
© Copyright The SPIRIT Consortium, 2006. All rights reserved.

A meta-data description specification of:

 page 1 of 146

For RTL

Document number: IP-XACT™ User Guide v1.2

Version: Released

Date of Issue: July – 2006 (editorial change only of March 2006 version)

Author: SPIRIT Schema Working Group Membership

Purpose: Provide introduction to the IP-XACT Standard and its use model.
Document IP-XACT schema specification and methodology.

Abstract

To accelerate the design of large System-on-Chip (SoC) solutions, the semiconductor industry
needs a common specification mechanism for describing and handling IP that enables
automated configuration and integration through plug-in tools. This is the goal of The SPIRIT
Consortium™. The SPIRIT Consortium works to reach this goal through the provision of
specifications to: ensure delivery of compatible IP descriptions from multiple IP vendors; better
enable importing and exporting complex IP bundles to, from and between Electronic Design
Automation (EDA) tools for SoC design (design environments); better express configurable IP
using IP meta-data; and better enable provision of EDA vendor-neutral IP creation and
configuration scripts (generators / configurators).The founding companies of The SPIRIT
Consortium have combined their extensive experience in IP development, supply, integration
and electronic design automation (EDA) to deliver these IP-XACT™ specifications.

IP-XACT v1.2 specifically addresses requirements for RTL design, including IP packaging,
configuration and SoC integration. In addition, it includes implementation constraints for flow
from initial RTL implementation through synthesis.

This User Guide is part of the IP-XACT specification deliverables, 1.2 version. This document
describes the IP-XACT Schema and Loose Generator Interface, as applied to open-source
examples based around the Leon processor. Also described here are suggested flows, use
models, and guidelines for IP-XACT usage and validity. Relative to the materials already
provided in the IP-XACT v1.0 and v1.1 User Guides, this document includes some error
corrections, additional schema elements to handle design configuration and a definitive
hierarchy solution. The SPIRIT Steering Committee companies have developed this document
along with the SPIRIT Schema and Generator Interfaces. It has been reviewed by the SPIRIT
Reviewing Membership prior to release.

Keywords

IP-XACT, SPIRIT, XML schema, loose generator interface, Design Environment, use models,
flows, examples, interoperability, tools, implementation constraints

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 2 of 146

TABLE OF CONTENTS

1 ABOUT THIS DOCUMENT.. 5
1.1 PURPOSE OF THIS DOCUMENT ... 5
1.2 ACCESS AND LICENSE TO MATERIAL IN DOCUMENT ERROR! BOOKMARK NOT DEFINED.
1.3 TARGETED AUDIENCE AND PREREQUISITES ... 5
1.4 CONTRIBUTORS... 7
1.5 CREATION PROCESS .. 7
1.6 REFERENCES .. 7
1.7 ORGANIZATION OF THIS DOCUMENT .. 7

2 INTRODUCTION TO SPIRIT ... 9
2.1 GOALS AND VISION.. 9

2.1.1 Consortium goals ... 10
2.1.2 Architectural Goals... 10

2.2 SPIRIT DESIGN ENVIRONMENT.. 11
2.2.1 SoC Design Tool.. 12
2.2.2 Design Intellectual Property... 12
2.2.3 Generators and Configurators ... 13
2.2.4 SPIRIT Interfaces... 14

2.3 SPIRIT-ENABLED IMPLEMENTATIONS... 15
2.3.1 Design Environment Provider .. 16
2.3.2 Point-tool Provider ... 16
2.3.3 IP provider.. 16
2.3.4 Generator Provider .. 16
2.3.5 Support of other standards .. 16
3 SPIRIT INTEROPERABILITY USE MODELS... 19

3.1 ROLES AND RESPONSIBILITIES.. 19
3.1.1 The component IP Provider ... 19
3.1.2 The SoC Design IP Provider.. 20
3.1.3 The SoC Design IP Consumer .. 20
3.1.4 The Design Tool Supplier .. 20

3.2 SPIRIT IP EXCHANGE FLOWS ... 20
3.2.1 Component or SoC design IP provider use model .. 21
3.2.2 Generator / configurator provider use model... 21
3.2.3 SoC Design-tool provider use model ... 22
4 SPIRIT SCHEMA ... 23

4.1 SPIRIT OBJECTS... 23
4.1.1 Definitions .. 23
4.1.2 Objects interactions ... 24
4.1.3 VLNV.. 25

4.2 SPIRIT SCHEMA OVERVIEW ... 26
4.2.1 Design schema .. 26
4.2.2 PMD schema ... 26
4.2.3 Component schema... 26
4.2.4 Bus definition schema.. 26
4.2.5 Generators schemas.. 27

4.3 SPIRIT DESIGN MODEL.. 27
4.4 SPIRIT CONFIGURATION.. 31
4.5 SPIRIT PLATFORM META DATA (PMD) MODEL .. 32

4.5.1 XSL Stylesheet .. 33

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 3 of 146

4.6 SPIRIT COMPONENT MODEL .. 34
4.6.1 Component interfaces.. 35
4.6.2 Whitebox interfaces ... 36
4.6.3 Component choices ... 37
4.6.4 Component Address space ... 38
4.6.5 Component Memory Map .. 40
4.6.6 Memory bank ... 43
4.6.7 Register description ... 44
4.6.8 Component HW Models... 46
4.6.9 Component Implementation Constraints ... 49
4.6.10 Component Files.. 50

4.7 HIERARCHY REPRESENTED BY A DESIGN FILE .. 50
4.8 SPIRIT BUS DEFINITION... 51
4.9 SPIRIT BUS AND INTERCONNECT MODEL.. 52

4.9.1 Bus interface .. 53
4.9.2 Interfaces connection... 54
4.9.3 Bus internal representation.. 58
4.9.4 Memory Map .. 65
4.9.5 Remapping... 71
4.9.6 Signal Connections .. 77
4.9.7 Clock and Reset Handling ... 81
4.9.8 Bus interface parameter declaration.. 82
4.9.9 Bus interface parameter .. 83

4.10 REFERENCE BUS DEFINITIONS ... 83
4.10.1 The difference between an external bus and an internal/digital interface 84
4.10.2 Location of reference BusDefs .. 85
5 SPIRIT GENERATORS.. 86

5.1 GENERATOR REGISTRATION... 86
5.2 TIGHT INTEGRATION .. 86
5.3 LOOSE INTEGRATION ... 87

5.3.1 Definition .. 87
5.3.2 Typical DE flow .. 88
5.3.3 Configurators ... 92

5.4 GENERATOR CHAIN.. 92
5.4.1 Generator Naming Convention .. 93
5.4.2 Phase Numbers ... 95
6 SPIRIT SEMANTIC RULES... 97

6.1 CROSS REFERENCES AND VLNVS ... 97
6.2 INTERCONNECTIONS .. 98
6.3 CHANNELS AND BRIDGES ... 100
6.4 MONITOR INTERFACES AND INTERCONNECTIONS ... 100
6.5 CONFIGURABLE ELEMENTS... 101
6.6 SIGNALS ... 103
6.7 REGISTERS ... 103
6.8 MEMORY MAPS.. 104
6.9 ADDRESSING... 104
6.10 HIERARCHY ... 105
6.11 HIERARCHY AND MEMORY MAPS... 108
6.12 RULES REQUIRING EXTERNAL KNOWLEDGE.. 109
6.13 PMD FILES ... 110
6.14 ADDRESSING FORMULAS .. 110

6.14.1 Overview .. 111
6.14.2 Breaking down the path ... 112

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 4 of 146

6.14.3 Connection from "just outside" bus interface A to "just outside" bus interface B.115
6.14.4 Connection from an address block to “just outside” the associated slave bus
interface 116
6.14.5 Connection through a channel from "just outside" the mirrored slave bus interface to
"just outside" the mirrored master bus interface .. 120
6.14.6 Connection from "just outside" the master bus interface to master component's
address space .. 121
6.14.7 Connection across a bridge from "just outside" the master bus to “just outside” the
slave bus interface. .. 122
7 BACKWARD COMPATIBILITY... 123
8 VERIFICATION SUPPORT IN SPIRIT .. 124

8.1 MONITOR BUS INTERFACE & INTERCONNECTION ... 124
8.1.1 Monitor interfaces .. 124
8.1.2 Monitor Interface connection ... 125

8.2 WHITE BOX INTERFACE.. 126
8.3 DESCRIBING VERIFICATION SEQUENCES... 126

8.3.1 Representing the sequence... 127
8.3.2 Associating the sequence with Design IP.. 127
8.3.3 Associating the sequence with Verification IP ... 127
9 APPENDIX: USE CASE EXAMPLES.. 128

9.1 PACKAGING OF A COMPONENT ... 128
9.1.1 Introduction .. 128
9.1.2 Describing the bus interfaces .. 128
9.1.3 Describing the Memory Map.. 130
9.1.4 Describing the hardware model ... 131
9.1.5 Describing the configuration choices ... 134
9.1.6 Describing the file sets... 134
9.1.7 Description of timing constraints.. 136
9.1.8 Other Clock Drivers.. 136
9.1.9 Example Source Code... 136

9.2 IMPLEMENTATION CONSTRAINTS .. 137
9.2.1 Timing Constraints ... 137
9.2.2 External Load/Drive Constraints .. 137
9.2.3 Point to Point Timing Requirements .. 138
9.2.4 Design Rule Constraints .. 139

9.3 LOOSE GENERATOR DUMP .. 139
9.4 GENERATOR EXAMPLE ... 140

10 APPENDIX: DEFINITIONS AND NOTATION ... 142
10.1 DEFINITIONS.. 142
10.2 NOTATIONS ... 146
10.3 LAST PAGE OF DCUMENT ... 146

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 5 of 146

1 ABOUT THIS DOCUMENT

1.1 Purpose of this Document
This document collects the input from the SPIRIT Schema Technical Working Group
(TWG) members and describes the structure, semantic and use models of the IP-
XACT v1.2 schema. This document is part of the IP-XACT v1.2 deliverables. A
separate document, IP-XACT-Release Notes v1.2, provides the summary of schema
changes between V1.1 and V1.2 versions.

This document provides information for users to adopt and validate the proposed
specification against their own design flows, tools and Intellectual Property (IP).

1.2 Access and license to material in document
This work forms part of The SPIRIT Consortium’s IP-XACT specification.

This work contains trade secrets and proprietary information that is the exclusive
property of individual members of The SPIRIT Consortium. Use of these materials
are governed by the legal terms and conditions outlined in the IP-XACT specification
disclaimer available from www.spiritconsortium.org

1.3 Statement of use of Spirit Consortium Specifications
The Spirit Consortium Specification documents are developed within The Spirit
Consortium and the Technical Working Groups of The Spirit Consortium, Inc. The
Spirit Consortium develops its specifications through a consensus development
process, approved by its members and board of directors. This brings together
volunteers representing varied viewpoints and interests to achieve the final product.
Volunteers serve without compensation from the Spirit Consortium. While the Spirit
Consortium administers the process and establishes rules to promote fairness in the
consensus development process, the Spirit Consortium does not independently
evaluate, test, or verify the accuracy of any of the information contained in its
specifications.

Use of a Spirit Consortium Specification is wholly voluntary. The Spirit Consortium
disclaims liability for any personal injury, property or other damage, of any nature
whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other
Spirit Consortium Specification or document.

The Spirit Consortium does not warrant or represent the accuracy or content of the
material contained herein, and expressly disclaims any express or implied warranty,
including any implied warranty of merchantability or suitability for a specific purpose,
or that the use of the material contained herein is free from patent infringement. The
Spirit Consortium Specifications documents are supplied “AS IS.”

The existence of a Spirit Consortium Specification does not imply that there are no
other ways to produce, test, measure, purchase, market, or provide other goods and
services related to the scope of a Spirit Consortium Specification. Furthermore, the
viewpoint expressed at the time a specification is approved and issued is subject to
change due to developments in the state of the art and comments received from
users of the specification. Every Spirit Consortium Specification is subject to review
for revision and update. Users are cautioned to check to determine that they have the
latest edition of any Spirit Consortium Specification.

www.spiritconsortium.org

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 6 of 146

In publishing and making this document available, The Spirit Consortium is not
suggesting or rendering professional or other services for, or on behalf of, any person
or entity. Nor is the Spirit Consortium undertaking to perform any duty owed by any
other person or entity to another.

Any person utilizing this, and any other Spirit Consortium Specification or document,
should rely upon the advice of a competent professional in determining the exercise
of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions
of specifications as they relate to specific applications. When the need for
interpretations is brought to the attention of The Spirit Consortium, The Spirit
Consortium will initiate action to prepare appropriate responses. Since the Spirit
Consortium Specifications represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a
balance of interests. For this reason, The Spirit Consortium and the members of its
Technical Committees are not able to provide an instant response to interpretation
requests except in those cases where the matter has previously received formal
consideration.

Comments for revision of Spirit Consortium Specifications are welcome from any
interested party, regardless of membership affiliation with The Spirit Consortium.
Suggestions for changes in documents should be in the form of a proposed change
of text, together with appropriate supporting comments. Comments on specifications
and requests for interpretations should be addressed to:

The Spirit Consortium
1370 Trancas Street #163
Napa, CA 94558
USA
 –Or–
feedback@spiritconsortium.org

Note: Attention is called to the possibility that implementation of this specification may
require use of subject matter covered by patent rights. By publication of this
specification, no position is taken with respect to the existence or validity of any
patent rights in connection therewith.

The Spirit Consortium shall not be responsible for identifying patents for which a
license may be required by a Spirit Consortium specification or for conducting
inquiries into the legal validity or scope of those patents that are brought to its
attention.

The Spirit Consortium is the sole entity that may authorize the use of The Spirit
Consortium-owned certification marks and/or trademarks to indicate compliance with
the materials set forth herein.

1.4 Targeted audience and prerequisites
This document targets the IP providers and EDA vendors that want to model IP
according to the IP-XACT specifications. Chapters 2 and 3 do not require the reader
to have any specific understanding of XML terminology and technology. All
subsequent chapters assume the reader has knowledge of XML. For XML
background, the reader is referred to www.w3.org.

http://www.w3.org/

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 7 of 146

1.5 Contributors
The following company representatives have contributed to the creation of this
document and supporting specifications:

• ARM: Allan Cochrane, Christopher Lennard, Andrew Nightingale, Anthony
Berent

• Cadence: Jean-Michel Fernandez, Giles Hall, Saverio Fazzari
• LSI Logic: Gary Delp, Wayne Nation, Gary Lippert
• Mentor: John Wilson, Gary Dare, Mark Glasser
• Philips Semiconductor: Geoff Mole, Ahmed Hemani, Roger Witlox, Greg

Ehmann
• ST Microelectronics: Christophe Amerijckx, Serge Hustin, Anthony McIsaac
• Synopsys: Mark Noll, Bernard DeLay, John A. Swanson

1.6 Creation process
This document has been created during the IP-XACT v1.2 development process. As
such, it reflects both the key issues found in reviewing the original schema
contributions against the IP-XACT requirements, and in developing this specification
towards multi-vendor IP and tool support. The document also provides a structural
and semantic description which will assist the user in applying the IP-XACT schema
and generator interface to complex IP and point tools / scripts. These key areas of
application knowledge have been developed from the schema validation process.

This User Guide is released along with the IP-XACT Schema, generator interface
and illustrative examples. Feedback provided during the membership review process
has been included, clarifying the specification and its use-models.

1.7 References
It is expected that this Users Guide will be read in conjunction with the following
resources and materials:

• SPIRIT Web server: http://www.spiritconsortium.org. All of the IP-XACT
specifications are posted in their final form on this web site. Any printed
copies of the specification should be considered at risk of being out of date.

• IP-XACT Requirements, V1.1: http://www.spiritconsortium.org/releases/1.1
• IP-XACT Schema v1.2 (a gzipped tar file containing the schema files):

http://www.spiritconsortium.org/releases/1.2
• IP-XACT Schema on-line documentation, v1.2 (a gzipped tar file containing

HTML documentation generated from the schema files with the above
filenames): http://www.spiritconsortium.org/releases/1.2

• IP-XACT Leon Examples (IP & Generator), v1.2:
http://www.spiritconsortium.org/releases/1.2

• IP-XACT-Release Notes v1.2. Provide a summary of schema changes
between v1.1 and v1.2 versions.

1.8 Organization of this document
This document first gives an overview of IP-XACT (chapter 2) and introduces the
reader to the entity definitions, nomenclature used in the document, and the use
models specifically supported by this work (chapter 3). Following this is a structural
description of the IP-XACT schema (chapter 4), the representation of design IP in IP-

http://www.spiritconsortium.org/
http://www.spiritconsortium.org/releases/1.1
http://www.spiritconsortium.org/releases/1.2
http://www.spiritconsortium.org/releases/1.2
http://www.spiritconsortium.org/releases/1.2

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 8 of 146

XACT XML and the provision of Generators that conform to the IP-XACT Schema
and Generator Interface (chapter 5). Next the semantic rules associated with the IP-
XACT schema are detailed (chapter 6). Followed by notes on backwards
compatibility for existing users of IP-XACT v1.0 and v1.1 are given (chapter 7). Then
the structures of the IP-XACT schema supporting the construction of verification
platforms is described (chapter 8). Detailed examples based on Leon platform IP are
described in the first appendix (chapter 9) and lastly the definitions and other
notations about this document (chapter 10).

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 9 of 146

2 INTRODUCTION TO IP-XACT
To accelerate the design of large System-on-Chip (SoC) solutions, the
semiconductor industry needs a common specification mechanism for describing and
handling IP that enables automated configuration and integration through plug-in
tools. This is the goal of the SPIRIT consortium. SPIRIT will reach its goals through
the provisions of specifications to: ensure delivery of compatible IP descriptions from
multiple IP vendors; better enable importing and exporting complex IP bundles to,
from and between Electronic Design Automation (EDA) tools for SoC design (design
environments); better express configurable IP using IP meta-data; and better enable
provision of EDA vendor-neutral IP creation and configuration scripts (generators /
configurators). The founding companies of SPIRIT have combined their extensive
experience in IP development, supply, integration and electronic design automation
(EDA) to deliver these specifications. This document represents the founding
membership’s guidelines for IP-XACT usage and validity. Each specifications release
from the SPIRIT consortium will address technology in three specific areas:

• IP meta-data schema. The meta-data schema will create a common way to
describe IP through a common format of IP meta-data, compatible with
automated integration techniques and enabling integrators to use IP from
multiple sources with IP-XACT-enabled tools.

• Configuration and generation interface: The interface for integration of IP
creation and configuration scripts, and IP-XACT-packaged point-tools will
provide a standard method for linking into IP-XACT-enabled SoC design
environment tools, enabling a more flexible, automated and optimized
development flow. IP-XACT-enabled tools and generators, configurators will
be able to interpret, configure, integrate and manipulate IP blocks that are
valid and remain valid based on the specified IP meta-data description.

• IP-XACT methodology: Use model for the IP meta-data schema, IP
configuration and generator interface, including how to define and utilize
generator sequencing,

The IP-XACT v1.2 specifications release is intended to comprehensively address
Register Transfer Level (RTL) design, including packaging configuration and SoC
integration.

Where possible, IP-XACT leverages existing standards. These associated standards
include specifications describing: VSIA (particularly Virtual Component Transfer),
XSLT, XPath, and XML.

2.1 Goals and Vision
The IP-XACT specifications enable increased automation for IP selection,
configuration and integration and will enable a multi-vendor IP and design-tool
optimized flow from architectural design through system simulation to chip layout.
Complying with the specifications will enable IP suppliers and tool vendors to offer
immediate, proven solutions, helping system manufacturers develop complex 'first-
time-right' SoCs, SiPs, and other complex composed systems facilitating rapid
release to market. It will also provide the requirements for creating IP within a
company in an IP-XACT-enabled fashion so that company internal and external IP
libraries can be handled in a consistent way.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 10 of 146

2.1.1 Consortium goals
• Develop specifications for describing IP and point-tools (generators) so that

they may be packaged with consistent meta-data descriptions, as well as
interfacing and packaging of supporting scripts for IP generation and
configuration. This is to enable more efficient and cost-effective SoC design
utilizing IP from multiple sources.

• Test the proposed specifications within multiple live projects, providing a
solid proof-of-concept prior to release. Proof of concept to ensure
applicability of the specification to multiple IP and EDA vendors in industrially
significant tools and design-examples.

• Test the proposed specifications as comprehensive for support of SoC
design stages, including RTL design (IP-XACT v1.2), and system-design and
verification (IP-XACT with ESL Extentions).

• Transfer the defined specifications to an international standards body.

The IP-XACT specifications can greatly benefit automated design-flow integration
when used in a complete and correct manner. It is therefore necessary to define
rules for judging a complete and correct implementation. These rules are defined in
the Section 2.3, IP-XACT-Enabled Implementations. Only when a tool, IP,
configurator, or generator complies with the rules outlined in Section 2.3 can they be
classified as 'IP-XACT-Enabled'.

2.1.2 Architectural Goals
The IP-XACT schema and specifications will enable SoC design projects to
encapsulate the infrastructure and engineering knowledge that promote correct by
construction techniques.

2.1.2.1 IP-XACT v1.2
• Full support of RTL design, including any component type, Hardware

Description Language (HDL), configuration or connection-type at this level of
abstraction.

• A set of architectural rules that define constraints and guide the connectivity
and usage of each IP in a given platform. Example rules would be bus
definitions and rules that specify the compatible buses that this IP is allowed
to connect to.

• A set of bus definitions that describe the meaningful signal names of each
bus type so that it can be connected to compatible IP.

• Provide a mechanism to define any bus structure in terms of signal names
that can be used for hooking up other IP.

• A technique of gluing IP together with supportive logic and connections
without the need for user interaction.

• An example of this would be supporting IP that needs to be included when
certain combinations of IP are put together to form part of the design.

• Methods for defining register information and address spaces.
• A way of separating platform specific meta-data required for a piece of IP

that may not be part of the generic IP definition.
• A way of specifying configuration options for a piece of IP, and enabling

selection of these options.
• A mechanism to enable associations between configurable elements of a

design to be specified and handled.
• A way of storing persistent data that supports the iterative process of user

configurations and the options used to derive them.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 11 of 146

• A basic interface to enable configuration and generation scripts such as
those provided with configurable IP and point-tools, to enable them to be
driven by an IP-XACT-enabled environment.

• A mechanism for adding implementation constraints to IP-XACT descriptions
of IP to aid in flow to synthesis.

2.1.2.2 IP-XACT with ESL Extensions v1.4
• Extend IP-XACT v1.2 while remaining compatible.
• Full support of Electronic System Level (ESL) design, including any

component type, ESL language, configuration or connection-type at this level
of abstraction, and mixed with HDL design.

• Full support of system verification, including any verification architecture,
verification-language, configuration or connection type.

• A way of selecting and defining which views of an IP can be integrated and /
or verified together.

• A full API for integrating configuration and generation scripts and tools into
an IP-XACT environment

The remainder of this user-guide will describe IP-XACT for RTL (v1.2). For a
description of the scope of IP-XACT with ESL Extensions (v1.4), the reader is
referred to the IP-XACT Requirements Document [3].

2.2 IP-XACT Design Environment
It is important to describe the IP-XACT specification in the context of its basic use-
model, the Design Environment (DE). This is the co-ordination of a set of tools and
IP, or expressions of that IP (e.g., models) such that the system-design and
implementation flows of a SoC are efficiently enabled and re-use centric. Co-
ordination is managed through creation and maintenance of a meta-data description
of the SoC

The IP-XACT specification can be viewed as a mechanism to express and exchange
information about design IP and its required configuration. For the IP provider, the IP
configuration or generator script provider, the point-tool provider, or the SoC design-
tool provider to claim IP-XACT compliance they must adhere to the completeness
and IP-XACT semantic rules as outlined in Section 6.

The use of the SPIRIT consortium specified formats and interfaces are shown in
Figure 1, and described in the following subsections. The IP-XACT specifications
relate directly to the aspects of the DE indicated in bold.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 12 of 146

LGI*/TGI

Design Build

Design Capture

protocol
buswidth

μ P
system_bus

Component
IP

UART GPIO

mem

SPIRIT

SPIRIT Compliant
Generators

SPIRIT Compliant
SoC Design Tool

address
interface
registers

SPIRIT IP
Import
Export

SoC
Design IP

SoC
XML Configure

IP

SPIRIT
Compliant IP

Component
IP

Compone
XML

generator

configurator

Point
Tool

SPIRIT
Meta - data

Design Build

Design Capture

protocol
buswidth

μ P
system_bus

Component
IP

UART GPIO

mem

μ P
system_bus

Component
IP

UART GPIO

mem

SPIRIT Compliant
Generators

SPIRIT Compliant
SoC Design Tool

address
interface
registers

address
interface
registers

SPIRIT IP
Import
Export

SoC
Design IP

SoC
XML Configure

IP

SPIRIT
Compliant IP

Component
IP

Compone
XML

generator

configurator

Point
Tool

SPIRIT
Meta - data

* LGI maybe deprecated in future releases

Figure 1 - IP-XACT Design Environment

2.2.1 SoC Design Tool
SoC design tools enable the designer to work with IP-XACT design IP through a
coordinated front-end and IP design database. These tools create and manage the
top-level meta-description of SoC design and provide two basic types of services:
design capture, which is the expression of design configuration by the IP provider
and design intent by the IP user; and design build, which is the creation of a design
(or design model) to those intentions.

