped Interface Specification
■ Altera Configuration Handbook
■ Nios II Flash Programmer User Guide
■ SDRAM Controller Core
■ altpll Megafunction User Guide
■ Common Flash Interface Controller Core
■ Component Editor

Document
Revision History

Table 8–3 shows the revision history for this chapter.

Table 8–3. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007,
v7.2.0

● Corrected Figure 8–19 to show flash memory changed
example to use a PLL that is part of the SOPC Builder
system, rather than a Quartus II component. Added
section showing parameterization of PLL. (ADoQS Issue
1-5M4EN5 Lissy)

—

May 2007,
v7.1.0

● Chapter 8 was previously chapter 9.
● Updated Avalon terminology because of changes to

Avalon technologies. Changed old “Avalon switch fabric”
term to “system interconnect fabric.” Changed old “Avalon
interface” terms to “Avalon Memory-Mapped interface.”

● Added section on Non-Default Memory Initialization.
● On-chip Memory size, first parameter changed from

Memory Width to Data Width and widths of 256, 512 and
1024 were added.

● Corrected figure 8-18.
● Added links to all referenced documents.
● Removed discussions of reference designators for

components because they are no longer required by
SOPC Builder.

● Removed unnecessary screenshots.

Updated to reflect changes to
SOPC Builder for 7.1.0. SOPC
Builder and improve
readability.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

No change from previous release. —

http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/lit-config.jsp
http://www.altera.com/literature/hb/nios2/n2cpu_nii51005.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51013.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

Altera Corporation 8–35
October 2007

Document Revision History

May 2006,
v6.0.0

Chapter 9 was previously chapter 8. No change to content. —

October 2005,
v5.1.0

Chapter 8 was previously chapter 6. No change to content. —

May 2005,
v5.0.0

Initial release. —

Table 8–3. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

8–36 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 9–1
October 2007

9. Developing Components
for SOPC Builder

Introduction This chapter describes the design flow to develop a custom SOPC Builder
component. The chapter describes the parts of a custom component and
provides tutorial steps that guide you through the process of creating a
custom component, integrating it into a system, and testing it in
hardware.

This chapter is divided into the following sections:

■ “Component Development Flow” on page 9–3.
■ “Design Example: Checksum Master” on page 9–9. This design

example demonstrates developing a component with both Avalon®
Memory-Mapped (Avalon-MM) master and slave ports.

■ “Sharing Components” on page 9–29. This section shows you how to
use components in other systems, or share them with other
designers.

SOPC Builder Components and the Component Editor

Typically, an SOPC Builder component is composed of the following four
parts:

■ HDL files that define the component’s functionality as hardware.
■ _hw.tcl file that describes the SOPC Builder related characteristics,

such as interface behaviors.
■ C-language files that define the component register map and driver

software that allows programs to control the component if the
component is accessed by a processor using software.

The component editor guides you through the creation of a module or
hw.tcl file to describe your component. By following the procedures
described in this document, you learn to use the component editor and
turn any custom logic module into an SOPC Builder component.

After your component has been created, you can instantiate it in an SOPC
Builder system and make connections in the same manner as other SOPC
Builder components. You can share your component with other designers
to encourage design reuse.

QII54007-7.2.1

9–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Prerequisites

This chapter assumes that you are familiar with the following:

■ Building systems with SOPC Builder. For details, refer to the
Introduction to SOPC Builder chapter in volume 4 of the Quartus II
Handbook.

■ SOPC Builder components. For details, refer to the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon-MM interface.

Hardware and Software Requirements

To use the design example in this chapter, you must have the following:

■ Design files for the example design—A hyperlink to the design files
appears next to the chapter, Developing Components for SOPC Builder,
on the SOPC Builder literature page.

■ Quartus® II Software version 7.2 or higher—Both Quartus II Web
Edition and the fully licensed version will work with the example
design.

■ Nios® II Embedded Design Suite (EDS) version 1.1 or higher—Both
the evaluation edition and the fully licensed version will work with
the example design.

■ Nios development board and an Altera® USB-BlasterTM download
cable (Optional)—You can use any of the following Nios
development boards:
● Stratix® III Edition
● Stratix® II Edition
● Stratix Edition
● Stratix Professional Edition
● Cyclone® III Edition
● Cyclone II Edition
● CycloneTM Edition

If you do not have a development board, you can follow the hardware
development steps, but you cannot download the complete system to a
working board.

f You can download the Quartus II Web Edition software and the Nios II
EDS, Evaluation Edition for free from the Altera Download Center at
www.altera.com.

http://www.altera.com
http://www.altera.com
http://www.altera.com

Altera Corporation 9–3
October 2007

Component Development Flow

Component
Development
Flow

This section provides an overview of the development process for custom
SOPC Builder components.

Typical Design Steps

A typical development sequence for an SOPC Builder component
includes the following items:

1. Specification and definition.

a. Define the functionality of the component.

b. Determine the number and type of component interfaces,
whether or not Avalon MM, Avalon ST, interrupt, or the
interfaces that are used.

c. Determine the component clocking requirements; what
interfaces are synchronous to what clock inputs.

d. If you want a microprocessor to control the component, specify
the application program interface (API) to access and control
the hardware.

e. Specify the hardware functionality.

f. If you want a microprocessor to control the component, specify
the register set and application program interface (API) to
access and control the component.

2. For hardware development, create an HDL file that describes the
hardware in either Verilog or VHDL, and test the component alone
in simulation or hardware to verify correct operation.

3. SOPC Builder import.

a. Use the component editor to create an hw.tcl file that describes
the component.

b. Instantiate the component into a simple SOPC Builder system.

c. Test register-level accesses to the component in hardware or
simulation using a microprocessor, such as the Nios II
processor.

9–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

When importing an HDL file into the component editor, any
parameter definitions that are dependent upon other defined
parameters cause an error. For example the following DEPTH
parameter, though legal Verilog HDL syntax in the Quartus II
software, causes an error in the component editor syntax checker:

parameter WIDTH = 32;
parameter DEPTH = ((WIDTH == 32) ? 8 : 16);

To avoid this error, use localparam for the dependent parameter instead, as
shown below:

parameter WIDTH = 32;
localparam DEPTH = ((WIDTH == 32)?8:16);

4. Software Driver Development.

a. Create a C header file that defines the hardware-level register
map for software if the component is accessed by software.

b. Write the driver software.

5. Finalize the component and distribute it for design reuse.

The following sections provide more details about the hardware and
software design steps.

Hardware Design

As with any logic design process, the development of SOPC Builder
component hardware begins after the specification phase. Creating the
HDL design is an iterative process, as you write and verify the HDL logic
against the specification.

The architecture of a typical component consists of the following
functional blocks:

■ Task Logic—Implements the component's fundamental function. The
task logic is design dependent.

■ Interfaces—Provide a standard way of providing data to or getting
data from the components and of controlling the functioning of the
components.

For interface specifications, refer to the following at www.altera.com:

http://www.altera.com

Altera Corporation 9–5
October 2007

Component Development Flow

■ Avalon Memory-Mapped Interface Specification—Accommodate
peripheral development for the SOPC environment.

■ Avalon Streaming Interface Specification—Accommodate the
development of high bandwidth low latency components for the
SOPC environment.

Figure 9–1 shows the top-level blocks of a checksum component, which
includes both Avalon-MM master and slave ports.

9–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 9–1. Checksum Component with Avalon-MM Master and Slave Ports

Software Design

If you want a microprocessor to control your component, then you must
provide software files that define the software view of the component. At
a minimum, you must define the register map for each Avalon MM slave
port that is accessible to a processor.

Avalon-MM
Slave

Interface
(s1)

avs_s1_address<2:0>
avs_s1_read_n

avs_s1_writedata<31:0>
avs_s1_writes_n

avs_s1_readdata<31:0>
avs_s1_chipselect_n

Clock
Input/Sink
Interface

(clockreset)

csi_clockreset_clk
csi_clockreset_reset_n

Avalon-MM
Master

Interface
(m1)

avm_m1_address<31:0>
avm_m1_read_n

avm_m1_readdata<31:0>
avm_m1_waitrequest

Checksum
Task
Logic

a
d
d
re

ss
le

n
g
th

g
o

result<15:0>

reset_n
clock

data_in<31:0>
data_in_ready

sy
st

e
m

 in
te

rc
o
n
n
e
ct

 fa
b
ri

c

Checksum Checker

re
a
d
_
bu

sy

Altera Corporation 9–7
October 2007

Component Development Flow

Typically, the header file declares macros to read and write each register
in the component, relative to a symbolic base address assigned to the
component. The following example shows the register map of the
checksum component for use by the Nios II processor.

Example 9–1. Example: Register Map for the Checksum Component

#ifndef __ALTERA_AVALON_CHECKSUM_REGS_H__
#define __ALTERA_AVALON_CHECKSUM_REGS_H__

#include <io.h>

/* Basic address, read and write macros. */

#define IOADDR_ALTERA_AVALON_CHECKSUM_ADDR(base)
__IO_CALC_ADDRESS_NATIVE(base, 0)
#define IORD_ALTERA_AVALON_CHECKSUM_ADDR(base) IORD(base, 0)
#define IOWR_ALTERA_AVALON_CHECKSUM_ADDR(base, data) IOWR(base, 0, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_LENGTH(base)
__IO_CALC_ADDRESS_NATIVE(base, 1)
#define IORD_ALTERA_AVALON_CHECKSUM_LENGTH(base) IORD(base, 1)
#define IOWR_ALTERA_AVALON_CHECKSUM_LENGTH(base, data) IOWR(base, 1, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_CTRL(base)
__IO_CALC_ADDRESS_NATIVE(base, 2)
#define IORD_ALTERA_AVALON_CHECKSUM_CTRL(base) IORD(base, 2)
#define IOWR_ALTERA_AVALON_CHECKSUM_CTRL(base, data) IOWR(base, 2, data)

#define IOADDR_ALTERA_AVALON_CHECKSUM_RESULT(base)
__IO_CALC_ADDRESS_NATIVE(base, 4)
#define IORD_ALTERA_AVALON_CHECKSUM_RESULT(base) IORD(base, 4)

#define IOADDR_ALTERA_AVALON_CHECKSUM_STATUS(base)
__IO_CALC_ADDRESS_NATIVE(base, 5)
#define IORD_ALTERA_AVALON_CHECKSUM_STATUS(base) IORD(base, 5)

/* Masks. */

#define ALTERA_AVALON_CHECKSUM_CTRL_GO_MSK (0x1)
#define ALTERA_AVALON_CHECKSUM_STATUS_DONE_MSK (0x2)
#define ALTERA_AVALON_CHECKSUM_LENGTH_MSK (0xFFFF)
#define ALTERA_AVALON_CHECKSUM_RESULT_MSK (0xFFFF)

/* Offsets. */

#define ALTERA_AVALON_CHECKSUM_CTRL_GO_OFST (0)
#define ALTERA_AVALON_CHECKSUM_STATUS_BSY_OFST (0)
#define ALTERA_AVALON_CHECKSUM_STATUS_DONE_OFST (1)

#endif /* __ALTERA_AVALON_CHECKSUM_REGS_H__ */

9–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Software drivers abstract hardware details of the component so that
software can access the component at a high level. The driver functions
provide the software an API to access the hardware. The software
requirements vary according to the needs of the component. The most
common types of routines initialize the hardware, read data, and write
data.

When developing software drivers, it is instructive to look at the software
files provided for other ready-made components. The Nios II EDS
provides many components you can use as reference. See the <Nios II
EDS install path>/components/ directory for examples.

f For details on writing drivers for the Nios II hardware abstraction layer
(HAL), refer to the Nios II Software Developer's Handbook.

Verifying the Component

You can verify the component in incremental stages, as you complete
more of the design. Typically, you first verify the hardware logic as a unit
(which might consist of multiple smaller stages of verification), and later
you verify the component in a system.

Unit Verification

To test the task logic block alone, you use your preferred verification
method(s), such as HDL simulation tools.

After you package the HDL files into a component using the component
editor, the Nios II EDS offers an easy-to-use method to simulate read and
write transactions to the component. Using the Nios II processor's robust
simulation environment, you can write C code for the Nios II processor
that initiates read and write transfers to your component. You can verify
the results either on the ModelSim simulator or on hardware, such as a
Nios development board.

f For more information, refer to AN 351: Simulating Nios II Embedded
Processor Designs.

System-Level Verification

After you package an hw.tcl file with the component editor, you can
instantiate the component in a system, and verify the functionality of the
overall system module.

SOPC Builder provides support for system-level verification for HDL
simulators such as ModelSim. SOPC Builder automatically produces a
test bench for system-level verification.

Altera Corporation 9–9
October 2007

Design Example: Checksum Master

1 You can include a Nios II processor in your system to enhance
simulation capabilities during the verification phase. Even if
your component has no relationship to the Nios II processor, the
auto-generated ModelSim simulation environment provides an
easy-to-use starting point.

Design Example:
Checksum
Master

This section uses a checksum master design example to demonstrate the
steps to create a component and instantiate it in a system. This component
includes both Avalon-MM master and slave ports.

In this section, you will perform the following steps:

1. Install the design files.

2. Review the example design specifications.

3. Create an SOPC Builder component.

4. Instantiate the component in an SOPC system.

5. Compile the hardware design in the Quartus II software, and
download the design to a target board.

6. Exercise the hardware using the Nios II processor.

Install the Design Files

Before you proceed, you must install the Nios II development tools and
download the checksum master example design from the Altera website.
The hardware design used in this chapter is based on the standard
hardware example design included with the Nios II EDS.

Perform the following steps to set up the design environment:

1. On your host computer file system, locate the following directory:

<Nios II EDS install path>/examples/<verilog or vhdl>/<board
version>/standard

9–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Each development board has a VHDL and Verilog HDL version of
the design. You can use either of these design examples. Table 9–1
shows the names of the directories for each Nios development board.

2. Copy the standard directory to a new location. By copying the
design files, you avoid corrupting the original design and avoid
issues with file permissions. This document refers to the newly-
created directory as the <Quartus II project> directory.

3. Copy the file altera_avalon_checksum.zip to the <Quartus II
project> directory and unzip it. The design and test files listed in
Table 9–2 are added to <Quartus II project>/altera_avalon_checksum
directory.

Review the Example Design Specifications

This section discusses the design specifications for the provided
checksum example design, giving details on each of the following topics:

■ Checksum Design Files
■ Functional Specification
■ Master Task Logic
■ Register File
■ Avalon-MM Master Interface
■ Avalon-MM Slave Interface
■ Software API

Table 9–1. Design File Directories

Nios Development Board Design Directory

Stratix III Edition niosII_stratixIII_3sl150

Stratix II Edition niosII_stratixII_2s60_ROHS,
niosII_stratixII_2s60, niosII_stratixII_2s60ES

Stratix Edition niosII_stratix_1s10, niosII_stratix_1s40

Stratix Professional
Edition

niosII_stratix_1s40

Cyclone III Edition niosII_cycloneIII_3c120,
niosII_cycloneIII_3c25

Cyclone II Edition niosII_cycloneII_2c35

Cyclone Edition niosII_cyclone_1c20

Altera Corporation 9–11
October 2007

Design Example: Checksum Master

Checksum Design Files

Table 9–2 lists the contents provided in the altera_avalon_checksum
directory.

Master Task Logic

The checksum master reads a programmable number of 16-bit values to
calculate a checksum. The status register sets its DONE bit when the
checksum master completes. Software polls the DONE bit to determine
when the calculation is complete.

Table 9–2. Checksum Design Files Directory

File Name Description

/altera_avalon_checksum Contains all the HDL and software files for the component. All
the HDL files must be in the same directory and be consistent
in name with the hw.tcl file.(1)

altera_avalon_checksum.v The top-level HDL file instantiates the task logic, Avalon-MM
master and slave interfaces and the register files.

checksum_task_logic.v This Verilog HDL file contains the core functionality of the
checksum component.

read_master.v This file contains the logic for the Avalon-MM read master
interface.

s1_slave.v This file contains logic for reading and writing to the
checksum registers

altera_avalon_checksum_sw.tcl This is the checksum software driver configuration file for the
Nios II command line flow.

/inc This sub-directory includes header files defining the low-level
hardware interface.

altera_avalon_checksum_regs.h This file defines macros to access registers in the checksum
component.

/test_software This sub-directory includes an example program to test the
component hardware and software.

test_checksum.c The test program initializes and array of data for the
checksum component to read and compute the checksum.

Note to Table 9–2:
(1) The component editor creates the altera_avalon_checksum_hw.tcl file and stores it in the

altera_avalon_checksum directory.

9–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Register File

The register file provides access to the configuration, status, and
results registers shown in Table 9–3. The design maps each register to
a unique offset in the Avalon-MM slave port address space. The registers
are read, write, or read only.

Table 9–4 shows the layout of the bits and fields of these registers.

Avalon-MM Clock Interface

The checksum component includes an Avalon-MM clock interface to
bring in a system clock and reset into the checksum component as shown
in Figure 9–1. The clock interface will be connected to each Avalon-MM
master and slave interface in the Interface tab.

Table 9–3. Register File and Address Mapping of Checksum Master

Register Name Offset Access Description

Address 0x00 Read/Write 32-bit start address for checksum calculations.

Length 0x04 + 4 Read/Write 16-bit byte count for the checksum calculation.

Control 0x08 + 8 Read/Write Bits [7:1] are reserved. Bit[0] is the GO bit.

Reserved 0x0C + 12 —- —

Result 0x10 + 16 Read 16-bit result of the checksum calculation.

Status 0x14 + 20 Read Bits [7:2] are reserved. Bit[1:0] are DONE and BUSY.

Reserved 0x18 — —

Reserved 0x1C — —

Table 9–4. Layout of Checksum Master Registers

Offset 31 16 15 1 0

0x00 address

0x04 reserved length

0x08 reserved GO

0x10 reserved result

0x14 reserved DONE BUSY

Altera Corporation 9–13
October 2007

Design Example: Checksum Master

Table 9–5 lists the clock interface signals that comprise the Avalon-MM
master port.

Avalon-MM Master Interface

The checksum master component includes an Avalon-MM master port
that reads from memory. The component's Avalon-MM master port has
the following characteristics:

■ It is synchronous to the Avalon-MM master clock interface.
■ It initiates master transfers to the system interconnect fabric.

Table 9–6 lists the signals that comprise the Avalon-MM clock port.

Avalon-MM Slave Interface

The Avalon-MM slave port handles simple read and write transfers to the
registers. The slave port has the following characteristics:

■ Synchronous to the Avalon-MM clock interface.

Table 9–5. Table of Clock Interface Signals

Signal Name in HDL Avalon-MM Signal
Type Width Dir Notes

csi_clockreset_clk clk 1 In Synchronization clock for the
component. All signals are
synchronous to clk.

csi_clockreset_reset_n reset_n 1 In Resets the entire Avalon-MM
system.

Table 9–6. Table of Checksum Avalon-MM Master Port Signal Names and Avalon Signal Types

Signal Name in HDL Avalon-MM Signal
Type Width Dir Notes

avm_m1_address address 32 Out Byte address aligned on word
boundary.

avm_m1_byteenable byteenable 4 Out Enables specific byte lanes on
ports greater than 8 bits.

avm_m1_read_n read_n 1 Out Read request signal.

avm_m1_readdata readdata 32 In Uni-directional data.

avm_m1_waitrequest waitrequest 1 In Forces master port to wait until the
system interconnect fabric is ready
to proceed with the transfer.

9–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

■ Readable and writable.
■ Zero wait states for writing and one wait state for reading.
■ No setup or hold restrictions for reading and writing.
■ Uses native address alignment, because the slave port is connected to

registers rather than a memory device.

Software API

The altera_avalon_checksum_regs.h file has been provided to include
macros to read and write the checksum slave registers.

Create an SOPC Builder component

In this section you specify the hardware interfaces to the component, and
define the behavior of each interface signal.

Open the Quartus II Project and Start the Component Editor

To open SOPC Builder from the Quartus II software, perform the
following steps:

1. Start the Quartus II software.

2. Open the project standard.qpf in the <Quartus II project> directory.

3. On the Tools menu, click SOPC Builder. SOPC Builder appears,
displaying a ready-made example design containing a Nios II
processor and several components.

4. On the File menu, click New Component. The component editor
appears, displaying the Introduction tab.

Table 9–7. Table of Checksum Avalon-MM Slave Port Signal Names and Avalon Signal Types

Signal Name in HDL Avalon-MM Signal
Type Width Dir Notes

avs_s1_address address 3 In A byte address.

avs_s1_read_n read_n 1 In Read request input.

avs_s1_write_n write_n 1 In Write request input.

avs_s1_chipselect_n chipselect 1 In Chip-select to slave port. Slave port
ignores all other signals unless it is
selected.

avs_s1_readdata readdata 32 Out Uni-directional read data

avs_s1_writedata writedata 32 In Uni-directional write data

Altera Corporation 9–15
October 2007

Design Example: Checksum Master

HDL Files Tab

In this section you associate the component's top-level HDL file with the
component's hardware Tcl file using the HDL files tab. Perform the
following steps:

1. Click the HDL Files tab.

2. Click Add HDL File.

3. Browse to the <Quartus II project>/altera_avalon_checksum
directory and select the top level HDL file
altera_avalon_checksum.v and click Open.

1 The first file you add to the component editor must be the top-
level HDL file of your design.

4. Click OK when a message indicated analysis is complete.

5. You can now add lower-level design files. Click Add HDL File and
add the checksum_task_logic.v, read_master.v, and sl_slave.v files
to the component list.

6. Select the top level module of your component by clicking in the
Top Level Module list and selecting altera_avalon_checksum.

7. If you plan to simulate your component, click Add Simulation File
to add all of the files required for simulation.

The component editor now displays error messages. You are instructed to
fix them in later steps.

Signals Tab

For every I/O signal present on the top-level HDL module, you must
map the signal name to a valid signal type using the Signals tab. If the
signal name includes a recognized signal type (such as write or
address), the component editor guesses the signal's type. If the
component editor cannot determine the signal type, it assigns the type
export.

This design uses the automatic type and interface recognition feature of
the component editor to quickly allow the component editor to assign the
component signals to the appropriate interface and signal type. To change
the type assigned, click at the right edge of the Signal Type column for
the signal in question. A pull-down menu provides other choices.

9–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

1 For more information on the automatic type and interface
recognition feature see the Component Editor chapter in volume
4 of the Quartus II Handbook.

This design includes three interfaces: clock (clockreset), slave (s1), and
master (m1) as illustrated in Figure 9–2. The signal types and polarities
are derived from the signal names.

Altera Corporation 9–17
October 2007

Design Example: Checksum Master

Figure 9–2. The Signals Tab

9–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Interfaces Tab

After assigning signals to interfaces, the Interfaces tab allows you to
further configure the properties of all interfaces on the component.

Perform the following steps to configure the Avalon slave port:

1. Click the Interfaces tab. The component editor displays the
Avalon-MM slave port (s1) from the previous tab.

2. Remove any unused interfaces by clicking Remove Interfaces with
No Signals.

1 This removes the default provided clock and export_0 interfaces
in the component editor, as you created your own interfaces
with the automatic type and interface recognition feature.

The component editor now displays the clockreset clock input
interface, s1 slave interface, and the m1 master interface.

3. For the Avalon-MM slave port (s1) set the clock and reset for the
slave interface by clicking on Associated Clock and then select
clockreset.

4. Change the default settings for the slave port to match those given
in Table 9–8.

Table 9–8. Settings for Avalon-MM Slave Port (Part 1 of 2)

Slave Settings Value Description

Slave Addressing Native Indicates that the slave ports uses address-mapped registers.

Minimum Arbitration
Shares

1 Arbitration shares modify the default round-robin arbitration scheme
which provides equal access to all devices.

Can receive stderr/stdout No —

Interleave Bursts No —

Read Latency 0 —

Max. Pending Read
Transactions

0 —

Slave Timing Value Description

Setup 0 Indicates that the slave port responds to a read or write request in a
single clock cycle.

Read Wait 1 Indicates that the slave port responds to read requests one cycle
after they are made (one read waitstate).

Altera Corporation 9–19
October 2007

Design Example: Checksum Master

5. For the Avalon-MM master port (m1) set the clock and reset for the
master interface by clicking on Associated Clock and then select
clockreset.

6. Leave all other Avalon-MM master settings as the default settings,
as shown in Figure 9–4.

Write Wait 0 Indicates that the slave port responds to write requests in a single
clock cycle and does not need write waitstates.

Hold 0 Indicates that there is not a hold time requirement.

Table 9–8. Settings for Avalon-MM Slave Port (Part 2 of 2)

Slave Settings Value Description

9–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 9–3 illustrates the slave settings.

Figure 9–3. Avalon-MM Slave Interfaces Settings

Altera Corporation 9–21
October 2007

Design Example: Checksum Master

The Avalon-MM master port uses the default settings. Figure 9–4
illustrates these settings.

9–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 9–4. Avalon-MM Masters Interfaces Settings

Altera Corporation 9–23
October 2007

Design Example: Checksum Master

Component Wizard Tab

The Component Wizard tab allows you to control how SOPC Builder
presents the components to a user. Perform the following steps to
configure the user presentation of the component. The component editor
creates a default name for the component, based on the name of the top-
level design module.

1. Click the Component Wizard tab.

2. For this example, do not change the default settings for Component
Name or Component Version.

3. For the Component Group type the following: User Logic

4. Complete the remaining fields, such as Description and Created By.

5. Click Preview the Wizard to preview the component wizard as it
will appear in SOPC Builder. Figure 9–5 illustrates the component
wizard preview.

6. Close the Preview window.

Figure 9–5. Component Wizard

Save the Component

Perform the following steps to save the component and exit the
component editor:

1. Click Finish. A message describes the file that is created for the
component.

2. Click Yes to save the file. The component editor saves the
altera_avalon_checksum_hw.tcl file in the same directory that you
stored the top-level component HDL file. The component editor
closes, and you return to SOPC Builder.

9–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

3. Locate the new checksum component in the list of available
components under the User Logic group. The component is added
to the SOPC Builder search path. Right-clicking on a component in
the list allows you to edit the component.

Instantiate the Component in Hardware

At this point, the new component is ready to instantiate in an SOPC
Builder system. The remaining steps for this design example illustrate
one possible method of instantiation that includes the following general
steps:

1. Add the checksum master to the SOPC Builder system.

2. Compile the hardware design and download to the target board.

Add the checksum Master Component to the SOPC Builder System

Perform the following steps to add a checksum master component to the
SOPC Builder system:

1. On the SOPC Builder System Contents tab, select the new
component altera_avalon_checksum under the User Logic group in
the list of available components, and click Add. The configuration
wizard for the checksum master component appears.

2. Click OK. The component altera_avalon_checksum_inst appears in
the table of active components.

3. Connect the altera_avalon_checksum_inst m1 master port to a
memory in your system.

1 The test program uses an on-chip memory peripheral called
onchip_ram. If your SOPC Builder system does not have an on-
chip memory you should add an on-chip memory to the design.
The test program requires that the name of the on-chip RAM and
the component name used in the test program match. Connect
the on-chip RAM to the Nios II data master.

4. To start generating the system, click Generate

5. After system generation completes successfully, exit SOPC Builder.

Altera Corporation 9–25
October 2007

Design Example: Checksum Master

Compile the Hardware Design and Download to the Target Board

At this point, you have created an SOPC Builder system that uses the
checksum component. The checksum component adds no additional
I/O signals to the SOPC Builder system top-level so you only need to
compile the design in the Quartus II software.

Perform the following steps to compile the hardware design and
download it to the target board.

1. On the Processing menu, click Start Compilation to start compiling
the hardware design. The compilation begins.

If you performed all prior steps correctly, the Quartus II compilation
finishes successfully after several minutes, and generates a new
SRAM Object File (.sof) for the project.

1 You can only perform the remaining steps in this chapter if you
have a development board.

2. Connect your host computer to the development board using an
Altera download cable, such as the USB Blaster, and apply power to
the board.

3. On the Tools menu, click Programmer to open the Quartus II
Programmer.

4. Use the Programmer window to download the following FPGA
configuration file to the board: <Quartus II project>/standard.sof.

At this point, you have completed all the steps to create a hardware
design and download it to hardware.

Exercise the Hardware Using Nios II Software

The checksum master example design is based on the Nios II processor.
The example design files provide a C test program that programs the
component to calculate a checksum and then polls the component to
determine if it completes the calculation successfully. In this section you
perform the following steps:

1. Start the Nios II IDE and create a new Nios II IDE project.

2. Build and run the C test program.

3. View the results.

9–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

To complete this section, you must have performed all prior steps, and
successfully configured the target board with the hardware design.

Start the Nios II IDE and Create a New IDE Project

Perform the following steps to start the Nios II IDE and create a new IDE
project:

1. Start the Nios II IDE.

2. On the Window menu, point to Open Perspective and click Other,
then click Nios II C/C++ to open the Nios II C/C++ perspective.

3. On the File menu, point to New and then click C/C++ Application
to start a new project. The first page of the New Project wizard
appears.

4. Under Select Project Template, select Blank Project.

5. In the Name box, type test_checksum.

6. Ensure that Specify Location is turned off so that you use the
default software directory under your standard board as shown in
Figure 9–6.

Altera Corporation 9–27
October 2007

Design Example: Checksum Master

Figure 9–6. Create a New Project

7. Click Browse under Select Target Hardware. The Select Target
Hardware dialog box appears.

8. Browse to the <Quartus II project> directory.

9. Select the file std_<FPGA>.ptf.

10. Click Open to return to the New Project wizard. The SOPC Builder
System and the CPU fields are now specified.

11. Click Finish. After the IDE successfully creates the new project, the
C/C++ Projects view contains two new projects, test_checksum and
test_checksum_syslib.

9–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Compile the Software Project and Run on the Target Board

In this section you compile the C test program provided with the
checksum design files, and then download it to the target board.

First, perform the following steps to associate the source files with the
new C/C++ project:

1. Copy test_checksum.c from <Quartus II
project>/altera_avalon_checksum/test_software to the <Quartus II
project>/software/test_checksum directory.

2. In the Nios II IDE C/C++ Projects view, right-click test_checksum
and click Refresh, directing the IDE to recognize the new file in the
project directory.

The project is now ready to compile and run. Perform the following steps:

1. Right-click the project test_checksum in the Nios II C/C++ Projects
view and click Build Project to compile the program. The first time
you build the project, it can take a few minutes for the compilation
to finish.

2. After compilation completes, select test_checksum in the C/C++
Projects view.

3. On the Run menu, click Run. The Run dialog box appears.

4. Select Nios II Hardware, and click New. A new run/debug
configuration named test_checksum Nios II HW configuration
appears.

5. If the Run button (in the bottom right of the Run dialog box) is
disabled, perform the following steps:

a. Click the Target Connection tab.

b. Click Refresh next to the JTAG cable list.

c. In the JTAG cable list, select the download cable you want to
use.

d. Click Refresh next to the JTAG device list.

6. Click Run.

Altera Corporation 9–29
October 2007

Sharing Components

7. View the results: The Console view in the IDE displays messages
similar to the following: 0x5a5a.

You have finished all steps for the checksum design example.

Sharing
Components

When you create a component, component editor by default saves the
(_hw.tcl) in the same directory as the top-level HDL file. Where
appropriate, files referenced by the _hw.tcl file all use relative paths so
that files can easily be moved and copied together. To promote design
reuse, you can use the component in different projects, and you can share
your component with other designers.

Perform the following steps to share a component:

1. In your computer's file system, move the component directory to a
central location, outside any particular Quartus II project’s
directory. For example, you could create a directory
c:\my_component_library to store your custom components.

1 If you create a new component library under the Quartus II
project directory and then add individual components to that
new component library, for example:
<Quartus_rootdir>\sopc_builder\my_project\my_project_lib
\component1\, SOPC Builder cannot find the components. You
must add the directory for component1 to your library path.

1 SOPC Builder will find your components if you place your
components in the projectdir\ip directory. Altera recommends
that you do so.

2. On the Quartus II Assignments menu, click Settings. The Settings
dialog box appears.

3. In the Categories list, click Libraries.

4. Under Global libraries, add the path to the enclosing directory of
the component directory. For example, for a component directory
c:\my_component_library\checksum_master\, add the path
c:\my_component_library.

1 If you need to share a component library directory across
projects, you can ad items to the SOPC Builder
Tools\Options\IP Search Path settings. However, in the 7.2
version of the Quartus II software, this specifies component
directories, and not library directories.

9–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

To use the newly created component in another SOPC Builder system,
you must perform one of the following:

■ Copy the component and its related files into the IP subdirectory of
the project where it is to be used. For example, to use the component
in the project 2 project, simply copy the Tcl File (.tcl) and the
reference files to project2/ip/checksum, and they will be found
automatically.

■ Alternatively, you can place the Tcl File (.tcl) and related files
elsewhere in a component library, such as
L:/components/checksum/, and add the library location to see the
search path via SOPC Builder/Tools/Options/IP Search Path.

Altera Corporation 9–31
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Introduction to SOPC Builder
■ SOPC Builder Components
■ The Component Editor
■ Avalon Memory Mapped Interface Specification
■ Nios II Software Developer's Handbook
■ AN 351: Simulating Nios II Embedded Processor Designs

Document
Revision History

Table 9–9 shows the revision history for this chapter.

Table 9–9. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007, v7.2.1 Updated instructions on how to develop
components to match updated GUI.

—

October 2007, v7.2.0 Updated instructions on how to develop
components to match new GUI.

—

May 2007,
v7.1.0

Changed example component from a pulse width
modulator with that only has an Avalon-MM slave
interface to a checksum master that includes both
Avalon-MM master and slave interfaces.

Changed the example design
to one with more practical
applications. Updated
instructions for the 7.1
release.

March 2007,
v7.0.0

No change from previous release. —

November 2006,
v6.1.0

Chapter 9 was previously chapter 10. No change
to content.

—

May 2006,
v6.0.0

Chapter 10 was previously chapter 9. No change
to content.

—

October 2005,
v5.1.0

Chapter 9 was previously chapter 7. No change to
content.

—

August 2005,
v5.0.1

Corrected Table 7-5. —

May 2005,
v5.0.0

No change from previous release. —

February 2005,
v1.0

Initial release. —

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54004.pdf
http://www.altera.com/literature/hb/qts/qts_qii54001.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/qts/qts_qii54005.pdf

9–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation Section III–i

Section III. Interconnect
Components

This section provides information on Avalon Memory-Mapped (Avalon-
MM) and Avalon Streaming (Avalon-ST) components that can be added
to SOPC Builder systems. The components described in these chapters
help you to create and optimize your SOPC Builder system. They are
provided for free and can be used without a license in any design
targeting an Altera device.

This section includes the following chapters:

■ Chapter 10, Avalon Memory-Mapped Bridges
■ Chapter 11, Avalon Streaming Interconnect Components

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation

Interconnect Components Quartus II Handbook, Volume 4

Altera Corporation 10–1
October 2007

10. Avalon Memory-Mapped
Bridges

Introduction to
Bridges

This chapter introduces the concept of Avalon® Memory-Mapped
(Avalon-MM) bridges, and describes the Avalon-MM bridge components
provided by Altera® for use in SOPC Builder systems.

A bridge, in the context of SOPC Builder, is a component that acts as part
of the system interconnect fabric. Bridges are not end-points for data, but
rather affect the way data is transported between other components. By
manually inserting Avalon-MM bridges between Avalon-MM master
and slave ports in a system, you can control system topology, which in
turn affects the interconnect that SOPC Builder generates. Manual control
of the interconnect can result in higher performance and/or lower logic
utilization.

Altera provides the Avalon-MM bridge, which is described in this
chapter:

■ “Avalon-MM Pipeline Bridge” on page 10–9

Structure of a Bridge

A bridge has one Avalon-MM slave port and one Avalon-MM master
port, as shown in Figure 10–1. In an SOPC Builder system, one or more
master ports connect to the bridge’s slave port to control the bridge. The
bridge’s master port connects, in turn, to one or more slave ports. You
configure the master-slave pairs manually with the SOPC Builder GUI. In
Figure 10–1, all three masters have a logical connection to all three slaves,
although physically each master only connects to the bridge.

QII54020-7.2.0

10–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–1. Example of an Avalon-MM Bridge in an SOPC Builder System

A bridge issues transfers on its master port in the same order in which
they were received. Transfers initiated to the bridge’s slave port
propagate to the master port in the same order in which they were
initiated on the slave port.

1 If you use either the Avalon-MM pipeline bridge or the
Avalon-MM clock-crossing bridge in your system discussed in
the SOPC Builder chapter, automatic pipelining feature is
disabled.

f For details on the Avalon-MM interface, refer to the Avalon
Memory-Mapped Interface Specification.

Avalon-MM Bridge

M

S

M1

M

M2

M M

M3

S2

S

S1

S

S

M Avalon-MM Master Port

Avalon-MM Slave Port

S3

S

Arbiter & Mux

ChipSelect & Mux

Altera Corporation 10–3
October 2007

Introduction to Bridges

Reasons for Using a Bridge

Reasons you might use an Avalon-MM bridge include:

■ Increase the fMAX of your system
■ Control system topology
■ Specify separate clock domains for master-slave pairs

If there are no bridges between master-slave pairs, SOPC Builder
generates system interconnect fabric with maximum parallelism so that
all masters can drive transactions to and from all slaves concurrently as
long as each master is trying to access a different slave. This default
behavior incurs the cost of additional arbiters and multiplexers
decreasing the fMAX of the system. For high performance systems that do
not require a large degree of concurrency, the default behavior might not
provide optimal performance. With knowledge of the system and
application, you can optimize the system interconnect fabric by inserting
bridges to control the system topology.

Figure 10–2 and Figure 10–3 show an SOPC system without bridges. This
system includes three CPUs, a DDR SDRAM controller, a message buffer
RAM, a message buffer mutex, and a tristate bridge to an external SRAM.

Figure 10–2. Example System Without Bridges — SOPC Builder View

Figure 10–3 illustrates the default system interconnect fabric that SOPC
Builder would create for the system in Figure 10–2.

10–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–3. Example System without Bridges - System Interconnect View

Figure 10–4 and Figure 10–5 show how you can improve the logic
utilization of the system interconnect fabric by inserting bridges. If the
DDR SDRAM controller can run at 166 MHz and the CPUs accessing it
can run at 120 MHz, inserting an Avalon-MM clock-crossing bridge
between the CPUs and the DDR SDRAM has the following benefits:

■ Allows the CPU and DDR interfaces to run at different frequencies.
■ Places system interconnect fabric for the arbitration logic and

multiplexer for the DDR SDRAM controller in the slower clock
domain.

CPU1

Message Buffer
RAM

DDR SDRAM
Controller

CPU2

M Avalon-MM Master Port

CPU3

Message Buffer
Mutex

Tristate Bridge
to External

SRAM

S

M

SSS

MM

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

System
 Interconnect

Fabric

C
P

U
_S

el
ec

t_
M

ux
1

C
P

U
_S

el
ec

t_
M

ux
2

C
P

U
_S

el
ec

t_
M

ux
3

C
P

U
_S

el
ec

t_
M

ux
4

CPU1

Message Buffer
RAM

DDR SDRAM
Controller

CPU2 CPU3

Message Buffer
Mutex

Tristate Bridge
to External

SRAM

S

M

SSS

MM

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
3
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
2
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

C
P

U
1
 A

d
d
r,

 D
a
ta

,
B

u
rs

tR
e
q

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

rd
d
a
ta

_
c
p
u
1

rd
d
a
ta

_
c
p
u
2

rd
d
a
ta

_
c
p
u
3

System
 Interconnect

Fabric

C
P

U
_
S

e
le

c
t_

M
u
x
1

C
P

U
_
S

e
le

c
t_

M
u
x
2

C
P

U
_
S

e
le

c
t_

M
u
x
3

C
P

U
_
S

e
le

c
t_

M
u
x
4

Altera Corporation 10–5
October 2007

Introduction to Bridges

■ Reduces the complexity of the interconnect logic in the faster
domain, allowing the system to achieve a higher fMAX.

In the system illustrated in Figure 10–4 the message buffer RAM and
message buffer mutex must respond quickly to the CPUs, but each
response includes only a small amount of data. Placing an Avalon-MM
pipeline bridge between the CPUs and the message buffers results in the
following benefits:

■ Eliminates separate arbiter logic for the message buffer RAM and
message buffer mutex, which reduces logic utilization and
propagation delay, thus increasing the fMAX.

■ Reduces the overall size and complexity of the system interconnect
fabric.

Figure 10–4. Example SOPC System with Bridges - SOPC Builder View

Figure 10–5 shows the system interconnect fabric that SOPC Builder
would create for the system in Figure 10–4. Figure 10–5 is the same
system that is pictured in Figure 10–3 except that it includes bridges to
control system topology.

10–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–5. Example System with a Bridge

Message Buffer
RAM

CPU2

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Message Buffer
Mutex

Tristate Bridge
to External

SRAM

S4

CPU3

MM

CPU1

M

System
 Interconnect

Fabric

DDR SDRAM
Controller

S1

Avalon-MM
Pipeline
Bridge

S

Avalon-MM
Clock Crossing

Bridge

S2 S3

System Interconnect Fabric

CPU2

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

rd
da

ta
_c

pu
1

rd
da

ta
_c

pu
2

rd
da

ta
_c

pu
3

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
3

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
2

A
dd

r,
D

at
a,

 B
ur

st
R

eq

C
P

U
1

A
dd

r,
D

at
a,

 B
ur

st
R

eq
M M

S

Altera Corporation 10–7
October 2007

Introduction to Bridges

Address Mapping for Systems with Avalon-MM Bridges

An Avalon-MM bridge has an address span and range which are defined
as follows:

■ The address span of an Avalon-MM bridge is the smallest
power-of-two size that encompasses all of its slave’s ranges.

■ The address range of an Avalon-MM bridge is a numerical range from
its base address to its base address plus its (span -1)

(1)

SOPC Builder follows several rules in constructing an address map for a
system with Avalon-MM bridges:

1. The address span of each Avalon-MM slave is rounded up to the
nearest power of two.

2. Each Avalon-MM slave connected to a bridge is assigned an address
relative to the base address of the bridge. This address must be a
multiple of its span. (See Figure 10–6.)

Figure 10–6. Avalon-MM Master and Slave Addresses

3. In the example shown in Figure 10–6, if the address span of Slave 1
is 0×100 and the address span of Slave 2 is 0×200, Figure 10–7
illustrates the address span of the Avalon-MM bridge.

range = [base_address .. (base_address + (span -)];

Avalon-MM
Bridge

SMaster1 M M2

Slave 2S

Slave1S

S

M Avalon-MM Master Port

Avalon-MM Slave Port

Addr = 0x1000

Addr = 0x100

Addr = 0x400

Avalon-MM Master sees S1 at Addr = 0x1100
Avalon-MM Master sees S2 at Addr = 0x1400

M

10–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Figure 10–7. The Address Span of an Avalon-MM Bridge

Tools for Visualizing the Address Map

The Base Address column of SOPC Builder displays the base address
offset of the Avalon-MM slave relative to the base address of the
Avalon-MM bridge to which it is connected. You can see the absolute
address map for each master in the system by clicking the Address Map
button on the System Components tab.

Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

You use Avalon-MM bridges to control topology and separate clock
domains for on-chip components. You use tristate bridges to connect to
off-chip components and to share pins, decreasing the overall pin count
of the device. Tristate bridges are also used to change bi-directional input
data into uni-directional input and output data signals. Tristate bridges
are transparent, meaning that they do not affect the addresses of the
components they connect to. All tristate bridges in a system have an
address of 0×00000000 as Figure 10–8 illustrates.

f For more information about the Avalon-MM tristate bridge, refer to the
Building Memory Subsystems Using SOPC Builder chapter in volume 4 of
the Quartus II Handbook.

Addr = 0x400

Addr = 0x100

Addr = 0x1ff

Addr = 0x5ff

Addr = 0x7ff

Addr = 0x000

Slave 2:
 span = 0x200
 range = 0x400 - 0x5ff

Slave 1:
 span = 0x100
 range = 0x100 - 0x1ff

Avalon-MM Bridge
 span = 0x800
 = [base .. (base + 0x7ff)]

Altera Corporation 10–9
October 2007

Avalon-MM Pipeline Bridge

Figure 10–8. SOPC Builder System with Two Tristate Bridges

Avalon-MM
Pipeline Bridge

This section describes the hardware structure and functionality of the
Avalon-MM pipeline bridge component.

Component Overview

The Avalon-MM pipeline bridge inserts registers in the path between its
master and slave ports. In a given SOPC Builder system, if the critical
register-to-register propagation delay occurs in the system interconnect
fabric, the pipeline bridge can help reduce this delay and improve system
fMAX.

10–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The bridge allows you to independently pipeline different groups of
signals that can create a critical timing path in the interconnect:

■ Master-to-slave signals, such as address, write data, and control
signals

■ Slave-to-master signals, such as read data
■ The waitrequest signal to the master

1 The Avalon-MM pipeline bridge can also be used to control
topology without adding a pipeline stage. In this case, the
pipeline bridge controls the wiring of the system interconnect
fabric without adding any latency. To instantiate a bridge that
does not add any pipeline stages, simply do not select any of the
Pipeline Options on the parameter page. For the system
illustrated in Figure 10–5, a pipeline bridge that does not add a
pipeline register stage is optimal because the CPUs require
minimal delay from the message buffer mutex and message
buffer RAM. There is one instance where a pipeline bridge that
does not add any register stages will fail: If a slave does not have
read latency, it cannot be connected to a bridge with no pipeline
stages.

The Avalon-MM pipeline bridge component is SOPC Builder-ready and
integrates easily into any SOPC Builder system.

Functional Description

Figure 10–9 shows a block diagram of the Avalon-MM pipeline bridge
component.

Altera Corporation 10–11
October 2007

Avalon-MM Pipeline Bridge

Figure 10–9. Avalon-MM Pipeline Bridge Block Diagram

The following sections describe the component’s hardware functionality.

Interfaces

The bridge interface is composed of an Avalon-MM slave port and an
Avalon-MM master port. The data width of the ports is configurable,
which can affect how SOPC Builder generates dynamic bus sizing logic in
the system interconnect fabric. Both ports support Avalon-MM pipelined
transfers with variable latency. Both ports optionally support bursts of
user-configurable length.

Pipeline Stages and Effects on Latency

The bridge provides three optional register stages to pipeline the
following groups of signals.

■ Master-to-slave signals, including:
● address
● writedata
● write
● read
● byteenable
● chipselect
● burstcount (optional)

Master
I/F

Wait Request
 Logic

D Q

Q D

Avalon-MM Pipeline Bridge

Master-to-Slave
Signals

waitrequest

Slave-to-Master
Signals

D Q
Master-to-Slave

Signals

waitrequest

Slave-to-Master
Signals

Slave-to-Master
Pipeline

ENA

Master-to-Slave
Pipeline

waitrequest
Pipeline

Connects to an
Avalon-MM

Master
Interface

Connects to an
Avalon-MM

Slave
Interface

Slave
I/F

10–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

■ Slave-to-master signals, including:
● readdata
● readdatavalid
● endofpacket

■ The waitrequest signal to the master port

Including a register stage affects the timing and latency of transfers
through the bridge, as follows:

■ Including the register stages increases latency by one cycle in each
direction, but also increases the fMAX by reducing propagation delay.

■ Write transfers from the Avalon-MM master to the slave interface of
the bridge are decoupled from write transfers from the master
interface of the bridge to the slave peripheral because Avalon-MM
write transfers do not require an acknowledge from the slave.

■ Including the waitrequest register stage increases the latency of
master-to-slave signals by one cycle for each cycle in which the
waitrequest signal is asserted.

Burst Support

The bridge can optionally support bursts with configurable maximum
burst length. When configured to support bursts, the bridge propagates
bursts between master-slave pairs, up to the maximum burst length. Not
having burst support is equivalent to a maximum burst length of one. In
this case, the system interconnect fabric automatically decomposes
master-to-bridge bursts into a sequence of individual transfers.

Example System with Avalon-MM Pipeline Bridges

Figure 10–10 illustrates a system in which 7 Avalon-MM masters are
accessing a single DDR2 memory controller. By inserting two Avalon-
MM pipeline bridges, you can limit the complexity of the multiplexer that
would be required without the intermediate pipeline stage.

Altera Corporation 10–13
October 2007

Avalon-MM Pipeline Bridge

Figure 10–10. Seven Avalon-MM Masters Accessing One Avalon-MM Slave

Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder

You use the Avalon-MM Pipeline Bridge MegaWizard interface in SOPC
Builder to specify the hardware features. Refer to the Building Memory
Subsystems Using SOPC Builder chapter in volume 4 of the Quartus II
Handbook for a description of the options available on the Parameter
Settings page of the configuration wizard.

S

M Avalon-MM Master Port

Avalon-MM Slave Port

DMA Read

Avalon-MM
Pipeline
Bridge

S

M

S

DDR2 Memory
Controller

M

DMA Write

M

CPU3

M

External
Porcessor

M

CPU2

M

CPU1

M

JTAG UART

M

Avalon-MM
Pipeline
Bridge

S

M

10–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Device Support Altera device support for the bridge components is listed in Table 10–1.
For each device family, a component provides either full or preliminary
support:

■ Full support means the component meets all functional and timing
requirements for the device family and may be used in production
designs.

■ Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it can be used in production designs with caution.

Installation and
Licensing

The bridge components are included in the Altera MegaCore® IP Library,
which is an optional part of the Quartus® II software installation. After
you install the MegaCore IP Library, SOPC Builder recognizes the bridge
components and can instantiate them into a system.

You can use the bridge components for free without a license in any
design targeting an Altera device.

Table 10–1. Device Family Support

Device Family Avalon-MM Pipeline Bridge
Support

Avalon-MM Clock-Crossing
Bridge Support

Arria™ GX Full Preliminary

Stratix® III Full Preliminary

Stratix II GX Full Full

Stratix II Full Full

Stratix® Full Full

Cyclone™ III Full Preliminary

Cyclone II Full Full

Cyclone Full Full

HardCopy® II Full Full

MAX® No support No support

MAX II Full No support

Altera Corporation 10–15
October 2007

Hardware Simulation Considerations

Hardware
Simulation
Considerations

The bridge components do not provide a simulation testbench for
simulating a stand-alone instance of the component. However, you can
use the standard SOPC Builder simulation flow to simulate the
component design files inside an SOPC Builder system.

Software
Programming
Model

The bridge components do not have any user-visible control or status
registers. Therefore, software cannot control or configure any aspect of
the bridges during run-time. The bridges cannot generate interrupts.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ Building Memory Subsystems Using SOPC Builder

Document
Revision History

Table 10–2 shows the revision history for this chapter.

Table 10–2. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007 v7.2.0 Moved discussion of clock-crossing bridge from
this chapter to chapter 2.

—

May 2007,
v7.1.0

Initial release of the document. The Avalon-MM Pipeline Bridge
and Avalon-MM Clock-Crossing
Bridge are new components
provided in the Quartus II
software v7.1 release.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii54006.pdf

10–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Altera Corporation 11–1
October 2007

11. Avalon Streaming
Interconnect Components

Introduction to
Interconnect
Components

Avalon® Streaming (Avalon-ST) interconnect components facilitate the
design of high-speed, low-latency datapaths for the system-on-a-
programmable-chip (SOPC) environment. Interconnect components, in
the context of SOPC Builder, are components that act as a part of the
system interconnect fabric. They are not end points, but adapters that
allow you to connect different, but compatible, streaming interfaces. The
Avalon-ST interconnect components are typically used to connect cores
that send and receive high-bandwidth data, including multiplexed
streams, packets, cells, time division multiplexed (TDM) frames, and
digital signal processor (DSP) data.

The interconnect components that you add to an SOPC Builder system
insert logic between a source and sink interface, enabling that interface to
operate correctly. This chapter describes three Avalon-ST interconnect
components, also called adapters:

■ “Timing Adapter” on page 11–3—adapts between source and sink
interfaces that do support the ready signal and those that do not.

■ “Data Format Adapter” on page 11–6—adapts source and sink
interfaces that have different data widths.

■ “Channel Adapter” on page 11–10—adapts source and sink
interfaces that have different settings for the channel signal.

All of these interconnect components adapt initially incompatible
Avalon-ST source and sink interfaces so that they function correctly,
facilitating the development of high-speed, low-latency datapaths.

Interconnect Component Usage

Interconnect components can adapt the data or control signals of the
Avalon-ST interface. Typical adaptations to control signals include:

■ Adding pipeline stages to adjust the timing of the ready signal
■ Tying signals that are not used by either the source or sink to 0 or 1

Typical adaptations to data signals include:

■ Changing the number of symbols (words) that are driven per cycle
■ Changing the number of channels driven

QII54021-7.2.0

11–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

When the interconnect component adapts the data interface, it has one
Avalon-ST sink interface and one Avalon-ST source interface, as shown
in Figure 11–1. You configure the adapter components manually, using
SOPC Builder. In contrast to the Avalon-MM interface, which allows you
to create various topologies with a number of different master and slave
components, the Avalon-ST interconnect components are always used to
adapt point-to-point connections between streaming cores.

Figure 11–1. Example of an Avalon-ST Interconnect Component in an SOPC Builder System

f For details about the system interconnect fabric, refer to the System
Interconnect Fabric for Streaming Interfaces chapter in volume 4 of the
Quartus II Handbook. For details about the Avalon-ST interface protocol,
refer to The Avalon Streaming Interface Specification. Both are available at
www.altera.com.

Figure 11–2 illustrates a datapath that connects a triple-speed Ethernet
core to a scatter-gather DMA controller core using a timing adapter, data
format adapter, and channel adapter so that the cores can interoperate.

Avalon-ST
component src Avalon-ST

adaptersink srcsink Avalon-ST
component srcsink

streaming
input
data

streaming
output
data

A
ltera C

o
rp

o
ratio

n

11–3

O
cto

b
er 2007

A
valo

n
 S

tream
in

g
 In

terco
n

n
ect C

o
m

p
o

n
en

ts
T

im
in

g
 A

d
ap

ter

Figure 11–2. Avalon-ST Datapath Constructed Using Avalon Streaming Interconnect Components

Address Mapping

The signals of the Avalon-ST source and sink interfaces are mapped into the global Avalon address space.

Timing Adapter The timing adapter has two functions:

■ It adapts source and sink interfaces that support the ready signal and those that do not.
■ It adapts source and sink interfaces that have different ready latencies.

sink

. .
 . ch 0 .. 3

channel
adapter

ch 0 .. 255
srcsink

Scatter-Gather
DMA Controller

Core

Avalon Streaming Interconnect Components

Avalon Streaming Core

sink

src sink src

Triple
Speed

Ethernet
Core

src Data Format
Adaptersink srcTiming

Adaptersink src

Triple
Speed

Ethernet
Core

src Data Format
Adaptersink srcTiming

Adaptersink src

11–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

The timing adapter treats all signals other than the ready and valid
signals as payload, and simply drives them from the source to the sink.
Table 11–1 outlines the adaptations that the timing adapter provides.

Resource Usage and Performance

Resource utilization for the timing adapter depends upon the function
that it performs. Table 11–2 provides estimated resource utilization for
seven different configurations of the timing adapter.

Table 11–1. Timing Adapter

Condition Adaptation

The source has ready, but the sink
does not.

In this case, the source can respond to backpressure, but the sink
never needs to apply it. The ready input to the source interface is
connected directly to 1.

The source does not have ready, but
the sink does.

The sink may apply backpressure, but the source is unable to
respond to it. There is no logic that the adapter can insert that
prevents data loss when the source asserts valid but the sink is not
ready. The adapter provides simulation time error messages and an
error indication if data is ever lost. The user is presented with a
warning, and the connection is allowed.

The source and sink both support
backpressure, but the sink’s ready
latency is greater than the source's.

The source responds to ready assertion or deassertion faster than
the sink requires it. A number of pipeline stages equal to the
difference in ready latency are inserted in the ready path from the
sink back to the source, causing the source and the sink to see the
same cycles as ready cycles.

The source and sink both support
backpressure, but the sink’s ready
latency is less than the source's.

The source cannot respond to ready assertion or deassertion in
time to satisfy the sink. A buffer whose depth is equal to the difference
in ready latency is inserted to compensate for the source’s inability to
respond in time.

Altera Corporation 11–5
October 2007

Instantiating the Timing Adapter in SOPC Builder

Instantiating the
Timing Adapter
in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Support Backpressure with the Ready Signal—check this option to add
the backpressure functionality to the interface. When the ready signal is
used, the value for READY_LATENCY indicates the number of cycles
between when the ready signal is asserted and when valid data is
driven.

Output Interface Parameters

Support Backpressure with the Ready Signal—check this option to add
the backpressure functionality to the interface. When the ready signal is
used, the value for READY_LATENCY indicates the number of cycles
between when the ready signal is asserted and when valid data is
driven.

Common to Input and Output Interfaces

The following parameters define the interface characteristics that the
adapters do not affect directly.

Table 11–2. Timing Adapter Estimated Resource Usage and Performance

Input
Ready

Latency

Output
Ready

Latency

Stratix®II and Stratix II GX
(Approximate LEs) Cyclone® II Stratix (Approximate LEs)

fMAX

(MHz)
ALM

Count
Mem
Bits

fMAX

(MHz)
Logic
Cells

fMAX

(MHz)
Logic
Cells

Mem
Bits

1 2 500 2 0 420 2 422 1 0

1 3 500 2 0 420 3 422 2 0

1 4 500 4 0 420 4 422 3 0

1 0 500 21 80 420 183 422 20 80

2 1 456 21 80 401 188 317 21 80

3 1 456 21 80 401 188 317 21 80

4 1 456 21 80 401 188 317 21 80

11–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is eight bits. Set
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 - 255.

Bits Per Symbol

Set the number of bits per symbol.

Symbols Per Beat

Record the number of symbols per active transfer.

Include Packet Support

Check this box if the interfaces supports a packet protocol, including the
startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0–31 bits. Set to 0
if the error signal is not used.

Data Format
Adapter

The data format adapter handles interfaces that have different definitions
for the data signal. One of the more common adaptations that this
adapter performs is bus width adaptation, such as converting a data

Altera Corporation 11–7
October 2007

Data Format Adapter

interface that drives two, 8-bit symbols per beat to an interface that drives
four, 8-bit symbols per beat. The available data format adaptations are
listed in Table 11–3.

Resource Usage and Performance

Resource utilization for the data format adapter depends upon the
function that it performs. Table 11–4 provides estimated resource
utilization for numerous configurations of the data format adapter.

Table 11–3. Data Format Adapter

Condition Description of Adapter Logic

The source and sink’s bits per symbol
are different.

The connection cannot be made.

The source and sink have a different
number of symbols per beat.

The adapter converts from the source's width to the sink’s width.

If the adaptation is from a wider to a narrower interface, a beat of data
at the input will correspond to multiple beats of data at the output. If
the input error signal is asserted for a single beat, it is asserted on
output for multiple beats.

If the adaptation is from a narrow to a wider interface, multiple input
beats are required to fill a single output beat, and the output error
is the logical OR of the input error signal.

11–8

A
ltera C

o
rp

o
ratio

n

O
cto

b
er 2007

D
ata F

o
rm

at A
d

ap
ter

Q
u

artu
s II H

an
d

b
o

o
k, Vo

lu
m

e 4

Table 11–4. Data Format Adapter Estimated Resource Usage and Performance, 8 Bits per Symbol

Input
Symbols
per Beat

Output
Symbols
per Beat

Number
of

Channels

Packet
Support

Stratix®II and Stratix II GX
(Approximate LEs) Cyclone® II

Stratix
(Approximate LEs)

fMAX

(MHz)
ALM

Count
Mem
Bits

fMAX

(MHz)
Logic
Cells

Memory
Bits

fMAX

(MHz)
Logic
Cells

Mem
Bits

1 2 1 y 500 96 0 391 93 0 375 105 0

4 1 1 y 459 106 0 311 97 0 306 76 0

4 2 1 y 500 118 0 343 107 0 326 85 0

4 8 1 y 437 326 0 346 370 0 303 330 0

4 16 1 y 357 930 0 264 1005 0 231 806 0

1 2 188 y 321 110 15 187 137 15 209 153 15

4 1 105 y 244 125 2 148 183 2 150 137 2

4 2 105 y 277 101 2 172 134 2 173 108 2

4 8 130 y 322 255 41 175 279 41 187 262 41

4 16 30 y 268 341 106 166 563 106 153 471 106

4 1 105 n 269 107 2 177 185 2 167 99 2

4 2 54 n 290 109 1 193 203 1 176 91 1

4 3 10 n 249 149 18 189 251 16 159 217 18

4 5 222 n 281 300 40 199 381 40 182 316 40

4 6 30 n 312 184 40 201 385 40 198 241 40

4 7 139 n 253 285 56 159 416 56 161 427 56

4 8 198 n 311 281 40 190 247 40 198 257 40

4 15 160 n 259 370 121 165 733 121 149 697 121

4 16 36 n 227 255 105 391 93 0 146 491 105

Altera Corporation 11–9
October 2007

Data Format Adapter

Instantiating the Data Format Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle.

Output Interface Parameters

Data Symbols Per Beat

Set the number of symbols transferred per active cycle. This value can be
different for the input and output interfaces.

Common to Input and Output

The following parameters define the interface characteristics that the
adapters do not affect directly.

Support Backpressure with the Ready Signal

This option adds the backpressure functionality to the interface. When
the ready signal is used, the value for READY_LATENCY indicates the
number of cycles between when the ready signal is asserted and when
valid data is driven.

Data Bits Per Symbol

Record the number of bits per symbol. This value must be the same for
the input and output interfaces.

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up
to 16 channels. The maximum width of the channel signal is 8 bits. Set
to 0 if channels are not used.

Max Channel

Record the maximum number of channels that the interface supports.
Valid values are 0 – 255.

11–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Include Packet Support

Turn this option on if the interface supports a packet protocol, including
the startofpacket, endofpacket, and empty signals.

Error Signal Width (Bits)

Record the width of the error signal. Valid values are 0–31 bits. Set to 0
if the error signal is not used.

Channel Adapter The channel adapter provides adaptations between interfaces that have
different support for the channel signal or for the maximum number of
channels supported. The adaptations are described in Table 11–5.

Resource Usage and Performance

The channel adapter uses fewer than 30 LEs. Its frequency is limited by
the maximum frequency of the chosen device.

Table 11–5. Channel Adapter

Condition Description of Adapter Logic

The source uses channels, but the sink
does not.

The adapter provides a simulation error and signals an error for data
for any channel from the source other than 0. A warning is provided
to the user at generation time.

The sink has channel, but the source
does not.

The user is presented with a warning, and the channel inputs to the
sink are all tied to 0.

The source and sink both support
channels, and the source's maximum
number of channels is less than the
sink's.

The source's channel is connected to the sink's channel unchanged.
If the sink's channel signal has more bits, the higher bits are tied to 0.

The source and sink both support
channels, but the source's maximum
number of channels is greater than the
sink's.

The source’s channel is connected to the sink’s channel unchanged.
If the source’s channel signal has more bits, the higher bits are left
unconnected. The user is presented with a warning that channel
information may be lost.

An adapter provides a simulation error message and an error
indication if the value of channel from the source is greater than the
sink's maximum number of channels. In addition, the valid signal to
the sink is deasserted so that the sink never sees data for channels
that are out of range.

Altera Corporation 11–11
October 2007

Channel Adapter

Instantiating the Channel Adapter in SOPC Builder

You can use the Avalon-ST configuration wizard in SOPC Builder to
specify the hardware features. This section describes the options available
on the Parameter Settings page of the configuration wizard.

Input Interface Parameters

Channel Signal Width (Bits)

Set the width of the channel signal. A channel width of 4 allows up to
16 channels. The maximum width of the channel signal is 8 bits. Set to 0
if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 – 255.

Output Interface Parameters

Channel Signal Width (Bits)

Record the width of the channel signal. A channel width of 4 allows up
to 16 channels. The maximum width of the channel signal is 8 bits. Set
to 0 if channels are not used.

Max Channel

Set the maximum number of channels that the interface supports. Valid
values are 0 – 255.

Common to Input and Output Interfaces

Support Backpressure with the Ready Signal—Turn this option on to
add the backpressure functionality to the interface. When the ready
signal is used, the value for READY_LATENCY indicates the number of
cycles between when the ready signal is asserted and when valid data is
driven.

Data Bits Per Symbol

Set the number of bits per symbol.

11–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Symbols Per Beat

Set the number of symbols per active cycle.

Include Packet Support

Turn this option on if the interface supports a packet protocol, including
the startofpacket, endofpacket and empty signals.

Error Signal Width (Bits)

Set the width of the error signal. Valid values are 0–31 bits. Set to 0 if the
error signal is not used.

Device Support Altera device support for the Avalon-ST interconnect components is
listed in Table 11–6. For each device family, a component provides either
full or preliminary support:

■ Full support means the component meets all functional and timing
requirements for the device family and may be used in production
designs.

■ Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it may be used in production designs with caution.

Table 11–6. Device Family Support

Device Family Timing Adapter Data Format Adapter Channel Adapter

Arria GX™ preliminary support preliminary support preliminary support

Stratix® III preliminary support preliminary support preliminary support

Stratix II GX preliminary support preliminary support preliminary support

Stratix II preliminary support preliminary support preliminary support

Stratix preliminary support preliminary support preliminary support

Cyclone III® preliminary support preliminary support preliminary support

Cyclone II preliminary support preliminary support preliminary support

Cyclone preliminary support preliminary support preliminary support

Hardcopy® II preliminary support preliminary support preliminary support

Altera Corporation 11–13
October 2007

Installation and Licensing

Installation and
Licensing

The Avalon-ST interconnect components are included in the Altera
MegaCore IP Library, which is an optional part of the Quartus® II
software installation. After you install the MegaCore IP Library, SOPC
Builder recognizes these components and can instantiate them into a
system.

You can use the Avalon-ST components without a license in any design
targeting an Altera device.

Hardware
Simulation
Considerations

The Avalon-ST interconnect components do not provide a simulation
testbench for simulating a stand-alone instance of the component.
However, you can use the standard SOPC Builder simulation flow to
simulate the component design files inside an SOPC Builder system.

Software
Programming
Model

The Avalon-ST interconnect components do not have any user-visible
control or status registers. Therefore, software cannot control or configure
any aspect of the interconnect components at run-time. These
components cannot generate interrupts.

Referenced
Documents

This chapter references the following documents:

■ System Interconnect Fabric for Streaming Interfaces chapter in volume 4
of the Quartus II Handbook

■ Avalon Streaming Interface Specification

Document
Revision History

Table 11–7 shows the revision history for this chapter.