As part of design capture, a SoC design tool must recognize the structure and
configuration options of imported IP. In the case of structure, this implies both
structure of the design (e.g., how specific pin-outs refer to lines in the HDL code) as
well as structure of the IP package (e.g., where design files and related configurators
/ generators are provided in the packaged IP data-structure). In the case of
configuration, this is the set of options for handling the imported IP (e.g., setting base
address and offset, bus-width, etc.) that may be expressed as configurable
parameters in the IP-XACT meta-data.

As part of design build, generators would either be provided internally with the SoC
design tool to achieve the required IP integration or configuration, or provided
externally (e.g., by an IP provider) and launched by the SoC design-tool as
appropriate.

The SoC design tool set around which a Design Environment (DE) is structured is
where the support for the conceptual context and management of IP-XACT meta-
data resides. However, the IP-XACT specifications make no requirements upon SoC
design tool-architecture, or upon tool internal data structures. To be considered IP-
XACT v1.2 enabled, a SoC design-tool must support the import / export of IP
expressed with valid IP-XACT v1.2 meta-data for both component IP and systems,
and it may support the IP-XACT Loose Generator Interface (LGI) and for v1.3 must
support the Tight Generator Interface (TGI) for interfacing with generators /
configurators external to the DE.

2.2.2 Design Intellectual Property
IP-XACT is structured around the concept of IP re-use. IP may be considered from
the perspective of the object itself, its supporting views, and meta-data description.
In IP-XACT v1.2, the specifications are to be comprehensive for all design objects
required to support RTL design and integration. These include the following:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 13 of 146

• Design Objects
o Fixed HDL descriptions: Verilog, VHDL
o Configurable HDL descriptions (e.g., bus-fabric generators)
o Design models for RT simulation (e.g., compiled core models)
o HDL-specified Verification IP (e.g., basic stimulus generators and

checkers
• IP Views. This is a list of different views (levels of description, languages) to

describe the IP object. In IP-XACT v1.2, these views include:
o Design view: RTL Verilog or VHDL, flat or hierarchical components
o Simulation view model views, targets, simulation directives, etc.
o Documentation view: specification, user guide, etc.

• Meta-data Description
o AN IP-XACT schema-compatible way of describing the: design-history,

hierarchy, locality, object association, configuration options, constraints,
and integration requirements of an IP object

2.2.3 Generators and Configurators
Generators and configurators are executable objects that may be integrated within a
SoC design tool (referred to as ‘internal’), or provided separately as an executable
that can be launched (referred to as ‘external’). Generators and configurators may
be provided as part of an IP package (e.g., for configurable IP such as a bus-matrix
generator), or as a way of wrapping point tools for interaction with a SoC design tool
(e.g., external design netlister, external design checker, etc.). In IP-XACT v1.2,
external configurators and generators may use the Loose Generator Interface (LGI)
or in v1.3, the Tight Generator Interface (TGI). IP-XACT is neutral with respect to the
language in which generators / configurators are provided (e.g., Tcl/Tk, Perl, Java, C,
etc.)

2.2.3.1 Configurators
Configurators are launched during a SoC design-capture phase. They express the
options that a user may take in configuring an IP (e.g., selection of number of master-
ports on a bus-fabric, setting priorities for an interrupt controller, etc.), or the
automatic creation or checking of legal configuration (e.g., master port connection to
a master-mirror interface, etc.). When a configurator completes, it sets the SoC
design-tool internal database to the desired configuration. In many cases, basic
element configuration (e.g., memory size, bus width selection) would be expected to
be handled by all SoC design tools, so internal configuration support could be relied
upon. In such cases, the only required input to the SoC design tool would be the
allowable range of bus-widths specified in the IP meta-data.

In order to use specialized configuration options not supported by the available SoC
design tools, an IP provider may chose to provide an external configurator with their
IP component. In these cases, a SoC design tool can launch the configurator when
the user needs to make the specialized choice. For IP-XACT v1.3, external
configurators must operate upon IP-XACT-enabled meta-data through the LGI or the
TGI. Following execution, LGI configurators return a difference to the SoC meta-data
that the SoC design-tool must interpret, and modify its internal SoC meta-data
representation to match. TGI configurators directly modify the SoC meta-data through
the Tight Generator Interface to the design tool.

2.2.3.2 Generators
Generators are executables (e.g. scripts) that operate upon an IP or the system
design based upon a configuration request. Generators are launched during the
build phase of a design environment. i.e., Generators create the design to the

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 14 of 146

specification provided in the design capture phase. Generators may perform multiple
tasks, such as IP creation, configuration, post-generation checking, simulation set-up,
etc... Generators may be part of a configurable IP package, or a specific design-
automation feature such as an architecture-specific design-rule checker. Like
configurators, some generation services will be provided internally to SoC design
tools, and some specialized generation services may need to be provided externally.
For IP-XACT v1.2, external generators operate upon IP-XACT compliant meta-data
provided through the LGI or in v1.3 the TGI.

Not all generators will require the ability to modify the internal meta-data
representation of the SoC. For example, a generator checking build correctness may
just return a pass/fail. However, many generators will need to return some
modifications to the meta-data description even if minor. For example, an IP
generator will need to express to the SoC design tool where the generated RTL is
placed.

Generators can be associated with phases in the design process that enables
sequencing of chains of generators. This is critical in providing script-based support
of SoC creation and simulation. IP-XACT based generators can be sequenced into
generator chains.

2.2.4 IP-XACT Interfaces
There are two obvious interfaces expressed in Figure 1: from the SoC Design Tool to
the external IP libraries and from the SoC design Tool to the generators /
configurators. In the former case, the IP-XACT specifications are neutral on the use
of design-tool interfaces to IP repositories. While being able to read and write IP with
IP-XACT meta-data is a requirement of the specification, the formal interaction
between an external IP repository and a SoC design-tool is not specified.

In the case of the generators / configurators, two approaches are to be taken. The
LGI solution provided with IP-XACT v1.2 and earlier versions provides basic services
from launch and meta-data import / export to generators / configurators, and the Tight
Generator Interface (TGI) that is being introduced with IP-XACT v1.3 creates a
stronger integration.

2.2.4.1 Loose Generator Interface (LGI):
The LGI is not formally an API. Rather, it is a basic meta-data export / import
mechanism which provides the following functionality:

• Mechanism for registering a generator / configurator with an IP and defining
its sensitivity list.

• Mechanism for dumping the SoC design-tool meta-data description in an IP-
XACT compliant format.

• Mechanism for registering success/fail of generator/configurator completion.
• Mechanism for returning a modification (difference) to the meta-data that the

SoC design tool must interpret.

As the LGI is based on a dump and difference-return mechanism, it is not interactive
with the SoC design tool during execution. As such, loose generators will be
identified as ‘READ ONLY’ or ‘READ / WRITE’ in terms of their need to modify the
SoC meta-data description. In the latter case, the SoC design-tool will need to
ensure that consistency of meta-data is maintained between the generator in
execution and its internal version (e.g., blocking execution)

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 15 of 146

As the LGI performs a meta-data dump, the generators / configurators need to be
able to parse the exported SoC meta-data themselves to locate the information on
which they operate rather than provide specific queries to the SoC design tool.

The LGI is expected to provide sufficient functionality for IP configuration and
generation, and execution of external design-automation features, which do not
require a high degree of iterative interaction with the SoC design tool.

2.2.4.2 Tight Generator Interface (TGI):
IP-XACT v1.3 supports a TGI that is a full API enabling superior integration between
external task-specific tools, configurators and generators. The TGI is markedly more
efficient in the support of external configurators than the IP-XACT LGI due to the
generally rapid nature of configurator execution. IP-XACT v1.1 generators and
configurators are expected to migrate from LGI support to TGI support following the
release of the IP-XACT v1.2 specification. More details can be found at:
http://www.spiritconsortium.org/releases/tgi/index.html.

2.3 IP-XACT-Enabled Implementations
Complying with the rules outlined in this section allows the provider or tools, IP,
generators or configurators to class their products as IP-XACT-Enabled. Conversely,
any violation of these rules removes that naming right. This section first introduces
the set of metrics for measuring valid use of the specifications. It then specifies when
those validity checks must be performed. These validity checks are applied against
the various classes of products: Design Environments, Point Tools, IP providers, and
Generator providers.

IP-XACT Parse Validity:

• Parsing Correctness: Ability to read all IP-XACT XML files.
• Parsing Completeness: Cannot require information that can be expressed in

an IP-XACT-format to be specified in a non-IP-XACT format. Processing of
all information present in an IP-XACT description is not required.

IP-XACT Description Validity:

• Schema Correct: IP is described using XML files that pass XML-schema
checks against The IP-XACT Consortium schema

• Usage Complete: Extensions to The IP-XACT schema can only express
information that cannot otherwise be described in the non-extended IP-XACT
XML..

IP-XACT Semantic Validity:

• Semantic Correctness: Must adhere to the IP-XACT Consortium semantic
interpretations of IP-XACT XML data. the

• Semantic Completeness: Must pass all automated semantic checks
provided by The SPIRIT Consortium. All semantic rules that are non-
checkable in an automated way should be inspected through a regression-
set of design examples.

The above validity rules can be combined with the product class specific rules to
cover the full IP-XACT-enabled space. The following sections describe the rules a
provider has to check to claim a product is IP-XACT-Enabled

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 16 of 146

2.3.1 Design Environment Provider
DE tools represent a framework environment to which point-tools, generators and IP
libraries can be attached.

Requirements to be IP-XACT Enabled:

• Must follow the Parse, Description and Semantic Validity Requirements.
• Must be capable of read/write without loss of information expressed in as

valid IP-XACT description, including the preservation of “so called” vendor
extension data.

• Must support the IP-XACT generator interfaces fully for interaction with
underlying database.

2.3.2 Point-tool Provider
Point tools have no generator support (i.e. no generator callable through IP-XACT
generator interface).

Requirements to be IP-XACT Enabled:

• Must follow the Parse, Description and Semantic Validity Requirements.
• Must be capable of read/write without loss of information expressed in as

valid IP-XACT description, including the preservation of “so called” vendor
extension data.

2.3.3 IP provider
IP providers can generate static or configurable IP. Static IP providers do not need to
supply attached generators. Configurable IP providers also need to provide
generators callable through the IP-XACT generator interface. A configurable IP
provider will therefore have follow the rules for both an IP provider and a Generator
provider.

Requirements to be IP-XACT Enabled:

• Must follow the Parse, Description and Semantic Validity Requirements for
static or generated IP.

2.3.4 Generator Provider
A generator provider delivers IP-XACT generators. IP-XACT generators can be
packaged together with an IP or can be packaged separately, for example as a
generator library.

Requirements to be IP-XACT Enabled:

• Must follow the Parse, Description and Semantic Validity Requirements..
• Must be capable of read/write without loss of information expressed in as

valid IP-XACT description, including the preservation of “so called” vendor
extension data.

• Must be callable through IP-XACT generator interface.

2.3.5 Support of other standards
IP-XACT compliant tools must also support:

• XML version 1.0 (http://www.w3.org/TR/2000/REC-xml-20001006)

http://www.w3.org/TR/2000/REC-xml-20001006

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 17 of 146

• XML Schema (http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/,
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/)

• XSLT version 1.0 (http://www.w3.org/TR/1999/REC-xslt-19991116)
• XPath version 1.0 (http://www.w3.org/TR/1999/REC-xpath-19991116)
• XPath version 2.0 (http://www.w3.org/TR/2005/CR-xpath20-20051103/)

recommended, future versions of the IP-XACT specification are expected to
require version 2.0.

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2005/CR-xpath20-20051103/

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 18 of 146

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 19 of 146

3 IP-XACT INTEROPERABILITY USE MODELS
To introduce the use-model for the IP-XACT specifications, it is first necessary to
identify specific roles and responsibilities, and then relate these to how the IP-XACT
specifications impact these. Note that all or some of the roles can be mixed into a
single organization. For example, some EDA providers are also providing IP, a
component IP provider can also be a platform provider and an IP system design
provider may also be a consumer.

For this user-guide, the roles and responsibilities are restricted to the scope of IP-
XACT v1.2, HDL system design.

3.1 Roles and responsibilities

3.1.1 The component IP Provider
This is a person, group or company creating IP components or subsystems to be
integrated into a one-off SoC design or re-usable platform. These IP’s can be
hardware components (processors, memories, busses…), verification components
and/or hardware-dependent software elements. These may be provided as source,
or in a compiled form (i.e., simulation model). An IP is usually provided with a
functional description, a timing description, some implementation or verification
constraints, and some parameters to characterize (or configure) the IP. All these
types of characterization data may be described in meta-data compliant with the IP-
XACT Schema. Those elements not already provided in the base schema can be
provided using name-space extensibility mechanisms of the specification.

The IP provider can use one or more EDA tools to create/refine/debug IP. During
this process, the IP provider may wish to be able to export and re-import his design
from one environment to another. The IP-XACT IP descriptions will enable this
exchange for RTL component IP.

At some point this IP needs to be transferred to customers, partners and external
EDA tool suppliers. IP-XACT compliant XML provides the exchange-format needed
to describe these component IP packages exchanged between different companies
and tool-flows / methodologies. IP can be characterized into different types:

Fixed IP: Is IP which is straightforward to describe and exchange as there are no
configurable parameters. No configurators or generators need to be provided. An
example of a fixed-IP is an APB GPIO block with a fixed base address.

Parameterized IP: Those IP block which don’t need IP specific generators but have
‘standard’ customizations (where ‘standard’ is defined as industry de-facto tool
support). i.e., No configurators or generators need be provided for SoC design tools
which support these parameterizations. An example of a parameterized IP could be
an AHB / APB bridge with configurable bus-widths.

Configurable IP: Created or modified as a direct result of running an IP specific
generator to build the IP to the user’s specified configuration. Generally will require
both configurators (design capture) and generators (design build) to be provided with
the IP. An example of a configurable IP is an AHB bus fabric component which has
selectable number of masters and slaves, and automatic generation of decode
functionality

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 20 of 146

3.1.2 The SoC Design IP Provider
This is a person, group or company that integrates and validates IP provided by one
or more IP providers to build system platforms. These platforms are complete and
validated systems or sub-systems.

Like the IP provider, the platform provider can use EDA tools to create/refine/debug
its platform, but at some point IP needs to be exchanged with others (customers,
partners, other EDA tools…). To achieve this operation the platform IP has to be
expressed in the IP-XACT specified format as a hierarchical component.

3.1.3 The SoC Design IP Consumer
This is a person, group or company that configures and generates system
applications based on platforms supplied by SoC Design IP providers. These
platforms are complete system designs or sub-systems.

Like the platform provider, the platform consumer can use EDA tools to
create/refine/debug its system application and/or configure the design architecture.
To achieve this operation the EDA tool will have to support platform IP expressed in
the IP-XACT specified format.

3.1.4 The Design Tool Supplier
This is a group or company that provides tools to verify and/or implement an IP or
platform IP. There can be distinguished 3 major tools today (that could be combined)
provided in a system flow:

• Platform builder (or SoC Design Environment) tools: help to assemble a
platform with some automation (e.g. automatic generation of interconnect).

• Verification point-tools: functional and timing Simulation, Verification,
Analysis, Debugging, Co-simulation, Co-verification, acceleration…

• Implementation point-tools: Synthesizer, Floorplanner, Placer/router…

The EDA provider will need to be able to import IP-XACT component or system IP
libraries from multiple sources, and if needed could export them in the same format.

Further, IP-XACT EDA tools would be able to recognize, associate and launch
configurators and generators that may be provided by a Generator or IP provider in
support of configurable IP bundles. The imported IP could be created and/or modified
by the tool and could be exported back (e.g. to be exchanged with other EDA vendor
tools) to satisfy the customer design flow.

Further to the support of generators supplied with IP bundles, the IP-XACT DE tools
will need to be able to recognize and interface with generator-wrapped point-tools.
These may be provided by another EDA provider, or by the IP designer / consumer
as part of a company’s internal design and verification flow. In general, these will
support specialized design-automation features such as architectural-rule checking,
etc….

3.2 IP-XACT IP Exchange Flows
This section describes a typical IP exchange flow that the IP-XACT specifications
technically support between the roles defined in the previous section. By way of
example, the following specific exchange flow can benefit from use of the IP-XACT
specification:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 21 of 146

The Component IP provider generates IP-XACT XML package and can send it to a
SoC design-tool (EDA tool supplier) or directly to a Platform (i.e. SoC Design IP)
provider. The EDA tool supplier can import IP-XACT XML IP and generate platform
IP and/or update (configure) the IP components. The Platform provider can generate
a configurable platform IP and export it in IP-XACT XML format to be used by the end
user to build system applications. The platform provider can also generate its own
platform IP into IP-XACT format and send it to the EDA provider.

While we cannot cover here all the different possible IP exchange flows, we can
identify the following three main use models, from the point of view of each user:

• IP (Component or SoC Design) provider use model
• Generator / configurator (IP provider and Design tool provider) use model
• SoC design-tool provider use model

3.2.1 Component or SoC design IP provider use model
The IP provider (hardware Component IP designer or a Platform IP architect) will use
IP-XACT to package its IP in a standard and reusable format. The first step consists
in creating an IP-XACT XML package (XML plus IP views) to export the IP database
in a valid format. To express this IP as an IP-XACT IP, the IP provider will have to:

Parse the entire design file tree (composed of files of different types: HDL source
files, datasheets, interfaces, parameters…) and convert it into an IP-XACT XML
format. This can be a manual (directly edit IP-XACT compliant XML) or automated
(scripts generating Schema compliant IP-XACT XML) step.

Provide a script (or indication: could just be unzip, untar) to its IP consumer (Platform
provider or end user Platform consumer) to read this IP. This script could be more
complex to read the XML file and convert it into a file tree (or a database) at the end
user place. This script could be seen as an IP installer that could take parameters
from the XML file.

Once the IP has been packaged in an IP-XACT format, the IP provider will use a SoC
design-tool to write/debug/simulate/implement its IP.

3.2.2 Generator / configurator provider use model
The author of a generator or configurator expects to interact with the SoC design tool
through a fixed interface and at well defined times in the design lifecycle. The well
defined times are when components are instantiated, modified or when a generator
chain is started.

As described earlier, Configurators are primarily responsible for ensuring that the
customizable aspects of an IP are customized in a coherent and sensible manner.
Generators are used within the SoC design-tool to extend its capabilities, maybe by
wrapping a point tool, e.g. a simulator; or wiring up IP within the design, or checking
that the design is correct or maybe modifying the design. Many of these features may
also be handled by generators, embedded in the IP itself and supplied by the IP
author.

So there are at least two groups of configurator/generator providers; the IP vendor,
who will supply generators that are written specifically to support their IP, and generic
generator authors who wish to extend the features available within the SoC design-
tool. This latter group will be mainly the SoC-design tool vendors at first but will also
come to include 3rd party generator vendors.

Both groups of providers will have to understand the special requirements that their
generator has and pass this information to the SoC-design tool. The generator will,

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 22 of 146

through the LGI or TGI (see Chapter 5 for more details) and then write out any design
changes that may have occurred as a result of the manipulations. Many generators
will be read-only, they will have 'side-effects' that are useful, such as starting a
simulator. Only a few are expected to actively change the design.

3.2.3 SoC Design-tool provider use model
The SoC design-tool will take as input an IP-XACT component or SoC design,
configure it and load it into its own database format. Then it can automate some
tasks such as the creation of the platform, the generation of the component
interconnect, the generation of the bus fabric and as an output generate or update
the IP-XACT IP. This would include providing new or updated XML with the attached
information: new source files, parameters, documentation, etc.

Customer design flows are usually composed of a chain of different tools from the
same or from different EDA vendors (for example when an EDA provider is not
providing all the tool chain to cover the entire user flow or when the customer is
selecting the best-in class point tool). To address this requirement, the EDA vendor
providing an IP-XACT-enabled tool will read and produce the IP-XACT specified
format and utilize and implement the interfaces defined by The SPIRIT Consortium.
In this use model, each SoC design-tool will have its own generators (utilizing the IP-
XACT LGI/TGI) to build, update and dump its internal meta-data state in an IP-XACT
format that can be imported by another IP-XACT-enabled EDA tool.

Note that, in general, communication through an API or shared Database is not likely
to happen between EDA competitors unless they agree to use an open access
Database. This form of data-sharing is a more likely scenario either within the same
company providing different design tools or between two EDA vendors which have a
close partnership. In this scenario, the two SoC design tools would communicate
through a shared database and bi-lateral agreement on API. This form of
communication is not being specified by IP-XACT.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 23 of 146

4 IP-XACT SCHEMA
In addition to the in-line documentation with the IP-XACT Schema [4], this section
gives some explanation on how the different schema files link to each other, and
when to use them.

4.1 IP-XACT objects
The IP-XACT schema is the core of the IP-XACT specification. It is important to first
define the top objects manipulated by the Schema and describe the interaction
between these objects.

4.1.1 Definitions
Prior to listing the different schema files and go deeper in the details, let’s first define
the objects used in the Schema and in the rest of this document. These definitions
will be largely detailed in the next sections of this document.

IP-XACT metadata is a tool-interpretable way of describing the design history,
locality, object association, configuration options, constraints against, and integration
requirements of an IP object.

An IP-XACT IP appears as two distinct objects: the top design SoC object and the
Component objects instantiated in the top design.

An IP-XACT component is the central placeholder for the object Meta data and its
bus and generator interfaces. Components are used to describe Cores (processors,
co-processors, DSPs…), Peripherals (Memories, DMA controllers, Timers, UART…)
and Busses (simple buses, multi-layer buses, cross bars, network on chip…). An IP-
XACT component can be of two kinds: static or configurable. A static component
cannot be changed by a design environment. A configurable component has some
parameters that can be configured by the DE and these parameters are also
configurable in the RTL. Additionally an IP-XACT component can be a hierarchical
object or a leaf object. Leaf components do not contain other IP-XACT IP.
Hierarchical means that the IP-XACT description contains IP-XACT sub-components.
Clearly this can be recursive thus having hierarchical IP that contain hierarchical IP,
etc, thus, leading to the concept of hierarchy depth. Note that the IP being described
may have a completely different hierarchical arrangement in terms of its
implementation in RTL to that of its IP-XACT description. So a RTL description of a
large IP component may be made up of many levels of hierarchy but its IP-XACT
description need only be a leaf object because that completely describes the IP. On
the other hand some IP can only be described in terms of a hierarchical IP-XACT
description, no matter what the arrangement of the RTL hierarchy.

An IP-XACT component may contain a channel, which is a special IP-XACT object
that can be used to describe multi-point connections between regular components,
which may require some interface adaptation.

An IP-XACT design describes the component instances and the interconnection
between these instances. The interconnection defines the point-to-point connection
between two component Interfaces (for example between a processor interface and a
bus interface).

An IP-XACT generator can be a leaf object or hierarchical (contain other generator
objects) to build a chain of generators. Hierarchical generators are called a
generatorChain. In this version of IP-XACT, the chain is executed in sequence (no
parallelism is allowed) for the execution of generators. Hence, a hierarchical

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 24 of 146

generator is blocked until all its contained sub generators have completed their
execution. A generator is invoked upon user request. There exist two execution
modes for a generator: a read-only mode named generatorInvocation and a read-
write mode named generatorUpdate. A specific type generator is called a
configurator. A configurator is a leaf process that is automatically invoked upon
creation of the object. But one can decide to deactivate the configuration. The
configurators only apply to configurable objects.

An IP-XACT bus definition is an object that describes a bus interface (signal names,
direction, width, usage...) and the constraints that apply to these signals. The IP-
XACT user should consider the term ‘Bus’ here in its large chip interconnect sense.

4.1.2 Objects interactions
The objects defined above are those listed in the schema index.xsd file.

• Components
• Designs
• Bus definition
• Meta-data (PMD)
• Generators:

o Loose/Tight Generator Invocation
o Loose/Tight Generator changes
o Loose/Tight Generator chain

The links (reference calls) between these objects is illustrated in the following figure.
The arrows (A B) illustrate a reference of object B from object A.

pmd

design

component

bus
definition

generators

Figure 2 - IP-XACT Object interactions

In order to be uniquely referenced, each of these top objects has a unique identifier
in IP-XACT, called VLNV.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 25 of 146

4.1.3 VLNV
Each IP-XACT object is assigned a VLNV (Vendor Library Name Version) that is
defined in the header of each XML file. For example:

 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Leon2</spirit:library>
 <spirit:name>simple_design</spirit:name>
 <spirit:version>1.0</spirit:version>

The version number (last V of the VLNV) assigned to an IP component by a
manufacturer may be more complex than an integer number. The version number
may appear as an alphanumeric string and may contain a set of substrings, with non-
alphanumeric delimiters in-between. Each IP supplier will have their own cataloguing
system for setting version numbers. The only rule for the version number is that it
must change each time the XML file is changed.

Sorting and comparing the VLNV string is needed in IP-XACT to determine:

a) Whether an IP is a component that has been previously imported.
b) To allow multiple versions of the same IP to exist in a design.

To sort and compare the VLNV, we must subdivide the version number into major
fields and subfields. Major fields may be separated by a non-alphanumeric delimiter
such as /, ., -, _, ",", etc. Each major field can be compared to determine
equivalence, broken down further into subfields if necessary.

The following examples illustrate the sorting and comparing of VLNV.

The first case will use: 205/75WR16 and 215/50HR15

Each of these version numbers break down into the following two major fields,
separated by the “/” delimiter: 205 75WR16 215 50HR15

Major fields are compared against each other from left to right. In this example, the
first major fields (205 and 215) differ between the VLNV strings and our comparison
can end there. This case is also simplified by the first major field being an integer
(i.e., numeric).