Table 11–7. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007,
v7.2.0

No changes to this release. —

May 2007,
v7.1.0

Initial release. —

http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf

11–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 4

Preliminary Information
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Quartus II Version 7.2 Handbook
Volume 5: Embedded Peripherals

QII5V5-7.2

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Altera Corporation

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates ... xv

About This Handbook .. xvii
Introduction ... xvii
How to Contact Altera ... xvii
Typographic Conventions .. xviii

Section I. Memory Peripherals

Chapter 1. SDRAM Controller Core
Core Overview ... 1–1
Functional Description .. 1–2

Avalon-MM Interface .. 1–2
Off-Chip SDRAM Interface ... 1–3

Signal Timing and Electrical Characteristics .. 1–3
Synchronizing Clock and Data Signals .. 1–3
Clock Enable (CKE) Not Supported ... 1–4
Sharing Pins with Other Avalon-MM Tri-State Devices ... 1–4

Board Layout and Pinout Considerations .. 1–4
Performance Considerations .. 1–5

Open Row Management ... 1–5
Sharing Data and Address Pins .. 1–5
Hardware Design and Target FPGA ... 1–5

Device and Tools Support .. 1–6
Instantiating the Core in SOPC Builder ... 1–6

Memory Profile Page ... 1–7
Timing Page .. 1–8

Hardware Simulation Considerations .. 1–9
SDRAM Controller Simulation Model .. 1–9
SDRAM Memory Model ... 1–10

Using the Generic Memory Model ... 1–10
Using the SDRAM Manufacturer’s Memory Model .. 1–10

Example Configurations ... 1–11
Software Programming Model .. 1–13
Clock, PLL and Timing Considerations ... 1–13

Factors Affecting SDRAM Timing ... 1–14
Symptoms of an Untuned PLL ... 1–14
Estimating the Valid Signal Window .. 1–14

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 5

Example Calculation .. 1–17
Referenced Documents ... 1–20
Document Revision History ... 1–21

Chapter 2. CompactFlash Core
Core Overview ... 2–1
Functional Description .. 2–2
Instantiating the Core in SOPC Builder ... 2–3
Required Connections ... 2–3
Device and Tools Support .. 2–4
Software Programming Model .. 2–4

HAL System Library Support ... 2–4
Software Files .. 2–5
Register Maps ... 2–5

Ide Registers ... 2–5
Ctl Registers ... 2–6

Cfctl Register .. 2–6
Idectl Register ... 2–7

Referenced Documents ... 2–7
Document Revision History ... 2–7

Chapter 3. Common Flash Interface Controller Core
Core Overview ... 3–1
Functional Description .. 3–2
Device and Tools Support .. 3–2
Instantiating the Core in SOPC Builder ... 3–3

Attributes Page ... 3–3
Presets Settings .. 3–3
Size Settings ... 3–3

Timing Page .. 3–3
Software Programming Model .. 3–4

HAL System Library Support ... 3–4
Limitations ... 3–4

Software Files .. 3–4
Referenced Documents ... 3–5
Document Revision History ... 3–6

Chapter 4. EPCS Device Controller Core
Core Overview ... 4–1
Functional Description .. 4–2

Avalon-MM Slave Interface and Registers ... 4–3
Device and Tools Support .. 4–4
Instantiating the Core in SOPC Builder ... 4–4
Software Programming Model .. 4–4

HAL System Library Support ... 4–5
Software Files .. 4–5

Document Revision History ... 4–6

Altera Corporation v
Preliminary

Contents

Chapter 5. On-Chip FIFO Memory Core
Core Overview ... 5–1
Functional Description .. 5–1

Avalon-MM Write Slave to Avalon-MM Read Slave .. 5–2
Avalon-ST Sink to Avalon-ST Source .. 5–2
Avalon-MM Write Slave to Avalon-ST Source .. 5–3
Avalon-ST Sink to Avalon-MM Read Slave ... 5–5
Status Interfaces .. 5–7
Clocking Modes .. 5–7

Device and Tools Support .. 5–7
Instantiating the Core in SOPC Builder ... 5–7

FIFO Settings ... 5–7
Depth .. 5–7
Clock Settings .. 5–8
Status Port .. 5–8
FIFO Implementation ... 5–8

Interface Parameters .. 5–8
Input .. 5–8
Output .. 5–8
Allow Backpressure .. 5–8
Avalon-MM Port Settings .. 5–9
Avalon-ST Port Settings ... 5–9

Software Programming Model .. 5–9
HAL System Library Support ... 5–9
Software Files .. 5–10

Programming with the On-Chip FIFO Memory ... 5–10
Software Control .. 5–11
Software Example ... 5–14

On-Chip FIFO Memory API ... 5–17
Referenced Documents ... 5–33
Document Revision History ... 5–33

Chapter 6. Scatter-Gather DMA Controller Core
Core Overview ... 6–1

Example Systems .. 6–1
Resource Usage and Performance ... 6–3
Comparison of SG-DMA Controller Core and DMA Controller Core 6–4

Functional Description .. 6–5
Memory-to-Memory Configuration .. 6–5
Memory-to-Stream Configuration ... 6–7
Stream-to-Memory Configuration ... 6–10
Possible Sources of Errors ... 6–12

Detailed Description of Each Block ... 6–13
Descriptor Processor Block ... 6–13
DMA Read Block .. 6–13
DMA Write Block ... 6–13

Device Support and Tools .. 6–13

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 5

Instantiating the Core in SOPC Builder ... 6–14
Transfer Mode ... 6–14
Allow Unaligned Transfers ... 6–14
Data and Error Widths .. 6–14
FIFO Depth .. 6–14

Hardware Simulation Considerations .. 6–15
Software Programming Model .. 6–15

HAL System Library Support ... 6–15
Software Files .. 6–15

Programming with the SG-DMA Controller ... 6–16
Software Control .. 6–16

Next Descriptor Pointer ... 6–18
DMA Descriptors ... 6–19
Timeouts .. 6–22

SG-DMA Controller API ... 6–22
Document Revision History ... 6–33

Chapter 7. DMA Controller Core
Core Overview ... 7–1
Functional Description .. 7–1

Setting Up DMA Transactions ... 7–2
The Master Read and Write Ports .. 7–3
Addressing and Address Incrementing .. 7–4

Instantiating the Core in SOPC Builder ... 7–4
DMA Parameters (Basic) ... 7–5

Transfer Size .. 7–5
Burst Transactions ... 7–5
FIFO Implementation ... 7–5

Advanced Options ... 7–6
Allowed Transactions ... 7–6

Device and Tools Support .. 7–6
Software Programming Model .. 7–6

HAL System Library Support ... 7–6
ioctl() Operations .. 7–7
Limitations ... 7–7

Software Files .. 7–8
Register Map ... 7–8

status Register .. 7–9
readaddress Register .. 7–10
writeaddress Register ... 7–10
length Register ... 7–10
control Register ... 7–11

Interrupt Behavior .. 7–13
Referenced Document ... 7–13
Document Revision History ... 7–14

Altera Corporation vii
Preliminary

Contents

Section II. Communication Peripherals

Chapter 8. JTAG UART Core
Core Overview ... 8–1
Functional Description .. 8–2

Avalon Slave Interface and Registers .. 8–2
Read and Write FIFOs ... 8–3
JTAG Interface .. 8–3
Host-Target Connection .. 8–3

Device and Tools Support .. 8–4
Instantiating the Core in SOPC Builder ... 8–4

Configuration Page .. 8–4
Write FIFO Settings ... 8–5
Read FIFO Settings ... 8–5

Simulation Settings .. 8–6
Simulated Input Character Stream ... 8–6
Prepare Interactive Windows .. 8–6

Hardware Simulation Considerations .. 8–7
Software Programming Model .. 8–7

HAL System Library Support ... 8–7
Driver Options: Fast versus Small Implementations ... 8–9
ioctl() Operations .. 8–10

Software Files .. 8–11
Accessing the JTAG UART Core via a Host PC ... 8–11
Register Map ... 8–11

Data Register .. 8–12
Control Register .. 8–13

Interrupt Behavior .. 8–13
Referenced Document ... 8–14
Document Revision History ... 8–15

Chapter 9. UART Core
Core Overview ... 9–1
Functional Description .. 9–2

Avalon-MM Slave Interface and Registers ... 9–2
RS-232 Interface .. 9–3
Transmitter Logic ... 9–3
Receiver Logic ... 9–4
Baud Rate Generation .. 9–4

Device and Tools Support .. 9–4
Instantiating the Core in SOPC Builder ... 9–5

Configuration Settings ... 9–5
Baud Rate Options .. 9–5

Baud Rate (bps) Setting ... 9–5
Baud Rate Can Be Changed By Software Setting .. 9–6

Data Bits, Stop Bits, Parity ... 9–6

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 5

Data Bits Setting ... 9–6
Parity Setting .. 9–6

Flow Control .. 9–7
Include CTS/RTS Pins and Control Register Bits ... 9–7

Avalon-MM Transfers with Flow Control (DMA) ... 9–7
Include End-of-Packet Register ... 9–7

Simulation Settings .. 9–8
Simulated RXD-Input Character Stream ... 9–8
Prepare Interactive Windows .. 9–8

Create ModelSim Alias to Open Streaming Output Window .. 9–8
Create ModelSim Alias to Open Interactive Stimulus Window 9–8

Simulated Transmitter Baud Rate .. 9–9
Hardware Simulation Considerations .. 9–9
Software Programming Model .. 9–9

HAL System Library Support ... 9–10
Driver Options: Fast Versus Small Implementations .. 9–11
ioctl() Operations .. 9–12
Limitations ... 9–13

Software Files .. 9–13
Legacy SDK Routines .. 9–13
Register Map ... 9–14

rxdata Register ... 9–15
txdata Register ... 9–15
status Register .. 9–15
control Register ... 9–18
divisor Register (Optional) .. 9–19
endofpacket Register (Optional) ... 9–20

Interrupt Behavior .. 9–20
Referenced Documents ... 9–21
Document Revision History ... 9–22

Chapter 10. SPI Core
Core Overview ... 10–1
Functional Description .. 10–1

Example Configurations .. 10–2
Transmitter Logic ... 10–4
Receiver Logic ... 10–4
Master and Slave Modes ... 10–4

Master Mode Operation ... 10–5
Slave Mode Operation .. 10–6
Multi-Slave Environments ... 10–6

Avalon-MM Interface .. 10–7
Instantiating the SPI Core in SOPC Builder ... 10–7

Master/Slave Settings .. 10–7
Generate Select Signals ... 10–7
SPI Clock (sclk) Rate ... 10–8
Specify Delay ... 10–8

Altera Corporation ix
Preliminary

Contents

Data Register Settings .. 10–9
Timing Settings ... 10–9

Device and Tools Support .. 10–10
Software Programming Model .. 10–10

Hardware Access Routines ... 10–10
Software Files .. 10–12
Legacy SDK Routines .. 10–12
Register Map ... 10–12

rxdata Register ... 10–13
txdata Register ... 10–13
status Register .. 10–13
control Register ... 10–14
slaveselect Register ... 10–15

Referenced Document ... 10–15
Document Revision History ... 10–16

Section III. Display Peripherals

Chapter 11. Optrex 16207 LCD Controller Core
Core Overview ... 11–1
Functional Description .. 11–1
Device and Tools Support .. 11–2
Instantiating the Core in SOPC Builder ... 11–2
Software Programming Model .. 11–2

HAL System Library Support ... 11–2
Displaying Characters on the LCD .. 11–3
Software Files .. 11–4
Register Map ... 11–4
Interrupt Behavior .. 11–4

Referenced Document ... 11–4
Document Revision History ... 11–5

Chapter 12. Video Sync Generator and Pixel Converter Cores
Core Overview ... 12–1
Video Sync Generator ... 12–2

Functional Description .. 12–2
Instantiating the Core in SOPC Builder .. 12–3
Signals .. 12–3
Timing Diagrams .. 12–4

Pixel Converter .. 12–5
Functional Description .. 12–5
Instantiating the Core in SOPC Builder .. 12–6
Signals .. 12–6

Device and Tools Support .. 12–6
Hardware Simulation Considerations .. 12–7

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 5

Referenced Document ... 12–7
Document Revision History ... 12–7

Section IV. Multiprocessor Coordination Peripherals

Chapter 13. Mutex Core
Core Overview .. 13–1
Functional Description .. 13–1
Device and Tools Support .. 13–2
Instantiating the Core in SOPC Builder ... 13–2
Software Programming Model .. 13–2

Software Files .. 13–3
Hardware Mutex .. 13–3

Mutex API ... 13–4
Document Revision History ... 13–11

Chapter 14. Mailbox Core
Core Overview .. 14–1
Functional Description .. 14–1
Device and Tools Support .. 14–2
Instantiating the Core in SOPC Builder ... 14–2
Software Programming Model .. 14–3

Software Files .. 14–4
Programming with the Mailbox Core ... 14–4

Mailbox API .. 14–6
Referenced Document ... 14–12
Document Revision History ... 14–12

Section V. Other Memory-Mapped Peripherals

Chapter 15. PIO Core
Core Overview ... 15–1
Functional Description .. 15–1

Data Input and Output .. 15–2
Edge Capture .. 15–3
IRQ Generation ... 15–3

Example Configurations ... 15–4
Avalon-MM Interface .. 15–4

Instantiating the PIO Core in SOPC Builder .. 15–5
Basic Settings ... 15–5
Input Options .. 15–5

Edge Capture Register ... 15–5
Synchronously Capture .. 15–5

Altera Corporation xi
Preliminary

Contents

Enable Bit Clearing for Edge Capture Register ... 15–6
Interrupt ... 15–6

Device and Tools Support .. 15–6
Software Programming Model .. 15–6

Software Files .. 15–7
Legacy SDK Routines .. 15–7
Register Map ... 15–7

data Register .. 15–7
direction Register .. 15–8
interruptmask Register ... 15–8
edgecapture Register .. 15–8

Interrupt Behavior .. 15–9
Software Files .. 15–9

Referenced Document ... 15–9
Document Revision History ... 15–10

Chapter 16. Timer Core
Core Overview ... 16–1
Functional Description .. 16–2

Avalon-MM Slave Interface .. 16–3
Device and Tools Support .. 16–3
Instantiating the Core in SOPC Builder ... 16–3

Timeout Period ... 16–3
Hardware Options ... 16–4

Register Options .. 16–4
Output Signal Options ... 16–5

Configuring the Timer as a Watchdog Timer .. 16–5
Software Programming Model .. 16–6

HAL System Library Support ... 16–6
System Clock Driver ... 16–6
Timestamp Driver ... 16–6
Limitations ... 16–7

Software Files .. 16–7
Register Map ... 16–7

status Register .. 16–8
control Register ... 16–8
periodl and periodh Registers ... 16–9
snapl and snaph Registers ... 16–10

Interrupt Behavior .. 16–10
Referenced Document ... 16–10
Document Revision History ... 16–11

Chapter 17. System ID Core
Core Overview ... 17–1
Functional Description .. 17–1
Device and Tools Support .. 17–2
Instantiating the Core in SOPC Builder ... 17–2

xii Altera Corporation
Preliminary

Quartus II Handbook, Volume 5

Software Programming Model .. 17–3
Document Revision History ... 17–5

Chapter 18. PLL Core
Core Overview ... 18–1
Functional Description .. 18–2

altpll Megafunction .. 18–2
Clock Outputs ... 18–3
PLL Status and Control Signals .. 18–3
System Reset Considerations .. 18–3

Device and Tools Support .. 18–3
Instantiating the Core in SOPC Builder ... 18–4

PLL Settings Page ... 18–4
Interface Page .. 18–4
Finish .. 18–5

Hardware Simulation Considerations .. 18–6
Register Definitions and Bit List .. 18–6

Status Register .. 18–6
Control Register .. 18–7

Referenced Document ... 18–7
Document Revision History ... 18–8

Chapter 19. Performance Counter Core
Core Overview ... 19–1
Functional Description .. 19–2

Section Counters ... 19–2
Global Counter ... 19–2
Register Map ... 19–3
System Reset Considerations .. 19–4

Device and Tools Support .. 19–4
Instantiating the Core in SOPC Builder ... 19–4

Define Counters .. 19–4
Multiple Clock Domain Considerations ... 19–4

Hardware Simulation Considerations .. 19–4
Software Programming Model .. 19–5

Software Files .. 19–5
Using the Performance Counter ... 19–5

API Summary .. 19–5
Functions and macros ... 19–5
Hardware constants .. 19–6

Startup .. 19–6
Global Counter Usage .. 19–6
Section Counter Usage ... 19–6
Viewing Counter Values .. 19–7

Interrupt Behavior .. 19–8
Performance Counter API .. 19–8
Referenced Document ... 19–19

Altera Corporation xiii
Preliminary

Contents

Document Revision History ... 19–19

Section VI. Streaming Peripherals

Chapter 20. Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Core Overview ... 20–1

Resource Usage and Performance ... 20–2
Multiplexer ... 20–3

Functional Description .. 20–3
Input Interfaces ... 20–4
Output Interface .. 20–4

Instantiating the Multiplexer in SOPC Builder .. 20–5
Demultiplexer .. 20–6

Functional Description .. 20–6
Input Interface ... 20–6
Output Interfaces .. 20–6

Instantiating the Demultiplexer in SOPC Builder ... 20–7
Device and Tools Support .. 20–8
Installation and Licensing .. 20–9
Hardware Simulation Considerations .. 20–9
Software Programming Model .. 20–9
Document Revision History ... 20–9

Chapter 21. Avalon Streaming Test Pattern Generator and Checker Cores
Core Overview ... 21–1
Resource Utilization and Performance ... 21–2
Test Pattern Generator .. 21–4

Functional Description .. 21–4
Command Interface .. 21–4
Control and Status Interface .. 21–5
Output Interface .. 21–5

Instantiating the Test Pattern Generator in SOPC Builder ... 21–5
Functional Parameter ... 21–5
Output Interface .. 21–6

Test Pattern Checker ... 21–6
Functional Description .. 21–6

Input Interface ... 21–7
Control and Status Interface .. 21–7

Instantiating the Test Pattern Checker in SOPC Builder .. 21–8
Functional Parameter ... 21–8
Input Parameters ... 21–8

Device and Tools Support .. 21–8
Installation and Licensing .. 21–9
Hardware Simulation Considerations .. 21–9
Software Programming Model .. 21–10

xiv Altera Corporation
Preliminary

Quartus II Handbook, Volume 5

HAL System Library Support ... 21–10
Software Files .. 21–10
Register Maps ... 21–10

Test Pattern Generator Control and Status Registers .. 21–11
Test Pattern Generator Command Registers .. 21–12
Test Pattern Checker Control and Status Registers ... 21–13

Test Pattern Generator API .. 21–15
data_source_reset() .. 21–15
data_source_init() ... 21–16
data_source_get_id() .. 21–16
data_source_get_supports_packets() .. 21–16
data_source_get_num_channels() .. 21–17

Test Pattern Checker API ... 21–21
data_sink_reset() ... 21–21
data_sink_init() ... 21–21
data_sink_get_id() .. 21–21
data_sink_get_supports_packets() ... 21–22
data_sink_get_num_channels() .. 21–22

Referenced Document ... 21–27
Document Revision History ... 21–27

Altera Corporation xv
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 5, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. SDRAM Controller Core
Revised: October 2007
Part number: NII51005-7.2.0

Chapter 2. CompactFlash Core
Revised: October 2007
Part number: QII55005-7.2.0

Chapter 3. Common Flash Interface Controller Core
Revised: October 2007
Part number: NII51013-7.2.0

Chapter 4. EPCS Device Controller Core
Revised: October 2007
Part number: NII51012-7.2.0

Chapter 5. On-Chip FIFO Memory Core
Revised: October 2007
Part number: QII55002-7.2.0

Chapter 6. Scatter-Gather DMA Controller Core
Revised: October 2007
Part number: QII55003-7.2.0

Chapter 7. DMA Controller Core
Revised: October 2007
Part number: NII51006-7.2.0

Chapter 8. JTAG UART Core
Revised: October 2007
Part number: NII51009-7.2.0

Chapter 9. UART Core
Revised: October 2007
Part number: NII51010-7.2.0

xvi Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 5

Chapter 10. SPI Core
Revised: October 2007
Part number: NII51011-7.2.0

Chapter 11. Optrex 16207 LCD Controller Core
Revised: October 2007
Part number: NII51019-7.2.0

Chapter 12. Video Sync Generator and Pixel Converter Cores
Revised: October 2007
Part number: QII55006-7.2.0

Chapter 13. Mutex Core
Revised: October 2007
Part number: NII51020-7.2.0

Chapter 14. Mailbox Core
Revised: October 2007
Part number: NII53001-7.2.0

Chapter 15. PIO Core
Revised: October 2007
Part number: NII51007-7.2.0

Chapter 16. Timer Core
Revised: October 2007
Part number: NII51008-7.2.0

Chapter 17. System ID Core
Revised: October 2007
Part number: NII51014-7.2.0

Chapter 18. PLL Core
Revised: October 2007
Part number: NII53002-7.2.0

Chapter 19. Performance Counter Core
Revised: October 2007
Part number: QII55001-7.2.0

Chapter 20. Avalon Streaming Channel Multiplexer and Demultiplexer Cores
Revised: October 2007
Part number: QII55004-7.2.0

Chapter 21. Avalon Streaming Test Pattern Generator and Checker Cores
Revised: October 2007
Part number: QII55007-7.2.0

Altera Corporation xvii
Preliminary

About This Handbook

Introduction This volume describes intellectual property (IP) cores provided by
Altera® for embedded systems design. These cores are installed with the
Quartus® II software, and you can use them free of charge in Altera
devices. Each core is SOPC Builder ready and can be instantiated in any
SOPC Builder system. Most cores provide software driver support for the
Altera Nios® II processor, and work seemlessly in Nios II systems.

Each chapter provides complete reference for a core, including the
following information:

■ Hardware structure
■ Features and interface(s) to the core
■ Available options when instantiating the core in SOPC Builder
■ Hardware simulation considerations, if any
■ Software programming model, including a description of the

registers and driver functions.
■ Device and tools support

How to Contact
Altera

For the most up-to-date information about Altera products, see the
following table.

Contact (1) Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Altera literature services Email literature@altera.com

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

xviii Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 5

Typographic
Conventions

This document uses the typographic conventions shown in the following
table.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information about a particular topic.

Altera Corporation Section I–i

Section I. Memory
Peripherals

This section describes memory components and interfaces provided by
Altera®. These components provide access to on-chip or off-chip memory
for SOPC Builder systems.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 1, SDRAM Controller Core
■ Chapter 2, CompactFlash Core
■ Chapter 3, Common Flash Interface Controller Core
■ Chapter 4, EPCS Device Controller Core
■ Chapter 5, On-Chip FIFO Memory Core
■ Chapter 6, Scatter-Gather DMA Controller Core
■ Chapter 7, DMA Controller Core

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I–ii Altera Corporation

Memory Peripherals Quartus II Handbook, Volume 5

Altera Corporation 1–1
October 2007
Altera Corporation 1–1
October 2007

1. SDRAM Controller Core

Core Overview The SDRAM controller core with Avalon® interface provides an Avalon
Memory-Mapped (Avalon-MM) interface to off-chip SDRAM. The
SDRAM controller allows designers to create custom systems in an
Altera® FPGA that connect easily to SDRAM chips. The SDRAM
controller supports standard SDRAM as described in the PC100
specification.

SDRAM is commonly used in cost-sensitive applications requiring large
amounts of volatile memory. While SDRAM is relatively inexpensive,
control logic is required to perform refresh operations, open-row
management, and other delays and command sequences. The SDRAM
controller connects to one or more SDRAM chips, and handles all
SDRAM protocol requirements. Internal to the FPGA, the core presents
an Avalon-MM slave port that appears as linear memory (that is, flat
address space) to Avalon-MM master peripherals.

The core can access SDRAM subsystems with various data widths (8, 16,
32, or 64 bits), various memory sizes, and multiple chip selects. The
Avalon-MM interface is latency-aware, allowing read transfers to be
pipelined. The core can optionally share its address and data buses with
other off-chip Avalon-MM tri-state devices. This feature is valuable in
systems that have limited I/O pins, yet must connect to multiple memory
chips in addition to SDRAM.

The SDRAM controller core with Avalon interface is SOPC Builder-ready
and integrates easily into any SOPC Builder-generated system. This
chapter contains the following sections:

■ “Functional Description” on page 1–2
■ “Device and Tools Support” on page 1–6
■ “Instantiating the Core in SOPC Builder” on page 1–6
■ “Hardware Simulation Considerations” on page 1–9
■ “Software Programming Model” on page 1–13
■ “Clock, PLL and Timing Considerations” on page 1–13

NII51005-7.2.0

1–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 1–1 shows a block diagram of the SDRAM controller core
connected to an external SDRAM chip.

Figure 1–1. SDRAM Controller with Avalon Interface Block Diagram

The following sections describe the components of the SDRAM controller
core in detail. All options are specified at system generation time, and
cannot be changed at runtime.

Avalon-MM Interface

The Avalon-MM slave port is the user-visible part of the SDRAM
controller core. The slave port presents a flat, contiguous memory space
as large as the SDRAM chip(s). When accessing the slave port, the details
of the PC100 SDRAM protocol are entirely transparent. The Avalon-MM
interface behaves as a simple memory interface. There are no
memory-mapped configuration registers.

The Avalon-MM slave port supports peripheral-controlled wait states for
read and write transfers. The slave port stalls the transfer until it can
present valid data. The slave port also supports read transfers with
variable latency, enabling high-bandwidth, pipelined read transfers.
When a master peripheral reads sequential addresses from the slave port,
the first data returns after an initial period of latency. Subsequent reads

Avalon-MM slave
interface
to on-chip

logic

SDRAM Controller Core

data, control

A
va

lo
n-

M
M

 S
la

ve
 P

or
t

clock

waitrequest

readdatavalid
dq
dqm

PLL

Phase Shift

In
te

rf
ac

e
to

 S
D

R
A

M
 p

in
s

Altera FPGA

clk

addr

ras
cas
cs

cke

ba

we

Control
Logic

address

SDRAM Clock

Controller Clock

Clock
Source

SDRAM Chip
(PC100)

Altera Corporation 1–3
October 2007

Functional Description

Altera Corporation 1–3
October 2007

Functional Description

can produce new data every clock cycle. However, data is not guaranteed
to return every clock cycle, because the SDRAM controller must pause
periodically to refresh the SDRAM.

f For details about Avalon-MM transfer types, refer to the Avalon
Memory-Mapped Interface Specification.

Off-Chip SDRAM Interface

The interface to the external SDRAM chip presents the signals defined by
the PC100 standard. These signals must be connected externally to the
SDRAM chip(s) through I/O pins on the Altera FPGA.

Signal Timing and Electrical Characteristics

The timing and sequencing of signals depends on the configuration of the
core. The hardware designer configures the core to match the SDRAM
chip chosen for the system. See “Instantiating the Core in SOPC Builder”
on page 1–6 for details. The electrical characteristics of the FPGA pins
depend on both the target device family and the assignments made in the
Quartus® II software. Some FPGA families support a wider range of
electrical standards, and therefore are capable of interfacing with a
greater variety of SDRAM chips. For details, see the handbook for the
target FPGA family.

Synchronizing Clock and Data Signals

The clock for the SDRAM chip (hereafter "SDRAM clock") must be driven
at the same frequency as the clock for the Avalon-MM interface on the
SDRAM controller (hereafter "controller clock"). As in all synchronous
design, you must ensure that address, data, and control signals at the
SDRAM pins are stable when a clock edge arrives. As shown in
Figure 1–1, you can use an on-chip phase-locked loop (PLL) to alleviate
clock skew between the SDRAM controller core and the SDRAM chip. At
lower clock speeds, the PLL might not be necessary. At higher clock rates,
a PLL is necessary to ensure that the SDRAM clock toggles only when
signals are stable on the pins. The PLL block is not part of the SDRAM
controller core. If a PLL is necessary, you must instantiate it manually. You
can instantiate the PLL core interface, which is an SOPC Builder
component, or instantiate an altpll megafunction outside the SOPC
Builder system module.

If you use a PLL, you must tune the PLL to introduce a clock phase shift
so that SDRAM clock edges arrive after synchronous signals have
stabilized. See “Clock, PLL and Timing Considerations” on page 1–13 for
details.

1–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

f For more information about instantiating a PLL in your SOPC Builder
system, refer to the PLL Core chapter in volume 5 of the Quartus II
Handbook. The Nios® II development tools provide example hardware
designs that use the SDRAM controller core in conjunction with a PLL,
which you can use as a reference for your custom designs. The Nios II
development tools are available free for download from
www.altera.com.

Clock Enable (CKE) Not Supported

The SDRAM controller does not support clock-disable modes. The
SDRAM controller permanently asserts the CKE signal on the SDRAM.

Sharing Pins with Other Avalon-MM Tri-State Devices

If an Avalon-MM tri-state bridge is present in the SOPC Builder system,
the SDRAM controller core can share pins with the existing tri-state
bridge. In this case, the core’s addr, dq (data) and dqm (byte-enable) pins
are shared with other devices connected to the Avalon-MM tri-state
bridge. This feature conserves I/O pins, which is valuable in systems that
have multiple external memory chips (for example, flash, SRAM, and
SDRAM), but too few pins to dedicate to the SDRAM chip. See
“Performance Considerations” for details about how pin sharing affects
performance.

1 The SDRAM addresses must connect all address bits regardless
of the size of the word so that the low-order address bits on the
tri-state bridge align with the low-order address bits on the
memory device. It is not possible to drop A0 for memories when
the smallest access size is 16 bits or A0-A1 when the smallest
access size is 32 bits.

Board Layout and Pinout Considerations

When making decisions about the board layout and FPGA pinout, try to
minimize the skew between the SDRAM signals. For example, when
assigning the FPGA pinout, group the SDRAM signals, including the
SDRAM clock output, physically close together. Also, you can use the
Fast Input Register and Fast Output Register logic options in the
Quartus II software. These logic options place registers for the SDRAM
signals in the I/O cells. Signals driven from registers in I/O cells have
similar timing characteristics, such as tCO, tSU, and tH.

Altera Corporation 1–5
October 2007

Functional Description

Altera Corporation 1–5
October 2007

Functional Description

Performance Considerations

Under optimal conditions, the SDRAM controller core’s bandwidth
approaches one word per clock cycle. However, because of the overhead
associated with refreshing the SDRAM, it is impossible to reach one word
per clock cycle. Other factors affect the core’s performance, as described
below.

Open Row Management

SDRAM chips are arranged as multiple banks of memory, in which each
bank is capable of independent open-row address management. The
SDRAM controller core takes advantage of open-row management for a
single bank. Continuous reads or writes within the same row and bank
operate at rates approaching one word per clock. Applications that
frequently access different destination banks require extra management
cycles for row closings and openings.

Sharing Data and Address Pins

When the controller shares pins with other tri-state devices, average
access time usually increases and bandwidth decreases. When access to
the tri-state bridge is granted to other devices, the SDRAM requires row
open and close overhead cycles. Furthermore, the SDRAM controller has
to wait several clock cycles before it is granted access again.

To maximize bandwidth, the SDRAM controller automatically maintains
control of the tri-state bridge as long as back-to-back read or write
transactions continue within the same row and bank.

1 This behavior may degrade the average access time for other
devices sharing the Avalon-MM tri-state bridge.

The SDRAM controller closes an open row whenever there is a break in
back-to-back transactions, or whenever a refresh transaction is required.
As a result:

■ The controller cannot permanently block access to other devices
sharing the tri-state bridge.

■ The controller is guaranteed not to violate the SDRAM’s row open
time limit.

Hardware Design and Target FPGA

The target FPGA affects the maximum achievable clock frequency of a
hardware design. Certain device families achieve higher fM A X
performance than other families. Furthermore, within a device family

1–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

faster speed grades achieve higher performance. The SDRAM controller
core can achieve 100 MHz in Altera’s high-performance device families,
such as Stratix® series FPGAs. However, the core might not achieve
100 MHz performance in all Altera FPGA families.

The fMAX performance also depends on the SOPC Builder system design.
The SDRAM controller clock can also drive other logic in the system
module, which might affect the maximum achievable frequency. For the
SDRAM controller core to achieve fMAX performance of 100 MHz, all
components driven by the same clock must be designed for a 100 MHz
clock rate, and timing analysis in the Quartus II software must verify that
the overall hardware design is capable of 100 MHz operation.

Device and
Tools Support

The SDRAM Controller with Avalon interface core supports all Altera
FPGA families. Different FPGA families support different I/O standards,
which may affect the ability of the core to interface to certain SDRAM
chips. For details about supported I/O types, see the handbook for the
target FPGA family.

Instantiating the
Core in SOPC
Builder

Designers use the MegaWizard® Plug-In Manager interface for the
SDRAM controller in SOPC Builder to specify hardware features and
simulation features. The SDRAM controller MegaWizard interface has
two pages: Memory Profile and Timing. This section describes the
options available on each page.

The Presets list offers several pre-defined SDRAM configurations as a
convenience. If the SDRAM subsystem on the target board matches one
of the preset configurations, you can configure the SDRAM controller
core easily by selecting the appropriate preset value. The following preset
configurations are defined:

■ Micron MT8LSDT1664HG module
■ Four SDR100 8 MByte × 16 chips
■ Single Micron MT48LC2M32B2-7 chip
■ Single Micron MT48LC4M32B2-7 chip
■ Single NEC D4564163-A80 chip (64 MByte × 16)
■ Single Alliance AS4LC1M16S1-10 chip
■ Single Alliance AS4LC2M8S0-10 chip

Selecting a preset configuration automatically changes values on the
Memory Profile and Timing tabs to match the specific configuration.
Altering a configuration setting on any page changes the Preset value to
custom.

Altera Corporation 1–7
October 2007

Instantiating the Core in SOPC Builder

Altera Corporation 1–7
October 2007

Instantiating the Core in SOPC Builder

Memory Profile Page

The Memory Profile page allows designers to specify the structure of the
SDRAM subsystem, such as address and data bus widths, the number of
chip select signals, and the number of banks. Table 1–1 lists the settings
available on the Memory Profile page.

Table 1–1. Memory Profile Page Settings

Settings Allowed
Values

Default
Values Description

Data Width 8, 16, 32, 64 32 SDRAM data bus width. This value determines the
width of the dq bus (data) and the dqm bus (byte-
enable).

Architecture
Settings

Chip Selects 1, 2, 4, 8 1 Number of independent chip selects in the SDRAM
subsystem. By using multiple chip selects, the SDRAM
controller can combine multiple SDRAM chips into one
memory subsystem.

Banks 2, 4 4 Number of SDRAM banks. This value determines the
width of the ba bus (bank address) that connects to the
SDRAM. The correct value is provided in the data sheet
for the target SDRAM.

Address
Width
Settings

Row 11, 12, 13, 14 12 Number of row address bits. This value determines the
width of the addr bus. The Row and Column values
depend on the geometry of the chosen SDRAM. For
example, an SDRAM organized as 4096 (212) rows by
512 columns has a Row value of 12.

Column >= 8, and
less than
Row value

8 Number of column address bits. For example, the
SDRAM organized as 4096 rows by 512 (29) columns
has a Column value of 9.

Share pins via tri-state bridge
dq/dqm/addr I/O pins

checked
(yes),
unchecked
(no)

No When set to No, all pins are dedicated to the SDRAM
chip. When set to Yes, the addr, dq, and dqm pins can
be shared with a tristate bridge in the system. In this
case, select the appropriate tristate bridge from the
pulldown menu.

Include a functional memory
model in the system
testbench

Yes, No Yes When on, SOPC Builder creates a functional simulation
model for the SDRAM chip. This default memory model
accelerates the process of creating and verifying
systems that use the SDRAM controller. See
“Hardware Simulation Considerations” on page 1–9.

1–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Based on the settings entered on the Memory Profile page, the wizard
displays the expected memory capacity of the SDRAM subsystem in units
of megabytes, megabits, and number of addressable words. Compare
these expected values to the actual size of the chosen SDRAM to verify
that the settings are correct.

Timing Page

The Timing page allows designers to enter the timing specifications of the
SDRAM chip(s) used. The correct values are available in the
manufacturer’s data sheet for the target SDRAM. Table 1–2 lists the
settings available on the Timing page.

Regardless of the exact timing values you specify, the actual timing
achieved for each parameter is an integer multiple of the Avalon clock
period. For the Issue one refresh command every parameter, the actual
timing is the greatest number of clock cycles that does not exceed the

Table 1–2. Timing Page Settings

Settings Allowed
Values

Default
Value Description

CAS latency 1, 2, 3 3 Latency (in clock cycles) from a read command to data out.

Initialization refresh
cycles

1 – 8 2 This value specifies how many refresh cycles the SDRAM
controller performs as part of the initialization sequence after
reset.

Issue one refresh
command every

— 15.625
μs

This value specifies how often the SDRAM controller refreshes
the SDRAM. A typical SDRAM requires 4,096 refresh
commands every 64 ms, which can be achieved by issuing one
refresh command every 64 ms / 4,096 = 15.625 μs.

Delay after power up,
before initialization

— 100 μs The delay from stable clock and power to SDRAM initialization.

Duration of refresh
command (t_rfc)

— 70 ns Auto Refresh period.

Duration of precharge
command (t_rp)

— 20 ns Precharge command period.

ACTIVE to READ or
WRITE delay (t_rcd)

— 20 ns ACTIVE to READ or WRITE delay.

Access time (t_ac) — 17 ns Access time from clock edge. This value may depend on CAS
latency.

Write recovery time
(t_wr, No auto
precharge)

— 14 ns Write recovery if explicit precharge commands are issued. This
SDRAM controller always issues explicit precharge commands.

Altera Corporation 1–9
October 2007

Hardware Simulation Considerations

Altera Corporation 1–9
October 2007

Hardware Simulation Considerations

target value. For all other parameters, the actual timing is the smallest
number of clock ticks that provides a value greater than or equal to the
target value.

Hardware
Simulation
Considerations

This section discusses considerations for simulating systems with
SDRAM. Three major components are required for simulation:

■ A simulation model for the SDRAM controller
■ A simulation model for the SDRAM chip(s), also called the memory

model
■ A simulation testbench that wires the memory model to the SDRAM

controller pins.

Some or all of these components are generated by SOPC Builder at system
generation time.

SDRAM Controller Simulation Model

The SDRAM controller design files generated by SOPC Builder are
suitable for both synthesis and simulation. Some simulation features are
implemented in the HDL using “translate on/off” synthesis directives
that make certain sections of HDL code invisible to the synthesis tool.

The simulation features are implemented primarily for easy simulation of
Nios and Nios II processor systems using the ModelSim simulator. The
SDRAM controller simulation model is not ModelSim specific. However,
minor changes may be required to make the model work with other
simulators.

c If you change the simulation directives to create a custom
simulation flow, be aware that SOPC Builder overwrites
existing files during system generation. Take precautions to
ensure your changes are not overwritten.

f For a demonstration of simulation of the SDRAM controller in the
context of Nios II embedded processor systems, refer to AN 351:
Simulating Nios II Processor Designs.

1–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

SDRAM Memory Model

This section describes the two options for simulating a memory model of
the SDRAM chip(s).

Using the Generic Memory Model

If the Include a functional memory model the system testbench option
is enabled at system generation, then SOPC Builder generates an HDL
simulation model for the SDRAM memory. In the auto-generated system
testbench, SOPC Builder automatically wires this memory model to the
SDRAM controller pins.

Using the automatic memory model and testbench accelerates the process
of creating and verifying systems that use the SDRAM controller.
However, the memory model is a generic functional model that does not
reflect the true timing or functionality of real SDRAM chips. The generic
model is always structured as a single, monolithic block of memory. For
example, even for a system that combines two SDRAM chips, the generic
memory model is implemented as a single entity.

Using the SDRAM Manufacturer’s Memory Model

If the Include a functional memory model the system testbench option
is not enabled, the designer is responsible for obtaining a memory model
from the SDRAM manufacturer, and manually wiring the model to the
SDRAM controller pins in the system testbench.

Altera Corporation 1–11
October 2007

Example Configurations

Altera Corporation 1–11
October 2007

Example Configurations

Example
Configurations

The following examples show how to connect the SDRAM controller
outputs to an SDRAM chip or chips. The bus labeled ctl is an aggregate
of the remaining signals, such as cas_n, ras_n, cke and we_n.

Figure 1–2 shows a single 128-Mbit SDRAM chip with 32-bit data.
Address, data, and control signals are wired directly from the controller
to the chip. The result is a 128-Mbit (16-Mbyte) memory space.

Figure 1–2. Single 128-Mbit SDRAM Chip with 32-Bit Data

data 32 128 Mbits
16 Mbytes

32 data width device

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

addr

cs_n

ctl

1–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Figure 1–3 shows two 64-Mbit SDRAM chips, each with 16-bit data.
Address and control signals connect in parallel to both chips. Note that
chipselect (cs_n) is shared by the chips. Each chip provides half of the
32-bit data bus. The result is a logical 128-Mbit (16-Mbyte) 32-bit data
memory.

Figure 1–3. Two 64-MBit SDRAM Chips Each with 16-Bit Data

addr

ctl

cs_n

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

64 Mbits
8 Mbytes

16 data width device

64 Mbits
8 Mbytes

16 data width device

data

16

16

32

Altera Corporation 1–13
October 2007

Software Programming Model

Altera Corporation 1–13
October 2007

Software Programming Model

Figure 1–4 shows two 128-Mbit SDRAM chips, each with 32-bit data.
Address, data, and control signals connect in parallel to the two chips.
The chipselect bus (cs_n[1:0]) determines which chip is selected. The
result is a logical 256-Mbit 32-bit wide memory.

Figure 1–4. Two 128-Mbit SDRAM Chips Each with 32-Bit Data

Software
Programming
Model

The SDRAM controller behaves like simple memory when accessed via
the Avalon-MM interface. There are no software-configurable settings,
and there are no memory-mapped registers. No software driver routines
are required for a processor to access the SDRAM controller.

Clock, PLL and
Timing
Considerations

This section describes issues related to synchronizing signals from the
SDRAM controller core with the clock that drives the SDRAM chip.
During SDRAM transactions, the address, data, and control signals are
valid at the SDRAM pins for a window of time, during which the SDRAM
clock must toggle to capture the correct values. At slower clock
frequencies, the clock naturally falls within the valid window. At higher
frequencies, you must compensate the SDRAM clock to align with the
valid window.

addr

ctl

cs_n [0]

cs_n [1]

SDRAM
Controller

Altera FPGA

Avalon-MM
interface

to
on-chip

logic

data 32

128 Mbits
16 Mbytes

32 data width device

128 Mbits
16 Mbytes

32 data width device

32

32

1–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Determine when the valid window occurs either by calculation or by
analyzing the SDRAM pins with an oscilloscope. Then use a PLL to adjust
the phase of the SDRAM clock so that edges occur in the middle of the
valid window. Tuning the PLL might require trial-and-error effort to align
the phase shift to the properties of your target board.

f For details about the PLL circuitry in your target device, refer to the
appropriate device family handbook. For details about configuring the
PLLs in Altera FPGAs, refer to the altpll Megafunction User Guide.

Factors Affecting SDRAM Timing

The location and duration of the window depends on several factors:

■ Timing parameters of the FPGA and SDRAM I/O pins — I/O timing
parameters vary based on device family and speed grade.

■ Pin location on the FPGA — FPGA I/O pins connected to row
routing have different timing than pins connected to column routing.

■ Logic options used during the Quartus II compilation — Logic
options such as the Fast Input Register and Fast Output Register
logic affect the design fit. The location of logic and registers inside the
FPGA affects the propagation delays of signals to the I/O pins.

■ SDRAM CAS latency

As a result, the valid window timing is different for different
combinations of FPGA and SDRAM devices. Furthermore, the window
depends on the Quartus II software fitting results and pin assignments.

Symptoms of an Untuned PLL

Detecting when the PLL is not tuned correctly might be difficult. Data
transfers to or from the SDRAM might not fail universally. For example,
individual transfers to the SDRAM controller might succeed, whereas
burst transfers fail. For processor-based systems, if software can perform
read or write data to SDRAM, but cannot run when the code is located in
SDRAM, then the PLL is probably tuned incorrectly.

Estimating the Valid Signal Window

This section describes how to estimate the location and duration of the
valid signal window using timing parameters provided in the SDRAM
datasheet and the Quartus II software compilation report. After finding
the window, tune the PLL so that SDRAM clock edges occur exactly in the
middle of the window.

Altera Corporation 1–15
October 2007

Clock, PLL and Timing Considerations

Altera Corporation 1–15
October 2007

Clock, PLL and Timing Considerations

Calculating the window is a two-step process. First, determine by how
much time the SDRAM clock can lag the controller clock, and then by
how much time it can lead. After finding the maximum lag and lead
values, calculate the midpoint between them.

1 These calculations provide an estimation only. The following
delays can also affect proper PLL tuning, but are not accounted
for by these calculations.

• Signal skew due to delays on the printed circuit board —
These calculations assume zero skew.

• Delay from the PLL clock output nodes to destinations —
These calculations assume that the delay from the PLL
SDRAM-clock output-node to the pin is the same as the
delay from the PLL controller-clock output-node to the
clock inputs in the SDRAM controller. If these clock delays
are significantly different, you must account for this phase
shift in your window calculations.

Figure 1–5 shows how to calculate the maximum length of time that the
SDRAM clock can lag the controller clock, and Figure 1–6 shows how to
calculate the maximum lead. Lag is a negative time shift, relative to the
controller clock, and lead is a positive time shift. The SDRAM clock can
lag the controller clock by the lesser of the maximum lag for a read cycle
or that for a write cycle. In other words, Maximum Lag = minimum(Read
Lag, Write Lag). Similarly, the SDRAM clock can lead by the lesser of the
maximum lead for a read cycle or for a write cycle. In other words,
Maximum Lead = minimum(Read Lead, Write Lead).

1–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Figure 1–5. Calculating the Maximum SDRAM Clock Lag

Altera Corporation 1–17
October 2007

Clock, PLL and Timing Considerations

Altera Corporation 1–17
October 2007

Clock, PLL and Timing Considerations

Figure 1–6. Calculating the Maximum SDRAM Clock Lead

Example Calculation

This section demonstrates a calculation of the signal window for a Micron
MT48LC4M32B2-7 SDRAM chip and an FPGA design targeting an Altera
Stratix II EP2S60F672C5 FPGA. This example uses a CAS latency (CL) of
3 cycles, and a clock frequency of 50 MHz. All SDRAM signals on the
FPGA are registered in I/O cells, enabled with the Fast Input Register
and Fast Output Register logic options in the Quartus II software.

1–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Table 1–3 shows the relevant timing parameters excerpted from the
MT48LC4M32B2 device datasheet.

Table 1–3. Timing Parameters for Micron MT48LC4M32B2 SDRAM Device

Parameter Symbol
Value (ns) in -7 Speed Grade

Min. Max.

Access time from
CLK (pos. edge)

CL = 3 tAC(3) 5.5

CL = 2 tAC(2) 8

CL = 1 tAC(1) 17

Address hold time tAH 1

Address setup time tAS 2

CLK high-level width tCH 2.75

CLK low-level width tCL 2.75

Clock cycle time CL = 3 tCK(3) 7

CL = 2 tCK(2) 10

CL = 1 tCK(1) 20

CKE hold time tCKH 1

CKE setup time tCKS 2

CS#, RAS#, CAS#, WE#, DQM hold time tCMH 1

CS#, RAS#, CAS#, WE#, DQM setup time tCMS 2

Data-in hold time tDH 1

Data-in setup time tDS 2

Data-out
high-impedance
time

CL = 3 tHZ(3) 5.5

CL = 2 tHZ(2) 8

CL = 1 tHZ(1) 17

Data-out low-impedance time tLZ 1

Data-out hold time tOH 2.5

Altera Corporation 1–19
October 2007

Clock, PLL and Timing Considerations

Altera Corporation 1–19
October 2007

Clock, PLL and Timing Considerations

Table 1–4 shows the relevant FPGA timing information, obtained from
the Timing Analyzer section of the Quartus II Compilation Report. The
values in Table 1–4 are the maximum or minimum values among all
FPGA pins related to the SDRAM. The variance in timing between the
SDRAM pins on the FPGA is small (less than 100 ps) because the registers
for these signals are placed in the I/O cell.

1 You must compile the design in the Quartus II software to obtain
the I/O timing information for the FPGA design. Although
Altera device family datasheets contain generic I/O timing
information for each device, the Quartus II Compilation Report
provides the most precise timing information for your specific
design.

c The timing values found in the compilation report can change,
depending on fitting, pin location, and other Quartus II logic
settings. When you recompile the design in the Quartus II
software, verify that the I/O timing has not changed
significantly.

With the values from Tables 1–3 and Table 1–4 you can perform the
calculations from Figures 1–5 and 1–6, as shown below.

The SDRAM clock can lag the controller clock by the lesser of Read Lag or
Write Lag:

(1)

or

(2)

Table 1–4. FPGA I/O Timing Parameters

Parameter Symbol Value (ns)

Clock period tCLK 20

Minimum clock-to-output time tCO_MIN 2.399

Maximum clock-to-output time tCO_MAX 2.477

Maximum hold time after clock tH_MAX –5.607

Maximum setup time before clock tSU_MAX 5.936

Read Lag tOH SDRAM() tH_MAX FPGA()–=

Read Lag 2.5ns 5.607ns–()–=

Read Lag 8.107ns=

Write Lag tCLK tCO_MAX FPGA()– tDS SDRAM()–=

Write Lag 20ns 2.477ns–=

1–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The SDRAM clock can lead the controller clock by the lesser of Read Lead
or Write Lead:

(3)

or

(4)

Therefore, for this example you can shift the phase of the SDRAM clock
from –8.107 ns to 1.399 ns relative to the controller clock. Choosing a
phase shift in the middle of this window results in the value

.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ PLL Core chapter in volume 5 the Quartus II Handbook
■ AN 351: Simulating Nios II Processor Designs
■ altpll Megafunction User Guide

Write Lag 15.523ns=

Read Lead tCO_MIN FPGA() tDH SDRAM()–=

Read Lead 2.399ns 1.0ns–=

Read Lead 1.399ns=

Write Lead tCLK tHZ 3() SDRAM()– tSU_MAX FPGA()–=

Write Lead 20ns 5.5ns– 5.936ns–=

Write Lead 8.564ns=

8.107– 1.399+() 2÷ 3.35ns–=

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii53002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/ug/ug_altpll.pdf

Altera Corporation 1–21
October 2007

Document Revision History

Altera Corporation 1–21
October 2007

Document Revision History

Document
Revision History

Table 1–5 shows the revision history for this chapter.

Table 1–5. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.
—

May 2007
v7.1.0

● Updated description of Parameter Settings Memory Profile
page to reflect new mechanism for for sharing pins via a
tristate bridge.

● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies.

● Changed old “Avalon switch fabric” term to “system
interconnect fabric.”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface.”

For the 6.1 release,
Altera released the
Avalon Streaming
interface, which
necessitated some
re-phrasing of existing
Avalon terminology.

May 2006
v6.0.0

Chapter title changed, but no change in content from previous
release.

—

December 2005
v5.1.1

● Updated Figure 1-1.
● Updated sections “Off-Chip SDRAM Interface” and “Board

Layout and Pinout Considerations.”
● Added section “Clock, PLL and Timing Considerations.”

—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

1–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

1–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 2–1
October 2007
Altera Corporation 2–1
October 2007

2. CompactFlash Core

Core Overview The CompactFlash core allows you to connect SOPC Builder systems to
CompactFlash storage cards in true IDE mode by providing an Avalon
Memory-Mapped (Avalon-MM) interface to the registers on the storage
cards.

The CompactFlash core also provides a register-mapped Avalon-MM
slave interface which can be used by Avalon-MM master peripherals such
as a Nios II processor to communicate with the CompactFlash core and
manage its operations.

The CompactFlash core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated systems.

This chapter contains the following sections:

■ “Functional Description” on page 2–2
■ “Instantiating the Core in SOPC Builder” on page 2–3
■ “Device and Tools Support” on page 2–4
■ “Software Programming Model” on page 2–4

QII55005-7.2.0

2–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

2–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 2–1 shows a block diagram of the CompactFlash core in a typical
system configuration.

Figure 2–1. SOPC Builder System With a CompactFlash Core

As shown in Figure 2–1, the CompactFlash core provides two Avalon-
MM slave interfaces: the ide slave port for accessing the registers on the
CompactFlash device and the ctl slave port for accessing the core’s
internal registers. These registers can be used by Avalon-MM master
peripherals such as a Nios II processor to control the operations of the
CompactFlash core and to transfer data to and from the CompactFlash
device.

You can set the CompactFlash core to generate two active-high interrupt
requests (IRQs): one signals the insertion and removal of a CompactFlash
device and the other passes interrupt signals from the CompactFlash
device.

The CompactFlash core maps the Avalon-MM bus signals to the
CompactFlash device with proper timing, thus allowing Avalon-MM
master peripherals to directly access the registers on the CompactFlash
device.

f For more information, refer to the CF+ and CompactFlash specifications
at www.compactflash.org.

Avalon-to-
CompactFlash

Avalon-MM
Master

(e.g. CPU)

S
ystem

 Interconnect Fabric

Altera FPGA

CompactFlash
Deviceid

e
A

va
lo

n-
M

M
 S

la
ve

 P
or

t
ct

l
A

va
lo

n-
M

M
 S

la
ve

 P
or

t

data

address

cfctl

idectl

Registers

IRQ

data

address

IRQ

www.compactflash.org

Altera Corporation 2–3
October 2007

Instantiating the Core in SOPC Builder

Altera Corporation 2–3
October 2007

Instantiating the Core in SOPC Builder

Instantiating the
Core in SOPC
Builder

Use the MegaWizard® Plug-In Manager interface for the CompactFlash
core in SOPC Builder to add the core to a system. There are no user-
configurable settings for this core.

Required
Connections

Table 2–1 lists the required connections between the CompactFlash core
and the CompactFlash device.

Table 2–1. Required Connections (Part 1 of 2)

CompactFlash Interface
Signal Name Pin Type CompactFlash Pin

Number

addr[0] Output 20

addr[1] Output 19

addr[2] Output 18

addr[3] Output 17

addr[4] Output 16

addr[5] Output 15

addr[6] Output 14

addr[7] Output 12

addr[8] Output 11

addr[9] Output 10

addr[10] Output 8

atasel_n Output 9

cs_n[0] Output 7

cs_n[1] Output 32

data[0] Input/Output 21

data[1] Input/Output 22

data[2] Input/Output 23

data[3] Input/Output 2

data[4] Input/Output 3

data[5] Input/Output 4

data[6] Input/Output 5

data[7] Input/Output 6

data[8] Input/Output 47

data[9] Input/Output 48

data[10] Input/Output 49

2–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

2–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Device and
Tools Support

The CompactFlash interface core supports all Altera FPGA families.

Software
Programming
Model

This section describes the software programming model for the
CompactFlash core.

HAL System Library Support

The Altera-provided HAL API functions include a device driver that you
can use to initialize the CompactFlash core. To perform other operations,
use the low-level macros provided. For more information on the macros,
refer to the files listed in the section “Software Files” on page 2–5.

data[11] Input/Output 27

data[12] Input/Output 28

data[13] Input/Output 29

data[14] Input/Output 30

data[15] Input/Output 31

detect Input 25 or 26

intrq Input 37

iord_n Output 34

iordy Input 42

iowr_n Output 35

power Output CompactFlash power
controller, if present

reset_n Output 41

rfu Output 44

we_n Output 46

Table 2–1. Required Connections (Part 2 of 2)

CompactFlash Interface
Signal Name Pin Type CompactFlash Pin

Number

Altera Corporation 2–5
October 2007

Software Programming Model

Altera Corporation 2–5
October 2007

Software Programming Model

Software Files

The CompactFlash core provides the following software files. These files
define the low-level access to the hardware. Application developers
should not modify these files.

■ altera_avalon_cf_regs.h—The header file that defines the core’s
register maps.

■ altera_avalon_cf.h, altera_avalon_cf.c—The header and source code
for the functions and variables required to integrate the driver into
the HAL system library.

Register Maps

This section describes the register maps for the Avalon-MM slave
interfaces.

Ide Registers

The ide port in the CompactFlash core allows you to access the IDE
registers on a CompactFlash device. Table 2–2 shows the register map for
the ide port.

Table 2–2. Ide Register Map

Offset
Register Names

Read Operation Write Operation

0 RD Data WR Data

1 Error Features

2 Sector Count Sector Count

3 Sector No Sector No

4 Cylinder Low Cylinder Low

5 Cylinder High Cylinder High

6 Select Card/Head Select Card/Head

7 Status Command

14 Alt Status Device Control

2–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

2–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Ctl Registers

The ctl port in the CompactFlash core provides access to the registers
which control the core’s operation and interface. Table 2–3 shows the
register map for the ctl port.

Cfctl Register
The cfctl register controls the operations of the CompactFlash core.
Reading the cfctl register clears the interrupt. Table 2–4 describes the
cfctl register bits.

Table 2–3. Ctl Register Map

Offset Register
Fields

31..4 3 2 1 0

0 cfctl Reserved IDET RST PWR DET

1 idectl Reserved IIDE

2 Reserved Reserved

3 Reserved Reserved

Table 2–4. cfctl Register Bits

Bit Number Bit Name Read/Write Description

0 DET RO Detect. This bit is set to 1 when the
core detects a CompactFlash
device.

1 PWR RW Power. When this bit is set to 1,
power is being supplied to the
CompactFlash device.

2 RST RW Reset. When this bit is set to 1, the
CompactFlash device is held in a
reset state. Setting this bit to 0
returns the device to its active state.

3 IDET RW Detect Interrupt Enable. When this
bit is set to 1, the CompactFlash
core generates an interrupt each
time the value of the det bit
changes.

Altera Corporation 2–7
October 2007

Referenced Documents

Altera Corporation 2–7
October 2007

Referenced Documents

Idectl Register
The idectl register control the interface to the CompactFlash device.
Table 2–5 describes the idectl register bit.

Referenced
Documents

This chapter references the Avalon Memory-Mapped Interface Specification.

Document
Revision History

Table 2–6 shows the revision history for this chapter.

Table 2–5. idectl Register

Bit Number Bit Name Read/Write Description

0 IIDE RW IDE Interrupt Enable. When this bit
is set to 1, the CompactFlash core
generates an interrupt following an
interrupt generated by the
CompactFlash device. Setting this
bit to 0 disables the IDE interrupt.

Table 2–6. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Initial release.
—

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

2–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

2–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 3–1
October 2007

3. Common Flash Interface
Controller Core

Core Overview The common flash interface controller core with Avalon® interface (CFI
controller) allows you to easily connect SOPC Builder systems to external
flash memory that complies with the Common Flash Interface (CFI)
specification. The CFI controller is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system.

For the Nios® II processor, Altera provides hardware abstraction layer
(HAL) driver routines for the CFI controller. The drivers provide
universal access routines for CFI-compliant flash memories. Therefore,
you do not need to write any additional code to program CFI-compliant
flash devices. The HAL driver routines take advantage of the HAL
generic device model for flash memory, which allows you to access the
flash memory using the familiar HAL application programming interface
(API) and/or the ANSI C standard library functions for file I/O. For
details about how to read and write flash using the HAL API, refer to the
Nios II Software Developer’s Handbook.

The Nios II Embedded Design Suite (EDS) provides a flash programmer
utility based on the Nios II processor and the CFI controller. The flash
programmer utility can be used to program any CFI-compliant flash
memory connected to an Altera® FPGA. For details, refer to the Nios II
Flash Programmer User Guide.

Further information about the Common Flash Interface specification is
available at www.intel.com/design/flash/swb/cfi.htm. As an example of
a flash device supported by the CFI controller, see the data sheet for the
AMD Am29LV065D-120R, available at www.amd.com.

The common flash interface controller core supersedes previous Altera
flash cores distributed with SOPC Builder or Nios development kits. All
flash chips associated with these previous cores comply with the CFI
specification, and therefore are supported by the CFI controller.

This chapter contains the following sections:

■ “Functional Description” on page 3–2
■ “Device and Tools Support” on page 3–2
■ “Instantiating the Core in SOPC Builder” on page 3–3
■ “Software Programming Model” on page 3–4

NII51013-7.2.0

3–2 Altera Corporation
October 2007

Functional Description

Functional
Description

Figure 3–1 shows a block diagram of the CFI controller in a typical system
configuration. As shown in Figure 3–1, the Avalon Memory-Mapped
(Avalon-MM) interface for flash devices is connected through an
Avalon-MM tristate bridge. The tristate bridge creates an off-chip
memory bus that allows the flash chip to share address and data pins
with other memory chips. It provides separate chipselect, read, and write
pins to each chip connected to the memory bus. The CFI controller
hardware is minimal: It is simply an Avalon-MM tristate slave port
configured with waitstates, setup, and hold time appropriate for the
target flash chip. This slave port is capable of Avalon-MM tristate slave
read and write transfers.

Figure 3–1. An SOPC Builder System Integrating a CFI Controller

Avalon-MM master ports can perform read transfers directly from the
CFI controller’s Avalon-MM port. See “Software Programming Model”
on page 3–4 for more detail on writing/erasing flash memory.

Device and
Tools Support

The CFI controller supports the Arria™ GX, Stratix® III, Stratix II GX,
Stratix II, Stratix GX, Stratix, Cyclone® III, Cyclone II, and Cyclone device
families. The CFI controller provides drivers for the Nios II HAL system
library. No software support is provided for the first-generation Nios
processor.

S
ystem

 Interconnect Fabric

S Avalon-MM Slave Port

M Avalon-MM Master Port

A
valo

n
-M

M
 Tristate B

rid
g

e
S

S

M

M
Avalon-MM

Master
(e.g. CPU)

S
On-Chip

Slave
Peripheral

Altera FPGA

S
Flash

Memory
Chip

S Other
Memory

chipselect,
read_n, write_n

chipselect,
read_n, write_n

flash

other

Altera Corporation 3–3
October 2007

Common Flash Interface Controller Core

Instantiating the
Core in SOPC
Builder

Hardware designers use the MegaWizard® interface for the CFI
controller in SOPC Builder to specify the core features. The following
sections describe the available options in the MegaWizard interface.

Attributes Page

The options on this page control the basic hardware configuration of the
CFI controller.

Presets Settings

The Presets setting is a drop-down menu of flash chips that have already
been characterized for use with the CFI controller. After you select one of
the chips in the Presets menu, the wizard updates all settings on both tabs
(except for the Board Info setting) to work with the specified flash chip.

If the flash chip on your target board does not appear in the Presets list,
you must configure the other settings manually.

Size Settings

The size setting specifies the size of the flash device. There are two
settings:

■ Address Width—The width of the flash chip’s address bus.
■ Data Width—The width of the flash chip’s data bus

The size settings cause SOPC Builder to allocate the correct amount of
address space for this device. SOPC Builder will automatically generate
dynamic bus sizing logic that appropriately connects the flash chip to
Avalon-MM master ports of different data widths. Refer to the Avalon
Memory-Mapped Interface Specification for details about dynamic bus
sizing.

Timing Page

The options on this page specify the timing requirements for read and
write transfers with the flash device. The settings available on the Timing
page are:

■ Setup—After asserting chipselect, the time required before
asserting the read or write signals.

■ Wait—The time required for the read or write signals to be
asserted for each transfer.

■ Hold—After deasserting the write signal, the time required before
deasserting the chipselect signal.

3–4 Altera Corporation
October 2007

Software Programming Model

■ Units—The timing units used for the Setup, Wait, and Hold values.
Possible values include ns, us, ms, and clock cycles.

f For more information about signal timing for the Avalon-MM interface,
refer to the Avalon Memory-Mapped Interface Specification.

Software
Programming
Model

This section describes the software programming model for the CFI
controller. In general, any Avalon-MM master in the system can read the
flash chip directly as a memory device. For Nios II processor users, Altera
provides HAL system library drivers that enable you to erase and write
the flash memory using the HAL API functions.

HAL System Library Support

The Altera-provided driver implements a HAL flash device driver that
integrates into the HAL system library for Nios II systems. Programs call
the familiar HAL API functions to program CFI-compliant flash memory.
You do not need to know anything about the details of the underlying
drivers.

f The HAL API for programming flash, including C code examples, is
described in detail in the Nios II Software Developer’s Handbook. The
Nios II EDS also provides a reference design called Flash Tests that
demonstrates erasing, writing, and reading flash memory.

Limitations

Currently, the Altera-provided drivers for the CFI controller support
only AMD and Intel flash chips.

Software Files

The CFI controller provides the following software files. These files
define the low-level access to the hardware, and provide the routines for
the HAL flash device driver. Application developers should not modify
these files.

■ altera_avalon_cfi_flash.h, altera_avalon_cfi_flash.c—The header
and source code for the functions and variables required to integrate
the driver into the HAL system library.

■ altera_avalon_cfi_flash_funcs.h, altera_avalon_cfi_flash_table.c—
The header and source code for functions concerned with accessing
the CFI table.

■ altera_avalon_cfi_flash_amd_funcs.h,
altera_avalon_cfi_flash_amd.c—The header and source code for
programming AMD CFI-compliant flash chips.

Altera Corporation 3–5
October 2007

Common Flash Interface Controller Core

■ altera_avalon_cfi_flash_intel_funcs.h,
altera_avalon_cfi_flash_intel.c—The header and source code for
programming Intel CFI-compliant flash chips.

Referenced
Documents

This chapter references the following documents:

■ Avalon Memory-Mapped Interface Specification
■ Nios II Software Developer’s Handbook

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

3–6 Altera Corporation
October 2007

Document Revision History

Document
Revision History

Table 3–1 shows the revision history for this chapter.

Table 3–1. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.
—

May 2007
v7.1.0

● Added Arria™ GX, Stratix II GX and Stratix GX to
“Device and Tools Support” on page 3–2.

● Removed Board Info section from MegaWizard interface
because it is no longer included with the device in 7.1.

● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

Added Cyclone III support. Version 7.0 of the Quartus II
software added Cyclone III
support.

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon
Memory-Mapped interface”

● Added support for Stratix III devices

For the 6.1 release, added
Stratix III device support.
Additionally, Altera released
the Avalon Streaming
interface, which necessitated
some rephrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

December 2004
v1.2

Added Cyclone II support.
—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

Altera Corporation 4–1
October 2007
Altera Corporation 4–1
October 2007

4. EPCS Device Controller
Core

Core Overview The EPCS device controller core with Avalon® interface allows Nios® II
systems to access an Altera® EPCS serial configuration device. Altera
provides drivers that integrate into the Nios II hardware abstraction layer
(HAL) system library, allowing you to read and write the EPCS device
using the familiar HAL application program interface (API) for flash
devices.

Using the EPCS controller, Nios II systems can:

■ Store program code in the EPCS device. The EPCS controller
provides a boot-loader feature that allows Nios II systems to store
the main program code in an EPCS device.

■ Store nonvolatile program data, such as a serial number, a NIC
number, and other persistent data.

■ Manage the FPGA configuration data. For example, a
network-enabled embedded system can receive new FPGA
configuration data over a network, and use the EPCS controller to
program the new data into an EPCS serial configuration device.

The EPCS controller is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. The flash programmer utility in the
Nios II IDE allows you to manage and program data contents into the
EPCS device.

f For information about the EPCS serial configuration device family, refer
to the Serial Configuration Devices (EPCS1 & EPCS4) Data Sheet. For
details about using the Nios II HAL API to read and write flash memory,
refer to the Nios II Software Developer’s Handbook. For details about
managing and programming the EPCS memory contents, refer to the
Nios II Flash Programmer User Guide.

1 For Nios II processor users, the EPCS controller core supersedes
the Active Serial Memory Interface (ASMI) device. New designs
should use the EPCS controller instead of the ASMI core.

NII51012-7.2.0

4–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

4–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 4–1 shows a block diagram of the EPCS controller in a typical
system configuration. As shown in Figure 4–1, the EPCS device’s
memory can be thought of as two separate regions:

■ FPGA configuration memory—FPGA configuration data is stored in
this region.

■ General-purpose memory—If the FPGA configuration data does not fill
up the entire EPCS device, any left-over space can be used for
general-purpose data and system startup code.

Figure 4–1. Nios II System Integrating an EPCS Controller

By virtue of the HAL generic device model for flash devices, accessing the
EPCS device using the HAL API is the same as accessing any flash
memory. The EPCS device has a special-purpose hardware interface, so
Nios II programs must read and write the EPCS memory using the
provided HAL flash drivers.

The EPCS controller core contains an on-chip memory for storing a
boot-loader program. When used in conjunction with Cyclone®,
Cyclone II, and Cyclone III devices, the core requires 512 bytes of
boot-loader ROM. For Stratix® II and Stratix III devices, the core requires
1 Kbyte of boot-loader ROM. The Nios II processor can be configured to
boot from the EPCS controller. To do so, set the Nios II reset address to the
base address of the EPCS controller. In this case, after reset the CPU first
executes code from the boot-loader ROM, which copies data from the

S
ystem

 Interconnect Fabric

EPCS
Controller Core

Boot-Loader
ROM

EPCS Serial
Configuration

Device

Config
Memory

General-
Purpose
Memory

Nios II CPU

Other
On-Chip

Peripheral(s)

Altera FPGA

Altera Corporation 4–3
October 2007

Functional Description

Altera Corporation 4–3
October 2007

Functional Description

EPCS general-purpose memory region into a RAM. Then, program
control transfers to the RAM. The Nios II IDE provides facilities to
compile a program for storage in the EPCS device, and create a
programming file to program into the EPCS device.

f Refer to the Nios II Flash Programmer User Guide.

The Altera EPCS configuration device connects to the FPGA through
dedicated pins on the FPGA, not through general-purpose I/O pins. In all
Altera device families except Cyclone III, the EPCS controller core does
not create any I/O ports on the top-level SOPC Builder system module. If
the EPCS device and the FPGA are wired together on a board for
configuration using the EPCS device (in other words, active serial
configuration mode), no further connection is necessary between the
EPCS controller and the EPCS device. When you compile the SOPC
Builder system in the Quartus II software, the EPCS controller core
signals are routed automatically to the device pins for the EPCS device.

1 If you program the EPCS device using the Quartus® II
Programmer, all previous content is erased. To program the
EPCS device with a combination of FPGA configuration data
and Nios II program data, use the Nios II IDE flash programmer
utility.

In Cyclone III, the EPCS controller does not automatically assign its
output pins to the dedicated configuration pins on the FPGA. Instead, the
output pins are exported to the top level design, giving users the
flexibility to connect to any EPCS devices. For more information on the
configuration pins in Cyclone III, refer to the Pin-Out Files for Altera
Device page.

Avalon-MM Slave Interface and Registers

The EPCS controller core has a single Avalon-MM slave interface that
provides access to both boot-loader code and registers that control the
core. As shown in Table 4–1 on page 4–4, the first 256 words are dedicated
to the boot-loader code, and the next seven words are control and data
registers. A Nios II CPU can read 256 instruction words, starting from the
EPCS controller’s base address as flat memory space, which enables the
CPU to reset into the EPCS controller’s address space.

The EPCS controller core includes an interrupt signal that can be used to
interrupt the CPU when a transfer has completed.

http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y
http://www.altera.com/literature/lit-dp.jsp?category=Cyc%203&showspreadsheet=y

4–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

4–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Device and
Tools Support

The EPCS controller supports all Altera FPGA families that support the
EPCS configuration device, such as the Cyclone device family. The EPCS
controller must be connected to a Nios II processor. The core provides
drivers for HAL-based Nios II systems, and the precompiled boot loader
code compatible with the Nios II processor. No software support is
provided for any other processor, including the first-generation Nios.

Instantiating the
Core in SOPC
Builder

Hardware designers use the EPCS controller’s SOPC Builder
configuration wizard to add the EPCS controller to a system. There are no
user-configurable settings for this component.

Only one EPCS controller can be instantiated in each FPGA design.

Software
Programming
Model

This section describes the software programming model for the EPCS
controller. Altera provides HAL system library drivers that enable you to
erase and write the EPCS memory using the HAL API functions. Altera
does not publish the usage of the cores registers. Therefore, you must use
the HAL drivers provided by Altera to access the EPCS device.

Table 4–1. EPCS Controller Register Map

Offset Register Name R/W
Bit Description

31...0

0×000

Boot ROM Memory R Boot Loader Code...

0×0FF

0×100 Read Data R (1)

0×101 Write Data W (1)

0×102 Status R/W (1)

0×103 Control R/W (1)

0×104 Reserved — (1)

0×105 Slave Enable R/W (1)

0×106 End of Packet R/W (1)

Note to Table 4–1:
(1) Altera does not publish the usage of the control and data registers. To access the EPCS device, you must use the

HAL drivers provided by Altera.

Altera Corporation 4–5
October 2007

Software Programming Model

Altera Corporation 4–5
October 2007

Software Programming Model

HAL System Library Support

The Altera-provided driver implements a HAL flash device driver that
integrates into the HAL system library for Nios II systems. Programs call
the familiar HAL API functions to program the EPCS memory. You do not
need to know the details of the underlying drivers to use them.

f The HAL API for programming flash, including C-code examples, is
described in detail in the Nios II Software Developer’s Handbook. For details
about managing and programming the EPCS device contents, refer to
the Nios II Flash Programmer User Guide.

Software Files

The EPCS controller provides the following software files. These files
provide low-level access to the hardware and drivers that integrate into
the Nios II HAL system library. Application developers should not
modify these files.

■ altera_avalon_epcs_flash_controller.h,
altera_avalon_epcs_flash_controller.c—Header and source files
that define the drivers required for integration into the HAL system
library.

■ epcs_commands.h, epcs_commands.c—Header and source files
that directly control the EPCS device hardware to read and write the
device. These files also rely on the Altera SPI core drivers.

4–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

4–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Document
Revision History

Table 4–2 shows the revision history for this chapter.

Table 4–2. Document Revision History

Date and Version Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 4 was formerly Chapter 3.
● Added sentence stating that to boot from EPCS controller

memory set Nios II reset address to the base address of the
EPCS controller.

● Added description on output pins assignment for Cyclone III in
the Functional Description section.

—

May 2007
v7.1.0

● Removed text about reference designator from section on the
configuration wizard because this setting is no longer
available.

● Added sentence describing the purpose of the interrupt
signal.

Version 7.1 updates
text for changes in the
parameter sheets and
to clarify use of the
interrupt signal.

March 2007
v7.0.0

Added Cyclone III support. Version 7.0 of the
Quartus II software
added Cyclone III
support.

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon interface” terms to “Avalon
Memory-Mapped interface”

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Added ROM memory requirements for Cyclone, Cyclone II
and Stratix II devices in section “Functional Description” on
page 3–2

● Added Stratix III device support

For the 6.1 release,
added Stratix II
support. Additionally,
Altera released the
Avalon Streaming
interface, which
necessitated some
rephrasing of existing
Avalon terminology.
Other changes to the
document serve only to
clarify existing
behavior.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook. —

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

Altera Corporation 5–1
October 2007

5. On-Chip FIFO Memory
Core

Core Overview The on-chip FIFO memory core is a configurable component used to
buffer data and provide flow control in an SOPC Builder system. The
FIFO can operate with a single clock or with separate clocks for the input
and output ports.

The input interface to the FIFO may be an Avalon® Memory Mapped
(Avalon-MM) write slave or an Avalon Streaming (Avalon-ST) sink. The
output interface can be a an Avalon-ST source or an Avalon-MM read
slave. The data is delivered to the output interface in the same order that
it was received at the input interface, regardless of the value of channel,
packet, frame, or any other signals.

In single clock mode, the on-chip FIFO memory includes an optional
status interface that provides information about the fill-level of the FIFO.
In dual clock mode, separate, optional status interfaces can be included
for the input and output interfaces. The status interface also includes
registers to set and control interrupts.

The on-chip FIFO memory core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system. Device drivers are
provided in the HAL system library allowing software to access the core
using ANSI C.

This chapter contains the following sections:

■ “Functional Description”
■ “Device and Tools Support” on page 5–7
■ “Instantiating the Core in SOPC Builder” on page 5–7
■ “Software Programming Model” on page 5–9
■ “Programming with the On-Chip FIFO Memory” on page 5–10
■ “On-Chip FIFO Memory API” on page 5–17

Functional
Description

The on-chip FIFO memory has four configurations:

■ Avalon-MM write slave to Avalon-MM read slave
■ Avalon-ST sink to Avalon-ST source
■ Avalon-MM write slave to Avalon-ST source
■ Avalon-ST sink to Avalon-MM read slave

QII55002-7.2.0

Altera Corporation 5–2
October 2007

On-Chip FIFO Memory Core

In all configurations, the input and output interfaces can use the optional
backpressure signals to prevent underflow and overflow conditions. For
the Avalon-MM interface, backpressure is implemented using the
waitrequest signal. For Avalon-ST interfaces, backpressure is
implemented using the ready and valid signals. For the on-chip FIFO
memory, the delay between the sink asserts ready and the source drives
valid data is one cycle. Bursting to a FIFO is not supported.

Avalon-MM Write Slave to Avalon-MM Read Slave

In this mode, the FIFO’s input is a zero-address-width Avalon-MM write
slave. An Avalon-MM write master pushes data into the FIFO by writing
to the input interface, and a read master (possibly the same master) pops
data by reading from its output interface. The FIFO’s input and output
data must be the same width.

If Allow backpressure is turned on, the waitrequest signal is asserted
whenever the data_in master tries to write to a full FIFO.
waitrequest is only deasserted when there is enough space in the FIFO
for a new transaction to complete. waitrequest is asserted for read
operations when there is no data to be read from the FIFO, and is
deasserted when the FIFO has data.

Figure 5–1. FIFO with Avalon-MM Input and Output Interfaces

Avalon-ST Sink to Avalon-ST Source

This FIFO has streaming input and output interfaces as illustrated in
Figure 5–2. You can parameterize most aspects of the Avalon-ST
interfaces including the bits per symbol, symbols per beat, and the width
of error and channel signals. The input and output interfaces must be

S Avalon-MM Slave Port

On-Chip FIFO
Memory

S S

S S

Wr Rd

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Input data Output data

Altera Corporation 5–3
October 2007

On-Chip FIFO Memory Core

the same width. If Allow backpressure is on in the SOPC Builder
MegaWizard, both interfaces use the ready and valid signals to
indicate when space is available in the FIFO and when valid data is
available.

f For more information about the Avalon-ST interface protocol, refer to
the Avalon Streaming Interface Specification available at www.altera.com.

Figure 5–2. FIFO with Avalon-ST Input and Output Interfaces

Avalon-MM Write Slave to Avalon-ST Source

In this mode, the FIFO’s input is an Avalon-MM write slave with a width
of 32 bits as shown in Figure 5–3. The Avalon-ST output (source) data
width must also be 32 bits. You can configure output interface
parameters, including: bits per symbol, symbols per beat, and the width
of the channel and error signals. The FIFO performs the endian
conversion to conform to the output interface protocol.

The signals that comprise this interface are mapped into bits in the
Avalon’s address space. If Allow backpressure is on, the input interface
asserts waitrequest to indicate that the FIFO does not have enough
space for the transaction to complete.

System Interconnect Fabric

Input Status I/F
(optional)

Output Status I/F
(optional)

Streaming
Input Data

Streaming
Output Data

On-Chip FIFO
Memory

S

SNK

S

SRC

SNK

SRC

S

Avalon-ST Sink

Avalon-ST Source

Avalon-MM Slave Port

Altera Corporation 5–4
October 2007

On-Chip FIFO Memory Core

Figure 5–3. FIFO with Avalon-MM Input Interface and Avalon-ST Output
Interface

The example memory map in Table 5–1 illustrates the layout of memory
for a FIFO with a 32-bit Avalon-MM input interface and an Avalon-ST
output interface. The output interface has 8-bit symbols, a 5-bit channel
signal, and a 3-bit error signal, with packet support.

If Enable packet data is off, the Avalon-MM write master writes all data
at address offset 0 repeatedly to push data into the FIFO.

If Enable packet data is on, the Avalon-MM write master starts by
writing the SOP, error (optional), channel (optional), EOP, and empty
packet status information at address offset 1. Writing to address offset 1
does not push data into the FIFO. The Avalon-MM master then writes
packet data to the FIFO repeatedly at address offset 0, pushing 8-bit
symbols into the FIFO. Whenever a valid write occurs at address offset 0,
the data and its respective packet information is pushed into the FIFO.
Subsequent data is written at address offset 0 without the need to clear

On-Chip FIFO
Memory

S S

S SRC

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Input Data
Streaming
Output Data

SRC Avalon-ST Source

S Avalon-MM Slave Port

Table 5–1. Avalon-MM to Avalon-ST Memory Map

Offset 31 24 23 19 18 16 15 13 12 8 7 4 3 2 1 0

base + 0 Symbol 3 Symbol 2 Symbol 1 Symbol 0

base + 1 reserved reserved error resrvd. channel reserved empty

E
O

P
S

O
P

Altera Corporation 5–5
October 2007

On-Chip FIFO Memory Core

the SOP. Rewriting to address offset 1 is not required each time if the
subsequent data to be pushed into the FIFO is not the end-of-packet data,
as long as error and channel do not change.

At the end of each packet, the Avalon-MM master writes to the address
at offset 1 to set the EOP bit to 1, before writing the last symbol of the
packet at offset 0. The write master uses the empty field to indicate the
number of unused symbols at the end of the transfer. If the last packet
data is not aligned with the symbols per beat, then the empty field
indicates the number of empty symbols in the last packet data. For
example, if the Avalon-ST interface has symbols-per-beat of 4, and the
last packet only has 3 symbols, then the empty field will be 1, indicating
that one symbol (the least significant symbol in the memory map) is
empty.

Avalon-ST Sink to Avalon-MM Read Slave

In this mode, the FIFO’s input is an Avalon-ST sink and the output is an
Avalon-MM read slave with a width of 32 bits (Figure 5–4). The
Avalon-ST input (sink) data width must also be 32 bits. You can configure
input interface parameters, including: bits per symbol, symbols per beat,
and the width of the channel and error signals. The FIFO performs the
endian conversion to conform to the output interface protocol.

An Avalon-MM master reads the data from the FIFO. The signals are
mapped into bits in the Avalon's address space. If Allow backpressure is
on in the SOPC Builder MegaWizard, the input (sink) interface uses the
ready and valid signals to indicate when space is available in the FIFO
and when valid data is available. For the output interface, waitrequest
is asserted for read operations when there is no data to be read from the
FIFO. It is deasserted when the FIFO has data to send.

Altera Corporation 5–6
October 2007

On-Chip FIFO Memory Core

Figure 5–4. FIFO with Avalon-ST Input and Avalon-MM Output

As shown in Table 5–2, the memory map for the Avalon-ST to
Avalon-MM slave FIFO is exactly the same as for Avalon-MM to
Avalon-ST FIFO.

If Enable packet data is off, read data repeatedly at address offset 0 to
pop the data from the FIFO.

If Enable packet data is on, the Avalon-MM read master starts reading
from address offset 0. If the read is valid, that is, the FIFO is not empty,
both data and packet status information are popped from the FIFO. The
packet status information is obtained by reading at address offset 1.
Reading from address offset 1 does not pop data from the FIFO. The
error, channel, SOP, EOP and empty fields are available at address
offset 1 to determine the status of the packet data read from address offset
0.

On-Chip FIFO
Memory

S S

SNK S

Input Status I/F
(optional)

Output Status I/F
(optional)

system interconnect fabric

Output Data
Streaming
Input Data

SNK Avalon-ST Sink

S Avalon-MM Slave Port

Table 5–2. Avalon-ST to Avalon-MM Memory Map

Offset 31 24 23 19 18 16 15 13 12 8 7 4 3 2 1 0

base + 0 Symbol 3 Symbol 2 Symbol 1 Symbol 0

base + 1 reserved reserved error resrvd. channel reserved empty
E

O
P

S
O

P

Altera Corporation 5–7
October 2007

On-Chip FIFO Memory Core

The empty field indicates the number of empty symbols in the data field.
For example, if the Avalon-ST interface has symbols-per-beat of 4, and the
last packet data only has 1 symbol, then the empty field will be 3 to
indicate that 3 symbols (the 3 least significant symbols in the memory
map) are empty.

Status Interfaces

The FIFO provides two optional status interfaces, one for the master
writing to the input interface and a second for the read master reading
from the output interface. For FIFOs that operate in a single domain, a
single status interface is sufficient to monitor the status of the FIFO. For
FIFOs using a dual clocking scheme, a second status interface using the
output clock is necessary to accurately monitor the status of the FIFO in
both clock domains.

Clocking Modes

When single clock mode is used, the FIFO being used is SCFIFO. When
dual-clock mode is chosen, the FIFO being used is DCFIFO. In dual-clock
mode, input data and write-side status interfaces use the write side clock
domain; the output data and read-side status interfaces use the read-side
clock domain.

Device and
Tools Support

The on-chip FIFO memory supports the Arria™ GX, Stratix® III,
Stratix II GX, Stratix II, Stratix GX, Stratix, Cyclone® III, Cyclone II,
Cyclone and Hardcopy® II device families.

Instantiating the
Core in SOPC
Builder

Designers use the MegaWizard® interface for the on-chip FIFO memory
in SOPC Builder to specify the core configuration. The following sections
describe the available options in the MegaWizard interface.

FIFO Settings

The following sections outline the settings that pertain to the FIFO as a
whole.

Depth

Depth indicates the depth of the FIFO, in Avalon-ST beats or Avalon-MM
words. The default depth is 16. When dual clock mode is used, the actual
FIFO depth is equal to depth-3. This is due to clock crossing and to avoid
FIFO overflow.

Altera Corporation 5–8
October 2007

On-Chip FIFO Memory Core

Clock Settings

The two options are Single clock mode and Dual clock mode. In single
clock mode, all interface ports use the same clock. In dual clock mode,
input data and input side status are on the input clock domain. Output
data and output side status are on the output clock domain.

Status Port

The optional status ports are Avalon-MM slaves. To include the optional
input side status interface, turn on Create status interface for input on
the SOPC Builder MegaWizard. For FIFOs whose input and output ports
operate in separate clock domains, you can include a second status
interface by turning on Create status interface for output. Turning on
Enable IRQ for status ports adds an interrupt signal to the status ports.

FIFO Implementation

This option determines if the FIFO is built from registers or embedded
memory blocks. The default is to construct the FIFO from embedded
memory blocks.

Interface Parameters

The following sections outline the options for the input and output
interfaces.

Input

Available input interfaces are Avalon-MM write slave and Avalon-ST
sink.

Output

Available output interfaces are Avalon-MM read slave and Avalon-ST
source.

Allow Backpressure

When Allow backpressure is on, an Avalon-MM interface will include
the waitrequest signal which is asserted to prevent a master from
writing to a full FIFO or reading from an empty FIFO. An Avalon-ST
interface will include the ready and valid signals to prevent underflow
and overflow conditions.

Altera Corporation 5–9
October 2007

On-Chip FIFO Memory Core

Avalon-MM Port Settings

Valid Data widths are 8, 16, and 32 bits.

If Avalon-MM is selected for one interface and Avalon-ST for the other,
the data width is fixed at 32 bits.

The Avalon-MM interface accesses data 4 bytes at a time. For data widths
other than 32 bits, be cautious of potential overflow and underflow
conditions.

Avalon-ST Port Settings

The following parameters allow you to specify the size and error
handling of the Avalon-ST port or ports:

● Bits per symbol
● Symbols per beat
● Channel width
● Error width

If the symbol size is not a power of two, it is rounded up to the next power
of two. For example, if the bits per symbol is 10, the symbol will be
mapped to a 16-bit memory location. With 10-bit symbols, the maximum
number of symbols per beat is two.

Enable packet data provides an option for packet transmission.

Software
Programming
Model

The following sections describe the software programming model for the
on-chip FIFO memory core, including the register map and software
declarations to access the hardware. For Nios II processor users, Altera
provides HAL system library drivers that enable you to access the
on-chip FIFO memory core using its HAL API.

HAL System Library Support

The Altera-provided driver implements a HAL device driver that
integrates into the HAL system library for Nios II systems. HAL users
should access the on-chip FIFO memory via the familiar HAL API, rather
than accessing the registers directly.

Altera Corporation 5–10
October 2007

On-Chip FIFO Memory Core

Software Files

Altera provides the following software files for the on-chip FIFO memory
core:

■ altera_avalon_fifo_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware.

■ altera_avalon_fifo_util.h—This file defines functions to access the
on-chip FIFO memory core hardware. It provides utilities to
initialize the FIFO, read and write status, enable flags and read
events.

■ altera_avalon_fifo.h— This file provides the public interface to the
on-chip FIFO memory

■ altera_avalon_fifo_util.c—This file implements the utilities
listed in altera_avalon_fifo_util.h.

Programming
with the On-Chip
FIFO Memory

This section describes the low-level software constructs for manipulating
the on-chip FIFO memory core hardware. Table 5–3 lists all of the
available functions.

Table 5–3. On-Chip FIFO Memory Functions (Part 1 of 2)

Function Name Description

altera_avalon_fifo_init() Initializes the FIFO.

altera_avalon_fifo_read_status() Returns the integer value of the specified bit of the
status register. To read all of the bits at once, use the
ALTERA_AVALON_FIFO_STATUS_ALL mask.

altera_avalon_fifo_read_ienable() Returns the value of the specified bit of the interrupt
enable register. To read all of the bits at once, use the
ALTERA_AVALON_FIFO_EVENT_ALL mask.

altera_avalon_fifo_read_almostfull() Returns the value of the almostfull register.

altera_avalon_fifo_read_almostempty() Returns the value of the almostempty register.

altera_avalon_fifo_read_event() Returns the value of the specified bit of the event
register. All of the event bits can be read at once by
using the ALTERA_AVALON_FIFO_STATUS_ALL
mask.

altera_avalon_fifo_read_level() Returns the fill level of the FIFO.

altera_avalon_fifo_clear_event() Clears the specified bits and the event register and
performs error checking.

altera_avalon_fifo_write_ienable() Writes the specified bits of the interruptenable
register and performs error checking.

Altera Corporation 5–11
October 2007

On-Chip FIFO Memory Core

Software Control

Table 5–4 provides the register map for the status register. The layout of
status register for the input and output interfaces is identical.

Table 5–5 outlines the use of the various fields of the status register.

altera_avalon_fifo_write_almostfull() Writes the specified value to the almostfull
register and performs error checking.

altera_avalon_fifo_write_almostempty() Writes the specified value to the almostempty
register and performs error checking.

altera_avalon_fifo_write_fifo() Writes the specified data to the write_address.

altera_avalon_fifo_write_other_info() Writes the packet status information to the
write_address. Only valid when Enable packet
data is on.

altera_avalon_fifo_read_fifo() Reads data from the specified read_address.

altera_avalon_fifo_read__other_info() Reads the packet status information from the
specified read_address. Only valid when Enable
packet data is on.

Table 5–3. On-Chip FIFO Memory Functions (Part 2 of 2)

Function Name Description

Table 5–4. FIFO Status Register Memory Map

offset 31 24 23 16 15 8 7 6 5 4 3 2 1 0

base fill_level

base + 1 i_status

base + 2 event

base + 3 interruptenable

base + 4 almostfull

base + 5 almostempty

Table 5–5. FIFO Status Field Descriptions (Part 1 of 2)

Field Type Description

fill_level RO The instantaneous fill level of the FIFO, provided in units of symbols for a FIFO
with an Avalon-ST FIFO and words for an Avalon-MM FIFO.

i_status RO A 6-bit register that shows the FIFO’s instantaneous status. See Table 5–6 for the
meaning of each bit field.

Altera Corporation 5–12
October 2007

On-Chip FIFO Memory Core

Table 5–6 describes the instantaneous status bits.

event RW1C A 6-bit register with exactly the same fields as i_status. When a bit in the
i_status register is set, the same bit in the event register is set. The bit in the
event register is only cleared when software writes a 1 to that bit.

interruptenable RW A 6-bit interrupt enable register with exactly the same fields as the event and
i_status registers. When a bit in the event register transitions from a 0 to a
1, and the corresponding bit in interruptenable is set, the master Is
interrupted.

almostfull RW A threshold level used for interrupts and status. Can be written by the Avalon-MM
status master at any time. The default threshold value for DCFIFO is Depth-4.
The default threshold value for SCFIFO is Depth-1. The valid range of the
threshold value is from 1 to the default. 1 will be used when attempting to write a
value smaller than 1. The default will be used when attempting to write a value
larger than the default.

almostempty RW A threshold level used for interrupts and status. Can be written by the Avalon-MM
status master at any time. The default threshold value for DCFIFO is 1. The
default threshold value for SCFIFO is 1. The valid range of the threshold value is
from 1 to the maximum allowable almostfull threshold. 1 will be used when
attempting to write a value smaller than 1. The maximum allowable will be used
when attempting to write a value larger than the maximum allowable.

Table 5–5. FIFO Status Field Descriptions (Part 2 of 2)

Field Type Description

Table 5–6. Status Bit Field Descriptions

Bit(s) Name Description

1 FULL Has a value of 1 if the FIFO is currently full.

0 EMPTY Has a value of 1 if the FIFO is currently empty.

3 ALMOSTFULL Has a value of 1 if the fill level of the FIFO is greater than
the almostfull value.

2 ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO is less than
the almostempty value.

4 OVERFLOW Is set to 1 for 1 cycle every time the FIFO overflows. The
FIFO overflows when an Avalon write master writes to a
full FIFO. OVERFLOW is only valid when Allow
backpressure is off.

5 UNDERFLOW Is set to 1 for 1 cycle every time the FIFO underflows.
The FIFO underflows when an Avalon read master
reads from an empty FIFO. UNDERFLOW is only valid
when Allow backpressure is off.

Altera Corporation 5–13
October 2007

On-Chip FIFO Memory Core

Table 5–7 lists the bit fields of the event register. These fields are identical
to those in the status register and are set at the same time; however,
these fields are only cleared when software writes a one to clear (W1C).
The event fields can be used to determine if a particular event has
occurred.

Table 5–8 provides a mask for the six STATUS fields. When a bit in the
event register transitions from a zero to a one, and the corresponding
bit in the interruptenable register is set, the master is interrupted.

Table 5–7. Event Bit Field Descriptions

Bit(s) Name Description

1 E_FULL Has a value of 1 if the FIFO has been full and the bit has
not been cleared by software.

0 E_EMPTY Has a value of 1 if the FIFO has been empty and the bit
has not been cleared by software.

3 E_ALMOSTFULL Has a value of 1 if the fill level of the FIFO has been
greater than the almostfull threshold value and the
bit has not been cleared by software.

2 E_ALMOSTEMPTY Has a value of 1 if the fill level of the FIFO has been less
than the almostempty value and the bit has not been
cleared by software.

4 E_OVERFLOW Has a value of 1 if the FIFO has overflowed and the bit
has not been cleared by software.

5 E_UNDERFLOW Has a value of 1 if the FIFO has underflowed and the bit
has not been cleared by software.

Table 5–8. InterruptEnable Bit Field Descriptions (Part 1 of 2)

Bit(s) Name Description

1 IE_FULL Enables an interrupt if the FIFO is currently full.

0 IE_EMPTY Enables an interrupt if the FIFO is currently empty.

3 IE_ALMOSTFULL Enables an interrupt if the fill level of the FIFO is greater
than the value of the almostfull register.

2 IE_ALMOSTEMPTY Enables an interrupt if the fill level of the FIFO is less
than the value of the almostempty register.

4 IE_OVERFLOW Enables an interrupt if the FIFO overflows. The FIFO
overflows when an Avalon write master writes to a full
FIFO.

5–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Macros to access all of the registers are defined in
altera_avalon_fifo_regs.h. For example, this file includes the following
macros to access the status register.

#define ALTERA_AVALON_FIFO_LEVEL_REG 0
#define ALTERA_AVALON_FIFO_STATUS_REG 1
#define ALTERA_AVALON_FIFO_EVENT_REG 2
#define ALTERA_AVALON_FIFO_IENABLE_REG 3
#define ALTERA_AVALON_FIFO_ALMOSTFULL_REG 4
#define ALTERA_AVALON_FIFO_ALMOSTEMPTY_REG 5

f For a complete list of predefined macros and utilities to access the
on-chip FIFO hardware, see:
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo
\HAL\inc\alatera_avalon_fifo.h and
<install_dir>\quartus\sopc_builder\components\altera_avalon_fifo
\HAL\inc\alatera_avalon_fifo_util.h.

Software Example

An extensive programming example for the on-chip FIFO memory
appears next to this document on the Quartus II literature page. Visit
www.altera.com/literature/quartus2/lit-qts-peripherals.jsp.

5 IE_UNDERFLOW Enables an interrupt is the FIFO underflows. The FIFO
underflows when an Avalon read master reads from an
empty FIFO.

6 ALL Enables all 6 status conditions to interrupt.

Table 5–8. InterruptEnable Bit Field Descriptions (Part 2 of 2)

Bit(s) Name Description

Altera Corporation 5–15
October 2007

On-Chip FIFO Memory Core

Example 5–1. Sample Code for the On-Chip FIFO Memory
/***/
//Includes
#include "altera_avalon_fifo_regs.h"
#include "altera_avalon_fifo_util.h"
#include "system.h"
#include "sys/alt_irq.h"
#include <stdio.h>
#include <stdlib.h>

#define ALMOST_EMPTY 2
#define ALMOST_FULL OUTPUT_FIFO_OUT_FIFO_DEPTH-5

volatile int input_fifo_wrclk_irq_event;

void print_status(alt_u32 control_base_address)
{
 printf("--------------------------------------\n");
 printf("LEVEL = %u\n",
altera_avalon_fifo_read_level(control_base_address));
 printf("STATUS = %u\n",
altera_avalon_fifo_read_status(control_base_address,
ALTERA_AVALON_FIFO_STATUS_ALL));
 printf("EVENT = %u\n",
altera_avalon_fifo_read_event(control_base_address,
ALTERA_AVALON_FIFO_EVENT_ALL));
 printf("IENABLE = %u\n",
altera_avalon_fifo_read_ienable(control_base_address,
ALTERA_AVALON_FIFO_IENABLE_ALL));
 printf("ALMOSTEMPTY = %u\n",
altera_avalon_fifo_read_almostempty(control_base_address));
 printf("ALMOSTFULL = %u\n\n",
altera_avalon_fifo_read_almostfull(control_base_address));
}

static void handle_input_fifo_wrclk_interrupts(void* context, alt_u32 id)
{
 /* Cast context to input_fifo_wrclk_irq_event's type. It is important
 * to declare this volatile to avoid unwanted compiler optimization.
 */
 volatile int* input_fifo_wrclk_irq_event_ptr = (volatile int*) context;

 /* Store the value in the FIFO's irq history register in *context. */
 *input_fifo_wrclk_irq_event_ptr =
altera_avalon_fifo_read_event(INPUT_FIFO_IN_CSR_BASE,
ALTERA_AVALON_FIFO_EVENT_ALL);
 printf("Interrupt Occurs for %#x\n", INPUT_FIFO_IN_CSR_BASE);
 print_status(INPUT_FIFO_IN_CSR_BASE);

 /* Reset the FIFO's IRQ History register. */
 altera_avalon_fifo_clear_event(INPUT_FIFO_IN_CSR_BASE,

5–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

ALTERA_AVALON_FIFO_EVENT_ALL);
}

/* Initialize the fifo */
static int init_input_fifo_wrclk_control()
{
 int return_code = ALTERA_AVALON_FIFO_OK;

 /* Recast the IRQ History pointer to match the alt_irq_register()
function
 * prototype. */
 void* input_fifo_wrclk_irq_event_ptr = (void*)
&input_fifo_wrclk_irq_event;
 /* Enable all interrupts. */

 /* Clear event register, set enable all irq, set almostempty and
almostfull threshold */
 return_code = altera_avalon_fifo_init(INPUT_FIFO_IN_CSR_BASE,
 0, // Disabled interrupts
 ALMOST_EMPTY,
 ALMOST_FULL);

 /* Register the interrupt handler. */
 alt_irq_register(INPUT_FIFO_IN_CSR_IRQ,
input_fifo_wrclk_irq_event_ptr, handle_input_fifo_wrclk_interrupts);
 return return_code;
}

Altera Corporation 5–17
October 2007

On-Chip FIFO Memory Core

On-Chip FIFO
Memory API

This section describes the application programming interface (API) for
the on-chip FIFO memory core.

5–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_init()

Prototype: int altera_avalon_fifo_init(alt_u32 address, alt_u32 ienable,
alt_u32 emptymark, alt_u32 fullmark)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
ienable—the value to write to the interruptenable register
emptymark—the value for the almost empty threshold level
fullmark—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful,
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR for clear errors,
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR for interrupt enable write errors,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR for errors writing the
almostfull and almostempty registers.

Description: Clears the event register, writes the interruptenable register, and sets the
almostfull register and almostempy registers.

Altera Corporation 5–19
October 2007

altera_avalon_fifo_read_status()

altera_avalon_fifo_read_status()

Prototype: int altera_avalon_fifo_read_status(alt_u32 address, alt_u32
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the status register

Returns: Returns the fill level of the FIFO.

Description: Gets the fill level of the FIFO which is the AND of the value of the addressed register and
the mask.

5–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_read_ienable()

Prototype: int altera_avalon_fifo_read_ienable(alt_u32 address, alt_u32
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the interruptenable register

Returns: Returns the logical AND of the interruptenable register and the mask.

Description: Gets the logical AND of the interruptenable register and the mask.

Altera Corporation 5–21
October 2007

altera_avalon_fifo_read_almostfull()

altera_avalon_fifo_read_almostfull()

Prototype: int altera_avalon_fifo_read_almostfull(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostfull register.

Description: Gets the value of the almostfull register.

5–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_read_almostempty()

Prototype: int altera_avalon_fifo_read_almostempty(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the value of the almostempty register.

Description: Gets the value of the almostempty register.

Altera Corporation 5–23
October 2007

altera_avalon_fifo_read_event()

altera_avalon_fifo_read_event()

Prototype: int altera_avalon_fifo_read_event(alt_u32 address, alt_u32
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—masks the read value from the event register

Returns: Returns the logical AND of the event register and the mask.

Description: Gets the logical AND of the event register and the mask. To read single bits of the event
register use the single bit masks, for example:
ALTERA_AVALON_FIFO_FIFO_EVENT_F_MSK. To read the entire event register use
the full mask: ALTERA_AVALON_FIFO_EVENT_ALL.

5–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_read_level()

Prototype: int altera_avalon_fifo_read_level(alt_u32 address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave

Returns: Returns the fill level of the FIFO.

Description: Gets the fill level of the FIFO.

Altera Corporation 5–25
October 2007

altera_avalon_fifo_clear_event()

altera_avalon_fifo_clear_event()

Prototype: int altera_avalon_fifo_clear_event(alt_u32 address, alt_u32
mask)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—the mask to use for bit-clearing (1 means clear this bit, 0 means don’t)

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful,
ALTERA_AVALON_FIFO_EVENT_CLEAR_ERROR if unsuccessful.

Description: Clears the specified bits of the event register.

5–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_write_ienable()

Prototype: int altera_avalon_fifo_write_ienable(alt_u32 address, alt_u32
mask

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
mask—the value to write to the interruptenable register. See
altera_avalon_fifo_regs.h for individual interrupt bit masks.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful,
ALTERA_AVALON_FIFO_IENABLE_WRITE_ERROR if unsuccessful.

Description: Writes the specified bits of the interruptenable register.

Altera Corporation 5–27
October 2007

altera_avalon_fifo_write_almostfull()

altera_avalon_fifo_write_almostfull()

Prototype: int altera_avalon_fifo_write_almostfull(alt_u32 address,
alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
data—the value for the almost full threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostfull register.

5–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_write_almostempty()

Prototype: int altera_avalon_fifo_write_almostempty(alt_u32 address,
alt_u23 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: address—the base address of the FIFO control slave
data—the value for the almost empty threshold level

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful,
ALTERA_AVALON_FIFO_THRESHOLD_WRITE_ERROR if unsuccessful.

Description: Writes data to the almostempty register.

Altera Corporation 5–29
October 2007

altera_avalon_write_fifo()

altera_avalon_write_fifo()

Prototype: int altera_avalon_write_fifo(alt_u32 write_address, alt_u32
ctrl_address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave
ctrl_address—the base address of the FIFO control slave
data—the value to write to address offset 0 for Avalon-MM to Avalon-ST transfers, the
value to write to the single address available for Avalon-MM t o Avalon-MM transfers.
See the Avalon Memory-Mapped and Avalon Streaming Interface Specifications for the
data ordering.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful,
ALTERA_AVALON_FIFO_FULL if unsuccessful.

Description: Writes data to the specified address if the FIFO is not full.

5–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_write_other_info()

Prototype: int altera_avalon_write_other_info(alt_u32 write_address,
alt_u32 ctrl_address, alt_u32 data)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: write_address—the base address of the FIFO write slave
ctrl_address—the base address of the FIFO control slave
data—the packet status information to write to address offset 1 of the Avalon interface.
See the Avalon Memory-Mapped and Avalon Streaming Interface Specifications for the
ordering of the packet status information.

Returns: Returns 0 (ALTERA_AVALON_FIFO_OK)if successful,
ALTERA_AVALON_FIFO_FULL if unsuccessful.

Description: Writes the packet status information to the write_address. Only valid when Enable
packet data is on.

Altera Corporation 5–31
October 2007

altera_avalon_fifo_read_fifo()

altera_avalon_fifo_read_fifo()

Prototype: int altera_avalon_fifo_read_fifo(alt_u32 read_address,
alt_u32 ctrl_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave
ctrl_address—the base address of the FIFO control slave

Returns: Returns the data from address offset 0, or 0 if the FIFO is empty.

Description: Gets the data addressed by read_address.

5–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_fifo_read_other_info()

Prototype: int altera_avalon_fifo_read_other_info(alt_u32 read_address)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_fifo_regs.h>, <altera_avalon_fifo_utils.h>

Parameters: read_address—the base address of the FIFO read slave

Returns: Retunrs the packet status information from address offset 1 of the Avalon interface. See
the Avalon Memory-Mapped and Avalon Streaming Interface Specifications for the
ordering of the packet status information.

Description: Reads the packet status information from the specified read_address. Only valid
when Enable packet data is on.

Altera Corporation 5–33
October 2007

altera_avalon_fifo_read_fifo()

Referenced
Documents

This chapter references the Avalon Streaming Interface Specification.

Document
Revision History

Table 5–9 shows the revision history for this chapter.

Table 5–9. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 5 was formerly Chapter 4. —

May 2007
v7.1.0

Initial release. —

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf

5–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 6–1
October 2007
Altera Corporation 6–1
October 2007

6. Scatter-Gather DMA
Controller Core

Core Overview The Scatter-Gather direct memory access (SG-DMA) controller core
implements high-speed data transfer between two devices. The SG-DMA
core can be used to transfer data from the following sources:

■ Memory to memory
■ Data stream to memory
■ Memory to data stream

The SG-DMA controller core transfers and merges non-contiguous
memory to a continuous address space. It also transfers contiguous
memory to non-contiguous memory. The core operates by reading a
series of descriptors that specify the data to be transferred.

For applications requiring more than one DMA channel, multiple
instantiations of the core can provide the required throughput. Each
SG-DMA controller has its own series of descriptors specifying the data
transfers. A single software module controls all of the DMA channels.

The SG-DMA controller core is SOPC Builder-ready and integrates easily
into any SOPC Builder-generated system. For the Nios® II processor,
device drivers are provided in the HAL system library, allowing software
to access the core using the ANSI C Standard Library stdio.h routines.

Example Systems

Figure 6–1 shows a SG-DMA controller core in a block diagram for the
DMA subsystem of a printed circuit board. The SG-DMA core in the
FPGA reads streaming data from an internal streaming component and
writes data to an external memory. A Nios II processor provides overall
system control. The descriptor table, containing the linked list of
descriptors specifying data transfers to be executed, can be located in the
FPGA or an external memory. Locating this table in an external memory
will free up resources in the FPGA; however, an external descriptor table
will increase the overhead involved when the descriptor processor reads
and updates the table. The SG-DMA core has an internal FIFO to store
descriptors read from memory, which allows it to perform descriptor
read, execute, and write back operations in parallel, hiding the descriptor
read latency.

QII55003-7.2.0

6–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Figure 6–1. Scatter-Gather DMA Controller Core with Streaming Peripheral and External Memory

Figure 6–2 shows a different use of the SG-DMA controller core. In
Figure 6–2, SG-DMA core transfers data between an internal and external
memory. The host processor and memory are on the system bus, typically
either a PCI-Express or Serial RapidIO™.

 Printed Circuit Board

 SOPC Builder System

S

Scatter Gather DMA Controller Core

Nios II

Rd

ST

system
Interconnect

fabric

Descriptor
Processor

S Avalon-MM Slave Port

M Avalon-MM Master Port

ST Avalon-ST Sink Port

DDR2
Memory

Mem
Cntl

Streaming
Component

M

Rd

M

system interconnect fabric

DMA Write

Descriptor
Table

Memory

M

Wr

M

Wr

M

Cntl &
Status
Regs

Altera Corporation 6–3
October 2007

Core Overview

Altera Corporation 6–3
October 2007

Core Overview

Figure 6–2. Scatter-Gather DMA Controller Core with Internal and External Memory

Figures 6–1 and 6–2 illustrate systems using the SG-DMA controller core
and omit some of the internals of the core itself. Figure 6–3 on page 6–7
illustrates all of the SG-DMA controller core internals.

Resource Usage and Performance

Resource utilization for the core is 600–1400 LEs, depending upon the
width of the datapath, the parameterization of the core, and the type of
data transfer. Table 6–1 provides resource utilization for a SG-DMA

 Printed Circuit Board

 SOPC Builder System

system interconnect fabric

Scatter Gather DMA
 Controller Core

Rd

M

S Avalon-MM Slave Port

M Avalon-MM Master Port

Descriptor
Processor

Wr Rd

DMA Rd/Wr

Wr

M M

Cntl &
Status
Regs

MS

Internal
Memory

IOB IO Breakout

Avalon-MM Bridge

M S

IOB

Host
Processor

Main
Memory

Descriptor
Table

processor bus

6–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

controller core used for memory to memory transfer. The core is highly
parameterized and the resource utilization will vary with the
configuration specified.

The core operating frequency varies with the device and the size of the
datapath. Table 6–2 provides an example of expected performance for
SG-DMA cores instantiated in several different device families.

Comparison of SG-DMA Controller Core and DMA Controller
Core

The SG-DMA controller core provides a significant performance
enhancement over the previously available DMA controller core, which
could only perform a single DMA transfer at a time. With the older DMA
controller core, a CPU performed separate reads for each entry of the
DMA descriptor table and then executed separate IO writes to program
the DMA controller to perform the transfer. Transfers to non-contiguous
memory could not be linked; consequently, the CPU overhead was
substantial for small transfers, degrading overall system performance. In
contrast, the SG-DMA controller core reads a series of descriptors from
memory that describe the required transactions and performs all of the
transfers without additional intervention from the CPU.

Table 6–1. SG-DMA Estimated Resource Usage

Datapath Cyclone® II Stratix® (Approx.
LEs)

Stratix II
(Approx. ALUTs)

8-bit datapath 850 650 600

32-bit datapath 1100 850 700

64-bit datapath 1250 1250 800

Table 6–2. SG-DMA Performance Estimates

Device Datapath fMAX Throughput

Cyclone II 64 bits 150 MHz 9.6 Gbps

Cyclone III 64 bits 160 MHz 10.2 Gbps

Stratix II/Stratix II GX 64 bits 250 MHz 16.0 Gbps

Stratix III 64 bits 300 MHz 19.2 Gbps

Altera Corporation 6–5
October 2007

Functional Description

Altera Corporation 6–5
October 2007

Functional Description

Functional
Description

The SG-DMA controller core comprises three major blocks: a descriptor
processor, a DMA read block and a DMA write block. (See Figure 6–3 on
page 6–7.) These blocks are combined to create three different
configurations:

■ memory to memory
■ memory to stream
■ stream to memory

For the memory-to-memory configuration, the core includes all three
blocks. If the core is configured for memory-to-stream transactions, only
the descriptor processor and read blocks are required. If the core is
configured for stream-to-memory transactions, only the descriptor
processor and write blocks are required. In the memory-to-memory
configuration, an internal FIFO holds data being transferred between the
read and write blocks. In the other two configurations, an external FIFO
might be required depending upon the throughput of the components
being connected. For designs requiring an external FIFO, the on-chip
FIFO memory available in SOPC Builder can be used.

The following sections describe the three configurations of the SG-DMA
controller core and the behavior of the internal modules for each
configuration.

Memory-to-Memory Configuration

As Figure 6–3 illustrates, the memory-to-memory configuration includes
five Avalon-MM ports. The descriptor processor block uses read and
write Avalon-MM master ports to access and update descriptors. The
DMA read block has an Avalon-MM master read port to read data from
memory; it has an Avalon-ST port to pass data to the DMA write block.
The DMA write block has an Avalon-ST port to receive data from the read
block and an Avalon-MM master write port to write the data to memory.
Software accesses an Avalon-MM slave port to read and write the
control and status registers.

In the memory-to-memory configuration, the descriptor processor reads
descriptors from the descriptor table and pushes the appropriate
commands onto the input FIFOs of the DMA read and write blocks. It also
receives a status token from the read or write block after each descriptor
has been processed. The status token contains information about the
status of the transfer, including the number of bytes transferred. The
descriptor processor then writes this information back to the appropriate
entry in the descriptor table.

6–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

In the memory-to-memory configuration, an internal data FIFO stores
data being transferred between the read and write blocks to provide
buffering and flow control.

To execute a DMA read transfer between memories, the following steps
are executed:

1. Software writes the descriptor into memory.

2. Software writes the location of the first descriptor address to
SG-DMA controller hardware and initiates the transfer by setting
the RUN bit of the SG-DMA control register.

3. The descriptor processor reads the descriptors from memory and
writes them into a command FIFO which feeds commands to both
the DMA read and write blocks.

4. The DMA write block gets the destination address from its
command FIFO. The write block continues to execute writes until
the specified number of bytes have been transferred. It then sends a
status update to the DMA controller. If the data FIFO ever empties,
the write block pauses until the FIFO has more data to write.

5. The descriptor processor updates the appropriate entry in the
descriptor table.

Figure 6–3 illustrates one possible configuration for the memory-to-
memory SG-DMA controller with an internal Nios II processor and
descriptor table.

Altera Corporation 6–7
October 2007

Functional Description

Altera Corporation 6–7
October 2007

Functional Description

Figure 6–3. Scatter-Gather DMA Controller Core for Memory-to-Memory Configuration

Memory-to-Stream Configuration

The memory-to-stream configuration includes the descriptor processor
and the DMA read block. As Figure 6–3 illustrates, this configuration
includes four Avalon-MM ports and one Avalon-ST port. The descriptor
processor block includes read and write Avalon-MM master ports to

 SOPC Builder System

M Avalon-MM Master Port

Nios II
Processor

S Avalon-MM Slave Port

Avalon-ST Source PortSRC

 Cntl &
Status
Regs

Descriptor
Processor

Scatter Gather DMA Controller Core

Rd

S M

Wr

Cmd
Status

M M

DMA Read

DMA Write

SNK

SRC

Cmd
Status

M

system interconnect fabric

Data
FIFO

Memory
Controller

to offchip
memory

Memory

Descriptor
Table

Avalon-ST Sink PortSNK

6–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

access and update descriptors. The DMA read block has an Avalon-MM
master read port to read data from memory and an Avalon-ST port to
write the data to a streaming component. An Avalon-MM slave port is
used to read and write the control and status registers.

Figure 6–4 on page 6–9 illustrates a SG-DMA controller in the
memory-to-stream configuration. In this example, the Nios II processor
and descriptor table are inside the FPGA. Data from an external DDR2
memory is read by the SG-DMA controller and written to an internal
streaming peripheral. The read block returns status to the descriptor
processor upon completion of each descriptor.

Altera Corporation 6–9
October 2007

Functional Description

Altera Corporation 6–9
October 2007

Functional Description

Figure 6–4. Scatter-Gather DMA Controller Memory-to-Stream Configuration

The transfer operation includes the following steps:

1. Software writes the descriptor into memory.

2. Software writes the location of first descriptor address to SG-DMA
controller hardware and initiates the transfer by setting the RUN bit
of the SG-DMA control register.

 SOPC Builder System

Cntl &
Status
Regs

Descriptor
Processor

Scatter Gather DMA Controller Core

Rd

M

Wr

Cmd
Status

M

Streaming
Component

system
interconnect

fabric

system interconnect fabric

M Avalon-MM Master Port

S Avalon-MM Slave Port
DDR2

Memory

M

DMA Read

Rd

Nios II
ProcessorDescriptor

Table

Memory

Wr

S

Memory
Controller

S

SRC

SNK

 SRC

SRC Avalon-ST Sink Port

Avalon-ST Source Port

SNK

6–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

3. The descriptor processor reads the descriptors from memory and
writes them into the input command FIFO in the read block.

4. The read block reads from the source address and pushes the data to
its stream port. The read block continues reads until the specified
number of bytes have been transferred. It then sends a status update
to the descriptor processor.

5. The descriptor processor updates the appropriate entry in the
descriptor table.

Stream-to-Memory Configuration

The stream-to-memory configuration includes the descriptor processor
and the DMA write block. The write block returns status to the descriptor
processor upon completion of each descriptor. This configuration is
similar to the memory-to-stream configuration except that the data flows
from a streaming component to a memory device as Figure 6–5 illustrates.
In this example, an On-Chip FIFO Memory component is used to provide
a buffer between the streaming component and the DMA write.

The transfer operation includes the following steps:

1. Software writes the descriptor into memory.

2. Software writes the location of the first descriptor address to
SG-DMA controller hardware and initiates the transfer by writing
the RUN bit of the SG-DMA control register.

3. The descriptor processor reads the descriptors from memory and
writes them into the write block.

4. The write block reads from its stream port and writes the data to its
Avalon master port. The write block continues reads until the
specified number of bytes have been transferred. It then sends a
status update to the descriptor processor.

5. The descriptor processor updates the appropriate entry in the
descriptor table.

Altera Corporation 6–11
October 2007

Functional Description

Altera Corporation 6–11
October 2007

Functional Description

Figure 6–5. Scatter-Gather DMA Controller Stream-to-Memory Configuration

 SOPC Builder System

Cntl &
Status
Regs

Descriptor
Processor

Scatter Gather DMA Controller Core

Rd

S M

Wr

Cmd
Status

M

system
interconnect

fabric
system interconnect fabric

M Avalon-MM Master Port

S Avalon-MM Slave Port

M

DMA Write

Wr

Nios II
ProcessorDescriptor

Table

Memory

Streaming
Component

On-Chip
FIFO

Memory

SRC

SNK

SRC

SNK

Memory
Controller

S

to offchip
memory

 SRC

SRC Avalon-ST Sink Port

Avalon-ST Source Port

SNK

6–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Possible Sources of Errors

The SG-DMA core has a parameterizable error width. Error signals are
wired directly to the Avalon-ST source or sink to which the SG-DMA core
is connected. Table 6–3 lists the error signals when the core is operating in
the memory to stream configuration and connected to the transmit FIFO
interface of the Altera Triple-Speed Ethernet MegaCore®.

Table 6–4 lists the error signals when the core is operating in the
stream-to-memory configuration and connected to the transmit FIFO
interface of the Altera Triple-Speed Ethernet MegaCore.

Table 6–3. Avalon-ST Transmit Channel Error Types

Signal Type Description

TSE_transmit_error[0] Transmit Frame Error. Asserted to indicate that the transmitted frame should be
viewed as invalid by the Ethernet MAC. The frame is then transferred onto the
GMII interface with an error code during the frame transfer.

Table 6–4. Avalon-ST Receive Channel Error Types

Signal Type Description

TSE_receive_error[0] Receive Frame Error. This signal indicates that an error has occurred. It is the
logical OR of receive errors 1 through 5.

TSE_receive_error[1] Invalid Length Error. Asserted when the received frame has an invalid length as
defined by the IEEE 802.3 standard.

TSE_receive_error[2] CRC Error. Asserted when the frame has been received with a CRC-32 error.

TSE_receive_error[3] Receive Frame Truncated. Asserted when the received frame has been
truncated due to receive FIFO overflow.

TSE_receive_error[4] Received Frame corrupted due to PHY error. (The PHY has asserted an error on
the receive GMII interface.)

TSE_receive_error[5] Collision Error. Asserted when the frame was received with a collision.

Altera Corporation 6–13
October 2007

Detailed Description of Each Block

Altera Corporation 6–13
October 2007

Detailed Description of Each Block

Detailed
Description of
Each Block

The following sections provide a detailed description of each functional
block.

Descriptor Processor Block

The descriptor processor reads descriptors from memory using its
Avalon-MM descriptor read master port and pushes commands onto the
command FIFOs of the DMA read and write blocks. The command
includes the following fields to specify the transfers:

■ source address
■ destination address
■ read size
■ write size
■ bytes to transfer
■ increment read address after each transfer
■ increment write address after each transfer
■ generate end of packet

DMA Read Block

The DMA read block reads commands from its input command FIFO. For
each command, it reads data from the source address on its Avalon-MM
port. In the memory-to-memory configuration, it pushes the data into the
data FIFO. In the memory-to-stream configuration, it immediately writes
the data to the Avalon-ST source port.

1 The DMA read block will not begin an Avalon-MM read unless
its data FIFO has enough space to store all of the data read. This
restriction requires the external FIFO be at least as deep as the
maximum supported read size.

DMA Write Block

The DMA write block reads commands from its input command FIFO.
For each command, it writes data received on its Avalon-ST sink port to
the destination address. In the memory-to-memory and the
stream-to-memory configurations, it reads the data from its Avalon-ST
port and writes to its Avalon-MM port.

Device Support
and Tools

The SG-DMA controller core supports the Arria™ GX, Stratix III,
Stratix II GX, Stratix II, Stratix, Cyclone III, Cyclone II, Cyclone and
Hardcopy® II device families.

6–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Instantiating the
Core in SOPC
Builder

Hardware designers use the MegaWizard interface for the SG-DMA
controller core in SOPC Builder to specify the core configuration.

1 If an SOPC Builder system contains both the SG-DMA controller
and JTAG UART cores, set the IRQs for the SG-DMA controller
core to a higher priority than the IRQs for the JTAG UART core.

The following sections describe the available options in the configuration
wizard.

Transfer Mode

This list allows you to select between the Memory To Memory, Memory
To Stream, and Stream To Memory configurations. For more information
about these configurations, see “Memory-to-Memory Configuration” on
page 6–5, “Memory-to-Stream Configuration” on page 6–7, and “Stream-
to-Memory Configuration” on page 6–10.

Allow Unaligned Transfers

If Allow unaligned transfers is on, data transfers for data widths that are
not a power of two will be aligned on word boundaries. Unaligned
transfers require extra logic that may negatively impact system
performance.

Data and Error Widths

The Data width list allows you to select data width in bits for the
Avalon-MM read and write ports. The Source error width and Sink error
width lists allow you to select widths of the error signals for the
Avalon-ST source and sink ports.

FIFO Depth

The Data transfer FIFO depth list sets the depth for all three descriptor
FIFOs:

■ the Descriptor Processor block FIFO
■ the DMA read block FIFO
■ the DMA write block FIFO

The Data transfer FIFO depth list also sets the depth for the internal data
FIFO used in the memory-to-memory configuration. These FIFOs are all
illustrated in Figure 6–3 on page 6–7.

Altera Corporation 6–15
October 2007

Hardware Simulation Considerations

Altera Corporation 6–15
October 2007

Hardware Simulation Considerations

Hardware
Simulation
Considerations

Signals for hardware simulation are automatically generated and show
up as part of the Nios II simulation accessible from the Nios II IDE. On the
Run menu, point to Run As and click Nios II Modelsim.

Software
Programming
Model

The following sections describe the software programming model for the
SG-DMA controller core.

HAL System Library Support

The Altera-provided driver implements a HAL device driver that
integrates into the HAL system library for Nios II systems. HAL users
should access the SG-DMA controller core via the familiar HAL API and
the ANSI C standard library.

Software Files

The SG-DMA controller provides the following software files. These files
provide low-level access to the hardware and drivers that integrate into
the Nios II HAL system library. Application developers should not
modify these files.

■ altera_avalon_sgdma_regs.h—defines the core’s register map,
providing symbolic constants to access the low-level hardware

■ altera_avalon_sgdma.h—provides definitions for the Altera Avalon
SG-DMA buffer control and status flags.

■ altera_avalon_sgdma.c—provides function definitions for the code
that implements the SG-DMA controller core.

■ altera_avalon_sgdma_descriptor.h—defines the core’s descriptor,
providing symbolic constants to access the low-level hardware.

6–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Programming
with the
SG-DMA
Controller

This section describes the software constructs for programming the
SG-DMA Controller.

Software Control

The host processor programs the SG-DMA by writing to its control
register. The host processor reads SG-DMA status register to determine
the current status.

Table 6–5. SG-DMA Controller Functions

Function Name Description

alt_avalon_sgdma_do_async_transfer() Sets up and begins a non-blocking transfer of one or more
descriptors or a descriptor chain.

alt_avalon_sgdma_do_sync_transfer() Sends a fully formed descriptor, or list of descriptors, to
the SG-DMA Controller for transfer. This function will
block both before transfer if the controller is busy and until
the requested transfer has completed.

alt_avalon_sgdma_construct_

mem_to_mem_desc()

Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-MM to Avalon-MM transfer.

alt_avalon_sgdma_construct_

stream_to_mem_desc()

Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-ST to Avalon-MM transfer.

alt_avalon_sgdma_construct_

mem_to_stream_desc()

Constructs a single SG-DMA descriptor in the specified
memory for an Avalon-MM to Avalon-ST transfer.

alt_avalon_sgdma_check_

descriptor_status()

Reads the status register of the descriptor.

alt_avalon_sgdma_register_callback() Associates a user-specific routine with the SG-DMA
interrupt handler.

alt_avalon_sgdma_start() Starts the DMA engine.

alt_avalon_sgdma_stop() Stops the DMA engine.

alt_avalon_sgdma_open() Retrieves a pointer to the SG-DMA controller with the
given name.

Altera Corporation 6–17
October 2007

Programming with the SG-DMA Controller

Altera Corporation 6–17
October 2007

Programming with the SG-DMA Controller

Table 6–6 shows the offsets for the control and status registers.

Software writes the control register to specify the behavior of the
SG-DMA controller. This register determines the conditions under which
the SG-DMA controller will generate an interrupt. It also includes the
control bits used to start and stop processing descriptors.

1 Bursting to the control port is not supported.

Table 6–7 provides a bit-map for the control register.

Table 6–6. SG-DMA Control and Status Slave Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 next_descriptor_pointer

Table 6–7. SG-DMA Control Register Map (Part 1 of 2)

Bit Bit Name Rd/Wr/Clr Description

0 IE_ERROR R/W Assert an interrupt when (ERROR = 1).

1 IE_EOP_ENCOUNTERED R/W Assert an interrupt when (EOP_ENCOUNTERED
= 1).

2 IE_DESCRIPTOR_COMPLETED R/W Assert an interrupt when
(DESCRIPTOR_COMPLETED = 1).

3 IE_CHAIN_COMPLETED R/W Assert an interrupt when (CHAIN COMPLETED
=1).

4 IE_GLOBAL R/W Global signal to enable all interrupts.

5 RUN R/W The SG-DMA processes descriptors in its queue
as long as RUN = 1. The SG-DMA will not
process the next descriptor in its queue when RUN
= 0. Setting RUN starts the descriptor processor
that initiates DMA transactions. Clearing RUN will
not stop processing of a descriptor if processing
has already begun.

6 STOP_DMA_ER R/W Stops DMA after current descriptor if ERROR is
detected.

7 IE_MAX_DESC_
PROCESSED (1)

R/W Enables interrupts when
MAX_DESC_PROCESSED is reached.

8 .. 15 MAX_DESC_
PROCESSED (1)

R/W Specifies the number of descriptors to process
before invoking interrupt.

6–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Table 6–8 provides a bit-map for the status register.

Next Descriptor Pointer

Software writes the address of the first descriptor to this register as part
of the system initialization sequence. When RUN = 1, the SG-DMA
updates this register with the location of the next descriptor to be fetched.
To stop execution of the SG-DMA core, software clears the RUN bit. When
RUN is 0, the SG-DMA hardware completes the data transfers for the
current descriptor and then stops processing. Software can then modify
the remaining linked-list and restart the SG-DMA hardware.

16 SW_RESET R/W Resets the SG-DMA hardware and stops all
operations immediately.

17 PARK R/W Enables the hardware to repeatedly use the same
descriptor without software intervention. The bit
owned_by_hw is not cleared, thus allowing the
hardware to reuse the descriptor.

18..30 Reserved

31 CLEAR INTERRUPT R/W Set this bit to 1 to clear pending interrupts.

Note to Table 6–7:
(1) Available if interrupt coalescing is selected in the synthesis options.

Table 6–7. SG-DMA Control Register Map (Part 2 of 2)

Bit Bit Name Rd/Wr/Clr Description

Table 6–8. SG-DMA Status Register Map

Bit Bit Name Rd/Wr/Clr Description

0 ERROR R/C (1)(2) Avalon-ST error encountered during transfer.

1 EOP_ENCOUNTERED R/C Transfer terminated by Avalon-ST EOP.

2 DESCRIPTOR_COMPLETED R/C (1)(2) A descriptor was processed to completion.

3 CHAIN_COMPLETED R/C (1)(2) Unable to process next descriptor because
Owned by HW = 0.

4 BUSY R/C (1)(3)) Indicates that descriptors are being processed;
the linked list of descriptors is not yet completed.

5 .. 31 reserved

Notes to Table 6–8:
(1) This bit must be cleared after a read is performed. Write one to clear this bit.
(2) This bit is updated by hardware after each DMA transfer completes. It remains set until software writes one to clear.
(3) This bit is continuously updated by the hardware.

Altera Corporation 6–19
October 2007

Programming with the SG-DMA Controller

Altera Corporation 6–19
October 2007

Programming with the SG-DMA Controller

1 While BUSY = 1, the next descriptor pointer is updated by
hardware. The next descriptor pointer can only be reliably read
by software when BUSY = 0.

DMA Descriptors

The DMA descriptors specify all information required to perform data
transfers, including: the source address, destination address, and the
number of bytes to be transferred. The descriptors are stored in a table
that is written by software. This table can be stored in FPGA memory or
an external memory device as a linked list. The descriptor must be
initialized by user applications and aligned on a 256-bit boundary.

Table 6–9 shows the layout of a descriptor entry.

Table 6–10 describes the function of the various fields.

Table 6–9. Descriptor Layout

Offset
Bit Field Names

31 24 23 16 15 8 7 0

base SOURCE

base + 1 RESERVED

base + 2 DESTINATION

base + 3 RESERVED

base + 4 NEXT_DESC_PTR

base + 5 RESERVED

base + 6 WRITE_ READ_ BYTES_TO_TRANSFER

base + 7 DESC_CONTROL DESC_STATUS ACTUAL_BYTES_TRANSFERRED

Table 6–10. Descriptor Field Descriptions (Part 1 of 2)

Field Name Rd/Wr/Clr Description

SOURCE R/W Specifies the address of data to be read. This address is
set to 0 if the input source is an Avalon Streaming
(Avalon-ST) interface.

DESTINATION R/W Specifies the address to which data should be written.
This address is set to 0 if the write data is an Avalon-ST
interface.

NEXT_DESC_PTR R/W Specifies the next descriptor in the linked list.

6–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The descriptor processor reads the DESC_CONTROL fields to determine
how to proceed with the DMA transaction. Table 6–11 provides a bit-map
for theses fields.

BYTES_TO_

TRANSFER
R/W Specifies the number of bytes to transfer. If BYTES_TO

_TRANSFER = 0, the transaction will be terminated by
an EOP.

READ_ R/W

WRITE_ R/W

ACTUAL_BYTES_
TRANSFERRED

R Specifies the number of bytes that are successfully
transferred by the DMA hardware.

DESC_CONTROL R/W See Table 6–12 for descriptions of each bit.

DESC_STATUS R/W See Table 6–11 for descriptions of each bit.

Table 6–10. Descriptor Field Descriptions (Part 2 of 2)

Field Name Rd/Wr/Clr Description

Table 6–11. Desc_Control Field Map

Bits Field Name Rd/Wr/Clr Description

0 Generate_EOP W When set, DMA Read should generate an EOP on
the final word.

1 Read_Fixed_Address R/W For Avalon-MM ports, when set to 1, DMA Read
does not increment the memory address. When 0,
the read address increments after each read.

When used in Memory-to-Stream mode, the read
engine generates a startofpacket signal on
the first word.

2 Write_Fixed_Address R/W Used only for Avalon-MM ports. When set to 1,
DMA Write does not increment the memory
address. When 0, the write address increments
after each write.

3 .. 6 Avalon-ST_Channel_Number R/W DMA Read drives this value onto the Avalon-ST
channel port for each word in the transaction. The
DMA Write replaces this value with the Avalon-ST
channel number for its sink port.

7 Owned_by_HW R/W This bit determines whether hardware or software
has write access to the descriptor of the SG-DMA
control and status register. When
Owned_by_HW=1 the hardware can update this
pointer. When Owned_by_HW=0, software can
update this pointer.

Altera Corporation 6–21
October 2007

Programming with the SG-DMA Controller

Altera Corporation 6–21
October 2007

Programming with the SG-DMA Controller

After completing a DMA transaction, the descriptor processor updates
the DESC_STATUS fields to indicate how the transaction proceeded. The
error conditions these fields record can only occur on an Avalon-ST
interface. Table 6–12 provides a bit-map for the DESC_STATUS fields.

Macros to access all of the registers are defined in
altera_avalon_sgdma_regs.h. For example, this file includes macros to
access the status register, including the following macros:

#define IOADDR_ ALTERA_AVALON_SGDMA_STATUS(base) __IO_CALC_ADDRESS_DYNAMIC(base, 0)
#define IORD_ALTERA_AVALON_SGDMA_STATUS(base) IORD(base, 0)
#define IOWR_ALTERA_AVALON_SGDMA_STATUS(base, data) IOWR(base, 0, data)
#define ALTERA_AVALON_SGDMA_STATUS_ERROR_MSK (0x1)
#define ALTERA_AVALON_SGDMA_STATUS_ERROR_OFST (0)
#define ALTERA_AVALON_SGDMA_STATUS_EOP_ENCOUNTERED_MSK (0x2)
#define ALTERA_AVALON_SGDMA_STATUS_EOP_ENCOUNTERED_OFST (1)

For a complete list of predefined macros and utilities to access the
SG-DMA Controller hardware, see:

■ <install_dir>\quartus\sopc_builder\components\altera_avalon_sg
dma\inc\altera_avalon_sgdma_regs.h,

■ <install_dir>\quartus\sopc_builder\components\altera_avalon_sg
dma\HAL\inc\altera_avalon_sgdma.h, and

■ <install_dir>\quartus\sopc_builder\components\altera_avalon_sg
dma\HAL\inc\altera_avalon_sgdma_descriptor.h.

Table 6–12. Descriptor Desc_Status Bit Map

Bit Bit Name Rd/Wr/Clr Description

0 E_CRC R When set, indicates that a CRC error occurred on
the Avalon-ST interface.

1 E_PARITY R When set, indicates that a parity error occurred on
the Avalon-ST interface.

2 E_OVERFLOW R When set, indicates that an overflow occurred on
the Avalon-ST interface.

3 E_SYNC R When set, indicates that an out-of-sync error
occurred on the Avalon-ST interface.

4 E_UEOP R When set, indicates that an unexpected EOP error
occurred on the Avalon-ST interface.

5 E_MEOP R When set, indicates that a missing EOP error
occurred on the Avalon-ST interface.

6 E_MSOP R When set, indicates that a missing SOP error
occurred on the Avalon-ST interface.

7 Terminated_by_
EOP

R When set, indicates that a write transaction was
terminated by EOP.

6–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Timeouts

The SG-DMA controller does not implement internal counters to detect
stalls. Software can instantiate a timer component if this functionality is
required.

SG-DMA
Controller API

This section describes the application programming interface (API) for
the SG-DMA controller core.

Altera Corporation 6–23
October 2007

alt_avalon_sgdma_do_async_transfer()

Altera Corporation 6–23
October 2007

alt_avalon_sgdma_do_async_transfer()

alt_avalon_sgdma_do_async_transfer()

Prototype: int alt_avalon_do_async_transfer(alt_sgdma_dev *dev,
alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its "next"
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the
chain.

Returns: Returns 0 success. Other return codes are defined in errno.h.

Description: Set up and begin a non-blocking transfer of one or more descriptors or a descriptor
chain. If the SG-DMA controller is busy at the time of this call, the routine will immediately
return -EBUSY; the application can then decide how to proceed without being blocked.
If a callback routine has been previously registered with this particular SG-DMA
controller, the transfer will be set up to issue an interrupt on error, EOP, or chain
completion. Otherwise, no interrupt is registered and it is the responsibility of the
application developer to check for and handle errors and completion.

6–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

alt_avalon_sgdma_do_sync_transfer()

Prototype: alt_u8 alt_avalon_sgdma_do_sync_transfer(alt_sgdma_dev *dev,
alt_sgdma_descriptor *desc)

Thread-safe: No.

Available from ISR: Not recommended.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to an SG-DMA device structure.
*desc—a pointer to a single, constructed descriptor. The descriptor must have its "next"
descriptor field initialized either to a non-ready descriptor, or to the next descriptor in the
chain.

Returns: Returns the contents of the status register.

Description: Sends a fully formed descriptor or list of descriptors to the SG-DMA controller for
transfer. This function blocks both before transfer, if the SG-DMA controller is busy, and
until the requested transfer has completed. If an error is detected during the transfer, it
is abandoned and the controller’s status register contents are returned to the caller.
Additional error information is available in the status bits of each descriptor that the
SG-DMA processed. It is the responsibility of the user application to search through the
descriptor or list of descriptors to gather specific error information.

Altera Corporation 6–25
October 2007

alt_avalon_sgdma_construct_mem_to_mem_desc()

Altera Corporation 6–25
October 2007

alt_avalon_sgdma_construct_mem_to_mem_desc()

alt_avalon_sgdma_construct_mem_to_mem_desc()

Prototype: void
alt_avalon_sgdma_construct_mem_to_mem_desc(alt_sgdma_descrip
tor *desc, alt_sgdma_descriptor *next, alt_u32 *read_addr,
alt_u32 *write_addr, alt_u16 length, int read_fixed, int
write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the "next" descriptor. This does not need to be a complete or
functional descriptor, but must be properly allocated.
*read_addr—the first read address for the SG-DMA transfer.
*write_addr—the first write address for the SG-DMA transfer.
length—the number of bytes for the transfer.
read_fixed—if non-zero, the SG-DMA will read from a fixed address.
write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-MM to Avalon-MM transfer. The
function sets the OWNED_BY_HW bit in the descriptor's control field, marking the
completed descriptor as ready to run. The descriptor is processed when the SG-DMA
controller receives the descriptor and the RUN bit of the SG-DMA control register is
asserted.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA
completes processing of the *desc, it will not process the descriptor at *next until its
OWNED_BY_HW bit is set. To create a descriptor chain, you can repeatedly call this
function using the previous call's *next pointer in the *desc parameter.

You are responsible for properly allocating memory for the creation of both the descriptor
under construction as well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain
read and chain write Avalon master ports. Care must be taken to ensure that both
*desc and *next point to areas of memory mastered by the controller.

6–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

alt_avalon_sgdma_construct_stream_to_mem_desc()

Prototype: void
alt_avalon_sgdma_construct_stream_to_mem_desc(alt_sgdma_desc
riptor *desc, alt_sgdma_descriptor *next, alt_u32
*write_addr, alt_u16 length_or_eop, int write_fixed)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the "next" descriptor. This does not need to be a complete or
functional descriptor, but must be properly allocated.
*write_addr—the first write address for the SG-DMA transfer.
length_or_eop—the number of bytes for the transfer. If set to zero (0x0), the transfer
will continue until an EOP signal is received from the Avalon-ST interface.
write_fixed—if non-zero, the SG-DMA will write to a fixed address.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma_descriptor *desc for an Avalon-ST to Avalon-MM transfer. The
source (read) data for the transfer comes from the Avalon-ST interface connected to the
SG-DMA controller's streaming read port.

The function sets the OWNED_BY_HW bit in the descriptor's control field, marking the
completed descriptor as ready to run. The descriptor is processed when the SG-DMA
controller receives the descriptor and the RUN bit of the SG-DMA control register is
asserted.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA
completes processing of the *desc, it will not process the descriptor at *next until its
OWNED_BY_HW bit is set. To create a descriptor chain, you can repeatedly call this
function using the previous call's *next pointer in the *desc parameter.

You are responsible for properly allocating memory for the creation of both the descriptor
under construction as well as the next descriptor in the chain.

Descriptors must be in a memory device mastered by the SG-DMA controller’s chain
read and chain write Avalon master ports. Care must be taken to ensure that both
*desc and *next point to areas of memory mastered by the controller.

Altera Corporation 6–27
October 2007

alt_avalon_sgdma_construct_mem_to_stream_desc()

Altera Corporation 6–27
October 2007

alt_avalon_sgdma_construct_mem_to_stream_desc()

alt_avalon_sgdma_construct_mem_to_stream_desc()

Prototype: void
alt_avalon_sgdma_construct_mem_to_stream_desc(alt_sgdma_desc
riptor *desc, alt_sgdma_descriptor *next, alt_u32 *read_addr,
alt_u16 length, int read_fixed, int generate_sop, int
generate_eop, alt_u8 atlantic_channel)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the descriptor being constructed.
*next—a pointer to the "next" descriptor. This does not need to be a complete or
functional descriptor, but must be properly allocated.
*read_addr—the first read address for the SG-DMA transfer.
length—the number of bytes for the transfer.
read_fixed—if non-zero, the SG-DMA will read from a fixed address.
generate_sop—if non-zero, the SG-DMA will generate a start-of-packet (SOP) on the
Avalon Streaming interface when commencing the transfer.
generate_eop—if non-zero, the SG-DMA will generate a end-of-packet (EOP) on the
Avalon Streaming interface when completing the transfer.
atlantic_channel—an 8-bit channel identification number that will be passed to the
Avalon-ST interface.

Returns: void

Description: This function constructs a single SG-DMA descriptor in the memory specified in
alt_avalon_sgdma-descriptor *desc for an Avalon-MM to Avalon-ST transfer. The
destination (write) data for the transfer goes to the Avalon-ST interface connected to the
SG-DMA controller's streaming write port. The function sets the OWNED_BY_HW bit in
the descriptor's control field, marking the completed descriptor as ready to run. The
descriptor is processed when the SG-DMA controller receives the descriptor and the
RUN bit of the SG-DMA control register is asserted.

The next field of the descriptor being constructed is set to the address in *next. The
OWNED_BY_HW bit of the descriptor at *next is explicitly cleared. Once the SG-DMA
completes processing of the *desc, it will not process the descriptor at *next until its
OWNED_BY_HW bit is set. To create a descriptor chain, you can repeatedly call this
function using the previous call's *next pointer in the *desc parameter.

You are responsible for properly allocating memory for the creation of both the descriptor
under construction as well as the next descriptor in the chain. Descriptors must be in a
memory device mastered by the SG-DMA controller’s chain read and chain write Avalon
master ports. Care must be taken to ensure that both *desc and *next point to areas
of memory mastered by the controller.

6–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

alt_avalon_sgdma_check_descriptor_status()

Prototype: int
alt_avalon_sgdma_check_descriptor_status(alt_sgdma_descripto
r *desc)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *desc—a pointer to the constructed descriptor to examine.

Returns: Returns 0 if the descriptor is error-free, not owned by hardware, or a previously
requested transfer completed normally. Other return codes are defined in errno.h.

Description: Checks a descriptor previously owned by hardware for any errors reported in a previous
transfer. The routine reports: errors reported by the SG-DMA controller, the buffer in use.

Altera Corporation 6–29
October 2007

alt_avalon_sgdma_register_callback()

Altera Corporation 6–29
October 2007

alt_avalon_sgdma_register_callback()

alt_avalon_sgdma_register_callback()

Prototype: void alt_avalon_sgdma_register_callback(alt_sgdma_dev *dev,
alt_avalon_sgdma_callback callback, alt_u16 chain_control,
void *context)

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.
callback—a pointer to the callback routine to execute at interrupt level.
chain_control—the SG-DMA control register contents.
*context—a pointer used to pass context-specific information to the
ISR. context can point to any ISR-specific information.

Returns: void

Description: Associates a user-specific routine with the SG-DMA interrupt handler. If a callback is
registered, all non-blocking transfers will enable interrupts that will cause the callback to
be executed. The callback runs as part of the interrupt service routine, and great care
must be taken to follow the guidelines for acceptable interrupt service routine behavior
as described in the Nios II Software Developer’s Handbook.

To disable callbacks after registering one, call this routine with 0x0 as the callback
argument.

6–30 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–30 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

alt_avalon_sgdma_start()

Prototype: void alt_avalon_sgdma_start(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Starts the DMA engine and processes the descriptor pointed to in the controller's next
descriptor pointer and all subsequent descriptors in the chain. It is not necessary to call
this function when do_sync or do_async is used.

Altera Corporation 6–31
October 2007

alt_avalon_sgdma_stop()

Altera Corporation 6–31
October 2007

alt_avalon_sgdma_stop()

alt_avalon_sgdma_stop()

Prototype: void alt_avalon_sgdma_stop(alt_sgdma_dev *dev)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: *dev—a pointer to the SG-DMA device structure.

Returns: void

Description: Stops the DMA engine following completion of the current buffer descriptor. It is not
necessary to call this function when do_sync or do_async is used.

6–32 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–32 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

alt_avalon_sgdma_open()

Prototype: alt_sgdma_dev* alt_avalon_sgdma_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_sgdma.h>, <altera_avalon_sgdma_descriptor.h>,
<altera_avalon_sgdma_regs.h>

Parameters: name—the name of the SG-DMA device to open.

Returns: A pointer to the SG-DMA device structure associated with the supplied name, or NULL
if no corresponding SG-DMA device structure was found.

Description: Retrieves a pointer to a hardware SG-DMA device structure.

Altera Corporation 6–33
October 2007

Document Revision History

Altera Corporation 6–33
October 2007

Document Revision History

Document
Revision History

Table 6–13 shows the revision history for this chapter.

Table 6–13. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 6 was formerly Chapter 5.
● Updated the description for the following sections and

APIs: Instantiating the Core in SOPC Builder, Software
Control, DMA Descriptors, alt_avalon_sgdma_start()
and alt_avalon_sgdma_stop()

—

May 2007
v7.1.0

Initial release. —

6–34 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

6–34 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 7–1
October 2007
Altera Corporation 7–1
October 2007

7. DMA Controller Core

Core Overview The direct memory access (DMA) controller core with Avalon® interface
performs bulk data transfers, reading data from a source address range
and writing the data to a different address range. An Avalon-MM master
peripheral, such as a CPU, can offload memory transfer tasks to the DMA
controller. While the DMA controller performs memory transfers, the
master is free to perform other tasks in parallel.

The DMA controller transfers data as efficiently as possible, reading and
writing data at the maximum pace allowed by the source or destination.
The DMA controller is capable of performing Avalon transfers with flow
control, enabling it to automatically transfer data to or from a slow
peripheral with flow control (for example, a universal asynchronous
receiver/transmitter [UART]), at the maximum pace allowed by the
peripheral.

The DMA controller is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. For the Nios® II processor, device
drivers are provided in the HAL system library. See “Software
Programming Model” on page 7–6 for details of HAL support.

This chapter contains the following sections:

■ “Functional Description”
■ “Instantiating the Core in SOPC Builder” on page 7–4
■ “Device and Tools Support” on page 7–6
■ “Software Programming Model” on page 7–6

Functional
Description

The DMA controller is used to perform direct memory-access data
transfers from a source address-space to a destination address-space. The
source and destination may be either an Avalon-MM slave peripheral
(i.e., a constant address) or an address range in memory. The DMA
controller can be used in conjunction with peripherals with flow control,
which allows data transactions of fixed or variable length. The DMA
controller can signal an interrupt request (IRQ) when a DMA transaction
completes. A transaction is a sequence of one or more Avalon transfers
initiated by the DMA controller core.

The DMA controller has two Avalon-MM master ports—a master read
port and a master write port—and one Avalon-MM slave port for
controlling the DMA as shown in Figure 7–1.

NII51006-7.2.0

7–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

7–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Figure 7–1. DMA Controller Block Diagram

A typical DMA transaction proceeds as follows:

1. A CPU prepares the DMA controller for a transaction by writing to
the control port.

2. The CPU enables the DMA controller. The DMA controller then
begins transferring data without additional intervention from the
CPU. The DMA’s master read port reads data from the read address,
which may be a memory or a peripheral. The master write port
writes the data to the destination address, which can also be a
memory or peripheral. A shallow FIFO buffers data between the
read and write ports.

3. The DMA transaction ends when a specified number of bytes are
transferred (i.e., a fixed-length transaction), or an end-of-packet
signal is asserted by either the sender or receiver (in other words, a
variable-length transaction). At the end of the transaction, the DMA
controller generates an interrupt request (IRQ) if it was configured
by the CPU to do so.

4. During or after the transaction, the CPU can determine if a
transaction is in progress, or if the transaction ended (and how) by
examining the DMA controller’s status register.