Subfields, within each major field, will need to be examined if the major fields are
alphanumeric. Each major field will have alphabetical and numerical subfields that
are separated from right to left.

In the next example, we have two VLNV with the first major field being the same, so
we must compare their second major subfields: e.g., 205/45R16 and 205/55R15

The first major field (205) is equal between these two VLNV so the second major
field is checked. These second major fields are broken down into the following
alphabetic and numeric subfields: 45 R 16 and 55 R 15

The subfields are compared from left to right. The first (and in this case only)
comparison is 45 versus 55, so these subfields are not equal. The major fields are
not equivalent.

To summarize the rules for the comparison of each subfield in a major field:

• Numeric - compare the integer values of numeric subfields.
• Alphabetic -

o String: perform a simple string comparison
o Case: ignore alphabetic case (e.g., a-A are the same)

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 26 of 146

Note that the version element is now mandatory in version 1.2 of the IP-XACT
schema.

4.2 IP-XACT schema overview
The IP-XACT schema is composed of a set of main files representing the top
elements (the root objects defined in the previous section) and sub files included from
the main files.

A brief description of the main Schema files is given here after.

4.2.1 Design schema
This schema defines the way in which platform designs (top level designs) can be
defined.

Typically a design will include instances of IP, both components and busses. There
will also be the interconnections between these objects. Alongside the instance
specific configuration information will be the platform configuration information, such
as preferred RTL language, simulator of choice.

The design schema file is:

• design.xsd

4.2.2 PMD schema
The Platform Meta Data (PMD) schema defines the configurable parameters at the
Design level. This schema also allows transforming a blackbox component (e.g.
read-only) based on platform design constraints.

The PMD schema file is:

• pmd.xsd

4.2.3 Component schema
The component schema is the one that defines the description of an IP.

Typically an IP will define bus interfaces, memory maps, sub-instances, configuration
information, file sets, signal lists, generators and configurators.

The component schema file is:

• component.xsd

4.2.4 Bus definition schema
Bus definitions must adhere to this schema. A bus definition is used to describe the
pins that make up a bus and some expected values for signal widths and usage. For
example the ADDR pins can be defined as carrying address information and be 16
bits wide. There’s also information on expected pin directions when the signal is on a
master interface, a slave interface or a system interface.

The bus definition schema file is:

• busDefinition.xsd

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 27 of 146

4.2.5 Generators schemas
There are schema files to define how configurators and generators are to be
described and how they should interact with the design environment. There are also
schemas to describe the loose generator interface for generator invocation and
generator modifications back to the design database.

The generator schema files are:

• generator.xsd
• configurator.xsd
• generatorChangeList.xsd
• looseGeneratorInvocation.xsd

4.3 IP-XACT design model
A design (or SoC platform) is the top netlist that contains all the instances and
connections of the design. The following sections have to be defined:

• the VLNV of this IP (i.e. Vendor, Library, Name, Version)
• the component instances (e.g. core, peripherals, bus)
• the connections between the bus and the component instances

The best way to explain how to represent a platform design in IP-XACT is to illustrate
using a simple example illustrated in the figure below.

master_1
(generator)

bus_1 (APB_bus)

slave_1
(timer)

slave_2
(irqctrl)

slave_3
(uart)

ambaAPB_if masterAPB_if

ambaAPB_if

slaveAPB_if_1 slaveAPB_if_2 slaveAPB_if_3

uart_verifier
(uart_tester)

uart_interface

uart_if

Figure 3 - Simple SoC Design example

The equivalent IP-XACT XML file for this simple design is described below. First the
general outline of the XML file is displayed, and then each sub section is refined.

The design starts with the standard XML headers and includes the design’s VLNV,
there’s then a list of components followed by a list of interconnections.

<?xml version="1.0" encoding="UTF-8" ?>
<spirit:design
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

http://www.w3.org/2001/XMLSchema-instance

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 28 of 146

xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>simple_lib</spirit:library>
 <spirit:name>simple_design</spirit:name>
 <spirit:version>1.0</spirit:version>
 <spirit:componentInstances>
 <spirit:interconnections>
</spirit:design>

The component instances section (list of all the component instances in this design)
is detailed here. In this example the first component instance is called master_1 that
is defined by an IP called componentdef from vendor SPIRIT in library simple_lib.
Similarly there are three slave and a bus component instances (called irqctrl_1,
timer_1, uart_1 and bus_1 that are defined respectively by the IP components irqctrl,
timer, uart, APB_bus) from the same library. Configuration parameters are defined on
the uart and the bus. There’s also a component instance, uart_verifier, which is
acting as verification object in this design.

<spirit:componentInstances>
 <spirit:componentInstance>
 <spirit:instanceName>master_1</spirit:instanceName>
 <spirit:componentRef
 spirit:vendor=""spiritconsortium.org”
 spirit:library="simple_lib"
 spirit:name="generator"
 spirit:version=""1.1” />
 </spirit:componentInstance>

 <spirit:componentInstance>
 <spirit:instanceName>slave_1</spirit:instanceName>
 <spirit:componentRef
 spirit:vendor="spiritconsortium.org”
 spirit:library="Leon2"
 spirit:name="timer"
 spirit:version="1.03" />
 </spirit:componentInstance>

 <spirit:componentInstance>
 <spirit:instanceName>slave_2</spirit:instanceName>
 <spirit:componentRef
 spirit:vendor="spiritconsortium.org”
 spirit:library="Leon2"
 spirit:name="irqctrl"
 spirit:version="1.00" />
 </spirit:componentInstance>

 <spirit:componentInstance>
 <spirit:instanceName>slave_3</spirit:instanceName>
 <spirit:componentRef
 spirit:vendor="spiritconsortium.org”
 spirit:library="Leon2"
 spirit:name="uart"
 spirit:version="1.00" />
 <spirit:configuration>
 <spirit:configurableElement
spirit:referenceId="EXTBAUD">false</spirit:configurableElement>
 </spirit:configuration>
 </spirit:componentInstance>

 <spirit:componentInstance>
 <spirit:instanceName>uart_verifier</spirit:instanceName>
 <spirit:componentRef

http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.0alpha

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 29 of 146

 spirit:vendor="spiritconsortium.org"
 spirit:library="vfcn"
 spirit:name="uart_tester"
 spirit:version="1.00" />
 </spirit:componentInstance>

 <spirit:componentInstance>
 <spirit:instanceName>bus_1</spirit:instanceName>
 <spirit:componentRef
 spirit:vendor="amba.com"
 spirit:library="Leon2 "
 spirit:name="APB_bus"
 spirit:version="1.1" />
 <spirit:configuration>
 <spirit:configurableElement spirit:referenceId="address_1">
0x400</spirit:configurableElement>
 <spirit:configurableElement spirit:referenceId="address_2">
0x800</spirit:configurableElement>
 <spirit:configurableElement spirit:referenceId="address_3">
0x1200</spirit:configurableElement>
 </spirit:configuration>
 </spirit:componentInstance>
</spirit:componentInstances>

Note that configurable information for an instance is only recorded in the design file if
it has changed from the default value that was declared in the component’s definition
file. The change may have been made by the user or by a generator.

The interconnection section is detailed here. It describes the bus instance (bus_1)
and the connections to its master (master_1) and its slaves (slave_1, slave_2 and
slave_3). The AMBA APB bus here has one master interface (masterAPB_if_1) and
three slave interfaces (slaveAPB_if_1, slaveAPB_if_2, slaveAPB_if_2). The
verification object instance, uart_verifier, is connected using a monitor interface
connection to the uart instance.

<spirit:interconnections>
 <spirit:interconnection>
 <spirit:activeInterface spirit:componentRef="bus_1"
 spirit:busRef="masterAPB_if_1" />
 <spirit:activeInterface spirit:componentRef="master_1"
 spirit:busRef="ambaAPB_if" />
 </spirit:interconnection>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="bus_1"
 spirit:busRef="slaveAPB_if_1" />
 <spirit:activeInterface
 spirit:componentRef="slave_1"
 spirit:busRef="ambaAPB_if" />
 </spirit:interconnection>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="bus_1"
 spirit:busRef="slaveAPB_if_2" />
 <spirit:activeInterface
 spirit:componentRef="slave_2"
 spirit:Ref="ambaAPB_if" />
 </spirit:interconnection>
 <spirit:interconnection>
 <spirit:activeInterface

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 30 of 146

 spirit:componentRef="bus_1"
 spirit:busRef="slaveAPB_if_3"
 <spirit:activeInterface
 spirit:componentRef="slave_3"
 spirit:busRef="ambaAPB_if" /> </spirit:interconnection>

 <spirit: monitorInterconnection>
 <spirit:activeInterface spirit:busRef="uart_if"
 spirit:componentRef="slave_3"/>
 <spirit:monitorInterface spirit:busRef="uart_interface"
 spirit:componentRef="uart_verifier"/>
 </spirit:monitorInterconnection>
</spirit:interconnections>

The monitorInterconnection (see section 4.9.1.3 for more details) element
allows multiple verification objects to be connected to a single component bus
interface. This allows verification IP to be introduced and removed from a design
without changing the connectivity of the design itself.

Design interconnections (interConnections between active interfaces and
monitorInterconnections between active and monitor interfaces) can be given a
name. This is illustrated in the following figure below.

component_1

master_if slave_if

component_2
conn_12

Figure 4 - Connectivity Name Example

 The following XML fragment gives an example:
<spirit:interConnections>
 <spirit:interConnection>
 <spirit:name>conn_12</spirit:name>
 <spirit:activeInterface
 spirit:componentRef="component_1"
 spirit:busRef="master_if"/>
 <spirit:activeInterface
 spirit:component2Ref="component_2"
 spirit:busInterface2Ref="slave_if"/>
 </spirit:interConnection>
</spirit:interConnections>

This fragment illustrates the connectivity between bus interface master_if (on
component_1) and the bus interface slave_if (on component_2). The Design
Environment (or the user) can name this connection (e.g. conn_12). This name is
optional, but if defined, it must be unique inside the design.

In SPIRIT 1.2 there is the concept of hierarchical connectivity expressed in the
design file.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 31 of 146

master_1
(generator)

bus_1 (APB_bus)

slave_1
(timer)

slave_2
(irqctrl)

slave_3
(uart)

ambaAPB_if masterAPB_if

ambaAPB_if

slaveAPB_if_1 slaveAPB_if_2 slaveAPB_if_3

UartIF1uart_if

Figure 5 - Hierarchical Connectivity Example

 The following XML fragment gives an example:
<spirit:hierConnections>
 <spirit:hierConnection spirit:interfaceName="UartIF1">
 <spirit:componentRef>slave_3</spirit:componentRef>
 <spirit:interfaceRef>uart_if</spirit:interfaceRef>
</spirit:hierConnections>

This fragment illustrates the connectivity between bus interface UartIF1 (on the
component that is being described by this design) and the bus interface uart_if on the
UART instance slave_3 in the design show in Figure 5. It is the responsibility of the
design environment to ensure that the interface UartIF1 exists on the component
when inserting the design file into the component.

4.4 SPIRIT configuration
IP-XACT 1.2 includes a schema for documents that store design configuration
information. This information is all the configurable information that is not recorded in
the design file. The design configuration information is useful when transporting
designs between design environments; it contains information that would otherwise
have to be re-entered by the designer. It is important to make the distinction that the
design itself contains all the information regarding configuration of the design, e.g.
instance base addresses. The design configuration file contains non-essential
ancilliary information.

A design configuration applies to a single design but a design may have multiple
configuration files.

The information recorded in a configuration file is:

• Configurable information defined in pmd files
• Configurable information defined in generators and generator chains
• The active, or current, view selected for instances in the design
• Configurable information defined in vendor extensions

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 32 of 146

A brief example is:
<?xml version="1.0" encoding="UTF-8"?>
<spirit:designConfiguration
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
index.xsd">
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Library</spirit:library>
 <spirit:name>Configs</spirit:name>
 <spirit:version>1.0</spirit:version>

 <spirit:designRef spirit:vendor="spiritconsortium.org"
spirit:library="DesignLibrary" spirit:name="Design1"
spirit:version="1.0"/>
 <spirit:generatorChainConfiguration>
 <spirit:generatorChainRef spirit:vendor="spiritconsortium.org"
spirit:library="generatorLibrary" spirit:name="generator1"
spirit:version="1.0"/>
 <spirit:generators>
 <spirit:generatorName>gen1</spirit:generatorName>
 <spirit:configurableElement spirit:format="string" spirit:id="ID01"
spirit:referenceId="tmpDir" spirit:prompt="Temp dir name:">
 <spirit:configurableElementValue>
my_temp_dir</spirit:configurableElementValue>
 </spirit:configurableElement>
 </spirit:generators>
 </spirit:generatorChainConfiguration>
 <spirit:viewConfiguration>
 <spirit:instanceName>instance_1</spirit:instanceName>
 <spirit:viewName>verilog</spirit:viewName>
 </spirit:viewConfiguration>
 <spirit:vendorExtensions/>
</spirit:designConfiguration>

The example shows that the generator gen1 has been configured to use a certain
location as its temporary directory and that the verilog view for instance instance_1
has been selected.

4.5 SPIRIT platform meta data (pmd) model [Depricated]
The IP-XACT schema allows certain platform-level rules to be encapsulated in XML.
The need for this can be summarized by

• IP as delivered by IP vendors normally provides read-only access
• Configurable parameters of an IP may need to be presented in a way that

best matches the needs of the platform rather than the supplier’s original
intention.

• Default signal values and drivers may need to be defined at the platform level
without needing to change delivered XML

One way of transforming XML from one view to another is via the use of XSLT
transformations and style sheets.

Take an example of a situation where a transformation is to only be applied if two
specific IP blocks (such as a UART_3106 and ARM 926) are both present in the
design. This could be described using the following XML syntax:

<?xml version="1.0" encoding="UTF-8"?>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 33 of 146

<spirit:pmd
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=" http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>pmd</spirit:library>
 <spirit:name>UART_3106</spirit:name>
 <spirit:version>1.1</spirit:version>

 <spirit:appliesTo>
 <spirit:componentRef spirit:vendor="philips.com"
 spirit:library="SPIRIT_PS"
 spirit:name="UART_3106" <spirit:version="1.1"/>
 </spirit:appliesTo>

 <spirit:dependsOn>
 <spirit:componentRef spirit:vendor="mentor.com"
 spirit:library="PxArm9"
 spirit:name="a926" <spirit:version="1.1"/>
 </spirit:dependsOn>

 <spirit:transformer>
 <spirit:xslt>
 <spirit:styleSheet>src/clk.xsl</spirit:styleSheet>
 </spirit:xslt>
 </spirit:transformer>
</spirit:pmd>

4.5.1 XSL Stylesheet
The design environment is required to execute the XSL stylesheet. The actual
transformation in the example is to add a specific clock driving waveform to an
internal clock signal on the ip_3106 IP block. This is not normally delivered with the
IP but always needs to be configured whenever this IP block is used in the target
platform. The actual signal to be configured is called u_clk and can be found with an
XPATH expression to the relevant part of the schema, namely via the spirit elements
model/signalList/signal/name. A complete XSL example for creating the new
XML is given below.

<xsl:stylesheet version="1.0"
 xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2">
 <xsl:param name="schemaNamespace">
 http://www.w3.org/2001/XMLSchema-instance</xsl:param>
 <xsl:param name="targetNamespace">
 http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2</xsl:param>
 <xsl:param name="schemaLocation">
 http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2</xsl:param>

 <xsl:strip-space elements="*"/>

 <!-- matches the root node from where to apply template rules -->
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>

 <!-- matches all attributes and nodes -->
 <xsl:template match="@*|node()">

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema-instance

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 34 of 146

 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>

 <!-- add a clock driver to the u_clk port and export to top-level -->
 <xsl:template
match="spirit:model/spirit:signalList/spirit:signal[spirit:name='u_clk']"
>
 <spirit:signal>
 <spirit:name>u_clk</spirit:name>
 <spirit:direction>in</spirit:direction>
 <spirit:clockDriver>
 <spirit:clockPeriod>40</spirit:clockPeriod>
 <spirit:clockPulseOffset>10</spirit:clockPulseOffset>
 <spirit:clockPulseValue>0</spirit:clockPulseValue>
 <spirit:clockPulseDuration>20
 </spirit:clockPulseDuration>
 </spirit:clockDriver>
 <spirit:export spirit:configGroups="export"
 spirit:id="sig_u_clk"
 spirit:prompt="u_clk">true
 </spirit:export>
 </spirit:signal>
 </xsl:template>

</xsl:stylesheet>

In addition to enhancing the clock signal with a driving waveform the u_clk signal
has been tagged to be exportable to the top-level of the design so that it can be
driven from a high-level.

4.6 SPIRIT component model
A component contains the following main sections:

• The VLNV of this IP (i.e. Vendor, Library, Name, Version). This is the only
mandatory element.

• The Bus interfaces: see section 4.6.1 for more details.
• The HW model (i.e. signal names, verification environments), see section

4.6.8 for more details.
• The file sets (e.g. source files, libraries): see section 4.6.10 for more details.
• The interconnections between sub component instances (if the component is

hierarchical), see section 4.1.1 for more details.
• The sub component instances (if the component is hierarchical), see section

4.1.1 for more details.
• The channels (if this component is a channel), see section 4.9.3.1 for more

details.
• The address spaces (if the component is a bus master), see section 4.6.4 for

more details.
• The generators and configurators attached to the component, see section 5

for more details.
• The implementation constraints associated with the component, see section

4.6.9 for more details.

Below is an Example of a component (Leon Timer peripheral) in XML format:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 35 of 146

<?xml version="1.0" encoding="UTF-8" ?>

<spirit:component
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.
2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.
2 http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">

 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Leon2</spirit:library>
 <spirit:name>timers</spirit:name>
 <spirit:version>1.00</spirit:version>
 <spirit:busInterfaces/>
 <spirit:memoryMaps/>
 <spirit:model/>
 <spirit:choices/>
 <spirit:fileSets/>
…

</spirit:component>

The next sections will describe the above elements in more detail.

4.6.1 Component interfaces
These are defined in the busInterfaces element of the component. It contains a
list of interfaces (e.g. bus interfaces, interrupt interfaces). Here follows an example of
a Timer slave component with an AMBA APB interface.

<spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>ambaAPB</spirit:name>
 <spirit:busType spirit:vendor="amba.com" spirit:library="AMBA"
 spirit:name="APB" spirit:version="v1.0" />

 <spirit:slave>
 <spirit:memoryMapRef spirit:memoryMapRef="slaveMMap"/>
 </spirit:slave>

 <spirit:connection>required</spirit:connection>

 <spirit:signalMap>
 <spirit:signalName>
 <spirit:busSignalName>PCLK<spirit:busSignalName>
 <spirit:componentSignalName>clk<spirit:componentSignalName>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:busSignalName>PWDATA<spirit:busSignalName>
 <spirit:componentSignalName>pwdata<spirit:componentSignalName>
 <spirit:left>31<spirit:left>
 <spirit:right>0<spirit:right>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:busSignalName>PADDR<spirit:busSignalName>
 <spirit:componentSignalName>paddr<spirit:componentSignalName>
 <spirit:left>7<spirit:left>
 <spirit:right>2<spirit:right>
 </spirit:signalName>
 </spirit:signalMap>

 </spirit:busInterface>

http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.0alpha
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.0alpha

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 36 of 146

</spirit:busInterfaces>

For a slave component, the busInterface section may contain a reference to the
memoryMap element defined in the component. Here is an example of a memory
map for a Timer component. To simplify, only one register (the timer1Counter) is
displayed.

<spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>slaveMMap</spirit:name>
 <spirit:addressBlock>
 <spirit:baseAddress spirit:format="long">0</spirit:baseAddress>
 <spirit:range spirit:format="long">64</spirit:range>
 <spirit:width spirit:format="long">32</spirit:width>

 <spirit:register>
 <spirit:name>timer1Counter</spirit:name>
 <spirit:addressOffset>0x0</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-write</spirit:access>
 </spirit:register>

 </spirit:addressBlock>
 </spirit:memoryMap>
</spirit:memoryMaps>

The busInterface element defines the list of signals of each interface. The list is
contained in the signalMap element. Each logical bus signal represented by the
SPIRIT element busSignalName (PCLK in this example) must be mapped to a
physical pin signal represented by the IP-XACT element componentSignalName (clk
in this example).

 <spirit:signalMap>
 <spirit:signalName>
 <spirit:busSignalName>PCLK<spirit:busSignalName>
 <spirit:componentSignalName>clk<spirit:componentSignalName>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:busSignalName>PWDATA<spirit:busSignalName>
 <spirit:componentSignalName>pwdata<spirit:componentSignalName>
 <spirit:left>31<spirit:left>
 <spirit:right>0<spirit:right>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:busSignalName>PADDR<spirit:busSignalName>
 <spirit:componentSignalName>paddr<spirit:componentSignalName>
 <spirit:left>7<spirit:left>
 <spirit:right>2<spirit:right>
 </spirit:signalName>
 </spirit:signalMap>

 </spirit:busInterface>
</spirit:busInterfaces>

4.6.2 Whitebox interfaces
Internal elements of a component can be accessed in the design environment by
other components, in particular verification components, through whitebox interfaces.
These are listed in the whiteboxElements section of the component. Each
whitebox element has a name, a type, a driveable flag, and a string description.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 37 of 146

The whiteboxType element indicates the type of the element. The pin and
signal types refer to elements within an HDL description. The register type
refers to a register in the memory map. The interface type refers to a bus
interface in a lower level component definition. In the example below, a status flag is
shown that is not visible at the interface of a component, but may be needed for
debug, for probing by a testbench component or for use in an assertion.

 <spirit:whiteboxElements>
 <spirit:whiteboxElement>
 <spirit:name>Name</spirit:name>
 <spirit:whiteboxType>register</spirit:whiteboxType>
 <spirit:driveable>false</spirit:driveable>
 <spirit:description>
 error in most recent transfer
 </spirit:description>
 </spirit:whiteboxElement>
 </spirit:whiteboxElements>

Connections to whitebox elements are not specified in the SPIRIT design file. The
whiteboxElement element informs the design environment what internal elements
are accessible, and the design environment itself has to make any connections. The
details of how the whitebox element is implemented, and the path to it, are contained
in the view section of the model element. The same whiteboxElement element
may be implemented differently in different views.

4.6.3 Component choices
The choice element contains the list of items used by a modelparameter or
parameter element. These elements indicate that it will use a choice element by
setting the attribute format="choice". The element must also define the attribute
choiceRef=”widthOptions” to pick which choice list to use. The following
example shows the addressable size (width) and the word size (Dwidth) of a memory
component.

<spirit:model>
 <spirit:modelparameters>
 <spirit:modelparameter spirit:name="width" spirit:format="choice"
spirit:choiceRef="widthOptions">1</spirit:modelparameter>
 <spirit:modelparameter spirit:name="Dwidth" spirit:format="choice"
spirit:choiceRef="DwidthOptions">4</spirit:modelparameter>
 </spirit:modelparameters>
</spirit:model>

<spirit:choices>
 <spirit:choice>
 <spirit:name>widthOptions</spirit:name>
 <spirit:enumeration spirit:text="8K">1</spirit:enumeration>
 <spirit:enumeration spirit:text="64K">2</spirit:enumeration>
 <spirit:enumeration spirit:text="256K">3</spirit:enumeration>
 </spirit:choice>
 <spirit:choice>
 <spirit:name>DwidthOptions</spirit:name>
 <spirit:enumeration spirit:text="2Bytes">4</spirit:enumeration>
 <spirit:enumeration spirit:text="4Bytes">5</spirit:enumeration>
 <spirit:enumeration spirit:text="8Bytes">6</spirit:enumeration>
 </spirit:choice>
</spirit:choices>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 38 of 146

4.6.4 Component Address space
The logical address spaces for each Master interface can be defined for each
component. The addressSpace defines the logical addressable space as seen by
each master. The different address spaces for a component are defined under the
addressSpace element. This addressSpace element is the referenced in each of
the component Master interfaces.

Here is an example of addressSpace definition for a component with two master
interfaces. One interface has an addressSpace of 1 GB (and a based address of
0x00000) and the other interface has an addressSpace of 2 GB (and a base
address of 0x10000). Note that the addressSpaceRef attribute is optional.

<spirit:component>
…
 <spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:master>
 …
 <spirit:addressSpaceRef spirit:addressSpaceRef="Memory_M1"/>
 <spirit:baseAddress>0x00000</spirit:baseAddress>
 </spirit:master>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:master>
 …
 <spirit:addressSpaceRef spirit:addressSpaceRef="Memory_M2"/>
 <spirit:baseAddress>0x10000</spirit:baseAddress>
 </spirit:addressSpaceRef>
 </spirit:master>
 </spirit:busInterface>
 </spirit:busInterfaces>
 …
 <spirit:addressSpaces>
 <spirit:addressSpace>
 <spirit:name>Memory_M1</spirit:name>
 <spirit:range>1Gb</spirit:range>
 </spirit:addressSpace>
 <spirit:addressSpace>
 <spirit:name>Memory_M2</spirit:name>
 <spirit:range>2Gb</spirit:range>
 </spirit:addressSpace>
 </spirit:addressSpaces>

</spirit:component>

AddressSpaces are effectively the programmers view looking out from a master
port. Some components may have addressSpaces associated with more that one
master interface (for instance, a processor that has a system bus and a fast memory
bus. Other components (for instance, Harvard architecture processors) may have
multiple addressSpaces – one for instruction and the other for data.

The addressSpace view seen by different masters connected to the same
channel will depend on the individual architectures of the component implementing
the master. So addressSpaces provide a very ‘personal’ view of the world from that
point in the design.