Setting Up DMA Transactions

An Avalon-MM master peripheral sets up and initiates DMA transactions
by writing to registers via the control port. The Avalon-MM master
programs the DMA engine using byte addresses which are byte aligned.
The master peripheral configures the following options:

■ Read (source) address location
■ Write (destination) address location

Control
Port

Avalon-MM
slave
port

Addr,
data,

control

IRQ

Seperate
Avalon-MM

master
ports

Read
master

port

Write
master

port

Register File

status

readaddress

writeaddress

length

control

Altera Corporation 7–3
October 2007

Functional Description

Altera Corporation 7–3
October 2007

Functional Description

■ Size of the individual transfers: Byte (8-bit), halfword (16-bit), word
(32-bit), doubleword (64-bit) or quadword (128-bit)

■ Enable interrupt upon end of transaction
■ Enable source or destination to end the DMA transaction with

end-of-packet signal
■ Specify whether source and destination are memory or peripheral

The master peripheral then sets a bit in the control register to initiate
the DMA transaction.

The Master Read and Write Ports

The DMA controller reads data from the source address through the
master read port, and then writes to the destination address through the
master write port. The DMA controller is programmed using byte
addresses. Read and write start addresses should be aligned to the
transfer size. For example, to transfer data words, if the start address is 0,
the address will increment to 4, 8 and 12. For heterogeneous systems
where a number of different slave devices are of different widths, the data
width for read and write masters matches the width of the widest data-
width slave addressed by either the read or the write master. For bursting
transfers, the burst length is set to the DMA transaction length with the
appropriate unit conversion. For example, if a 32-bit data width DMA is
programmed for a word transfer of 64 bytes, the length registered is
programmed with 64 and the burst count port will be 16. If a 64-bit data
width DMA is programmed for a doubleword transfer of 8 bytes, the
length register is programmed with 8 and the burst count port will be 1.

There is a shallow FIFO buffer between the master read and write ports.
The default depth is 2, which makes the write action depend on the
data-available status of the FIFO, rather than on the status of the master
read port.

Both the read and write master ports are capable of performing Avalon
transfers with flow control, which allows the slave peripheral to control
the flow of data and terminate the DMA transaction.

f For details about flow control in Avalon-MM data transfers and
Avalon-MM peripherals, refer to the Avalon Memory-Mapped Interface
Specification.

7–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

7–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Addressing and Address Incrementing

When accessing memory, the read (or write) address increments by 1, 2,
4, 8 or 16 after each access, depending on the width of the data. On the
other hand, a typical peripheral device (such as UART) has fixed register
locations. In this case, the read/write address is held constant throughout
the DMA transaction.

The rules for address incrementing are, in order of priority:

■ If the control register’s RCON (or WCON) bit is set, the read (or write)
increment value is 0.

■ Otherwise, the read and write increment values are set according to
the transfer size specified in the control register, as shown in
Table 7–1.

1 In systems with heterogeneous data widths, care must be taken
to present the correct address or offset when configuring the
DMA to access native-aligned slaves. For example, in a system
using a 32-bit Nios II processor and a 16-bit DMA, the base
address for the UART txdata register must be divided by the
dma_data_width/cpu_data_width—2 in this example.

Instantiating the
Core in SOPC
Builder

Use the MegaWizard® interface for the DMA controller in SOPC Builder
to specify the core’s configuration. Instantiating the DMA controller in
SOPC Builder creates one slave port and two master ports. You must
specify which slave peripherals can be accessed by the read and write
master ports. Likewise, you must specify which other master
peripheral(s) can access the DMA control port and initiate DMA
transactions. The DMA controller does not export any signals to the top
level of the system module.

Table 7–1. Address Increment Values

Transfer Width Increment

byte 1

halfword 2

word 4

doubleword 8

quadword 16

Altera Corporation 7–5
October 2007

Instantiating the Core in SOPC Builder

Altera Corporation 7–5
October 2007

Instantiating the Core in SOPC Builder

DMA Parameters (Basic)

This section describes the parameters you can configure on the DMA
Parameters page.

Transfer Size

The parameter Width of the DMA Length Register specifies the
minimum width of the DMA’s transaction length register, which can be
between 1 and 32. The length register determines the maximum number
of transfers possible in a single DMA transaction.

By default, the length register is wide enough to span any of the slave
peripherals mastered by the read or write ports. Overriding the length
register may be necessary if the DMA master port (read or write) masters
only data peripherals, such as a UART. In this case, the address span of
each slave is small, but a larger number of transfers may be desired per
DMA transaction.

Burst Transactions

When Enable Burst Transfers is turned on, the DMA controller performs
burst transactions on its master read and write ports. The parameter
Maximum Burst Size determines the maximum burst size allowed in a
transaction.

In burst mode, the length of a transaction must not be longer than the
configured maximum burst size. Otherwise, the transaction must be
performed as multiple transactions.

FIFO Implementation

This option determines the implementation of the FIFO buffer between
the master read and write ports. Select Construct FIFO from Registers to
implement the FIFO using one register per storage bit. This has a strong
impact on logic utilization when the DMA controller’s data width is
large. See “Advanced Options” on page 7–6.

To implement the FIFO using embedded memory blocks available in the
FPGA, select Construct FIFO from Memory Blocks.

7–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

7–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Advanced Options

This section describes the parameters you can configure on the Advanced
Options page.

Allowed Transactions

You can choose the transfer datawidth(s) supported by the DMA
controller hardware. The following datawidth options can be enabled or
disabled:

■ Byte
■ Halfword (two bytes)
■ Word (four bytes)
■ Doubleword (eight bytes)
■ Quadword (sixteen bytes)

Disabling unnecessary transfer widths reduces the amount of on-chip
logic resources consumed by the DMA controller core. For example, if a
system has both 16-bit and 32-bit memories, but the DMA controller will
only transfer data to the 16-bit memory, then 32-bit transfers could be
disabled to conserve logic resources.

Device and
Tools Support

The DMA Controller Core with Avalon Interface supports all Altera
FPGA families.

Software
Programming
Model

This section describes the programming model for the DMA controller,
including the register map and software declarations to access the
hardware. For Nios II processor users, Altera provides HAL system
library drivers that enable you to access the DMA controller core using
the HAL API for DMA devices.

HAL System Library Support

The Altera-provided driver implements a HAL DMA device driver that
integrates into the HAL system library for Nios II systems. HAL users
should access the DMA controller via the familiar HAL API, rather than
accessing the registers directly.

c If your program uses the HAL device driver to access the DMA
controller, accessing the device registers directly will interfere
with the correct behavior of the driver.

Altera Corporation 7–7
October 2007

Software Programming Model

Altera Corporation 7–7
October 2007

Software Programming Model

The HAL DMA driver provides both ends of the DMA process; the driver
registers itself as both a receive channel (alt_dma_rxchan) and a transmit
channel (alt_dma_txchan). The Nios II Software Developer’s Handbook
provides complete details of the HAL system library and the usage of
DMA devices.

ioctl() Operations

ioctl() operation requests are defined for both the receive and transmit
channels, which allows you to control the hardware-dependent aspects of
the DMA controller. Two ioctl() functions are defined for the receiver
driver and the transmitter driver: alt_dma_rxchan_ioctl() and
alt_dma_txchan_ioctl(). Table 7–2 lists the available operations.
These are valid for both the transmit and receive channels.

Limitations

Currently the Altera-provided drivers do not support 64-bit and 128-bit
DMA transactions.

Table 7–2. Operations for alt_dma_rxchan_ioctl() and alt_dma_txchan_ioctl()

Request Meaning

ALT_DMA_SET_MODE_8 Transfers data in units of 8 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_16 Transfers data in units of 16 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_32 Transfers data in units of 32 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_64 Transfers data in units of 64 bits. The value of “arg” is ignored.

ALT_DMA_SET_MODE_128 Transfers data in units of 128 bits. The value of “arg” is ignored.

ALT_DMA_RX_ONLY_ON (1) Sets a DMA receiver into streaming mode. In this case, data is read
continuously from a single location. The “arg” parameter specifies the
address to read from.

ALT_DMA_RX_ONLY_OFF (1) Turns off streaming mode for a receive channel. The value of “arg” is
ignored.

ALT_DMA_TX_ONLY_ON (1) Sets a DMA transmitter into streaming mode. In this case, data is written
continuously to a single location. The “arg” parameter specifies the address
to write to.

ALT_DMA_TX_ONLY_OFF (1) Turns off streaming mode for a transmit channel. The value of “arg” is
ignored.

Note to Table 7–2:
(1) These macro names changed in version 1.1 of the Nios II Embedded Design Suite (EDS). The old names

(ALT_DMA_TX_STREAM_ON, ALT_DMA_TX_STREAM_OFF, ALT_DMA_RX_STREAM_ON, and
ALT_DMA_RX_STREAM_OFF) are still valid, but new designs should use the new names.

7–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

7–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

This function is not thread safe. If you want to access the DMA controller
from more than one thread then you should use a semaphore or mutex to
ensure that only one thread is executing within this function at any time.

Software Files

The DMA controller is accompanied by the following software files.
These files define the low-level interface to the hardware. Application
developers should not modify these files.

■ altera_avalon_dma_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used only by device driver functions.

■ altera_avalon_dma.h, altera_avalon_dma.c—These files implement
the DMA controller’s device driver for the HAL system library.

Register Map

Programmers using the HAL API never access the DMA controller
hardware directly via its registers. In general, the register map is only
useful to programmers writing a device driver.

c The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate.

Altera Corporation 7–9
October 2007

Software Programming Model

Altera Corporation 7–9
October 2007

Software Programming Model

Table 7–3 shows the register map for the DMA controller. Device drivers
control and communicate with the hardware through five
memory-mapped 32-bit registers.

status Register

The status register consists of individual bits that indicate conditions
inside the DMA controller. The status register can be read at any time.
Reading the status register does not change its value.

Table 7–3. DMA Controller Register Map

Offset Register Name Read/Write 31 . . 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 status (1) RW (2)

LE
N

W
E

O
P

R
E

O
P

B
U

S
Y

D
O

N
E

1 readaddress RW Read master start address

2 writeaddress RW Write master start address

3 length RW DMA transaction length (in bytes)

4 — — Reserved (3)

5 — — Reserved (3)

6 control RW (2)

S
O

F
T

W
A

R
E

R
E

S
E

T

Q
U

A
D

W
O

R
D

D
O

U
B

LE
W

O
R

D

W
C

O
N

R
C

O
N

LE
E

N

W
E

E
N

R
E

E
N

I_
E

N

G
O

W
O

R
D

H
W

B
Y

T
E

7 — — Reserved (3)

Notes to Table 7–3:
(1) Writing zero to the status register clears the LEN, WEOP, REOP, and DONE bits.
(2) These bits are reserved. Read values are undefined. Write zero.
(3) This register is reserved. Read values are undefined. The result of a write is undefined.

7–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

7–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The status register bits are shown in Table 7–4.

readaddress Register

The readaddress register specifies the first location to be read in a DMA
transaction. The readaddress register width is determined at system
generation time. It is wide enough to address the full range of all slave
ports mastered by the read port.

writeaddress Register

The writeaddress register specifies the first location to be written in a
DMA transaction. The writeaddress register width is determined at
system generation time. It is wide enough to address the full range of all
slave ports mastered by the write port.

length Register

The length register specifies the number of bytes to be transferred from
the read port to the write port. The length register is specified in bytes.
For example, the value must be a multiple of 4 for word transfers, and a
multiple of 2 for halfword transfers.

The length register is decremented as each data value is written by the
write master port. When length reaches 0 the LEN bit is set. The length
register does not decrement below 0.

The length register width is determined at system generation time. It is at
least wide enough to span any of the slave ports mastered by the read or
write master ports, and it can be made wider if necessary.

Table 7–4. status Register Bits

Bit Number Bit Name Read/Write/Clear Description

0 DONE R/C A DMA transaction is completed. The DONE bit is set to 1 when
an end of packet condition is detected or the specified
transaction length is completed. Write zero to the status register
to clear the DONE bit.

1 BUSY R The BUSY bit is 1 when a DMA transaction is in progress.

2 REOP R The REOP bit is 1 when a transaction is completed due to an
end-of-packet event on the read side.

3 WEOP R The WEOP bit is 1 when a transaction is completed due to an end
of packet event on the write side.

4 LEN R The LEN bit is set to 1 when the length register decrements to
zero.

Altera Corporation 7–11
October 2007

Software Programming Model

Altera Corporation 7–11
October 2007

Software Programming Model

control Register

The control register is composed of individual bits that control the DMA’s
internal operation. The control register’s value can be read at any time.
The control register bits determine which, if any, conditions of the DMA
transaction result in the end of a transaction and an interrupt request.

The control register bits are shown in Table 7–5.

Table 7–5. control Register Bits (Part 1 of 2)

Bit
Number Bit Name Read/Write/Clear Description

0 BYTE RW Specifies byte transfers.

1 HW RW Specifies halfword (16-bit) transfers.

2 WORD RW Specifies word (32-bit) transfers.

3 GO RW Enables DMA transaction. When the GO bit is set to 0,
the DMA is prevented from executing transfers. When
the GO bit is set to 1 and the length register is non-zero,
transfers occur.

4 I_EN RW Enables interrupt requests (IRQ). When the I_EN bit is
1, the DMA controller generates an IRQ when the status
register’s DONE bit is set to 1. IRQs are disabled when
the I_EN bit is 0.

5 REEN RW Ends transaction on read-side end-of-packet. When the
REEN bit is set to 1, a slave port with flow control on the
read side may end the DMA transaction by asserting its
end-of-packet signal.

6 WEEN RW Ends transaction on write-side end-of-packet. When the
WEEN bit is set to 1, a slave port with flow control on the
write side may end the DMA transaction by asserting its
end-of-packet signal.

7 LEEN RW Ends transaction when the length register reaches
zero. When the LEEN bit is 1, the DMA transaction ends
when the length register reaches 0. When this bit is 0,
length reaching 0 does not cause a transaction to
end. In this case, the DMA transaction must be
terminated by an end-of-packet signal from either the
read or write master port.

7–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

7–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The data width of DMA transactions is specified by the BYTE, HW, WORD,
DOUBLEWORD, and QUADWORD bits. Only one of these bits can be set at a
time. If more than one of the bits is set, the DMA controller behavior is
undefined. The width of the transfer is determined by the narrower of the
two slaves read and written. For example, a DMA transaction that reads
from a 16-bit flash memory and writes to a 32-bit on-chip memory
requires a halfword transfer. In this case, HW must be set to 1, and BYTE,
WORD, DOUBLEWORD, and QUADWORD must be set to 0.

To successfully perform transactions of a specific width, that width must
be enabled in hardware using the Allowed Transaction hardware option.
For example, the DMA controller behavior is undefined if quadword
transfers are disabled in hardware, but the QUADWORD bit is set during a
DMA transaction.

c Executing a DMA software reset when a DMA transfer is active
may result in permanent bus lockup (until the next system
reset). The SOFTWARERESET bit should therefore not be written
except as a last resort.

8 RCON RW Reads from a constant address. When RCON is 0, the
read address increments after every data transfer. This
is the mechanism for the DMA controller to read a range
of memory addresses. When RCON is 1, the read
address does not increment. This is the mechanism for
the DMA controller to read from a peripheral at a
constant memory address. For details, see “Addressing
and Address Incrementing” on page 7–4.

9 WCON RW Writes to a constant address. Similar to the RCON bit,
when WCON is 0 the write address increments after every
data transfer; when WCON is 1 the write address does not
increment. For details, see “Addressing and Address
Incrementing” on page 7–4.

10 DOUBLEWORD RW Specifies doubleword transfers.

11 QUADWORD RW Specifies quadword transfers.

12 SOFTWARERESET RW Software can reset the DMA engine by writing this bit to
1 twice. Upon the second write of 1 to the
SOFTWARERESET bit, the DMA control will be reset
identically to a system reset. The logic which sequences
the software reset process then resets itself
automatically.

Table 7–5. control Register Bits (Part 2 of 2)

Bit
Number Bit Name Read/Write/Clear Description

Altera Corporation 7–13
October 2007

Referenced Document

Altera Corporation 7–13
October 2007

Referenced Document

Interrupt Behavior

The DMA controller has a single IRQ output that is asserted when the
status register’s DONE bit equals 1 and the control register’s I_EN bit
equals 1.

Writing the status register clears the DONE bit and acknowledges the
IRQ. A master peripheral can read the status register and determine
how the DMA transaction finished by checking the LEN, REOP, and WEOP
bits.

Referenced
Document

This chapter references the Avalon Memory-Mapped Interface
Specification manual.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

7–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

7–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Document
Revision History

Table 7–6 shows the revision history for this chapter.

Table 7–6. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 7 was formerly Chapter 6.
● Updated the description on Burst Transactions parameters.

—

May 2007
v7.1.0

● Chapter 6 was formerly Chapter 4.
● Added “Device and Tools Support” on page 7–6 section.
● Added note on addressing native-aligned peripherals.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon interface” terms to
“Avalon Memory-Mapped interface.”

● Added description of SOFTWARERESET bit to control
register in Table 4–5 on page 4–10.

● Added more information about DMA addressing and the fact
that addresses are aligned to the size of the data transfer in
“The Master Read and Write Ports” on page 4–3.

For the 6.1 release,
Altera released the
Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.
Other changes to the
document serve only to
clarify existing behavior.

May 2006
v6.0.0

Chapter title changed, but no change in content from previous
release.

—

December 2005
v5.1.1

Changed Avalon “streaming” terminology to “flow control” based
on a change to the Avalon Interface Specification

—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook. —

December 2004
v1.2

● Updated description of the GO bit.
● Updated descriptions of ioctl() macros in table 6-2.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

Altera Corporation Section II–i

Section II. Communication
Peripherals

This section describes communication peripherals provided by Altera.
These components provide communication interfaces for SOPC Builder
systems.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 8, JTAG UART Core
■ Chapter 9, UART Core
■ Chapter 10, SPI Core

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section II–ii Altera Corporation

Communication Peripherals Quartus II Handbook, Volume 5

Altera Corporation 8–1
October 2007
Altera Corporation 8–1
October 2007

8. JTAG UART Core

Core Overview The JTAG universal asynchronous receiver/transmitter (UART) core
with Avalon® interface implements a method to communicate serial
character streams between a host PC and an SOPC Builder system on an
Altera® FPGA. In many designs, the JTAG UART core eliminates the need
for a separate RS-232 serial connection to a host PC for character I/O. The
core provides a simple register-mapped Avalon interface that hides the
complexities of the JTAG interface from embedded software
programmers. Master peripherals (such as a Nios® II processor)
communicate with the core by reading and writing control and data
registers.

The JTAG UART core uses the JTAG circuitry built in to Altera FPGAs,
and provides host access via the JTAG pins on the FPGA. The host PC can
connect to the FPGA via any Altera JTAG download cable, such as the
USB-Blaster™ cable. Software support for the JTAG UART core is
provided by Altera. For the Nios II processor, device drivers are provided
in the HAL system library, allowing software to access the core using the
ANSI C Standard Library stdio.h routines. For the host PC, Altera
provides JTAG terminal software that manages the connection to the
target, decodes the JTAG data stream, and displays characters on screen.

The JTAG UART core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated system. This chapter contains the following
sections:

■ “Functional Description” on page 8–2
■ “Device and Tools Support” on page 8–4
■ “Instantiating the Core in SOPC Builder” on page 8–4
■ “Hardware Simulation Considerations” on page 8–7
■ “Software Programming Model” on page 8–7

NII51009-7.2.0

8–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 8–1 shows a block diagram of the JTAG UART core and its
connection to the JTAG circuitry inside an Altera FPGA. The following
sections describe the components of the core.

Figure 8–1. JTAG UART Core Block Diagram

Avalon Slave Interface and Registers

The JTAG UART core provides an Avalon slave interface to the JTAG
circuitry on an Altera FPGA. The user-visible interface to the JTAG UART
core consists of two 32-bit registers, data and control, that are accessed
through an Avalon slave port. An Avalon master, such as a Nios II
processor, accesses the registers to control the core and transfer data over
the JTAG connection. The core operates on 8-bit units of data at a time;
eight bits of the data register serve as a one-character payload.

The JTAG UART core provides an active-high interrupt output that can
request an interrupt when read data is available, or when the write FIFO
is ready for data. For further details see “Interrupt Behavior” on
page 8–13.

Avalon-MM slave
interface

to on-chip
logic

JTAG UART Core

Registers

JTAG
Hub

Interface

IRQ

Built-In Feature of Altera FPGA

Write FIFO

Read FIFO

Data

Control
JTAG
Hub

JTAG Connection to Host PC

Altera FPGA

Other Nodes Using JTAG
Interface (e.g. Another JTAG UART)

TC
K

TD
I

TD
O

TM
S

TR
ST

JTAG
Controller

Automatically Generated by Quartus II

Altera Corporation 8–3
October 2007

Functional Description

Altera Corporation 8–3
October 2007

Functional Description

Read and Write FIFOs

The JTAG UART core provides bidirectional FIFOs to improve
bandwidth over the JTAG connection. The FIFO depth is parameterizable
to accommodate the available on-chip memory. The FIFOs can be
constructed out of memory blocks or registers, allowing you to trade off
logic resources for memory resources, if necessary.

JTAG Interface

Altera FPGAs contain built-in JTAG control circuitry between the
device’s JTAG pins and the logic inside the device. The JTAG controller
can connect to user-defined circuits called “nodes” implemented in the
FPGA. Because several nodes may need to communicate via the JTAG
interface, a JTAG hub (that is, a multiplexer) is necessary. During logic
synthesis and fitting, the Quartus® II software automatically generates
the JTAG hub logic. No manual design effort is required to connect the
JTAG circuitry inside the device; the process is presented here only for
clarity.

Host-Target Connection

Figure 8–2 shows the connection between a host PC and an
SOPC Builder-generated system containing a JTAG UART core.

Figure 8–2. Example System Using the JTAG UART Core

Debug Data

PC
Interface JTAG

Host PC

Altera FPGA

 J
TA

G
 C

on
tro

lle
r

JT
AG

H
ub

 JTAG
Server

Download
Cable
Driver

Altera
Download

Cable

JTAG
Debug
Module

JTAG
UART

System Interconnect Fabric

Character Stream

DebuggerDebugger

C

JTAG TerminalJTAG Terminal

Nios II
Processor

On-Chip
Memory

M

S S

M

S

Avalon-MM master port

Avalon-MM slave port

8–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The JTAG controller on the FPGA and the download cable driver on the
host PC implement a simple data-link layer between host and target. All
JTAG nodes inside the FPGA are multiplexed through the single JTAG
connection. JTAG server software on the host PC controls and decodes the
JTAG data stream, and maintains distinct connections with nodes inside
the FPGA.

The example system in Figure 8–2 contains one JTAG UART core and a
Nios II processor. Both agents communicate with the host PC over a
single Altera download cable. Thanks to the JTAG server software, each
host application has an independent connection to the target. Altera
provides the JTAG server drivers and host software required to
communicate with the JTAG UART core.

1 Systems with multiple JTAG UART cores are possible, and all
cores communicate via the same JTAG interface. To maintain
coherent data streams, only one processor should communicate
with each JTAG UART core.

Device and
Tools Support

The JTAG UART core supports the Arria™ GX, Stratix® III, Stratix II,
Stratix II GX, Stratix GX, Stratix, Cyclone® III, Cyclone II, and Cyclone
device families. The JTAG UART core is supported by the Nios II
hardware abstraction layer (HAL) system library. No software support is
provided for the first-generation Nios processor.

To view the character stream on the host PC, the JTAG UART core must
be used in conjunction with the JTAG terminal software provided by
Altera. Nios II processor users access the JTAG UART via the Nios II IDE
or the nios2-terminal command-line utility.

f For further details, refer to the Nios II Software Developer's Handbook or
the Nios II IDE online help

Instantiating the
Core in SOPC
Builder

Designers use the MegaWizard® interface for the JTAG UART core in
SOPC Builder to specify the core features. The following sections describe
the available options in the MegaWizard interface.

Configuration Page

The options on this page control the hardware configuration of the JTAG
UART core. The default settings are pre-configured to behave optimally
with the Altera-provided device drivers and JTAG terminal software.
Most designers should not change the default values, except for the
Construct using registers instead of memory blocks option.

Altera Corporation 8–5
October 2007

Instantiating the Core in SOPC Builder

Altera Corporation 8–5
October 2007

Instantiating the Core in SOPC Builder

Write FIFO Settings

The write FIFO buffers data flowing from the Avalon interface to the host.
The following settings are available:

■ Depth—The write FIFO depth can be set from 8 to 32,768 bytes. Only
powers of two are allowed. Larger values consume more on-chip
memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

■ IRQ Threshold—The write IRQ threshold governs how the core
asserts its IRQ in response to the FIFO emptying. As the JTAG
circuitry empties data from the write FIFO, the core asserts its IRQ
when the number of characters remaining in the FIFO reaches this
threshold value. For maximum bandwidth, a processor should
service the interrupt by writing more data and preventing the write
FIFO from emptying completely. A value of 8 is typically optimal.
See “Interrupt Behavior” on page 8–13 for further details.

■ Construct using registers instead of memory blocks—Turning on
this option causes the FIFO to be constructed out of on-chip logic
resources. This option is useful when memory resources are limited.
Each byte consumes roughly 11 logic elements (LEs), so a FIFO depth
of 8 (bytes) consumes roughly 88 LEs.

Read FIFO Settings

The read FIFO buffers data flowing from the host to the Avalon interface.
Settings are available to control the depth of the FIFO and the generation
of interrupts.

■ Depth—The read FIFO depth can be set from 8 to 32,768 bytes. Only
powers of two are allowed. Larger values consume more on-chip
memory resources. A depth of 64 is generally optimal for
performance, and larger values are rarely necessary.

■ IRQ Threshold—The IRQ threshold governs how the core asserts its
IRQ in response to the FIFO filling up. As the JTAG circuitry fills up
the read FIFO, the core asserts its IRQ when the amount of space
remaining in the FIFO reaches this threshold value. For maximum
bandwidth, a processor should service the interrupt by reading data
and preventing the read FIFO from filling up completely. A value of
8 is typically optimal. See “Interrupt Behavior” on page 8–13 for
further details.

8–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

■ Construct using registers instead of memory blocks—Turning on
this option causes the FIFO to be constructed out of logic resources.
This option is useful when memory resources are limited. Each byte
consumes roughly 11 LEs, so a FIFO depth of 8 (bytes) consumes
roughly 88 LEs.

Simulation Settings

At system generation time, when SOPC Builder generates the logic for the
JTAG UART core, a simulation model is also constructed. The simulation
model offers features to simplify simulation of systems using the JTAG
UART core. Changes to the simulation settings do not affect the behavior
of the core in hardware; the settings affect only functional simulation.

Simulated Input Character Stream

You can enter a character stream that will be simulated entering the read
FIFO upon simulated system reset. The MegaWizard interface accepts an
arbitrary character string, which is later incorporated into the test bench.
After reset, this character string is pre-initialized in the read FIFO, giving
the appearance that an external JTAG terminal program is sending a
character stream to the JTAG UART core.

Prepare Interactive Windows

At system generation time, the JTAG UART core generator can create
ModelSim® macros to open interactive windows during simulation.
These windows allow the user to send and receive ASCII characters via a
console, giving the appearance of a terminal session with the system
executing in hardware. The following options are available:

■ Do not generate ModelSim aliases for interactive windows—This
option does not create any ModelSim macros for character I/O.

■ Create ModelSim alias to open a window showing output as ASCII
text—This option creates a ModelSim macro to open a console
window that displays output from the write FIFO. Values written to
the write FIFO via the Avalon interface are displayed in the console
as ASCII characters.

■ Create ModelSim alias to open an interactive stimulus/response
window—This option creates a ModelSim macro to open a console
window that allows input and output interaction with the core.
Values written to the write FIFO via the Avalon interface are
displayed in the console as ASCII characters. Characters typed into

Altera Corporation 8–7
October 2007

Hardware Simulation Considerations

Altera Corporation 8–7
October 2007

Hardware Simulation Considerations

the console are fed into the read FIFO, and can be read via the Avalon
interface. When this option is enabled, the simulated character input
stream option is ignored.

Hardware
Simulation
Considerations

The simulation features were created for easy simulation of Nios II
processor systems when using the ModelSim simulator. The simulation
model is implemented in the JTAG UART core’s top-level HDL file. The
synthesizable HDL and the simulation HDL are implemented in the same
file. Some simulation features are implemented using “translate on/off”
synthesis directives that make certain sections of HDL code visible only
to the synthesis tool.

1 Refer to AN 351: Simulating Nios II Processor Designs for complete
details about simulating the JTAG UART core in Nios II systems.

Other simulators can be used, but require user effort to create a custom
simulation process. You can use the auto-generated ModelSim scripts as
references to create similar functionality for other simulators.

c Do not edit the simulation directives if you are using Altera’s
recommended simulation procedures. If you change the
simulation directives to create a custom simulation flow, be
aware that SOPC Builder overwrites existing files during system
generation. Take precautions to ensure your changes are not
overwritten.

Software
Programming
Model

The following sections describe the software programming model for the
JTAG UART core, including the register map and software declarations to
access the hardware. For Nios II processor users, Altera provides HAL
system library drivers that enable you to access the JTAG UART using the
ANSI C standard library functions, such as printf() and getchar().

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device
driver that integrates into the HAL system library for Nios II systems.
HAL users should access the JTAG UART via the familiar HAL API and
the ANSI C standard library, rather than accessing the JTAG UART
registers. ioctl() requests are defined that allow HAL users to control
the hardware-dependent aspects of the JTAG UART.

c If your program uses the Altera-provided HAL device driver to
access the JTAG UART hardware, accessing the device registers
directly will interfere with the correct behavior of the driver.

8–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

For Nios II processor users, the HAL system library API provides
complete access to the JTAG UART core's features. Nios II programs treat
the JTAG UART core as a character mode device, and send and receive
data using the ANSI C standard library functions, such as getchar()
and printf().

Example 8–1 demonstrates the simplest possible usage, printing a
message to stdout using printf(). In this example, the SOPC Builder
system contains a JTAG UART core, and the HAL system library is
configured to use this JTAG UART device for stdout.

Example 8–1. Printing Characters to a JTAG UART Core as stdout

#include <stdio.h>
int main ()
{
 printf("Hello world.\n");
 return 0;
}

Example 8–2 demonstrates reading characters from and sending
messages to a JTAG UART core using the C standard library. In this
example, the SOPC Builder system contains a JTAG UART core named
jtag_uart that is not necessarily configured as the stdout device. In this
case, the program treats the device like any other node in the HAL file
system.

Altera Corporation 8–9
October 2007

Software Programming Model

Altera Corporation 8–9
October 2007

Software Programming Model

Example 8–2. Transmitting Characters to a JTAG UART Core

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
 char* msg = "Detected the character 't'.\n";
 FILE* fp;
 char prompt = 0;

 fp = fopen ("/dev/jtag_uart", "r+"); //Open file for reading and writing
 if (fp)
 {
 while (prompt != 'v')
 { // Loop until we receive a 'v'.
 prompt = getc(fp); // Get a character from the JTAG UART.
 if (prompt == 't')
 { // Print a message if character is 't'.
 fwrite (msg, strlen (msg), 1, fp);
 }

 if (ferror(fp))// Check if an error occurred with the file pointer
 clearerr(fp);// If so, clear it.
 }

 fprintf(fp, "Closing the JTAG UART file handle.\n");
 fclose (fp);
 }

 return 0;
}

In this example, the ferror(fp) is used to check if an error occurred on
the JTAG UART connection, such as a disconnected JTAG connection. In
this case, the driver detects that the JTAG connection is disconnected,
reports an error (EIO), and discards data for subsequent transactions. If
this error ever occurs, the C library latches the value until you explicitly
clear it with the clearerr() function.

The Nios II Software Developer's Handbook provides complete details of the
HAL system library. The Nios II Embedded Design Suite (EDS) provides
a number of software example designs that use the JTAG UART core.

Driver Options: Fast versus Small Implementations

To accommodate the requirements of different types of systems, the JTAG
UART driver has two variants, a fast version and a small version. The fast
behavior is used by default. Both the fast and small drivers fully support
the C standard library functions and the HAL API.

8–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The fast driver is an interrupt-driven implementation, which allows the
processor to perform other tasks when the device is not ready to send or
receive data. Because the JTAG UART data rate is slow compared to the
processor, the fast driver can provide a large performance benefit for
systems that could be performing other tasks in the interim. In addition,
the fast version of the Altera Avalon JTAG UART monitors the connection
to the host. The driver discards characters if no host is connected, or if the
host is not running an application that handles the I/O stream.

The small driver is a polled implementation that waits for the JTAG
UART hardware before sending and receiving each character. The
performance of the small driver is poor if you are sending large amounts
of data. The small version assumes that the host is always connected, and
will never discard characters. Therefore, the small driver will hang the
system if the JTAG UART hardware is ever disconnected from the host
while the program is sending or receiving data. There are two ways to
enable the small footprint driver:

■ Enable the small footprint setting for the HAL system library project.
This option affects device drivers for all devices in the system.

■ Specify the preprocessor option
-DALTERA_AVALON_JTAG_UART_SMALL. Use this option if you
want the small, polled implementation of the JTAG UART driver, but
you do not want to affect the drivers for other devices.

ioctl() Operations

The fast version of the JTAG UART driver supports the ioctl() function
to allow HAL-based programs to request device-specific operations.
Specifically, you can use the ioctl() operations to control the timeout
period, and to detect whether or not a host is connected. The fast driver
defines the ioctl() operations shown in Table 8–1.

Table 8–1. JTAG UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCSTIMEOUT Set the timeout (in seconds) after which the driver will
decide that the host is not connected. A timeout of 0
makes the target assume that the host is always
connected. The ioctl arg parameter passed in must
be a pointer to an integer.

TIOCGCONNECTED Sets the integer arg parameter to a value that
indicates whether the host is connected and acting as
a terminal (1), or not connected (0). The ioctl arg
parameter passed in must be a pointer to an integer.

Altera Corporation 8–11
October 2007

Software Programming Model

Altera Corporation 8–11
October 2007

Software Programming Model

f For details about the ioctl() function, refer to the Nios II Software
Developer's Handbook.

Software Files

The JTAG UART core is accompanied by the following software files.
These files define the low-level interface to the hardware, and provide the
HAL drivers. Application developers should not modify these files.

■ altera_avalon_jtag_uart_regs.h—This file defines the core's register
map, providing symbolic constants to access the low-level hardware.
The symbols in this file are used only by device driver functions.

■ altera_avalon_jtag_uart.h, altera_avalon_jtag_uart.c—These files
implement the HAL system library device driver.

Accessing the JTAG UART Core via a Host PC

Host software is necessary for a PC to access the JTAG UART core. The
Nios II IDE supports the JTAG UART core, and displays character I/O in
a console window. Altera also provides a command-line utility called
nios2-terminal that opens a terminal session with the JTAG UART core.

f For further details, refer to the Nios II Software Developer's Handbook and
the Nios II IDE online help.

Register Map

Programmers using the HAL API never access the JTAG UART core
directly via its registers. In general, the register map is only useful to
programmers writing a device driver for the core.

c The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate.

8–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Table 8–2 shows the register map for the JTAG UART core. Device drivers
control and communicate with the core through the two 32-bit
memory-mapped registers.

Data Register

Embedded software accesses the read and write FIFOs via the data
register. Table 8–3 describes the function of each bit.

A read from the data register returns the first character from the FIFO (if
one is available) in the DATA field. Reading also returns information
about the number of characters remaining in the FIFO in the RAVAIL
field. A write to the data register stores the value of the DATA field in the
write FIFO. If the write FIFO is full, then the character is lost.

Table 8–2. JTAG UART Core Register Map

Offset Register
Name R/W

Bit Description

31 ... 16 15 14 ... 11 10 9 8 7 ... 2 1 0

0 data RW RAVAIL RVALID (1) DATA

1 control RW WSPACE (1) AC WI RI (1) WE RE

Note to Table 8–2:
(1) Reserved. Read values are undefined. Write zero.

Table 8–3. data Register Bits

Bit Number Bit/Field Name Read/Write/Clear Description

0 .. 7 DATA R/W The value to transfer to/from the JTAG core. When
writing, the DATA field holds a character to be written to
the write FIFO. When reading, the DATA field holds a
character read from the read FIFO.

15 RVALID R Indicates whether the DATA field is valid. If RVALID=1,
then the DATA field is valid, otherwise DATA is undefined.

16 .. 32 RAVAIL R The number of characters remaining in the read FIFO
(after the current read).

Altera Corporation 8–13
October 2007

Software Programming Model

Altera Corporation 8–13
October 2007

Software Programming Model

Control Register

Embedded software controls the JTAG UART core’s interrupt generation
and reads status information via the control register. Table 8–4
describes the function of each bit.

A read from the control register returns the status of the read and
write FIFOs. Writes to the register can be used to enable/disable
interrupts, or clear the AC bit.

The RE and WE bits enable interrupts for the read and write FIFOs,
respectively. The WI and RI bits indicate the status of the interrupt
sources, qualified by the values of the interrupt enable bits (WE and RE).
Embedded software can examine RI and WI to determine the condition
that generated the IRQ. See “Interrupt Behavior” on page 8–13 for further
details.

The AC bit indicates that an application on the host PC has polled the
JTAG UART core via the JTAG interface. Once set, the AC bit remains set
until it is explicitly cleared via the Avalon interface. Writing 1 to AC clears
it. Embedded software can examine the AC bit to determine if a
connection exists to a host PC. If no connection exists, the software may
choose to ignore the JTAG data stream. When the host PC has no data to
transfer, it can choose to poll the JTAG UART core as infrequently as once
per second. Delays caused by other host software using the JTAG
download cable could cause delays of up to 10 seconds between polls.

Interrupt Behavior

The JTAG UART core generates an interrupt when either of the individual
interrupt conditions is pending and enabled.

Table 8–4. control Register Bits

Bit Number Bit/Field Name Read/Write/Clear Description

0 RE R/W Interrupt-enable bit for read interrupts

1 WE R/W Interrupt-enable bit for write interrupts

8 RI R Indicates that the read interrupt is pending

9 WI R Indicates that the write interrupt is pending

10 AC R/C Indicates that there has been JTAG activity since the bit
was cleared. Writing 1 to AC clears it to 0.

16 .. 32 WSPACE R The number of spaces available in the write FIFO.

8–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

1 Interrupt behavior is of interest to device driver programmers
concerned with the bandwidth performance to the host PC.
Example designs and the JTAG terminal program provided with
Nios II Embedded Design Suite (EDS) are pre-configured with
optimal interrupt behavior.

The JTAG UART core has two kinds of interrupts: write interrupts and
read interrupts. The WE and RE bits in the control register
enable/disable the interrupts.

The core can assert a write interrupt whenever the write FIFO is nearly
empty. The “nearly empty” threshold, write_threshold, is specified at
system generation time and cannot be changed by embedded software.
The write interrupt condition is set whenever there are
write_threshold or fewer characters in the write FIFO. It is cleared by
writing characters to fill the write FIFO beyond the write_threshold.
Embedded software should only enable write interrupts after filling the
write FIFO. If it has no characters remaining to send, embedded software
should disable the write interrupt.

The core can assert a read interrupt whenever the read FIFO is nearly full.
The “nearly full” threshold value, read_threshold, is specified at
system generation time and cannot be changed by embedded software.
The read interrupt condition is set whenever the read FIFO has
read_threshold or fewer spaces remaining. The read interrupt
condition is also set if there is at least one character in the read FIFO and
no more characters are expected. The read interrupt is cleared by reading
characters from the read FIFO.

For optimum performance, the interrupt thresholds should match the
interrupt response time of the embedded software. For example, with a
10-MHz JTAG clock, a new character is provided (or consumed) by the
host PC every 1µs. With a threshold of 8, the interrupt response time must
be less than 8µs. If the interrupt response time is too long, then
performance will suffer. If it is too short, then interrupts will occur too
frequently.

1 For Nios II processor systems, read and write thresholds of 8 are
an appropriate default.

Referenced
Document

This chapter references the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 8–15
October 2007

Document Revision History

Altera Corporation 8–15
October 2007

Document Revision History

Document
Revision History

Table 8–5 shows the revision history for this chapter.

Table 8–5. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 8 was formerly Chapter 7.
—

May 2007
v7.1.0

● Chapter 7 was formerly chapter 5.
● Added Arria™ GX to “Device and Tools Support” on

page 8–4.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

Added Cyclone III and Stratix III support. Version 7.0 of the
Quartus II software
added Cyclone III
support.

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies.

● Changed old “Avalon switch fabric” term to “system
interconnect fabric.”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface.”

For version 6.1, added
Stratix III support.
Additionally, Altera
released the Avalon
Streaming interface,
which necessitated some
rephrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release.
Previously in the Nios II Processor Reference Handbook.

—

December 2004
v1.2

Added Cyclone II support.
—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

8–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

8–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 9–1
October 2007
Altera Corporation 9–1
October 2007

9. UART Core

Core Overview The universal asynchronous receiver/transmitter core with Avalon®
interface (UART core) implements a method to communicate serial
character streams between an embedded system on an Altera® FPGA and
an external device. The core implements the RS-232 protocol timing, and
provides adjustable baud rate, parity, stop and data bits, and optional
RTS/CTS flow control signals. The feature set is configurable, allowing
designers to implement just the necessary functionality for a given
system.

The core provides a simple register-mapped Avalon Memory-Mapped
(Avalon-MM) slave interface that allows Avalon-MM master peripherals
(such as a Nios® II processor) to communicate with the core simply by
reading and writing control and data registers.

The UART core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. This chapter contains the following
sections:

■ “Functional Description” on page 9–2
■ “Device and Tools Support” on page 9–4
■ “Instantiating the Core in SOPC Builder” on page 9–5
■ “Hardware Simulation Considerations” on page 9–9
■ “Software Programming Model” on page 9–9

NII51010-7.2.0

9–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 9–1 shows a block diagram of the UART core.

Figure 9–1. Block Diagram of the UART Core in a Typical System

The core has two user-visible parts:

■ The register file, which is accessed via the Avalon-MM slave port
■ The RS-232 signals, RXD, TXD, CTS, and RTS

Avalon-MM Slave Interface and Registers

The UART core provides an Avalon-MM slave interface to the internal
register file. The user interface to the UART core consists of six 16-bit
registers: control, status, rxdata, txdata, divisor, and
endofpacket. A master peripheral, such as a Nios II processor, accesses
the registers to control the core and transfer data over the serial
connection.

The UART core provides an active-high interrupt request (IRQ) output
that can request an interrupt when new data has been received, or when
the core is ready to transmit another character. For further details, refer
“Interrupt Behavior” on page 9–20.

Altera FPGA

UART Core
baud rate divisor

shift register RXD

RTS

CTS

TXD L
ev

e
l

S
h

ift
e

r

R
S

 -
 2

32
C

on
ne

ct
or

Avalon-MM
 signals
connected
to on-chip
 logic

data

IRQ

dataavailable

readyfordata

endofpacket

address

clock

rxdata

status

control

txdata

endofpacket

shift register

divisor

Altera Corporation 9–3
October 2007

Functional Description

Altera Corporation 9–3
October 2007

Functional Description

The Avalon-MM slave port is capable of transfers with flow control. The
UART core can be used in conjunction with a direct memory access
(DMA) peripheral with Avalon-MM flow control to automate continuous
data transfers between, for example, the UART core and memory.

f For more information, refer to the Timer Core chapter in volume 5 of the
Quartus II Handbook. For details about the Avalon-MM interface, refer to
the Avalon Memory-Mapped Interface Specification.

RS-232 Interface

The UART core implements RS-232 asynchronous transmit and receive
logic. The UART core sends and receives serial data via the TXD and RXD
ports. The I/O buffers on most Altera FPGA families do not comply with
RS-232 voltage levels, and may be damaged if driven directly by signals
from an RS-232 connector. To comply with RS-232 voltage signaling
specifications, an external level-shifting buffer is required (for example,
Maxim MAX3237) between the FPGA I/O pins and the external RS-232
connector.

The UART core uses a logic 0 for mark, and a logic 1 for space. An inverter
inside the FPGA can be used to reverse the polarity of any of the RS-232
signals, if necessary.

Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register
and a corresponding 7-, 8-, or 9-bit transmit shift register. Avalon-MM
master peripherals write the txdata holding register via the Avalon-MM
slave port. The transmit shift register is loaded from the txdata register
automatically when a serial transmit shift operation is not currently in
progress. The transmit shift register directly feeds the TXD output. Data is
shifted out to TXD least-significant bit (LSB) first.

These two registers provide double buffering. A master peripheral can
write a new value into the txdata register while the previously written
character is being shifted out. The master peripheral can monitor the
transmitter’s status by reading the status register’s transmitter ready
(TRDY), transmitter shift register empty (tmt), and transmitter overrun
error (toe) bits.

The transmitter logic automatically inserts the correct number of start,
stop, and parity bits in the serial TXD data stream as required by the
RS-232 specification.

9–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and
a corresponding 7-, 8-, or 9-bit rxdata holding register. Avalon-MM
master peripherals read the rxdata holding register via the Avalon-MM
slave port. The rxdata holding register is loaded from the receiver shift
register automatically every time a new character is fully received.

These two registers provide double buffering. The rxdata register can
hold a previously received character while the subsequent character is
being shifted into the receiver shift register.

A master peripheral can monitor the receiver’s status by reading the
status register’s read-ready (rrdy), receiver-overrun error (roe), break
detect (BRK), parity error (pe), and framing error (fe) bits. The receiver
logic automatically detects the correct number of start, stop, and parity
bits in the serial RXD stream as required by the RS-232 specification. The
receiver logic checks for four exceptional conditions in the received data
(frame error, parity error, receive overrun error, and break), and sets
corresponding status register bits (fe, pe, roe, or BRK).

Baud Rate Generation

The UART core’s internal baud clock is derived from the Avalon-MM
clock input. The internal baud clock is generated by a clock divider. The
divisor value can come from one of the following sources:

■ A constant value specified at system generation time
■ The 16-bit value stored in the divisor register

The divisor register is an optional hardware feature. If it is disabled at
system generation time, the divisor value is fixed, and the baud rate
cannot be altered.

Device and
Tools Support

The UART core can target all Altera FPGAs.

Altera Corporation 9–5
October 2007

Instantiating the Core in SOPC Builder

Altera Corporation 9–5
October 2007

Instantiating the Core in SOPC Builder

Instantiating the
Core in SOPC
Builder

Instantiating the UART in hardware creates at least two I/O ports for
each UART core: An RXD input, and a TXD output. Optionally, the
hardware may include flow control signals, the CTS input and RTS
output.

Designers use the MegaWizard® interface for the UART core in SOPC
Builder to configure the hardware feature set. The following sections
describe the available options.

Configuration Settings

This section describes the configuration settings.

Baud Rate Options

The UART core can implement any of the standard baud rates for RS-232
connections. The baud rate can be configured in one of two ways:

■ Fixed rate—The baud rate is fixed at system generation time and
cannot be changed via the Avalon-MM slave port.

■ Variable rate—The baud rate can vary, based on a clock divisor value
held in the divisor register. A master peripheral changes the baud
rate by writing new values to the divisor register.

1 The baud rate is calculated based on the clock frequency
provided by the Avalon-MM interface. Changing the system
clock frequency in hardware without re-generating the UART
core hardware will result in incorrect signaling.

Baud Rate (bps) Setting
The Baud Rate setting determines the default baud rate after reset. The
Baud Rate option offers standard preset values (for example, 9600, 57600,
115200 bps), or you can enter any baud rate manually.

The baud rate value is used to calculate an appropriate clock divisor
value to implement the desired baud rate. Baud rate and divisor values
are related as follows:

(1)

(2)

divisor int clock frequency()
baud rate

--- 0.5+=

baud rate clock frequency
divisor 1+()

-------------------------------------=

9–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Baud Rate Can Be Changed By Software Setting
When this setting is on, the hardware includes a 16-bit divisor register
at address offset 4. The divisor register is writable, so the baud rate can
be changed by writing a new value to this register.

When this setting is off, the UART hardware does not include a divisor
register. The UART hardware implements a constant (unchangeable)
baud divisor, and the value cannot be changed after system generation.
In this case, writing to address offset 4 has no effect, and reading from
address offset 4 produces an undefined result.

Data Bits, Stop Bits, Parity

The UART core’s parity, data bits and stop bits are configurable. These
settings are fixed at system generation time; they cannot be altered via the
register file. The following settings are available.

Data Bits Setting
The settings shown in Table 9–1 are available.

Parity Setting
When Parity is set to None, the transmit logic sends data without
including a parity bit, and the receive logic presumes the incoming data
does not include a parity bit. When parity is None, the status register’s
parity error (PE) bit is not implemented; it always reads 0.

When Parity is set to Odd or Even, the transmit logic computes and
inserts the required parity bit into the outgoing TXD bitstream, and the
receive logic checks the parity bit in the incoming RXD bitstream. If the
receiver finds data with incorrect parity, the status register’s PE is set to 1.
When parity is Even, the parity bit is 0 if the character has an even
number of 1 bits; otherwise the parity bit is 1. Similarly, when parity is
Odd, the parity bit is 0 if the character has an odd number of 1 bits.

Table 9–1. Data Bits Settings

Setting Allowed Values Description

Data Bits 7, 8, 9 This setting determines the widths of the txdata, rxdata, and
endofpacket registers.

Stop Bits 1, 2 This setting determines whether the core transmits 1 or 2 stop bits with every
character. The core always terminates a receive transaction at the first stop bit,
and ignores all subsequent stop bits, regardless of the Stop Bits setting.

Parity None, Even, Odd This setting determines whether the UART transmits characters with parity
checking, and whether it expects received characters to have parity checking.
Refer to “Parity Setting”.

Altera Corporation 9–7
October 2007

Instantiating the Core in SOPC Builder

Altera Corporation 9–7
October 2007

Instantiating the Core in SOPC Builder

Flow Control

The following flow control option is available.

Include CTS/RTS Pins and Control Register Bits
When this setting is on, the UART hardware includes:

■ cts_n (logic negative CTS) input port
■ rts_n (logic negative RTS) output port
■ CTS bit in the status register
■ DCTS bit in the status register
■ RTS bit in the control register
■ IDCTS bit in the control register

Based on these hardware facilities, an Avalon-MM master peripheral can
detect CTS and transmit RTS flow control signals. The CTS input and RTS
output ports are tied directly to bits in the status and control
registers, and have no direct effect on any other part of the core. When
using flow control, be sure the terminal program on the host side is also
configured for flow control.

When the Include CTS/RTS pins and control register bits setting is off,
the core does not include the hardware listed above and continuous
writes to the UART may loose data. The control/status bits CTS, DCTS,
IDCTS, and RTS are not implemented; they always read as 0.

Avalon-MM Transfers with Flow Control (DMA)

The UART core’s Avalon-MM interface optionally implements
Avalon-MM transfers with flow control. This allows an Avalon-MM
master peripheral to write data only when the UART core is ready to
accept another character, and to read data only when the core has data
available. The UART core can also optionally include the end-of-packet
register.

Include End-of-Packet Register
When this setting is on, the UART core includes:

■ A 7-, 8-, or 9-bit endofpacket register at address-offset 5. The data
width is determined by the Data Bits setting.

■ eop bit in the status register
■ ieop bit in the control register
■ endofpacket signal in the Avalon-MM interface to support data

transfers with flow control to/from other master peripherals in the
system

9–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

End-of-packet (EOP) detection allows the UART core to terminate a data
transaction with a Avalon-MM master with flow control. EOP detection
can be used with a DMA controller, for example, to implement a UART
that automatically writes received characters to memory until a specified
character is encountered in the incoming RXD stream. The terminating
(EOP) character’s value is determined by the endofpacket register.

When the EOP register is disabled, the UART core does not include the
resources listed above. Writing to the endofpacket register has no
effect, and reading produces an undefined value.

Simulation Settings

When the UART core’s logic is generated, a simulation model is also
constructed. The simulation model offers features to simplify and
accelerate simulation of systems that use the UART core. Changes to the
simulation settings do not affect the behavior of the UART core in
hardware; the settings affect only functional simulation.

f For examples of how to use the following settings to simulate Nios II
systems, refer to AN 351: Simulating Nios II Embedded Processor Designs.

Simulated RXD-Input Character Stream

You can enter a character stream that is simulated entering the RXD port
upon simulated system reset. The UART core’s MegaWizard interface
accepts an arbitrary character string, which is later incorporated into the
UART simulation model. After reset in reset, the string is input into the
RXD port character-by-character as the core is able to accept new data.

Prepare Interactive Windows

At system generation time, the UART core generator can create ModelSim
macros that facilitate interaction with the UART model during
simulation. The following options are available:

Create ModelSim Alias to Open Streaming Output Window
A ModelSim macro is created to open a window that displays all output
from the TXD port.

Create ModelSim Alias to Open Interactive Stimulus Window
A ModelSim macro is created to open a window that accepts stimulus for
the RXD port. The window sends any characters typed in the window to
the RXD port.

Altera Corporation 9–9
October 2007

Hardware Simulation Considerations

Altera Corporation 9–9
October 2007

Hardware Simulation Considerations

Simulated Transmitter Baud Rate

RS-232 transmission rates are often slower than any other process in the
system, and it is seldom useful to simulate the functional model at the
true baud rate. For example, at 115,200 bps, it typically takes thousands of
clock cycles to transfer a single character. The UART simulation model
has the ability to run with a constant clock divisor of 2. This allows the
simulated UART to transfer bits at half the system clock speed, or roughly
one character per 20 clock cycles. You can choose one of the following
options for the simulated transmitter baud rate:

■ accelerated (use divisor = 2)—TXD emits one bit per 2 clock cycles in
simulation.

■ actual (use true baud divisor)—TXD transmits at the actual baud
rate, as determined by the divisor register.

Hardware
Simulation
Considerations

The simulation features were created for easy simulation of Nios, Nios II
or Excalibur™ processor systems when using the ModelSim simulator.
The documentation for each processor documents the suggested usage of
these features. Other usages may be possible, but will require additional
user effort to create a custom simulation process.

The simulation model is implemented in the UART core’s top-level HDL
file; the synthesizable HDL and the simulation HDL are implemented in
the same file. The simulation features are implemented using
translate on and translate off synthesis directives that make
certain sections of HDL code visible only to the synthesis tool.

Do not edit the simulation directives if you are using Altera’s
recommended simulation procedures. If you do change the simulation
directives for your custom simulation flow, be aware that SOPC Builder
overwrites existing files during system generation. Take precaution so
that your changes are not overwritten.

f For details about simulating the UART core in Nios II processor systems,
refer to AN 351: Simulating Nios II Processor Designs. For details about
simulating the UART core in Nios embedded processor systems, refer to
AN 189: Simulating Nios Embedded Processor Designs.

Software
Programming
Model

The following sections describe the software programming model for the
UART core, including the register map and software declarations to
access the hardware. For Nios II processor users, Altera provides
hardware abstraction layer (HAL) system library drivers that enable you
to access the UART core using the ANSI C standard library functions,
such as printf() and getchar().

9–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

HAL System Library Support

The Altera-provided driver implements a HAL character-mode device
driver that integrates into the HAL system library for Nios II systems.
HAL users should access the UART via the familiar HAL API and the
ANSI C standard library, rather than accessing the UART registers.
ioctl() requests are defined that allow HAL users to control the
hardware-dependent aspects of the UART.

c If your program uses the HAL device driver to access the UART
hardware, accessing the device registers directly will interfere
with the correct behavior of the driver.

For Nios II processor users, the HAL system library API provides
complete access to the UART core's features. Nios II programs treat the
UART core as a character mode device, and send and receive data using
the ANSI C standard library functions.

The driver supports the CTS/RTS control signals when they are enabled
in SOPC Builder. Refer to “Driver Options: Fast Versus Small
Implementations” on page 9–11.

The following code demonstrates the simplest possible usage, printing a
message to stdout using printf(). In this example, the SOPC Builder
system contains a UART core, and the HAL system library has been
configured to use this device for stdout.

Example 9–1. Example: Printing Characters to a UART Core as stdout
#include <stdio.h>
int main ()
{
 printf("Hello world.\n");
 return 0;
}

The following code demonstrates reading characters from and sending
messages to a UART device using the C standard library. In this example,
the SOPC Builder system contains a UART core named uart1 that is not
necessarily configured as the stdout device. In this case, the program
treats the device like any other node in the HAL file system.

Altera Corporation 9–11
October 2007

Software Programming Model

Altera Corporation 9–11
October 2007

Software Programming Model

Example 9–2. Example: Sending and Receiving Characters

/* A simple program that recognizes the characters 't' and 'v' */
#include <stdio.h>
#include <string.h>
int main ()
{
 char* msg = "Detected the character 't'.\n";
 FILE* fp;
 char prompt = 0;

 fp = fopen ("/dev/uart1", "r+"); //Open file for reading and writing
 if (fp)
 {
 while (prompt != 'v')
 { // Loop until we receive a 'v'.
 prompt = getc(fp); // Get a character from the UART.
 if (prompt == 't')
 { // Print a message if character is 't'.
 fwrite (msg, strlen (msg), 1, fp);
 }
 }

 fprintf(fp, "Closing the UART file.\n");
 fclose (fp);
 }

 return 0;
}

1 For more information about the HAL system library, refer to the
Nios II Software Developer's Handbook.

Driver Options: Fast Versus Small Implementations

To accommodate the requirements of different types of systems, the
UART driver provides two variants: a fast version and a small version.
The fast version is the default. Both fast and small drivers fully support
the C standard library functions and the HAL API.

The fast driver is an interrupt-driven implementation, which allows the
processor to perform other tasks when the device is not ready to send or
receive data. Because the UART data rate is slow compared to the
processor, the fast driver can provide a large performance benefit for
systems that could be performing other tasks in the interim.

9–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The small driver is a polled implementation that waits for the UART
hardware before sending and receiving each character. There are two
ways to enable the small footprint driver:

■ Enable the small footprint setting for the HAL system library project.
This option affects device drivers for all devices in the system as well.

■ Specify the preprocessor option
-DALTERA_AVALON_UART_SMALL. You can use this option if you
want the small, polled implementation of the UART driver, but do
not want to affect the drivers for other devices.

f Refer to the help system in the Nios II IDE for details about how to set
HAL properties and preprocessor options.

If the CTS/RTS flow control signals are enabled in hardware, the fast
driver automatically uses them. The small driver always ignores them.

ioctl() Operations

The UART driver supports the ioctl() function to allow HAL-based
programs to request device-specific operations. Table 9–2 defines
operation requests that the UART driver supports.

Table 9–2. UART ioctl() Operations

Request Meaning

TIOCEXCL Locks the device for exclusive access. Further calls to open() for this device will fail until
either this file descriptor is closed, or the lock is released using the TIOCNXCL ioctl
request. For this request to succeed there can be no other existing file descriptors for this
device. The ioctl “arg” parameter is ignored.

TIOCNXCL Releases a previous exclusive access lock. The ioctl “arg” parameter is ignored.

Altera Corporation 9–13
October 2007

Software Programming Model

Altera Corporation 9–13
October 2007

Software Programming Model

Additional operation requests are also optionally available for the fast
driver only, as shown in Table 9–3. To enable these operations in your
program, you must set the preprocessor option
-DALTERA_AVALON_UART_USE_IOCTL.

f Refer to the Nios II Software Developer's Handbook for details about the
ioctl() function.

Limitations

The HAL driver for the UART core does not support the endofpacket
register. Refer to “Register Map” for details.

Software Files

The UART core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL
drivers. Application developers should not modify these files.

■ altera_avalon_uart_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used only by device driver functions.

■ altera_avalon_uart.h, altera_avalon_uart.c—These files implement
the UART core device driver for the HAL system library.

Legacy SDK Routines

The UART core is also supported by the legacy SDK routines for the
first-generation Nios processor.

Table 9–3. Optional UART ioctl() Operations for the Fast Driver Only

Request Meaning

TIOCMGET Returns the current configuration of the device by filling in the contents of the input termios
(1) structure. A pointer to this structure is supplied as the value of the ioctl “opt”
parameter.

TIOCMSET Sets the configuration of the device according to the values contained in the input termios
structure (1). A pointer to this structure is supplied as the value of the ioctl “arg”
parameter.

Note to Table 9–3:
(1) The termios structure is defined by the Newlib C standard library. You can find the definition in the file <Nios II

EDS install path>/components/altera_hal/HAL/inc/sys/termios.h.

9–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

1 For details about these routines, refer to the UART
documentation that accompanied the first-generation Nios
processor. For details about upgrading programs based on the
legacy SDK to the HAL system library API, refer to AN 350:
Upgrading Nios Processor Systems to the Nios II Processor.

Register Map

Programmers using the HAL API or the legacy SDK for the
first-generation Nios processor never access the UART core directly via
its registers. In general, the register map is only useful to programmers
writing a device driver for the core.

c The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver and the HAL
driver is active for the same device, your driver will conflict and
fail to operate.

Table 9–4 shows the register map for the UART core. Device drivers
control and communicate with the core through the memory-mapped
registers.

Some registers and bits are optional. These registers and bits exists in
hardware only if it was enabled at system generation time. Optional
registers and bits are noted in the following sections.

Table 9–4. UART Core Register Map

Offset Register
Name R/W

Description/Register Bits

15 . . .13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO (1) (2) (2) Receive Data

1 txdata WO (1) (2) (2) Transmit Data

2 status (3) RW (1) eop cts dcts (1) e rrdy trdy tmt toe roe brk fe pe

3 control RW (1) ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor (4) RW Baud Rate Divisor

5 endof-
packet (4)

RW (1) (2) (2) End-of-Packet Value

Notes to Table 9–4:
(1) These bits are reserved. Reading returns an undefined value. Write zero.
(2) These bits may or may not exist, depending on the Data Width hardware option. If they do not exist, they read

zero, and writing has no effect.
(3) Writing zero to the status register clears the dcts, e, toe, roe, brk, fe, and PE bits.
(4) This register may or may not exist, depending on hardware configuration options. If it does not exist, reading

returns an undefined value and writing has no effect.

Altera Corporation 9–15
October 2007

Software Programming Model

Altera Corporation 9–15
October 2007

Software Programming Model

rxdata Register

The rxdata register holds data received via the RXD input. When a new
character is fully received via the RXD input, it is transferred into the
rxdata register, and the status register’s rrdy bit is set to 1. The
status register’s rrdy bit is set to 0 when the rxdata register is read. If
a character is transferred into the rxdata register while the rrdy bit is
already set (in other words, the previous character was not retrieved), a
receiver-overrun error occurs and the status register’s roe bit is set to 1.
New characters are always transferred into the rxdata register,
regardless of whether the previous character was read. Writing data to the
rxdata register has no effect.

txdata Register

Avalon-MM master peripherals write characters to be transmitted into
the txdata register. Characters should not be written to txdata until the
transmitter is ready for a new character, as indicated by the TRDY bit in
the status register. The TRDY bit is set to 0 when a character is written
into the txdata register. The TRDY bit is set to 1 when the character is
transferred from the txdata register into the transmitter shift register. If
a character is written to the txdata register when TRDY is 0, the result is
undefined. Reading the txdata register returns an undefined value.

For example, assume the transmitter logic is idle and an Avalon-MM
master peripheral writes a first character into the txdata register. The
TRDY bit is set to 0, then set to 1 when the character is transferred into the
transmitter shift register. The master can then write a second character
into the txdata register, and the TRDY bit is set to 0 again. However, this
time the shift register is still busy shifting out the first character to the TXD
output. The TRDY bit is not set to 1 until the first character is fully shifted
out and the second character is automatically transferred into the
transmitter shift register.

status Register

The status register consists of individual bits that indicate particular
conditions inside the UART core. Each status bit is associated with a
corresponding interrupt-enable bit in the control register. The status
register can be read at any time. Reading does not change the value of any
of the bits. Writing zero to the status register clears the DCTS, E, TOE,
ROE, BRK, FE, and PE bits.

9–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The status register bits are shown in Table 9–5.

Table 9–5. status Register Bits (Part 1 of 3)

Bit Bit
Name

Read/ Write/
Clear Description

0 (1) PE RC Parity error. A parity error occurs when the received parity bit has an
unexpected (incorrect) logic level. The PE bit is set to 1 when the core
receives a character with an incorrect parity bit. The PE bit stays set to 1 until
it is explicitly cleared by a write to the status register. When the PE bit is set,
reading from the rxdata register produces an undefined value.

If the Parity hardware option is not enabled, no parity checking is performed
and the PE bit always reads 0. Refer to “Data Bits, Stop Bits, Parity” on
page 9–6.

1 FE RC Framing error. A framing error occurs when the receiver fails to detect a
correct stop bit. The FE bit is set to 1 when the core receives a character with
an incorrect stop bit. The FE bit stays set to 1 until it is explicitly cleared by
a write to the status register. When the FE bit is set, reading from the
rxdata register produces an undefined value.

2 BRK RC Break detect. The receiver logic detects a break when the RXD pin is held
low (logic 0) continuously for longer than a full-character time (data bits, plus
start, stop, and parity bits). When a break is detected, the BRK bit is set to
1. The BRK bit stays set to 1 until it is explicitly cleared by a write to the
status register.

3 ROE RC Receive overrun error. A receive-overrun error occurs when a newly
received character is transferred into the rxdata holding register before
the previous character is read (in other words, while the RRDY bit is 1). In
this case, the ROE bit is set to 1, and the previous contents of rxdata are
overwritten with the new character. The ROE bit stays set to 1 until it is
explicitly cleared by a write to the status register.

4 TOE RC Transmit overrun error. A transmit-overrun error occurs when a new
character is written to the txdata holding register before the previous
character is transferred into the shift register (in other words, while the TRDY
bit is 0). In this case the TOE bit is set to 1. The TOE bit stays set to 1 until
it is explicitly cleared by a write to the status register.

5 TMT R Transmit empty. The TMT bit indicates the transmitter shift register’s current
state. When the shift register is in the process of shifting a character out the
TXD pin, TMT is set to 0. When the shift register is idle (in other words, a
character is not being transmitted) the TMT bit is 1. An Avalon-MM master
peripheral can determine if a transmission is completed (and received at the
other end of a serial link) by checking the TMT bit.

Altera Corporation 9–17
October 2007

Software Programming Model

Altera Corporation 9–17
October 2007

Software Programming Model

6 TRDY R Transmit ready. The TRDY bit indicates the txdata holding register’s
current state. When the txdata register is empty, it is ready for a new
character, and TRDY is 1. When the txdata register is full, TRDY is 0. An
Avalon-MM master peripheral must wait for TRDY to be 1 before writing new
data to txdata.

7 RRDY R Receive character ready. The RRDY bit indicates the rxdata holding
register’s current state. When the rxdata register is empty, it is not ready
to be read and rrdy is 0. When a newly received value is transferred into the
rxdata register, RRDY is set to 1. Reading the rxdata register clears the
RRDY bit to 0. An Avalon-MM master peripheral must wait for RRDY to equal
1 before reading the rxdata register.

8 E RC Exception. The E bit indicates that an exception condition occurred. The E
bit is a logical-OR of the TOE, ROE, BRK, FE, and PE bits. The e bit and its
corresponding interrupt-enable bit (IE) bit in the control register provide
a convenient method to enable/disable IRQs for all error conditions.

The E bit is set to 0 by a write operation to the status register.

10 (1) DCTS RC Change in clear to send (CTS) signal. The DCTS bit is set to 1 whenever a
logic-level transition is detected on the CTS_N input port (sampled
synchronously to the Avalon-MM clock). This bit is set by both falling and
rising transitions on CTS_N. The DCTS bit stays set to 1 until it is explicitly
cleared by a write to the status register.

If the Flow Control hardware option is not enabled, the DCTS bit always
reads 0. Refer to “Flow Control” on page 9–7.

11 (1) CTS R Clear-to-send (CTS) signal. The CTS bit reflects the CTS_N input’s
instantaneous state (sampled synchronously to the Avalon-MM clock).
Because the CTS_N input is logic negative, the CTS bit is 1 when a 0
logic-level is applied to the CTS_N input.

The CTS_N input has no effect on the transmit or receive processes. The
only visible effect of the CTS_N input is the state of the CTS and DCTS bits,
and an IRQ that can be generated when the control register’s idcts bit is
enabled.

If the Flow Control hardware option is not enabled, the CTS bit always
reads 0. Refer to “Flow Control” on page 9–7.

Table 9–5. status Register Bits (Part 2 of 3)

Bit Bit
Name

Read/ Write/
Clear Description

9–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

control Register

The control register consists of individual bits, each controlling an
aspect of the UART core’s operation. The value in the control register
can be read at any time.

Each bit in the control register enables an IRQ for a corresponding bit
in the status register. When both a status bit and its corresponding
interrupt-enable bit are 1, the core generates an IRQ. For example, the PE
bit is bit 0 of the status register, and the ipe bit is bit 0 of the control
register. An interrupt request is generated when both PE and ipe equal 1.

The control register bits are shown in Table 9–6.

12 (1) EOP R End of packet encountered. The EOP bit is set to 1 by one of the following
events:

● An EOP character is written to txdata
● An EOP character is read from rxdata

The EOP character is determined by the contents of the endofpacket
register. The EOP bit stays set to 1 until it is explicitly cleared by a write to
the status register.

If the Include End-of-Packet Register hardware option is not enabled, the
EOP bit always reads 0. Refer to “Avalon-MM Transfers with Flow Control
(DMA)” on page 9–7.

Note to Table 9–5:
(1) This bit is optional and may not exist in hardware.

Table 9–5. status Register Bits (Part 3 of 3)

Bit Bit
Name

Read/ Write/
Clear Description

Table 9–6. control Register Bits (Part 1 of 2)

Bit Bit Name Read/
Write Description

0 IPE RW Enable interrupt for a parity error.

1 IFE RW Enable interrupt for a framing error.

2 IBRK RW Enable interrupt for a break detect.

3 IROE RW Enable interrupt for a receiver overrun error.

4 ITOE RW Enable interrupt for a transmitter overrun error.

5 ITMT RW Enable interrupt for a transmitter shift register empty.

Altera Corporation 9–19
October 2007

Software Programming Model

Altera Corporation 9–19
October 2007

Software Programming Model

divisor Register (Optional)

The value in the divisor register is used to generate the baud rate clock.
The effective baud rate is determined by the formula shown in
Equation 3:

(3)

The divisor register is an optional hardware feature. If the Baud Rate
Can Be Changed By Software hardware option is not enabled, then the
divisor register does not exist. In this case, writing divisor has no
effect, and reading divisor returns an undefined value. For more
information, refer to “Baud Rate Options” on page 9–5.

6 ITRDY RW Enable interrupt for a transmission ready.

7 IRRDY RW Enable interrupt for a read ready.

8 IE RW Enable interrupt for an exception.

9 TRBK RW Transmit break. The TRBK bit allows an Avalon-MM master peripheral to
transmit a break character over the TXD output. The TXD signal is forced to 0
when the TRBK bit is set to 1. The TRBK bit overrides any logic level that the
transmitter logic would otherwise drive on the TXD output. The TRBK bit
interferes with any transmission in process. The Avalon-MM master peripheral
must set the TRBK bit back to 0 after an appropriate break period elapses.

10 IDCTS RW Enable interrupt for a change in CTS signal.

11 (1) RTS RW Request to send (RTS) signal. The RTS bit directly feeds the RTS_N output.
An Avalon-MM master peripheral can write the RTS bit at any time. The value
of the RTS bit only affects the RTS_N output; it has no effect on the transmitter
or receiver logic. Because the RTS_N output is logic negative, when the RTS
bit is 1, a low logic-level (0) is driven on the RTS_N output.

If the Flow Control hardware option is not enabled, the RTS bit always reads
0, and writing has no effect. Refer to “Flow Control” on page 9–7.

12 IEOP RW Enable interrupt for end-of-packet condition.

Note to Table 9–6:
(1) This bit is optional and may not exist in hardware.

Table 9–6. control Register Bits (Part 2 of 2)

Bit Bit Name Read/
Write Description

baud rate clock frequency
divisor 1+()

-------------------------------------=

9–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

endofpacket Register (Optional)

The value in the endofpacket register determines the end-of-packet
character for variable-length DMA transactions. After reset, the default
value is zero, which is the ASCII null character (\0). For more
information, refer to Table 9–5 on page 9–16 for the description for the
eop bit.

The endofpacket register is an optional hardware feature. If the
Include end-of-packet register hardware option is not enabled, then the
endofpacket register does not exist. In this case, writing endofpacket
has no effect, and reading returns an undefined value.

Interrupt Behavior

The UART core outputs a single IRQ signal to the Avalon-MM interface,
which can connect to any master peripheral in the system, such as a
Nios II processor. The master peripheral must read the status register
to determine the cause of the interrupt.

Every interrupt condition has an associated bit in the status register
and an interrupt-enable bit in the control register. When any of the
interrupt conditions occur, the associated status bit is set to 1 and
remains set until it is explicitly acknowledged. The IRQ output is asserted
when any of the status bits are set while the corresponding
interrupt-enable bit is 1. A master peripheral can acknowledge the IRQ by
clearing the status register.

At reset, all interrupt-enable bits are set to 0; therefore, the core cannot
assert an IRQ until a master peripheral sets one or more of the
interrupt-enable bits to 1.

All possible interrupt conditions are listed with their associated status
and control (interrupt-enable) bits in Table 6–5 on page 6–16 and
Table 6–6 on page 6–18. Details of each interrupt condition are provided
in the status bit descriptions.

Altera Corporation 9–21
October 2007

Referenced Documents

Altera Corporation 9–21
October 2007

Referenced Documents

Referenced
Documents

This chapter references the following documents:

■ Nios II Software Developer’s Handbook
■ Timer Core chapter in volume 5 of the Quartus II Handbook
■ Avalon Memory-Mapped Interface Specification
■ AN 351: Simulating Nios II Processor Designs
■ AN 189: Simulating Nios Embedded Processor Designs

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51008.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an189.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

9–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

9–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Document
Revision History

Table 9–7 shows the revision history for this chapter.

Table 9–7. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.

● Chapter 9 was formerly Chapter 8.
● Added two sentences to clarify use of flow control. Host

PC must also be configured for flow control.
—

May 2007
v7.1.0

● Chapter 8 was formerly chapter 6.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies. Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

● Corrected definition of even and odd parity in section
“Data Bits, Stop Bits, Parity” on page 8–6.

For the 6.1 release, Altera
released the Avalon Streaming
interface, which necessitated
some re-phrasing of existing
Avalon terminology. Other
changes to the document
serve only to clarify existing
behavior.

May 2006
v6.0.0

No change from previous release.
—

December 2005
v5.1.1

Changed Avalon “streaming” terminology to “flow control”
based on a change to the Avalon Interface Specification. —

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

Altera Corporation 10–1
October 2007
Altera Corporation 10–1
October 2007

10. SPI Core

Core Overview SPI is an industry-standard serial protocol commonly used in embedded
systems to connect microprocessors to a variety of off-chip sensor,
conversion, memory, and control devices. The SPI core with Avalon®
interface implements the SPI protocol and provides an Avalon
Memory-Mapped (Avalon-MM) interface on the back end.

The SPI core can implement either the master or slave protocol. When
configured as a master, the SPI core can control up to 16 independent SPI
slaves. The width of the receive and transmit registers are configurable
between 1 and 16 bits. Longer transfer lengths (for example, 24-bit
transfers) can be supported with software routines. The SPI core provides
an interrupt output that can flag an interrupt whenever a transfer
completes.

The SPI core is SOPC Builder ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description”
■ “Instantiating the SPI Core in SOPC Builder” on page 10–7
■ “Device and Tools Support” on page 10–10
■ “Software Programming Model” on page 10–10

Functional
Description

The SPI core communicates using two data lines, a control line, and a
synchronization clock:

■ Master Out Slave In (mosi)—Output data from the master to the
inputs of the slaves

■ Master In Slave Out (miso)—Output data from a slave to the input
of the master

■ Serial Clock (sclk)—Clock driven by the master to slaves, used to
synchronize the data bits

■ Slave Select (ss_n)— Select signal (active low) driven by the master
to individual slaves, used to select the target slave

The SPI core has the following user-visible features:

■ A memory-mapped register space comprised of five registers:
rxdata, txdata, status, control, and slaveselect

■ Four SPI interface ports: sclk, ss_n, mosi, and miso

NII51011-7.2.0

10–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The registers provide an interface to the SPI core and are visible via the
Avalon-MM slave port. The sclk, ss_n, mosi, and miso ports provide
the hardware interface to other SPI devices. The behavior of sclk, ss_n,
mosi, and miso depends on whether the SPI core is configured as a
master or slave.

Figure 10–1 shows a block diagram of the SPI core in master mode.

Figure 10–1. SPI Core Block Diagram

The SPI core logic is synchronous to the clock input provided by the
Avalon-MM interface. When configured as a master, the core divides the
Avalon-MM clock to generate the SCLK output. When configured as a
slave, the core's receive logic is synchronized to SCLK input. The core’s
Avalon-MM interface is capable of Avalon-MM transfers with flow
control. The SPI core can be used in conjunction with a DMA controller
with flow control to automate continuous data transfers between, for
example, the SPI core and memory. See the Timer Core chapter for details.

Example Configurations

Two possible configurations are shown below. In Figure 10–2, the SPI core
provides a slave interface to an off-chip SPI master.

clock

control

 control

baud rate divisor*

IRQ

sclk

mosi

miso

ss_n0
ss_n1

ss_n15

 *Not present on SPI slave

 slaveselect*

Avalon-MM
slave

interface
to on-chip

logic

 txdata shift register

 status

 rxdata shift register

data

Altera Corporation 10–3
October 2007

Functional Description

Altera Corporation 10–3
October 2007

Functional Description

Figure 10–2. SPI Core Configured as a Slave

In Figure 10–3 the SPI core provides a master interface driving multiple
off-chip slave devices. Each slave device in Figure 10–3 must tristate its
miso output whenever its select signal is not asserted.

Figure 10–3. SPI Core Configured as a Master

The ss_n signal is active-low. However, any signal can be inverted inside
the FPGA, allowing the slave-select signals to be either active high or
active low.

Altera FPGA

Avalon-MM
 interface
to on-chip
 logic

sclk
ss_n
mosi
miso

 SPI component
(configured as slave)

miso
mosi
ss
sclk

 SPI
Master
Device

clock

control

 control

baud rate divisor*

IRQ

sclk

mosi

miso

ss_n0
ss_n1

ss_n15

 *Not present on SPI slave

 slaveselect*

Avalon-MM
slave

interface
to on-chip

logic

 txdata shift register

 status

 rxdata shift register

data

10–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Transmitter Logic

The SPI core transmitter logic consists of a transmit holding register
(txdata) and transmit shift register, each n bits wide. The register width
n is specified at system generation time, and can be any integer value
from 1 to 16. After a master peripheral writes a value to the txdata
register, the value is copied to the shift register and then transmitted
when the next operation starts.

The shift register and the txdata register provide double buffering
during data transmission. A new value can be written into the txdata
register while the previous data is being shifted out of the shift register.
The transmitter logic automatically transfers the txdata register to the
shift register whenever a serial shift operation is not currently in process.

In master mode, the transmit shift register directly feeds the mosi output.
In slave mode, the transmit shift register directly feeds the miso output.
Data shifts out least-significant bit (LSB) first or most-significant bit
(MSB) first, depending on the configuration of the SPI core.

Receiver Logic

The SPI core receive logic consists of a receive holding register (rxdata)
and receive shift register, each n bits wide. The register width n is
specified at system generation time, and can be any integer value from 1
to 16. A master peripheral reads received data from the rxdata register
after the shift register has captured a full n-bit value of data.

The shift register and the rxdata register provide double buffering
during data receiving. The rxdata register can hold a previously
received data value while subsequent new data is shifting into the shift
register. The receiver logic automatically transfers the shift register
content to the rxdata register when a serial shift operation completes.

In master mode, the shift register is fed directly by the miso input. In
slave mode, the shift register is fed directly by the mosi input. The
receiver logic expects input data to arrive least-significant bit (LSB) first
or most-significant bit (MSB) first, depending on the configuration of the
SPI core.

Master and Slave Modes

At system generation time, the designer configures the SPI core in either
master mode or slave mode. The mode cannot be switched at runtime.

Altera Corporation 10–5
October 2007

Functional Description

Altera Corporation 10–5
October 2007

Functional Description

Master Mode Operation

In master mode, the SPI ports behave as shown in Table 10–1.

Only an SPI master can initiate an operation between master and slave. In
master mode, an intelligent host (for example, a microprocessor)
configures the SPI core using the control and slaveselect registers,
and then writes data to the txdata buffer to initiate a transaction. A
master peripheral can monitor the status of the transaction by reading the
status register. A master peripheral can enable interrupts to notify the
host whenever new data is received (that is, a transfer has completed), or
whenever the transmit buffer is ready for new data.

The SPI protocol is full duplex, so every transaction both sends and
receives data at the same time. The master transmits a new data bit on the
mosi output and the slave drives a new data bit on the miso input for
each active edge of sclk. The SPI core divides the Avalon-MM system
clock using a clock divider to generate the sclk signal.

When the SPI core is configured to interface with multiple slaves, the core
has one ss_n signal for each slave, up to a maximum of sixteen slaves.
During a transfer, the master asserts ss_n to each slave specified in the
slaveselect register. Note that there can be no more than one slave
transmitting data during any particular transfer, or else there will be a
conflict on the miso input. The number of slave devices is specified at
system generation time.

Table 10–1. Master Mode Port Configurations

Name Direction Description

mosi output Data output to slave(s)

miso input Data input from slave(s)

sclk output Synchronization clock to all slaves

ss_nM output Slave select signal to slave M, where M is a number between 0 and 15.

10–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Slave Mode Operation

In slave mode, the SPI ports behave as shown in Table 10–2.

In slave mode, the SPI core simply waits for the master to initiate
transactions. Before a transaction begins, the slave logic is continuously
polling the ss_n input. When the master asserts ss_n (drives it low), the
slave logic immediately begins sending the transmit shift register
contents to the miso output. The slave logic also captures data on the
mosi input, and fills the receive shift register simultaneously. Thus, a
read and write transaction are carried out simultaneously.

An intelligent host (for example, a microprocessor) writes data to the
txdata registers, so that it will be transmitted the next time the master
initiates an operation. A master peripheral reads received data from the
rxdata register. A master peripheral can enable interrupts to notify the
host whenever new data is received, or whenever the transmit buffer is
ready for new data.

Multi-Slave Environments

When ss_n is not asserted, typical SPI cores set their miso output pins to
high impedance. The Altera®-provided SPI slave core drives an
undefined high or low value on its miso output when not selected.
Special consideration is necessary to avoid signal contention on the miso
output, if the SPI core in slave mode will be connected to an off-chip SPI
master device with multiple slaves. In this case, the ss_n input should be
used to control a tristate buffer on the miso signal. Figure 10–4 shows an
example of the SPI core in slave mode in an environment with two slaves.

Table 10–2. Slave Mode Port Configurations

Name Direction Description

mosi input Data input from the master

miso output Data output to the master

sclk input Synchronization clock

ss_n input Select signal

Altera Corporation 10–7
October 2007

Instantiating the SPI Core in SOPC Builder

Altera Corporation 10–7
October 2007

Instantiating the SPI Core in SOPC Builder

Figure 10–4. SPI Core in a Multi-Slave Environment

Avalon-MM Interface

The SPI core’s Avalon-MM interface consists of a single Avalon-MM slave
port. In addition to fundamental slave read and write transfers, the SPI
core supports Avalon-MM read and write transfers with flow control.

Instantiating the
SPI Core in
SOPC Builder

Designers use the MegaWizard® interface for the SPI core in SOPC
Builder to configure the hardware feature set. The following sections
describe the available options.

Master/Slave Settings

The designer can select either master mode or slave mode to determine
the role of the SPI core. When master mode is selected, the following
options are available:

■ “Generate Select Signals”
■ “SPI Clock (sclk) Rate” on page 10–8
■ “Specify Delay” on page 10–8

Generate Select Signals

This setting specifies how many slaves the SPI master will connect to. The
acceptable range is 1 to 16. The SPI master core presents a unique ss_n
signal for each slave.

 SPI
Master
Device

 sclk
 mosi
 miso
ss_n0
ss_01

sclk
 mosi
 miso
 ss_n0

 SPI component
(configured as slave)

 SPI
 Slave
DeviceSS_n

miso
mosi
sclk

10–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

SPI Clock (sclk) Rate

This setting determines the rate of the sclk signal that synchronizes data
between master and slaves. The target clock rate can be specified in units
of Hz, kHz or MHz. The SPI master core uses the Avalon-MM system
clock and a clock divisor to generate sclk.

The actual frequency of sclk may not exactly match the desired target
clock rate. The achievable clock values are:

 <Avalon-MM system clock frequency> / [2, 4, 6, 8, ...]

The actual frequency achieved will not be greater than the specified target
value. For example, if the system clock frequency is 50 MHz and the
target value is 25 MHz, then the clock divisor is 2 and the actual sclk
frequency achieves exactly 25 MHz. However, if the target frequency is
24 MHz, then the clock divisor is 4 and the actual sclk frequency
becomes 12.5 MHz.

Specify Delay

Turning on this option causes the SPI master to add a time delay between
asserting the ss_n signal and shifting the first bit of data. This delay is
required by certain SPI slave devices. If the delay option is on, the
designer must also specify the delay time in units of ns, us or ms. An
example is shown in Figure 10–5.

Figure 10–5. Time Delay Between Asserting ss_n and Toggling sclk

The delay generation logic uses a granularity of half the period of sclk.
The actual delay achieved is the desired target delay rounded up to the
nearest multiple of half the sclk period, as shown in the following
equations:

(1)

(2)

p 1
2
--- period of sclk()=

actual delay ceiling <desired delay>
p

-------------------------------------⎝ ⎠
⎛ ⎞ p×=

Altera Corporation 10–9
October 2007

Instantiating the SPI Core in SOPC Builder

Altera Corporation 10–9
October 2007

Instantiating the SPI Core in SOPC Builder

Data Register Settings

The data register settings affect the size and behavior of the data registers
in the SPI core. There are two data register settings:

■ Width—This setting specifies the width of rxdata, txdata, and the
receive and transmit shift registers. Acceptable values are from 1 to
16.

■ Shift direction—This setting determines the direction that data shifts
(MSB first or LSB first) into and out of the shift registers.

Timing Settings

The timing settings affect the timing relationship between the ss_n,
sclk, mosi and miso signals. In this discussion the mosi and miso
signals are referred to generically as “data”. There are two timing settings:

■ Clock polarity—This setting can be 0 or 1. When clock polarity is set to
0, the idle state for sclk is low. When clock polarity is set to 1, the
idle state for sclk is high.

■ Clock phase—This setting can be 0 or 1. When clock phase is 0, data is
latched on the leading edge of sclk, and data changes on trailing
edge. When clock phase is 1, data is latched on the trailing edge of
sclk, and data changes on the leading edge.

Figures 10–6 through 10–9 demonstrate the behavior of signals in all
possible cases of clock polarity and clock phase.

Figure 10–6. Clock Polarity = 0, Clock Phase = 0

Figure 10–7. Clock Polarity = 0, Clock Phase = 1

10–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Figure 10–8. Clock Polarity = 1, Clock Phase = 0

Figure 10–9. Clock Polarity = 1, Clock Phase = 1

Device and
Tools Support

The SPI core can target all Altera FPGAs.

Software
Programming
Model

The following sections describe the software programming model for the
SPI core, including the register map and software constructs used to
access the hardware. For Nios® II processor users, Altera provides the
HAL system library header file that defines the SPI core registers. The SPI
core does not match the generic device model categories supported by the
HAL, so it cannot be accessed via the HAL API or the ANSI C standard
library. Altera provides a routine to access the SPI hardware that is
specific to the SPI core.

Hardware Access Routines

Altera provides one access routine, alt_avalon_spi_command(), that
provides general-purpose access to an SPI core configured as a master.

Altera Corporation 10–11
October 2007

alt_avalon_spi_command()

Altera Corporation 10–11
October 2007

alt_avalon_spi_command()

alt_avalon_spi_command()

Prototype: int alt_avalon_spi_command(alt_u32 base, alt_u32 slave,
alt_u32 write_length,
const alt_u8* wdata,
alt_u32 read_length,
alt_u8* read_data,
alt_u32 flags)

Thread-safe: No.

Available from ISR: No.

Include: <altera_avalon_spi.h>

Description: alt_avalon_spi_command() is used to perform a control sequence on
the SPI bus. This routine is designed for SPI masters of 8-bit data width or less.
Currently, it does not support SPI hardware with data-width greater than 8 bits. A
single call to this function writes a data buffer of arbitrary length out the MOSI port,
and then reads back an arbitrary amount of data from the MISO port. The function
performs the following actions:

(1) Asserts the slave select output for the specified slave. The first slave select
output is numbered 0, the next is 1, etc.
(2) Transmits write_length bytes of data from wdata through the SPI
interface, discarding the incoming data on MISO.
(3) Reads read_length bytes of data, storing the data into the buffer
pointed to by read_data. MOSI is set to zero during the read transaction.
(4) De-asserts the slave select output, unless the flags field contains the value
ALT_AVALON_SPI_COMMAND_MERGE. If you want to transmit from
scattered buffers then you can call the function multiple times, specifying the
merge flag on all the accesses except the last.

This function is not thread safe. If you want to access the SPI bus from more than
one thread, then you should use a semaphore or mutex to ensure that only one
thread is executing within this function at any time.

Returns: The number of bytes stored in the read_data buffer.

10–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Software Files

The SPI core is accompanied by the following software files. These files
provide a low-level interface to the hardware.

■ altera_avalon_spi.h—This file defines the core's register map,
providing symbolic constants to access the low-level hardware.

■ altera_avalon_spi.c—This file implements low-level routines to
access the hardware.

Legacy SDK Routines

The SPI core is also supported by the legacy SDK routines for the first-
generation Nios processor. For details about these routines, refer to the
SPI documentation that accompanied the first-generation Nios processor.

1 For details about upgrading programs based on the legacy SDK
to the HAL system library API, refer to AN 350: Upgrading Nios
Processor Systems to the Nios II Processor.

Register Map

An Avalon-MM master peripheral controls and communicates with the
SPI core via the six 16-bit registers, shown in Table 10–3. The table
assumes an n-bit data width for rxdata and txdata.

Reading undefined bits returns an undefined value. Writing to undefined
bits has no effect.

Table 10–3. Register Map for SPI Master Device

Internal
Address Register Name 15...11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata (1) RXDATA (n-1..0)

1 txdata (1) TXDATA (n-1..0)

2 status (2) E RRDY TRDY TMT TOE ROE

3 control sso (3) IE IRRDY ITRDY ITOE IROE

4 Reserved

5 slaveselect
(3)

Slave Select Mask

Notes to Table 10–3:
(1) Bits 15 to n are undefined when n is less than 16.
(2) A write operation to the status register clears the roe, toe and e bits.
(3) Present only in master mode.

Altera Corporation 10–13
October 2007

alt_avalon_spi_command()

Altera Corporation 10–13
October 2007

alt_avalon_spi_command()

rxdata Register

A master peripheral reads received data from the rxdata register. When
the receive shift register receives a full n bits of data, the status
register’s rrdy bit is set to 1 and the data is transferred into the rxdata
register. Reading the rxdata register clears the rrdy bit. Writing to the
rxdata register has no effect.

New data is always transferred into the rxdata register, whether or not
the previous data was retrieved. If rrdy is 1 when data is transferred into
the rxdata register (that is, the previous data was not retrieved), a
receive-overrun error occurs and the status register’s roe bit is set to 1.
In this case, the contents of rxdata are undefined.

txdata Register

A master peripheral writes data to be transmitted into the txdata
register. When the status register’s trdy bit is 1, it indicates that the
txdata register is ready for new data. The trdy bit is set to 0 whenever
the txdata register is written. The trdy bit is set to 1 after data is
transferred from the txdata register into the transmitter shift register,
which readies the txdata holding register to receive new data.

A master peripheral should not write to the txdata register until the
transmitter is ready for new data. If trdy is 0 and a master peripheral
writes new data to the txdata register, a transmit-overrun error occurs
and the status register’s toe bit is set to 1. In this case, the new data is
ignored, and the content of txdata remains unchanged.

As an example, assume that the SPI core is idle (that is, the txdata
register and transmit shift register are empty), when a CPU writes a data
value into the txdata holding register. The trdy bit is set to 0
momentarily, but after the data in txdata is transferred into the
transmitter shift register, trdy returns to 1. The CPU writes a second data
value into the txdata register, and again the trdy bit is set to 0. This time
the shift register is still busy transferring the original data value, so the
trdy bit remains at 0 until the shift operation completes. When the
operation completes, the second data value is transferred into the
transmitter shift register and the trdy bit is again set to 1.

status Register

The status register consists of bits that indicate status conditions in the
SPI core. Each bit is associated with a corresponding interrupt-enable bit
in the control register, as discussed in “control Register” on page 10–14.

10–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

A master peripheral can read status at any time without changing the
value of any bits. Writing status does clear the roe, toe and e bits.
Table 10–4 describes the individual bits of the status register.

control Register

The control register consists of data bits to control the SPI core’s
operation. A master peripheral can read control at any time without
changing the value of any bits.

Most bits (IROE, ITOE, ITRDY, IRRDY, and IE) in the control register
control interrupts for status conditions represented in the status
register. For example, bit 1 of status is ROE (receiver-overrun error),
and bit 1 of control is IROE, which enables interrupts for the ROE
condition. The SPI core asserts an interrupt request when the
corresponding bits in status and control are both 1.

Table 10–4. status Register Bits

Name Description

3 ROE Receive-overrun error
The ROE bit is set to 1 if new data is received while the rxdata register is full (that is, while
the RRDY bit is 1). In this case, the new data overwrites the old. Writing to the status
register clears the ROE bit to 0.

4 TOE Transmitter-overrun error
The TOE bit is set to 1 if new data is written to the txdata register while it is still full (that is,
while the TRDY bit is 0). In this case, the new data is ignored. Writing to the status register
clears the TOE bit to 0.

5 TMT Transmitter shift-register empty
The TMT bit is set to 0 when a transaction is in progress and set to 1 when the shift register
is empty.

6 TRDY Transmitter ready
The TRDY bit is set to 1 when the txdata register is empty.

7 RRDY Receiver ready
The RRDY bit is set to 1 when the rxdata register is full.

8 E Error
The E bit is the logical OR of the TOE and ROE bits. This is a convenience for the programmer
to detect error conditions. Writing to the status register clears the E bit to 0.

Altera Corporation 10–15
October 2007

Referenced Document

Altera Corporation 10–15
October 2007

Referenced Document

The control register bits are shown in Table 10–5.

After reset, all bits of the control register are set to 0. All interrupts are
disabled and no ss_n signals are asserted after reset.

slaveselect Register

The slaveselect register is a bit mask for the ss_n signals driven by
an SPI master. During a serial shift operation, the SPI master selects only
the slave device(s) specified in the slaveselect register.

The slaveselect register is only present when the SPI core is
configured in master mode. There is one bit in slaveselect for each
ss_n output, as specified by the designer at system generation time. For
example, to enable communication with slave device 3, set bit 3 of
slaveselect to 1.

A master peripheral can set multiple bits of slaveselect
simultaneously, causing the SPI master to simultaneously select multiple
slave devices as it performs a transaction. For example, to enable
communication with slave devices 1, 5, and 6, set bits 1, 5, and 6 of
slaveselect. However, consideration is necessary to avoid signal
contention between multiple slaves on their miso outputs.

Upon reset, bit 0 is set to 1, and all other bits are cleared to 0. Thus, after
a device reset, slave device 0 is automatically selected.

Referenced
Document

This chapter references AN 350: Upgrading Nios Processor Systems to the
Nios II Processor.

Table 10–5. control Register Bits

Name Description

3 IROE Setting IROE to 1 enables interrupts for receive-overrun errors.

4 ITOE Setting ITOE to 1 enables interrupts for transmitter-overrun errors.

6 ITRDY Setting ITRDY to 1 enables interrupts for the transmitter ready condition.

7 IRRDY Setting IRRDY to 1 enables interrupts for the receiver ready condition.

8 IE Setting IE to 1 enables interrupts for any error condition.

10 SSO Setting SSO to 1 forces the SPI core to drive its ss_n outputs, regardless of whether a
serial shift operation is in progress or not. The slaveselect register controls which
ss_n outputs are asserted. sso can be used to transmit or receive data of arbitrary size
(in other words, greater than 16 bits).

http://www/literature/an/an350.pdf
http://www/literature/an/an350.pdf

10–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

10–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Document
Revision History

Table 10–6 shows the revision history for this chapter.

Table 10–6. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 10 was formerly chapter 9.
● Added “Referenced Document” on page 10–15.

—

May 2007
v7.1.0

● Chapter 9 was formerly chapter 7.
● Added table of contents to Overview section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon
Memory-Mapped interface”

For the 6.1 release, Altera
released the Avalon Streaming
interface, which necessitated
some re-phrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

December 2005
v5.1.1

Changed Avalon “"streaming” terminology to “flow
control” based on a change to the Avalon Interface
Specification.

—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the
Nios II Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

Altera Corporation Section III–i

Section III. Display
Peripherals

This section describes display interface peripherals provided by Altera®.
These components provide interfaces to visual display devices for SOPC
Builder systems.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 11, Optrex 16207 LCD Controller Core
■ Chapter 12, Video Sync Generator and Pixel Converter Cores

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section III–ii Altera Corporation

Display Peripherals Quartus II Handbook, Volume 5

Altera Corporation 11–1
October 2007

11. Optrex 16207 LCD
Controller Core

Core Overview The Optrex 16207 LCD controller core with Avalon® Interface (“the LCD
controller”) provides the hardware interface and software driver
required for a Nios® II processor to display characters on an Optrex 16207
(or equivalent) 16×2-character LCD panel. Device drivers are provided in
the HAL system library for the Nios II processor. Nios II programs access
the LCD controller as a character mode device using ANSI C standard
library routines, such as printf(). The LCD controller is SOPC
Builder-ready, and integrates easily into any SOPC Builder-generated
system.

The Nios II Embedded Design Suite (EDS) includes an Optrex LCD
module and provide several ready-made example designs that display
text on the Optrex 16207 via the LCD controller. For details about the
Optrex 16207 LCD module, see the manufacturer’s Dot Matrix Character
LCD Module User’s Manual available at www.optrex.com.

This chapter contains the following sections:

■ “Functional Description”
■ “Device and Tools Support” on page 11–2
■ “Instantiating the Core in SOPC Builder” on page 11–2
■ “Software Programming Model” on page 11–2

Functional
Description

The LCD controller hardware consists of two user-visible components:

■ Eleven signals that connect to pins on the Optrex 16207 LCD panel —
These signals are defined in the Optrex 16207 data sheet.
● E – Enable (output)
● RS – Register Select (output)
● R/W – Read or Write (output)
● DB0 through DB7 – Data Bus (bidirectional)

■ An Avalon Memory-Mapped (Avalon-MM) slave interface that
provides access to 4 registers — The HAL device drivers make it
unnecessary for users to access the registers directly. Therefore,
Altera does not provide details about the register usage. For further
details, refer to “Software Programming Model” on page 11–2.

NII51019-7.2.0

11–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Figure 11–1 shows a block diagram of the LCD controller core.

Figure 11–1. LCD Controller Block Diagram

Device and
Tools Support

The LCD controller hardware supports all Altera FPGA families. The
LCD controller drivers support the Nios II processor. The drivers do not
support the first-generation Nios processor.

Instantiating the
Core in SOPC
Builder

In SOPC Builder, the LCD controller component has the name Character
LCD (16×2, Optrex 16207). The LCD controller does not have any
user-configurable settings. The only choice to make in SOPC Builder is
whether or not to add an LCD controller to the system. For each LCD
controller included in the system, the top-level system module includes
the 11 signals that connect to the LCD module.

Software
Programming
Model

This section describes the software programming model for the LCD
controller.

HAL System Library Support

Altera provides HAL system library drivers for the Nios II processor that
enable you to access the LCD controller using the ANSI C standard
library functions. The Altera-provided drivers integrate into the HAL
system library for Nios II systems. The LCD driver is a standard
character-mode device, as described in the Nios II Software Developer's
Handbook. Therefore, using printf() is the easiest way to write
characters to the display.

address

data

control
DB0 .. DB7

R/W

RS

E

Optrex 16207
LCD Module

LCD
Controller

Avalon-MM slave
interface to

on-chip logic

Altera FPGA

Altera Corporation 11–3
October 2007

Optrex 16207 LCD Controller Core

The LCD driver requires that the HAL system library include the system
clock driver.

Displaying Characters on the LCD

The driver implements VT100 terminal-like behavior on a miniature scale
for the 16×2 screen. Characters written to the LCD controller are stored to
an 80-column × 2-row buffer maintained by the driver. As characters are
written, the cursor position is updated. Visible characters move the
cursor position to the right. Any visible characters written to the right of
the buffer are discarded. The line feed character (\n) moves the cursor
down one line and to the left-most column.

The buffer is scrolled up as soon as a printable character is written onto
the line below the bottom of the buffer. Rows do not scroll as soon as the
cursor moves down to allow the maximum useful information in the
buffer to be displayed.

If the visible characters in the buffer will fit on the display, then all
characters are displayed. If the buffer is wider than the display, then the
display scrolls horizontally to display all the characters. Different lines
scroll at different speeds, depending on the number of characters in each
line of the buffer.

The LCD driver understands a small subset of ANSI and VT100 escape
sequences that can be used to control the cursor position, and clear the
display as shown in Table 11–1.

The LCD controller is an output-only device. Therefore, attempts to read
from it will return immediately indicating that no characters have been
received.

Table 11–1. Escape Sequence Supported by the LCD Controller

Sequence Meaning

BS (\b) Moves the cursor to the left by one character.

CR (\r) Moves the cursor to the start of the current line.

LF (\n) Moves the cursor to the start of the line and move it down one line.

ESC((\x1B) Starts a VT100 control sequence.

ESC [<y> ; <x> H Moves the cursor to the y, x position specified – positions are counted
from the top left which is 1;1.

ESC [K Clears from current cursor position to end of line.

ESC [2 J Clears the whole screen.

11–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The LCD controller drivers are not included in the system library when
the Reduced device drivers option is enabled for the system library. If
you want to use the LCD controller while using small drivers for other
devices, then add the preprocessor option -DALT_USE_LCD_16207 to
the preprocessor options.

Software Files

The LCD controller is accompanied by the following software files. These
files define the low-level interface to the hardware and provide the HAL
drivers. Application developers should not modify these files.

■ altera_avalon_lcd_16207_regs.h — This file defines the core’s
register map, providing symbolic constants to access the low-level
hardware.

■ altera_avalon_lcd_16207.h, altera_avalon_lcd_16207.c — These files
implement the LCD controller device drivers for the HAL system
library.

Register Map

The HAL device drivers make it unnecessary for you to access the
registers directly. Therefore, Altera does not publish details about the
register map. For more information, the altera_avalon_lcd_16207_regs.h
file describes the register map, and the Dot Matrix Character LCD Module
User’s Manual from Optrex describes the register usage.

Interrupt Behavior

The LCD controller does not generate interrupts. However, the LCD
driver's text scrolling feature relies on the HAL system clock driver,
which uses interrupts for timing purposes.

Referenced
Document

This chapter references the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 11–5
October 2007

Optrex 16207 LCD Controller Core

Document
Revision History

Table 11–2 shows the revision history for this chapter.

Table 11–2. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 11 was formerly chapter 10.
—

May 2007
v7.1.0

● Chapter 10 was formerly chapter 8.
● Added table of contents to Overview section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface”

For the 6.1 release, Altera
released the Avalon
Streaming interface, which
necessitated some re-
phrasing of existing Avalon
terminology.

May 2006
v6.0.0

Chapter title changed, but no change in content from
previous release.

—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release.
Previously in the Nios II Processor Reference Handbook.

—

September 2004
v1.0

Initial release.
—

11–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 12–1
October 2007

12. Video Sync Generator
and Pixel Converter Cores

Core Overview The video sync generator core accepts a continuous stream of pixel data
in RGB format, and outputs the data to an off-chip display controller with
proper timing. You can configure the video sync generator core to
support different display resolutions and synchronization timings.

The pixel converter core transforms the pixel data to the format required
by the video sync generator. Figure 12–1 shows a typical placement of the
video sync generator and pixel converter cores in a system.

In this example, the video buffer stores the pixel data in 32-bit unpacked
format. The extra byte in the pixel data is discarded by the pixel converter
core before the data is serialized and sent to the video sync generator core.

Figure 12–1. Typical Placement in a System

The video sync generator and pixel converter cores are SOPC
Builder-ready and integrate easily into any SOPC Builder-generated
system.

These cores are deployed in the Nios II Embedded Software Evaluation
Kit (EEK), which includes an LCD display daughtercard assembly
attached via an HSMC connector.

This chapter contains the following sections:

■ “Video Sync Generator” on page 12–2
■ “Pixel Converter” on page 12–5
■ “Device and Tools Support” on page 12–6
■ “Hardware Simulation Considerations” on page 12–7

Video
Buffer

SGDMA FIFO
 Pixel
Converter

 Data
 Format
Adapter

 Video
 Sync
Generator32 bits 32 bits 32 bits 24 bits 8 bits 8 bits

0RGB BGR0 BGR0 BGR B,G,R B,G,R

Avalon-MM Avalon-ST

QII55006-7.2.0

12–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Video Sync
Generator

This section describes the hardware structure and functionality of the
video sync generator core.

Functional Description

The video sync generator core adds horizontal and vertical
synchronization signals to the pixel data that comes through its
Avalon-ST input interface and outputs the data to an off-chip display
controller. No processing or validation is performed on the pixel data.
Figure 12–2 shows a block diagram of the video sync generator.

Figure 12–2. Video Sync Generator Block Diagram

You can configure various aspects of the core and its Avalon-ST interface
to suit your requirements. You can specify the data width, number of
beats required to transfer each pixel and synchronization signals. See
“Instantiating the Core in SOPC Builder” on page 12–3 for more
information on the available options.

To ensure incoming pixel data is sent to the display controller with
correct timing, the video sync generator core must synchronize itself to
the first pixel in a frame. The first active pixel is indicated by an sop
pulse.

The video sync generator core expects continuous streams of pixel data at
its input interface and assumes that each incoming packet contains the
correct number of pixels (Number of rows * Number of columns). Data
starvation disrupts synchronization and results in unexpected output on
the display.

clk

reset

data

ready

valid

sop

eop

rgb_out

hd

vd

den

VIDEO SYNC GENERATOR

Altera Corporation 12–3
October 2007

Video Sync Generator and Pixel Converter Cores

Instantiating the Core in SOPC Builder

Use the MegaWizard® interface for the video sync generator core in SOPC
Builder to configure the core. Table 12–1 lists the available parameters in
the MegaWizard interface.

Signals

Table 12–2 lists the input and output signals for the video sync generator
core.

Table 12–1. Video Sync Generator Parameters

Parameter Name Description

Data Stream Bit Width The width of the inbound and outbound data.

Beats Per Pixel The number of beats required to transfer one pixel. Valid values are 1 and 3.
This parameter, when multiplied by Data Stream Bit Width must be equal to
the total number of bits in one pixel.

Number of Columns The number of active pixels in each line.

Number of Rows The number of active scan lines in each video frame.

Horizontal Blank Pixels The number of blanking pixels that preceed the active pixels. During this
period, there is no data flow from the Avalon-ST sink port to the LCD output
data port.

Horizontal Front Porch Pixels The number of blanking pixels that follow the active pixels. During this period,
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Vertical Blank Lines The number of blanking lines that preceed the active lines. During this period,
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Vertical Front Porch Pixels The number of blanking lines that follow the active lines. During this period,
there is no data flow from the Avalon-ST sink port to the LCD output data port.

Total Horizontal Scan Pixels The total number of pixels in one line. The value is the sum of the following
parameters: Number of Columns, Horizontal Blank Pixel, and Horizontal
Front Porch Pixels.

Total Vertical Scan Lines The total number of lines in one video frame. The value is the sum of the
following parameters: Number of Rows, Vertical Blank Lines, and Vertical
Front Porch Lines.

Table 12–2. Video Sync Generator Core Signals (Part 1 of 2)

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input System clock.

reset 1 Input System reset.

Avalon-ST Signals

12–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Timing Diagrams

The horizontal and vertical synchronization timings are determined by
the parameters setting. Figure 12–3 shows the horizontal synchronization
timing when the parameters Data Stream Bit Width and Beats Per Pixel
are set to 8 and 3, respectively.

Figure 12–3. Horizontal Synchronization Timing—8 bits DataWidth and 3 Beats Per Pixel

data Variable-width Input Incoming pixel data. The datawidth is determined by the
parameter Data Stream Bit Width.

ready 1 Output This signal is asserted when the video sync generator is
ready to receive the pixel data.

valid 1 Input This signal is not used by the video sync generator core
because the core always expects valid pixel data on the
next clock cycle after the ready signal is asserted.

sop 1 Input Start-of-packet. This signal is asserted when the first pixel
is received.

eop 1 Input End-of-packet. This signal is asserted when the last pixel is
received.

LCD Output Signals

rgb_out Variable-width Output Display data. The datawidth is determined by the parameter
Data Stream Bit Width.

hd 1 Output Horizontal synchronization pulse for display.

vd 1 Output Vertical synchronization pulse for display.

den 1 Output This signal is asserted when the video sync generator core
outputs valid data for display.

Table 12–2. Video Sync Generator Core Signals (Part 2 of 2)

Signal Name Width (Bits) Direction Description

clk

hd

den

rgb_out R G B R G B

Horizontal sync pulse

Horizontal front porch

1 pixel

Horizontal blank pixels

Horizontal synchronization width

Altera Corporation 12–5
October 2007

Video Sync Generator and Pixel Converter Cores

Figure 12–4 shows the horizontal synchronization timing when the
parameters Data Stream Bit Width and Beats Per Pixel are set to 24 and
1, respectively.

Figure 12–4. Horizontal Synchronization Timing—24 bits Datawidth and 1 Beat Per Pixel

Figure 12–5 shows the vertical synchronization timing.

Figure 12–5. Vertical Synchronization Timing

Pixel Converter This section describes the hardware structure and functionality of the
pixel converter core.

Functional Description

The pixel converter core receives pixel data on its Avalon-ST input
interface and transforms the pixel data to the format required by the
video sync generator. The least significant byte of the 32-bit wide pixel
data is removed and the remaining 24 bits are wired directly to the core’s
Avalon-ST output interface.

clk

hd

den

rgb_out RGB

Horizontal synchronization pulse

Horizontal blank pixels Horizontal front porch

1 pixel

RGBRGB RGBRGBRGB

Horizontal synchronization width

hd

den

Vertical blank lines

Horizontal synchronization width

vd

Vertical synchronization width

Vertical front porch

Vertical synchronization pulse

12–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Instantiating the Core in SOPC Builder

Use the MegaWizard interface for the pixel converter core in SOPC
Builder to add the core to a system. There are no user-configurable
settings for this core.

Signals

Table 12–3 lists the input and output signals for the pixel converter core.

Device and
Tools Support

The video sync generator and pixel converter cores support all Altera
device families.

Table 12–3. Pixel Converter Input Interface Signals

Signal Name Width (Bits) Direction Description

Global Signals

clk 1 Input Not in use.

reset_n 1 Input

Avalon-ST Signals

data_in 32 Input Incoming pixel data. Contains four 8-bit symbols that are
tranferred in 1 beat.

data_out 24 Output Output data. Contains three 8-bit symbols that are
transferred in 1 beat.

sop_in 1 Input

Wired directly to the corresponding output signals.

eop_in 1 Input

ready_in 1 Input

valid_in 1 Input

empty_in 1 Input

sop_out 1 Output

Wired directly from the input signals.

eop_out 1 Output

ready_out 1 Output

valid_out 1 Output

empty_out 1 Output

Altera Corporation 12–7
October 2007

Video Sync Generator and Pixel Converter Cores

Hardware
Simulation
Considerations

For a typical 60 Hz refresh rate, set the simulation length for the video
sync generator core to at least 16.7 ms to get a full video frame.
Depending on the size of the video frame, simulation may take a very
long time to complete.

Referenced
Document

This chapter references the Avalon Streaming Interface Specification.

Document
Revision History

Table 12–4 shows the revision history for this chapter.

Table 12–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Initial release.
—

12–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation Section IV–i

Section IV. Multiprocessor
Coordination Peripherals

This section describes multiprocessor coordination peripherals provided
by Altera® for SOPC Builder systems. These components provide reliable
mechanisms for multiple Nios® II processors to communicate with each
other, and coordinate operations.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 13, Mutex Core
■ Chapter 14, Mailbox Core

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section IV–ii Altera Corporation

Multiprocessor Coordination Peripherals Quartus II Handbook, Volume 5

Altera Corporation 13–1
October 2007

13. Mutex Core

Core Overview Multiprocessor environments can use the mutex core with Avalon®
interface to coordinate accesses to a shared resource. The mutex core
provides a protocol to ensure mutually exclusive ownership of a shared
resource.

The mutex core provides a hardware-based atomic test-and-set
operation, allowing software in a multiprocessor environment to
determine which processor owns the mutex. The mutex core can be used
in conjunction with shared memory to implement additional
interprocessor coordination features, such as mailboxes and software
mutexes.

The mutex core is designed for use in Avalon-based processor systems,
such as a Nios® II processor system. Altera provides device drivers for the
Nios II processor to enable use of the hardware mutex.

The mutex core is SOPC Builder-ready and integrates easily into any
SOPC Builder-generated system. This chapter contains the following
sections:

■ Functional Description
■ “Device and Tools Support” on page 13–2
■ “Instantiating the Core in SOPC Builder” on page 13–2
■ “Software Programming Model” on page 13–2
■ “Mutex API” on page 13–4

Functional
Description

The mutex core has a simple Avalon Memory-Mapped (Avalon-MM)
slave interface that provides access to two memory-mapped, 32-bit
registers. Table 13–1 shows the registers.

Table 13–1. Mutex Core Register Map

Offset Register
Name R/W

Bit Description

31 … 16 15 … 1 0

0 mutex RW OWNER VALUE

1 reset RW – – RESET

NII51020-7.2.0

13–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The mutex core has the following basic behavior. This description
assumes there are multiple processors accessing a single mutex core, and
each processor has a unique identifier (ID).

■ When the VALUE field is 0x0000, the mutex is available (i.e,
unlocked). Otherwise, the mutex is unavailable (i.e., locked).

■ The mutex register is always readable. A processor (or any
Avalon-MM master peripheral) can read the mutex register to
determine its current state.

■ The mutex register is writable only under specific conditions. A
write operation changes the mutex register only if one or both of the
following conditions is true:
● The VALUE field of the mutex register is zero.
● The OWNER field of the mutex register matches the OWNER

field in the data to be written.
■ A processor attempts to acquire the mutex by writing its ID to the

OWNER field, and writing a non-zero value to VALUE. The
processor then checks if the acquisition succeeded by verifying the
OWNER field.

■ After system reset, the RESET bit in the reset register is high.
Writing a one to this bit clears it.

Device and
Tools Support

The mutex core supports all Altera device families supported by SOPC
Builder, and provides device drivers for the Nios II hardware abstraction
layer (HAL) system library.

Instantiating the
Core in SOPC
Builder

Hardware designers use the MegaWizard® interface for the mutex core in
SOPC Builder to specify the core's hardware features. The MegaWizard
interface provides the following options:

■ Initial Value—the initial contents of the VALUE field after reset. If
the Initial Value setting is non-zero, you must also specify Initial
Owner.

■ Initial Owner—the initial contents of the OWNER field after reset.
When Initial Owner is specified, this owner must release the mutex
before it can be acquired by another owner.

Software
Programming
Model

The following sections describe the software programming model for the
mutex core, such as the software constructs used to access the hardware.
For Nios II processor users, Altera provides routines to access the mutex
core hardware. These functions are specific to the mutex core and directly
manipulate low-level hardware. The mutex core cannot be accessed via
the HAL API or the ANSI C standard library. In Nios II processor
systems, a processor locks the mutex by writing the value of its cpuid
control register to the OWNER field of the mutex register.

Altera Corporation 13–3
October 2007

Mutex Core

Software Files

Altera provides the following software files accompanying the mutex
core:

■ altera_avalon_mutex_regs.h—this file defines the core’s register
map, providing symbolic constants to access the low-level hardware.

■ altera_avalon_mutex.h—this file defines data structures and
functions to access the mutex core hardware.

■ altera_avalon_mutex.c—this file contains the implementations of
the functions to access the mutex core

Hardware Mutex

This section describes the low-level software constructs for manipulating
the mutex core hardware.

The file altera_avalon_mutex.h declares a structure alt_mutex_dev
that represents an instance of a mutex device. It also declares functions for
accessing the mutex hardware structure, listed in Table 13–2.

These routines coordinate access to the software mutex structure using a
hardware mutex core. For a complete description of each function, see
section “Mutex API” on page 13–4.

Table 13–2. Hardware Mutex Functions

Function Name Description

altera_avalon_mutex_open() Claims a handle to a mutex, enabling all the other functions to
access the mutex core.

altera_avalon_mutex_trylock() Tries to lock the mutex. Returns immediately if it fails to lock
the mutex.

altera_avalon_mutex_lock() Locks the mutex. Will not return until it has successfully
claimed the mutex.

altera_avalon_mutex_unlock() Unlocks the mutex.

altera_avalon_mutex_is_mine() Determines if this CPU owns the mutex.

altera_avalon_mutex_first_lock() Tests whether the mutex has been released since reset.

13–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Example 13–1 demonstrates opening a mutex device handle and locking
a mutex:

Example 13–1. Opening and locking a mutex
#include <altera_avalon_mutex.h>

/* get the mutex device handle */
alt_mutex_dev* mutex = altera_avalon_mutex_open(“/dev/mutex”);

/* acquire the mutex, setting the value to one */
altera_avalon_mutex_lock(mutex, 1);

/*
 * Access a shared resource here.
 */

/* release the lock */
altera_avalon_mutex_unlock(mutex);

Mutex API This section describes the application programming interface (API) for
the mutex core.

Altera Corporation 13–5
October 2007

altera_avalon_mutex_is_mine()

altera_avalon_mutex_is_mine()

Prototype: int altera_avalon_mutex_is_mine(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns non zero if the mutex is owned by this CPU.

Description: altera_avalon_mutex_is_mine() determines if this CPU owns the mutex.

13–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_mutex_first_lock()

Prototype: int altera_avalon_mutex_first_lock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to test.

Returns: Returns 1 if this mutex has not been released since reset, otherwise returns 0.

Description: altera_avalon_mutex_first_lock() determines whether this mutex has been
released since reset.

Altera Corporation 13–7
October 2007

altera_avalon_mutex_lock()

altera_avalon_mutex_lock()

Prototype: void altera_avalon_mutex_lock(alt_mutex_dev* dev, alt_u32
value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to acquire.
value—the new value to write to the mutex.

Returns: –

Description: altera_avalon_mutex_lock() is a blocking routine that acquires a hardware
mutex, and at the same time, loads the mutex with the value parameter.

13–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_mutex_open()

Prototype: alt_mutex_dev* alt_hardware_mutex_open(const char* name)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: name—the name of the mutex device to open.

Returns: A pointer to the mutex device structure associated with the supplied name, or NULL if
no corresponding mutex device structure was found.

Description: altera_avalon_mutex_open() retrieves a pointer to a hardware mutex device
structure.

Altera Corporation 13–9
October 2007

altera_avalon_mutex_trylock()

altera_avalon_mutex_trylock()

Prototype: int altera_avalon_mutex_trylock(alt_mutex_dev* dev, alt_u32
value)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to lock.
value—the new value to write to the mutex.

Returns: Zero if the mutex was successfully locked, or non zero if the mutex was not locked.

Description: altera_avalon_mutex_trylock() tries once to lock the hardware mutex, and
returns immediately.

13–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_mutex_unlock()

Prototype: void altera_avalon_mutex_unlock(alt_mutex_dev* dev)

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mutex.h>

Parameters: dev—the mutex device to unlock.

Returns: -

Description: altera_avalon_mutex_unlock() releases a hardware mutex device. Upon
release, the value stored in the mutex is set to zero. If the caller does not hold the mutex,
the behavior of this function is undefined.

Altera Corporation 13–11
October 2007

altera_avalon_mutex_trylock()

Document
Revision History

Table 13–3 shows the revision history for this chapter.

Table 13–3. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 13 was formerly chapter 11.
—

May 2007
v7.1.0

● Chapter 11 was formerly chapter 9.
● Added table of contents to Overview section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon
Memory-Mapped interface”

For the 6.1 release, Altera
released the Avalon Streaming
interface, which necessitated
some re-phrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

December 2004
v1.0

Initial release.
—

13–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 14–1
October 2007
Altera Corporation 14–1
October 2007

14. Mailbox Core

Core Overview Multiprocessor environments can use the mailbox core with Avalon®
interface to send messages between processors.

The mailbox core contains mutexes to ensure that only one processor
modifies the mailbox contents at a time. The mailbox core must be used
in conjunction with a separate shared memory that is used for storing the
actual messages.

The mailbox core is designed for use in Avalon-based processor systems,
such as a Nios® II processor system. Altera® provides device drivers for
the Nios II processor. The mailbox core is SOPC Builder-ready and
integrates easily into any SOPC Builder-generated system. This chapter
contains the following sections:

■ “Functional Description”
■ “Device and Tools Support” on page 14–2
■ “Instantiating the Core in SOPC Builder” on page 14–2
■ “Software Programming Model” on page 14–3
■ “Mailbox API” on page 14–6

Functional
Description

The mailbox core has a simple Avalon Memory-Mapped (Avalon-MM)
slave interface that provides access to four memory-mapped, 32-bit
registers. Table 14–1 shows the registers.

Table 14–1. Mutex Core Register Map

Offset Register
Name R/W

Bit Description

31 … 16 15 … 1 0

0 mutex0 RW OWNER VALUE

1 reset0 RW – – RESET

2 mutex1 RW OWNER VALUE

3 reset1 RW – – RESET

NII53001-7.2.0

14–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

14–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The mailbox component contains two mutexes: One to ensure unique
write access to shared memory and one to ensure unique read access from
shared memory. The mailbox core is used in conjunction with a separate
memory in the system that is shared among multiple processors.

Mailbox functionality using the mutexes and memory is implemented
entirely in the software. Refer to “Software Programming Model” on
page 14–3 for details about how to use the mailbox core in software.

f For a detailed description of the mutex hardware operation, refer to the
Mutex Core chapter in volume 5 of the Quartus II Handbook.

Device and
Tools Support

The mailbox core supports all Altera device families supported by SOPC
Builder, and provides device drivers for the Nios II hardware abstraction
layer (HAL) system library.

Instantiating the
Core in SOPC
Builder

Hardware designers instantiate and configure the mailbox core in an
SOPC Builder system using the following process:

1. Decide which processors will share the mailbox.

2. On the SOPC Builder System Contents tab, instantiate a memory
component to serve as the mailbox buffer. Any RAM can be used as
the mailbox buffer. The mailbox buffer can share space in an existing
memory, such as program memory; it does not require a dedicated
memory.

3. On the SOPC Builder System Contents tab, instantiate the mailbox
component. The mailbox MegaWizard® interface presents the
following options:

● Memory module—Specifies which memory to use for the
mailbox buffer. If the Memory module list does not contain the
desired shared memory, the memory is not connected in the
system correctly. Refer to Step 4 on page 14–3.

● CPUs available with this memory—Shows all the processors
that can share the mailbox. This field is always read-only. Use it
to verify that the processor connections are correct. If a processor
that needs to share the mailbox is missing from the list, refer to
Step 4 on page 14–3.

● Shared mailbox memory offset—Specifies an offset into the
memory. The mailbox message buffer starts at this offset.

● Mailbox size (bytes)—Specifies the number of bytes to use for
the mailbox message buffer. The Nios II driver software
provided by Altera uses eight bytes of overhead to implement
the mailbox functionality. For a mailbox capable of passing only

Altera Corporation 14–3
October 2007

Software Programming Model

Altera Corporation 14–3
October 2007

Software Programming Model

one message at a time, Mailbox size (bytes) must be at least 12
bytes.

● Maximum available bytes—Specifies the number of bytes in
the selected memory available for use as the mailbox message
buffer. This field is always read-only.

4. If not already connected, make component connections on the SOPC
Builder System Contents tab.

a. Connect each processor’s data bus master port to the mailbox
slave port.

b. Connect each processor’s data bus master port to the shared
mailbox memory.

Software
Programming
Model

The following sections describe the software programming model for the
mailbox core, such as the software constructs used to access the hardware.
For Nios II processor users, Altera provides routines to access the mailbox
core hardware. These functions are specific to the mailbox core and
directly manipulate low-level hardware.

The mailbox software programming model has the following
characteristics and assumes there are multiple processors accessing a
single mailbox core and a shared memory:

■ Each mailbox message is one 32-bit word.
■ There is a predefined address range in shared memory dedicated to

storing messages. The size of this address range imposes a maximum
limit on the number of messages pending.

■ The mailbox software implements a message FIFO between
processors. Only one processor can write to the mailbox at a time,
and only one processor can read from the mailbox at a time, ensuring
message integrity.

■ The software on both the sending and receiving processors must
agree on a protocol for interpreting mailbox messages. Typically,
processors treat the message as a pointer to a structure in shared
memory.

■ The sending processor can post messages in succession, up to the
limit imposed by the size of the message address range.

■ When messages exist in the mailbox, the receiving processor can read
messages. The receiving processor can block until a message
appears, or it can poll the mailbox for new messages.

■ Reading the message removes the message from the mailbox.

14–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

14–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Software Files

Altera provides the following software files accompanying the mailbox
core hardware:

■ altera_avalon_mailbox_regs.h—Defines the core’s register map,
providing symbolic constants to access the low-level hardware.

■ altera_avalon_mailbox.h—Defines data structures and functions to
access the mailbox core hardware.

■ altera_avalon_mailbox.c—Contains the implementations of the
functions to access the mailbox core.

Programming with the Mailbox Core

This section describes the software constructs for manipulating the
mailbox core hardware.

The file altera_avalon_mailbox.h declares a structure
alt_mailbox_dev that represents an instance of a mailbox device. It
also declares functions for accessing the mailbox hardware structure,
listed in Table 14–2. For a complete description of each function, refer to
“Mailbox API” on page 14–6.

Table 14–2. Mailbox API Functions

Function Name Description

altera_avalon_mailbox_close() Closes the handle to a mailbox.

altera_avalon_mailbox_get() Returns a message if one is present, but does not block
waiting for a message.

altera_avalon_mailbox_open() Claims a handle to a mailbox, enabling all the other functions
to access the mailbox core.

altera_avalon_mailbox_pend() Blocks waiting for a message to be in the mailbox.

altera_avalon_mailbox_post() Posts a message to the mailbox.

Altera Corporation 14–5
October 2007

Software Programming Model

Altera Corporation 14–5
October 2007

Software Programming Model

Example 14–1 demonstrates writing to and reading from a mailbox. For
this example, assume that the hardware system has two processors
communicating via mailboxes. The system includes two mailbox cores,
which provide two-way communication between the processors.

Example 14–1. Example: Writing to and Reading from a Mailbox
#include <stdio.h>
#include "altera_avalon_mailbox.h"

int main()
{
 alt_u32 message = 0;
 alt_mailbox_dev* send_dev, recv_dev;

/* Open the two mailboxes between this processor and another */
 send_dev = altera_avalon_mailbox_open("/dev/mailbox_0");
 recv_dev = altera_avalon_mailbox_open("/dev/mailbox_1");

 while(1)
 {

/* Send a message to the other processor */
 altera_avalon_mailbox_post(send_dev, message);

/* Wait for the other processor to send a message back */
 message = altera_avalon_mailbox_pend(recv_dev);

 }

 return 0;
}

14–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

14–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Mailbox API This section describes the application programming interface (API) for
the mailbox core.

Altera Corporation 14–7
October 2007

altera_avalon_mailbox_close()

Altera Corporation 14–7
October 2007

altera_avalon_mailbox_close()

altera_avalon_mailbox_close()

Prototype: void altera_avalon_mailbox_close (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox to close.

Returns: –

Description: altera_avalon_mailbox_close() closes the mailbox.

14–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

14–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_mailbox_get()

Prototype: alt_u32 altera_avalon_mailbox_get (alt_mailbox_dev* dev, int*
err);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox handle,
err—pointer to an error code that is returned.

Returns: Returns a message if one is available in the mailbox, otherwise returns 0. The value
pointed to by err is 0 if the message was read correctly, or EWOULDBLOCK if there is
no message to read.

Description: altera_avalon_mailbox_get() returns a message if one is present, but does
not block waiting for a message.

Altera Corporation 14–9
October 2007

altera_avalon_mailbox_open()

Altera Corporation 14–9
October 2007

altera_avalon_mailbox_open()

altera_avalon_mailbox_open()

Prototype: alt_mailbox_dev* altera_avalon_mailbox_open (const char*
name);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: name—the name of the mailbox device to open.

Returns: Returns a handle to the mailbox, or NULL if this mailbox does not exist.

Description: altera_avalon_mailbox_open() opens a mailbox.

14–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

14–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

altera_avalon_mailbox_pend()

Prototype: alt_u32 altera_avalon_mailbox_pend (alt_mailbox_dev* dev);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to read a message from.

Returns: Returns the message.

Description: altera_avalon_mailbox_pend() is a blocking routine that waits for a message
to appear in the mailbox and then reads it.

Altera Corporation 14–11
October 2007

altera_avalon_mailbox_post()

Altera Corporation 14–11
October 2007

altera_avalon_mailbox_post()

altera_avalon_mailbox_post()

Prototype: int altera_avalon_mailbox_post (alt_mailbox_dev* dev, alt_u32
msg);

Thread-safe: Yes.

Available from ISR: No.

Include: <altera_avalon_mailbox.h>

Parameters: dev—the mailbox device to post a message to
msg—the value to post.

Returns: Returns 0 on success, or EWOULDBLOCK if the mailbox is full.

Description: altera_avalon_mailbox_post() posts a message to the mailbox.

14–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

14–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Referenced
Document

This chapter references the Mutex Core chapter in volume 5 of the
Quartus II Handbook

Document
Revision History

Table 14–3 shows the revision history for this chapter.

Table 14–3. Document Revision History

Date and
Document Version Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 14 was formerly chapter 12.
—

May 2007
v7.1.0

● Chapter 12 was formerly chapter 10.
● Revised “Instantiating the Core in SOPC Builder” on

page 14–2 to reflect the GUI changing from the More
Settings tab to the MegaWizard interface.

● Added table of contents to Overview section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies.

● Changed old “Avalon switch fabric” term to “system
interconnect fabric.”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface.”

For the 6.1 release, Altera
released the Avalon
Streaming interface, which
necessitated some re-
phrasing of existing Avalon
terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

Initial release.
—

http://www/literature/hb/nios2/n2cpu_nii51020.pdf

Altera Corporation Section V–i

Section V. Other Memory-
Mapped Peripherals

This section describes other peripherals provided by Altera® for SOPC
Builder systems.

See About This Handbook for further details.

This section includes the following chapters:

■ Chapter 15, PIO Core
■ Chapter 16, Timer Core
■ Chapter 17, System ID Core
■ Chapter 18, PLL Core
■ Chapter 19, Performance Counter Core

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section V–ii Altera Corporation

Other Memory-Mapped Peripherals Quartus II Handbook, Volume 5

Altera Corporation 15–1
October 2007

15. PIO Core

Core Overview The parallel input/output (PIO) core with Avalon® interface provides a
memory-mapped interface between an Avalon Memory-Mapped
(Avalon-MM) slave port and general-purpose I/O ports. The I/O ports
connect either to on-chip user logic, or to I/O pins that connect to devices
external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in
situations where a “bit banging” approach is sufficient. Some example
uses are:

■ Controlling LEDs
■ Acquiring data from switches
■ Controlling display devices
■ Configuring and communicating with off-chip devices, such as

application-specific standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based
on input signals. The PIO core is SOPC Builder ready and integrates
easily into any SOPC Builder-generated system. This chapter contains the
following sections:

■ Functional Description
■ “Example Configurations” on page 15–4
■ “Instantiating the PIO Core in SOPC Builder” on page 15–5
■ “Device and Tools Support” on page 15–6
■ “Software Programming Model” on page 15–6

Functional
Description

Each PIO core can provide up to 32 I/O ports. An intelligent host such as
a microprocessor controls the PIO ports by reading and writing the
register-mapped Avalon-MM interface. Under control of the host, the
PIO core captures data on its inputs and drives data to its outputs. When
the PIO ports are connected directly to I/O pins, the host can tristate the
pins by writing control registers in the PIO core. Figure 15–1 shows an
example of a processor-based system that uses multiple PIO cores to blink
LEDs, capture edges from on-chip reset-request control logic, and control
an off-chip LCD display.

NII51007-7.2.0

15–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Figure 15–1. An Example System Using Multiple PIO Cores

When integrated into an SOPC Builder-generated system, the PIO core
has two user-visible features:

■ A memory-mapped register space with four registers: data,
direction, interruptmask, and edgecapture.

■ 1 to 32 I/O ports.

The I/O ports can be connected to logic inside the FPGA, or to device pins
that connect to off-chip devices. The registers provide an interface to the
I/O ports via the Avalon-MM interface. See Table 15–2 on page 15–7 for a
description of the registers. Some registers are not necessary in certain
hardware configurations, in which case the unnecessary registers do not
exist. Reading a non-existent register returns an undefined value, and
writing a non-existent register has no effect.

Data Input and Output

The PIO core I/O ports can connect to either on-chip or off-chip logic. The
core can be configured with inputs only, outputs only, or both inputs and
outputs. If the core will be used to control bidirectional I/O pins on the
device, the core provides a bidirectional mode with tristate control.

S
ystem

 Interconnect Fabric

CPU

PIO core
(output only)

Program
 and Data
Memory PIO

core
 (bidirectional)

IRQ

 LEDs

Edge
Capture

PIO
core

(input
only)

Reset
request

logic

Altera FPGA

4

11 LCD
 display

Altera Corporation 15–3
October 2007

PIO Core

The hardware logic is separate for reading and writing the data register.
Reading the data register returns the value present on the input ports (if
present). Writing data affects the value driven to the output ports (if
present). These ports are independent; reading the data register does not
return previously-written data.

Edge Capture

The PIO core can be configured to capture edges on its input ports. It can
capture low-to-high transitions, high-to-low transitions, or both.
Whenever an input detects an edge, the condition is indicated in the
edgecapture register. The type of edges to detect is specified at system
generation time, and cannot be changed via the registers.

IRQ Generation

The PIO core can be configured to generate an IRQ on certain input
conditions. The IRQ conditions can be either:

■ Level-sensitive—The PIO core hardware can detect a high level. A NOT
gate can be inserted external to the core to provide negative
sensitivity.

■ Edge-sensitive—The core’s edge capture configuration determines
which type of edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt
mask determines which input port can generate interrupts.

15–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Example
Configurations

Figure 15–2 shows a block diagram of the PIO core configured with input
and output ports, as well as support for IRQs.

Figure 15–2. PIO Core with Input Ports, Output Ports and IRQ Support

Figure 15–3 shows a block diagram of the PIO core configured in
bidirectional mode, without support for IRQs.

Figure 15–3. PIO Core with Bidirectional Ports

Avalon-MM Interface

The PIO core’s Avalon-MM interface consists of a single Avalon-MM
slave port. The slave port is capable of fundamental Avalon-MM read
and write transfers. The Avalon-MM slave port provides an IRQ output
so that the core can assert interrupts.

data
in

out

address

data

control

IRQ

 32

interruptmask

edgecapture

Avalon-MM
interface

to on-chip
logic

direction

data
in

out

address

data

control

 32
Avalon-MM

interface
to on-chip

logic

Altera Corporation 15–5
October 2007

PIO Core

Instantiating the
PIO Core in
SOPC Builder

Designers use the MegaWizard® interface for the PIO core in SOPC
Builder to configure the hardware feature set. The following sections
describe the available options.

The MegaWizard interface has two tabs, Basic Settings and Input
Options.

Basic Settings

The Basic Settings page allows the designer to specify the width and
direction of the I/O ports.

■ The Width setting can be any integer value between 1 and 32. For a
value of n, the I/O ports become n-bits wide.

■ The Direction setting has four options, as shown in Table 15–1.

Input Options

The Input Options page allows the designer to specify edge-capture and
IRQ generation settings. The Input Options page is not available when
Output ports only is selected on the Basic Settings page.

Edge Capture Register

Synchronously Capture
When Synchronously capture is on, the PIO core contains the edge
capture register, edgecapture. The user must further specify what type
of edge(s) to detect:

■ Rising Edge
■ Falling Edge
■ Either Edge

Table 15–1. Direction Settings

Setting Description

Bidirectional (tristate) ports In this mode, each PIO bit shares one device pin for driving and capturing data.
The direction of each pin is individually selectable. To tristate an FPGA I/O pin,
set the direction to input.

Input ports only In this mode the PIO ports can capture input only.

Output ports only In this mode the PIO ports can drive output only.

Both input and output ports In this mode, the input and output ports buses are separate, unidirectional buses
of n bits wide.

15–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The edge capture register allows the core to detect and (optionally)
generate an interrupt when an edge of the specified type occurs on an
input port.

When Synchronously capture is off, the edgecapture register does not
exist.

Enable Bit Clearing for Edge Capture Register
Turning on Enable bit-clearing for edge capture register allows you to
clear individual bit(s) in the edge capture register. To clear a given bit,
write 1 to the bit in the edge capture register. Example—To clear bit 6 in
the edge capture register, write 01000000 to the register.

Interrupt

When Generate IRQ is on, the PIO core is able to assert an IRQ output
when a specified event occurs on input ports. The user must further
specify the cause of an IRQ event:

■ Level—The core generates an IRQ whenever a specific input is high
and interrupts are enabled for that input in the interruptmask
register.

■ Edge—The core generates an IRQ whenever a specific bit in the edge
capture register is high and interrupts are enabled for that bit in the
interruptmask register.

When Generate IRQ is off, the interruptmask register does not exist.

Device and
Tools Support

The PIO core supports all Altera® FPGA families.

Software
Programming
Model

This section describes the software programming model for the PIO core,
including the register map and software constructs used to access the
hardware. For Nios® II processor users, Altera provides the HAL system
library header file that defines the PIO core registers. The PIO core does
not match the generic device model categories supported by the HAL, so
it cannot be accessed via the HAL API or the ANSI C standard library.

The Nios II Embedded Design Suite (EDS) provides several example
designs that demonstrate usage of the PIO core. In particular, the
count_binary.c example uses the PIO core to drive LEDs, and detect
button presses using PIO edge-detect interrupts.

Altera Corporation 15–7
October 2007

PIO Core

Software Files

The PIO core is accompanied by one software file,
altera_avalon_pio_regs.h. This file defines the core’s register map,
providing symbolic constants to access the low-level hardware.

Legacy SDK Routines

The PIO core is supported by the legacy SDK routines for the
first-generation Nios processor. For details about these routines, refer to
the PIO documentation that accompanied the first-generation Nios
processor.

f For details about upgrading programs based on the legacy SDK to the
HAL system library API, refer to AN 350: Upgrading Nios Processor
Systems to the Nios II Processor.

Register Map

An Avalon-MM master peripheral, such as a CPU, controls and
communicates with the PIO core via the four 32-bit registers, shown in
Table 15–2. The table assumes that the PIO core’s I/O ports are
configured to a width of n bits.

data Register

Reading from data returns the value present at the input ports. If the PIO
core hardware is configured in output-only mode, reading from data
returns an undefined value.

Table 15–2. Register Map for the PIO Core

Offset Register Name R/W (n-1) ... 2 1 0

0 data read access R Data value currently on PIO inputs

write access W New value to drive on PIO outputs

1 direction (1) R/W Individual direction control for each I/O port. A value of 0
sets the direction to input; 1 sets the direction to output.

2 interruptmask (1) R/W IRQ enable/disable for each input port. Setting a bit to 1
enables interrupts for the corresponding port.

3 edgecapture (1), (2) R/W Edge detection for each input port.

Notes to Table 15–2:
(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the

register returns an undefined value, and writing the register has no effect.
(2) Writing any value to edgecapture clears all bits to 0.

15–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Writing to data stores the value to a register that drives the output ports.
If the PIO core hardware is configured in input-only mode, writing to
data has no effect. If the PIO core hardware is in bidirectional mode, the
registered value appears on an output port only when the corresponding
bit in the direction register is set to 1 (output).

direction Register

The direction register controls the data direction for each PIO port,
assuming the port is bidirectional. When bit n in direction is set to 1,
port n drives out the value in the corresponding bit of the data register.

The direction register only exists when the PIO core hardware is
configured in bidirectional mode. The mode (input, output, or
bidirectional) is specified at system generation time, and cannot be
changed at runtime. In input-only or output-only mode, the direction
register does not exist. In this case, reading direction returns an
undefined value, writing direction has no effect.

After reset, all bits of direction are 0, so that all bidirectional I/O ports
are configured as inputs. If those PIO ports are connected to device pins,
the pins are held in a high-impedance state. In bi-directional mode, to
change the direction of the PIO port re-program the direction register.

interruptmask Register

Setting a bit in the interruptmask register to 1 enables interrupts for
the corresponding PIO input port. Interrupt behavior depends on the
hardware configuration of the PIO core. See “Interrupt Behavior” on
page 15–9.

The interruptmask register only exists when the hardware is
configured to generate IRQs. If the core cannot generate IRQs, reading
interruptmask returns an undefined value, and writing to
interruptmask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are
disabled for all PIO ports.

edgecapture Register

Bit n in the edgecapture register is set to 1 whenever an edge is detected
on input port n. An Avalon-MM master peripheral can read the
edgecapture register to determine if an edge has occurred on any of the
PIO input ports. Writing any value to edgecapture clears all bits in the
register.

Altera Corporation 15–9
October 2007

PIO Core

The type of edge(s) to detect is fixed in hardware at system generation
time. The edgecapture register only exists when the hardware is
configured to capture edges. If the core is not configured to capture
edges, reading from edgecapture returns an undefined value, and
writing to edgecapture has no effect.

Interrupt Behavior

The PIO core outputs a single IRQ signal that can connect to any master
peripheral in the system. The master can read either the data register or
the edgecapture register to determine which input port caused the
interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is
asserted whenever corresponding bits in the data and interruptmask
registers are 1. When the hardware is configured for edge-sensitive
interrupts, the IRQ is asserted whenever corresponding bits in the
edgecapture and interruptmask registers are 1. The IRQ remains
asserted until explicitly acknowledged by disabling the appropriate bit(s)
in interruptmask, or by writing to edgecapture.

Software Files

The PIO core is accompanied by the following software file. This file
provide low-level access to the hardware. Application developers should
not modify the file.

■ altera_avalon_pio_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used by device driver functions.

Referenced
Document

This chapter references AN 350: Upgrading Nios Processor Systems to the
Nios II Processor.

http://www.altera.com/literature/an/an350.pdf
http://www.altera.com/literature/an/an350.pdf

15–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Document
Revision History

Table 15–3 shows the revision history for this chapter.

Table 15–3. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 15 was formerly chapter 13.
● Added the description for a new parameter, Enable Bit

Clearing for Edge Capture Register.
—

May 2007
v7.1.0

● Chapter 13 was formerly chapter 11.
● Added table of contents to Overview section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon
Memory-Mapped interface”

For the 6.1 release, Altera
released the Avalon Streaming
interface, which necessitated
some re-phrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

Altera Corporation 16–1
October 2007
Altera Corporation 16–1
October 2007

16. Timer Core

Core Overview The timer core with Avalon® interface is a 32-bit interval timer for Avalon-
based processor systems, such as a Nios® II processor system. The timer
provides the following features:

■ Controls to start, stop, and reset the timer
■ Two count modes: count down once and continuous count-down
■ Count-down period register
■ Maskable interrupt request (IRQ) upon reaching zero
■ Optional watchdog timer feature that resets the system if timer ever

reaches zero
■ Optional periodic pulse generator feature that outputs a pulse when

timer reaches zero
■ Compatible with 32-bit and 16-bit processors

Device drivers are provided in the HAL system library for the Nios II
processor. The timer core is SOPC Builder-ready and integrates easily into
any SOPC Builder-generated system. This chapter contains the following
sections:

■ “Functional Description” on page 16–2
■ “Device and Tools Support” on page 16–3
■ “Instantiating the Core in SOPC Builder” on page 16–3
■ “Software Programming Model” on page 16–6

NII51008-7.2.0

16–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

16–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 16–1 shows a block diagram of the timer core.