As an example, we can think of a UART with an 8-bit data bus and 1K of registers
connected via a channel to two processors – one with an 8-bit architecture and one
with a 32-bit architecture (see section 4.9.3.1 for more details on channels).
Depending on how the channel is implemented, the 8-bit processor will see the

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 39 of 146

UART occupying 1K of its addressSpace, while the 32-bit processor may see the
same UART occupy 4K of its addressSpace (but with 3 out of every 4 addresses
unoccupied).

The exact configuration depends on the addressing and byte steering capabilities
implemented by the channel. The bitsInLau indicates minimum size of a data
transaction supported in an interface, and this may be used to determine the
appropriate address signal alignment (the two least significant bits of the address bus
of a byte-capable 32-bit processor may remain unconnected when linked to a
peripheral which is capable of doubleword transactions only [bitsInLau=32]) and
required byte steering.

The addressSpace seen by a master on one bus may contribute to a different
addressSpace seen by a master on another bus if the first address space appears
in a bridged slave interface that is connected to the second bus. Bus bridges are
the constructs that link addressSpaces across different buses (see section 4.9.3.3
for more details on bridges).

4.6.4.1 Endianness
Endianness is defined under the addressSpace element of the component. In the
current Schema there exist (only) two legal values ('big' and 'little') to specify the
endianess:

• Big endian: means that the most significant byte of any multibyte data field is
stored at the lowest memory address, which is also the address of the larger
field.

• Little endian: means that the least significant byte of any multibyte data field
is stored at the lowest memory address, which is also the address of the
larger field.

But there are indeed at least two ways for big-endianness to manifest itself, byte
invariant and word invariant (also known as middle-endian).
The difference being if data is stored as word invariant then for transfers larger than a
byte the data is stored differently, e.g:

• Word invariant: A word access to address 0x0 is on D[31:0]. The MS byte will
be on D[31:24], the LS byte will be on D[7:0].

• Byte invariant: A word access to address 0x0 is on D[31:0]. The MS byte will
be on D[7:0], the LS byte will be on D[31:24].

In IP-XACT, the interpretation of 'big' is the byte invariant style. However, if there is a
need to model middle-endian, a workaround is to extend the addressSpace element
via ##other or to use a parameter for those cases where endianness model cannot
be represented.
The above discussion is byte centric as that is the most common LAU. However, the
discussion in general applies to any size LAU.

4.6.4.2 Local Memory map
Some processor components require specifying their local memory map. This can be
done under the addressSpace element of the component.

• Local memory maps (localMemoryMap element) are blocks of memory
within a component that can only be accessed by the master interfaces of
that component. The XML is identical to standard memoryMap types as
would be defined by a slave interface (See next section).

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 40 of 146

4.6.5 Component Memory Map
The memory map can be defined for each Slave interface of a component. The
memory map must be defined at the top of the component, under the memoryMap
element. This memory map is then referenced in each component Slave interface.

Here is a sample of a memoryMap element definition for a simple memory (with
address map 0x0000 to 0x0FFF). Only the name (my_memory), the baseAddress
element (0x0000) and the range element (memory size) are mandatory. Other
parameters are optional.

Note that the memoryMapRef attribute on the slave interface is mandatory if and only
if at least one signal with an isAddress element is connected in the
busInterface element.

<spirit:component>
…
<spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>my_memory</spirit:name>
 <spirit:addressBlock>
 <spirit:baseAddress spirit:format="long">0x0000
 </spirit:baseAddress>
 <spirit:bitOffset spirit:format="long">0</spirit:bitOffset>
 <spirit:range spirit:format="long">4096</spirit:range>
 <spirit:usage>memory</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>
</spirit:memoryMaps>
…
<spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:slave>
 <spirit:memoryMapRef spirit:memoryMapRef="my_memory"/>
 </spirit:slave>
 </spirit:busInterface>
</spirit:busInterfaces>
…
</spirit:component>

In the previous example, the baseAddress element was hard coded. The following
example shows how to specify the baseAddress element that is resolved by a user
or dependent on other baseAddress elements. The first memoryMap element,
mmap, specifies the baseAddress element as user resolved by including the
attribute resolve and assigning it a value of “user”. To be able to reference the
value of the baseAddress element and the range element elsewhere, the attribute
id is also included in each of these elements.

The baseAddress of the second memoryMap, dependent_mmap, is dependent on
the baseAddress and range of the first memoryMap. This dependency is specified
by using the resolve attribute and assigning it value “dependent” and using this
value necessitates including attribute dependency whose value is of the type string
and can be any XPATH 1.0 expression. In the example, the XPATH expression
references the values of baseAddress and range of the previous memory map to
compute the dependent baseAddress. IP-XACT defines four commonly used
functions that can be used as part of XPATH expressions; the example below shows
three of them being used. Their definition follows the example.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 41 of 146

All dependent expressions may only contain references to fixed tags, or tags with the
attribute ‘resolve=”user”’. This restriction prevents circular expression
dependencies being accidentally created, but may require the same or similar
XPATH expressions to be repeated more that once in the same XML file. For
instance, the third memoryMap, which is dependent on the second map, violates this
IP-XACT semantics.

In addition, to reduce the dependence on a particular IP-XACT schema version, the
XPATH expressions should only reference elements using element id values. They
should not use absolute or relative XPATH expressions to navigate to an element. If,
however, an absolute expression is used, then the XPATH context for the interpreting
this expression will be the root of the document containing the expression. A further
restriction in IP-XACT is to not allow values of two elements to have the same id

To configure two elements through a single user defined parameter, one must define
one element as user defined and make the other dependent on it with a formula that
retrieves its value.

To compute two elements with the same value, they must both have the same
dependency formula and to compute two elements with one depending on the other,
the formula in the dependent element must include the formula of the depended
element and not just its id () reference.

<spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>mmap</spirit:name>
 <spirit:addressBlock>
 <spirit:baseAddress spirit:resolve="user"
spirit:id="baseAddress">0</spirit:baseAddress>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:range spirit:id="range">786432</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>memory</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>

 <spirit:memoryMap>
 <spirit:name>dependent_mmap</spirit:name>
 <spirit:addressBlock>

<!-- The baseAddress in this memoryMap is dependent on the previous
memory map and the formula to compute the baseAddress from the
baseAddress of previous map is expressed as an XPATH expression -->

 <spirit:baseAddress spirit:resolve="dependent"
spirit:dependency="spirit:pow(2,spirit:log(2,
spirit:decode(id('baseAddress'))+ spirit:decode(id('range')))+1)"
spirit:id="dependentBaseAddress">0</spirit:baseAddress>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:range>4096</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>register</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>

<!-- The following memoryMap is illegal because the dependent formula
used to calculate baseAddress is dependent on the dependent element
(id('dependentBaseAddress')) -->

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 42 of 146

 <spirit:memoryMap>
 <spirit:name>illegal_dependent_mmap</spirit:name>
 <spirit:addressBlock>
 <spirit:baseAddress spirit:resolve="dependent" spirit:dependency="
spirit:pow(2,spirit:log(2, spirit:decode(id('dependentBaseAddress'))+
spirit:decode(id('range')))+1)">0</spirit:baseAddress>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:range>4096</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>register</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>
</spirit:memoryMaps>

In addition to the standard XPATH 1.0 functions, SPIRIT defines four extra functions
to aid expressions calculations.

4.6.5.1 spirit:containsToken

boolean spirit:containsToken(string, string)

The spirit:containsToken function returns true if the first argument string contains
the second argument string as a token and otherwise returns false. To be interpreted
as a token, the second string must be found within the first string, and be separated
by white space from any other characters in the first string that are not white space
characters.

Example: spirit:containsToken('default spine driver','pin')
evaluates to false, whereas the standard XPath function contains would have
evaluated true with the same arguments.

Purpose: Some attributes in SPIRIT are a list of tokens separated by white space.
This function allows XPath selection based on whether the attribute contains a
specific token.

4.6.5.2 spirit:decode

number spirit:decode(string)

The spirit:decode function decodes the string argument to a number and returns
the number, or returns the NaN number if the string cannot be decoded. If the
argument is omitted, it defaults to the context node converted to a string. If the string
argument is a decimal formatted number, it is returned unchanged. If it is a
hexadecimal representation starting with “0x” or “#”, it is converted to a decimal
number and returned. If it is in engineering notation ending in a ‘k’, ‘m’, ‘g’, or ‘t’ suffix,
case-insensitive, the numeric part is multiplied by the appropriate power of two.

Example: spirit:decode('0x4000') evaluates to 16384.
spirit:decode('4G') evaluates to 4294967296.

Purpose: SPIRIT allows numbers to be expressed in hexadecimal format and
engineering format. When setting up dependencies on configurable values, it is
sometimes necessary to perform some arithmetic in the dependency XPath
expression. However, XPath only supports arithmetic on numbers and it only
recognizes decimal strings as numbers. This function allows the alternate formats to
be converted to numbers recognizable by XPath.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 43 of 146

4.6.5.3 spirit:pow

number spirit:pow(number, number)

The spirit:pow function returns a number which is the first argument raised to the
power of the second argument.

Example: spirit:pow(2, 10) evaluates to 1024.

Purpose: It is common for a component to have a configurable number of address
bits. When this happens, the size of the address range it occupies on a memory map
varies exponentially with the number of address bits. This function gives XPath the
mathematical capabilities needed to describe this relationship in a dependency
expression.

4.6.5.4 spirit:log

number spirit:log(number, number)

The spirit:log function returns a number that is the log of the second argument in
the base of the first argument.

Example: spirit:log(2, 1024) evaluates to 10.

Purpose: This is the inverse of the spirit:pow function. It is intended to express the
reverse of the dependency described for the spirit:pow function. In this case, the
range of an address block might be configurable and the number of address bits
might be expressed as a dependency of the address range using the log function.

A more detailed example is given in Appendix section: Describing the bus interfaces

4.6.6 Memory bank
Banks allow multiple address banks to be grouped into a single address block. If it's a
parallel bank then each address block under the bank is understood to be located at
the same address with different bit offsets to accommodate the widths of the
preceding blocks.

If it's a serial bank then the first block under the bank is understood to be located at
the bank's address, the next block is at the bank's address plus length of the first
block (adjusted for LAU and bus width considerations).

This means that it is possible to specify one address for a bank of memory, and the
members of the bank all line up correctly without an excessive number of
resolve="dependent" expressions.
In the following example XML, the only address specified is 0x10000, but it causes
memories ram0, ram1, ram2 and ram3 to be mapped to addresses 0x10000,
0x14000, 0x18000 and 0x1C000 respectively.

<bank bankAlignment="serial">
 <baseAddress>0x10000</baseAddress>
 <addressBlock>
 <range>0x1000</range>
 <width>32</width>
 </addressBlock>
 <addressBlock>
 <range>0x1000</range>
 <width>32</width>
 </addressBlock>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 44 of 146

 <addressBlock>
 <range>0x1000</range>
 <width>32</width>
 </addressBlock>
 <addressBlock>
 <range>0x1000</range>
 <width>32</width>
 </addressBlock>
</bank>

In the following XML, memories ramA, ramB, ramC and ramD are all mapped to
address 0x10000, but at bit offsets 0, 8, 16 and 24 respectively.

<bank bankAlignment="parallel">
 <baseAddress>0x10000</baseAddress>
 <addressBlock>
 <range>0x1000</range>
 <width>8</width>
 </addressBlock>
 <addressBlock>
 <range>0x1000</range>
 <width>8</width>
 </addressBlock>
 <addressBlock>
 <range>0x1000</range>
 <width>8</width>
 </addressBlock>
 <addressBlock>
 <range>0x1000</range>
 <width>8</width>
 </addressBlock>
</bank>

In some cases the 'parallel' example could be described by a single memory block,
but there are a number of cases where tools need to know more details about how a
memory bank is setup. For instance, if the memory bank is ROM, and the tools need
to understand the setup to understand how to setup the ROM image.

4.6.7 Register description
Registers may be defined within the memoryMap element of a slave. Registers have
the following attributes: name, addressOffset and size. The name element allows
the register to be identified with a string. The addressOffset element indicates the
offset that this register has from the containing address block’s base address. The
first register in the register bank may be at offset 0x10 whilst the base address is
0xC000 so the register is located at absolute address 0xC010. The final mandatory
element, size, indicates how many bits wide the register is. This is independent of
any of the attributes of the slave bus interface that can access the register, but is
usually linked in some way by the hardware.

There are a number of optional elements that add to the description of the register:

• dim: This is used to assign a dimension to the register, so that it is repeated
as many times as the value of the dim elements. For multi-dimensional
register arrays the memory layout is assumed to follow the C language rules.

• volatile: Indicates that the data in the register is volatile, defaults to false.
• access: This element may take the values ‘read-write’, ‘read-only’ or ‘write-

only’ to indicate the accessibility of the register

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 45 of 146

• dependency: If a register is dependent on another register then this element
allows the dependency to be specified. There may be multiple dependencies
specified. Dependencies are described below.

• reset: Indicates the value of the register’s contents when the device is
reset. This uses a value and an optional mask. When present, the mask
value is to be ‘and’ed with the current value before comparing it to the reset
value. The default value for the mask is all ones (11111….).

• field: If a register has bitfields then they may be described. Fields are
further described below.

• description: Allows a descriptive text to be associated with the register.
• parameter: If the register width can be parameterized in some way then the

parameter names and types can be described in this element.

4.6.7.1 Bitfields
Bitfields within registers can be well described in IP-XACT. These are the mandatory
elements:

• name: assigns a name to the bitfield
• bitOffset: describes the offset (from bit 0 of the register) where this bitfield

starts
• bitWidth: this is the width of the field, counting in bits
• access: like the access element of register, this indicates whether or not the

bitfield is read-only, etc.

These optional elements:

• description: allows a textual description of the bitfield
• values: lists the set of legal values that may be written to the bitfield, this

includes the value, a description for the value and a name for the value that
may be used as a token when programming the register

• parameter: allows for parameterization of the bitfield width

There is an example of a bitfield in Section 4.6.7.3.

4.6.7.2 Register dependencies
Registers that have dependencies on other registers in the component can be
described in IP-XACT through the dependency element. An example is:

<spirit:dependency>
 <spirit:registerRef>ctrlReg</spirit:registerRef>
 <spirit:fieldRef>ctrlField</spirit:fieldRef>
 <spirit:value>0x0a</spirit:value>
 <spirit:mask>0x0f</spirit:mask>
</spirit:dependency>

Here, the register is controlled by a field ctrlField within another register called
ctrlReg. If ctrlField has the value 0xa after being ‘and’ed with 0xf then the controlled
register is valid.

If there are multiple dependencies then all of the dependencies must be satisfied to
enable the controlled register, i.e. the dependencies must be ‘and’ed together.

4.6.7.3 Example register definition
The following register definition demonstrates many of the elements described
above.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 46 of 146

<spirit:register>
 <spirit:name>VectCnt</spirit:name>
 <spirit:addressOffset>0x200</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:resetValue>
 <spirit:value>0x0</spirit:value>
 </spirit:resetValue>
 <spirit:field>
 <spirit:name>E</spirit:name>
 <spirit:bitOffset>5</spirit:bitOffset>
 <spirit:bitWidth>1</spirit:bitWidth>
 <spirit:access>read-only</spirit:access>
 <spirit:description>Set if any other bits are
set</spirit:description>
 </spirit:field>
 <spirit:field>
 <spirit:name>IntSource</spirit:name>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:bitWidth>5</spirit:bitWidth>
 <spirit:access>read-write</spirit:access>
 <spirit:description>Set if interrupt occurred</spirit:description>
 </spirit:field>
 <spirit:description>This is the interrupt vector control
register</spirit:description>
</spirit:register>

So although the register is 32 bits wide, only the first 6 bits have been defined with bit
fields.

4.6.8 Component HW Models
The model element of a component describes the ‘physical’ view of that component.
By physical we mean the real implementation and interface whatever the view is. For
example, a RTL view would describe the source hardware module/entity with its pin
interface; a SW view would define the source device driver C file with its .h interface;
a documentation view would define the datasheet of this IP.

Example: of model section for a Timer component describing the view of the IP in
terms of compatibility, language, file set reference and model name (for example
entity(architecture) or module). In this example the view is a RTL view for simulation
and the fileSetRef fs-vhdlSource refers to an element section defined later in the file.

<spirit:model>
 <spirit:signals>
 </spirit:signals>
 <spirit:modelParameters>
 </spirit:modelParameters>
 <spirit:views>
 <spirit:view>
 <spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>
 <spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifier>
 <spirit:language spirit:strict="true">vhdl</spirit:language>
 <spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>
 <spirit:modelName>leon2_Timers(struct)</spirit:modelName>
 <spirit:view>
 </spirit:views>
</spirit:model>

4.6.8.1 HW model view

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 47 of 146

The view specifies the representation level of the component (e.g. VHDL source for
simulation). An example of description is given below.

<spirit:view>
 <spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>
 <spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifier>
 <spirit:language spirit:strict="true">vhdl</spirit:language>
 <spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>
 <spirit:modelName>leon2_Timers(struct)</spirit:modelName>
</spirit:view>

The envIdentifier element is a string which designates and qualifies information
about how this model view might be deployed in a particular tool environment.

The format of the element is a string with three colon [:] separated field in the format
of "Language:Tool:VendorSpecific". The format is enforced by the schema;
the regular expression which is used to check the string is [A-Za-z0-
9_+*\.]*:[A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]*. This format divides
the element’s value into three sections each separated by a colon. The sections are:

Language:
The “Language” field indicates that this view may be compatible with a particular
tool but only if that language is supported in that tool. For instance, different
version of some simulators may support one or two or more languages. In some
cases, knowing the tool compatability is not enough and may be further qualified
by language compatability. For example, a compiled HDL model may work in a
VHDL-enabled version of a simulator, but not in a SystemC-enabled version of
the same simulator.

Tool:
The “Tool” field indicates that this view contains information that is suitable for
the named tool. This might be used if this view references data that is tool-
specific and would not work generically. Examples of this might be HDL models
that use simulator-specific extensions, or models shipped in a binary/pre-
compiled format.

Vendors will publish lists of approved tool identification strings. These strings
should contain the tool name as well as the company’s domain name, separated
by dots. Some examples of well formed tool entries are:

o “designcompiler.synopsys.com”
o “ncsim.cadence.com”
o “modelsim.mentor.com”

This field can alternatively indicate generic tool family compatability such as
'*Simulation' or '*Synthesis'. An initial list of identification strings for this
element is available from the public area of the spiriticonsortium.org web
site, and will be published by the individual tool vendors. To support
transpotablity of created datafiles, when referencing a tool, it is important to use
the published, therefore generally recognised, tool designation.

Vendor Extension: (e.g., further qualifications)

The "Vendor Extension" field can be used to further qualify tool and language
compatability. This might be used to indicate additional processing information
may be required to use this model in a particular environment. For instance, if the
model is a SWIFT simulation model, the appropriate simulator interface may
need to be enabled and activated.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 48 of 146

Any or all of the <envIdentifier> fields may be used. Where there are
multiple environments for which a particular <view> is applicable, multiple
<envIdentifier> elements can be listed.

If the view contains an implementation of any of the whitebox elements for the
component, the view section should include a reference to that whitebox element,
with a string providing a language-dependent path to enable the DE to access the
whitebox element.

Example: A status flag implemented in a VHDL file for a DMA component
<spirit:view>
 …
 <spirit:language>vhdl</spirit:language>
 <spirit:whiteboxElementRef spirit:whiteboxElementRef="error_flag">
 <spirit:path>dma_top/dma_registers/status_register(0)</spirit:path>
 </spirit:whiteboxElementRef>
</spirit:view>

4.6.8.2 HW model signals
The component signals (RTL ports) are listed in this section. The name, direction,
size of the signals described in here should match the RTL entity/module definition.

Example: of signals section inside the model of a Timer component. Here only one
signal is displayed (a 32 bits address input signal).

<spirit:signals>
 <spirit:signal>
 <spirit:name>paddr</spirit:name>
 <spirit:direction>in</spirit:direction>
 <spirit:left>31</spirit:left>
 <spirit:right>0</spirit:right>
 <spirit:export spirit:configGroups="export" spirit:id="sig_paddr"
spirit:prompt="paddr">false</spirit:export>
 </spirit:signal>
</spirit:signals>

The export element is to be used for signals that are exported to a higher level of
hierarchy.

The left and right elements values are those specified in the RTL. They specify
the left and right vector bounds. Signal width is max(left,right)-min(left,right)+1. When
the bounds are not present, a scalar signal is assumed.

For example:

 data: out std_logic_vector(7 downto 0);

Would be defined in SPIRIT as: left=7 right=0 with all bits in decreasing
order.

 output [29:3] data;

Would be defined in IP-XACT as: left=29 right=3 with all bits in
decreasing order.

 input [0:7] addr;

Would be defined in IP-XACT as: left=0 right=7 with all bits in
increasing order.

The scalar signals; that can be written for example as:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 49 of 146

 reset: in std_logic_vector(0 downto 0);

would be defined in IP-XACT with no left and right. Scalar signals must have no
left or right attribute in IP-XACT. Even if both notations can coexist in HDL, one
in the scalar signal name space the other one in the vectored signal name space.

4.6.8.3 HW model parameters
Component HW parameters allow the user to configure the component.

Example: of parameter section inside the model of a UART component. Here only
one modelparameter is displayed (i.e. the Baud rate) but more can be added to
configure the component.

<spirit:modelParameters>
 <spirit:modelParameter spirit:choiceRef="EXTBAUDChoice"
 spirit:choiceStyle="combo"
 spirit:configGroups="requiredConfig"
 spirit:dataType="boolean"
 spirit:format="choice"
 spirit:id="EXTBAUD"
 spirit:name="EXTBAUD"
 spirit:prompt="Set baud rate externally:"
 spirit:resolve="user">
 false
 </spirit:modelParameter>
</spirit:modelParameters>

The following modelparameter attributes can be defined:

• dataType (optional string representing the data type)
• minimum (optional string value indicating minimum legal value)
• maximum (optional string value indicating maximum legal value)
• rangeType (optional numeric value appearing automatically everywhere

that minimum and maximum appear)

The minimum and maximum attributes are of type 'string' (and not float) and their
value should be interpreted based on the value of dataType. This allows, for
example, defining a maximum value of "0xffffffff" (which is an illegal float value) or a
value of “64”.

The rangeType (defined in the SPIRIT common.att attribute group) can take the
values: float, int, unsigned int, long, or unsigned long. If rangeType is not set, it is
assumed to be “float'’. Note that 'int' and 'unsigned int' are interpreted as 4 bytes and
that 'long' and 'unsigned long' are 8 bytes.

4.6.9 Component Implementation Constraints
Implementation constraints can be defined to document requirements that must be
met by an implementation of the component. Constraints are defined in groups called
constraint sets (in SPIRIT elements componentConstraints and
signalConstraints) to allow different constraints to be associated with different
views of the component. A particular set of constraints is tied to a component view by
the constraintSetId attribute in the constraint set and the matching
constraintSetRef element in the view. Signal constraints specified within the
component override corresponding constraints defined within bus definitions (if any).
See the Appendix for a detailed definition and example utilizing implementation
constraints.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 50 of 146

4.6.10 Component Files
Example: of FileSets section for a Timer component. Here only a few, among the
complete list, source files are displayed. The fileSetID is the one referred to in the
model in the previous section.

<spirit:fileSets>
 <spirit:fileSet spirit:fileSetId="fs-vhdlSource">
 <spirit:file>
 <spirit:name>../../common/config.vhd</spirit:name>
 <spirit:fileType>vhdlSource</spirit:fileType>
 </spirit:file>
 <spirit:file>
 <spirit:name>hdlsrc/timers.vhd</spirit:name>
 <spirit:fileType>vhdlSource</spirit:fileType>
 <spirit:logicalName>leon2_timers</spirit:logicalName>
 </spirit:file>
 </spirit:fileSet>
 </spirit:fileSets>

Note that SPIRIT allows file association to be specified, with defaults and
alternatives.

The default order for file association and dependency shall be the same as the order
in which entries appear in the XML file, the first file or dependency recorded in the
XML shall be taken first.

4.7 Hierarchy represented by a design file
It is possible to describe hierarchical designs in IP-XACT. In any IP-XACT design the
design file references components files. In a hierarchical design some or all of these
component files in turn have views which reference further design files, or design
configuration files, describing the design of those components. This linking allows for
unlimited levels of hierarchy in a design. All referencing of designs, configurations of
designs and components in IP-XACT are done through the VLNV. Four attributes
(vendor, library, name, and version) uniquely identify a design, a configuration
of a design or a component. Below is an example of a hierarchical design.