Figure 16–1. Timer Core Block Diagram

The timer core has two user-visible features:

■ The Avalon Memory-Mapped (Avalon-MM) interface that provides
access to six 16-bit registers

■ An optional pulse output that can be used as a periodic pulse
generator

All registers are 16-bits wide, making the timer compatible with both
16-bit and 32-bit processors. Certain registers only exist in hardware for a
given configuration. For example, if the timer is configured with a fixed
period, the period registers do not exist in hardware.

The basic behavior of the timer is described below:

■ An Avalon-MM master peripheral, such as a Nios II processor, writes
the timer core’s control register to:
● Start and stop the timer
● Enable/disable the IRQ
● Specify count-down once or continuous count-down mode

■ A processor reads the status register for information about current
timer activity.

■ A processor can specify the timer period by writing a value to the
period registers, periodl and periodh.

■ An internal counter counts down to zero, and whenever it reaches
zero, it is immediately reloaded from the period registers.

Register File

status

 control

 periodl

snapl

periodh

snaph

IRQ

Address, data,
etc.

Avalon-MM
slave

 interface
to on-chip

logic

Control
Logicresetrequest

(watchdog)

timeout_pulse

Counter

Altera Corporation 16–3
October 2007

Device and Tools Support

Altera Corporation 16–3
October 2007

Device and Tools Support

■ A processor can read the current counter value by first writing to
either snapl or snaph to request a coherent snapshot of the counter,
and then reading snapl and snaph for the full 32-bit value.

■ When the count reaches zero:
● If IRQs are enabled, an IRQ is generated
● The (optional) pulse-generator output is asserted for one clock

period
● The (optional) watchdog output resets the system

Avalon-MM Slave Interface

The timer core implements a simple Avalon-MM slave interface to
provide access to the register file. The Avalon-MM slave port uses the
resetrequest signal to implement watchdog timer behavior. This
signal is a non-maskable reset signal, and it drives the reset input of all
Avalon-MM peripherals in the SOPC Builder system. When the
resetrequest signal is asserted, it forces any processor connected to
the system to reboot. For more information, refer to “Configuring the
Timer as a Watchdog Timer” on page 16–5.

Device and
Tools Support

The timer core supports all Altera® FPGA families.

Instantiating the
Core in SOPC
Builder

Designers use the MegaWizard® interface for the timer core in SOPC
Builder to specify the hardware features. This section describes the
options available in the MegaWizard interface.

Timeout Period

The Timeout Period setting determines the initial value of the periodl
and periodh registers. When the Writeable period setting is enabled, a
processor can change the value of the period by writing periodl and
periodh. When Writeable period (see below) is off, the period is fixed
and cannot be updated at runtime.

The Timeout Period is an integer multiple of the Timer Frequency. The
Timer Frequency is fixed at the frequency setting of the system clock
associated with the timer. The Timeout Period setting can be specified in
units of µs (microseconds), ms (milliseconds), seconds, or clocks
(number of cycles of the system clock associated with the timer). The
actual period depends on the frequency of the system clock associated
with the timer. If the period is specified in µs, ms, or seconds, the true
period will be the smallest number of clock cycles that is greater or equal

16–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

16–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

to the specified Timeout Period value. For example, if the associated
system clock has a frequency of 30 ns, and the specified Timeout Period
value is 1 µs, then the true timeout period will be 1.020 microseconds.

Hardware Options

The following options affect the hardware structure of the timer core. As
a convenience, the Preset Configurations list offers several pre-defined
hardware configurations, such as:

■ Simple periodic interrupt—This configuration is useful for systems
that require only a periodic IRQ generator. The period is fixed and
the timer cannot be stopped, but the IRQ can be disabled.

■ Full-featured—This configuration is useful for embedded processor
systems that require a timer with variable period that can be started
and stopped under processor control.

■ Watchdog—This configuration is useful for systems that require
watchdog timer to reset the system in the event that the system has
stopped responding. Refer to “Configuring the Timer as a Watchdog
Timer” on page 16–5.

Register Options

Table 16–1 shows the settings that affect the timer core’s registers.

Table 16–1. Register Options

Option Description

Writeable
period

When this option is enabled, a master peripheral can change the count-down period by writing
periodl and periodh. When disabled, the count-down period is fixed at the specified
Timeout Period, and the periodl and periodh registers do not exist in hardware.

Readable
snapshot

When this option is enabled, a master peripheral can read a snapshot of the current count-
down. When disabled, the status of the counter is detectable only via other indicators, such as
the status register or the IRQ signal. In this case, the snapl and snaph registers do not
exist in hardware, and reading these registers produces an undefined value.

Start/Stop
control bits

When this option is enabled, a master peripheral can start and stop the timer by writing the
START and STOP bits in the control register. When disabled, the timer runs continuously.
When the System reset on timeout (watchdog) option is enabled, the START bit is also
present, regardless of the Start/Stop control bits option.

Altera Corporation 16–5
October 2007

Instantiating the Core in SOPC Builder

Altera Corporation 16–5
October 2007

Instantiating the Core in SOPC Builder

Output Signal Options

Table 16–2 shows the settings that affect the timer core’s output signals.

Configuring the Timer as a Watchdog Timer

To configure the timer for use as a watchdog, in the MegaWizard interface
select Watchdog in the Preset Configurations list, or choose the following
settings:

■ Set the Timeout Period to the desired “watchdog” period.
■ Turn off Writeable period.
■ Turn off Readable snapshot.
■ Turn off Start/Stop control bits.
■ Turn off Timeout pulse.
■ Turn on System reset on timeout (watchdog).

A watchdog timer wakes up (i.e., comes out of reset) stopped. A
processor later starts the timer by writing a 1 to the control register’s
START bit. Once started, the timer can never be stopped. If the internal
counter ever reaches zero, the watchdog timer resets the system by
generating a pulse on its resetrequest output. To prevent the system
from resetting, the processor must periodically reset the timer’s
count-down value by writing either the periodl or periodh registers
(the written value is ignored). If the processor fails to access the timer
because, for example, software stopped executing normally, then the
watchdog timer resets the system and returns the system to a defined
state.

Table 16–2. Output Signal Options

Option Description

Timeout pulse
(1 clock wide)

When this option is enabled, the timer core outputs a signal timeout_pulse. This signal
pulses high for one clock cycle whenever the timer reaches zero. When disabled, the
timeout_pulse signal does not exist.

System reset on
timeout (watchdog)

When this option is enabled, the timer core’s Avalon-MM slave port includes the
resetrequest signal. This signal pulses high for one clock cycle (causing a system-
wide reset) whenever the timer reaches zero. When this option is enabled, the internal
timer is stopped at reset. Explicitly writing the START bit of the control register starts the
timer. When this option is disabled, the resetrequest signal does not exist.
Refer to “Configuring the Timer as a Watchdog Timer”.

16–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

16–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Software
Programming
Model

The following sections describe the software programming model for the
timer core, including the register map and software declarations to access
the hardware. For Nios II processor users, Altera provides hardware
abstraction layer (HAL) system library drivers that enable you to access
the timer core using the HAL application programming interface (API)
functions.

HAL System Library Support

The Altera-provided drivers integrate into the HAL system library for
Nios II systems. When possible, HAL users should access the timer via
the HAL API, rather than accessing the timer registers.

Altera provides a driver for both the HAL timer device models: system
clock timer, and timestamp timer.

System Clock Driver

When configured as the system clock, the timer runs continuously in
periodic mode, using the default period set in SOPC builder. The system
clock services are then run as a part of the interrupt service routine for this
timer. The driver is interrupt-driven, and therefore must have its
interrupt signal connected in the system hardware.

The Nios II integrated development environment (IDE) allows you to
specify system library properties that determine which timer device will
be used as the system clock timer.

Timestamp Driver

The timer core may be used as a timestamp device if it meets the
following conditions:

■ The timer has a writeable period register, as configured in SOPC
Builder.

■ The timer is not selected as the system clock.

The Nios II IDE allows you to specify system library properties that
determine which timer device will be used as the timestamp timer.

If the timer hardware is not configured with writeable period registers,
then calls to the alt_timestamp_start() API function will not reset
the timestamp counter. All other HAL API calls will perform as expected.

Altera Corporation 16–7
October 2007

Software Programming Model

Altera Corporation 16–7
October 2007

Software Programming Model

f For more information about using the system clock and timestamp
features that use these drivers, refer to the Nios II Software Developer’s
Handbook. The Nios II Embedded Design Suite (EDS) also provides
several example designs that use the timer core.

Limitations

The HAL driver for the timer core does not support the watchdog reset
feature of the timer core.

Software Files

The timer core is accompanied by the following software files. These files
define the low-level interface to the hardware, and provide the HAL
drivers. Application developers should not modify these files.

■ altera_avalon_timer_regs.h—This file defines the core’s register
map, providing symbolic constants to access the low-level hardware.

■ altera_avalon_timer.h, altera_avalon_timer_sc.c,
altera_avalon_timer_ts.c, altera_avalon_timer_vars.c—These files
implement the timer device drivers for the HAL system library.

Register Map

A programmer should never have to directly access the timer via its
registers if using the standard features provided in the HAL system
library for the Nios II processor. In general, the register map is only useful
to programmers writing a device driver.

c The Altera-provided HAL device driver accesses the device
registers directly. If you are writing a device driver, and the
HAL driver is active for the same device, your driver will
conflict and fail to operate correctly.

Table 16–3 shows the register map for the timer.

Table 16–3. Register Map (Part 1 of 2)

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

0 status RW (1) RUN TO

1 control RW (1) STOP START CONT ITO

2 periodl RW Timeout Period – 1 (bits 15..0)

3 periodh RW Timeout Period – 1 (bits 31..16)

16–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

16–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

status Register

The status register has two defined bits, as shown in Table 16–4.

control Register

The control register has four defined bits, as shown in Table 16–5.

4 snapl RW Counter Snapshot (bits 15..0)

5 snaph RW Counter Snapshot (31..16)

Note to Table 16–3:
(1) Reserved. Read values are undefined. Write zero.

Table 16–3. Register Map (Part 2 of 2)

Offset Name R/W
Description of Bits

15 ... 4 3 2 1 0

Table 16–4. status Register Bits

Bit Name
Read/
Write/
Clear

Description

0 TO RC The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once
set by a timeout event, the TO bit stays set until explicitly cleared by a master
peripheral. Write zero to the status register to clear the TO bit.

1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit
reads as 0. The RUN bit is not changed by a write operation to the status
register.

Table 16–5. control Register Bits (Part 1 of 2)

Bit Name
Read/
Write/
Clear

Description

0 ITO RW If the ITO bit is 1, the timer core generates an IRQ when the status
register’s TO bit is 1. When the ITO bit is 0, the timer does not generate
IRQs.

1 CONT RW The CONT (continuous) bit determines how the internal counter behaves
when it reaches zero. If the CONT bit is 1, the counter runs continuously until
it is stopped by the STOP bit. If CONT is 0, the counter stops after it reaches
zero. When the counter reaches zero, it reloads with the 32-bit value stored
in the periodl and periodh registers, regardless of the CONT bit.

Altera Corporation 16–9
October 2007

Software Programming Model

Altera Corporation 16–9
October 2007

Software Programming Model

periodl and periodh Registers

The periodl and periodh registers together store the timeout period
value. periodl holds the least-significant 16 bits, and periodh holds
the most-significant 16 bits. The internal counter is loaded with the 32-bit
value stored in periodh and periodl whenever one of the following
occurs:

■ A write operation to either the periodh or periodl register
■ The internal counter reaches 0

The timer’s actual period is one cycle greater than the value stored in
periodh and periodl, because the counter assumes the value zero
(0×00000000) for one clock cycle.

Writing to either periodh or periodl stops the internal counter, except
when the hardware is configured with Start/Stop control bits off. If
Start/Stop control bits is off, writing either register does not stop the
counter. When the hardware is configured with Writeable period
disabled, writing to either periodh or periodl causes the counter to
reset to the fixed Timeout Period specified at system generation time.

2 START (1) W Writing a 1 to the START bit starts the internal counter running (counting
down). The START bit is an event bit that enables the counter when a write
operation is performed. If the timer is stopped, writing a 1 to the START bit
causes the timer to restart counting from the number currently held in its
counter. If the timer is already running, writing a 1 to START has no effect.
Writing 0 to the START bit has no effect.

3 STOP (1) W Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an
event bit that causes the counter to stop when a write operation is
performed. If the timer is already stopped, writing a 1 to STOP has no effect.
Writing a 0 to the stop bit has no effect. Writing 0 to the STOP bit has no
effect.
If the timer hardware is configured with Start/Stop control bits off, writing
the STOP bit has no effect.

Note to Table 16–5:
(1) Writing 1 to both START and STOP bits simultaneously produces an undefined result.

Table 16–5. control Register Bits (Part 2 of 2)

Bit Name
Read/
Write/
Clear

Description

16–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

16–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

snapl and snaph Registers

A master peripheral may request a coherent snapshot of the current 32-bit
internal counter by performing a write operation (write-data ignored) to
either the snapl or snaph registers. When a write occurs, the value of the
counter is copied to snapl and snaph. snapl holds the least-significant
16 bits of the snapshot and snaph holds the most-significant 16 bits. The
snapshot occurs whether or not the counter is running. Requesting a
snapshot does not change the internal counter’s operation.

Interrupt Behavior

The timer core generates an IRQ whenever the internal counter reaches
zero and the ITO bit of the control register is set to 1. Acknowledge the
IRQ in one of two ways:

■ Clear the TO bit of the status register
■ Disable interrupts by clearing the ITO bit of the control register

Failure to acknowledge the IRQ produces an undefined result.

Referenced
Document

This chapter references the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 16–11
October 2007

Document Revision History

Altera Corporation 16–11
October 2007

Document Revision History

Document
Revision History

Table 16–6 shows the revision history for this chapter.

Table 16–6. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 16 was formerly chapter 14.
● Updated and expanded definition of Timeout Period

—

May 2007
v7.1.0

● Corrected an error: The timer can be used as a timestamp
device if it has a writeable period register.

● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon switch fabric” term to
“system interconnect fabric.” Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

● Added statement that failure to acknowledge an IRQ results
in an undefined result in section “Interrupt Behavior” on
page 12–9.

For the 6.1 release,
Altera released the
Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

No change from previous release.
—

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release.
—

May 2004
v1.0

Initial release.
—

16–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

16–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 17–1
October 2007
Altera Corporation 17–1
October 2007

17. System ID Core

Core Overview The system ID core with Avalon® interface is a simple read-only device
that provides SOPC Builder systems with a unique identifier. Nios® II
processor systems use the system ID core to verify that an executable
program was compiled targeting the actual hardware image configured
in the target FPGA. If the expected ID in the executable does not match
the system ID core in the FPGA, it is possible that the software will not
execute correctly.

 This chapter contains the following sections:

■ “Functional Description” on page 17–1
■ “Device and Tools Support” on page 17–2
■ “Instantiating the Core in SOPC Builder” on page 17–2
■ “Software Programming Model” on page 17–3

Functional
Description

The system ID core provides a read-only Avalon Memory-Mapped
(Avalon-MM) slave interface. This interface has two registers, as shown
in Table 17–1.

The value of each register is determined at system generation time, and
always returns a constant value. The meaning of the values is:

■ id— A unique 32-bit value that is based on the contents of the SOPC
Builder system. The id is similar to a check-sum value; SOPC Builder
systems with different components, different configuration options,
or both, produce different id values.

Table 17–1. System ID Core Register Map

Offset Register Name R/W
Bit Description

31...0

0 id R SOPC Builder System ID (1)

1 timestamp R SOPC Builder Generation Time (1)

Note to Table 17–1:
(1) Return value is constant.

NII51014-7.2.0

17–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

17–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

■ timestamp—A unique 32-bit value that is based on the system
generation time. The value is equivalent to the number of seconds
after Jan. 1, 1970.

There are two basic ways to use the system ID core:

■ Verify the system ID before downloading new software to a system.
This method is used by software development tools, such as the
Nios II integrated development environment (IDE). There is little
point in downloading a program to a target hardware system, if the
program is compiled for different hardware. Therefore, the Nios II
IDE checks that the system ID core in hardware matches the expected
system ID of the software before downloading a program to run or
debug.

■ Check system ID after reset. If a program is running on hardware
other than the expected SOPC Builder system, then the program may
fail to function altogether. If the program does not crash, it can
behave erroneously in subtle ways that are difficult to debug. To
protect against this case, a program can compare the expected system
ID against the system ID core, and report an error if they do not
match.

Device and
Tools Support

The system ID core supports all device families supported by
SOPC Builder. The system ID core provides a device driver for the Nios II
hardware abstraction layer (HAL) system library. No software support is
provided for any other processor, including the first-generation Nios
processor.

Instantiating the
Core in SOPC
Builder

The System ID core has no user-configurable features. The id and
timestamp register values are determined at system generation time
based on the configuration of the SOPC Builder system and the current
time. You can add only one system ID core to an SOPC Builder system,
and its name is always sysid.

After system generation, you can examine the values stored in the id and
timestamp registers by opening the MegaWizard® Plug-In Manager
interface for the System ID core. Hovering the mouse over the component
in SOPC Builder also displays a tool-tip showing the values.

Altera Corporation 17–3
October 2007

Software Programming Model

Altera Corporation 17–3
October 2007

Software Programming Model

Software
Programming
Model

This section describes the software programming model for the system ID
core. For Nios II processor users, Altera provides the HAL system library
header file that defines the system ID core registers.

The System ID core comes with the following software files. These files
provide low-level access to the hardware. Application developers should
not modify these files.

■ alt_avalon_sysid_regs.h—Defines the interface to the hardware
registers.

■ alt_avalon_sysid.c, alt_avalon_sysid.h—Header and source files
defining the hardware access functions.

Altera provides one access routine, alt_avalon_sysid_test(), that
returns a value indicating whether the system ID expected by software
matches the system ID core.

17–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

17–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

alt_avalon_sysid_test()

Prototype: alt_32 alt_avalon_sysid_test(void)

Thread-safe: No.

Available from ISR: Yes.

Include: <altera_avalon_sysid.h>

Description: Returns 0 if the values stored in the hardware registers match the values
expected by software. Returns 1 if the hardware timestamp is greater than the
software timestamp. Returns -1 if the software timestamp is greater than the
hardware timestamp.

Altera Corporation 17–5
October 2007

Document Revision History

Altera Corporation 17–5
October 2007

Document Revision History

Document
Revision History

Table 17–2 shows the revision history for this chapter.

Table 17–2. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 17 was formerly chapter 15.
—

May 2007
v7.1.0

● Chapter 15 was formerly chapter 13.
● Added table of contents to Overview section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to Avalon
technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface”

For the 6.1 release, Altera
released the Avalon
Streaming interface, which
necessitated some re-
phrasing of existing Avalon
terminology.

May 2006
v6.0.0

No change from previous release. —

October 2005
v5.1.0

No change from previous release. —

May 2005
v5.0.0

No change from previous release. Previously in the Nios II
Processor Reference Handbook.

—

September 2004
v1.1

Updates for Nios II 1.01 release. —

May 2004
v1.0

Initial release.
—

17–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

17–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 18–1
October 2007

18. PLL Core

Core Overview The Avalon® memory-mapped (Avalon-MM) phase locked loop (PLL)
core with Avalon interface provides a means of accessing the dedicated
on-chip PLL circuitry in Altera’s Stratix® and Cyclone® series FPGAs. The
PLL core is a component wrapper around the Altera® altpll
Megafunction.

The core takes an SOPC Builder system clock as its input and generates
PLL output clocks locked to that reference clock.

The PLL core supports the following features:

■ All PLL features provided by Altera’s altpll megafunction. The exact
feature set depends on the device family.

■ Access to status and control signals via Avalon-MM registers or
top-level signals on the SOPC Builder system module.

The PLL output clocks are made available in two ways:

■ As sources to system-wide clocks in your SOPC Builder system
■ As output signals on your SOPC Builder system module

f For details about the altpll megafunction, refer to the altpll Megafunction
User Guide.

 The PLL core is SOPC Builder-ready and integrates easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Functional Description” on page 18–2
■ “Device and Tools Support” on page 18–3
■ “Instantiating the Core in SOPC Builder” on page 18–4
■ “Hardware Simulation Considerations” on page 18–6
■ “Register Definitions and Bit List” on page 18–6

NII53002-7.2.0

18–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

Figure 18–1 shows a block diagram of the PLL core and its connection to
the PLL circuitry inside an Altera FPGA. The following sections describe
the components of the core.

Figure 18–1. PLL Core Block Diagram

altpll Megafunction

The PLL core consists of an altpll megafunction instantiation and an
Avalon-MM slave interface. This interface can optionally provide access
to status and control registers within the core. The altpll Megafunction
takes an SOPC Builder system clock as its reference, and generates one or
more phase-locked output clocks.

status

control

 Registers

Avalon-MM
Slave

Interface

PLL Enable

PLL Core

altpll Megafunction

Reference
 Clock inclk

areset

pfdena

pllena

PLL Clock
Outputs

c0

c1

locked PLL Locked

e0

e1

PLL Reset

PFD Enable

Altera Corporation 18–3
October 2007

PLL Core

Clock Outputs

Depending on the target device family, the altpll Megafunction can
produce two types of output clock:

■ internal (c)—clock outputs that can drive logic either inside or
outside the SOPC Builder system module. Internal clock outputs can
also be mapped to top-level FPGA pins. Internal clock outputs are
available on all device families.

■ external (e)—clock outputs that can only drive dedicated FPGA pins.
They can not be used as on-chip clock sources. External clock outputs
are not available on all device families.

f To determine the exact number and type of output clocks available on
your target device, refer to the altpll Megafunction User Guide.

PLL Status and Control Signals

Depending on how the altpll megafunction is parameterized, there can be
a variable number of status and control signals. You can choose to export
certain status and control signals to the top-level SOPC Builder system
module. Alternatively, Avalon-MM registers can provide access to the
signals. Any status or control signals which are not mapped to registers
are exported to the top-level module. For details, refer to the
“Instantiating the Core in SOPC Builder” on page 18–4.

System Reset Considerations

At FPGA configuration, the PLL core resets automatically. PLL-specific
reset circuitry guarantees that the PLL locks before releasing reset for the
overall SOPC Builder system module.

c Resetting the PLL resets the entire SOPC Builder system
module.

Device and
Tools Support

The PLL core is supported by the Quartus II software version 5.1 and
later. The core supports any Altera FPGA family supported by the altpll
megafunction.

f For more information about the altpll megafunction, refer to the altpll
Megafunction User Guide.

18–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Instantiating the
Core in SOPC
Builder

The PLL core contains an instantiation of the altpll Megafunction. The
MegaWizard® interface for the PLL core allows you to configure the
altpll, and specify connections to selected altpll status and control signals.
The PLL core appears in the Other category in the SOPC Builder list of
available components.

The following sections describe the options available in the MegaWizard
interface for the Avalon-MM PLL core in SOPC Builder.

PLL Settings Page

The PLL Settings page contains a button that launches Altera’s altpll
MegaWizard Plug-In Manager. Use the MegaWizard interface to
parameterize the altpll megafunction. The set of available parameters
depends on the target device family.

f For details about using the altpll MegaWizard interface, refer to the altpll
Megafunction User Guide.

You cannot click Finish in the Avalon-MM PLL wizard nor configure the
PLL interface until you parameterize the altpll megafunction.

Interface Page

The Interface page configures the access modes for the optional
advanced PLL status and control signals.

For each advanced signal present on the altpll, you can select one of the
following access modes:

■ Export—Exports the signal to the top level of the SOPC builder
system module.

■ Register—Maps the signal to a bit in a status or control register.

1 The advanced signals are optional. If you choose not to create
any of them in the altpll MegaWizard, the PLL’s default
behavior will be as shown in Table 18–1.

Altera Corporation 18–5
October 2007

PLL Core

You can specify the access mode for the advanced signals shown in
Table 18–1. The altpll core signals, not displayed in this table, are
automatically exported to the top level of the SOPC Builder system
module.

c Asserting areset resets the entire SOPC Builder system
module, not just the PLL.

Finish

Click Finish to insert the PLL into the SOPC Builder system. The PLL
clock output(s) appear in the clock settings table on the SOPC Builder
System Contents tab.

1 If the PLL has external output clocks, they appear in the clock
settings table like other clocks; however, you cannot use them to
drive components within the SOPC Builder system.

f For details about using external output clocks, refer to the altpll
Megafunction User Guide.

The SOPC Builder automatically connects the PLL’s reference clock input
to the first available clock in the clock settings table.

1 If there is more than one SOPC Builder system clock available,
verify that the PLL is connected to the appropriate reference
clock.

Table 18–1. altpll Advanced Signals

altpll
Name

Input /
Output

Avalon-MM PLL
Wizard Name Default Behavior Description

areset input PLL Reset Input The PLL is reset only at
device configuration.

This signal resets the entire SOPC Builder
system module, and restores the PLL to its
initial settings.

pllena input PLL Enable Input The PLL is enabled. This signal enables the PLL.
pllena is always exported.

pfdena input PFD Enable Input The phase-frequency
detector is enabled.

This signal enables the phase-frequency
detector in the PLL, allowing it to lock on to
changes in the clock reference.

locked output PLL Locked Output — This signal is asserted when the PLL is
locked to the input clock.

18–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Hardware
Simulation
Considerations

The HDL files generated by SOPC Builder for the PLL core are suitable
for both synthesis and simulation. The PLL core supports the standard
SOPC Builder simulation flow, so there are no special considerations for
hardware simulation.

Register
Definitions and
Bit List

Table 18–2 shows the register map for the PLL core. Device drivers can
control and communicate with the core through two 16-bit
memory-mapped registers, status and control.

Note that the status and control bits shown below are present only if they
have been created in the altpll MegaWizard, and set to Register on the
Interface page in the PLL wizard.

Status Register

Embedded software can access the PLL status via the status register.
Writing to status has no effect. Table 18–3 describes the function of each
bit.

Table 18–2. PLL Core Register Map

Offset Register Name R/W
Bit Description

15 ... 2 1 0

0 status R/O (1) LOCKED

1 control R/W (1) PFDENA ARESET

Note to Table 18–2:
(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.

Table 18–3. Status Register Bits

Bit Number Bit Name Value after reset Description

0 LOCKED 1 Connects to the locked signal on
the altpll. The LOCKED bit is high
when valid clocks are present on
the output of the PLL.

1 .. 15 — — Reserved. Read values are
undefined.

Altera Corporation 18–7
October 2007

PLL Core

Control Register

Embedded software can control the PLL via the control register.
Software can also read back the status of control bits. Table 18–4 describes
the function of each bit.

Referenced
Document

This chapter references the altpll Megafunction User Guide.

Table 18–4. Control Register Bits

Bit Number Bit Name Value after reset Description

0 ARESET 0 Connects to the areset signal on
the altpll. Writing a 1 to this bit
asserts the areset signal for one
clock cycle.

1 PFDENA 1 Connects to the pfdena signal on
the altpll.

2 .. 15 — — Reserved. Read values are
undefined. When writing, set
reserved bits to zero.

http://www.altera.com/literature/ug/ug_altpll.pdf

18–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Document
Revision History

Table 18–5 shows the revision history for this chapter.

Table 18–5. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 18 was formerly chapter 16.
—

May 2007
v7.1.0

● Chapter 16 was formerly chapter 14.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface”

For the 6.1 release, Altera
released the Avalon
Streaming interface, which
necessitated some re-
phrasing of existing Avalon
terminology.

May 2006
v6.0.0

No change from previous release.
—

October 2005
v5.1.0

Initial release.
—

Altera Corporation 19–1
October 2007
Altera Corporation 19–1
October 2007

19. Performance Counter
Core

Core Overview The performance counter core with Avalon® interface enables relatively
unobtrusive, real-time profiling of software programs. With the
performance counter, you can accurately measure execution time taken
by multiple sections of code. You need only add a single instruction at the
beginning and end of each section to be measured.

The main benefit of using the performance counter core is the accuracy of
the profiling results. Alternatives include the following approaches:

■ GNU profiler, gprof—gprof provides broad low-precision timing
information about the entire software system. It uses a substantial
amount of RAM, and degrades the real-time performance. For many
embedded applications, gprof distorts real-time behavior too much
to be useful.

■ Interval timer peripheral—The interval timer is less intrusive than
gprof. It can provide good results for narrowly targeted sections of
code.

The performance counter core is unobtrusive, requiring only a single
instruction to start and stop profiling, and no RAM. It is appropriate for
high-precision measurements of narrowly targeted sections of code.

f For further discussion of all three profiling methods, refer to AN 391:
Profiling Nios II Systems.

The performance counter core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system. The core is designed for
use in Avalon-based processor systems, such as a Nios® II processor
system. Altera® provides device drivers to enable the Nios II processor to
use the performance counters.

This chapter contains the following sections:

■ “Functional Description” on page 19–2
■ “Device and Tools Support” on page 19–4
■ “Instantiating the Core in SOPC Builder” on page 19–4
■ “Hardware Simulation Considerations” on page 19–4
■ “Software Programming Model” on page 19–5
■ “Performance Counter API” on page 19–8

QIfI55001-7.2.0

19–2 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–2 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Functional
Description

The performance counter core is a set of counters which track clock cycles,
timing multiple sections of your software. You can start and stop these
counters in your software, individually or as a group. You can read cycle
counts from hardware registers.

The core contains two counters for every section:

■ Time: A 64-bit clock cycle counter
■ Events: A 32-bit event counter

Section Counters

Each 64-bit time counter records the aggregate number of clock cycles
spent in a section of code. The 32-bit event counter records the number of
times the section executes.

The performance counter core can have up to seven section counters.

Global Counter

The global counter controls all section counters. The section counters are
enabled only when the global counter is running.

The 64-bit global clock cycle counter tracks the aggregate time for which
the counters were enabled. The 32-bit global event counter tracks the
number of global events, that is, the number of times the performance
counter core has been enabled.

Altera Corporation 19–3
October 2007

Functional Description

Altera Corporation 19–3
October 2007

Functional Description

Register Map

The performance counter core has a simple Avalon Memory-Mapped
(Avalon-MM) slave interface that provides access to memory-mapped
registers. Reading from the registers retrieves the current times and event
counts. Writing to the registers starts, stops and resets the counters.
Table 19–1 shows the registers in detail.

Table 19–1. Performance Counter Core Register Map

Offset Register Name

Bit Description

Read Write

31 ... 0 31 ... 1 0

0 T[0]lo global clock cycle counter [31: 0] (1) 0 = STOP
1 = RESET

1 T[0]hi global clock cycle counter [63:32] (1) 0 = START

2 Ev[0] global event counter (1) (1)

3 — (1) (1) (1)

4 T[1]lo section 1 clock cycle counter [31: 0] (1) 0 = STOP

5 T[1]hi section 1 clock cycle counter [63:32] (1) 0 = START

6 Ev[1] section 1 event counter (1) (1)

7 — (1) (1) (1)

8 T[2]lo section 2 clock cycle counter [31: 0] (1) 0 = STOP

9 T[2]hi section 2 clock cycle counter [63:32] (1) 0 = START

10 Ev[2] section 2 event counter (1) (1)

11 — (1) (1) (1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4n + 0 T[n]lo section n clock cycle counter [31: 0] (1) 0 = STOP

4n + 1 T[n]hi section n clock cycle counter [63:32] (1) 0 = START

4n + 2 Ev[n] section n event counter (1) (1)

4n + 3 — (1) (1) (1)

Note to Table 19–1:
(1) Reserved. Read values are undefined. When writing, set reserved bits to zero.

19–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

System Reset Considerations

After system reset, the performance counter core is stopped and disabled,
and all counters contain zero.

Device and
Tools Support

The performance counter core supports all Altera device families
supported by SOPC Builder, and provides device drivers for the Nios II
hardware abstraction layer (HAL) system library.

Instantiating the
Core in SOPC
Builder

Designers use the MegaWizard® interface for the performance counter
core in SOPC Builder to specify the core's hardware features.

Define Counters

Choose the number of section counters you want to generate by selecting
from the "Number of simultaneously-measured sections" list. The
performance counter core may have up to seven sections. If you require
more that seven sections, you can instantiate multiple performance
counter cores.

Multiple Clock Domain Considerations

If your SOPC Builder system uses multiple clocks, place the performance
counter core in the same clock domain as the CPU. Otherwise, it is not
possible to convert cycle counts to seconds correctly.

Hardware
Simulation
Considerations

You can use this core in simulation with no special considerations.

Altera Corporation 19–5
October 2007

Software Programming Model

Altera Corporation 19–5
October 2007

Software Programming Model

Software
Programming
Model

The following sections describe the software programming model for the
performance counter core.

Software Files

Altera provides the following software files for Nios II systems. These
files define the low-level access to the hardware and provide control and
reporting functions. Do not modify these files.

■ altera_avalon_performance_counter.h,
altera_avalon_performance_counter.c —The header and source
code for the functions and macros needed to control the performance
counter core and retrieve raw results.

■ perf_print_formatted_report.c—The source code for simple profile
reporting.

Using the Performance Counter

In a Nios II system, you can control the performance counter core with a
set of highly efficient C macros, and extract the results with C functions.

API Summary

The Nios II application program interface (API) for the performance
counter core consists of functions, macros and constants.

Functions and macros
Table 19–2 lists macros and functions for accessing the performance
counter hardware structure.

Table 19–2. Performance Counter Macros and Functions

Name Summary

PERF_RESET() Stops and disables all counters, resetting them to 0.

PERF_START_MEASURING() Starts the global counter and enables section counters.

PERF_STOP_MEASURING() Stops the global counter and disables section counters.

PERF_BEGIN() Starts timing a code section.

PERF_END() Stops timing a code section.

perf_print_formatted_report() Sends a formatted summary of the profiling results to stdout.

perf_get_total_time() Returns the aggregate global profiling time in clock cycles.

perf_get_section_time() Returns the aggregate time for one section in clock cycles.

19–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

For a complete description of each macro and function, see “Performance
Counter API” on page 19–8.

Hardware constants
You can get the performance counter hardware parameters from
constants defined in system.h. The constant names are based on the
performance counter instance name, specified on the System Contents
tab in SOPC Builder. Table 19–3 lists the hardware constants.

Startup

Before using the performance counter core, invoke PERF_RESET to stop,
disable and zero all counters.

Global Counter Usage

Use the global counter to enable and disable the entire performance
counter core. For example, you might choose to leave profiling disabled
until your software has completed its initialization.

Section Counter Usage

To measure a section in your code, surround it with the macros
PERF_BEGIN() and PERF_END(). These macros consist of a single write
to the performance counter core.

perf_get_num_starts() Returns the number of counter events.

alt_get_cpu_freq() Returns the CPU frequency in Hz.

Table 19–2. Performance Counter Macros and Functions

Name Summary

Table 19–3. Performance Counter Constants

Name (1) Meaning

PERFORMANCE_COUNTER_BASE Base address of core

PERFORMANCE_COUNTER_SPAN Number of hardware registers

PERFORMANCE_COUNTER_HOW_MANY_SECTIONS Number of section counters

Note to Table 19–3:
(1) Example based on instance name performance_counter

Altera Corporation 19–7
October 2007

Software Programming Model

Altera Corporation 19–7
October 2007

Software Programming Model

You can simultaneously measure as many code sections as you like, up to
the number specified in SOPC Builder. See “Define Counters” on
page 19–4 for details. You can start and stop counters individually, or as
a group.

Typically, you assign one counter to each section of code you intend to
profile. However, in some situation you may wish to group several
sections of code in a single section counter. As an example, to measure
general interrupt overhead, you can measure all interrupt service
routines (ISRs) with one counter.

To avoid confusion, assign a mnemonic symbol for each section number.

f For an example, refer to the performance checksum design files
accompanying AN 391: Profiling Nios II Systems. These files may be found
on the Altera Nios II literature page at www.altera.com/literature/lit-
nio2.jsp.

Viewing Counter Values

Library routines allow you to retrieve and analyze the results. Use
perf_print_formatted_report() to list the results to stdout as
shown in Example 19–1.

Example 19–1.
perf_print_formatted_report(

(void *)PERFORMANCE_COUNTER_BASE, // Peripheral's HW base address
alt_get_cpu_freq(), // defined in "system.h"
3, // How many sections to print
"1st checksum_test", // Display-names of sections
"pc_overhead",
"ts_overhead");

Example 19–2 creates a table similar to this result.

www.altera.com/literature/lit-nio2.jsp
www.altera.com/literature/lit-nio2.jsp

19–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Example 19–2.
--Performance Counter Report--
Total Time: 2.07711 seconds (103855534 clock-cycles)
+-----------------+--------+-----------+---------------+-----------+
| Section | % | Time (sec)| Time (clocks) |Occurrences|
+-----------------+--------+-----------+---------------+-----------+
|1st checksum_test| 50 | 1.03800 | 51899750 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| pc_overhead |1.73e-05| 0.00000 | 18 | 1 |
+-----------------+--------+-----------+---------------+-----------+
| ts_overhead |4.24e-05| 0.00000 | 44 | 1 |
+-----------------+--------+-----------+---------------+-----------+

For full documentation of perf_print_formatted_report(), see
“Performance Counter API” on page 19–8.

Interrupt Behavior

The performance counter core does not generate interrupts.

You can start and stop performance counters, and read raw performance
results, in an interrupt service routine (ISR). Do not call function
perf_print_formatted_report() from an ISR.

1 If a interrupt occurs during the measurement of a section of
code, the time taken by the CPU to process the interrupt and
return to the section is added to the measurement time. The
same applies to context switches in a multithreaded
environment. Your software must take appropriate measures to
avoid or handle these situations.

Performance
Counter API

This section describes the application programming interface (API) for
the performance counter core.

For Nios II processor users, Altera provides routines to access the
performance counter core hardware. These functions are specific to the
performance counter core and directly manipulate low level hardware.
The performance counter core cannot be accessed via the HAL API or the
ANSI C standard library.

Altera Corporation 19–9
October 2007

Performance Counter API

Altera Corporation 19–9
October 2007

Performance Counter API

PERF_RESET()

Prototype: PERF_RESET(p)

Thread-safe: Yes

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address

Returns: —

Description: Macro PERF_RESET() stops and disables all counters, resetting them to 0.

19–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

PERF_START_MEASURING()

Prototype: PERF_START_MEASURING(p)

Thread-safe: Yes

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address

Returns: —

Description: Macro PERF_START_MEASURING() starts the global counter, enabling the
performance counter core. The behavior of individual section counters is controlled
by PERF_BEGIN() and PERF_END(). PERF_START_MEASURING()
defines the start of a global event, and increments the global event counter. This
macro is a single write to the performance counter core.

Altera Corporation 19–11
October 2007

Performance Counter API

Altera Corporation 19–11
October 2007

Performance Counter API

PERF_STOP_MEASURING()

Prototype: PERF_STOP_MEASURING(p)

Thread-safe: Yes

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address

Returns: —

Description: Macro PERF_STOP_MEASURING() stops the global counter, disabling the
performance counter core. This macro is a single write to the performance counter
core.

19–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

PERF_BEGIN()

Prototype: PERF_BEGIN(p,n)

Thread-safe: Yes

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address
n—counter section number. Section counter numbers start at 1. Do not refer to
counter 0 in this macro.

Returns: —

Description: Macro PERF_BEGIN() starts the timer for a code section, defining the beginning
of a section event, and incrementing the section event counter. If you subsequently
use PERF_STOP_MEASURING() and PERF_START_MEASURING() to disable
and re-enable the core, the section counter will resume. This macro is a single
write to the performance counter core.

Altera Corporation 19–13
October 2007

Performance Counter API

Altera Corporation 19–13
October 2007

Performance Counter API

PERF_END()

Prototype: PERF_END(p,n)

Thread-safe: Yes

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: p—performance counter core base address
n—counter section number. Section counter numbers start at 1. Do not refer to
counter 0 in this macro.

Returns: —

Description: Macro PERF_END() stops timing a code section. The section counter does not
run, regardless whether the core is enabled or not. This macro is a single write to
the performance counter core.

19–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

perf_print_formatted_report()

Prototype: int perf_print_formatted_report (

void* perf_base,

alt_u32 clock_freq_hertz,

int num_sections, ...)

Thread-safe: No

Available from ISR: No

Include: <altera_avalon_performance_counter.h>

Parameters: perf_base—performance counter core base address
clock_freq_hertz—clock frequency
num_sections—The number of section counters to display. This must not
exceed <instance_name>_HOW_MANY_SECTIONS.

Returns: 0

Description: Function perf_print_formatted_report() reads the profiling results from
the performance counter core, and prints a formatted summary table
This function disables all counters. However, for predictable results in a
multi-threaded or interrupt environment, invoke PERF_STOP_MEASURING()
when you reach the end of the code to be measured, rather than relying on
perf_print_formatted_report().

1 This function requires the C standard library. Do not use the small C
library with this function.

Altera Corporation 19–15
October 2007

Performance Counter API

Altera Corporation 19–15
October 2007

Performance Counter API

perf_get_total_time()

Prototype: alt_u64 perf_get_total_time(void* hw_base_address)

Thread-safe: No

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—base address of performance counter core

Returns: Aggregate global time in clock cycles

Description: Function perf_get_total_time() reads the raw global time. This is the
aggregate time, in clock cycles, that the performance counter core has been
enabled. This function has the side effect of stopping the counters.

19–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

perf_get_section_time()

Prototype: alt_u64 perf_get_section_time

(void* hw_base_address, int which_section)

Thread-safe: No

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address
which_section—counter section number

Returns: Aggregate section time in clock cycles

Description: Function perf_get_section_time() reads the raw time for a given section.
This is the time, in clock cycles, that the section has been running. This function has
the side effect of stopping the counters.

Altera Corporation 19–17
October 2007

Performance Counter API

Altera Corporation 19–17
October 2007

Performance Counter API

perf_get_num_starts()

Prototype: alt_u32 perf_get_num_starts

(void* hw_base_address, int which_section)

Thread-safe: Yes

Available from ISR: Yes

Include: <altera_avalon_performance_counter.h>

Parameters: hw_base_address—performance counter core base address
which_section—counter section number

Returns: Number of counter events

Description: Function perf_get_num_starts() retrieves the number of counter events
(or times a counter has been started). If which_section = 0, it retrieves the number
of global events (times the performance counter core has been enabled). This
function does not stop the counters.

19–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

alt_get_cpu_freq()

Prototype: alt_u32 alt_get_cpu_freq()

Thread-safe: Yes.

Available from ISR: Yes.

Include: <altera_avalon_performance_counter.h>

Parameters:

Returns: CPU frequency in Hz

Description: Function alt_get_cpu_freq() returns the CPU frequency in Hz.

Altera Corporation 19–19
October 2007

Referenced Document

Altera Corporation 19–19
October 2007

Referenced Document

Referenced
Document

This chapter references AN 391: Profiling Nios II Systems.

Document
Revision History

Table 19–4 shows the revision history for this chapter.

Table 19–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

● Chapter 19 was formerly chapter 17
● Removed incorrect statement about granularity of the

timer.
—

May 2007
v7.1.0

● Chapter 17 was formerly chapter 15.
● Added table of contents to Overview section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.
—

November 2006
v6.1.0

● Updated Avalon terminology because of changes to
Avalon technologies

● Changed old “Avalon switch fabric” term to “system
interconnect fabric”

● Changed old “Avalon interface” terms to “Avalon Memory-
Mapped interface”

For the 6.1 release, Altera
released the Avalon
Streaming interface, which
necessitated some re-
phrasing of existing Avalon
terminology.

May 2006
v6.0.0

No change from previous release.
—

December 2005
v5.1.0

Initial release.
—

http://www.altera.com/literature/an/an391.pdf

19–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

19–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation Section VI–i

Section VI. Streaming
Peripherals

This section describes streaming peripherals provided by Altera® for
SOPC Builder systems. These components allow you to optimize
streaming applications.

Refer to About This Handbook for further details.

This section includes the following chapter:

■ Chapter 20, Avalon Streaming Channel Multiplexer and
Demultiplexer Cores

■ Chapter 21, Avalon Streaming Test Pattern Generator and Checker
Cores

1 For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section VI–ii Altera Corporation

Streaming Peripherals Quartus II Handbook, Volume 5

Altera Corporation 20–1
October 2007
Altera Corporation 20–1
October 2007

20. Avalon Streaming
Channel Multiplexer and

Demultiplexer Cores

Core Overview The Avalon® streaming (Avalon-ST) channel multiplexer receives data
from a number of input interfaces and multiplexes the data into a single
output interface, using the optional channel signal to indicate which
input the output data is from. The Avalon-ST channel demultiplexer
receives data from a channelized input interface and drives that data to
multiple output interfaces, where the output interface is selected by the
input channel signal.

The multiplexer and demultiplexer can transfer data between interfaces
on cores that support the unidirectional flow of data. The multiplexer and
demultiplexer allow you to create multiplexed or demultiplexed
datapaths without having to write custom HDL code to perform these
functions. The multiplexer includes a round-robin scheduler. Both cores
are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system. This chapter contains the following sections:

■ “Multiplexer” on page 20–3
■ “Demultiplexer” on page 20–6
■ “Device and Tools Support” on page 20–8
■ “Installation and Licensing” on page 20–9
■ “Hardware Simulation Considerations” on page 20–9
■ “Software Programming Model” on page 20–9

QII55004-7.2.0

Altera Corporation 20–2
October 2007

Core Overview

Altera Corporation 20–2
October 2007

Core Overview

Resource Usage and Performance

Resource utilization for the cores depends upon the number of input and
output interfaces, the width of the datapath and whether the streaming
data uses the optional packet protocol. For the multiplexer, the
parameterization of the scheduler also effects resource utilization.
Table 20–1 provides estimated resource utilization for eleven different
configurations of the multiplexer.

Table 20–2 provides estimated resource utilization for six different
configurations of the demultiplexer. The core operating frequency varies
with the device, the number of interfaces and the size of the datapath.

Table 20–1. Multiplexer Estimated Resource Usage and Performance

No. of
Inputs

Data
Width

Scheduling
Size

(Cycles)

Stratix® II and Stratix II
GX

(Approximate LEs)
Cyclone® II Stratix

fMAX

(MHz)
ALM
Count

fMAX

(MHz)
Logic
Cells

fMAX

(MHz)
Logic
Cells

2 Y 1 500 31 420 63 422 80

2 Y 2 500 36 417 60 422 58

2 Y 32 451 43 364 68 360 49

8 Y 2 401 150 257 233 228 298

8 Y 32 356 151 219 207 211 123

16 Y 2 262 333 174 533 170 284

16 Y 32 310 337 161 471 157 277

2 N 1 500 23 400 48 422 52

2 N 9 500 30 420 52 422 56

11 N 9 292 275 197 397 182 287

16 N 9 262 295 182 441 179 224

Altera Corporation 20–3
October 2007

Multiplexer

Altera Corporation 20–3
October 2007

Multiplexer

Multiplexer This section describes the hardware structure and functionality of the
multiplexer component.

Functional Description

The Avalon-ST multiplexer takes data from a number of input data
interfaces, and multiplexes the data onto a single output interface. The
mux includes a simple, round-robin scheduler that selects from the next
input interface that has data. Each input interface has the same width as
the output interface, so that all other input interfaces are backpressured
when the mux is carrying data from a different input interface.

The mux includes an optional channel signal that enables each input
interface to carry channelized data. When the channel signal is present
on input interfaces, the mux adds log2 (num_input_interfaces) bits
to make the output channel signal, such that the output channel signal
has all of the bits of the input channel plus the bits required to indicate
which input interface each cycle of data is from. These bits are appended
to either the most or least significant bits of the output channel signal as
specified in the SOPC Builder MegaWizard® interface (Figure 20–1).

Table 20–2. Demultiplexer Estimated Resource Usage

No. of
Inputs

Data
Width

(Symbols
per Beat)

Stratix II
(Approximate

LEs)
Cyclone II

Stratix II GX
(Approximate

LEs)

fMAX

(MHz)
ALM

Count
fMAX

(MHz)
Logic
Cells

 fMAX

(MHz)
Logic
Cells

2 1 500 53 400 61 399 44

15 1 349 171 235 296 227 273

16 1 363 171 233 294 231 290

2 2 500 85 392 97 381 71

15 2 352 247 213 450 210 417

16 2 328 280 218 451 222 443

Altera Corporation 20–4
October 2007

Multiplexer

Altera Corporation 20–4
October 2007

Multiplexer

Figure 20–1. Multiplexer

The internal scheduler considers one input interface at a time, selecting it
for transfer. Once an input interface has been selected, data from that
input interface is sent until one of the following scenarios occurs:

■ The specified number of cycles have elapsed
■ The input interface has no more data to send and de-asserts valid

on a ready cycle
■ The packets are supported, endofpacket is asserted

Input Interfaces

Each input interface is an Avalon-ST data interface that optionally
supports packets. The input interfaces are identical; they have the same
symbol and data widths, error widths, and channel widths.

Output Interface

The output interface carries the multiplexed data stream with data from
all of the inputs. The symbol, data, and error widths are the same as the
input interfaces. The width of the channel signal is the same as the input
interfaces, with the addition of the bits needed to indicate the input each
datum was from.

src
sink

data_in_n

sink

data_in0

data_out

. .
 .

Round Robin, Burst
Aware Scheduler

(optional)

sink

sink

. .
 .

channel

Altera Corporation 20–5
October 2007

Multiplexer

Altera Corporation 20–5
October 2007

Multiplexer

Instantiating the Multiplexer in SOPC Builder

Use the MegaWizard interface for the multiplexer core in SOPC Builder
to specify the core configuration. The following sections list the available
options in the MegaWizard interface.

Functional Parameters—The following sections outline the options for
the multiplexer as a whole:

■ Number of Input Ports—The number of input interfaces that the
multiplexer supports. Valid values are 2 .. 16.

■ Scheduling Size (Cycles)—The number of cycles that are sent from
a single channel before changing to the next channel.

■ Use high bits to indicate source port—When selected, the high bits
of the output channel signal are used to indicate the input interface
that the data came from. For example, if the input interfaces have
4-bit channel signals, and the mux has 4 input interfaces, then the
output interface has a 6-bit channel signal. If this parameter is true,
bits [5:4] of the output channel signal indicate the input interface the
data is from, and bits [3:0] are the channel bits that were presented at
the input interface.

Output Interface—The following sections outline the options for the
output interface:

■ Data Bits Per Symbol—The number of bits per symbol for the input
and output interfaces. Valid values are 1 – 32 bits.

■ Data Symbols Per Beat—The number of symbols (words) that are
transferred per beat (transfer). Valid values are 1 – 32.

■ Include Packet Support—Indicates whether or not packet transfers
are supported. Packet support includes the startofpacket,
endofpacket, and empty signals.

■ Channel Signal Width (bits)—The number of bits used for the
channel signal for input interfaces. A value of 0 indicates that input
interfaces do not have channels. A value of 4 indicates that up to 16
channels share the same input interface. The input channel can have
a width between 0-31 bits. A value of 0 means that the optional
channel signal is not used.

■ Error Signal Width (bits)—The width of the error signal for input
and output interfaces. A value of 0 means the error signal is not
used.

Altera Corporation 20–6
October 2007

Demultiplexer

Altera Corporation 20–6
October 2007

Demultiplexer

Demultiplexer This section describes the hardware structure and functionality of the
demultiplexer component.

Functional Description

That Avalon-ST demultiplexer takes data from a channelized input data
interface and provides that data to multiple output interfaces, where the
output interface selected for a particular transfer is specified by the input
channel signal. The data is delivered to the output interfaces in the same
order it was received at the input interface, regardless of the value of
channel, packet, frame, or any other signal. Each of the output
interfaces has the same width as the input interface, so that each output
interface will be idle when the demux is driving data to a different output
interface. The demux uses log2 (num_output_interfaces) bits of the
channel signal to select the output to which to forward the data; the
remainder of the channel bits are forwarded to the appropriate output
interface unchanged (Figure 20–2).

Figure 20–2. The Demultiplexer

Input Interface

Each input interface is an Avalon-ST data interface that optionally
supports packets.

Output Interfaces

Each output interface carries data from a subset of channels from the
input interface. Each output interface is identical; all have the same
symbol and data widths, error widths, and channel widths. The symbol,
data, and error widths are the same as the input interface. The width of
the channel signal is the same as the input interface, without the bits
that were used to select the output interface.

data_out_n

data_out0

sinksinkdata_in

src

src

. .
 . . .
 .

channel

Altera Corporation 20–7
October 2007

Demultiplexer

Altera Corporation 20–7
October 2007

Demultiplexer

Instantiating the Demultiplexer in SOPC Builder

Use the MegaWizard interface for the demultiplexer core in SOPC Builder
to specify the core configuration. The following sections list the available
options in the MegaWizard interface.

Functional Parameters—The following sections outline the options for
the demultiplexer as a whole:

■ Number of Output Ports—The number of output interfaces that the
multiplexer supports Valid values are 2 .. 16.

■ High channel bits select output—When selected, the high bits of the
input channel signal are used by the de-multiplexing function and
the low order bits are passed to the output. When not selected, the
low order bits are used and the high order bits are passed through.

The following example illustrates the significance of the location of
these signals. In Figure 20–3 there is one input interface and two
output interfaces. If the low-order bits of the channel signal select the
output interfaces, the even channels will go to channel 0 and the odd
channels will go to channel 1. If the high-order bits of the channel
signal select the output interface, channels 0–7 will go to channel 0
and channels 8–15 will go to channel 1.

Figure 20–3. Select Bits for Demultiplexer

Input Interface—The following sections outline the options for the input
interface.

■ Data Bits Per Symbol - The number of bits per symbol for the input
and output interfaces. Valid values are 1 – 32 bits.

■ Data Symbols Per Beat - The number of symbols (words) that are
transferred per beat (transfer). Valid values are 1 – 32.

data_out_n

data_out0

sink
sink

data_in
src

src

channel<4..0>

channel<3..0>

channel<3..0>

20–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

20–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

■ Include Packet Support - Indicates whether or not packet transfers
are supported. Packet support includes the startofpacket,
endofpacket, and empty signals.

■ Channel Signal Width (bits)- The number of bits used for the
channel signal for output interfaces. A value of 0 means that output
interfaces do not use the optional channel signal.

■ Error Signal Width (bits) - The width of the error signal for input
and output interfaces. A value of 0 means the error signal is not
unused.

Device and
Tools Support

Altera device support for the multiplexer and demultiplexer components
is listed in Table 20–3. For each device family, a component provides
either full or preliminary support:

■ Full support means the component meets all functional and timing
requirements for the device family and may be used in production
designs.

■ Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it may be used in production designs with caution.

Table 20–3. Device Family Support

Device Family Avalon-ST Multiplexer Avalon-ST
Demultiplexer

Arria™ GX Preliminary Preliminary

Cyclone III Preliminary Preliminary

Cyclone II Full Full

Cyclone Full Full

HardCopy® II Full Full

Stratix III Preliminary Preliminary

Stratix II GX Full Full

Stratix II Full Full

Stratix GX Full Full

Stratix Full Full

Altera Corporation 20–9
October 2007

Installation and Licensing

Altera Corporation 20–9
October 2007

Installation and Licensing

Installation and
Licensing

The multiplexer and demultiplexer components are included in the
Altera MegaCore® IP Library, which is an optional part of the Quartus® II
software installation. After you install the MegaCore IP Library, SOPC
Builder recognizes these components and can instantiate them into a
system.

You can use the multiplexer and demultiplexer components for free
without a license in any design targeting an Altera device.

Hardware
Simulation
Considerations

The multiplexer and demultiplexer components do not provide a
simulation testbench for simulating a stand-alone instance of the
component. However, you can use the standard SOPC Builder simulation
flow to simulate the component design files inside an SOPC Builder
system.

Software
Programming
Model

The multiplexer and demultiplexer components do not have any
user-visible control or status registers. Therefore software cannot control
or configure any aspect of the multiplexer or demultiplexer at run-time.
The components cannot generate interrupts.

Document
Revision History

Table 20–4 shows the revision history for this chapter.

Table 20–4. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Chapter 20 was formerly chapter 18. —

May 2007
v7.1.0

Initial release. —

20–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

20–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Altera Corporation 21–1
October 2007
Altera Corporation 21–1
October 2007

21. Avalon Streaming Test
Pattern Generator and

Checker Cores

Core Overview The data generation and monitoring solution for Avalon® Streaming
(Avalon-ST) consists of two components: a test pattern generator core that
generates packetized or non-packetized data and sends it out on an
Avalon-ST data interface, and a test pattern checker core that receives the
same data and checks it for correctness.

The test pattern generator core can insert different error conditions, and
the test pattern checker reports these error conditions to the control
interface, each via an Avalon Memory-Mapped (Avalon-MM) slave.

Both cores are SOPC Builder-ready and integrate easily into any SOPC
Builder-generated system.

This chapter contains the following sections:

■ “Resource Utilization and Performance” on page 21–2
■ “Test Pattern Generator” on page 21–4
■ “Test Pattern Checker” on page 21–6
■ “Device and Tools Support” on page 21–8
■ “Installation and Licensing” on page 21–9
■ “Hardware Simulation Considerations” on page 21–9
■ “Software Programming Model” on page 21–10
■ “Test Pattern Generator API” on page 21–15
■ “Test Pattern Checker API” on page 21–21

QII55007-7.2.0

21–2

A
ltera C

o
rp

o
ratio

n

O
cto

b
er 2007

R
eso

u
rce U

tilizatio
n

 an
d

 P
erfo

rm
an

ce
Q

u
artu

s II H
an

d
b

o
o

k, Vo
lu

m
e 5

21–2

A
ltera C

o
rp

o
ratio

n
O

cto
b

er 2007

R
eso

u
rce U

tilizatio
n

 an
d

 P
erfo

rm
an

ce
Q

u
artu

s II H
an

d
b

o
o

k, Vo
lu

m
e 5

Resource
Utilization and
Performance

Resource utilization and performance for the test pattern generator and checker cores depend on the
datawidth, number of channels, and whether the streaming data uses the optional packet protocol.

Table 21–1 provides estimated resource utilization and performance for the test pattern generator core.

Table 21–1. Test Pattern Generator Estimated Resource Utilization and Performance

No. of
Channels

Datawidth
(No. of 8-

bit
Symbols
Per Beat)

Packet
Support

Stratix® II and Stratix II GX Cyclone® II Stratix

fMAX

(MHz)
ALM

Count
Memory

(bits)
fMAX

(MHz)
Logic
Cells

Memory
(bits)

fMAX

(MHz)
Logic
Cells

Memory
(bits)

1 4 Yes 284 233 560 206 642 560 202 642 560

1 4 No 293 222 496 207 572 496 245 561 496

32 4 Yes 276 270 912 210 683 912 197 707 912

32 4 No 323 227 848 234 585 848 220 630 848

1 16 Yes 298 361 560 228 867 560 245 896 560

1 16 No 340 330 496 230 810 496 228 845 496

32 16 Yes 295 410 912 209 954 912 224 956 912

32 16 No 269 409 848 219 842 848 204 912 848

A
ltera C

o
rp

o
ratio

n

21–3

O
cto

b
er 2007

A
valo

n
 S

tream
in

g
 Test P

attern
 G

en
erato

r an
d

 C
h

ecker C
o

res
R

eso
u

rce U
tilizatio

n
 an

d
 P

erfo
rm

an
ce

A
ltera C

o
rp

o
ratio

n

21–3

O
cto

b
er 2007

A
valo

n
 S

tream
in

g
 Test P

attern
 G

en
erato

r an
d

 C
h

ecker C
o

res
R

eso
u

rce U
tilizatio

n
 an

d
 P

erfo
rm

an
ce

Table 21–2 provides estimated resource utilization and performance for the test pattern checker core.

Table 21–2. Test Pattern Checker Estimated Resource Utilization and Performance

No. of
Channels

Datawidth
(No. of 8-

bit
Symbols
Per Beat)

Packet
Support

Stratix®II and Stratix II GX Cyclone® II Stratix

fMAX

(MHz)
ALM
Count

Memory
(bits)

fMAX

(MHz)
Logic
Cells

Memory
(bits)

fMAX

(MHz)
Logic
Cells

Memory
(bits)

1 4 Yes 270 271 96 179 940 0 174 744 96

1 4 No 371 187 32 227 628 0 229 663 32

32 4 Yes 185 396 3616 111 875 3854 105 795 3616

32 4 No 221 363 3520 133 686 3520 133 660 3520

1 16 Yes 253 462 96 185 1433 0 166 1323 96

1 16 No 277 306 32 218 1044 0 192 1004 32

32 16 Yes 182 582 3616 111 1367 3584 110 1298 3616

32 16 No 218 473 3520 129 1143 3520 126 1074 3520

21–4 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–4 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Test Pattern
Generator

This section describes the hardware structure and functionality of the test
pattern generator core.

Functional Description

The test pattern generator core accepts commands to generate data via an
Avalon-MM command interface, and drives the generated data to an
Avalon-ST data interface. You can parameterize most aspects of the
Avalon-ST data interface such as the number of error bits and data signal
width, thus allowing you to test components with different interfaces.
Figure 21–1 shows a block diagram of the test pattern generator core.

Figure 21–1. Test Pattern Generator Core Block Diagram

The data pattern is determined by the following equation:
Symbol Value = Symbol Position in Packet XOR Data Error Mask.
Non-packetized data is one long stream with no beginning or end.

The test pattern generator core has a throttle register that is set via the
Avalon-MM control interface. The value of the throttle register is used in
conjunction with a pseudo-random number generator to throttle the data
generation rate.

Command Interface

The command interface is a 32-bit Avalon-MM write slave that accepts
data generation commands. It is connected to a 16-element deep FIFO,
thus allowing a master peripheral to drive a number of commands into
the test pattern generator core.

The command interface maps to the following registers: cmd_lo and
cmd_hi. The command is pushed into the FIFO when the register
cmd_lo (address 0) is written to. When the FIFO is full, the command

Avalon-MM
Slave Port

A
va

lo
n-

M
M

S
la

ve
 P

or
t

A
valon-S

T
 S

ource

TEST PATTERN
 GENERATOR

command data_out

control & status

Altera Corporation 21–5
October 2007

Test Pattern Generator

Altera Corporation 21–5
October 2007

Test Pattern Generator

interface asserts the wait request signal. You can create errors by writing
to the register cmd_hi (address 1). The errors are only cleared when 0 is
written to this register or its respective fields. See page “Test Pattern
Generator Command Registers” on page 21–12 for more information on
the register fields.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows
you to enable or disable the data generation as well as set the throttle.

This interface also provides useful generation-time information such as
the number of channels and whether or not packets are supported.

Output Interface

The output interface is an Avalon-ST interface that optionally supports
packets. You can configure the output interface to suit your requirements.

Depending on the incoming stream of commands, the output data may
contain interleaved packet fragments for different channels. To keep track
of the current symbol’s position within each packet, the test pattern
generator core maintains an internal state for each channel.

Instantiating the Test Pattern Generator in SOPC Builder

Use the MegaWizard® interface for the test pattern generator core in
SOPC Builder to configure the core. The following sections list the
available options in the MegaWizard interface.

Functional Parameter

The functional parameter allows you to configure the test pattern
generator as a whole: Throttle Seed—The starting value for the throttle
control random number generator. Altera recommends a value which is
unique to each instance of the test pattern generator and checker cores in
a system.

21–6 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–6 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Output Interface

You can configure the output interface of the test pattern generator core
using the following parameters:

■ Number of Channels—The number of channels that the test pattern
generator core supports. Valid values are 1–256.

■ Data Bits Per Symbol—The number of bits per symbol for the input
and output interfaces. Valid values are 1–256. Example—For typical
systems that carry 8-bit bytes, set this parameter to 8.

■ Data Symbols Per Beat—The number of symbols (words) that are
transferred per beat. Valid values are 1–256.

■ Include Packet Support—Indicates whether or not packet transfers
are supported. Packet support includes the startofpacket,
endofpacket, and empty signals.

■ Error Signal Width (bits)—The width of the error signal on the
output interface. Valid values are 0–31. A value of 0 indicates that the
error signal is not in use.

Test Pattern
Checker

This section describes the hardware structure and functionality of the test
pattern checker core.

Functional Description

The test pattern checker core accepts data via an Avalon-ST interface,
checks it for correctness against the same predetermined pattern used by
the test pattern generator core to produce the data, and reports any
exceptions to the control interface. You can parameterize most aspects of
the test pattern checker’s Avalon-ST interface such as the number of error
bits and the data signal width, thus allowing you to test components with
different interfaces.

The test pattern checker has a throttle register that is set via the Avalon-
MM control interface.The value of the throttle register controls the rate at
which data is accepted.

Altera Corporation 21–7
October 2007

Test Pattern Checker

Altera Corporation 21–7
October 2007

Test Pattern Checker

Figure 21–2 shows a block diagram of the test pattern checker core.

Figure 21–2. Test Pattern Checker

The test pattern checker core detects exceptions and reports them to the
control interface via a 32-element deep internal FIFO. Possible exceptions
are data error, missing start-of-packet (SOP), missing end-of-packet
(EOP) and signalled error.

As each exception occurs, an exception descriptor is pushed into the
FIFO. If the same exception occurs more than once consecutively, only
one exception descriptor is pushed into the FIFO. All exceptions are
ignored when the FIFO is full. Exception descriptors are deleted from the
FIFO after they are read by the control and status interface.

Input Interface

The input interface is an Avalon-ST interface that optionally supports
packets. You can configure the input interface to suit your requirements.

Incoming data may contain interleaved packet fragments. To keep track
of the current symbol’s position, the test pattern checker core maintains
an internal state for each channel.

Control and Status Interface

The control and status interface is a 32-bit Avalon-MM slave that allows
you to enable or disable data acceptance as well as set the throttle. This
interface provides useful generation-time information such as the
number of channels and whether the test pattern checker supports
packets.

Avalon-MM
Slave Port

A
va

lo
n-

S
T

 S
in

k TEST PATTERN
 CHECKER

data_in

control & status

21–8 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–8 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

The control and status interface also provides information on the
exceptions detected by the test pattern checker core. The interface obtains
this information by reading from the exception FIFO.

Instantiating the Test Pattern Checker in SOPC Builder

Use the MegaWizard interface for the test pattern checker core in SOPC
Builder to configure the core. The following sections list the available
options in the MegaWizard interface.

Functional Parameter

The functional parameter allows you to configure the test pattern checker
as a whole: Throttle Seed—The starting value for the throttle control
random number generator. Altera recommends a unique value to each
instance of the test pattern generator and checker cores in a system.

Input Parameters

You can configure the input interface of the test pattern checker core using
the following parameters:

■ Number of Channels—The number of channels that the test pattern
checker core supports. Valid values are 1–256.

■ Data Bits Per Symbol—The number of bits per symbol for the input
interface. Valid values are 1–256.

■ Data Symbols Per Beat—The number of symbols (words) that are
transferred per beat. Valid values are 1–32.

■ Include Packet Support—Indicates whether or not packet transfers
are supported. Packet support includes the startofpacket,
endofpacket, and empty signals.

■ Error Signal Width (bits)—The width of the error signal on the
input interface. Valid values are 0–31. A value of 0 indicates that the
error signal is not in use.

Device and
Tools Support

For each device family, the test pattern generator and checker cores
provide either full or preliminary support:

■ Full support means the component meets all functional and timing
requirements for the device family and may be used in production
designs.

■ Preliminary support means the component meets all functional
requirements, but might still be undergoing timing analysis for the
device family; it may be used in production designs with caution.

Altera Corporation 21–9
October 2007

Installation and Licensing

Altera Corporation 21–9
October 2007

Installation and Licensing

Figure 21–3 shows the level of support offered by the test pattern
generator and checker cores to each Altera device family.

Installation and
Licensing

The test pattern generator and checker cores are included in the Altera
MegaCore® IP Library, which is an optional part of the Quartus® II
software installation. After you install the MegaCore IP Library, SOPC
Builder recognizes these components and can instantiate them into a
system.

You can use the test pattern generator and checker for free without a
license in any design targeting an Altera device.

Hardware
Simulation
Considerations

The test pattern generator and checker cores do not provide a simulation
testbench for simulating a stand-alone instance of the component.
However, you can use the standard SOPC Builder simulation flow to
simulate the component design files inside an SOPC Builder system.

Table 21–3. Device Family Support

Device Family
Support

Test Pattern Generator Test Pattern Checker

Arria™ GX Preliminary Preliminary

Cyclone III Preliminary Preliminary

Cyclone II Full Full

Cyclone Full Full

HardCopy® II Full Full

Stratix III Preliminary Preliminary

Stratix II GX Full Full

Stratix II Full Full

Stratix GX Full Full

Stratix Full Full

21–10 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–10 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Software
Programming
Model

This section describes the software programming model for the test
pattern generator and checker cores.

HAL System Library Support

For Nios II processor users, Altera provides HAL system library drivers
that enable you to initialize and access the test pattern generator and
checker cores. Altera recommends you to use the provided drivers to
access the cores instead of accessing the registers directly.

For Nios II IDE users, copy the provided drivers from the following
installation folders to your software application directory:

■ <IP installation directory> /ip /sopc_builder_ip
/altera_avalon_data_source/HAL

■ <IP installation directory>/ip/sopc_builder_ip/
altera_avalon_data_sink/HAL

Software Files

The following software files define the low-level access to the hardware,
and provide the routines for the HAL device drivers. Application
developers should not modify these files.

■ Software files provided with the test pattern generator core:
● data_source_regs.h—The header file that defines the test

pattern generator’s register maps.
● data_source_util.h, data_source_util.c—The header and source

code for the functions and variables required to integrate the
driver into the HAL system library.

■ Software files provided with the test pattern checker core:
● data_sink_regs.h—The header file that defines the core’s

register maps.
● data_sink_util.h, data_sink_util.c—The header and source

code for the functions and variables required to integrate the
driver into the HAL system library.

Register Maps

This section describes the register maps for the test pattern generator and
checker cores.

Altera Corporation 21–11
October 2007

Software Programming Model

Altera Corporation 21–11
October 2007

Software Programming Model

Test Pattern Generator Control and Status Registers

Table 21–4 shows the offset for the test pattern generator control and
status registers. Each register is 32 bits wide.

Table 21–5 describes the status register bits.

Table 21–6 describes the control register bits.

Table 21–4. Test Pattern Generator Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2 fill

Table 21–5. Status Field Descriptions

Bit(s) Name Access Description

15:0 ID RO A constant value of 0x64.

23:16 NUMCHANNELS RO The configured number of channels.

30:24 NUMSYMBOLS RO The configured number of symbols per beat.

31 SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 21–6. Control Field Descriptions

Bit(s) Name Access Description

0 ENABLE RW Setting this bit to 1 enables the test pattern generator core.

7:1 Reserved

16:8 THROTTLE RW Specifies the throttle value which can be between 0 and 256,
inclusively. This value is used in conjunction with a pseudorandom
number generator to throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core.
Setting it to 256 causes the test pattern generator core to run at full
throttle. Values between 0 and 256 result in a data rate proportional
to the throttle value.

17 SOFT RESET RW When this bit is set to 1, all internal counters and statistics are reset.
Write 0 to this bit to exit reset.

31:18 Reserved

21–12 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–12 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Table 21–7 describes the fill register bits.

Test Pattern Generator Command Registers

Table 21–8 shows the offset for the command registers. Each register is 32
bits wide.

Table 21–9 describes the cmd_lo register bits. The command is pushed
into the FIFO only when the cmd_lo register is written to.

Table 21–7. Fill Field Descriptions

Bit(s) Name Access Description

0 BUSY RO A value of 1 indicates that data transmission is in progress, or that
there is at least one command in the command queue.

6:1 Reserved

15:7 FILL RO The number of commands currently in the command FIFO.