Example of the highest Design file in a hierarchical design:
<spirit:design>
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Example</spirit:library>
 <spirit:name>Top</spirit:name>
 <spirit:version>1.00</spirit:version>
…
 <spirit:componentInstance>
 <spirit:instanceName>APB</spirit:instanceName>
 <spirit:componentRef
 spirit:vendor="spiritconsortium.org"
 spirit:library="Example"
 spirit:name="APB_top"
 spirit:version="1.00" />
 </spirit:componentInstance>

Example of a Component file in a hierarchical design:
<spirit:component>
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Example</spirit:library>
 <spirit:name>APB_top</spirit:name>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 51 of 146

 <spirit:version>1.00</spirit:version>
…
 <spirit:model>
 <spirit:views>
 <spirit:view>
 <spirit:name>Hierarchical</spirit:name>
 <spirit:envIdentifier>::</spirit:envIdentifier>
 <spirit:hierarchyRef
 spirit:vendor="spiritconsortium.org"
 spirit:library="Example"
 spirit:name="APBSubSystem"
 spirit:version="1.2"/>
 </spirit:view>

Example of the lower Design file in a hierarchical design, showing the hierarchical
connection of a bus interface:

<spirit:design>
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>Example</spirit:library>
 <spirit:name>APBSubSystem</spirit:name>
 <spirit:version>1.2</spirit:version>
…
 <spirit:hierConnections>
 <spirit:hierConnection spirit:interfaceName="UartIF1">
 <spirit:componentRef>slave_3</spirit:componentRef>
 <spirit:interfaceRef>uart_if</spirit:interfaceRef>
 </spirit:hierConnections>

4.8 IP-XACT bus definition
In IP-XACT a Bus IP is defined by the busDefinition.xml, which is referred by the
components bus interfaces. The Bus definition only contains the definition of the
interfaces (i.e. the signals for wire to wire connection, or a collection of wires
connected together and constraints to apply to these signals). The behavior of the
bus (address decoding, arbitration, configuration…) is handled by the component’s
bus generator (which is not part of the bus definition).

Sample of an AHB busdefinition:
<?xml version="1.0" encoding="UTF-8" ?>
<spirit:busDefinition
xmlns:spirit= http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">

 <spirit:vendor>amba.com</spirit:vendor>
 <spirit:library>AMBA</spirit:library>
 <spirit:name>AHB</spirit:name>
 <spirit:version>v1.0</spirit:version>
 <spirit:extends spirit:vendor="amba.com"
 spirit:library="AMBA"
 spirit:name="AHBlite" />
 <spirit:maxMasters>16</spirit:maxMasters>
 <spirit:maxSlaves>16</spirit:maxSlaves>
 <spirit:signals>
 <spirit:signal>
 <!—
A signal from bus master to the bus arbiter which indicates that the bus

http://www.w3.org/2001/XMLSchema-instance

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 52 of 146

master requires the bus. There is an HBUSREQ signal for each bus master
in the system, up to a maximum of 16 bus masters.
 -->
 <spirit:logicalName>HBUSREQx</spirit:logicalName>
 <spirit:onMaster>
 <spirit:direction spirit:fixedDirectionType="out" />
 </spirit:onMaster>
…
 </spirit:signal>
 </spirit:signals>
</spirit:busDefinition>

The bus definition file contains a list of logical signals that may appear on a bus
interface of that bus type. Note that this doesn't mean that all these signals must exist
or be present on every interface.

The onMaster, onSlave, onSystem tags associated with each logical signal are
optional constraints. So if none of these constraints are specified, then any of the
logical signals can appear in any format in any of the bus interfaces. The
busDefinition author has the choice of how far to constrain the definitions. Generally
speaking, more constraints in the definitions reduce implementation flexibility for
whoever is creating bus IP that conforms to the busDefinition.

The group tag defined under the onSystem element is there to distinguish between
different sets of system interfaces. Usually, all the arbiter signals would be processed
together, or all the clock/reset signals would be processed together. So this is really a
mechanism to specify any sort of non-standard bus interface capabilities for a bus
definition.

Default implementation constraints can be defined for signals defined in the bus
definition using the busDefSignalConstraints element. These constraints are
treated as default constraints for the corresponding signal of the component. See the
appendix for more details and an example utilizing implementation constraints.

The maxMasters and maxSlaves elements specify the maximum number of masters
or slaves that may appear on a bus. If the maxMasters element is not present then
the numbers of masters is unbounded. If the maxSlaves element is not present then
the numbers of slaves is unbounded.

4.9 IP-XACT Bus and interconnect model
Though busses are components in IP-XACT, bus models need a specific section
because of their importance in SoC platforms and their potential complexity.

A bus (or more generally, a design interconnect) can be modelled with two concepts:

• Its interfaces
• Its memory map

Two main categories of busses can be distinguished according to their interface:

• Symmetric busses (such as OCP, VCI, STbus, crossbars, network on chip)
which can be modeled with direct interfaces

• Asymmetric busses (such as AHB, APB, CoreConnect) which can be
modeled with mirrored interfaces

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 53 of 146

The following sections describe, first, the bus interfaces and how to connect them.
This is followed by a description of the how to model the internal representation of a
bus, and of the relationship between bus interfaces and memory maps.

4.9.1 Bus interface
Each IP component normally has one or more bus interfaces identified in the
component XML file. Bus interfaces are groups of signals that belong to an identified
bus type (i.e. a reference to a busDefinition).

Before introducing the bus model, it is useful to introduce the IP-XACT terminology
(where commonly used words have very specific meanings).

Components are connected together by linking the bus interfaces together. There
are three classes of bus interface: master, slave and system each with two flavors:
direct and mirrored. Additionally a monitor interface is supported for connecting
monitor IP into the design for verification

4.9.1.1 Direct interfaces
A master interface is the bus interface that initiates a transaction (like a read or
write) on a bus. For example, processors and DMA controllers implement master bus
interfaces. Master interfaces tend to have associated address spaces (address
spaces with programmers view)

A slave interface is the bus interface that terminates/consumes a transaction
initiated by a master interface. Typically, memories, UARTs and other peripherals
implement slave bus interfaces. Slave interfaces often contain information about the
registers that are accessible through the slave interface.

A slave interface may contain a fileSetRefGroup element. This element may seem
out of place but is needed to allow each slave port to reference a unique fileSet
element. This element could then be used to reference a software driver that can be
made different for each slave port.

A system interface is an interface that is neither a master nor slave interface, and
allows specialized (or non-standard) connections to a bus. System interfaces might
be used to interface external arbiters to a bus. System interfaces help to handle
situations not covered by the bus specification, or deviations from the standard.

Modeling guidelines for system interface:

In general, if a signal’s functionality is documented in the bus’s documentation, then it
should be included in master and slave interfaces; only those signals that do not
have documented functionality should be included in system interfaces. Some
examples follow:

• For an AMBA bus, HCLK and HRESETN are specified bus signals.
Therefore we propose to include them with other signals in master and slave
bus interfaces (i.e. inputs on both master and slave interfaces, and not split
out into separate system interfaces). If a clock generator is connected to that
AMBA bus, then it would have one or more clock outputs. But nothing in the
AMBA spec specifies how HCLK should be driven (nothing says that the
clock generator has to be included) so in that case, we recommend that
HCLK outputs appear in a system interface.

• For an AMBA bus with an external arbiter. A signal like HGRANT is an input
to a master and doesn't exist on a slave interface. Some implementations of
an AMBA bus might have an internal arbiter, so there is no component that
has an output HGRANT signal. However some implementations might
support an external arbiter, so HGRANT might also be specified as an output

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 54 of 146

in a system interface of group "external arbiter". This doesn't mean that there
must always be an external arbiter; but that if one exists, then the signals are
constrained in this way.

• For Altera Excalibur, the HGRANT on the Excalibur device is an output, not
an input. This is because Excalibur has the arbiter built into the IP module,
but external masters that can be connected. So the Excalibur IP would have
a bus interface (in addition to its AMBA master and slave interface) that is a
system arbiter interface.

Some buses have specialised sideband signals. If these are tied or related to the
standard signals in the bus (as opposed to being completely standalone), we would
also expect these signals to have some sort of system element designator in the
busdef.

4.9.1.2 Mirrored interfaces
As the name suggests, a mirrored interface has the same (or similar) signals to its
related direct bus interface, but the signal directions are reversed. So a signal that is
an input on a direct bus interface would be an output in the matching mirror interface.

A mirror bus interface (like its non-mirror counterpart) support master, slave and
system classes, and are always associated with a particular bus definition.

4.9.1.3 Monitor interfaces
A monitor interface is an interface used in verification that is neither a master, slave
nor system interface. This allows specialized (or non-standard) connections to a bus
that will not count as a connected interface. Monitor interfaces are used to connect
verification IP used to monitor an interface of type master, slave or system and do not
count as a connected interface in the design environment. A monitor interface is
identified by the monitor element in the interface definition, with an attribute to
specify the type of active interface being monitored (master, slave, system).

A monitor interface is declared in the component XML as show in the example below,
for monitoring a master bus interface:

<spirit:component>
 …
 <spirit:name>MyMonitor<spirit:name>
 …
 <spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>C</spirit:name>
 <spirit:monitor spirit:interfaceType="master" />
 </spirit:busInterface>
 </spirit:busInterfaces>
</spirit:component>

4.9.2 Interfaces connection

4.9.2.1 Connection rules
As defined in the previous section, a bus interface can have direct or mirrored
interfaces. Each of 3 kinds: master, slave and system. Direct interfaces can be:
Master (M), Slave (S) or System (Y). Mirrored interfaces can be: Mirrored Master
(MM), Mirrored Slave (MS), Mirrored System (MY) or Monitor.

The following rules apply to connect two component interfaces:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 55 of 146

Direct Master to Slave interface connection is allowed only under the following
conditions:

• The bus definition permits direct connection.
• For addressable busses, the address range defined on the slave interface is

less than or equal to the address range defined on the master interface
• For addressable busses, the values of bitsInLau at the master and the slave

match.

USAGE NOTE: IP-XACT does not provide mechanisms for describing additional
constraints that must be met when connecting like but parameterizable interfaces.
For example, such an issue may occur when connecting a 32-bit bus to a 16-bit
interface on an IP. In this case, the Least Addressable Unit must be identified for
connection to be completed automatically

In the case of connecting like but parameterizable interfaces, two alternatives may be
supported: (i) the IP provider may supply a set of generators required for completing
integration between the parameterized interfaces, or (ii) the specifier of the interface
protocol must list the set of possible parameters, and a design tool may be able to
guide the user through a set of steps to complete the connections.

In all other cases, a direct connection is not allowed. The master interface has to
connect to a Mirror Master interface (respectively, the Slave interface has to connect
to a Mirror slave interface). In other words, a component with mirror interfaces must
be inserted between components with direct interfaces each time there is not a point
to point connection in the design, or if the component interfaces do not match.

Direct to Mirror interface connection is allowed for:

• Direct Master to Mirrored Master
• Direct Slave to Mirrored Slave

A Mirror-to-Mirror interface connection is not permitted. To connect two mirror
interfaces one has to insert a component with direct interfaces in between. But a
channel cannot connect directly to another channel (because two Mirrored Interfaces
cannot directly be connected). To connect two channels together, a regular
component must be inserted in between, just as would be required when connecting
two different types of bus together.

4.9.2.2 Direct Master to Direct Slave interface connection
The interface connection (between a component master interface and a component
slave interface) is always a point-to-point (i.e. logical) connection.

A design.xml (or a hierarchical component.xml) will have an interconnection section
containing an interconnection element which has two activeInterface
elements each containing two attributes: componentRef and busRef.

The connection of these elements and attributes is illustrated in the following picture
for a master to slave interface.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 56 of 146

Master

ComponentRef

busInterfaceRef (M)

busInterfaceRef (S)

Slave

ComponentRef

Figure 6 - Master to Slave interface connection

A sample of the interconnection section of the design.xml file is given below.
<spirit:interconnections>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="Master"
 spirit:busRef="M" />
 <spirit:activeInterface
 spirit:componentRef="Slave"
 spirit:busRef="S" />
 </spirit:interconnection>
</spirit:interconnections>

4.9.2.3 Direct Master Interface to Mirrored Master interface connection
This connection is made in the same way as the direct master to slave connection.
Consider the following connectivity:

Master

Component1Ref

BusInterface1Ref (M)

BusInterface2Ref (MM)

Bus

Component2Ref

Figure 7 - Master to Mirror interface connection

The interconnection section of the design.xml file is given below.
<spirit:interconnections>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="Master"
 spirit:busRef="M" />
 <spirit:activeInterface

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 57 of 146

 spirit:componentRef="Bus"
 spirit:busRef="MM" />
 </spirit:interconnection>
</spirit:interconnections>

4.9.2.4 Mirrored slave Interface to direct slave interface connection
This is the counterpart of the previous section. It describes the connection between a
channel mirror interface and a component bus interface. This connection is defined in
the platform design. Again, the connection between a mirror interface and a bus is
always a point-to-point (i.e. logical) connection.

The connection is illustrated in the following figure for a channel mirror to slave
interface.

Bus

Component1Ref

BusInterface1Ref (MS)

BusInterface2Ref (S)

Slave

Component2Ref

Figure 8 - Mirror to Slave interface connection

A sample of the interconnection section (in design.xml) for the figure above is given
below:

<spirit:interconnections>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="Bus"
 spirit:busRef="MS" />
 <spirit:activeInterface
 spirit:componentRef="Slave"
 spirit:busRef="S" />
 </spirit:interconnection>
</spirit:interconnections>

4.9.2.5 Monitor Interface connection
With a monitor interface it is possible to have multiple connections between an
interface of a design IP and an interface of verification IP.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 58 of 146

master_1

slave_1

monitor_1

A B

C

Figure 9 - Master, Slave and Monitor interface connection

This figure represents the connection between a master interface (A) on Master_1
and a slave interface (B) on Slave_1. The monitor (Monitor_1) is used to check e.g.
the protocol. Monitor_1 has a monitor interface (C).

Two interconnections are used to enable this:

• Master_1(A) Slave_1(B) – a standard interconnection
• Master_1(A) Monitor_1(C) – a monitorInterconnection

A sample of the interconnection section (in design.xml) for the figure above is given
below:

 <spirit:interconnections>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="Master_1"
 spirit:busRef="A" />
 <spirit:activeInterface>
 spirit:componentRef="Slave_1"
 spirit:busRef="B" />
 </spirit:interconnection>
 <spirit:monitorInterconnection>
 <spirit:activeInterface
 spirit:component1Ref="Master_1"
 spirit:busInterface1Ref="A" />
 <spirit:monitorInterface
 spirit:componentRef="Monitor_1"
 spirit:busRef="C" />
 </spirit:interconnection>
 </spirit:interconnections>

4.9.3 Bus internal representation
There are two constructs used to connect standard components (traditional
components usually with ‘masters’ and ‘slave’ interfaces) together. These constructs
are also encapsulated into components.

A channel is used to connect together component master, slave and system
interfaces on the same bus. All masters connected to a channel see all slaves at the
same physical address, and only one transaction can be active in a channel at any
point in time. This does not preclude bus protocols which utilize pipelining.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 59 of 146

A bus bridge is a component that is used as an interface between one bus and
another (often a peripheral bus to the main system bus). Such a component always
has at least one master interface (onto the peripheral bus) and one slave interface
(onto the main system bus). Crossbar bus infrastructure (for instance ARM Multilayer
AMBA) is also treated as a bus bridge – such examples might have multiple master
and multiple slave interfaces. A bus bridge can support multiple simultaneous
transactions, and the slaves existing in the master interface address spaces may
appear at different address to masters connected (by a channel) to each of the bus
bridge’s slave ports. The mechanism for specifying how each of the master interface
address spaces appears to the slave interface is specified by the bridge element.

4.9.3.1 Channel
All the component internal connections between mirrored masters and slave
interfaces can be encapsulated within a structure called a channel. A channel can
represent a simple wiring interconnect or a more complex structure such as a bus.

The channel is a general name that denotes the collection of connections between
multiple internal bus interfaces. The memory map between these connections is
restricted so that, for example, a generator can be called to automatically compute all
the address maps for the complete design.

As illustrated in the following figure, the channel encapsulates the connection
between master and slave components. A channel is the construct, which represents
the bus infrastructure and allows transactions initiated by a master interface to be
completed by a slave interface.

Component

master

channel

Component

slave2

Component

slave1

Component

slave3
Component bus

Figure 10 - Master – Slaves connection encapsulated in a channel

There are some very specific rules associated with channels and it is important to
use channel concepts in the correct place (and, conversely, not use channel
concepts in inappropriate places). Here is the list of rules that apply for the channel:

• A channel can only have one address space (a.k.a. transmission /
transformation matrix). In other words, a slave connected to a channel will
always have the same address as seen from all masters connected to this
channel. This guarantees the slave addresses (as seen by each master) is
consistent for the system. For example, if we have three slaves connected to

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 60 of 146

a channel with the following address map: Slave1: 0x000 to 0x1000 (4Kb);
Slave2: 0x000 to 0x1000 (4Kb); Slave3: 0x000 to 0x1000 (4 Kb), the channel
will create the address mapping so that the master can see an address
space of 12Kb (from 0x000 to 0x0FFF it will address Slave1, from 0x1000 to
0x1FFF it will address Slave2 and from 0x2000 to 0x2FFF it will address
Slave3). As a consequence, all slave interfaces connected to a channel will
see the same address (if they don't, then they are connected to different
channels); and if more than one master/slave interface pair is active/selected
simultaneously, then there is more than one channel present.

• A channel can only relate mirrored interfaces because some busses can
have asymmetric interfaces (e.g. AHB). Therefore, to cover all type of
busses, the channel interfaces are always Mirrored interfaces. As a
consequence, a channel can only connect to a direct interface (it can not
connect directly to another channel). Note however that not all mirror
interfaces of a channel have to be connected.

• A channel cannot be hierarchical
• A channel supports Memory mapping and re-mapping.

Note that simple wire connections (e.g. a clock signal connecting to all components
of the system) may be modelled as an IP-XACT channel or as IP-XACT signal
object.

A sample of the XML code describing the channel and its mirror interfaces for a
simple AHB-like bus component is given below.

<spirit:component
 …
 <spirit:busInterfaces>
 <spirit:busInterface spirit:id="AHB_MS">
 <spirit:name>AHB_mirror_slave</spirit:name>
 <spirit:busType spirit:library="AMBA" spirit:name="simpleAHB"
spirit:vendor="spiritconsortium.org" />
 <spirit:mirroredSlave/>
 <spirit:connection>required</spirit:connection>
…
 <spirit:busInterface spirit:id="AHB_MM">
 <spirit:name>AHB_mirror_master</spirit:name>
 <spirit:busType spirit:library="AMBA" spirit:name="simpleAHB"
spirit:vendor="spiritconsortium.org" />
 <spirit:mirroredMaster/>
…
 </spirit:busInterface>
 </spirit:busInterfaces>
 <spirit:channels>
 <spirit:channel>
 <spirit:busInterfaceRef>AHB_mirror_slave</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>AHB_mirror_master</spirit:busInterfaceRef>
 </spirit:channel>
 </spirit:channels>
…
</spirit:component>

4.9.3.2 Channel internal connection
The channel internal connection is described in IP-XACT by the list of Mirror
interfaces defined inside the channel element of a component. For example, if
there are 3 master components connected to a bus (through the bus Mirror Master
interfaces), and 3 slave components connected to the same bus (through the bus

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 61 of 146

Mirror slave interfaces). To create a path from all mirror master interfaces to all mirror
slave interfaces (MMi to MSj with I,j =1..3). Then create a single channel including
all the interfaces. This is illustrated by the following figure.

Master1

Master2

Master3

Slave2

Slave1

Slave3

MS3

MS1

MS2

MM1

MM2

MM3

Figure 11 - Channel Internal connection

A sample of the XML code describing the component channel internal connections
for the figure above is given here after. Note that the Mirror masters to Mirror slave
internal connections are implicit. Only the interfaces are listed.

<spirit:component
 …
 <spirit:channels>
 <spirit:channel>
 <spirit:busInterfaceRef>MM1</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MM2</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MM3</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS1</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS2</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS3</spirit:busInterfaceRef>
 </spirit:channel>
 </spirit:channels>
…
</spirit:component>

Note that the order of the busInterfaceRef elements may hold some meaning to the
design and this order should be maintained.

Note also there could be more than one channel in a bus component, and possibly
different memory map for each channel, as long as the different channels do not
intersect. An example is described in the next figure.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 62 of 146

Master1

Master2

Master3

Slave2

Slave1

Slave3

MS3

MS1

MS2

MM1

MM2

MM3

Figure 12 - Internal connection using two channels

The two channels would be written in IP-XACT as:
<spirit:component
 …
 <spirit:channels>
 <spirit:channel>
 <spirit:busInterfaceRef>MM1</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MM2</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS1</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS2</spirit:busInterfaceRef>
 </spirit:channel>
 <spirit:channel>
 <spirit:busInterfaceRef>MM3</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS3</spirit:busInterfaceRef>
 </spirit:channel>
 </spirit:channels>
…
</spirit:component>

4.9.3.3 Bridge
Some busses (such as OCP-based, VCI, STbus, crossbars, network on chip) can be
modeled using component bridges. The bridge is a mechanism to model the internal
relationship between master interfaces and slave interfaces inside a component. In a
bridge multiple transactions can occur at a time. For example if two masters,
addressing two distinct slaves, want to access the bus at the same time, both can be
granted as long as a ‘bridge path’ has been defined in IP-XACT.

There are some very specific rules associated with bridges and it is important to use
the bridge concept in the correct place (and, conversely, not use bridge concepts in
inappropriate places). Here is the list of rules that apply for the bridge:

• A bridge can have multiple address spaces. Specifically a bridge will have
one or more master interfaces, and each master interface may have a local
address space associated with that interface.

• A bridge can only have direct interfaces. As a consequence, a bridge (like
any other regular component) can directly connect to another component
(Master interface to Slave interface connection) under the conditions defined
in the previous section. Or it can connect to a channel (e.g. Master interface
to Mirror Master Interface).

• A bridge can be hierarchical

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 63 of 146

• A bridge supports Memory mapping and re-mapping.

4.9.3.4 Bridge internal connection
A bridge is another mechanism besides the channel for describing the bus internal
connections. As defined in the introduction of this section, bridges may better match
partial crossbar busses or symmetric interconnects.

Bridges, unlike channels explicitly describe the internal point-to-point connections
between the component interfaces. This is illustrated by the Figure below. Three
master components are connected to a bus interconnect (modelled as a bridge), to
which connect three slaves. The bus is a partial crossbar.

S3

Master1

Master2

Master3

Slave2

Slave1

Slave3

Bridge from S2

S1

S2

BusBridge

M

M

M

S

S

S

Master1

Master2

Master3

Slave2

Slave1

Slave3

Bridge from S1 and S2

Bridge from S1, S2 and S3

M1

M2

BusBridge

M

M

M

S

S

S

M3 S3

Master1

Master2

Master3

Slave2

Slave1

Slave3

Bridge from S2

S1

S2

BusBridge

M

M

M

S

S

S

Master1

Master2

Master3

Slave2

Slave1

Slave3

Bridge from S1 and S2

Bridge from S1, S2 and S3

M1

M2

BusBridge

M

M

M

S

S

S

M3

Figure 13 - Bus bridge component

The bus bridge of the figure above would be described is IP-XACT as follows:
<spirit:component>…
 <spirit:busInterfaces>
 <spirit:busInterface spirit:id="BB_S1">
 <spirit:name>S1</spirit:name>
 <spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="my_lib" spirit:name="simpleBB"/>
 <spirit:slave>
 <spirit:bridge spirit:masterRef="M1"/>
 <spirit:bridge spirit:masterRef="M2"/>
 </spirit:slave>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>S2</spirit:name>
 <spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="my_lib" spirit:name="simpleBB"/>
 <spirit:slave
 <spirit:bridge spirit:masterRef="M1"/>
 <spirit:bridge spirit:masterRef="M2"/>
 <spirit:bridge spirit:masterRef="M3"/>
 </spirit:slave>
 </spirit:busInterface>
 <spirit:busInterface>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 64 of 146

 <spirit:name>S3</spirit:name>
 <spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="my_lib" spirit:name="simpleBB"/>
 <spirit:slave>
 <spirit:bridge spirit:masterRef="M2"/>
 </spirit:slave>
 </spirit:busInterface>
 </spirit:busInterfaces>
</spirit:component>

The bridge element indicates how addressSpaces on Master Interfaces are
mapped back on the Slave Interface addressSpace.

At the top level (design.xml), the interconnection between the components of the
figure above would look like this.

A sample of the interconnection section (inside the design.xml file) is shown below.
<spirit:interconnections>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="Master1"
 spirit:busRef="M" />
 <spirit:activeInterface
 spirit:componentRef="BusBridge "
 spirit:busRef="S1" />
 </spirit:interconnection>
> <spirit:activeInterface
 spirit:componentRef="Master2"
 spirit:busRef="M" />
 <spirit:activeInterface
 spirit:componentRef="BusBridge "
 spirit:busRef="S2" />
 </spirit:interconnection>
> <spirit:activeInterface
 spirit:componentRef="Master3"
 spirit:busRef="M" />
 <spirit:activeInterface
 spirit:component2Ref="BusBridge "
 spirit:busRef="S3" />
 </spirit:interconnection>
> <spirit:activeInterface
 spirit:componentRef="BusBridge"
 spirit:busRef="M1" />
 <spirit:activeInterface
 spirit:componentRef="Slave1"
 spirit:busRef="S" />
 </spirit:interconnection>
> <spirit:activeInterface
 spirit:componentRef="busBridge"
 spirit:busRef="M2 " />
 <spirit:activeInterface
 spirit:componentRef="Slave2"
 spirit:busRef="S" />
 </spirit:interconnection>
> <spirit:activeInterface
 spirit:componentRef="BusBridge"
 spirit:busRef="M3" />
 <spirit:activeInterface
 spirit:componentRef="Slave3"
 spirit:busRef="S" />
 </spirit:interconnection>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 65 of 146

</spirit:interconnections>

Unlike channels, bus bridges are regular components with direct interfaces and
therefore can be chained to other components direct interfaces or connected to
channels mirrored interfaces.

4.9.3.5 Multi-Layer busses modelling
Multi-Layer (ML) busses have to be modelled as component bridges with direct
Interfaces or as a hierarchical component. They cannot be modelled as channels
because they support multiple memory maps.