31:16 Reserved

Table 21–8. Test Pattern Generator Command Register Map

Offset Register Name

base + 0 cmd_lo

base + 1 cmd_hi

Table 21–9. Cmd_lo Field Descriptions

Bit(s) Name Access Description

15:0 SIZE RW The segment size in symbols. Except for the last segment in a
packet, the size of all segments must be a multiple of the configured
number of symbols per beat. If this condition is not met, the test
pattern generator core inserts additional symbols to the segment to
ensure the condition is fulfilled.

29:16 CHANNEL RW The channel to send the segment on. If the channel signal is less
than 14 bits wide, the low order bits of this register are used to drive
the signal.

30 SOP RW Set this bit to 1 when sending the first segment in a packet. This bit
is ignored when packets are not supported.

31 EOP RW Set this bit to 1 when sending the last segment in a packet. This bit
is ignored when packets are not supported.

Altera Corporation 21–13
October 2007

Software Programming Model

Altera Corporation 21–13
October 2007

Software Programming Model

Table 21–10 describes the cmd_hi register bits.

Test Pattern Checker Control and Status Registers

Table 21–11 shows the offset for the control and status registers. Each
register is 32 bits wide.

Table 21–12 describes the status register bits.

Table 21–10. Cmd_hi Field Descriptions

Bit(s) Name Access Description

15:0 SIGNALLED
ERROR

RW Specifies the value to drive the error signal. A non-zero value
creates a signalled error.

23:16 DATA ERROR RW The output data is XORed with the contents of this register to create
data errors. To stop creating data errors, set this register to 0.

24 SUPRESS SOP RW Set this bit to 1 to suppress the assertion of the startofpacket
signal when the first segment in a packet is sent.

25 SUPRESS EOP RW Set this bit to 1 to suppress the assertion of the endofpacket
signal when the last segment in a packet is sent.

Table 21–11. Test Pattern Checker Control and Status Register Map

Offset Register Name

base + 0 status

base + 1 control

base + 2
Reservedbase + 3

base + 4

base + 5 exception_descriptor

base + 6 indirect_select

base + 7 indirect_count

Table 21–12. Status Field Descriptions (Part 1 of 2)

Bit(s) Name Access Description

15:0 ID RO Contains a constant value of 0x65.

23:16 NUMCHANNELS RO The configured number of channels.

21–14 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–14 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

Table 21–13 describes the control register bits.

Table 21–14 describes the exception_descriptor register bits. If there
is no exception, reading this register returns 0.

30:24 NUMSYMBOLS RO The configured number of symbols per beat.

31 SUPPORTPACKETS RO A value of 1 indicates packet support.

Table 21–12. Status Field Descriptions (Part 2 of 2)

Bit(s) Name Access Description

Table 21–13. Control Field Descriptions

Bit(s) Name Access Description

0 ENABLE RW Setting this bit to 1 enables the test pattern checker.

7:1 Reserved

16:8 THROTTLE RW Specifies the throttle value which can be between 0 and 256,
inclusively. This value is used in conjunction with a pseudorandom
number generator to throttle the data generation rate.

Setting THROTTLE to 0 stops the test pattern generator core.
Setting it to 256 causes the test pattern generator core to run at full
throttle. Values between 0 and 256 result in a data rate proportional
to the throttle value.

17 SOFT RESET RW When this bit is set to 1, all internal counters and statistics are
reset. Write 0 to this bit to exit reset.

31:18 Reserved

Table 21–14. Exception_descriptor Field Descriptions

Bit(s) Name Access Description

0 DATA ERROR RO A value of 1 indicates that an error is detected in the incoming data.

1 MISSINGSOP RO A value of 1 indicates missing start-of-packet.

2 MISSINGEOP RO A value of 1 indicates missing end-of-packet.

7:3 Reserved

15:8 SIGNALLED
ERROR

RO The value of the error signal.

23:16 Reserved

31:24 CHANNEL RO The channel on which the exception was detected.

Altera Corporation 21–15
October 2007

Test Pattern Generator API

Altera Corporation 21–15
October 2007

Test Pattern Generator API

Table 21–15 describes the indirect_select register bits.

Table 21–16 describes the indirect_count register bits.

Test Pattern
Generator API

This section describes the application programming interface (API) for
the test pattern generator core. All APIs are currently not available from
the interrupt service routine (ISR).

data_source_reset()

Table 21–15. Indirect_select Field Descriptions

Bit Bits Name Access Description

7:0 INDIRECT
CHANNEL

RW Specifies the channel number that applies to the INDIRECT
PACKET COUNT, INDIRECT SYMBOL COUNT, and INDIRECT
ERROR COUNT registers.

15:8 Reserved

31:16 INDIRECT
ERROR

RO The number of data errors that occurred on the channel specified
by INDIRECT CHANNEL.

Table 21–16. Indirect_count Field Descriptions

Bit Bits Name Access Description

15:0 INDIRECT
PACKET
COUNT

RO The number of packets received on the channel specified by
INDIRECT CHANNEL.

31:16 INDIRECT
SYMBOL
COUNT

RO The number of symbols received on the channel specified by
INDIRECT CHANNEL.

Prototype: void data_source_reset(alt_u32 base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void

Description: This function resets the test pattern generator core
including all internal counters and FIFOs. The control and
status registers are not reset by this function.

21–16 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–16 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

data_source_init()

data_source_get_id()

data_source_get_supports_packets()

Prototype: int data_source_init(alt_u32 base,
alt_u32 command_base);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
command_base—The base address of the command
slave.

Returns: 1—Initialization is successful.
0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize
the test pattern generator core:
● Resets and disables the test pattern generator core.
● Sets the maximum throttle.
● Clears all inserted errors.

Prototype: int data_source_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern generator core’s identifier.

Description: This function retrieves the test pattern generator core’s
identifier.

Prototype: int data_source_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.
0—Packets are not supported.

Description: This function checks if the test pattern generator core
supports packets.

Altera Corporation 21–17
October 2007

Test Pattern Generator API

Altera Corporation 21–17
October 2007

Test Pattern Generator API

data_source_get_num_channels()

data_source_get_symbols_per_cycle()

data_source_set_enable()

Prototype: int
data_source_get_num_channels(alt_u32
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported
by the test pattern generator core.

Prototype: int data_source_get_symbols(alt_u32
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols transferred in a beat.

Description: This function retrieves the number of symbols transferred
by the test pattern generator core in each beat.

Prototype: void data_source_set_enable(alt_u32
base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
value—The ENABLE bit is set to the value of this
parameter.

Returns: void

Description: This function enables or disables the test pattern
generator core. When disabled, the test pattern generator
core stops data transmission but continues to accept
commands and stores them in the FIFO.

21–18 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–18 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

data_source_get_enable()

data_source_set_throttle()

data_source_get_throttle()

Prototype: int data_source_get_enable(alt_u32
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

Prototype: void data_source_set_throttle(alt_u32
base, alt_u32 value);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.
value—The throttle value.

Returns: void

Description: This function sets the throttle value, which can be
between 0 and 256 inclusively. The throttle value, when
divided by 256 yields the rate at which the test pattern
generator sends data.

Prototype: int data_source_get_throttle(alt_u32
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the current throttle value.

Altera Corporation 21–19
October 2007

Test Pattern Generator API

Altera Corporation 21–19
October 2007

Test Pattern Generator API

data_source_is_busy()

data_source_fill_level()

Prototype: int data_source_is_busy(alt_u32 base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—The test pattern generator core is busy.
0—The core is not busy.

Description: This function checks if the test pattern generator is busy.
The test pattern generator core is busy when it is sending
data or has data in the command FIFO to be sent.

Prototype: int data_source_fill_level(alt_u32
base);

Thread-safe: Yes.

Include: <data_source_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of commands in the command FIFO.

Description: This function retrieves the number of commands currently
in the command FIFO.

21–20 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–20 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

data_source_send_data()

Prototype: int data_source_send_data(alt_u32
cmd_base, alt_u32 channel, alt_u32 size,
alt_u32 flags, alt_u32 error, alt_u32
data_error_mask);

Thread-safe: No.

Include: <data_source_util.h>

Parameters: cmd_base—The base address of the command slave.
channel—The channel to send the data on.
size—The data size.
flags—Specifies whether to send or suppress SOP and
EOP signals. Valid values are
DATA_SOURCE_SEND_SOP,
DATA_SOURCE_SEND_EOP,
DATA_SOURCE_SEND_SUPRESS_SOP and
DATA_SOURCE_SEND_SUPRESS_EOP.
error—The value asserted on the error signal on the
output interface.
data_error_mask—This parameter and the data are
XORed together to produce erroneous data.

Returns: Always returns 1.

Description: This function sends a data fragment to the specified
channel.

If packets are supported, user applications must ensure
the following conditions are met:
● SOP and EOP are used consistently in each channel.
● Except for the last segment in a packet, the length of

each segment is a multiple of the data width.

If packets are not supported, user applications must
ensure the following conditions are met:
● No SOP and EOP indicators in the data.
● The length of each segment in a packet is a multiple of

the data width.

Altera Corporation 21–21
October 2007

Test Pattern Checker API

Altera Corporation 21–21
October 2007

Test Pattern Checker API

Test Pattern
Checker API

This section describes the API for the test pattern checker core. The APIs
are currently not available from the ISR.

data_sink_reset()

data_sink_init()

data_sink_get_id()

Prototype: void data_sink_reset(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: void

Description: This function resets the test pattern checker core
including all internal counters.

Prototype: int data_source_init(alt_u32 base);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Initialization is successful.
0—Initialization is unsuccessful.

Description: This function performs the following operations to initialize
the test pattern checker core:
● Resets and disables the test pattern checker core.
● Sets the throttle to the maximum value.

Prototype: int data_sink_get_id(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The test pattern checker core’s identifier.

Description: This function retrieves the test pattern checker core’s
identifier.

21–22 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–22 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

data_sink_get_supports_packets()

data_sink_get_num_channels()

data_sink_get_symbols_per_cycle()

Prototype: int data_sink_init(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: 1—Packets are supported.
0—Packets are not supported.

Description: This function checks if the test pattern checker core
supports packets.

Prototype: int data_sink_get_num_channels(alt_u32
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of channels supported.

Description: This function retrieves the number of channels supported
by the test pattern checker core.

Prototype: int data_sink_get_symbols(alt_u32
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The number of symbols received in a beat.

Description: This function retrieves the number of symbols received by
the test pattern checker core in each beat.

Altera Corporation 21–23
October 2007

Test Pattern Checker API

Altera Corporation 21–23
October 2007

Test Pattern Checker API

data_sink_set enable()

data_sink_get_enable()

data_sink_set_throttle()

Prototype: void data_sink_set_enable(alt_u32 base,
alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
value—The ENABLE bit is set to the value of this
parameter.

Returns: void

Description: This function enables the test pattern checker core.

Prototype: int data_sink_get_enable(alt_u32 base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The value of the ENABLE bit.

Description: This function retrieves the value of the ENABLE bit.

Prototype: void data_sink_set_throttle(alt_u32
base, alt_u32 value);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
value—The throttle value.

Returns: void

Description: This function sets the throttle value, which can be
between 0 and 256 inclusively. The throttle value, when
divided by 256 yields the rate at which the test pattern
checker receives data.

21–24 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–24 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

data_sink_get_throttle()

data_sink_get_packet_count()

data_sink_get_symbol_count()

Prototype: int data_sink_get_throttle(alt_u32
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The throttle value.

Description: This function retrieves the throttle value.

Prototype: int data_sink_get_packet_count(alt_u32
base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of packets received on the given channel.

Description: This function retrieves the number of packets received on
a given channel.

Prototype: int data_sink_get_symbol_count(alt_u32
base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of symbols received on the given channel.

Description: This function retrieves the number of symbols received on
a given channel.

Altera Corporation 21–25
October 2007

Test Pattern Checker API

Altera Corporation 21–25
October 2007

Test Pattern Checker API

data_sink_get_error_count()

data_sink_get_exception()

data_sink_exception_is_exception()

Prototype: int data_sink_get_error_count(alt_u32
base, alt_u32 channel);

Thread-safe: No.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.
channel—Channel number.

Returns: The number of errors received on the given channel.

Description: This function retrieves the number of errors received on a
given channel.

Prototype: int data_sink_get_exception(alt_u32
base);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: base—The base address of the control and status slave.

Returns: The first exception descriptor in the exception FIFO.
0—No exception descriptor found in the exception FIFO.

Description: This function retrieves the first exception descriptor in the
exception FIFO and pops it off the FIFO.

Prototype: int
data_sink_exception_is_exception(int
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor

Returns: 1—Indicates an exception.
0—No exception.

Description: This function checks if a given exception descriptor
describes a valid exception.

21–26 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–26 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

data_sink_exception_has_data_error()

data_sink_exception_has_missing_sop()

data_sink_exception_has_missing_eop()

Prototype: int
data_sink_exception_has_data_error(int
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor

Returns: 1—Data has errors.
0—No errors.

Description: This function checks if a given exception indicates
erroneous data.

Prototype: int
data_sink_exception_has_missing_sop(int
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing SOP.
0—Other exception types.

Description: This function checks if a given exception descriptor
indicates missing SOP.

Prototype: int
data_sink_exception_has_missing_eop(int
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: 1—Missing EOP.
0—Other exception types.

Description: This function checks if a given exception descriptor
indicates missing EOP.

Altera Corporation 21–27
October 2007

Referenced Document

Altera Corporation 21–27
October 2007

Referenced Document

data_sink_exception_signalled_error()

data_sink_exception_channel()

Referenced
Document

This chapter references the Avalon Streaming Interface Specification.

Document
Revision History

Table 21–17 shows the revision history for this chapter.

Prototype: int
data_sink_exception_signalled_error(int
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The signalled error value.

Description: This function retrieves the value of the signalled error
from the exception.

Prototype: int data_sink_exception_channel(int
exception);

Thread-safe: Yes.

Include: <data_sink_util.h>

Parameters: exception—Exception descriptor.

Returns: The channel number on which the given exception
occurred.

Description: This function retrieves the channel number on which a
given exception occurred.

Table 21–17. Document Revision History

Date and
Document

Version
Changes Made Summary of Changes

October 2007
v7.2.0

Initial release. —

21–28 Altera Corporation
 October 2007

Quartus II Handbook, Volume 5

21–28 Altera Corporation
October 2007

Quartus II Handbook, Volume 5

	Quartus II Version 7.2 Handbook Volume 1: Design and Synthesis
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Section I. Design Flows
	1. Design Planning with the Quartus II Software
	Introduction
	Device and Programming/ Configuration Method Selection
	Device Selection
	Device Migration Planning
	Programming/Configuration Method Selection

	Early Planning Tools for Power and I/O
	Early Power Estimation
	Early Power Estimator File

	Early Pin Planning and I/O Analysis
	Creating a Top-Level Design File for I/O Analysis

	Selecting Third- Party EDA Tool Flows
	Synthesis Tools
	Simulation Tools
	Formal Verification Tools

	Planning for On-Chip Debugging Options
	Planning for an Incremental Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation with Design Partitions
	Top-Down Versus Bottom-Up Incremental Flows
	Top-Down Incremental Compilation Flow
	Bottom-Up and Team-Based Incremental Compilation Flow
	Mixed Incremental Compilation Flow

	Planning Design Partitions
	Creating a Design Floorplan

	Early Timing Estimation
	Conclusion
	Referenced Documents
	Document Revision History

	2. Quartus II Incremental Compilation for Hierarchical and Team-Based Design
	Introduction
	Choosing a Quartus II Compilation Flow
	Flat Compilation Flow with No Design Partitions
	Incremental Compilation Flow with Design Partitions
	Top-Down versus Bottom-Up Compilation Flows

	Quick Start Guide - Summary of Steps for an Incremental Compilation Flow
	Top-Down Incremental Compilation Flow
	Preparing a Design for Top-Down Incremental Compilation
	Compiling a Design Using Incremental Compilation

	Bottom-Up Incremental Compilation
	Preparing a Design for Bottom-Up Incremental Compilation
	Creating and Compiling Lower-Level Projects
	Exporting Lower-Level Projects
	Importing Lower-Level Projects into the Top-Level Project
	Performing an Incremental Compilation in the Top-Level Project

	Design Partitions
	Design Partition Assignments Compared to Physical Placement Assignments

	Creating Design Partitions
	Partition Name

	Setting the Netlist Type for Design Partitions
	Fitter Preservation Level
	Empty Partitions
	What Represents a Source Change for Incremental Compilation?
	Determining Which Partitions Will Be Recompiled
	Forcing Use of the Post-Fitting Netlist When a Source File has Changed

	Creating a Design Floorplan With LogicLock Location Assignments
	Taking Advantage of the Early Timing Estimator

	Exporting and Importing Partitions for Bottom-Up Design Flows
	Quartus II Exported Partition File (.qxp)
	Exporting a Lower-Level Partition to be Used in a Top-Level Project
	Exporting a Lower-Level Block within a Project
	Importing a Lower-Level Partition Into the Top-Level Project
	Importing Assignments and Advanced Import Settings
	Design Partition Properties after Importing
	Importing Design Partition Assignments Within the Subdesign
	Synopsys Design Constraint (SDC) Files for the Quartus II TimeQuest Timing Analyzer
	Importing LogicLock Assignments
	Importing Other Instance Assignments
	Importing Global Assignments
	Advanced Import Settings
	Allow Creation of New Assignments
	Promote Assignments to all Instances of the Imported Entity
	Assignment Conflict Resolution: LogicLock Regions
	Assignment Conflict Resolution: Other Assignments

	Generating Bottom-Up Design Partition Scripts for Project Management
	Project Creation
	Excluded Partitions
	Assignments from the Top-Level Design
	Virtual Pin Assignments
	Virtual Pin Timing and Location Assignments

	LogicLock Region Assignments
	Global Signal Promotion Assignments
	Makefile Generation

	Guidelines for Creating Good Design Partitions and LogicLock Regions
	Creating Good Design Partitions
	Partition Statistics Reports
	Resource Balancing
	RAM and DSP Blocks
	Global Routing Signals

	Timing Budgeting
	Methodology to Check Partition Quality during Partition Planning
	The Importance of Floorplan Location Assignments in Incremental Compilation
	Creating Good Floorplan Location Assignments
	Excluding Certain Device Elements (such as RAM or DSP Blocks) with Resource Exceptions

	Incremental Compilation Advisor
	Criteria for Successful Partition and Floorplan Schemes

	Recommended Design Flows and Compilation Application Examples
	Top-Down Incremental Design Flows
	Design Flow 1-Changing a Source File for One of Multiple Partitions in a Top-Down Compilation Flow
	Design Flow 2-Optimizing the Placement for One of Multiple Partitions in a Top-Down Compilation Flow
	Design Flow 3-Preserving One Critical Partition in a Multiple-Partition Design in a Top-Down Compilation Flow
	Design Flow 4-Placing All but One Critical Partition in a Multiple-Partition Design in a Top-Down Compilation Flow

	Bottom-Up Incremental Design Flows
	Design Flow 5-Implementing a Team-Based Bottom-Up Design Flow
	Resolving Assignment Conflicts During Import
	Importing a Partition to be Instantiated Multiple Times

	Design Flow 6-Performing Design Iteration in a Bottom-Up Design Flow
	Design Flow 7-Creating Hard-Wired Macros for IP Reuse

	Incremental Compilation Restrictions
	Using Incremental Synthesis Only Instead of Full Incremental Compilation
	Preserving Exact Timing Performance
	Using Incremental Compilation with Quartus II Archive Files
	Formal Verification Support
	OpenCore Plus MegaCore Functions in Bottom-Up Flows
	Importing Encrypted IP Cores in Bottom-Up Flows
	SignalProbe Pins and Engineering Change Management with the Chip Planner
	Linked Partitions Due to SignalProbe Pins or ECO Changes
	Exported Partitions

	SignalTap II Embedded Logic Analyzer in Bottom-Up Compilation Flows
	Logic Analyzer Interface in Bottom-Up Compilation Flows
	Migrating Projects with Design Partitions to Different Devices
	HardCopy Compilation Flows
	HardCopy APEX and HardCopy Stratix Devices
	HardCopy II Migration Flows
	HardCopy II Stand-Alone Compilations

	Assignments Made in HDL Source Code in Bottom-Up Flows
	Compilation Time with Physical Synthesis Optimizations
	Restrictions on Megafunction Partitions
	Routing Preservation in Bottom-Up Compilation Flows
	Bottom-Up Design Partition Script Limitations
	Synopsys Design Constraint (SDC) Files for the TimeQuest Timing Analyzer
	Wildcard Support in Bottom-Up Design Partition Scripts
	Derived Clocks and PLLs in Bottom-Up Design Partition Scripts
	Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition Scripts

	Register Packing and Partition Boundaries
	I/O Register Packing
	Examples of I/O Register Packing Across Partition Boundaries
	Example 1-Output Register in Partition Feeding Output Pin
	Example 2-Output Register in Partition Feeding Multiple Output Pins
	Example 3-Output Register, Output Enable Register and Tri-State Logic in Partition Feeding Output Pin
	Example 4-Output Register, Output Enable Register, or Both, in Partition Feeding Tri-State Output Pin
	Example 5-Bidirectional Logic in Partition Feeding Bidirectional Pin
	Example 6-Input Register in Partition Fed by Input Pin
	Example 8-Inverted Input Register in Partition Fed by Input Pin

	Scripting Support
	Generate Incremental Compilation Tcl Script Command
	Preparing a Design for Incremental Compilation
	Creating Design Partitions
	Setting Properties of Design Partitions
	Creating Good Floorplan Location Assignments-Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)
	Generating Bottom-Up Design Partition Scripts
	Command Line Support

	Exporting a Partition to be Used in a Top-Level Project
	Importing a Lower-Level Partition into the Top-Level Project
	Makefiles
	Recommended Design Flows and Compilation Application Examples
	Example 2-1. AB_project
	Design Flow 1-Changing a Source File for One of Multiple Partitions in a Top-Down Compilation Flow
	Design Flow 2-Optimizing the Placement for One of Multiple Partitions in a Top-Down Compilation Flow

	Conclusion
	Referenced Documents
	Document Revision History

	3. Quartus II Design Flow for MAX+PLUS II Users
	Introduction
	Chapter Overview
	Typical Design Flow
	Device Support
	Quartus II GUI Overview
	Project Navigator
	Node Finder
	Tcl Console
	Messages
	Status

	Setting Up MAX+PLUS II Look and Feel in Quartus II
	MAX+PLUS II Look and Feel
	Compiler Tool
	Analysis and Synthesis
	Partition Merge
	Fitter
	Assembler
	Timing Analyzer
	EDA Netlist Writer
	Design Assistant

	MAX+PLUS II Design Conversion
	Converting an Existing MAX+PLUS II Design
	Converting MAX+PLUS II Graphic Design Files
	Importing MAX+PLUS II Assignments

	Quartus II Design Flow
	Creating a New Project
	Design Entry
	Making Assignments
	Assignment Editor
	Timing Assignments

	Synthesis
	Functional Simulation
	Place and Route
	Timing Analysis
	Timing Closure Floorplan
	Timing Simulation
	Quartus II Simulator Tool
	EDA Timing Simulation

	Power Estimation
	Programming

	Conclusion
	Quick Menu Reference
	Quartus II Command Reference for MAX+PLUS II Users
	Referenced Documents
	Document Revision History

	4. Quartus II Support for HardCopy Series Devices
	Introduction
	HardCopy II Device Support
	HardCopy II Design Benefits
	Quartus II Features for HardCopy II Planning

	HardCopy II Development Flow
	Designing the Stratix II FPGA First
	Designing the HardCopy II Device First

	HardCopy II Device Resource Guide
	HardCopy II Companion Device Selection
	HardCopy II Recommended Settings in the Quartus II Software
	Limit DSP and RAM to HardCopy II Device Resources
	Enable Design Assistant to Run During Compile
	Timing Settings
	TimeQuest
	Setting Up the TimeQuest Timing Analyzer

	Constraints for Clock Effect Characteristics
	Quartus II Software Features Supported for HardCopy II Designs
	Physical Synthesis Optimization
	LogicLock™ Regions
	PowerPlay Power Analyzer
	Incremental Compilation
	Maximum Fanout Assignments

	Performing ECOs with Quartus II Engineering Change Management with the Chip Planner
	Migrating One-to-One Changes
	Migrating Changes that Must be Implemented Differently
	Changes that Cannot be Migrated

	Overall Migration Flow
	Preparing the Revisions
	Applying ECO Changes

	Formal Verification of Stratix II and HardCopy II Revisions
	HardCopy II Utilities Menu
	Companion Revisions
	Compiling the HardCopy II Companion Revision
	Comparing HardCopy II and Stratix II Companion Revisions
	Generate a HardCopy II Handoff Report
	Archive HardCopy II Handoff Files
	HardCopy II Advisor
	HardCopy II Floorplan View

	HardCopy Stratix Device Support
	Features
	HARDCOPY_FPGA _PROTOTYPE, HardCopy Stratix and Stratix Devices
	HardCopy Design Flow
	The Design Flow Steps of the One-Step Process
	Compile the Design for an FPGA
	Migrate the Compiled Project
	Close the Quartus FPGA Project
	Open the Quartus HardCopy Project
	Compile for HardCopy Stratix Device

	How to Design HardCopy Stratix Devices
	HardCopy Timing Optimization Wizard
	Tcl Support for HardCopy Migration

	Design Optimization and Performance Estimation
	Design Optimization
	Performance Estimation
	Buffer Insertion
	Placement Constraints

	Location Constraints
	LAB Assignments
	LogicLock Assignments
	Example 4-1. LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE Quartus II Settings File
	Example 4-2. LogicLock Region Definition in the Migrated HardCopy Stratix Quartus II Settings File

	Checking Designs for HardCopy Design Guidelines
	Altera-Recommended HDL Coding Guidelines
	Design Assistant
	Design Assistant Settings
	Running Design Assistant

	Reports and Summary

	Generating the HardCopy Design Database
	Static Timing Analysis
	Early Power Estimation
	HardCopy Stratix Early Power Estimation
	HardCopy APEX Early Power Estimation

	Tcl Support for HardCopy Stratix
	Targeting Designs to HardCopy APEX Devices
	Conclusion
	Referenced Documents
	Document Revision History

	Section II. Design Guidelines
	5. Design Recommendations for Altera Devices and the Quartus II Design Assistant
	Introduction
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Design Guidelines
	Combinational Logic Structures
	Combinational Loops
	Latches
	Delay Chains
	Pulse Generators and Multivibrators

	Clocking Schemes
	Internally Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Methods

	Checking Design Violations Using the Design Assistant
	Quartus II Design Flow with the Design Assistant
	The Design Assistant Settings Page
	Message Severity Levels
	Design Assistant Rules
	Summary of Rules and IDs
	Design Should Not Contain Combinational Loops
	Register Output Should Not Drive Its Own Control Signal Directly or through Combinational Logic
	Design Should Not Contain Delay Chains
	Design Should Not Contain Ripple Clock Structures
	Pulses Should Not Be Implemented Asynchronously
	Multiple Pulses Should Not Be Generated in the Design
	Design Should Not Contain SR Latches
	Design Should Not Contain Latches
	Combinational Logic Should Not Directly Drive Write Enable Signal of Asynchronous RAM
	Design Should Not Contain Asynchronous Memory
	Gated Clocks Should Be Implemented According to Altera Standard Scheme
	Logic Cell Should Not Be Used to Generate Inverted Clock
	Gated Clock Is Not Feeding At Least A Pre-Defined Number Of Clock Ports to Effectively Save Power: <n>
	Clock Signal Source Should Drive Only Input Clock Ports
	Clock Signal Should Be a Global Signal
	Clock Signal Source Should Not Drive Registers that Are Triggered by Different Clock Edges
	Combinational Logic Used as a Reset Signal Should Be Synchronized
	External Reset Should Be Synchronized Using Two Cascaded Registers
	External Reset Should Be Synchronized Correctly
	Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains Should Be Synchronized Correctly
	Reset Signal Generated in One Clock Domain and Used in Other Asynchronous Clock Domains Should Be Synchronized
	Output Enable and Input of the Same Tri-state Nodes Should Not Be Driven by the Same Signal Source
	Synchronous Port and Asynchronous Port of the Same Register Should Not Be Driven by the Same Signal Source
	More Than One Asynchronous Signal Source of the Same Register Should Not Be Driven by the Same Source
	Clock Port and Any Other Signal Port of the Same Register Should Not Be Driven by the Same Signal Source
	Nodes with More Than Specified Number of Fan-outs: <n>
	Top Nodes with Highest Fan-out: <n>
	Data Bits Are Not Synchronized When Transferred between Asynchronous Clock Domains
	Multiple Data Bits Transferred Across Asynchronous Clock Domains Are Synchronized, But Not All Bits May Be Aligned in the Receiving Clock Domain
	Data Bits Are Not Correctly Synchronized When Transferred Between Asynchronous Clock Domains
	Only One VREF Pin Should Be Assigned to HardCopy Test Pin in an I/O Bank
	A PLL Drives Multiple Clock Network Types
	Data Bits Are Not Synchronized When Transferred to the State Machine of Asynchronous Clock Domains
	No Reset Signal Defined to Initialize the State Machine
	State Machine Should Not Contain Unreachable State
	State Machine Should Not Contain a Deadlock State
	State Machine Should Not Contain a Dead Transition

	Enabling and Disabling Design Assistant Rules
	Using the Assignment Editor
	Using Verilog HDL
	Using VHDL
	Using TCL Commands

	Viewing Design Assistant Results
	Summary Report
	Settings Report
	Detailed Results Report
	Messages Report
	HardCopy Test Pins Report
	Rule Suppression Assignments Report
	Ignored Design Assistant Assignments Report

	Targeting Clock and Register-Control Architectural Features
	Clock Network Resources
	Reset Resources
	Register Control Signals

	Conclusion
	Referenced Documents
	Document Revision History

	6. Recommended HDL Coding Styles
	Introduction
	Quartus II Language Templates
	Using Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Creating a Netlist File for Other Synthesis Tools
	Instantiating Megafunctions Using the Port and Parameter Definition

	Inferring Multiplier and DSP Functions from HDL Code
	Multipliers-Inferring the lpm_mult Megafunction from HDL Code
	Example 6-1. Verilog HDL Unsigned Multiplier
	Example 6-2. Verilog HDL Signed Multiplier with Input and Output Registers (Pipelining = 2)
	Example 6-3. VHDL Unsigned Multiplier with Input and Output Registers (Pipelining = 2)
	Example 6-4. VHDL Signed Multiplier

	Multiply-Accumulators and Multiply-Adders-Inferring altmult_accum and altmult_add Megafunctions from HDL Code
	Example 6-5. Verilog HDL Unsigned Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)
	Example 6-6. Verilog HDL Signed Multiply-Adder (Latency = 0)
	Example 6-7. VHDL Unsigned Multiply-Adder with Input, Output and Pipeline Registers (Latency = 3)
	Example 6-8. VHDL Signed Multiply-Accumulator with Input, Output and Pipeline Registers (Latency = 3)

	Inferring Memory Functions from HDL Code
	RAM Functions-Inferring altsyncram and altdpram Megafunctions from HDL Code
	Use Synchronous Memory Blocks
	Avoid Unsupported Reset Conditions
	Example 6-9. Verilog RAM with Reset Signal that Clears RAM Contents: Not Supported in Device Architecture
	Example 6-10. Verilog RAM with Reset Signal that Affects RAM: Not Supported in Device Architecture
	Check Read-During-Write Behavior
	Single-Clock Synchronous RAM with Old Data Read-During-Write Behavior
	Example 6-11. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During- Write Behavior
	Example 6-12. VHDL Single-Clock Simple Dual-Port Synchronous RAM with Old Data Read-During-Write Behavior
	Single-Clock Synchronous RAM with New Data Read-During-Write Behavior
	Example 6-13. Verilog HDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During- Write Behavior
	Example 6-14. VHDL Single-Clock Simple Dual-Port Synchronous RAM with New Data Read-During-Write Behavior
	Simple Dual-Port, Dual-Clock Synchronous RAM
	Example 6-15. Verilog HDL Simple Dual-Port, Dual-Clock Synchronous RAM
	Example 6-16. VHDL Simple Dual-Port, Dual-Clock Synchronous RAM
	True Dual-Port Synchronous RAM
	Example 6-17. Verilog HDL True Dual-Port RAM with Single Clock
	Example 6-18. VHDL True Dual-Port RAM with Single Clock
	Specifying Initial Memory Contents at Power-Up
	Example 6-19. Verilog HDL RAM with Initialized Contents
	Example 6-20. Verilog HDL RAM Initialized with the readmemb Command
	Example 6-21. VHDL RAM with Initialized Contents

	ROM Functions-Inferring altsyncram and lpm_rom Megafunctions from HDL Code
	Example 6-22. Verilog HDL Synchronous ROM
	Example 6-23. VHDL Synchronous ROM

	Shift Registers-Inferring the altshift_taps Megafunction from HDL Code
	Simple Shift Register
	Example 6-24. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
	Example 6-25. VHDL Single-Bit Wide, 64-Bit Long Shift Register
	Shift Register with Evenly Spaced Taps
	Example 6-26. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps
	Example 6-27. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

	Coding Guidelines for Registers and Latches
	Register Power-Up Values in Altera Devices
	Example 6-28. Verilog Register with Reset and High Power-Up Value
	Example 6-29. VHDL Register with Reset and High Power-Up Level

	Secondary Register Control Signals Such as Clear and Clock Enable
	Example 6-30. Verilog HDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
	Example 6-31. VHDL D-Type Flipflop (Register) with ena, aclr and aload Control Signals
	Example 6-32. Verilog HDL sload and sclr Control Signals
	Example 6-33. VHDL sload and sclr Control Signals

	Latches
	Unintentional Latch Generation
	Example 6-34. VHDL Code Preventing Unintentional Latch Creation
	Inferring Latches Correctly
	Example 6-35. Verilog HDL Set-Reset Latch
	Example 6-36. VHDL Data Type Latch

	General Coding Guidelines
	Tri-State Signals
	Example 6-37. Verilog HDL Tri-State Signal
	Example 6-38. VHDL Tri-State Signal

	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Example 6-39. Verilog HDL Pipelined Binary Tree
	Architectures with 6-Input LUTs in Adaptive Logic Modules
	Example 6-40. Verilog HDL Pipelined Ternary Tree

	State Machines
	Verilog HDL State Machines
	Verilog HDL State Machine Coding Example

	Example 6-41. Verilog-2001 State Machine
	SystemVerilog State Machine Coding Example

	Example 6-42. SystemVerilog State Machine Using Enumerated Types
	VHDL State Machines
	VHDL State Machine Coding Example

	Example 6-43. VHDL State Machine

	Multiplexers
	Quartus II Software Option for Multiplexer Restructuring
	Multiplexer Types
	Binary Multiplexers

	Example 6-44. Verilog HDL Binary-Encoded Multiplexers
	Selector Multiplexers

	Example 6-45. Verilog HDL One-Hot-Encoded Case Statement
	Priority Multiplexers

	Example 6-46. VHDL IF Statement Implying Priority
	Default or Others Case Assignment
	Implicit Defaults
	Example 6-47. VHDL IF Statement with Implicit Defaults
	Example 6-48. VHDL IF Statement with Default Conditions Explicitly Specified
	Degenerate Multiplexers
	Example 6-49. VHDL CASE Statement Describing a Degenerate Multiplexer
	Example 6-50. VHDL Recoder Design for Degenerate Binary Multiplexer
	Example 6-51. VHDL 4:1 Binary Multiplexer Design
	Buses of Multiplexers

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Comparators
	Counters

	Designing with Low-Level Primitives
	Conclusion
	Referenced Documents
	Document Revision History

	Section III. Synthesis
	7. Synplicity Synplify and Synplify Pro Support
	Introduction
	Altera Device Family Support
	Design Flow
	Output Netlist File Name and Result Format

	Synplify Optimization Strategies
	Implementations in Synplify Pro
	Timing-Driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input/Output Delays
	Multicycle Paths
	False Paths

	FSM Compiler
	Example 7-1. VHDL Code for syn_encoding
	FSM Explorer in Synplify Pro

	Optimization Attributes and Options
	Retiming in Synplify Pro
	Maximum Fan-Out
	Preserving Nets
	Register Packing
	Resource Sharing
	Preserving Hierarchy
	Register Input and Output Delays
	Example 7-2. Specifying an Input or Output Register Delay Using Tcl Command Syntax
	syn_direct_enable
	Standard I/O Pad
	Example 7-3. Synplify SDC Syntax for the define_io_standard Constraint

	Altera-Specific Attributes
	altera_chip_pin_lc
	Example 7-4. Making Location Assignments to ACEX 1K and FLEX 10KE Devices, VHDL
	Example 7-5. Making Location Assignments to Other Devices, VHDL
	altera_implement_in_esb or altera_implement_in_eab
	altera_io_powerup
	altera_io_opendrain

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Synplify Software
	Using the Quartus II Software to Run the Synplify Software
	Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script
	Passing TimeQuest SDC Timing Constraints to the Quartus II Software in the .scf File
	Individual Clocks and Frequencies
	Input and Output Delay
	Multicycle Path
	False Path

	Passing Constraints to the Quartus II Software using Tcl Commands
	Global Signals
	Default or Global Clock Frequency
	Individual Clocks and Frequencies
	Example 7-6. Specifying Clock Frequencies for Individual Clocks
	Virtual Clocks
	Route Delay Option
	Multiple Clocks in Different Clock Groups
	Example 7-7. Specifying Clock Frequencies for Multiple Clocks
	Example 7-8. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Zero
	Example 7-9. Quartus II Assignments for Multiple Clocks if the Clock Rise Time is Not Zero
	Multiple Clocks with Different Frequencies in the Same Clock Group
	Example 7-10. Specifying Multiple Clocks with Different Frequencies in the Same Clock Group
	Example 7-11. Quartus II Assignments for Multiple Clocks with Different Frequencies in the Same Clock Group, if the Clock Rise Time is Zero
	Inter-Clock Relationships-Delays and False Paths between Clocks
	Example 7-12. Specifying Clock-to-Clock Delay Constraints
	False Paths
	False Path from a Signal
	False Path to a Signal
	False Path Through a Signal

	Multicycle Paths
	Multicycle Path from a Signal
	Multicycle Path to a Signal
	Multicycle Path Through a Signal

	Maximum Path Delays
	Maximum Path Delay from a Signal
	Maximum Path Delay to a Signal
	Maximum Path Delay through a Signal
	Register Input and Output Delays
	Default External Input Delay
	Port-Specific External Input Delay
	Default External Output Delay
	Port-Specific External Output Delay

	Guidelines for Altera Megafunctions and Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Black Box Megafunction Instantiation
	Example 7-13. Top-Level Verilog HDL Code with Black Box Instantiation of lpm_counter
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Black Box Megafunction Instantiation
	Example 7-14. Top-Level VHDL Code with Black Box Instantiation of lpm_counter
	Other Synplify Software Attributes for Creating Black Boxes
	Example 7-15. Verilog HDL Example

	Inferring Altera Megafunctions from HDL Code
	Inferring Multipliers
	Resource Balancing
	Controlling the Inferring of DSP Blocks
	Signal Level Attribute

	Example 7-16. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
	Example 7-17. Signal Attributes for Controlling DSP Block Inference in VHDL Code
	Inferring RAM
	Example 7-18. VHDL Code for Inferred Dual-Port RAM
	Example 7-19. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic
	RAM Initialization
	Example 7-20. Using $readmemb System Task to Initialize an Inferred RAM in Verilog HDL Code
	Example 7-21. Sample VQM Instance Containing Memory Initialization File from Example 7-20
	Inferring ROM
	Inferring Shift Registers

	Incremental Compilation and Block-Based Design
	Hierarchy and Design Considerations with Multiple VQM Files
	Creating a Design with Separate Netlist Files
	Creating a Design with Multiple VQM Files Using Synplify Pro MultiPoint Synthesis
	Set Compile Points and Create Constraint Files
	Defining Compile Points Using Tcl or SDC

	Example 7-22. The define_compile_point Command
	Manually Defining Compile Points from the GUI
	Automatically Defining Compile Points from the GUI

	Apply the LogicLock Attributes
	Creating a Quartus II Project for Multiple VQM Files
	Example 7-23. Commands for Each LogicLock Region in a Tcl File
	Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up LogicLock Design Flow

	Generating a Design with Multiple VQM Files Using Black Boxes
	Manually Creating Multiple VQM Files Using Black Boxes
	Creating Black Boxes in Verilog HDL

	Example 7-24. Verilog HDL Black Box for Top-Level File A.v
	Creating Black Boxes in VHDL

	Example 7-25. VHDL Black Box for Top-Level File A.vhd
	Creating a Quartus II Project for Multiple VQM Files
	Creating Compile Points in a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Design Flow

	Conclusion
	Referenced Documents
	Document Revision History

	8. Quartus II Integrated Synthesis
	Introduction
	Design Flow
	Language Support
	Verilog HDL Support
	Example 8-1. Controlling the Verilog HDL Input Version with a Synthesis Directive // synthesis VERILOG_INPUT_VERSION <language version>
	Verilog-2001 Support
	SystemVerilog Support
	Initial Constructs and Memory System Tasks
	Example 8-2. Verilog Example of Initializing RAM with the readmemb Command
	Example 8-3. Text File Format for Initializing RAM with the readmemb Command
	Verilog HDL Macros
	Setting a Verilog Macro Default Value in the GUI
	Setting a Verilog Macro Default Value on the Command Line

	Example 8-4. Command Syntax for Specifying a Verilog Macro
	Example 8-5. Specifying a Verilog Macro a = 2
	Example 8-6. Specifying Verilog Macros a = 2 and a = 3

	VHDL Support
	Example 8-7. Controlling the VHDL Input Version with a Synthesis Directive
	VHDL Standard Libraries and Packages

	AHDL Support
	Schematic Design Entry Support
	State Machine Editor
	Design Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
	Example 8-8. Specifying a Destination Library Name
	Specifying a Destination Library Name in a VHDL File
	Example 8-9. Using the library Synthesis Directive
	Mapping a VHDL Instance to an Entity in a Specific Library
	Direct Entity Instantiation

	Example 8-10. VHDL Example of Direct Entity Instantiation
	Component Instantiation-Explicit Binding Indication

	Example 8-11. VHDL Example of Explicit Binding Instantiation
	Component Instantiation-Default Binding

	Example 8-12. VHDL Example of Default Binding to the Entity in the Same Library as the Component Declaration
	Example 8-13. VHDL Example of Default Binding to the Directly Visible Entity

	Using Parameters/Generics
	Setting Default Parameter Values and BDF Instance Parameter Values
	Passing Parameters Between Two Design Languages
	Example 8-14. VHDL Parameterized Subdesign Entity
	Example 8-15. Verilog HDL Top-level Design Instantiating and Passing Parameters to VHDL Entity from Example 8-14
	Example 8-16. Verilog HDL Parameterized Subdesign Module
	Example 8-17. VHDL Top-level Design Instantiating and Passing Parameters to the Verilog Module from Example 8-16

	Incremental Synthesis and Incremental Compilation
	Partitions for Preserving Hierarchical Boundaries

	Quartus II Synthesis Options
	Setting Synthesis Options
	Analysis & Synthesis Settings Page of the Settings Dialog Box
	Quartus II Logic Options
	Synthesis Attributes
	Example 8-18. Synthesis Attributes in Verilog-1995 HDL
	Example 8-19. Synthesis Attributes in Verilog-2001 and SystemVerilog
	Example 8-20. Synthesis Attributes in VHDL
	Synthesis Directives
	Example 8-21. Synthesis Directives in Verilog HDL
	Example 8-22. Synthesis Directives in VHDL

	Optimization Technique
	Speed Optimization Technique for Clock Domains
	PowerPlay Power Optimization
	Restructure Multiplexers
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Example 8-23. Specifying User Encoded States with the syn_encoding Attribute in VHDL
	Example 8-24. Specifying User Encoded States with the syn_encoding Attribute in Verilog-2001

	Manually Specifying Enumerated Types Using the enum_encoding Attribute
	Example 8-25. Specifying an Arbitrary User Encoding for Enumerated Type
	Example 8-26. Specifying the “gray” Encoding Style or Enumeration Type

	Safe State Machines
	Example 8-27. Verilog HDL Example of a Safe State Machine Attribute
	Example 8-28. Verilog-2001 Example of a Safe State Machine Attribute
	Example 8-29. VHDL Example of a Safe State Machine Attribute

	Power-Up Level
	Inferred Power-Up Levels

	Power-Up Don’t Care
	Remove Duplicate Registers
	Remove Redundant Logic Cells
	Preserve Registers
	Example 8-30. Verilog HDL Example of a syn_preserve Attribute
	Example 8-31. Verilog-2001 Example of a syn_preserve Attribute
	Example 8-32. VHDL Example of a preserve Attribute

	Disable Register Merging/Don’t Merge Register
	Example 8-33. Verilog HDL Example of a dont_merge Attribute
	Example 8-34. Verilog-2001 Example of a dont_merge Attribute
	Example 8-35. VHDL Example of a dont_merge Attribute

	Noprune Synthesis Attribute/Preserve Fan-out Free Register Node
	Example 8-36. Verilog HDL Example of a syn_noprune Attribute
	Example 8-37. Verilog-2001 Example of a noprune Attribute
	Example 8-38. VHDL Example of a noprune Attribute

	Keep Combinational Node/Implement as Output of Logic Cell
	Example 8-39. Verilog HDL Example of a keep Attribute
	Example 8-40. Verilog-2001 Example of a keep Attribute
	Example 8-41. VHDL Example of a syn_keep Attribute

	Don't Retime, Disabling Synthesis Netlist Optimizations
	Example 8-42. Verilog HDL Example of a dont_retime Attribute
	Example 8-43. Verilog-2001 Example of a dont_retime Attribute
	Example 8-44. VHDL Example of a dont_retime Attribute

	Don't Replicate, Disabling Synthesis Netlist Optimizations
	Example 8-45. Verilog HDL Example of a dont_replicate Attribute
	Example 8-46. Verilog-2001 Example of a dont_replicate Attribute
	Example 8-47. VHDL Example of a dont_replicate Attribute

	Maximum Fan-Out
	Example 8-48. Verilog HDL Example of a syn_maxfan Attribute
	Example 8-49. Verilog-2001 Example of a maxfan Attribute
	Example 8-50. VHDL Example of a maxfan Attribute

	Controlling Clock Enable Signals with Auto Clock Enable Replacement and direct_enable
	Example 8-51. Verilog HDL Example of a direct_enable attribute
	Example 8-52. Verilog-2001 Example of a syn_direct_enable attribute
	Example 8-53. VHDL Example of a direct_enable attribute

	Megafunction Inference Control
	Multiply-Accumulators and Multiply-Adders
	Shift Registers
	RAM and ROM
	RAM to Logic Cell Conversion

	RAM Style and ROM Style-for Inferred Memory
	Example 8-54. Verilog-1995 Example of Applying a romstyle Attribute to a Module Declaration
	Example 8-55. Verilog-2001 Example of Applying a ramstyle Attribute to a Module Declaration
	Example 8-56. VHDL Example of Applying a romstyle Attribute to an Architecture
	Example 8-57. Verilog-1995 Example of Applying a syn_ramstyle Attribute to a Variable Declaration
	Example 8-58. Verilog-2001 Example of Applying a romstyle Attribute to a Variable Declaration
	Example 8-59. VHDL Example of Applying a ramstyle Attribute to a Signal Declaration

	Turning Off Add Pass-Through Logic to Inferred RAMs/ no_rw_check Attribute Setting
	Example 8-60. Verilog HDL Inferred RAM Using no_rw_check Attribute
	Example 8-61. VHDL Inferred RAM Using no_rw_check Attribute

	RAM Initialization File-for Inferred Memory
	Example 8-62. Verilog-1995 Example of Applying a ram_init_file Attribute
	Example 8-63. Verilog-2001 Example of Applying a ram_init_file Attribute
	Example 8-64. VHDL Example of Applying a ram_init_file Attribute

	Multiplier Style-for Inferred Multipliers
	Example 8-65. Verilog-1995 Example of Applying a multstyle Attribute to a Module Declaration
	Example 8-66. Verilog-2001 Example of Applying a multstyle Attribute to a Module Declaration
	Example 8-67. Verilog-2001 Example of Applying a multstyle Attribute to a Variable Declaration
	Example 8-68. Verilog-1995 Example of Applying a multstyle Attribute to a Variable Declaration
	Example 8-69. Verilog-2001 Example of Applying a multstyle Attribute to a Binary Expression
	Example 8-70. VHDL Example of Applying a multstyle Attribute to an Architecture
	Example 8-71. VHDL Example of Applying a multstyle Attribute to a Signal or Variable

	Full Case
	Example 8-72. Verilog HDL Example of a full_case Attribute
	Example 8-73. Verilog-2001 Syntax for the full_case Attribute

	Parallel Case
	Example 8-74. Verilog HDL Example of a parallel_case Attribute
	Example 8-75. Verilog-2001 Syntax

	Translate Off and On / Synthesis Off and On
	Example 8-76. Verilog HDL Example of Translate Off and On
	Example 8-77. VHDL Example of Translate Off and On

	Ignore translate_off and synthesis_off Directives
	Read Comments as HDL
	Example 8-78. Verilog HDL Example of Read Comments as HDL
	Example 8-79. VHDL Example of Read Comments as HDL

	Use I/O Flipflops
	Example 8-80. Verilog HDL Example of the useioff Attribute
	Example 8-81. Verilog-2001 Syntax for the useioff Attribute
	Example 8-82. VHDL Example of the useioff Attribute

	Specifying Pin Locations with chip_pin
	Example 8-83. Verilog-1995 Examples of Applying Chip Pin to a Single Pin
	Example 8-84. Verilog-2001 Example of Applying Chip Pin to a Single Pin
	Example 8-85. VHDL Example of Applying Chip Pin to a Single Pin
	Example 8-86. Verilog-1995 Example of Applying Chip Pin to a Bus of Pins
	Example 8-87. Verilog-1995 Example of Applying Chip Pin to Part of a Bus
	Example 8-88. VHDL Example of Applying Chip Pin to Part of a Bus of Pins

	Using altera_attribute to Set Quartus II Logic Options
	Verilog HDL
	VHDL
	Example 8-89. Verilog-1995 Example of Applying Altera Attribute to an Instance
	Example 8-90. Verilog-2001 Example of Applying Altera Attribute to an Instance
	Example 8-91. VHDL Example of Applying Altera Attribute to an Instance
	Example 8-92. Verilog-1995 Example of Applying Altera Attribute to an Entity
	Example 8-93. Verilog-2001 Example of Applying Altera Attribute to an Entity
	Example 8-94. VHDL Example of Applying Altera Attribute to an Entity
	Example 8-95. Verilog-1995 Example of Applying Altera Attribute with -to
	Example 8-96. Verilog-2001 Example of Applying Altera Attribute with -to
	Example 8-97. VHDL Example of Applying Altera Attribute with -to

	Analyzing Synthesis Results
	Analysis and Synthesis Section of the Compilation Report
	Project Navigator

	Analyzing and Controlling Synthesis Messages
	Quartus II Messages
	VHDL and Verilog HDL Messages
	Example 8-98. Generating an HDL Warning Message
	Example 8-99. Generating HDL Info Messages
	Setting the HDL Message Level
	Example 8-100. Verilog HDL Examples of message_level Directive
	Example 8-101. VHDL Example of message_level Directive
	Enabling or Disabling Specific HDL Messages by Module/Entity
	Example 8-102. Verilog HDL message_off Directive for Message with ID 10000
	Example 8-103. VHDL message_off Directive for Message with ID 10000

	Node-Naming Conventions in Quartus II Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flipflop Atoms)
	Example 8-104. Verilog HDL Register
	Example 8-105. VHDL Register
	Example 8-106. Verilog HDL Register Feeding Output Pin

	Register Changes During Synthesis
	Synthesis and Fitting Optimizations
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory, and DSP Functions
	Packed Input and Output Registers of RAM and DSP Blocks

	Preserving Register Names
	Node-Naming Conventions for Combinational Logic Cells
	Example 8-107. Naming Nodes for Combinational Logic Cells in Verilog HDL

	Preserving Combinational Logic Names

	Scripting Support
	Adding an HDL File to a Project and Setting the HDL Version
	Quartus II Synthesis Options
	Assigning a Pin
	Creating Design Partitions for Incremental Compilation

	Conclusion
	Referenced Documents
	Document Revision History

	9. Mentor Graphics LeonardoSpectrum Support
	Introduction
	Design Flow
	Optimization Strategies
	Timing-Driven Synthesis
	Global Power Tab
	Clock Power Tab
	Input and Output Power Tabs

	Other Constraints
	Encoding Style
	Resource Sharing
	Mapping I/O Registers

	Timing Analysis with the Leonardo- Spectrum Software
	Exporting Designs Using NativeLink Integration
	Generating Netlist Files
	Including Design Files for Black-Boxed Modules
	Passing Constraints with Scripts
	Integration with the Quartus II Software

	Guidelines for Altera Megafunctions and LPM Functions
	Instantiating Altera Megafunctions
	Inferring Altera Memory Elements
	Inferring RAM
	Inferring ROM

	Inferring Multipliers and DSP Functions
	Simple Multipliers
	Multiplier Accumulators
	Multiplier Adders

	Controlling DSP Block Inference
	Global Attribute
	Module Level Attributes
	Example 9-1. Using Module Level Attributes in Verilog HDL Code
	Example 9-2. Using Module Level Attributes in VHDL Code
	Signal Level Attributes
	Example 9-3. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
	Example 9-4. Signal Attributes for Controlling DSP Block Inference in VHDL Code
	Guidelines for Using DSP Blocks

	Block-Based Design with the Quartus II Software
	Hierarchy and Design Considerations
	Creating a Design with Multiple EDIF Files
	Generating Multiple EDIF Files Using the LogicLock Option
	Creating a Quartus II Project for Multiple EDIF Files Including LogicLock Regions
	Example 9-5. Tcl File for Module Taps with taps_region as LogicLock Region Name

	Generating Multiple EDIF Files Using Black Boxes
	Black Boxing in Verilog HDL
	Example 9-6. Verilog HDL Top-Level File Black-Boxing Example
	Black Boxing in VHDL
	Example 9-7. VHDL Top-Level File Black-Boxing Example
	Creating a Quartus II Project for Multiple EDIF Files

	Incremental Synthesis Flow
	Modifications Required for the LogicLock_Incremental.tcl Script File
	Example 9-8. LogicLock_Interface.tcl Script File for Incremental Synthesis
	Running the Tcl Script File in LeonardoSpectrum

	Conclusion
	Referenced Documents
	Document Revision History

	10. Mentor Graphics Precision RTL Synthesis Support
	Introduction
	Device Family Support
	Design Flow
	Creating a Project and Compiling the Design
	Creating a Project
	Compiling the Design

	Mapping the Precision Synthesis Design
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers and I/O Settings
	Example 10-1. Verilog HDL Pin Assignment
	Example 10-2. VHDL Pin Assignment

	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision RTL Synthesis Software from Adding I/O Pads
	Preventing the Precision RTL Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design and Evaluating the Results
	Obtaining Accurate Logic Utilization and Timing Analysis Reports

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Precision RTL Software
	Running the Quartus II Software Manually Using the Precision RTL Synthesis-Generated Tcl Script
	Using Quartus II Software to Launch the Precision RTL Synthesis Software
	Passing Constraints to the Quartus II Software
	create_clock
	Example 10-3. Specifying a Clock using create_clock
	set_input_delay
	Example 10-4. Specifying set_input_delay
	set_output_delay
	Example 10-5. Using the set_output_delay Constraint
	set_max_delay
	Example 10-6. Using the set_max_delay Constraint
	set_min_delay
	Example 10-7. Using the set_min_delay Constraint
	set_false_path
	Example 10-8. Using the set_false_path Constraint
	set_multicycle_path
	Example 10-9. Using the set_multicycle_path Constraint

	Megafunctions and Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Black-Box Megafunction Instantiation
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Black-Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Controlling DSP Block Inference for Multipliers

	Using the GUI
	Using Attributes
	Example 10-10. Setting the dedicated_mult Attribute in Verilog HDL
	Example 10-11. Setting the dedicated_mult Attribute in VHDL
	Example 10-12. Setting the preserve_signal Attribute in Verilog HDL
	Example 10-13. Setting the preserve_signal Attribute in VHDL
	Example 10-14. Verilog HDL Multiplier Implemented in Logic
	Example 10-15. VHDL Multiplier Implemented in Logic
	Multiplier-Accumulators and Multiplier-Adders
	Controlling DSP Block Inference
	Example 10-16. Setting the extract_mac Attribute in Verilog HDL
	Example 10-17. Setting the extract_mac Attribute in VHDL
	Example 10-18. Using extract_mac, dedicated_mult and preserve_signal in Verilog HDL
	Example 10-19. Using extract_mac, dedicated_mult, and preserve_signal in VHDL
	RAM and ROM

	Incremental Compilation and Block-Based Design
	Hierarchy and Design Considerations
	Creating a Design with Separate Netlist Files
	Creating Black Boxes in Verilog HDL
	Example 10-20. Verilog HDL Black Box for Top-Level File A.v
	Creating Black Boxes in VHDL
	Example 10-21. VHDL Black Box for Top-Level File A.vhd

	Creating Quartus II Projects for Multiple EDIF Files
	Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Flow

	Conclusion
	Referenced Documents
	Document Revision History

	11. Synopsys Design Compiler FPGA Support
	Introduction
	Design Flow Using the DC FPGA Software and the Quartus II Software
	Setup of the DC FPGA Software Environment for Altera Device Families
	Example 11-1. Recommended Synthesis Settings for Stratix II Device Architecture

	Megafunctions and Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Clear Box Methodology
	Reading Megafunction Wizard-Generated Synthesizable Clear Box Netlist Files for Megafunction Instantiation
	Advanced Clear Box Support for the Direct-Instantiated or Inferred Clear Box Megafunctions
	Design Compiler FPGA Setup
	UNIX Environment Setting
	Error Message
	Sample Design Compiler FPGA Clear Box Setup Script

	Example 11-2. Sample Clear Box Setup Script

	Black Box Methodology
	Reading Megafunction Wizard-generated Variation Wrapper Files
	Using Megafunction Wizard-Generated Variation Wrapper Files in a Black Box Methodology
	Using Megafunction Wizard-Generated Verilog HDL Files for Black Box Megafunction Instantiation
	Using Megafunction Wizard-Generated VHDL Files for Black Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Example 11-3. Verilog HDL Code Inferring a Two-Port RAM

	Reading Design Files into the DC FPGA Software
	Selecting a Target Device
	Example 11-4. List of Available Devices in the Linked Library Using the -show_all Option

	Timing and Synthesis Constraints
	Compilation and Synthesis
	Example 11-5. Sample Synthesis Script

	Reporting Design Information
	Saving Synthesis Results
	Example 11-6. Syntax Using the write Command
	Example 11-7. Generating a Verilog Quartus Mapping Netlist

	Exporting Designs to the Quartus II Software
	write_fpga Command
	Example 11-8. Using the write_fpga Command after Compile
	Example 11-9. Using the write_fpga Command to Generate All Files

	write and write_par_constraint Commands
	Example 11-10. Using the write and write_par_constraint Commands

	Using Tcl Scripts with Quartus II Software
	Example 11-11. An Example Script

	Place and Route with the Quartus II Software
	Formality Software Support
	Conclusion
	Referenced Documents
	Document Revision History

	12. Analyzing Designs with Quartus II Netlist Viewers
	Introduction
	When to Use Viewers: Analyzing Design Problems
	Quartus II Design Flow with Netlist Viewers
	RTL Viewer Overview
	State Machine Viewer Overview
	Technology Map Viewer Overview
	Introduction to the User Interface
	Schematic View
	Schematic Symbols
	Example 12-1. Code Sample for Counter Schematic Shown in Figure 12-3
	Selecting an Item in the Schematic View
	Moving and Panning in the Schematic View

	Hierarchy List
	Selecting an Item in the Hierarchy List

	State Machine Viewer
	State Diagram View
	State Transition Table
	State Encoding Table
	Selecting an Item in the State Machine Viewer
	Switching Between State Machines

	Navigating the Schematic View
	Traversing and Viewing the Design Hierarchy
	Flattening the Design Hierarchy
	Viewing the Contents of a Design Hierarchy within the Current Schematic

	Viewing Contents of Atom Primitives in the Technology Map Viewer
	Viewing the Properties of Instances and Primitives
	Viewing LUT Representations in the Technology Map Viewer
	Zooming and Magnification
	Schematic Debugging and Tracing Using the Bird's Eye View
	Full Screen View

	Partitioning the Schematic into Pages
	Moving Between Schematic Pages
	Moving Back and Forward Through Schematic Pages
	Following Nets Across Schematic Pages
	Input Connectors
	Output Connectors

	Go to Net Driver

	Customizing the Schematic Display in the RTL Viewer
	Grouping Combinational Logic into Logic Clouds

	Filtering in the Schematic View
	Filter Sources Command
	Filter Destinations Command
	Filter Sources and Destinations Command
	Filter Between Selected Nodes Command
	Filter Selected Nodes and Nets Command
	Filter Bus Index Command
	Filter Command Processing
	Filtering Across Hierarchies
	Expanding a Filtered Netlist
	Reducing a Filtered Netlist

	Probing to Source Design File and Other Quartus II Windows
	Moving Selected Nodes to Other Quartus II Windows

	Probing to the Viewers from Other Quartus II Windows
	Viewing a Timing Path
	Other Features in the Schematic Viewer
	Tooltips
	Radial Menu
	Customizing the Radial Menu

	Rollover
	Displaying Net Names
	Displaying Node Names
	Find Command
	Exporting and Copying a Schematic Image
	Printing

	Debugging HDL Code with the State Machine Viewer
	Simulation of State Machine Gives Unexpected Results

	Conclusion
	Document Revision History

	Quartus II Version 7.2 Handbook Volume 2: Design Implementation and Optimization
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Section I. Scripting and Constraint Entry
	1. Assignment Editor
	Introduction
	Using the Assignment Editor
	Category, Node Filter, Information and Edit Bars
	Category Bar
	Node Filter Bar
	Information Bar
	Edit Bar

	Viewing and Saving Assignments in the Assignment Editor

	Assignment Editor Features
	Using the Enhanced Spreadsheet Interface
	Dynamic Syntax Checking
	Node Filter Bar
	Using Assignment Groups
	Customizable Columns
	Tcl Interface

	Assigning Pin Locations Using the Assignment Editor
	Creating Timing Constraints Using the Assignment Editor
	Exporting and Importing Assignments
	Exporting Assignments
	Exporting Pin Assignments
	Importing Assignments

	Conclusion
	Referenced Documents
	Document Revision History

	2. Command-Line Scripting
	Introduction
	The Benefits of Command-Line Executables
	Introductory Example
	Command-Line Executables
	Command-Line Scripting Help
	Command-Line Option Details
	Option Precedence

	Design Flow
	Compilation with quartus_sh --flow
	Text-Based Report Files
	Makefile Implementation

	Command-Line Scripting Examples
	Create a Project and Apply Constraints
	Check Design File Syntax
	Create a Project and Synthesize a Netlist Using Netlist Optimizations
	Archive and Restore Projects
	Perform I/O Assignment Analysis
	Update Memory Contents without Recompiling
	Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	The QFlow Script

	Referenced Documents
	Document Revision History

	3. Tcl Scripting
	Introduction
	What is Tcl?

	Quartus II Tcl Packages
	Loading Packages

	Quartus II Tcl API Help
	Executables Supporting Tcl
	Command-Line Options: -t, -s, and --tcl_eval
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl

	Using the Quartus II Tcl Console Window

	End-to-End Design Flows
	Creating Projects and Making Assignments
	HardCopy Device Design
	EDA Tool Assignments
	Using LogicLock Regions

	Compiling Designs
	The flow Package

	Reporting
	Creating CSV Files for Excel
	Short Option Names

	Timing Analysis
	Classic Timing Analysis
	Advanced Classic Timing Analysis

	TimeQuest Timing Analysis
	TimeQuest Scripting

	Automating Script Execution
	Making the Assignment
	Script Execution
	Execution Example
	Controlling Processing
	Displaying Messages

	Other Scripting Features
	Natural Bus Naming
	Using Collection Commands
	The foreach_in_collection Command
	The get_collection_size Command

	Using the post_message Command
	Accessing Command-Line Arguments
	Using the cmdline Package

	Using the Quartus II Tcl Shell in Interactive Mode
	Quartus II Legacy Tcl Support
	Tcl Scripting Basics
	Hello World Example
	Variables
	Substitutions
	Variable Value Substitution
	Nested Command Substitution
	Backlash Substitution

	Arithmetic
	Lists
	Arrays
	Control Structures
	Procedures
	File I/O
	Syntax and Comments
	External References

	Referenced Documents
	Document Revision History

	4. Managing Quartus II Projects
	Introduction
	Creating a New Project
	Using Revisions With Your Design
	Creating and Deleting Revisions
	Creating a Revision
	Delete a Revision

	Comparing Revisions

	Creating Different Versions of Your Design
	Archiving Projects with the Quartus II Archive Project Feature
	Archive a Project
	Restore an Archived Project

	Version- Compatible Databases
	Migrate to a New Version
	Save the Database in a Version-Compatible Format

	Quartus II Project Platform Migration
	Filenames and Hierarchy
	Relative Paths
	Specifying Libraries
	Specifying User Libraries
	Specifying Global Libraries

	Search Path Precedence Rules
	Quartus II-Generated Files for Third-Party EDA Tools
	Migrating Database Files

	Working with Messages
	Messages Window
	Hiding Messages

	Message Suppression
	Message Suppression Methods
	Details and Limitations
	Message Suppression Manager
	Suppressible Messages
	Suppression Rules
	Suppressed Messages

	Quartus II Settings File
	Format Preservation

	Quartus II Default Settings File
	Scripting Support
	Managing Revisions
	Creating Revisions
	Setting the Current Revision
	Getting a List of Revisions
	Deleting Revisions

	Archiving Projects with a Tcl Command or at the Command Prompt
	Restoring Archived Projects
	Importing and Exporting Version-Compatible Databases
	Specifying Libraries Using Scripts

	Conclusion
	Referenced Documents
	Document Revision History

	Section II. I/O and PCB Tools
	5. I/O Management
	Introduction
	Understanding Altera FPGA Pin Terminology
	Package Pins
	Pads
	I/O Banks
	VREF Groups

	Importing and Exporting Pin Assignments
	CSV File
	Quartus II Settings Files (QSFs)
	Tcl Script
	FPGA Xchange File
	PIN File

	I/O Planning Overview
	Early I/O Planning Using the Pin Planner
	Create a Megafunction or IP MegaCore Variation from the Pin Planner
	Import a Megafunction or IP MegaCore Variation from the Pin Planner
	Create a Top-Level Design File for I/O Analysis
	Configure Megafunction Nodes
	Configure User Nodes for Creating a Top-Level Design File
	Create a Top-Level Design File

	Creating Pin-Related Assignments
	Using the Pin Planner
	Groups List
	All Pins List
	Pad View Window
	Package View
	Pin Migration View
	Using the Pin Finder to Find Compatible Pin Locations
	Creating Reserved Pin Assignments
	Creating Pin Location Assignments
	Assigning Locations for Unassigned Pins
	Assigning a Location for Differential Pins
	Assigning an Unassigned Pin to a Pin Location
	Error Checking Capability

	Changing Pin Locations
	Show I/O Banks
	Show VREF Groups
	Show Edges
	Show DQ/DQS Pins
	Displaying and Accepting Fitter Placements

	Assignment Editor
	Setting Pin Locations from the Device Pin Number List
	Setting Pin Locations from the Design Signal Name List

	Tcl Scripts
	Chip Planner or Timing Closure Floorplan
	Synthesis Attributes
	chip_pin and useioff
	altera_attribute

	Validating Pin Assignments
	Using the Live I/O Check Feature to Validate Pin Assignments
	Using I/O Assignment Analysis to Validate Pin Assignments
	I/O Assignment Analysis Design Flows
	I/O Assignment Analysis without Design Files
	I/O Assignment Analysis with Design Files
	Using Output Enable Group Logic Option Assignments with I/O Assignment Analysis

	Inputs for I/O Assignment Analysis
	Generating a Mapped Netlist
	Creating Pin-Related Assignments
	Reserving Pins
	Location Assignments
	Suggested and Partial Placement

	Understanding the I/O Assignment Analysis Report and Messages
	Scripting Support
	Running the I/O Assignment Analysis
	Generating a Mapped Netlist
	Reserving Pins
	Location Assignments

	Incorporating PCB Design Tools
	Advanced I/O Timing
	I/O Timing and Power with Capacitive Loading
	Enabling and Configuring Advanced I/O Timing
	Define Overall Board Trace Models
	Customize the Board Trace Model in the Pin Planner
	Create Signal Integrity Result Reports

	Conclusion
	Referenced Documents
	Document Revision History

	6. Mentor Graphics PCB Design Tools Support
	Introduction
	FPGA-to-PCB Design Flow
	Setting Up the Quartus II Software
	Generating Pin-Out Files
	Generating FPGA Xchange Files
	Creating a Backup Quartus II Settings File

	FPGA-to-Board Integration with the I/O Designer Software
	I/O Designer Database Wizard
	Updating Pin Assignments from the Quartus II Software
	Sending Pin Assignment Changes to the Quartus II Software
	Protecting Assignments in the Quartus II Software

	Generating Symbols for the DxDesigner Software
	Setting Up the I/O Designer Software to Work with the DxDesigner Software
	Create Symbols with the Symbol Wizard
	Export Symbols to the DxDesigner Software

	Scripting Support

	FPGA-to-Board Integration with the DxDesigner Software
	DxDesigner Project Settings
	DxDesigner Symbol Wizard

	Conclusion
	Referenced Documents
	Document Revision History

	7. Cadence PCB Design Tools Support
	Introduction
	Product Comparison
	FPGA-to-PCB Design Flow
	Setting Up the Quartus II Software
	Generating Pin-Out Files

	FPGA-to-Board Integration with the Cadence Allegro Design Entry HDL Software
	Symbol Creation
	Allegro PCB Librarian Part Developer
	Import and Export Wizard
	Edit and Fracture Symbol
	Update FPGA Symbol

	Instantiating the Symbol in the Cadence Allegro Design Entry HDL Software

	FPGA-to-Board Integration with Allegro Design Entry CIS
	Allegro Design Entry CIS Project Creation
	Generate Part
	Split Part
	Instantiate Symbol in Design Entry CIS Schematic
	Altera Libraries for Design Entry CIS

	Conclusion
	Referenced Document
	Document Revision History

	Section III. Area, Timing and Power Optimization
	8. Area and Timing Optimization
	Introduction
	Optimizing Your Design

	Initial Compilation: Required Settings
	Device Settings
	I/O Assignments
	Timing Requirement Settings
	Timing Constraint Check-Report Unconstrained Paths

	Device Migration Settings
	Partitions and Floorplan Assignments for Incremental Compilation

	Initial Compilation: Optional Settings
	Design Assistant
	Smart Compilation Setting
	Early Timing Estimation
	Optimize Hold Timing
	Asynchronous Control Signal Recovery/Removal Analysis
	Limit to One Fitting Attempt
	Optimize Fast Corner Timing
	Fitter Effort Setting
	Auto Fit
	Standard Fit
	Fast Fit

	Design Analysis
	Error and Warning Messages
	Ignored Timing Assignments
	Resource Utilization
	I/O Timing (Including tPD)
	Register-to-Register Timing
	Timing Analysis with the Classic Timing Analyzer
	Tips for Analyzing Failing Paths
	Tips for Analyzing Failing Clock Paths that Cross Clock Domains

	Global Routing Resources
	Compilation Time

	Resource Utilization Optimization Techniques (LUT-Based Devices)
	Using the Resource Optimization Advisor
	Resolving Resource Utilization Issues Summary
	I/O Pin Utilization or Placement
	Use I/O Assignment Analysis
	Modify Pin Assignments or Choose a Larger Package

	Logic Utilization or Placement
	Optimize Synthesis for Area, Not Speed
	Restructure Multiplexers
	Perform WYSIWYG Resynthesis with Balanced or Area Setting
	Use Register Packing
	Remove Fitter Constraints
	Change State Machine Encoding
	Flatten the Hierarchy During Synthesis
	Retarget Memory Blocks
	Use Physical Synthesis Options to Reduce Area
	Retarget or Balance DSP Blocks
	Optimize Source Code
	Use a Larger Device

	Routing
	Set Auto Register Packing to Auto
	Set Fitter Aggressive Routability Optimizations to Always
	Increase Placement Effort Multiplier
	Increase Router Effort Multiplier
	Remove Fitter Constraints
	Set Maximum Router Timing Optimization Level
	Optimize Synthesis for Area, Not Speed
	Optimize Source Code
	Use a Larger Device

	Timing Optimization Techniques (LUT-Based Devices)
	Timing Optimization Advisor
	I/O Timing Optimization
	Improving Setup and Clock-to-Output Times Summary
	Timing-Driven Compilation
	Fast Input, Output and Output Enable Registers
	Programmable Delays
	Use PLLs to Shift Clock Edges
	Use Fast Regional Clock Networks and Regional Clocks Networks
	Change How Hold Times are Optimized for MAX II Devices

	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Improving Register-to-Register Timing Summary
	Synthesis Netlist Optimizations and Physical Synthesis Optimizations
	Turn Off Extra-Effort Power Optimization Settings
	Optimize Synthesis for Speed, Not Area
	Flatten the Hierarchy During Synthesis
	Set the Synthesis Effort to High
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Prevent Shift Register Inference
	Use Other Synthesis Options Available in Your Synthesis Tool
	Fitter Seed
	Optimize Source Code

	LogicLock Assignments
	Hierarchy Assignments
	Path Assignments

	Location Assignments and Back-Annotation
	Custom Regions
	Back-Annotation and Manual Placement
	Optimizing Placement for Stratix, Stratix II, Arria GX, and Cyclone II Devices
	Optimizing Placement for Cyclone Devices
	Optimizing Placement for Mercury, APEX II, and APEX 20KE/C Devices

	Resource Utilization Optimization Techniques (Macrocell- Based CPLDs)
	Use Dedicated Inputs for Global Control Signals
	Reserve Device Resources
	Pin Assignment Guidelines and Procedures
	Control Signal Pin Assignments
	Output Enable Pin Assignments
	Estimate Fan-In When Assigning Output Pins
	Outputs Using Parallel Expander Pin Assignments

	Resolving Resource Utilization Problems
	Resolving Macrocell Usage Issues
	Resolving Routing Issues
	Using LCELL Buffers to Reduce Required Resources

	Timing Optimization Techniques (Macrocell- Based CPLDs)
	Improving Setup Time
	Improving Clock-to-Output Time
	Improving Propagation Delay (tPD)
	Improving Maximum Frequency (fMAX)
	Optimizing Source Code-Pipelining for Complex Register Logic

	Compilation- Time Optimization Techniques
	Incremental Compilation
	Use Multiple Processors for Parallel Compilation
	Reduce Synthesis Time and Synthesis Netlist Optimization Time
	Synthesis Netlist Optimizations

	Check Early Timing Estimation before Fitting
	Reduce Placement Time
	Fitter Effort Setting
	Placement Effort Multiplier Settings
	Final Placement Optimization Levels
	Physical Synthesis Effort Settings
	Limit to One Fitting Attempt
	Preserving Placement, Incremental Compilation, and LogicLock Regions

	Reduce Routing Time
	Identify Routing Congestion in the Chip Planner
	Identify Routing Congestion in the Timing Closure Floorplan for Legacy Devices
	Placement Effort Multiplier Setting
	Preserve Routing Incremental Compilation and LogicLock Regions

	Other Optimizing Resources
	Design Space Explorer
	Power Optimization Advisor

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	Register-to-Register Timing Optimization Techniques (LUT-Based Devices)
	Duplicate Logic for Fan-Out Control

	Conclusion
	Referenced Documents
	Document Revision History

	9. Power Optimization
	Introduction
	Power Dissipation
	Design Space Explorer
	Power-Driven Compilation
	Power-Driven Synthesis
	Power-Driven Synthesis Experiment for Stratix II Devices
	Power-Driven Fitter
	Power-Driven Fitter Experiment for Stratix II Devices

	Recommended Flow for Power-Driven Compilation
	Area-Driven Synthesis
	Area-Driven Synthesis Experiment for Stratix II Devices
	Area-Driven Synthesis Experiment for Cyclone II Devices

	Gate-Level Register Retiming
	Gate-Level Register Retiming Experiment for Stratix II Devices
	Gate-Level Register Retiming Experiment for Cyclone II Devices

	Design Guidelines
	Clock Power Management
	LAB-Wide Clock Enable Example

	Reducing Memory Power Consumption
	Memory Power Reduction Example

	Pipelining and Retiming
	Pipelining Experiment for Stratix II Devices
	Pipelining Experiment for Cyclone II Devices

	Architectural Optimization
	Architectural Optimization Experiment for Stratix II Devices
	Architectural Optimization Experiment for Cyclone II

	I/O Power Guidelines
	Power Optimization Advisor
	Power Optimization Advisor Example

	Conclusion

	Referenced Documents
	Document Revision History

	10. Analyzing and Optimizing the Design Floorplan
	Introduction
	Chip Planner Overview
	Starting Chip Planner
	Chip Planner Toolbar
	Chip Planner Tasks and Layers

	LogicLock Regions
	Creating LogicLock Regions
	Placing LogicLock Regions
	Placing Device Features into LogicLock Regions
	LogicLock Regions Window
	Excluded Resources
	Hierarchical (Parent and Child) LogicLock Regions

	Using LogicLock Regions in the Chip Planner
	Assigning LogicLock Region Content
	Creating LogicLock Regions with the Chip Planner
	Viewing Connections Between LogicLock Regions in the Chip Planner

	Design Analysis Using the Chip Planner
	Chip Planner Floorplan Views
	First-Level View
	Second-Level View
	Third-Level View
	Bird’s Eye View

	Viewing Architecture-Specific Design Information
	Viewing Critical Paths
	Viewing Physical Timing Estimates
	Viewing Routing Congestion
	Viewing I/O Banks
	Generating Fan-In and Fan-Out Connections
	Generating Immediate Fan-In and Fan-Out Connections
	Highlight Routing
	Show Delays
	Exploring Paths in the Chip Planner
	Locate Path from the Timing Analysis Report to the Chip Planner
	Analyzing Connections for a Path

	Viewing Assignments in the Chip Planner
	Viewing Routing Channels for a Path in the Chip Planner
	Cell Delay Table
	Viewing High and Low Power Tiles in Stratix III Devices in the Chip Planner

	Timing Closure Floorplan Overview
	Design Analysis Using the Timing Closure Floorplan
	Timing Closure Floorplan Views
	Field View
	Other Views

	Viewing Assignments
	Viewing Critical Paths
	Physical Timing Estimates
	Viewing Routing Congestion
	Timing Closure Floorplan View
	LogicLock Regions in the Timing Closure Floorplan
	Creating LogicLock Regions in the Timing Closure Floorplan Editor
	Using Drag and Drop to Place Logic

	Analyzing LogicLock Region Connectivity Using the Timing Closure Floorplan
	Additional Quartus II LogicLock Design Features
	Tooltips
	Reserve LogicLock Region
	Prevent Assignment to LogicLock Regions Option
	LogicLock Regions Connectivity
	Rubber Banding
	Show Critical Paths
	Show Connection Count
	Analysis and Synthesis Resource Utilization by Entity
	Path-Based Assignments
	Quartus II Revisions Feature
	LogicLock Assignment Precedence
	LogicLock Regions Versus Soft LogicLock Regions
	Virtual Pins

	Using LogicLock Methodology for Older Device Families
	The Quartus II LogicLock Methodology
	Improving Design Performance
	LogicLock Restrictions
	Preserving Timing Results Using the LogicLock Flow
	Importing and Exporting LogicLock Regions
	Export the Module
	Atom Netlist Design Information
	Placement Information
	Routing Information
	Exporting the Routing Constraint File and Atom Netlist

	Import the Module
	Importing the Routing Constraints File and the Atom Netlist File
	Import the Assignments

	Compile and Verify the Top-Level Design

	Back-Annotating Routing Information
	Back-Annotating LogicLock Regions
	Exporting Back-Annotated Routing in LogicLock Regions
	Importing Back-Annotated Routing in LogicLock Regions

	Scripting Support
	Initializing and Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Prevent Further Netlist Optimization
	Save a Node-Level Netlist for the Entire Design into a Persistent Source File
	Exporting LogicLock Regions
	Importing LogicLock Regions
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins
	Back-Annotating LogicLock Regions

	Conclusion
	Referenced Documents
	Document Revision History

	11. Netlist Optimizations and Physical Synthesis
	Introduction
	Synthesis Netlist Optimizations
	WYSIWYG Primitive Resynthesis
	Gate-Level Register Retiming
	Allow Register Retiming to Trade-Off tSU/tCO with fMAX

	Preserving Synthesis Netlist Optimization Results

	Physical Synthesis Optimizations
	Automatic Asynchronous Signal Pipelining
	Physical Synthesis for Combinational Logic
	Physical Synthesis for Registers-Register Duplication
	Physical Synthesis for Registers-Register Retiming
	Preserving Your Physical Synthesis Results

	Applying Netlist Optimization Options
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Incremental Compilation
	Back-Annotating Assignments

	Conclusion
	Referenced Documents
	Document Revision History

	12. Design Space Explorer
	Introduction
	DSE Concepts
	Exploration Space and Exploration Point
	Seed and Seed Sweeping

	DSE Exploration

	General Description
	Timing Analyzer Support

	DSE Flow
	DSE Support for Altera Device Families
	DSE Project Settings
	Setting Up the DSE Work Environment
	Specifying the Revision
	Setting the Initial Seed
	Restructuring LogicLock Regions
	Search for Best Performance, Search for Best Area Options, or Search for Lowest Power Option
	Advanced Search Option

	Quartus II Integrated Synthesis

	Performing an Advanced Search in Design Space Explorer
	Exploration Space
	Seed Sweep
	Extra Effort Spaces
	Physical Synthesis Spaces
	Retiming Space
	Area Optimization Space
	Selective Performance Optimization Space
	Custom Space
	Signature Mode

	Optimization Goal
	Quality of Fit (QoF)
	Search Method

	DSE Flow Options
	Create a Revision from a DSE Point
	Change Decision Column
	Stop Flow When Zero Failing Paths are Achieved
	Continue Exploration Even If Base Compilation Fails
	Run Quartus II PowerPlay Power Analyzer During Exploration
	Archive All Compilations
	Stop Flow After Time
	Save Exploration Space to File
	Ignore SignalTap and SignalProbe Settings
	Skip Base Analysis and Compilation If Possible
	Lower Priority of Compilation Threads
	DSE Configuration File

	DSE Advanced Information
	Computer Load Sharing in DSE Using Distributed Exploration
	Distributed DSE Using LSF Resources
	Distributed DSE Using a Quartus II Master Process

	Concurrent Local Compilations
	Creating Custom Spaces for DSE
	DESIGNSPACE Tag
	POINT Tag
	PARAM Tag
	Simple Custom Space
	Custom Space XML Schema

	Referenced Documents
	Document Revision History

	13. Synplicity Amplify Physical Synthesis Support
	Introduction
	Software Requirements
	Amplify Physical Synthesis Concepts
	Amplify-to- Quartus II Flow
	Initial Pass: No Physical Constraints
	Create New Implementations

	Iterative Passes: Optimizing the Critical Paths

	Using the Amplify Physical Optimizer Floorplans
	Multiplexers
	Independent Paths
	Feedback Paths
	Starting and Ending Points
	Utilization
	Detailed Floorplans
	Forward Annotating Amplify Physical Optimizer Constraints into the Quartus II Software
	Altera Megafunctions Using the MegaWizard Plug-In Manager with the Amplify Software
	Clear Box Methodology
	Using MegaWizard Plug-In Manager-generated Verilog HDL Files for Clear Box Megafunction Instantiation
	Using MegaWizard Plug-In Manager-generated VHDL Files for Clear Box Megafunction Instantiation

	Black Box Methodology

	Conclusion
	Referenced Documents
	Document Revision History

	Section IV. Engineering Change Management
	14. Engineering Change Management with the Chip Planner
	Introduction
	Engineering Change Orders
	Performance
	Compilation Time
	Verification
	Documentation

	ECO Design Flow
	The Chip Planner Overview
	Opening the Chip Planner
	The Chip Planner Toolbar
	The Chip Planner Tasks and Layers
	The Chip Planner Floorplan Views
	First-Level View
	Second-Level View
	Third-Level View
	Bird’s Eye View

	Performing ECOs with the Chip Planner (Floorplan View)
	Creating Atoms
	Creating ALM Atoms
	Creating Logic Element Atoms

	Deleting Atoms
	Moving Atoms
	Check and Save Netlist changes

	Resource Property Editor
	Logic Element
	Logic Element Schematic View
	LE Properties
	Modes of Operation
	Sum and Carry Equations
	sload and sclear Signals
	Register Cascade Mode
	Cell Delay Table
	LE Connections
	Delete an LE

	Adaptive Logic Module
	ALM Schematic
	ALM Properties
	ALM Connections

	FPGA I/O Elements
	Arria GX, Stratix II, Stratix, and Stratix GX I/O Elements
	Stratix III I/O Elements
	Cyclone II and Cyclone I/O Elements
	Cyclone III I/O Elements
	MAX II I/O Elements
	I/O Element Features in the Resource Property Editor

	FPGA RAM Blocks
	FPGA DSP Blocks

	Change Manager
	Complex Changes in the Change Manager
	Managing SignalProbe Signals
	Exporting Changes

	Using Incremental Compilation in the ECO Flow
	ECO Flow with No Quartus II Incremental Compilation

	Scripting Support
	Common ECO Applications
	Adjust the Drive Strength of an I/O Using the Chip Planner
	Modifying the PLL Properties Using the Chip Planner
	PLL Properties
	Adjusting the Duty Cycle
	Adjusting the Phase Shift
	Adjusting the Output Clock Frequency
	Adjusting the Spread Spectrum

	Post ECO Steps
	Performing Static Timing Analysis
	Generating a Programming File

	Conclusion
	Referenced Documents
	Document Revision History

	Quartus II Version 7.2 Handbook Volume 3: Verification
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Section I. Simulation
	1. Quartus II Simulator
	Introduction
	Simulation Flow
	Functional Simulation
	Timing Simulation
	Timing Simulation Using Fast Timing Model Simulation

	Waveform Editor
	Creating VWFs
	Count Value
	Clock
	Arbitrary Value
	Random Value

	Generating a Testbench
	Grid Size
	Time Bars
	Stretch or Compress a Waveform Interval
	End Time
	Arrange Group or Bus in LSB or MSB Order

	Simulator Settings
	Simulation Verification Options
	Simulation Output Files Options

	Simulation Report
	Simulation Waveform
	Simulating Bidirectional Pin
	Logical Memories Report
	Simulation Coverage Reports
	Comparing Two Waveforms

	Debugging with the Quartus II Simulator
	Breakpoints
	Updating Memory Content
	Last Simulation Vector Outputs
	Conventional Debugging Process
	Accessing Internal Signals for Simulation

	Scripting Support
	Conclusion
	Referenced Documents
	Document Revision History

	2. Mentor Graphics ModelSim Support
	Introduction
	Background
	Software Compatibility
	Altera Design Flow with ModelSim or ModelSim- Altera Software
	Functional RTL Simulation
	Functional Simulation Libraries
	lpm Simulation Models
	Altera Megafunction Simulation Models
	Low-Level Primitive Simulation Models

	Simulating VHDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt

	Compile Simulation Models into Simulation Libraries
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries at the ModelSim Command Prompt

	Compile Testbench and Design Files into Work Library
	Compile Testbench and Design Files into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Simulating Verilog HDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt

	Compile Simulation Models into Simulation Libraries
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and Design Files into Work Library
	Compile Testbench and Design Files into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading a Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Verilog HDL Functional RTL Simulation with Altera Memory Blocks

	Post-Synthesis Simulation
	Generating a Post-Synthesis Simulation Netlist
	Simulating VHDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and VHDL Output File into Work Library
	Compile Testbench and VHDL Output File into Work Library Using ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Simulating Verilog HDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and Verilog Output File into Work Library
	Compile Testbench and Verilog Output File into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Generating a Different Timing Model
	Operating Condition Example: Generate All Timing Models for Stratix III Devices

	Perform Timing Simulation Using Post-synthesis Netlist

	Gate-Level Simulation Libraries
	Simulating VHDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and VHDL Output File into Work Library
	Compile Testbench and VHDL Output File into Work Library Using the ModelSim Command Prompt

	Loading the Design
	Loading a Design Using the ModelSim Command Prompt

	Running the Simulation
	Running a Simulation Using the ModelSim Command Prompt

	Simulating Verilog HDL Designs
	Create Simulation Libraries
	Create Simulation Libraries Using the ModelSim GUI
	Create Simulation Libraries Using the ModelSim Command Prompt
	Compile Simulation Models into Simulation Libraries Using the ModelSim GUI
	Compile Simulation Models into Simulation Libraries Using the ModelSim Command Prompt

	Compile Testbench and Verilog Output File into Work Library
	Compile Testbench and Verilog Output File into Work Libraries Using the ModelSim Command Prompt

	Loading the Design
	Loading the Design Using the ModelSim Command Prompt

	Running the Simulation
	Running the Simulation Using the ModelSim Command Prompt

	Simulating Designs that Include Transceivers
	Stratix GX Functional Simulation
	Example: Performing Functional Simulation for Stratix GX in Verilog HDL
	Example: Performing Functional Simulation for Stratix GX in VHDL

	Stratix GX Post-Fit (Timing) Simulation
	Example: Performing Timing Simulation for Stratix GX in Verilog HDL
	Example: Performing Timing Simulation for Stratix GX in VHDL

	Stratix II GX Functional Simulation
	Example: Performing Functional Simulation for Stratix II GX in Verilog HDL
	Example: Performing Functional Simulation for Stratix II GX in VHDL

	Stratix II GX Post-Fit (Timing) Simulation
	Example: Performing Timing Simulation for Stratix II GX in Verilog HDL
	Example: Performing Timing Simulation for Stratix II GX in VHDL

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using the NativeLink Feature with ModelSim
	Setting Up NativeLink
	Performing an RTL Simulation Using NativeLink
	Performing a Gate-Level Simulation Using NativeLink
	Setting Up a Testbench
	Creating a Testbench

	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for ModelSim
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for ModelSim
	Tcl Commands
	Command Line

	Software Licensing and Licensing Setup
	LM_LICENSE_FILE Variable

	Conclusion
	Referenced Documents
	Document Revision History

	3. Synopsys VCS Support
	Introduction
	Software Requirements
	Using VCS in the Quartus II Design Flow
	Functional Simulations
	Megafunctions Requiring Atom Libraries
	Functional RTL Simulation with Altera Memory Blocks
	Compiling Functional Library Files with Compiler Directives

	Post-Synthesis Simulation
	Generating a Post-Synthesis Simulation Netlist

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Generating Different Timing Model
	Operating Condition Example: Generate All Timing Models for Stratix III Devices

	Perform Timing Simulation Using Post-Synthesis Netlist

	Common VCS Software Compiler Options
	Using VirSim
	Debugging Support Command-Line Interface
	Simulating Designs that Include Transceivers
	Stratix GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL

	Stratix GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL

	Stratix II GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL

	Stratix II GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL

	Using PLI Routines with the VCS Software
	Preparing and Linking C Programs to Verilog HDL Code

	Transport Delays
	+transport_path_delays
	+transport_int_delays

	Using NativeLink with the VCS Software
	Setting Up NativeLink
	Performing an RTL Simulation Using NativeLink
	Performing a Gate-Level Simulation Using NativeLink
	Setting Up a Testbench
	Creating a Testbench

	Scripting Support
	Generating a Post-Synthesis Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Generating a Gate-Level Timing Simulation Netlist for VCS
	Tcl Commands
	Command Prompt

	Conclusion
	Referenced Documents
	Document Revision History

	4. Cadence NC-Sim Support
	Introduction
	Software Requirements
	Simulation Flow Overview
	Operation Modes
	Quartus II Software and NC Simulation Flow Overview

	Functional and RTL Simulation
	Create Libraries
	Basic Library Setup
	Using Multiple cds.lib Files
	Create a cds.lib File in Command-Line Mode
	Create a cds.lib File in GUI Mode

	LPM Functions, Altera Megafunctions, and Altera Primitives Libraries
	Megafunctions Requiring Atom Libraries

	Simulating a Design with Memory
	Compile Source Code and Testbenches
	Compilation in Command-Line Mode
	Compilation in GUI Mode

	Elaborate Your Design
	Elaboration in Command-Line Mode
	Elaboration in GUI Mode

	Add Signals to View
	Adding Signals in Command-Line Mode
	Adding Signals in GUI Mode

	Simulate Your Design
	Functional/RTL Simulation in Command-Line Mode
	Functional/RTL Simulation in GUI Mode

	Post-Synthesis Simulation
	Quartus II Simulation Output Files
	Create Libraries
	Compile Project Files and Libraries
	Elaborate Your Design
	Add Signals to the View
	Simulate Your Design

	Gate-Level Timing Simulation
	Generating a Gate-Level Timing Simulation Netlist
	Generating a Different Timing Model
	Operating Condition Example: Generate All Timing Models for Stratix III and Cyclone III Devices

	Perform Timing Simulation Using Post-Synthesis Netlist
	Quartus II Timing Simulation Libraries
	Create Libraries
	Compile the Project Files and Libraries
	Elaborate Your Design
	Compiling the Standard Delay Output File (VHDL Only) in Command-Line Mode
	Compiling the Standard Delay Output File (VHDL Only) in GUI Mode

	Add Signals to View
	Simulate Your Design

	Simulating Designs that Include Transceivers
	Stratix GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix GX Simulation in Verilog HDL
	Example of Compiling Library Files for Functional Stratix GX Simulation in VHDL

	Stratix GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix GX Simulation in Verilog HDL
	Example of Compiling Library Files for Timing Stratix GX Simulation in VHDL

	Stratix II GX Functional Simulation
	Example of Compiling Library Files for Functional Stratix II GX Simulation in Verilog HDL
	Example of Compiling Library Files for Functional Stratix II GX Simulation in VHDL

	Stratix II GX Post-Fit (Timing) Simulation
	Example of Compiling Library Files for Timing Stratix II GX Simulation in Verilog HDL
	Example of Compiling Library Files for Timing Stratix II GX Simulation in VHDL

	Pulse Reject Delays
	-PULSE_R
	-PULSE_INT_R

	Using the NativeLink Feature with NC-Sim
	Setting Up NativeLink
	Performing an RTL Simulation Using NativeLink
	Performing a Gate Level Simulation Using NativeLink
	Setting Up a Testbench
	Creating a Testbench

	Incorporating PLI Routines
	Dynamically Link a PLI Library
	Dynamically Load a PLI Library
	Statically Link the PLI Library with NC-Sim

	Scripting Support
	Generate NC-Sim Simulation Output Files
	Tcl Commands:
	Command Prompt

	Conclusion
	Referenced Documents
	Document Revision History

	5. Simulating Altera IP in Third-Party Simulation Tools
	Introduction
	IP Functional Simulation Flow
	Verilog and VHDL IP Functional Simulation (IPFS) Models

	Instantiate the IP in Your Design
	Perform Simulation
	Simulating Altera IP Using the Quartus II NativeLink Feature
	Set up a Quartus II Project
	Select the Third-Party Simulation Tool
	Specify the Path for the Third-Party Simulator
	Specify the Testbench Settings
	Analyze and Elaborate the Quartus II Project
	Run RTL Functional Simulation

	Simulating Altera IP Without the Quartus II NativeLink Feature

	Design Language Examples
	Verilog HDL Example: Simulating the IPFS Model in the ModelSim Software
	VHDL Example: Simulating the IPFS Model in the ModelSim Software
	NC-VHDL Example: Simulating the IPFS Model in the NC-VHDL Software
	Verilog HDL Example: Simulating Your IPFS Model in VCS
	Single-Step Process
	Two-Step Process (Compilation and Simulation)

	Conclusion
	Referenced Documents
	Document Revision History

	Section II. Timing Analysis
	6. The Quartus II TimeQuest Timing Analyzer
	Introduction
	Getting Started with the Quartus II TimeQuest Timing Analyzer
	Setting Up the Quartus II TimeQuest Timing Analyzer

	Compilation Flow with the Quartus II TimeQuest Timing Analyzer Guidelines
	Running the Quartus II TimeQuest Timing Analyzer
	Directly from the Quartus II Software
	Stand-Alone Mode
	Command-Line Mode

	Timing Analysis Overview
	Clock Analysis
	Clock Setup Check
	Clock Hold Check
	Recovery and Removal
	Multicycle Paths

	Specify Design Timing Requirements
	Create a Timing Netlist
	Specify Timing Constraints
	Generate SDC Constraint Reports

	The Quartus II TimeQuest Timing Analyzer Flow Guidelines
	Create a Timing Netlist
	Read the Synopsys Design Constraints File
	Update Timing Netlist
	Generate Timing Reports

	Collections
	Application Examples

	Constraints Files
	Fitter and Timing Analysis SDC Files
	Specifying SDC Files for Place-and-Route
	Specifying SDC Files for Static Timing Analysis

	Synopsys Design Constraints File Precedence

	Clock Specification
	Clocks
	Generated Clocks
	Virtual Clocks
	Multi-Frequency Clocks
	Automatic Clock Detection
	Derive PLL Clocks
	Default Clock Constraints
	Clock Groups
	Clock Effect Characteristics
	Clock Latency
	Clock Uncertainty

	Derive Clock Uncertainty
	Inter-Clock Transfers
	Intra-Clock Transfers
	I/O Interface Clock Transfers

	I/O Specifications
	Input and Output Delay
	Set Input Delay
	Set Output Delay

	Timing Exceptions
	Precedence
	False Path
	Minimum Delay
	Maximum Delay
	Multicycle Path
	Clock-as-Data Analysis
	Application Examples

	Constraint and Exception Removal
	Timing Reports
	report_timing
	report_clock_transfers
	report_clocks
	report_min_pulse_width
	report_net_timing
	report_sdc
	report_ucp
	report_path
	report_datasheet
	report_rskm
	report_tccs
	report_path
	check_timing
	report_clock_fmax_summary
	create_timing_summary

	Timing Analysis Features
	Multi-Corner Analysis
	Advanced I/O Timing and Board Trace Model Assignments
	Wildcard Assignments and Collections
	Resetting a Design

	The TimeQuest Timing Analyzer GUI
	The Quartus II Software Interface and Options
	View Pane
	View Pane: Splitting
	View Pane: Removing Split Windows

	Tasks Pane
	Opening a Project and Writing a Synopsys Design Constraints File
	Netlist Setup Folder
	Reports Folder
	Macros Folder

	Console Pane
	Report Pane
	Constraints
	Name Finder
	Target Pane
	SDC Editor

	Conclusion
	Referenced Documents
	Document Revision History

	7. Switching to the Quartus II TimeQuest Timing Analyzer
	Introduction
	Benefits of Switching to the Quartus II TimeQuest Analyzer
	Chapter Contents

	Switching to the Quartus II TimeQuest Analyzer
	Compile Your Design
	Create an SDC File
	Conversion Utility

	Perform Timing Analysis with the Quartus II TimeQuest Timing Analyzer
	Run the Quartus II TimeQuest Analyzer

	Set the Default Timing Analyzer

	Differences Between Quartus II TimeQuest and Quartus II Classic Timing Analyzers
	Terminology
	Netlist
	Collections

	Constraints
	Constraint Files
	Constraint Entry
	Time Units
	MegaCore Functions
	Bus Name Format

	Constraint File Priority
	Constraint Priority
	Ambiguous Constraints

	Clocks
	Related and Unrelated Clocks
	Clock Offset
	Clock Latency
	Offset and Latency Example
	Clock Offset Scenario
	Clock Latency Scenario

	Clock Uncertainty
	Derived and Generated Clocks
	Automatic Clock Detection
	derive_clocks Command
	derive_pll_clocks Command

	Hold Relationship

	Clock Objects
	Hold Multicycle
	Fitter Behavior
	Fitter Performance

	Reporting
	Paths and Pairs
	Default Reports
	Netlist Names
	Non-Integer Clock Periods
	Other Features

	Scripting API

	Timing Assignment Conversion
	Setup Relationship
	Hold Relationship
	Clock Latency
	Clock Uncertainty
	Inverted Clock
	Not a Clock
	Default Required fMAX Assignment
	Virtual Clock Reference
	Clock Settings
	Multicycle
	Clock Enable Multicycle
	I/O Constraints
	Input and Output Delay
	tSU Requirement
	tH Requirement
	tCO Requirement
	Minimum tCO Requirement
	tPD Requirement
	Combinational Path Delay Scenario

	Minimum tPD Requirement
	Cut Timing Path
	Maximum Delay
	Minimum Delay
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew
	Constraining Skew on an Output Bus

	Conversion Utility
	Unsupported Global Assignments
	Recommended Global Assignments
	Clock Conversion
	Instance Assignment Conversion
	PLL Phase Shift Conversion
	tCO Requirement Conversion

	Entity-Specific Assignments
	Paths between Unrelated Clock Domains
	Unsupported Instance Assignments
	Reviewing Conversion Results
	Warning Messages
	Ignored QSF Variable <assignment>
	Global <name> = <value>
	QSF: Expected <name> to be set to <expected value> but it is set to <actual value>
	QSF: Found Global Fmax Requirement. Translation will be done using derive_clocks
	TAN Report Database not found. HDL based assignments will not be migrated
	Ignored Entity Assignment (Entity <entity>): <variable> = <value> -from <from> -to <to>
	Ignoring OFFSET_FROM_BASE_CLOCK assignment for clock <clock>
	Clock <clock> has no FMAX_REQUIREMENT - No clock was generated
	No Clock Settings defined in QSF file

	Clocks
	Clock Transfers
	Path Details
	Unconstrained Paths
	Bus Names
	Other

	Re-Running the Conversion Utility

	Notes
	Output Pin Load Assignments
	Constraint Target Types
	DDR Constraints with the DDR Timing Wizard
	HardCopy Stratix Device Handoff
	Unsupported SDC Features
	Constraint Passing
	Optimization
	Clock Network Delay Reporting
	PowerPlay Power Analysis
	Project Management
	Conversion Utility
	tPD and Minimum tPD Requirement Conversion

	Referenced Documents
	Document Revision History

	8. Quartus II Classic Timing Analyzer
	Introduction
	Timing Analysis Tool Setup
	Static Timing Analysis Overview
	Clock Analysis
	Clock Setup Check
	Clock Hold Check

	Multicycle Paths

	Clock Settings
	Individual Clock Settings
	Default Clock Settings

	Clock Types
	Base Clocks
	Derived Clocks
	Undefined Clocks
	PLL Clocks

	Clock Uncertainty
	Clock Latency
	Timing Exceptions
	Multicycle
	Destination Multicycle Setup Exception
	Destination Multicycle Hold Exception
	Source Multicycle Setup Exception
	Source Multicycle Hold Exception
	Default Hold Multicycle
	Clock Enable Multicycle

	Setup Relationship and Hold Relationship
	Maximum Delay and Minimum Delay
	False Paths

	I/O Analysis
	External Input Delay and Output Delay Assignments
	Input Delay Assignment
	Output Delay Assignment

	Virtual Clocks

	Asynchronous Paths
	Recovery and Removal
	Recovery Report
	Removal Report

	Skew Management
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew

	Generating Timing Analysis Reports with report_timing
	Other Timing Analyzer Features
	Wildcard Assignments
	Assignment Groups
	Fast Corner Analysis
	Early Timing Estimation
	Timing Constraint Checker
	Latch Analysis

	Timing Analysis Using the Quartus II GUI
	Assignment Editor
	Timing Settings
	Clock Settings Dialog Box
	More Timing Settings Dialog Box

	Timing Reports
	Advanced List Path
	Early Timing Estimate
	Assignment Groups

	Scripting Support
	Creating Clocks
	Base Clocks
	Derived Clocks

	Clock Latency
	Clock Uncertainty
	Cut Timing Paths
	Input Delay Assignment
	Maximum and Minimum Delay
	Maximum Clock Arrival Skew
	Maximum Data Arrival Skew
	Multicycle
	Output Delay Assignment
	Report Timing
	Setup and Hold Relationships
	Assignment Group
	Virtual Clock

	MAX+PLUS II Timing Analysis Methodology
	fMAX Relationships
	Slack

	I/O Timing
	tSU Timing
	tH Timing
	tCO Timing
	Minimum tCO (min tCO)
	tPD Timing
	Minimum tPD (min tPD)

	The Timing Analyzer Tool

	Conclusion
	Referenced Documents
	Document Revision History

	9. Synopsys PrimeTime Support
	Introduction
	Quartus II Settings for Generating the PrimeTime Software Files
	Files Generated for the PrimeTime Software Environment
	The Netlist
	The SDO File
	Generating Multiple Operating Conditions with TimeQuest

	The Tcl Script
	Generated File Summary

	Running the PrimeTime Software
	Analyzing Quartus II Projects
	Other pt_shell Commands

	PrimeTime Timing Reports
	Sample of the PrimeTime Software Timing Report
	Comparing Timing Reports from the Quartus II Classic Timing Analyzer and the PrimeTime Software
	Clock Setup Relationship and Slack
	Clock Hold Relationship and Slack
	Input Delay and Output Delay Relationships and Slack

	Static Timing Analyzer Differences
	The Quartus II Classic Timing Analyzer and the PrimeTime Software
	Rise/Fall Support
	Minimum and Maximum Delays
	Recovery/Removal Analysis
	Encrypted Intellectual Property Blocks
	Registered Clock Signals
	Multiple Source and Destination Register Pairs
	Latches
	LVDS I/O
	Clock Latency
	Input and Output Delay Assignments
	Generated Clocks Derived from Generated Clocks

	The Quartus II TimeQuest Timing Analyzer and the PrimeTime Software
	Encrypted Intellectual Property Blocks
	Latches
	LVDS I/O
	The Quartus II TimeQuest Timing Analyzer SDC File and PrimeTime Compatibility
	Clock and Data Paths
	Inverting and Non-Inverting Propagation
	Multiple Rise/Fall Numbers For a Timing Arc
	Virtual Generated Clocks
	Generated Clocks Derived from Generated Clocks

	Conclusion
	Referenced Documents
	Document Revision History

	Section III. Power Estimation and Analysis
	10. PowerPlay Power Analysis
	Introduction
	Quartus II Early Power Estimator File
	PowerPlay Early Power Estimator File Generator Compilation Report

	Types of Power Analyses
	Factors Affecting Power Consumption
	Device Selection
	Environmental Conditions
	Air Flow
	Heat Sink and Thermal Compound
	Ambient Temperature
	Board Thermal Model

	Design Resources
	Number, Type, and Loading of I/O Pins
	Number and Type of Logic Elements, Multiplier Elements, and RAM Blocks
	Number and Type of Global Signals

	Signal Activities

	PowerPlay Power Analyzer Flow
	Operating Conditions
	Signal Activities Data Sources
	Simulation Results

	Using Simulation Files in Modular Design Flows
	Complete Design Simulation
	Modular Design Simulation
	Multiple Simulations on the Same Entity
	Overlapping Simulations
	Partial Simulations
	Node Name Matching Considerations
	Glitch Filtering
	Node and Entity Assignments
	Timing Assignments to Clock Nodes

	Default Toggle Rate Assignment
	Vectorless Estimation

	Using the PowerPlay Power Analyzer
	Common Analysis Flows
	Signal Activities from Full Post-Fit Netlist (Timing) Simulation
	Signal Activities from RTL (Functional) Simulation, Supplemented by Vectorless Estimation
	Signal Activities from Vectorless Estimation, User-Supplied Input Pin Activities
	Signal Activities from User Defaults Only

	Generating a SAF or VCD File Using the Quartus II Simulator
	Generating a VCD File Using a Third-Party Simulator
	Running the PowerPlay Power Analyzer Using the Quartus II GUI
	PowerPlay Power Analyzer Compilation Report
	Summary
	Settings
	Simulation Files Read
	Operating Conditions Used
	Thermal Power Dissipated by Block
	Thermal Power Dissipation by Block Type (Device Resource Type)
	Thermal Power Dissipation by Hierarchy
	Core Dynamic Thermal Power Dissipation by Clock Domain
	Current Drawn from Voltage Supplies
	Confidence Metric Details
	Signal Activities
	Messages
	Specific Rules for Reporting

	Scripting Support
	Running the PowerPlay Power Analyzer from the Command Line

	Conclusion
	Referenced Documents
	Document Revision History

	Section IV. Signal Integrity
	11. Signal Integrity Analysis with Third-Party Tools
	Introduction
	The Need for FPGA to Board Signal Integrity Analysis
	The Double Counting Problem for FPGA Output Timing
	Defining the Double Counting Problem
	The Solution to Double Counting

	I/O Model Selection: IBIS or HSPICE
	FPGA to Board Signal Integrity Analysis Flow
	Create I/O and Board Trace Model Assignments
	Enable Output File Generation
	Generate the Output Files
	Customize the Output Files
	Set Up and Run Simulations in Third-Party Tools
	Interpret Simulation Results

	Simulation with IBIS Models
	Elements of an IBIS Model
	Creating Accurate IBIS Models
	Download IBIS Models
	Generate Custom IBIS Models with the IBIS Writer

	Design Simulation Using the Mentor Graphics HyperLynx Software
	Configuring LineSim to Use Altera IBIS Models
	Integrating Altera IBIS Models into LineSim Simulations
	Running and Interpreting LineSim Simulations

	Simulation with HSPICE Models
	Supported Devices and Signaling
	Creating Accurate HSPICE Models
	Creating HSPICE Model Files Using the Quartus II GUI
	Creating HSPICE Model Files Using Tcl Scripting and the Command Line

	Customizing HSPICE Model Files
	Design Simulation Using Synopsys HSPICE
	Running HSPICE Simulations
	Viewing and Interpreting Tabular Simulation Results
	Viewing Graphical Simulation Results
	Making Design Adjustments Based on HSPICE Simulations

	Conclusion
	Referenced Documents
	Document Revision History

	Section V. In-System Design Debugging
	12. Quick Design Debugging Using SignalProbe
	Introduction
	On-Chip Debugging Tool Comparison
	Debugging Using the SignalProbe Feature
	Reserve the SignalProbe Pins
	Perform a Full Compilation
	Assign a SignalProbe Source
	Add Registers to the Pipeline Path to SignalProbe Pin
	Perform a SignalProbe Compilation
	Analyze the Results of the SignalProbe Compilation
	Generate the Programming File
	SignalProbe ECO flows
	SignalProbe ECO Flow with Quartus II Incremental Compilation
	SignalProbe ECO Flow without Quartus Incremental Compilation

	Common Questions About the SignalProbe Feature
	Why Did I Get the Following Error Message, “Error: There are No Enabled SignalProbes to Process”?
	How Can I Retain My SignalProbe ECOs during Re-compilation of My Design?
	Why Did My SignalProbe Source Disappear in the Change Manager?
	What is an ECO and Where Can I Find More Information on ECO?
	How Do I Migrate My Previous SignalProbe Assignments in the Quartus II Software Versions 5.1 and below to Versions 6.0 and Higher?
	What are all the Changes for the SignalProbe Feature between the Quartus II Software Version 5.1 and Earlier, and Version 6.0 and Later?

	Scripting Support
	Make a SignalProbe Pin
	Delete a SignalProbe Pin
	Enable a SignalProbe Pin
	Disable a SignalProbe Pin
	Perform a SignalProbe Compilation
	Migrating Previous SignalProbe Pins to the Quartus II Software Versions 6.0 and Later
	Script Example

	Using SignalProbe with the APEX Device Family
	Adding SignalProbe Sources
	Performing a SignalProbe Compilation
	Running SignalProbe with Smart Compilation

	Understanding the Results of a SignalProbe Compilation
	Analyzing SignalProbe Routing Failures

	SignalProbe Scripting Support for APEX Devices
	Reserving SignalProbe Pins
	Adding SignalProbe Sources
	Assigning I/O Standards
	Adding Registers for Pipelining
	Run SignalProbe Automatically
	Run SignalProbe Manually
	Enable or Disable All SignalProbe Routing
	Running SignalProbe with Smart Compilation
	Allow SignalProbe to Modify Fitting Results

	Conclusion
	Referenced Documents
	Document Revision History

	13. Design Debugging Using the SignalTap II Embedded Logic Analyzer
	Introduction
	Hardware and Software Requirements

	On-Chip Debugging Tool Comparison
	Design Flow Using the SignalTap II Logic Analyzer
	SignalTap II Logic Analyzer Task Flow
	Add the SignalTap II Logic Analyzer to Your Design
	Configure the SignalTap II Logic Analyzer
	Define Triggers
	Compile the Design
	Program the Target Device or Devices
	Run the SignalTap II Logic Analyzer
	View, Analyze, and Use Captured Data

	Add the SignalTap II Logic Analyzer to Your Design
	Creating and Enabling a SignalTap II File
	Creating a SignalTap II File
	Enabling and Disabling a SignalTap II File for the Current Project

	Using the MegaWizard Plug-In Manager to Create Your Embedded Logic Analyzer
	Creating an HDL Representation Using the MegaWizard Plug-In Manager
	SignalTap II Megafunction Ports
	Instantiating the SignalTap II Logic Analyzer in Your HDL

	Embedding Multiple Analyzers in One FPGA
	Monitoring FPGA Resources Used by the SignalTap II Logic Analyzer

	Configure the SignalTap II Logic Analyzer
	Assigning an Acquisition Clock
	Adding Signals to the SignalTap II File
	Signal Preservation
	Assigning Data Signals
	Node List Signal Use Options
	Untappable Signals

	Adding Signals with a Plug-In
	Specifying the Sample Depth
	Capturing Data to a Specific RAM Type
	Choosing the Buffer Acquisition Mode
	Circular Buffer
	Segmented Buffer

	Managing Multiple SignalTap II Files and Configurations

	Define Triggers
	Creating Basic Trigger Conditions
	Creating Advanced Trigger Conditions
	Examples of Advanced Triggering Expressions

	Trigger Condition Flow Control
	Sequential Triggering
	Custom State-Based Triggering
	State Diagram Pane
	State Machine Pane
	Resources Pane

	SignalTap II Trigger Flow Description Language
	State Labels
	Boolean_expression
	Action_list
	Resource Manipulation Action
	Buffer Control Action
	State Transition Action

	Specifying the Trigger Position
	Creating a Power-Up Trigger
	Enabling a Power-Up Trigger
	Managing and Configuring Power-Up and Runtime Trigger Conditions

	Using External Triggers
	Trigger In
	Trigger Out
	Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	Compile the Design
	Faster Compilations with Quartus II Incremental Compilation
	Enabling Incremental Compilation for your Design
	Using Incremental Compilation with the SignalTap II Logic Analyzer

	Preventing Changes Requiring Recompilation
	Timing Preservation with the SignalTap II Logic Analyzer
	Performance and Resource Considerations

	Program the Target Device or Devices
	Programming a Single Device
	Programming Multiple Devices to Debug Multiple Designs

	Run the SignalTap II Logic Analyzer
	Running with a Power-Up Trigger
	Running with Runtime Triggers
	Performing a Force Trigger
	SignalTap II Status Messages

	View, Analyze, and Use Captured Data
	Viewing Captured Data
	Creating Mnemonics for Bit Patterns
	Automatic Mnemonics with a Plug-In
	Locating a Node in the Design
	Saving Captured Data
	Converting Captured Data to Other File Formats
	Creating a SignalTap II List File

	Other Features
	Using the SignalTap II MATLAB MEX Function to Capture Data
	Using SignalTap II in a Lab Environment
	Remote Debugging Using the SignalTap II Logic Analyzer
	Equipment Setup
	Software Setup on the Remote PC
	Software Setup on the Local PC
	SignalTap II Setup on the Local PC

	SignalTap II Scripting Support
	SignalTap II Command Line Options
	SignalTap II Tcl Commands

	Design Example: Using SignalTap II Logic Analyzers in SOPC Builder Systems
	Custom Triggering Flow Application Examples
	Design Example 1: Specifying a Custom Trigger Position
	Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	Conclusion
	Referenced Documents
	Document Revision History

	14. In-System Debugging Using External Logic Analyzers
	Introduction
	Choosing a Logic Analyzer
	Required Components
	FPGA Device Support

	Debugging Your Design Using the Logic Analyzer Interface
	Creating a Logic Analyzer Interface File
	Creating a New Logic Analyzer Interface File
	Opening an Existing External Analyzer Interface File
	Saving the External Analyzer Interface File

	Configuring the Logic Analyzer Interface File Core Parameters
	Mapping the Logic Analyzer Interface File Pins to Available I/O Pins
	Mapping Internal Signals to the Logic Analyzer Interface Banks
	Using the Node Finder
	Enabling the Logic Analyzer Interface Before Compiling Your Quartus II Project
	Compiling Your Quartus II Project
	Programming Your FPGA Using the Logic Analyzer Interface
	Using the Logic Analyzer Interface with Multiple Devices
	Configuring Banks in the Logic Analyzer Interface File
	Acquiring Data on Your Logic Analyzer

	Advanced Features
	Using the Logic Analyzer Interface with Incremental Compilation
	Creating Multiple Logic Analyzer Interface Instances in One FPGA

	Conclusion
	Document Revision History

	15. In-System Updating of Memory and Constants
	Introduction
	Overview
	Device Megafunction Support
	Using In-System Updating of Memory Constants with Your Design
	Creating In-System Modifiable Memories Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Editing Data Displayed in the Hex Editor
	Importing Exporting Memory Files
	Viewing Memories Constants in the Hex Editor
	Scripting Support
	Programming the Device Using the In-System Memory Content Editor
	Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic Analyzer

	Conclusion
	Referenced Documents
	Document Revision History

	16. Design Debugging Using In-System Sources and Probes
	Introduction
	Overview
	Hardware and Software Requirements

	Design Flow Using In-System Sources and Probes
	Configuring the altsource_probes Megafunction
	Instantiating the altsource_probe Megafunction
	Compiling the Design

	Running the In-System Sources and Probes Editor
	Programming Your Device Using the JTAG Chain Configuration Window
	Instance Manager
	Sources and Probes Editor Window
	Reading Probe Data
	Writing Data
	Data Organization

	TCL Support
	Design Example: Dynamic PLL Reconfiguration
	Conclusion
	Referenced Documents
	Document Revision History

	Section VI. Formal Verification
	17. Cadence Encounter Conformal Support
	Introduction
	Formal Verification Versus Simulation
	Formal Verification: What You Need to Know

	Formal Verification Design Flow
	Quartus II Integrated Synthesis
	EDA Tool Support for Quartus II Integrated Synthesis
	Synplify Pro
	EDA Tool Support for Synplify Pro

	RTL Coding Guidelines for Quartus II Integrated Synthesis
	Synthesis Directives and Attributes
	Stuck-at Registers
	ROM, LPM_DIVIDE, and Shift Register Inference
	RAM Inference
	Latch Inference
	Combinational Loops
	Finite State Machine Coding Styles

	Generating the Post-Fit Netlist Output File and the Encounter Conformal Setup Files
	Tcl Command
	GUI
	The Quartus II Software Generated Files, Formal Verification Scripts, and Directories

	Understanding the Formal Verification Scripts for Encounter Conformal
	The Encounter Conformal Commands within the Quartus II Software-Generated Scripts

	Comparing Designs Using Encounter Conformal
	Black Boxes in the Encounter Conformal Flow
	Running the Encounter Conformal Software
	Running the Encounter Conformal Software from the GUI
	Running the Encounter Conformal Software From a System Command Prompt

	Known Issues and Limitations
	Conclusion
	Black Box Models
	Conformal Dofile/Script Example
	Referenced Documents
	Document Revision History

	18. Synopsys Formality Support
	Introduction
	Formal Verification
	Equivalence Checking

	Formal Verification Support
	EDA Tools and Device Support
	Formal Verification Between RTL and Post-Synthesis Netlist

	Generating Post-Synthesis Netlist for Formal Verification
	DC FPGA Software Settings

	Generating the VO File and Formality Script
	Handling Black Boxes
	Tcl Command
	GUI

	Quartus II Scripts for Formality
	Comparing Designs Using the Formality Software
	Known Issues and Limitations
	Conclusion
	Related Links
	Tcl Sample Script
	DC FPGA Synthesis Script
	Quartus II Software-Generated Formal Verification Script

	Referenced Documents
	Document Revision History

	Section VII. Device Programming
	19. Quartus II Programmer
	Introduction
	Programming Flow
	Programming and Configuration Modes
	JTAG Mode
	Passive Serial Mode
	Active Serial Mode
	In-Socket Programming Mode

	Programmer Overview
	Tools Menu

	Hardware Setup
	Hardware Settings
	JTAG Settings

	Device Programming and Configuration
	Single Device Programming and Configuration
	Multi-Device Programming and Configuration
	Bypassing an Altera Device
	Bypassing a Non-Altera Device
	Chain Description File
	Design Security Key Programming

	Optional Programming Files
	Types of Programming and Configuration Files
	Generating Optional Programming Files
	Create Programming Files
	Convert Programming Files
	Generating Optional Programming or Configuration Files During Compilation

	Flash Loaders
	Parallel Flash Loader
	Serial Flash Loader

	Other Programming Tools
	Quartus II Stand-Alone Programmer
	jtagconfig Debugging Tool

	Scripting Support
	Conclusion
	Referenced Documents
	Document Revision History

	Quartus II Version 7.2 Handbook Volume 4: SOPC Builder
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. SOPC Builder Features
	1. Introduction to SOPC Builder
	Overview
	Architecture of SOPC Builder Systems
	SOPC Builder Components
	Example System
	Custom Components

	System Interconnect Fabric

	Functions of SOPC Builder
	Defining and Generating the System Hardware
	Creating a Memory Map for Software Development
	Creating a Simulation Model and Test Bench

	Getting Started
	Referenced Documents
	Document Revision History

	2. System Interconnect Fabric for Memory-Mapped Interfaces
	Introduction
	High-Level Description
	Fundamentals of Implementation
	Functions of System Interconnect Fabric

	Address Decoding
	Datapath Multiplexing
	Wait-State Insertion
	Pipeline Read Transfers
	Native Address Alignment and Dynamic Bus Sizing
	Dynamic Bus Sizing
	Wider Master
	Narrower Master

	Native Address Alignment

	Arbitration for Multimaster Systems
	Traditional Shared Bus Architectures
	Slave-Side Arbitration
	Arbiter Details
	Arbitration Rules
	Setting Arbitration Parameters in SOPC Builder
	Fairness-Based Shares
	Round-Robin Scheduling
	Burst Transfers
	Minimum Share Value

	Burst Management
	Clock Domain Crossing
	Description of Clock Domain-Crossing Logic
	Location of Clock Domain Crossing Logic
	Duration of Transfers Crossing Clock Domains
	Implementing Multiple Clock Domains in SOPC Builder
	Component Overview
	Functional Description
	Interfaces
	Clock Domain Crossing Logic and FIFOs
	Burst Support
	Example System with Avalon-MM Clock-Crossing Bridges

	Instantiating the Avalon-MM Clock-Crossing Bridge in SOPC Builder

	Interrupts
	Software Priority
	Hardware Priority
	Assigning IRQs in SOPC Builder

	Reset Distribution
	Referenced Documents
	Document Revision History

	3. System Interconnect Fabric for Streaming Interfaces
	Introduction
	High-Level Description
	Avalon Streaming and Avalon Memory-Mapped Interfaces

	Adapters
	Data Format Adapter
	Timing Adapter
	Channel Adapter

	Multiplexer Examples
	Example to Double Clock Frequency
	Example to Double Data Width and Maintain Frequency
	Example to Boost the Frequency

	Referenced Documents
	Document Revision History

	4. SOPC Builder Components
	Introduction
	New Component Structure in v7.1 of the Quartus II Software

	Component Providers
	Component Hardware Structure
	Components That Include Logic Inside the System Module
	Components That Interface to Logic Outside the System Module

	List of Available Components in SOPC Builder
	Tcl Components
	Component Description File (_hw.tcl)
	Component File Organization

	Referenced Document
	Document Revision History

	5. Component Editor
	Introduction
	Component Hardware Structure
	Starting the Component Editor
	HDL Files Tab
	Signals Tab
	Naming Signals for Automatic Type and Interface Recognition
	Templates for Interfaces to External Logic

	Interfaces Tab
	Component Wizard Tab
	Identifying Information
	Parameters

	Saving a Component
	Editing a Component
	Referenced Documents
	Document Revision History

	6. Building a Component Interface with Tcl Scripting Commands
	Organization of a Component Tcl File
	Set and Add Commands
	Module Properties
	Clock Interface
	Avalon-MM Master Interface
	Avalon-MM Slave Interface
	Avalon-ST Source Interface
	Avalon-ST Sink Interface
	Avalon-MM Tristate Interface
	Nios II Custom Instruction Interface
	Interrupt Interface
	Conduit Interface
	Document Revision History

	7. Archiving SOPC Builder Projects
	Introduction
	Scope
	Required Files
	SOPC Builder Design Files
	Nios II Application Software Project Files
	Nios II System Library Project

	File Write Permissions
	Referenced Documents
	Document Revision History

	Section II. Building Systems with SOPC Builder
	8. Building Memory Subsystems Using SOPC Builder
	Introduction
	Example Design
	Example Design Structure
	Example Design Starting Point

	Hardware and Software Requirements

	Design Flow
	Component-Level Design in SOPC Builder
	SOPC Builder System-Level Design
	Simulation
	Quartus II Project-Level Design
	Board-Level Design
	Simulation Considerations
	Generic Memory Models
	Vendor-Specific Memory Models

	On-Chip RAM and ROM
	Component-Level Design for On-Chip Memory
	Memory Type
	Size
	Read Latency
	Non-Default Memory Initialization
	Enable In-System Memory Content Editor Feature

	SOPC Builder System-Level Design for On-Chip Memory
	Simulation for On-Chip Memory
	Quartus II Project-Level Design for On-Chip Memory
	Board-Level Design for On-Chip Memory
	Example Design with On-Chip Memory

	EPCS Serial Configuration Device
	Component-Level Design for an EPCS Device
	SOPC Builder System-Level Design for an EPCS Device
	Simulation for an EPCS Device
	Quartus II Project-Level Design for an EPCS Device
	Board-Level Design for an EPCS Device
	Example Design with an EPCS Device

	SDRAM
	Component-Level Design for SDRAM
	SOPC Builder System-Level Design for SDRAM
	Simulation for SDRAM
	Quartus II Project-Level Design for SDRAM
	Connecting and Assigning the SDRAM-Related Pins
	Accommodating Clock Skew

	Board-Level Design for SDRAM
	Example Design with SDRAM

	Off-Chip SRAM and Flash Memory
	Component-Level Design for SRAM and Flash Memory
	Avalon-MM Tristate Bridge
	Flash Memory
	SRAM

	SOPC Builder System-Level Design for SRAM and Flash Memory
	Simulation for SRAM and Flash Memory
	Quartus II Project-Level Design for SRAM and Flash Memory
	Board-Level Design for SRAM and Flash Memory
	Aligning the Least-Significant Address Bits
	Aligning the Most-Significant Address Bits

	Example Design with SRAM and Flash Memory
	Adding the Avalon-MM Tristate Bridge
	Adding the Flash Memory Interface
	Adding the SRAM Interface
	Adding the PLL
	SOPC Builder System Contents Tab
	Connecting and Assigning Pins in the Quartus II Project
	Connecting FPGA Pins to Devices on the Board

	Referenced Documents
	Document Revision History

	9. Developing Components for SOPC Builder
	Introduction
	SOPC Builder Components and the Component Editor
	Prerequisites
	Hardware and Software Requirements

	Component Development Flow
	Typical Design Steps
	Hardware Design
	Software Design
	Verifying the Component
	Unit Verification
	System-Level Verification

	Design Example: Checksum Master
	Install the Design Files
	Review the Example Design Specifications
	Checksum Design Files
	Master Task Logic
	Register File
	Avalon-MM Clock Interface
	Avalon-MM Master Interface
	Avalon-MM Slave Interface
	Software API

	Create an SOPC Builder component
	Open the Quartus II Project and Start the Component Editor
	HDL Files Tab
	Signals Tab
	Interfaces Tab
	Component Wizard Tab
	Save the Component

	Instantiate the Component in Hardware
	Add the checksum Master Component to the SOPC Builder System
	Compile the Hardware Design and Download to the Target Board

	Exercise the Hardware Using Nios II Software
	Start the Nios II IDE and Create a New IDE Project
	Compile the Software Project and Run on the Target Board

	Sharing Components
	Referenced Documents
	Document Revision History

	Section III. Interconnect Components
	10. Avalon Memory-Mapped Bridges
	Introduction to Bridges
	Structure of a Bridge
	Reasons for Using a Bridge
	Address Mapping for Systems with Avalon-MM Bridges
	Tools for Visualizing the Address Map
	Differences between Avalon-MM Bridges and Avalon-MM Tristate Bridges

	Avalon-MM Pipeline Bridge
	Component Overview
	Functional Description
	The following sections describe the component’s hardware functionality.
	Interfaces
	Pipeline Stages and Effects on Latency
	Burst Support
	Example System with Avalon-MM Pipeline Bridges

	Instantiating the Avalon-MM Pipeline Bridge in SOPC Builder

	Device Support
	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	Referenced Documents
	Document Revision History

	11. Avalon Streaming Interconnect Components
	Introduction to Interconnect Components
	Interconnect Component Usage
	Address Mapping

	Timing Adapter
	Resource Usage and Performance

	Instantiating the Timing Adapter in SOPC Builder
	Input Interface Parameters
	Output Interface Parameters
	Common to Input and Output Interfaces
	Channel Signal Width (Bits)
	Max Channel
	Bits Per Symbol
	Symbols Per Beat
	Include Packet Support
	Error Signal Width (Bits)

	Data Format Adapter
	Resource Usage and Performance
	Instantiating the Data Format Adapter in SOPC Builder
	Input Interface Parameters
	Data Symbols Per Beat

	Output Interface Parameters
	Data Symbols Per Beat

	Common to Input and Output
	Support Backpressure with the Ready Signal
	Data Bits Per Symbol
	Channel Signal Width (Bits)
	Max Channel
	Include Packet Support
	Error Signal Width (Bits)

	Channel Adapter
	Resource Usage and Performance
	Instantiating the Channel Adapter in SOPC Builder
	Input Interface Parameters
	Channel Signal Width (Bits)
	Max Channel

	Output Interface Parameters
	Channel Signal Width (Bits)
	Max Channel

	Common to Input and Output Interfaces
	Data Bits Per Symbol
	Symbols Per Beat
	Include Packet Support
	Error Signal Width (Bits)

	Device Support
	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	Referenced Documents
	Document Revision History

	Quartus II Version 7.2 Handbook Volume 5: Embedded Peripherals
	Contents
	Chapter Revision Dates
	About This Handbook
	Introduction
	How to Contact Altera
	Typographic Conventions

	Section I. Memory Peripherals
	1. SDRAM Controller Core
	Core Overview
	Functional Description
	Avalon-MM Interface
	Off-Chip SDRAM Interface
	Signal Timing and Electrical Characteristics
	Synchronizing Clock and Data Signals
	Clock Enable (CKE) Not Supported
	Sharing Pins with Other Avalon-MM Tri-State Devices

	Board Layout and Pinout Considerations
	Performance Considerations
	Open Row Management
	Sharing Data and Address Pins
	Hardware Design and Target FPGA

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Memory Profile Page
	Timing Page

	Hardware Simulation Considerations
	SDRAM Controller Simulation Model
	SDRAM Memory Model
	Using the Generic Memory Model
	Using the SDRAM Manufacturer’s Memory Model

	Example Configurations
	Software Programming Model
	Clock, PLL and Timing Considerations
	Factors Affecting SDRAM Timing
	Symptoms of an Untuned PLL
	Estimating the Valid Signal Window
	Example Calculation

	Referenced Documents
	Document Revision History

	2. CompactFlash Core
	Core Overview
	Functional Description
	Instantiating the Core in SOPC Builder
	Required Connections
	Device and Tools Support
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	Ide Registers
	Ctl Registers
	Cfctl Register
	Idectl Register

	Referenced Documents
	Document Revision History

	3. Common Flash Interface Controller Core
	Core Overview
	Functional Description
	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Attributes Page
	Presets Settings
	Size Settings

	Timing Page

	Software Programming Model
	HAL System Library Support
	Limitations

	Software Files

	Referenced Documents
	Document Revision History

	4. EPCS Device Controller Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	HAL System Library Support
	Software Files

	Document Revision History

	5. On-Chip FIFO Memory Core
	Core Overview
	Functional Description
	Avalon-MM Write Slave to Avalon-MM Read Slave
	Avalon-ST Sink to Avalon-ST Source
	Avalon-MM Write Slave to Avalon-ST Source
	Avalon-ST Sink to Avalon-MM Read Slave
	Status Interfaces
	Clocking Modes

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	FIFO Settings
	Depth
	Clock Settings
	Status Port
	FIFO Implementation

	Interface Parameters
	Input
	Output
	Allow Backpressure
	Avalon-MM Port Settings
	Avalon-ST Port Settings

	Software Programming Model
	HAL System Library Support
	Software Files

	Programming with the On-Chip FIFO Memory
	Software Control
	Software Example

	On-Chip FIFO Memory API
	altera_avalon_fifo_init()
	altera_avalon_fifo_read_status()
	altera_avalon_fifo_read_ienable()
	altera_avalon_fifo_read_almostfull()
	altera_avalon_fifo_read_almostempty()
	altera_avalon_fifo_read_event()
	altera_avalon_fifo_read_level()
	altera_avalon_fifo_clear_event()
	altera_avalon_fifo_write_ienable()
	altera_avalon_fifo_write_almostfull()
	altera_avalon_fifo_write_almostempty()
	altera_avalon_write_fifo()
	altera_avalon_write_other_info()
	altera_avalon_fifo_read_fifo()
	altera_avalon_fifo_read_other_info()
	Referenced Documents
	Document Revision History

	6. Scatter-Gather DMA Controller Core
	Core Overview
	Example Systems
	Resource Usage and Performance
	Comparison of SG-DMA Controller Core and DMA Controller Core

	Functional Description
	Memory-to-Memory Configuration
	Memory-to-Stream Configuration
	Stream-to-Memory Configuration
	Possible Sources of Errors

	Detailed Description of Each Block
	Descriptor Processor Block
	DMA Read Block
	DMA Write Block

	Device Support and Tools
	Instantiating the Core in SOPC Builder
	Transfer Mode
	Allow Unaligned Transfers
	Data and Error Widths
	FIFO Depth

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Software Files

	Programming with the SG-DMA Controller
	Software Control
	Next Descriptor Pointer

	DMA Descriptors
	Timeouts

	SG-DMA Controller API
	alt_avalon_sgdma_do_async_transfer()
	alt_avalon_sgdma_do_sync_transfer()
	alt_avalon_sgdma_construct_mem_to_mem_desc()
	alt_avalon_sgdma_construct_stream_to_mem_desc()
	alt_avalon_sgdma_construct_mem_to_stream_desc()
	alt_avalon_sgdma_check_descriptor_status()
	alt_avalon_sgdma_register_callback()
	alt_avalon_sgdma_start()
	alt_avalon_sgdma_stop()
	alt_avalon_sgdma_open()
	Document Revision History

	7. DMA Controller Core
	Core Overview
	Functional Description
	Setting Up DMA Transactions
	The Master Read and Write Ports
	Addressing and Address Incrementing

	Instantiating the Core in SOPC Builder
	DMA Parameters (Basic)
	Transfer Size
	Burst Transactions
	FIFO Implementation

	Advanced Options
	Allowed Transactions

	Device and Tools Support
	Software Programming Model
	HAL System Library Support
	ioctl() Operations
	Limitations

	Software Files
	Register Map
	status Register
	readaddress Register
	writeaddress Register
	length Register
	control Register

	Interrupt Behavior

	Referenced Document
	Document Revision History

	Section II. Communication Peripherals
	8. JTAG UART Core
	Core Overview
	Functional Description
	Avalon Slave Interface and Registers
	Read and Write FIFOs
	JTAG Interface
	Host-Target Connection

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Configuration Page
	Write FIFO Settings
	Read FIFO Settings

	Simulation Settings
	Simulated Input Character Stream
	Prepare Interactive Windows

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Driver Options: Fast versus Small Implementations
	ioctl() Operations

	Software Files
	Accessing the JTAG UART Core via a Host PC
	Register Map
	Data Register
	Control Register

	Interrupt Behavior

	Referenced Document
	Document Revision History

	9. UART Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface and Registers
	RS-232 Interface
	Transmitter Logic
	Receiver Logic
	Baud Rate Generation

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Configuration Settings
	Baud Rate Options
	Baud Rate (bps) Setting
	Baud Rate Can Be Changed By Software Setting

	Data Bits, Stop Bits, Parity
	Data Bits Setting
	Parity Setting

	Flow Control
	Include CTS/RTS Pins and Control Register Bits

	Avalon-MM Transfers with Flow Control (DMA)
	Include End-of-Packet Register

	Simulation Settings
	Simulated RXD-Input Character Stream
	Prepare Interactive Windows
	Create ModelSim Alias to Open Streaming Output Window
	Create ModelSim Alias to Open Interactive Stimulus Window

	Simulated Transmitter Baud Rate

	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Driver Options: Fast Versus Small Implementations
	ioctl() Operations
	Limitations

	Software Files
	Legacy SDK Routines
	Register Map
	rxdata Register
	txdata Register
	status Register
	control Register
	divisor Register (Optional)
	endofpacket Register (Optional)

	Interrupt Behavior

	Referenced Documents
	Document Revision History

	10. SPI Core
	Core Overview
	Functional Description
	Example Configurations
	Transmitter Logic
	Receiver Logic
	Master and Slave Modes
	Master Mode Operation
	Slave Mode Operation
	Multi-Slave Environments

	Avalon-MM Interface

	Instantiating the SPI Core in SOPC Builder
	Master/Slave Settings
	Generate Select Signals
	SPI Clock (sclk) Rate
	Specify Delay

	Data Register Settings
	Timing Settings

	Device and Tools Support
	Software Programming Model
	Hardware Access Routines

	alt_avalon_spi_command()
	Software Files
	Legacy SDK Routines
	Register Map
	rxdata Register
	txdata Register
	status Register
	control Register
	slaveselect Register

	Referenced Document
	Document Revision History

	Section III. Display Peripherals
	11. Optrex 16207 LCD Controller Core
	Core Overview
	Functional Description
	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	HAL System Library Support
	Displaying Characters on the LCD
	Software Files
	Register Map
	Interrupt Behavior

	Referenced Document
	Document Revision History

	12. Video Sync Generator and Pixel Converter Cores
	Core Overview
	Video Sync Generator
	Functional Description
	Instantiating the Core in SOPC Builder
	Signals
	Timing Diagrams

	Pixel Converter
	Functional Description
	Instantiating the Core in SOPC Builder
	Signals

	Device and Tools Support
	Hardware Simulation Considerations
	Referenced Document
	Document Revision History

	Section IV. Multiprocessor Coordination Peripherals
	13. Mutex Core
	Core Overview
	Functional Description
	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	Software Files
	Hardware Mutex

	Mutex API
	altera_avalon_mutex_is_mine()
	altera_avalon_mutex_first_lock()
	altera_avalon_mutex_lock()
	altera_avalon_mutex_open()
	altera_avalon_mutex_trylock()
	altera_avalon_mutex_unlock()
	Document Revision History

	14. Mailbox Core
	Core Overview
	Functional Description
	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	Software Files
	Programming with the Mailbox Core

	Mailbox API
	altera_avalon_mailbox_close()
	altera_avalon_mailbox_get()
	altera_avalon_mailbox_open()
	altera_avalon_mailbox_pend()
	altera_avalon_mailbox_post()
	Referenced Document
	Document Revision History

	Section V. Other Memory- Mapped Peripherals
	15. PIO Core
	Core Overview
	Functional Description
	Data Input and Output
	Edge Capture
	IRQ Generation

	Example Configurations
	Avalon-MM Interface

	Instantiating the PIO Core in SOPC Builder
	Basic Settings
	Input Options
	Edge Capture Register
	Synchronously Capture
	Enable Bit Clearing for Edge Capture Register

	Interrupt

	Device and Tools Support
	Software Programming Model
	Software Files
	Legacy SDK Routines
	Register Map
	data Register
	direction Register
	interruptmask Register
	edgecapture Register

	Interrupt Behavior
	Software Files

	Referenced Document
	Document Revision History

	16. Timer Core
	Core Overview
	Functional Description
	Avalon-MM Slave Interface

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Timeout Period
	Hardware Options
	Register Options
	Output Signal Options

	Configuring the Timer as a Watchdog Timer

	Software Programming Model
	HAL System Library Support
	System Clock Driver
	Timestamp Driver
	Limitations

	Software Files
	Register Map
	status Register
	control Register
	periodl and periodh Registers
	snapl and snaph Registers

	Interrupt Behavior

	Referenced Document
	Document Revision History

	17. System ID Core
	Core Overview
	Functional Description
	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Software Programming Model
	alt_avalon_sysid_test()
	Document Revision History

	18. PLL Core
	Core Overview
	Functional Description
	altpll Megafunction
	Clock Outputs
	PLL Status and Control Signals
	System Reset Considerations

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	PLL Settings Page
	Interface Page
	Finish

	Hardware Simulation Considerations
	Register Definitions and Bit List
	Status Register
	Control Register

	Referenced Document
	Document Revision History

	19. Performance Counter Core
	Core Overview
	Functional Description
	Section Counters
	Global Counter
	Register Map
	System Reset Considerations

	Device and Tools Support
	Instantiating the Core in SOPC Builder
	Define Counters
	Multiple Clock Domain Considerations

	Hardware Simulation Considerations
	Software Programming Model
	Software Files
	Using the Performance Counter
	API Summary
	Functions and macros
	Hardware constants

	Startup
	Global Counter Usage
	Section Counter Usage
	Viewing Counter Values

	Interrupt Behavior

	Performance Counter API
	PERF_RESET()
	PERF_START_MEASURING()
	PERF_STOP_MEASURING()
	PERF_BEGIN()
	PERF_END()
	perf_print_formatted_report()
	perf_get_total_time()
	perf_get_section_time()
	perf_get_num_starts()
	alt_get_cpu_freq()
	Referenced Document
	Document Revision History

	Section VI. Streaming Peripherals
	20. Avalon Streaming Channel Multiplexer and Demultiplexer Cores
	Core Overview
	Resource Usage and Performance

	Multiplexer
	Functional Description
	Input Interfaces
	Output Interface

	Instantiating the Multiplexer in SOPC Builder

	Demultiplexer
	Functional Description
	Input Interface
	Output Interfaces

	Instantiating the Demultiplexer in SOPC Builder

	Device and Tools Support
	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	Document Revision History

	21. Avalon Streaming Test Pattern Generator and Checker Cores
	Core Overview
	Resource Utilization and Performance
	Test Pattern Generator
	Functional Description
	Command Interface
	Control and Status Interface
	Output Interface

	Instantiating the Test Pattern Generator in SOPC Builder
	Functional Parameter
	Output Interface

	Test Pattern Checker
	Functional Description
	Input Interface
	Control and Status Interface

	Instantiating the Test Pattern Checker in SOPC Builder
	Functional Parameter
	Input Parameters

	Device and Tools Support
	Installation and Licensing
	Hardware Simulation Considerations
	Software Programming Model
	HAL System Library Support
	Software Files
	Register Maps
	Test Pattern Generator Control and Status Registers
	Test Pattern Generator Command Registers
	Test Pattern Checker Control and Status Registers

	Test Pattern Generator API
	data_source_reset()
	data_source_init()
	data_source_get_id()
	data_source_get_supports_packets()
	data_source_get_num_channels()

	Test Pattern Checker API
	data_sink_reset()
	data_sink_init()
	data_sink_get_id()
	data_sink_get_supports_packets()
	data_sink_get_num_channels()

	Referenced Document
	Document Revision History