A special case however has to be considered for asymmetric multi-layer busses (i.e.
busses with asymmetric interfaces). They cannot be directly connected to direct slave
interface because of ‘onSlave’ or ‘onMaster’ signals they own (e.g. in the AMBA
multi layer AHB bus definition, the chipselect HSEL is defined only for the Slave
Interface). Therefore a channel component has to be introduced (e.g. between the
busInterface and the memory slave interface) where the chip-select would appear on
the channel mirror slave interface. This is illustrated in the following figure.

Processor Multi Layer

bus

channel

Memory channel

Figure 14 - Asymmetric Multi-layer bus connection using channels

In case of a connection from an AHB ML bus-matrix to an AHB slave (i.e., HSEL
present) a new compatible busDefinition can be provided to connect the bus matrix to
the slave.

4.9.4 Memory Map
This section details how to describe a memory map in IP-XACT using the two bus
representations: channels and bridges. For bridge, we have to distinguish two kinds
of bridges with regard to the memory map: the transparent bridge and the opaque
bridge.

It applies both to direct and mirrored connection indifferently; the only differences
being that direct connections allow cascading directly bridges and channels whereas
mirrored connection require them to be interleaved.

A bus implemented as a transparent bridge does not modify the address. It just
does decoding (or demux). For example, if a master component connected to a
transparent bridge writes to a memory at the address 0x1900, the transparent bridge
will decode the address to select the appropriate memory (e.g. memory2 in the range
0x1000-0x1FFF), and hit that memory at address 0x1900.

A bus implemented as an opaque bridge can modify the address; i.e. remove the
base address and just use the offset. For example, if a master component connected
to an opaque bridge writes to a memory at the address 0x1900, the opaque bridge
will decode the address to select the appropriate memory (e.g. memory2 in the range
0x1000-0x1FFF), and hit that memory at address 0x0900.

The different memory map modelling methods will be illustrated (i.e. channel,
transparent bridge and opaque bridge) based on the same example. The example
consists of a single master connected to 3 memories (of 4K each) through a bus. The
first memory starts at address 0x0000, the second at address 0x1000 and the third at
address 0x2000.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 66 of 146

4.9.4.1 Memory map in channel
In a channel, the memory map is defined on each Mirrored Slave using the
baseAddresses element. This element contains the base address and the range of
the addressable memory. The base address is defined using the element
remapAddress but really describes the base address.

This memory map of channel for our example is illustrated in the following figure. The
addressSpace (AS) element defined on the Master interface is the total address
space as seen by this master.

MS3

Master Slave2

Slave1

Slave3

MS1

MS2

AS1
remapAddress
0x0000-0x0FFF

AS3
remapAddress
0x2000-0x2FFF

AS2
remapAddress
0x1000-0x1FFF

MM

AS
0x0000-0x2FFF

AS1
AS2
AS3

M

Figure 15 - Memory Map in Channel

A sample of the IP-XACT description for such a memory map is given below:
<spirit:component>…
 <spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>MS1</spirit:name>…
 <spirit:mirroredSlave>
 <spirit:baseAddresses>
 <spirit:remapAddress>0x0000</spirit:remapAddress>
 <spirit:range>0x1000</spirit:range>
 </spirit:baseAddresses>
 </spirit:mirroredSlave>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>MS2</spirit:name>…
 <spirit:mirroredSlave>
 <spirit:baseAddresses>
 <spirit:remapAddress>0x1000</spirit:remapAddress>
 <spirit:range>0x1000</spirit:range>
 </spirit:baseAddresses>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 67 of 146

 </spirit:mirroredSlave>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>MS3</spirit:name>…
 <spirit:mirroredSlave>
 <spirit:baseAddresses>
 <spirit:remapAddress>0x2000</spirit:remapAddress>
 <spirit:range>0x1000</spirit:range>
 </spirit:baseAddresses>
 </spirit:mirroredSlave>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>MM</spirit:name>…
 <spirit:mirroredMaster/>
 </spirit:busInterface>
 </spirit:busInterfaces>
 <spirit:channels>
 <spirit:channel>
 <spirit:busInterfaceRef>MS1</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS2</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS3</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MM</spirit:busInterfaceRef>
 </spirit:channel>
 </spirit:channels>
</spirit:component>

4.9.4.2 Memory map in transparent bridge
A bridge is transparent by default (no specific attribute defined on the bridge
element). In transparent bridges, there is no memoryMap section. The address space
specified on each master interface is static, i.e. the base address of each memory is
directly defined under the master interface.

On each master interface, the address space is referenced with the
addressSpaceRef element, using the addressSpaceRef attribute. This attribute
references to the addressSpace section directly defined under the component. The
addressSpace element contains a name (referenced from the Masters) and a
range element.

In addition, each master interface specifies a base address under the
addressSpaceRef element.

This memory map in the transparent bridge for our example is illustrated in the Figure
16. The address space (AS) defined on the Master interface is the total address
space as seen by this master.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 68 of 146

M3

Master Slave2
0x0000-
0x0FFF

Slave1
0x0000-
0x0FFF

Slave3
0x0000-
0x0FFF

Bridge from M1, M2 and

M1

M2

AS1
0x0000-0x0FFF

AS3
0x2000-0x2FFF

AS2
0x1000-0x1FFF

S

AS
0x0000-0x2FFF

AS1
AS2
AS3

M

Figure 16 – Memory Map in a Transparent Bridge
<spirit:component>…
 <spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>M1</spirit:name>…
 <spirit:master>
 <spirit:addressSpaceRef spirit:addressSpaceRef="AS1">
 <spirit:baseAddress>0x0000</spirit:baseAddress>
 </spirit:addressSpaceRef>
 </spirit:master>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>M2</spirit:name>…
 <spirit:master>
 <spirit:addressSpaceRef spirit:addressSpaceRef="AS2">
 <spirit:baseAddress>0x1000</spirit:baseAddress>
 </spirit:addressSpaceRef>
 </spirit:master>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>M3</spirit:name>…
 <spirit:master>
 <spirit:addressSpaceRef spirit:addressSpaceRef="AS3">
 <spirit:baseAddress>0x2000</spirit:baseAddress>
 </spirit:addressSpaceRef>
 </spirit:master>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>S</spirit:name>…
 <spirit:slave>
 <spirit:bridge spirit:masterRef="M1"/>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 69 of 146

 <spirit:bridge spirit:masterRef="M2"/>
 <spirit:bridge spirit:masterRef="M3"/>
 </spirit:slave>
 </spirit:busInterface>
 </spirit:busInterfaces>
 <spirit:addressSpaces>
 <spirit:addressSpace>
 <spirit:name>AS1</spirit:name>
 <spirit:range>0x1000</spirit:range>
 </spirit:addressSpace>
 <spirit:addressSpace>
 <spirit:name>AS2</spirit:name>
 <spirit:range>0x1000</spirit:range>
 </spirit:addressSpace>
 <spirit:addressSpace>
 <spirit:name>AS3</spirit:name>
 <spirit:range>0x1000</spirit:range>
 </spirit:addressSpace>
 </spirit:addressSpaces>
</spirit:component>

4.9.4.3 Memory map in opaque bridge
An opaque bridge is characterized by the opaque attribute. In opaque bridges, the
address space (AS) is referenced from each master interface in addressSpaceRef
element, using the addressSpaceRef attribute. This attribute references to the
addressSpace section directly defined under the component. The addressSpace
element contains a name (referenced from the Masters) and a range element.

The memory map (MM) is referenced from each slave interface in the
memoryMapRef element, using the memoryMapRef attribute. This attribute
references to the memoryMap section directly defined under the component. The
memoryMap element contains a name (referenced from the Slaves) and a
subspaceMap element for each master interface defining the base address.

The reference links between master and slave interfaces is described in the figure
below.

M S
addressSpaceRef

memoryMapref

AS

MM

masterRef

M S
addressSpaceRef

memoryMapRef

AS

MM

masterRef

Figure 17 - Memory Map and Address Space links in a Bridge

This memory map in opaque bridge for our example is illustrated in the following
figure. The address space (AS) that will be seen from the Master component Master
interface will the total of all the address spaces defined on the bus bridge master
interfaces (i.e. 12K; from 0x0000 to 0x2FFF).

A sample of the IP-XACT description for such as memoryMap is given below:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 70 of 146

M3

Master Slave2
0x0000-
0x0FFF

Slave1
0x0000-
0x0FFF

Slave3
0x0000-
0x0FFF

Bridge from M1, M2 and

M1

M2

AS1
4K

AS3
4K

MemMap

AS2 0x1000

AS3 0x2000

AS2
4K

S

AS1 0x0000

Figure 18 - Memory Map in a opaque Bridge
<spirit:component>…
 <spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>M1</spirit:name>…
 <spirit:master>
 <spirit:addressSpaceRef spirit:addressSpaceRef="AS1"/>
 </spirit:master>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>M2</spirit:name>…
 <spirit:master>
 <spirit:addressSpaceRef spirit:addressSpaceRef="AS2"/>
 </spirit:master>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>M3</spirit:name>…
 <spirit:master>
 <spirit:addressSpaceRef spirit:addressSpaceRef="AS3"/>
 </spirit:master>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>S</spirit:name>…
 <spirit:slave>
 <spirit:memoryMapRef spirit:memoryMapRef="memMap"/>
 <spirit:bridge spirit:masterRef="M1" spirit:opaque="true"/>
 <spirit:bridge spirit:masterRef="M2" spirit:opaque="true"/>
 <spirit:bridge spirit:masterRef="M3" spirit:opaque="true"/>
 </spirit:slave>
 </spirit:busInterface>
 </spirit:busInterfaces>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 71 of 146

 <spirit:addressSpaces>
 <spirit:addressSpace>
 <spirit:name>AS1</spirit:name>
 <spirit:range>4K</spirit:range>
 </spirit:addressSpace>
 <spirit:addressSpace>
 <spirit:name>AS2</spirit:name>
 <spirit:range>4K</spirit:range>
 </spirit:addressSpace>
 <spirit:addressSpace>
 <spirit:name>AS3</spirit:name>
 <spirit:range>4K</spirit:range>
 </spirit:addressSpace>
 </spirit:addressSpaces>
 <spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>memMap</spirit:name>
 <spirit:subspaceMap spirit:masterRef="M1">
 <spirit:baseAddress>0x0000</spirit:baseAddress>
 </spirit:subspaceMap>
 <spirit:subspaceMap spirit:masterRef="M2">
 <spirit:baseAddress>0x1000</spirit:baseAddress>
 </spirit:subspaceMap>
 <spirit:subspaceMap spirit:masterRef="M3">
 <spirit:baseAddress>0x2000</spirit:baseAddress>
 </spirit:subspaceMap>
 </spirit:memoryMap>
 </spirit:memoryMaps>
</spirit:component>

4.9.5 Remapping

Remapping can have different meanings.

• In a simple case, it means a logical address change for a slave; with no
structural change inside the bus (e.g. no decoding change or no crossbar
reconfiguration).

• In a more general case, it means a reconfiguration of the mapping (e.g.
change the address decoding depending on the state).

IP-XACT covers all cases.

Like in basic memory map, we have to distinguish two ways to model remapping:

• When using a channel
• When using opaque bridge

Note that remapping in transparent bridge is not meaningful since no address
decoding (or demux) is done and therefore the Schema does not allow defining
remapping addresses using transparent bridge.

4.9.5.1 Defining conditional states
In IP-XACT, the definition of the legal set of remapping states is separated from the
definition of the remapping addresses. The conditional remap states are defined with
the remapStates element, which is a simple list of remapState elements defined

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 72 of 146

under the component. Each remap state is conditioned by a remap signal specified
with remapSignal element.

Here is an example of how the states might be defined, where a single boolean
signal is used to distinguish the two states.

<spirit:component>
 <spirit:remapStates>
 <spirit:remapState name="boot">
 <spirit:remapSignal spirit:id="doRemap">true
 </spirit:remapSignal>
 </spirit:remapState>
 <spirit:remapState name="normal">
 <spirit:remapSignal spirit:id="doRemap">false
 </spirit:remapSignal>
 </spirit:remapState>
 </spirit:remapStates >
</spirit:component>

4.9.5.2 Defining remap addresses
The list of remap addresses (base address for remapping) is specified under the
component memoryMap element.

Here is an example of how a remappable memory might be defined.
<spirit:component>
…
 <spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:memoryRemap state="boot">
 <spirit:addressBlock>
 <spirit:baseAddress spirit:format="long">0x0000
 </spirit:baseAddress>
 <spirit:range spirit:format="long">4096</spirit:range>
 <spirit:usage>memory</spirit:usage>
 <spirit:access>read-only</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryRemap >
 </spirit:memoryMap>
 </spirit:memoryMaps>
…
</spirit:component>

The following rules apply to define the memoryRemap element:

• Each memory Remap is associated with a state attribute
• State attribute is mandatory
• State values must be unique, otherwise illegal
• Any memoryMap element without state is assigned a DEFAULT attribute

4.9.5.3 Linking remap States to Memory Map
With such a separation of memory map and states definition, the combination of
possible mapping cases between addresses and states becomes difficult to interpret.
Therefore some semantic rules are needed.

1) If there are duplicate state attributes in different memoryRemap tags in the
same memoryMap section, then only the first occurrence will be recognized.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 73 of 146

In other words, the state attribute values of memoryRemap should be
unique within a memoryMap section.

2) If a component has no remapStates tag specified, then the memoryMap is
assumed to be in the 'default' state.

3) If a component has remapStates specified but no memoryRemap, then the
first state listed is synonymous with the 'default' state, and will match the
memoryMap tag with no state attribute.

4.9.5.4 Slave interface Remapping
In regular components (including bus Bridges), the list of remap addresses
(baseAddress for remapping) is referenced through the memoryMapRef element
under the component slave interface. This referenced memory map can contain a list
of memoryRemap elements defining the base address for each state.

The Slave busInterface element can include reference to multiple memoryMap
and state elements.

4.9.5.5 Mirror slave interface Remapping
A remapping can be defined in the channel’s Mirror Slave interfaces, by specifying
the list of remap addresses (baseAddress for remapping) together with a state
identifier. The idea is to leave the slave memoryMap unchanged, but to condition the
base addresses values in the mirror slave interface. Inside the slave memoryMap, the
subspace baseAddress is relative to the overall memoryMap’s baseAddress. The
remapAddress defined in the mirror slave applies to the complete memoryMap, not
to elements within the memoryMap.

Here is an example of how a remappable memory slave might be defined in a
channel interface:

<spirit:busInterface spirit:id="busInterface_0" spirit:resolve="user">
…
 <spirit:mirroredSlave>
 <spirit:baseAddresses>
 <spirit:remapAddress spirit:state="boot">0x0000
 </spirit:remapAddress>
 <spirit:remapAddress spirit:state="normal">0x1000
 </spirit:remapAddress>
 </spirit:baseAddresses >
 </spirit:mirroredSlave >
 …
</spirit:busInterface>

The remap state attribute on a remapAddress element on a mirrored slave
interface is not mandatory.

Note that the baseAddress element can be mapped multiple times according to the
states and may appear multiple times in the same state attributes.

4.9.5.6 Example of memory remapping with a channel
Let’s take again our example of a single master connected to 3 memories (of 4K
each) through a bus channel. This bus supports two memory map states: init mode
and user mode.

In init mode, the three memories are respectively mapped at addresses 0x0000-
0x0FFF, 0x1000-0x1FFF and 0x2000-0x2FFF. If the master writes at address
0x1900, it will hit the second memory.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 74 of 146

In user mode, activated by a doRemap signal, the second memory base address and
address range is changed from 0x1000, 4K to 0x3000, 4K. Now, if the master is
writing at the same address 0x1900, it will get an error because there is no
addressable slave at this address. The new address space after remapping is shown
in Figure 20.

A sample of the IP-XACT description for such as remapping of slave2 is given below.
The XML code is very similar to the simple memory map in channel example. The
only changes here are in the busInterface element of the second Mirrored slave
(MS2) and the addition of the remapStates section.

 <spirit:component>…
 <spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>MS1</spirit:name>…
 <spirit:mirroredSlave>
 <spirit:baseAddresses>
 <spirit:remapAddress>0x0000</spirit:remapAddress>
 <spirit:range>0x1000</spirit:range>
 </spirit:baseAddresses>
 </spirit:mirroredSlave>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>MS2</spirit:name>…
 <spirit:mirroredSlave>
 <spirit:baseAddresses>
 <spirit:remapAddress spirit:state="init">0x1000
 </spirit:remapAddress>
 <spirit:remapAddress spirit:state="user">0x3000
 </spirit:remapAddress>
 <spirit:range>0x1000</spirit:range>
 </spirit:baseAddresses>
 </spirit:mirroredSlave>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>MS3</spirit:name>…
 <spirit:mirroredSlave>
 <spirit:baseAddresses>
 <spirit:remapAddress>0x2000</spirit:remapAddress>
 <spirit:range>0x1000</spirit:range>
 </spirit:baseAddresses>
 </spirit:mirroredSlave>
 </spirit:busInterface>
 <spirit:busInterface>
 <spirit:name>MM</spirit:name>..
 <spirit:mirroredMaster/>
 </spirit:busInterface>
 </spirit:busInterfaces>
 <spirit:channels>
 <spirit:channel>
 <spirit:busInterfaceRef>MS1</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS2</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MS3</spirit:busInterfaceRef>
 <spirit:busInterfaceRef>MM</spirit:busInterfaceRef>
 </spirit:channel>
 </spirit:channels>
 <spirit:remapStates>
 <spirit:remapState spirit:name="init">
 <spirit:remapSignal spirit:id="doRemap">true
 </spirit:remapSignal>
 </spirit:remapState>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 75 of 146

 <spirit:remapState spirit:name="user">
 <spirit:remapSignal spirit:id="doRemap">false
 </spirit:remapSignal>
 </spirit:remapState>
 </spirit:remapStates>
 </spirit:component>

4.9.5.7 Example of memory remapping with a bus bridge
Let’s take again our example of a single master connected to 3 memories (of 4K
each) through a bus bridge. The master writes at address 0x1900 and thus hits the
second memory (slave2). The following figure shows the address space as seen from
each master interface.

M3

Master

Slave2

Slave1

Slave3

Bridge from M1, M2 and M3

M1

M2

AS1
0x0000-0x0FFF

AS3
0x2000-0x2FFF

AS
0x0000-0x2FFF

AS1
AS2
AS3

AS2
0x1000-0x1FFF

Figure 19 - Before Remapping

After remapping (e.g. activated by a doRemap signal), the second memory base
address and address range is changed from 0x1000, 4K to 0x3000, 4K. Now, if
the master is writing at the same address 0x1900, it will get an error because
there is no addressable slave at this address. The new address space after
remapping is shown in the following figure.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 76 of 146

M3

Master

Slave2

Slave1

Slave3

Bridge from M1, M2 and
M3

M1

M2

AS1
0x0000-0x0FFF

AS3
0x2000-0x2FFF

AS2
0x3000-0x3FFF

AS
0x0000-0x3FFF

AS1

AS3
AS2

Figure 20 - After Remapping

A sample of the IP-XACT description for such as remapping of slave2 is given below.
The busInterfaces section and the addressSpace section are exactly the same
as for the simple memory map in opaque bridge example. The remapState and
memoryMap sections are only shown here.

<spirit:component>…
 <spirit:busInterfaces>…
 </spirit:busInterfaces>
 <spirit:addressSpaces>…
 </spirit:addressSpaces>
 <spirit:remapStates>
 <spirit:remapState spirit:name="init">
 <spirit:remapSignal spirit:id="doRemap">true
 </spirit:remapSignal>
 </spirit:remapState>
 <spirit:remapState spirit:name="user">
 <spirit:remapSignal spirit:id="doRemap">false
 </spirit:remapSignal>
 </spirit:remapState>
 </spirit:remapStates>
 <spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>memMap</spirit:name>
 <spirit:memoryRemap spirit:state="init">
 <spirit:subspaceMap spirit:masterRef="M1">
 <spirit:baseAddress>0x0000</spirit:baseAddress>
 </spirit:subspaceMap>
 <spirit:subspaceMap spirit:masterRef="M2">
 <spirit:baseAddress>0x1000</spirit:baseAddress>
 </spirit:subspaceMap>
 <spirit:subspaceMap spirit:masterRef="M3">

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 77 of 146

 <spirit:baseAddress>0x2000</spirit:baseAddress>
 </spirit:subspaceMap>
 </spirit:memoryRemap>
 <spirit:memoryRemap spirit:state="user">
 <spirit:subspaceMap spirit:masterRef="M1">
 <spirit:baseAddress>0x0000</spirit:baseAddress>
 </spirit:subspaceMap>
 <spirit:subspaceMap spirit:masterRef="M3">
 <spirit:baseAddress>0x2000</spirit:baseAddress>
 </spirit:subspaceMap>
 <spirit:subspaceMap spirit:masterRef="M2">
 <spirit:baseAddress>0x3000</spirit:baseAddress>
 </spirit:subspaceMap>
 </spirit:memoryRemap>
 </spirit:memoryMap>
 </spirit:memoryMaps>
</spirit:component>

4.9.6 Signal Connections

4.9.6.1 signalMap between component physical signal and busInterface
logical signal

The connection between component physical signals and the bus interface logical
signals is defined in the signal map of the component busInterface. Each signal
defined in the bus interface can be assigned left and right elements to represent
bit slices of a vector. The left element means first boundary, the right element
second boundary. There is no assumption that left is larger than right nor that left is
MSB and right is LSB.

The left and right elements are the (bit) rank of the leftmost and rightmost bits of
the signal.

For example, to map a component 16-bit address signal (addr) to an 8-bit width
address busInterface logical signal (addrL), one would write:

In the component signal declaration:
<spirit:signal>
 <spirit:name>addr</spirit:name>
 <spirit:direction>out</spirit:direction>
 <spirit:left>15</spirit:left>
 <spirit:right>0</spirit:right>
</spirit:signal>

In the busDefinition:
<spirit:signal>
 <spirit:logicalName>addrL</spirit:logicalName>
 <spirit:onMaster>
 <spirit:direction>out</spirit:direction>
 <spirit:bitWidth>8</spirit:left>
 </spirit:onMaster>
</spirit:signal>

In the component busInterface signalMap:
<spirit:signalMap>
 <spirit:signalName>
 <spirit:componentSignalName>addrL</spirit:componentSignalName>
 <spirit:busSignalName>addr</spirit:busSignalName>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 78 of 146

 <spirit:left>15</spirit:left>
 <spirit:right>8</spirit:right>
 </spirit:signalName>
</spirit:signalMap>

Meaning that:
addr[15] addrL[7]
addr[14] addrL [6]
addr[13] addrL [5]
...
addr[7] addrL [0]

The busDef has an optional bitWidth element in it and this must match the width
specified in the signalMap element if present, but if the component physical signal
vector has exactly the same width as the logical signal, then it is not needed to
specify the left and right elements in the busInterface signalMap.

4.9.6.2 Connection between vector signals of two busInterfaces
When connecting two busInterfaces in a design (i.e. their VLNV match), this can be
straightforward if the two component physical signals have the same width and same
left and right values, but more complicated in other cases. Here follow some specific
connection rules to cover the different connection scenario.

When connecting two signal vectors (v1 and v2) from respectively a component
busInterface I1 and I2, we have to distinguish the following cases:

(1) If the two vectors connected have the same width, and the same left and right
values (e.g. v1 has left=3 right=0 and signal v2 has left=3 right=0) then do a direct bit
to bit connection

V1[3]

V1[2]

V1[1]

V1[0]

V2[3]

V2[2]

V2[1]

V2[0]

C1 C2
I1 I2

Figure 21 - Vector connection of equal width and indices

(2) If the two vectors connected have the same width, but the left and right values are
opposite ways round(for example component signal v1 has left=3 right=0 and signal
v2 has left=0 right=3), then reverse the connection; i.e. connect the bits one by one
from left down to right (e.g. vectors v1[3] to v2[0], v1[2] to v2[1], v1[1] to v2[2] and
v1[0] to v2[3])

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 79 of 146

V1[3]

V1[2]

V1[1]

V1[0]

V2[0]

V2[1]

V2[2]

V2[3]

C1 C2
I1 I2

Figure 22 - Vector connection of equal width and non-equal indices

(3) If the two vectors connected have a different width but either the same left or right
values (e.g. vectors v1[5:0] connecting to v2[7:0] connected through a busInterface of
4 bits with left=3 and right=0 on both sides), then do a direct bit to bit connection from
left down to right.

V1[5]

V1[4]

V1[3]

V1[2]

V1[1]

V1[0]

V2[7]

V2[6]

V2[5]

V2[4]

V2[3]

V2[2]

V2[1]

V2[0]

C1 C2

I1 I2

Figure 23 - Vector connection of non-equal width and common indices

(4) If the two vectors connected have the different a width, with different left and right
values (for example component signal v1 has left=5 right=2 and busInterface signal
v2 has left=4 right=1), then connect the bits one by one from left down to right (e.g.
vectors v1[5:2] connecting to v2[4:1]. If they are also opposite ways round, then
reverse right and left on the master or mirrored slave before connecting the bits.)

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 80 of 146

V1[5]

V1[4]

V1[3]

V1[2]

V1[1]

V1[0]

V2[7]

V2[6]

V2[5]

V2[4]

V2[3]

V2[2]

V2[1]

V2[0]

C1 C2

I1 I2

Figure 24 - Vector connection with non-equal width and non-equal indices

4.9.6.3 Connection of Ad-hoc signals
The name “ad-hoc” is used for signals that do not belong to bus interfaces.

These signals can be, for example, wires that are internal to a component, or clock
signals (when not defined as System Interface).

Such signals, which are not part of a bus interface, have to have an explicit definition
(e.g. to specify if they are exported, specify their names, direction…). In addition,
these signal definitions should be consistent with the left and right element definitions
for both the interface signal to component signal.

Limitation: ad-hoc connections only are possible at the design level (not in
hierarchical components).

For ad-hoc wires, IP-XACT requires that the sizes of each pin (left - right + 1)
are exactly the same and that bits are connected from left to right with no exceptions.
In the pinReference element, left and right do not define the size of the pin, just
the portion that is connected. An example follows:

<spirit:adHocConnection>
 </spirit:pinReference componentRef="U1" signalRef="A" left="8"
right="1">
 </spirit:pinReference componentRef="U2" signalRef="B" left="7"
right="0">
</spirit:adHocConnection>

It would imply that:
U1/A[8] U2/B[7]
U1/A[7] U2/B[6]
U1/A[6] U2/B[5]
U1/A[5] U2/B[4]
U1/A[4] U2/B[3]
U1/A[3] U2/B[2]
U1/A[2] U2/B[1]
U1/A[1] U2/B[0]

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 81 of 146

4.9.7 Clock and Reset Handling
USAGE NOTE: IP-XACT does not dictate the mechanisms for describing Reset and
Clock pins in relation to bus definitions. For example, Reset and Clock are part of
several bus-interface standard definitions (e.g., AMBA). To that end, consistency
with the specification implies that Reset and Clock would be included in the
busDefinition. However, Reset and Clock are generally routed separately from buses
(e.g., A bus master does not generally drive the clock of a bus slave). Some tools
will need to extract these pins from those associated with a bus.

The provider of a bus standard dictates the style of busDefinition to be used for IP
supporting those protocols. These must be published and freely available, and clear
about whether Reset and Clock pins are included in the busDefinition.

This section compares the three ways IP-XACT can handle clocks and resets - for
simplicity only clock are mentioned hereafter, but the discussion applies to both - with
respect to the following three main features

1. Misconnection detection. IP-XACT only allows interconnection of bus
interfaces with compatible types, which can be used to prevent connecting
clocks to non-clock signals.

2. Description of the relation of the clock with other signals. Several applications
– e.g. verification, timing – require identifying the reference clock of signals,
which can be provided by one of the approach listed hereafter.

3. Clock distribution control. Traditionally, in HDL, clocks have been handled
separately from data to control explicitly the clock distribution. IP-XACT
allows to combine clock with data and to make clock distribution implicit.

4.9.7.1 Clock Outside a Bus Interface
A clock, like any signal, can be handled as a signal element that does not belong to
any bus interface.

The main features of the approach are:

1. No protection against connecting a clock to a non-clock signal. An
adhocConnection element can connect a signal clock to any other signal
even if is not a clock.

2. No possibility to describe of the relation the clock with other signals.
3. Explicit control on the clock distribution. The clock distribution is done

through adhocConnection element connection the clock output signal to
the clock inputs.

This approach should only be used with clocks that do not relate to signals in a bus
interface either because it does not or because the bus interface has not been
created (e.g. because the corresponding bus definition does not exist).

4.9.7.2 Clock in Dedicated Bus Interface
A clock can be handled as a clock bus interface that contains one signal i.e. the
clock.

The main features of the approach are:

1. Protection against connecting a clock to a non-clock – the bus interface types
would not match.

2. No possibility to describe the relation of the clock with other signals.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 82 of 146

3. Explicit control on the clock distribution. The clock distribution is done
through interConnection element between the clock inputs and outputs.

With this approach, the following additional features need being taken into account:

• A clock tree may have to drive clocks with incompatible bus types. At this
time, IP-XACT does not provide a standard clock bus definitions and it up to
the IP packager to provide/choose this definition, which can lead to clock
trees driving clock bus interfaces of different types. These incompatibilities
must be handled when assembling the design.

• A clock tree drives several clock input from a single output whereas SRIRIT
interconnections only allow a bus interface to “drive” one other interface. This
can be handled either with a clock-broadcasting component or by creating as
many “output” bus interface, as needed sharing the same “output” signal.

• Simulations can be very sensitive to delta cycles in a clock tree. Care should
be taken to avoid/handle the delta cycle that could be introduced by a clock-
broadcasting element.

Two variations of this approach are possible:

1. A dedicated clock bus type could be used for the interface. This is likely to be
appropriate when the clock is, for example, a system clock not associated
with any particular bus type.

2. The bus type of the interface could match that of some data bus in the
system. This may be appropriate when the clock is associated with a
particular bus type, but is routed differently from the data signals for that bus.
In this case the clocking bus interface would normally be a system interface.

4.9.7.3 Clock in Regular Bus Interface
A clock signal can be handled as one of the signal of a bus interface.

The main features of this approach are:

1. Protection against connecting a clock to a non-clock – the bus interface types
would not match.

2. Description of the relation of the clock to the other signals of the bus
interface.

3. Implicit control on the clock distribution. The clock distribution is done
through interconnection element with the signals of the bus interface.

With this approach, the following additional features need being taken into account:

• The same clock can clock several bus interfaces. The clock can be shared
by more than one bus interface.

• A clock distribution policy must be defined The clock being distributed along
the data signal, a policy must be defined to guarantee that a clock can
provided to the bus interface that need them e.g. that clock output must be
provided on each mirroredMaster, mirroredSlave to drive the clock input of
each Master/Slave.

• Complex clocking scheme – e.g. extensive clock gating for low power – may
require extensive support from the clock distribution IP.

4.9.8 Bus interface parameter declaration
The section of IP-XACT XML hereafter illustrates how to declare, in a bus definition,
the names and legal values that parameters on bus interfaces of that type can take.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 83 of 146

<spirit:busDefParameters>

 <spirit:busDefParameter name="BDparam1" spirit:minimum="0"
spirit:consistent="true"/>

 <spirit:busDefParameter name="BDparam2"
spirit:choiceRef="BDchoiceRef">

 <spirit:defaultValue>False</spirit:defaultValue>

 <interfaceType>master</interfaceType>

 <interfaceType>mirroredMaster</interfaceType>

 <spirit:busDefParameter>

</spirit:busDefParameters>

Each bus interface parameter is declared with a spirit:busDefParameter element
specifying:

• The parameter name
• The legal values – using the same constraints attributes as regular SPIRIT

parameters -,
• Whether the value of the parameter must be consistent – equal – on

interconnected bus interfaces.
• The default value.
• The type(s) of bus interface(s) on which the parameter can be found – all by

default -.

4.9.9 Bus interface parameter
The section of SPIRIT XML hereafter illustrates how to specify, in a bus interface, the
values of the parameters of the bus interface.

<spirit:busInterfaceParameters>

 <spirit:busInterfaceParameter
name="BDparam1">1</spirit:busInterfaceParameter>

 <spirit:busInterfaceParameter name="BDparam2"
spirit:resolve="user"
spirit:id="BDparam2ID">True</spirit:busInterfaceParameter>

</spirit:busInterfaceParameters>

Each bus interface parameter value is defined separately with a
spirit:busInterfaceParameter element specifying:

• The parameter name – it must be one the name declared in the
busDefParameters of the bus definition matching the busType of the
interface -.

• The parameter value – it must comply with the constraints defined in the
busDefParameters of the bus definition matching the busType of the
interface -. It can be configured with IP-XACT configuration mechanism.

4.10 Reference Bus Definitions
The SPIRIT Consortium has prepared a set of BusDefs for several common busses.
It is expected, over time, that those standards groups and manufacturers who define

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 84 of 146

busses will include IP-XACT XML BusDefs in their set of deliverables. Until that time,
and to cover existing useful busses, a set of BusDefs for common busses has been
created.

Having a set of reference BusDefs means that many vendors defining IP using these
busses can interconnect. The SPIRIT Consortium posts these for use by their
members, with no warrantee of suitability, but in the hope that these will be useful.
The SPIRIT Consortium will from time to time, update these files and if a Standards
body wishes to take over the work of definition, will transfer that work to that body.

4.10.1 The difference between an external bus and an
internal/digital interface

While the current use of IP-XACT schema may be viewed as describing single chip
implementations, the schemas works equally well at the package and board level.
Often a PHY component exists which interconnects the internal and external bus.
Some standards define both of these interfaces, some define only the internal and
some define only the external. A common point of confusion is to use an external bus
standard as an interface on an internal component. This is legal if the component
caries the full PHY implementation, but often will make the component very
technology/implementation dependant. Some examples of busdef families that
include both interfaces are listed below:

4.10.1.1 Example: Ethernet Interfaces:
An Ethernet “bus” would not be only described as a single wire, but in a system that
includes Ethernet busses, it may also include, for example:

MII: Media Independent
Interface
GMII, XGMII, RMII, SSMII,
or SMII,

Physical Coding
Sublayer

Physical Media
Attachment

Physical Media
Dependant

MAC Control

Media Access Control

Reconciliation

XAUI: 10-gigabit
Attachment Unit Interface

MIIM

Figure 25 - Ethernet Interface Examples

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 85 of 146

XAUI: 10-gigabit Attachment Unit Interface

MII: Media Independent Interface

GMII: Gigabit Media Independent Interface

XGMII: 10-gigabit media-independent interface

RMII: Reduced MII, 7-pin interface

SSMII: Source Synchronous MII

SMII: Serial Media Independent Interface, The Serial Media Independent Interface
[SMII] provides an interface to Ethernet MAC. The SMII provides the same interface
as the Media Independent Interface [MII] but with a reduced pinout. The reduction in
signals is achieved by multiplexing data and control information to a signal transmit
signal and a single receive signal.

4.10.1.2 Example: I2C Bus
The I2C “eye-squared-see” bus is a two-wire bus with a clock and data line. The
standard described bus is the two-wire bus. The SPIRIT Consortium has defined an
additional, related bus which is the internal digital interface. This reference BusSpec
contains three pins for each external pin: for SDA (the data line) the internal pins are
defined as input, output, and enable as SDA_I, SDA_O, and SDA_E, in a similar
manner for the clock bus: SCL the internal pins are defined again for the functions of
input, output, and enable as SCL_I, SCL_O, and SCL_E

VDD

SDA

SCL

Standard Described I2C

SPIRIT defined (non-standard)
Internal digital reference I2C bus

I2C

Device

I2C

Device

I2C

Device

S
D

A
I

S
D

A
O

S
D

A
E

S
C

L
I

S
C

L
O

S
C

L
E

SDA SCL

Figure 26 - I2C Interface Example

4.10.2 Location of reference BusDefs
The reference BusDefs are available from the public area of the spiritconsortium.org
web site.

4.10.2.1 Reference BusDef template
A BusDef template with comments and examples is located with the reference
BusDefs also available from the public area of the spiritconsortium.org web site.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 86 of 146

5 IP-XACT GENERATORS
IP-XACT defines a tool integration API that provides a standard method for linking
tools into an IP framework, enabling a more flexible, optimized development
environment. IP-XACT-enabled tools are able to interpret, configure, integrate and
manipulate IP blocks that comply with the IP meta-data description.

The API allows the querying of XML IP meta-data that has been imported into the
design-environment. Queries may be for the existence of IP, the structure of IP, or
features offered by that IP such as configurability and interface protocol support.
This API is also used for the import and export of meta-data when an IP block is
extracted from, or imported back into, the IP management system.

Another role for the API is to interface to generators and tool plug-ins, allowing the
execution of these scripts and code-elements against the SoC meta-description. The
API enables the registration of new generators / plug-ins, export of SoC meta-data
and update of that data following generator or plug-in execution, and handling of
generator / plug-in error conditions which relate to the meta-data description.

5.1 Generator registration
Generators can be registered with the DE in components and generatorChains.
When registering a generator extra information can be supplied to allow the DE to
optimise the amount of information that it needs to write out before the generator can
be invoked. This extra information includes:

Read-only flag: If this is set then the DE need not worry about the generator
changing the database. This allows the DE to invoke the generator in a separate
thread, if this is possible.

Hierarchy flag: This flag allows the DE to trim the number of levels of hierarchy that it
needs to write out for the generator to work correctly. Currently the flag indicates that
only the top-level information is required or all hierarchical levels are required.

Instance flag: This flag indicates to the DE that the generator requires the name of at
least one instance to work upon. A list of instances can also be supplied. It is the
DE's responsibility to collect this list of instances before invoking the generator.

Subset flags: There are some flags that allow further trimming of the information that
the DE must provide. The design file flag indicates that the generator knows that all
the information it requires is contained within the design file so the DE can just make
this available. The component definitions flag indicates that the generator requires
only the component definition files to work upon. Finally the bus definitions flag
indicates the same for bus definitions.

Generator name element collisions are allowed and assumed to refer to the same
generator.

5.2 Tight Integration
In IP-XACT terminology a tight integration of an API means the direct interfacing to
generators and XML meta-data within the Design environment. An API can
manipulate values of elements, attributes and parameters for IP-XACT compliant
XML and save any modified data in a persistent way.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 87 of 146

IP Views

XMLSPIRIT
XML

XMLSPIRIT
Flow
XML

db

Generator
Chain

Generators

A
P
I

DE 1

Design
Views

SPIRIT
Design
XML

*

Figure 27 - Example of Tight Integration Flow

The design environment reads the XML input files in and the internal Database
representation is accessed via an API. This API is also used to supply parameters for
generators and execute them. The results of generators can be used to update the
DB until the design and all its configurable parameters are finally saved to an XML
file. More information on the tight generator interface is available in a separate
document from the spiritconsortium.org web site.

http://www.spiritconsortium.org/releases/tgi/index.html

5.3 Loose Integration

5.3.1 Definition
In IP-XACT terminology a loose integration of an API means the indirect interfacing to
generators and XML meta-data outside of the Design environment. An API can still
manipulate values of elements, attributes and parameters for IP-XACT compliant
XML and save any modified data in a persistent way but this time via explicitly
generated XML and transformation data that another design environment can
understand.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 88 of 146

XMLSPIRIT
Flow
XML

SPIRIT
Path
XML

DOM
SPIRIT

XML

DE 2DE 1

db

A
P
I

Generator
Chain

Generators

*

Generator
Chain

Generators

*
A
P
I

Figure 28 - Example of Loose Integration flow

Here the XML files need to be exported and imported as a result of running
generators. The API is external and is not bound by choice of language or condition
that is characteristic of the tightly integrated solution.

Note that the loose generator interface is deprecated in IP-XACT 1.2, and will be
removed in a future version of the IP-XACT specification.

5.3.2 Typical DE flow
This section illustrates a typical DE flow with call to a generator using the loose
generator interface (LGI). The diagram below captures the essence of a loose
generator call.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 89 of 146

DE
database

XML

Generator
exec(…)

XML
In LGI
schema

Changes
XML
In LGI schema

Read

Write

Read
References

Design Environment
input.xml

output.xml

Figure 29 - Typical DE Flow

5.3.2.1 Design environment flow
• Somewhere a generator is invoked, probably from a generator chain or

maybe directly by the user pressing a ‘build’ button in the DE.
• The DE examines what requirements the generator has defined and writes

out files including the bus definitions, the current component definitions and
the design file.

• The DE puts above file paths into input.xml according to the LGI schema.
• The DE prepares return file, ‘output.xml’. For example, it may be that this file

still exists from a previous generator run, so must be deleted.
• The DE then calls the underlying OS’s exec(“generator_name”,

“input.xml”, “output.xml”)function call and the generator flow then
starts (described below). Depending on the generator the DE may also have
to capture the generator’s stdout/stderr streams and wait until the generator
process completes.

• The DE then examines the generator return status and can take action at this
point to handle generator failure.

• The DE reads the output.xml file if the generator returned a successful
exit status and the generator has registered itself as being one that can
modify the database, i.e. not a read-only generator. The DE then executes
any database modification elements in that file.

5.3.2.2 Generator flow

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 90 of 146

Generator reads input.xml and then any other files that it might need, all of which
should be referenced by this input.xml file.

The generator should then parse the XML and create an internal database, if
required. This database should follow the same IP-XACT semantic interpretation as
the DE otherwise there will be differences between the DE’s interpretation of the
design and that of the generator. The generator can then act upon this database and
write out any required changes to output.xml.

The generator then exits with appropriate success/fail return value.

5.3.2.3 Generator input files
The DE is responsible for interpreting the generator's requirements and writing out
enough information for the generator to process. This is typically a two-stage
process. The first stage is to write out the files that describe the parts of the design
that the generator needs, component definitions, bus definitions, etc. The second is
to write a file that references these files, the generator invocation file.

There are some things that the DE must take note of when this generator invocation
file is written. Firstly, in order to link component definitions to their instances each
component definition file element has an instanceRef attribute and this should be
filled in with the instance name of the instance in the design that this file defines. The
DE may place these files wherever it chooses, as long as they are accessible to the
generator on the local filesystem. However, there is a catch in that files referenced in
these component definitions must also be available to the generator on the local
filesystem. So the DE must ensure that the versions of component definition files it
writes have these file references fully expanded. The DE is also responsible for
capturing the values of any parameters associated with the generator and writing
these to the invocation file.

5.3.2.4 Generator changes
The generator may write out changes that it wishes to make to the design in a limited
fashion. The limits are imposed by the looseGeneratorChanges schema. These limits
are imposed since it reduces the burden on the DE when it comes to making
changes to its (master) database.

The generator may add/remove/replace components, add/remove/replace
interconnections, add/remove/replace configuration settings and add/remove vendor
specific data.

Component changes are the most complex. Removal of an instance just requires the
instance name. Adding or replacing an instance requires the instance name, the
component definition file and, if this is a hierarchical component, then the generator
must also supply the sub component definitions. Also the configuration of an instance
can be supplied.

Note: to change the configuration associated with an instance, the generator must
replace the instance with itself and supply the new configuration information.

5.3.2.5 Rules for interpreting changes
• Adding components: The instance name should be unique; the DE will reject

the change if not. The component file must be supplied. If the component is
hierarchical then subcomponents must be supplied. Note that components
can only refer to existing bus definitions since there is no way to add new bus
definitions from a generator.

• Removing components: Only the instance name need be supplied. The
interconnections must be deleted by the generator if not required.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 91 of 146

Interconnections that do not have a bus interface at both ends are not
allowed.

• Replacing components: There are two expected uses for replace: 1) to
change the configuration of an existing component and 2) to allow the
transformation of a component.

• The difference is whether or not a new component definition file is supplied. If
not then the generator is trying to modify the existing component's
configurable information and this requires little effort on the DE's part to
handle.

• If there is a new component definition supplied then the DE has to work a bit
harder to maintain the database. The component's configuration info will be
supplied by the generator and so the DE must use this. The DE should
maintain the connectivity with existing interconnections where they refer to
identically named interfaces on the old and the new component. The
generator must delete interconnections that now refer to interfaces that no
longer exist, since interconnections that do not have a bus interface at both
ends are not allowed.

• Adding interconnections: New interconnections must refer to existing bus
interfaces at both ends. The DE can reject the change if this is not true. Note
that it is not an error for the generator to define a new interconnection where
one already exists between the two interfaces.

• Removing interconnections: The generator must ensure that the referenced
interconnection exists; it is an error to specify an interconnection that doesn’t
exist.

• Replacing interconnections: This is equivalent to a remove followed by an
add operation.

• Adding configuration settings: New settings must refer to existing
configurable elements or instance and view pairs.

• Removing configuration settings: The configuration setting with the given
referenceId and value must exist in the database to be deleted. If the
configuration change refers to an instance’s view then that instance must
exist.

• Replacing configuration settings: This is equivalent to a remove followed by
an add operation.

• The rules for adding, removing and replacing vendor-defined data will
depend on the type of data. The DE will know what data it can and cannot
handle in this area.

5.3.2.6 Error handling
Error handling is DE specific, some DE's may apply all changes in an atomic manner,
others may apply the changes until the first failure and then stop, and other DEs may
apply all changes despite previous failures. It is recommended that DEs do not allow
the database to become so corrupted by failure that manual editing is impossible.
Ideally the atomic change strategy (the changes are accepted only if all changes are
successful) should be the preferred approach.

5.3.2.7 Generator environment
Generators written to work with the LGI must obey certain rules. They must accept
one or two command line arguments; the first one is mandatory since it defines the
XML file that references any further files. The second is optional and may not be
supplied to generators that have registered themselves as being read-only. This
second argument is the name of the file in which generators must write any
modifications that they wish to make to the DE's master database.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 92 of 146

Generators must be written in a manner that is directory structure independent. The
DE is responsible for invoking the generator and can do this in any directory it
chooses, the generator cannot rely on this directory being the same between all DEs
nor even two runs in the same DE.

5.3.2.8 Shared responsibilities
Both the DE and generators have a number of other rules to adhere to.

The DE must supply absolute pathnames in definition files. The generator must do
similarly in any definition files it returns.

Additionally, the DE should write out component definitions as they currently appear
in the DE's database. This is so that configured or transformed definitions are seen
by the generator too. The generator must assume that all component and bus
definition files are read only to allow the DE to write out definitions once and
subsequently refer to the previously written definition thereafter.

DEs must note that a replace is not the same thing as a delete followed by an add.
The DE should try to replace the component in-situ rather than deleting all the
connectivity associated with that component. Generators rely on this connectivity
being retained for further processing.

The order for processing changes is: component changes followed by
interconnection changes followed by project setting changes and finally persistent
data changes. There is also an order within each of these subsections. Both DEs and
generators should follow this order. If this order is too restrictive to a generator then it
must be split into as many parts as are needed so that the prescribed order of
processing can be followed by the DE. This splitting may be into a generator chain.

5.3.3 Configurators
In many cases the LGI will be use to handle configuration tasks through
configurators, validators or hooks. In these cases the generator should be marked,
where possible read-only and the registration flags should be set to allow the DE to
minimise the amount of data it needs to make available to the generator through the
LGI.

5.4 Generator chain
In the current IP-XACT methodology a design flow can be represented as a
generator chain that links an ordered sequence of named tasks. Each named task
can be represented as a single generator or itself be the name of a generator chain.
In this way design flow hierarchies can be constructed and executed from within a
given design environment. The design environment is responsible for understanding
the semantics of the specified chain described in the XML schema.

The current IP-XACT schema defines the generator group definition and elements in
the generator.xsd file.

 In the current terminology:

• A generator chain is a sequential list of ordered generator groups
• A generator group is a named generator that contains a sequential list of

generator invocations
• A generator invocation is a method of running an application at a defined

phase in the generator group with a given number of parameters
• A phase is a number that defines when a generator invocation occurs in a

sequential ascending order.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 93 of 146

• A number of parameters support the ability to influence the behavior of the
generator invocation

With these definitions the names of generators should reflect what they are trying to
achieve. While the generator group names have string values and are therefore
generic, one of The SPIRIT consortium goals is to allow plug-and-play-like
architectures for generators. To help facilitate this, the following recommendations
have been made to both give examples of generator naming and guidelines for
generator usage.

5.4.1 Generator Naming Convention
The recommendation from The SPIRIT Consortium is to classify different parts of a
generator name into <owner>_<target>_<context>_<action>. These
recommendations should help readability of an IP supplier’s generator chain or an
EDA vendor’s tool generator chain.

Table 1 Example of IP-XACT Generator Naming Conventions

Owner Target Context Action
SPIRITGEN
ARMGEN
PSGEN
STGEN
SNPSGEN
CDSGEN
MENGEN

SIM
SYN
FPGA
CONFIG

HW
SW
HS

INIT
CHECK
CREATE
COMPILE
BUILD

Below is a description of action name part:

• INIT (setup, possible environment creation, directory
structure, required init files, things to do before HW/SW views created)

• CHECK (perform some kind of validation check, parameter
ranges, boundary conditions, all required user input done)

• CREATE (produce the configured HW or SW depending on
context)

• COMPILE (perform the act of compiling on objects created)
• BUILD (hierarchical usage of INIT, CREATE, COMPILE,

ELABORATE, VERIFY)
• ELABORATE (stitch compiled objects together in some way)
• VERIFY (run an environment to test the target, for example a

simulator)

The example below defines a new generator chain called
SPIRITGEN_SIM_HS_CHAIN intended to specify a sequence of named simulation
tasks for both HW and SW compilation (HS).

<?xml version="1.0" encoding="UTF-8"?>
<spirit:generatorChain
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>DesignFlow</spirit:library>
 <spirit:name>flowBuildChain</spirit:name>
 <spirit:version>1.0</spirit:version>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 94 of 146

 <spirit:fileGeneratorSelector>
 <spirit:groupSelector>
 <spirit:name>SPIRITGEN_SIM_HS_CHAIN</spirit:name>
 </spirit:groupSelector>
 </spirit:fileGeneratorSelector>
</spirit:generatorChain>

The following diagram shows the calling sequence and names of the generator chain
in terms of lower-level groups.

SPIRITGEN_SIM_HS_CONFIG

SPIRITGEN_SIM_HS_CHAIN
(HW/SW Co-verification Flow)

SPIRITGEN_SIM_HS_BUILD

SPIRITGEN_SIM_HS_INIT

SPIRITGEN_SIM_HS_COMPILE

Generator Group
Name

Figure 30 - Example of major Generator group names

The XML file below shows how the above flow would be encapsulated.
<?xml version="1.0" encoding="UTF-8"?>
<spirit:generatorChain
xmlns:xs=http://www.w3.org/2001/XMLSchema
xmlns:spirit=http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>buildChain</spirit:library>
 <spirit:name>CompleteBuild</spirit:name>
 <spirit:version>1.0</spirit:version>

http://www.w3.org/2001/XMLSchema
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.0alpha

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 95 of 146

 <spirit:fileGeneratorSelector>
 <spirit:groupSelector>
 <spirit:name>SPIRITGEN_SIM_HS_INIT</spirit:name>
 </spirit:groupSelector>
 </spirit:fileGeneratorSelector>
 <spirit:fileGeneratorSelector>
 <spirit:groupSelector>
 <spirit:name>SPIRITGEN_SIM_HS_CONFIG</spirit:name>
 </spirit:groupSelector>
 </spirit:fileGeneratorSelector>
 <spirit:fileGeneratorSelector>
 <spirit:groupSelector>
 <spirit:name>SPIRITGEN_SIM_HS_BUILD</spirit:name>
 </spirit:groupSelector>
 </spirit:fileGeneratorSelector>
 <spirit:fileGeneratorSelector>
 <spirit:groupSelector>
 <spirit:name>SPIRITGEN_SIM_HS_COMPILE</spirit:name>
 </spirit:groupSelector>
 </spirit:fileGeneratorSelector>
 <spirit:chainGroup>SPIRITGEN_SIM_HS_CHAIN</spirit:chainGroup>
</spirit:generatorChain>

5.4.2 Phase Numbers
Phase numbers are intended to define the sequence in which generators should be
fired.

A phase number is defined as a non-negative floating-point number that is used to
sequence when a generator is run. By building up a series of generators and phase
numbers specific sequences of named task invocations can be built up to influence
when a design environment should fire a specific generator. Generators can be
attached to high-level chains, specific components or specific buses.

There may be multiple generators with the same phase number. In this case, the
order should not matter with respect to other generators at the same phase. If no
phase number is given then the design environment has license to decide on its
position.

Generators can be attached to both components and buses by using the same
generator group name. In this case the sequence in which each generator will be
invoked depends on the associated phase number. It is up to the design environment
to process the generator chains, groups and phase numbers to construct the
sequence of generator invocations.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 96 of 146

100

SPIRITGEN_SIM_HS_INIT
(Generator Group)

initNetlistGenerator

Phase Number

Figure 31 - Loose Generator Example with Phase Number

The XML below shows how a call to such a generator might be defined. Note the
definition of the component and bus generator usage of the same group name
SPIRITGEN_SIM_HS_INIT. This means that if generators are associated with either
components or buses using the same generator group name then the DE should
invoke them in a sequence defined by the phase numbers.

<?xml version="1.0" encoding="UTF-8"?>
<spirit:generatorChain
xmlns:spirit=http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.2/index.xsd">
 <spirit:vendor>spiritconsortium.org</spirit:vendor>
 <spirit:library>buildChain</spirit:library>
 <spirit:name>commonInit</spirit:name>
 <spirit:version>r1.0</spirit:version>
 <spirit:generator>
 <spirit:name>initNetlistGenerator</spirit:name>
 <spirit:phase>100</spirit:phase>
 <spirit:accessType>
 <spirit:readOnly>true</spirit:readOnly>
 <spirit:hierarchical>true</spirit:hierarchical>
 <spirit:instanceRequired>true</spirit:instanceRequired>
 </spirit:accessType>
<spirit:looseGeneratorExe>/user/spirit/generators/setupNetlist
</spirit:looseGeneratorExe>
 </spirit:generator>
 <spirit:componentGeneratorSelector>
 <spirit:groupSelector>
 <spirit:name>SPIRITGEN_SIM_HS_INIT</spirit:name>
 </spirit:groupSelector>
 </spirit:componentGeneratorSelector>
 <spirit:busGeneratorSelector>
 <spirit:groupSelector>
 <spirit:name>SPIRITGEN_SIM_HS_INIT</spirit:name>
 </spirit:groupSelector>
 </spirit:busGeneratorSelector>
 <spirit:chainGroup>SPIRITGEN_SIM_HS_INIT</spirit:chainGroup>
</spirit:generatorChain>

http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.0alpha
http://www.w3.org/2001/XMLSchema-instance

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 97 of 146

6 IP-XACT SEMANTIC RULES
For an IP-XACT document, or set of IP-XACT documents, to be valid they must, in
addition to conforming to the IP-XACT schema, obey certain semantic rules. While
many of these are described informally in other sections of this document this chapter
defines them formally. Tools generating IP-XACT documents must ensure that these
rules are obeyed. Tools reading IP-XACT documents should report any breaches of
these rules to the user.

Most of the semantic rules listed below can be checked purely by examining a set of
IP-XACT documents. A few, listed at the end of this chapter, need some external
knowledge, so cannot be checked this way. In the tables that follow “single
document check” indicates that a rule can be checked purely by examining a single
IP-XACT document. Rules for which “single document check” is “No” require the
examination of the relationships between IP-XACT documents.

6.1 Cross References and VLNVs
Rule
Number

Rule Single
Document
Check

Notes

1. Every IP-XACT document shall have a
unique VLNV.

No

2. Any VLNV in an IP-XACT document
used to reference another IP-XACT
document shall precisely match the
identifying VLNV of an existing IP-XACT
document

No In the schema such
references always use
the attribute group
versionedIdentifier

3. The VLNV in an extends element in a
bus definition shall be a reference to a
bus definition

No

4. The VLNV in a busType element in a
bus interface shall be a reference to a
bus definition

No

5. The VLNV in a designRef element in
a design configuration must be a
reference to a design

No

6. The VLNV in a pmdRef element in a
design configuration or loose generator
changes shall be a reference to a pmd

No

7. The VLNV in a generatorChainRef
element in a design configuration or
loose generator changes shall be a
reference to a generator chain

No

8. The VLNV in an owner sub-element
of a fileSet in a component shall be
a reference to a component

No

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 98 of 146

Rule
Number

Rule Single
Document
Check

Notes

9. The VLNV in a fileName sub-
element of fileGeneratorSelector
in a generator chain shall be a reference
to a generator chain

No

10. The VLNV in a busDefinitionFile
element in a loose generator invocation
shall be a reference to a bus definition. In
addition the URI in this element shall
reference the same bus definition

No

11. The VLNV in a componentRef
element in a pmd or design shall be a
reference to a component

No

6.2 Interconnections
Definitions:

Compatibility of busDefinitions:

• A busDefinition A is an extension of busDefinition B if A contains an
extension element that references either B or an extension of B.

• A busDefinition is compatible with itself.
• If A is an extension of B then A and B are compatible
• No other pairs of busDefinitions are compatible.
• A set of busDefinitions { A, B, C, ...} is compatible if every possible pair of

busDefinitions from the set ({ A, B }, { A, C }, { B, C } ...) is compatible

Direction of a bus interface:

• Whether the bus interface is a master, slave, system, mirroredMaster,
mirroredSlave, mirroredSystem, or monitor interface.

Rule
Number

Rule Single
Document

Check

Notes

12. In the attributes of an
activeInterface or
monitorInterface element the value
of the busRef attribute shall be the name
of a busInterface in the component
description referenced by the VLNV of the
component instance named in
componentRef attribute.

No

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 99 of 146

Rule
Number

Rule Single
Document

Check

Notes

13. In the sub-elements of an
interconnection element the bus
interfaces referenced by the two
activeInterface subelements shall
be compatible. I.e. the VLNVs of the
busType elements within the two
busInterface elements shall
reference compatible busDefinitions.

No

14. A particular component/bus interface
combination may appear in, at most, one
interconnection element in a design

Yes

15. An interconnection element may
only connect a master interface to a slave
interface or a mirrored master interface

No

16. An interconnection element may
only connect a mirrored master interface
to a master interface

No

17. An interconnection element may
only connect a slave interface to a master
interface or a mirrored slave interface

No

18. An interconnection element may
only connect a mirrored slave interface to
a slave interface

No

19. An interconnection element may
only connect a direct system interface to
a mirrored system interfaces

No

20. An interconnection element may
only connect a mirrored system interface
to a direct system interface

No

21. In a direct master to slave connection the
value of bitsInLAU in the master's
address space shall match the value of
bitsInLAU in the slave's memory map

No

22. In a direct master to slave connection the
range of the master's address space shall
be greater or equal to the range of the
slave's memory map

No If the slave's memory
map is defined in terms
of memory banks or
subspace maps then
calculating its range may
be complex

23. In a direct master to slave connection the
busDefinitions referenced by the
busInterfaces shall have a
directConnection element with value
"true" (the default value).

No

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 100 of 146

Rule
Number

Rule Single
Document

Check

Notes

24. In a connection between a system
interface and a mirrored system interface
the values of the group elements of the
two bus interfaces shall be identical

No

6.3 Channels and bridges

Rule
Number

Rule Single
Document

Check

Notes

25. Within a channel element all the
busInterfaceRef elements shall refer
to compatible bus types. I.e. the VLNVs of
the busType elements within the
busInterface elements shall
reference compatible busDefinitions.

No

26. All bus interfaces referenced by a channel
shall be mirrored interfaces

Yes

27. A channel can be connected to no more
mirrored master busInterfaces than the
least value of maxMasters in the
channel and in the busDefinitions
referenced by the connected
busInterfaces (whether these interfaces
are mirrored master or mirrored slave
interfaces)

No

28. A channel can be connected to no more
mirrored slave bus interfaces than the
least value of maxSlaves in the channel
and in the bus definitions referenced by
the connected bus interfaces (whether
these interfaces are mirrored master or
mirrored slave interfaces)

No

29. Each bus interface on a component may
connect to at most one channel of that
channel component

Yes

30. The interface referenced by masterRef
sub-element of a bridge element shall
be a master.

Yes

6.4 Monitor interfaces and interconnections

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 101 of 146

Rule
Number

Rule Single
Document

Check

Notes

31. An interconnection element is
not allowed to reference a monitor
interface

No

32. The activeInterface sub-
element of a
monitorInterconnection
element shall reference a master,
slave, system, mirroredMaster,
mirroredSlave, or mirroredSystem
interface.

No

33. The monitorInterface sub-
elements of a
monitorInterconnection
element shall reference a monitor
bus interface

No

34. In a monitorInterconnection
element the value of the
interfaceType attributes of the
monitor interfaces shall match the
direction of the active interface

No This means all the active
interfaces must have the
same direction.

35. A monitor interface may only be
connected to a system or
mirroredSystem interface if it has a
group sub-element, and the value of
this element matches the value of
the group sub-element of the
system or mirroredSystem interface

No

36. A particular
component/busInterfaceName
combination may only appear in one
monitorInterconnection
element

No This applies to both monitor
and active interfaces;
however a single
monitorInterconnection
element can connect an
active interface to many
monitor interfaces. The same
active interface can also
appear in at most one
interconnection element

6.5 Configurable elements

Rule
Number

Rule Single
Document

Check

Notes

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 102 of 146

Rule
Number

Rule Single
Document

Check

Notes

37. A configurable element shall have a
dependency attribute if and only if it has
a resolve attribute with the value
"dependent"

Yes

38. The value of a dependency attribute
shall be an XPATH expression. This
XPATH expression may only reference
the containing document

Yes

39. The XPATH expression in a
dependency attribute may not reference
configurable elements with a resolve
attribute value of either "dependent" or
"generated"

Yes

40. Any parameters used within dependent
parameter's XPATH id() calls shall exist.

Yes

41. All references to elements in dependency
XPATH expressions shall be by id.
Dependency XPATH expressions shall
not use either absolute or relative
document navigation to reference other
elements

Yes The purpose of this rule
is to allow XPATH
expressions to remain
valid through schema or
design changes. DEs
reading IP-XACT
documents should, if
possible, treat breaches
of this rule as minor
errors, and should
attempt to interpret any
XPATH expressions in
the document.

42. An id attribute is required in any element
with a resolve attribute value of "user",

Yes

43. ConfigurableElement elements may
only reference configurable elements that
exist in the component referenced by the
enclosing componentInstance object;
specifically the value of the referenceId
attribute of the configurableElement
element shall match the value of the id
attribute of some configurable element of
the component.

No Uniqueness of id values
within a component is
guaranteed by the
schema.

44. configurableElement elements may
only reference configurable elements with
a resolve attribute value of "user" or
"generated"

No

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 103 of 146

Rule
Number

Rule Single
Document

Check

Notes

45. If a configurablElement element
references an element with a formatType
attribute value of "float" or "long" and a
minimum attribute, then the value of the
configurableElementValue
element shall be greater or equal to the
specified value of the minimum attribute.

No

46. If a configurablElement element
references an element with a formatType
attribute value of "float" or "long" and
a maximum attribute, then the value of
the configurableElementValue
sub-element shall be less than or equal to
the specified value of the maximum
attribute

No

47. If an element has a formatType
attribute with a value of "choice" then it
shall also have a choiceRef attribute

Yes

48. If a configurableElement element
references an element with a choiceRef
attribute then the value for
configurableElementValue sub-
element shall be one of values listed in
the choice element referenced by the
choiceRef attribute.

No

6.6 Signals

Rule
Number

Rule Single
Document

Check

Notes

49. The value of any busSignalName sub-
element in a busInterface element
shall match the value of a logicalName
element of the bus definition referenced
by the busInterface element.

No

6.7 Registers

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 104 of 146

Rule
Number

Rule Single
Document

Check

Notes

50. Register offsets in addressOffset
elements shall not cause registers to
overlap.

Yes

51. Bit offsets in register fields shall not
cause register fields to overlap.

Yes

52. The total size of register list within a
memory range shall not exceed the size
of the range.

Yes

53. The total size of bit fields within a register
shall not exceed the size of the register

Yes

6.8 Memory maps

Rule
Number

Rule Single
Document

Check

Notes

54. The width of an address block either
directly or indirectly (via banks) included
in a memory map shall be a multiple of
the memory map's bitsInLau

Yes

55. Neither a parallel bank, nor banks within
a parallel bank, may contain subspace
maps.

Yes

56. If a parallel bank contains a serial bank,
then the widths of all address blocks and
sub-banks of that serial bank shall have
identical widths

Yes I.e. The serial bank has
a fixed, well-defined
width. This is required
for sensible addressing
of the locations in a
parallel bank

6.9 Addressing
See also section 6.13 for a description of how addresses are interpreted in IP-XACT.

Definitions:

Address signal:

• A signal, in a bus definition, is an address signal if it has an isAddress sub-
element.

Addressable bus interface:

• A bus interface shall be addressable if any of its connected signals are
address signals.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 105 of 146

Hierarchical bus interface:

• A hierarchical bus interface is a bus interface of a component that is listed
as a hierarchical connection in a design of that component.

Note: a bus interface is hierarchical if any view of the component contains a
design that names it as a hierarchical connection.

Rule
Number

Rule Single
Document

Check

Notes

57. A non-hierarchical addressable master
bus interface shall have an
addressSpaceRef sub-element

No Since there are
potentially useful
applications of IP-
XACT that do not
require addressing
information, failure
to obey this rule
should be treated
as a warning rather
than an error

58. A non-hierarchical addressable slave bus
interface shall have either a
memoryMapRef sub-element, or one or
more bridge sub-elements referencing
addressable master bus interfaces.

No Since there are
potentially useful
applications of IP-
XACT that do not
require addressing
information, failure
to obey this rule
should be treated
as a warning rather
than an error

6.10 Hierarchy
Definitions:

Hierarchical child bus interface:

• Bus interface IC of component CC is a hierarchical child of bus interface IP of
component CP if and only if CP contains a hierarchical view the design file of
which contains a hierarchical connection with interface name IP, component
ref CC and interface ref IC.

Note: A hierarchical child bus interface may or may not be a hierarchical bus
interface itself.

Hierarchical descendant bus interface:

• Bus interface DC is a hierarchical descendant of bus interface AC if and
only if DC is either a hierarchical child of AC or DC is a hierarchical child of a
hierarchical descendant of DC.

Hierarchical family of bus interfaces:

• A hierarchical family of bus interfaces a set of bus interfaces consisting of a
hierarchical bus interface together with all its hierarchical descendants.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 106 of 146

Hierarchical component:

• A component is hierarchical if any of its views reference an IP-XACT
design.

Hierarchical child component:

• A hierarchical child of a component C is any component referenced in a
design of C.

Hierarchical descendent component:

• A hierarchical descendent of a component is any hierarchical child of that
component, or any hierarchical child of any hierarchical descendent of the
component.

Hierarchical family of components:

• A component together with all its hierarchical descendents.

Behavioural properties of a memory location:

• The behavioral properties of a bit in memory are defined to be:
o Its access rights
o Its volatility
o Whether it has a defined reset value, and if so this value.
o The width of the memory area containing it:

 For bits not within parallel banks this is the width of the containing
address block.

 For bits within parallel banks this is the width of the top level parallel
bank containing it.

o The effective least addressable unit (i.e. value of bitsInLau) of its
containing memory map
 Note that bridges between the memory location and the bus interface

from which it is observed may modify a location’s effective least
addressable unit from that which is defined in the memory map.

o The endianess of its containing address block.
o The usage of its containing address block
o Its dependencies:

 Two bits have the same dependencies if they depend on the same
values of the same bits at the same address. Since different memory
maps may vary in how they name registers and fields (and even in
how they split the address spaces into registers and fields) it is
possible for two dependencies to match even if they use different
register and field names.

Rule
Number

Rule Single
Document

Check

Notes

59. All members of a hierarchical family of
bus interfaces shall reference the same
busDefinition in their busType sub-
elements

No

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 107 of 146

Rule
Number

Rule Single
Document

Check

Notes

60. All members of a hierarchical family of
bus interfaces shall have the same
direction (master, slave, system etc.)

No

61. If any member of a hierarchical family of
bus interfaces has a connection sub-
element with a value other than "explicit"
then they all shall have connection sub-
elements with identical values

No The value "explicit"
is the default

62. If any member of a hierarchical family of
bus interfaces has an index sub-element
then all members shall have identical
index sub-elements

No

63. If any member of a hierarchical family of
bus interfaces has a bitSteering sub-
element then all members shall have
identical bitSteering sub-elements

No

64. If any member of a hierarchical family of
bus interfaces has signalMap sub-
element then they all shall.

No

65. All the signalMaps of a hierarchical family
of bus interfaces shall reference the same
set of bus signals. I.e. if one contains a
signal with busSignalName element with
value s then they all shall all contain a
signal with busSignalName element with
value s

No An effect of this,
together with 57
and 58, is that, if a
hierarchical bus
interface is
addressable then its
non-hierarchical
descendents (i.e.
the leaves of the
tree) must be, and
hence shall contain
addressing
information

66. In a hierarchical family of bus interfaces
all signals in the signalMaps referencing
the same bus signal shall have the same
left and right values.

No

67. In a hierarchical family of bus interfaces
the componentSignalName of all signals
in the signalMap referencing the same
bus signal shall reference signals with the
same direction

No

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 108 of 146

Rule
Number

Rule Single
Document

Check

Notes

68. In a hierarchical family of bus interfaces
the component signals referenced by the
componentSignalName of all signals in
the signal maps referencing the same bus
signal shall, if they have default values,
have identical default values.

No I.e. it is legal for
only some of the
descriptions of a
signal to have
default values, but
those that have
must have identical
default values.

69. In a hierarchical family of bus interfaces
the componentSignalName of all signals
in the signalMap referencing the same
bus signal shall reference signals with
identical clockDriver sub-elements

No

70. In a hierarchical family of bus interfaces
the componentSignalName of all signals
in the signalMap referencing the same
bus signal shall reference signals with
identical singleShotDriver sub-elements

No

71. In a hierarchical family of bus interfaces
the componentSignalName of all signals
in the signalMap referencing the same
bus signal shall reference signals with
identical signalConstraintSets sub-
elements

No

6.11 Hierarchy and Memory maps

Rule
Number

Rule Single
Document

Check

Notes

72. In a hierarchical family of slave or
mirrored master bus interface all bus
interfaces that define addressing
information (either directly or via bridges
and channels) shall define the same set
of addresses to be visible

No I.e. If one member
of the family defines
an address as a
valid address
accessible through
that bus interface
then all members of
the family that
define addressing
information must
define that same
address as a valid
address accessible
through that bus
interface.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 109 of 146

Rule
Number

Rule Single
Document

Check

Notes

73. If, in any member of a hierarchical family
of slave or mirrored master bus
interfaces, an address resolves to
reference a location outside the
containing hierarchical family of
components then that address shall
reference the same location (i.e. the
same address on the same bus) in every
member of the hierarchical family that
defines addressing information.

No I.e. if C is a
hierarchical
component, and
either the IP-XACT
description of C
itself, or some
design of C, tells us
that accessing
address a of C on
bus interface I
results in an access
to address b of
some other bus
interface J of C;
then all designs of
C that tell us about
addressing on I
must tell us the
same about this
address.

74. If any bit address (i.e. address plus bit
offset) is resolved to a bit within an
address block by any member of a
hierarchical family of slave bus interfaces
then all members of that family with
addressing information shall resolve that
bit address to a bit with identical
behavioural properties.

No If an address
resolves to a
location within the
hierarchical family
of components
then, normally, its
only observable
features from
outside the
hierarchical family
are its behavioural
properties (but see
the rule 75)

75. If, in the addressing information of any
member of a hierarchical family of bus
interfaces, any two addresses resolve to
the same location, then this shall be true
for all members of the hierarchical family
of bus interfaces that have addressing
information

No i.e. aliasing of
addresses shall be
preserved. Note
that aliasing is
observable from
outside the
hierarchical family.

6.12 Rules requiring external knowledge

Rule
Number

Rule Single
Document

Check

Notes

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 110 of 146

Rule
Number

Rule Single
Document

Check

Notes

76. The name sub-element of a file
element can contain environment
variables in the form of ${ENV_VAR}
which are meaningful to the host
operating system and which, when
expanded, should result in a string which
is a valid URI

Yes

77. In VLNVs the vendor name should be
specified as the top level internet domain
name for that organization. The domain
should be ordered with the top level
domain name at the end (as in HTTP
URLs) Example Mentor: mentor.com;
ARM: arm.com etc.

Yes This is to guarantee
uniqueness of
vendor names.

78. The envIdentifier of a view shall be a text
string consisting of three fields delimited
by colons. The first two fields shall be a
language name, which shall be one of the
languages available for fileTypes, and a
tool name. The tool name may be either
generic (e.g. "*Simulation", "*Synthesis")
or a specific tool name such as
"DesignCompiler", "VCS", "NCSim",
"ModelSim". The third field will an be
arbitrary vendor specific text string

Yes Tool vendors shall
publish a list of valid
tool names.

The SPIRIT
Consortium website
includes a list of
these names
registered by
members of The
SPIRIT consortium.

6.13 PMD Files
Rule

Number
Rule Single

Document
Check

Notes

79. The styleSheet element must
reference a valid XSLT file

No

80. The execution of the styleSheet
should produce a valid IP-XACT XML file

No

81. The parameters referenced in the
styleSheet shall be defined in the PMD
XML file

No Extra parameters in
the PMD file is OK

6.14 Addressing formulas

This section describes how the address of a location in an IP-XACT component is
transformed by connections between components in IP-XACT. It also describes
which bits of an address space are visible across such connections.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 111 of 146

Note The material in this section is preliminary and awaiting further review.

6.14.1 Overview

IP-XACT component descriptions include addressing information for each
addressable bus interface of a component. If this addressing information in IP-XACT
is to be useful it is essential that it should be unambiguous. In particular, IP-XACT
must precisely define what location is accessed when a component attempts an
access to an address on a master bus interface.

Within an IP-XACT component each addressable slave bus interface has associated
with it either a memory map (which may be shared with other bus interfaces) or a set
of transparent bridges to master bus interfaces. A memory map may contain both
address blocks, which describe the local memory and device registers of the
component, and subspace maps, which describe how addresses are transformed by
the component's opaque bridges.

In IP-XACT every memory map has a least addressable unit (LAU). This describes
how that memory map is addressed. For example, if the memory map is byte
addressed the LAU is 8 bits. Within a memory map any bit may be uniquely
addressed by an address which is a multiple of the LAU plus a bit offset less than the
LAU.

A number of factors control whether a location in a memory map is visible at a master
port within a design, and if so at what address. These are:

1 Whether there is a path (via interconnections, channels and bridges)
from the master bus interface to a slave bus interface using that memory
map. For the remainder of this document it is assumed that such a path
exists.

2 The address and bit offset of the location in the memory map.
3 The base addresses and bit offsets defined in:

3.1 The master bus interface
3.2 The mirrored slave interfaces of channels
3.3 The master bus interfaces of intervening bridges
3.4 The subspace maps of intervening opaque bridges.

4 The widths of:
4.1 The bus interfaces
4.2 The master bus interface's address space
4.3 The address block containing the location

5 Whether any bus interface supports bit steering, and if so which.
6 The range of:

6.1 The master bus interface's address space.
6.2 The address space of the master bus interfaces of any intervening

bridges.
6.3 Mirrored slave interfaces.

7 The endianess of:
7.1 The address block containing the location
7.2 The master bus interface's address space
7.3 The address space of the master bus interface of any intervening

bridges.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 112 of 146

Note: The current version of this section does not discuss endianess. This will be
added in a later version.

 The following sections describe in detail the rules for calculating the visibility and
addresses of locations. In these sections I talk entirely in terms of bit addresses at
various points in a design. This is based on every point in a design having a well-
defined local bitsInLau. The bit address of a bit in memory is
address*localBitsInLau+bitOffset.

6.14.1.1 Scope of addressing formulas in IP-XACT 1.2
IP-XACT 1.2 only defines addressing if:

1. All address blocks and address spaces relevant to calculating the
transformations of a particular address have the same endianness.

2. There is only one (multi-bit) data signal on any interconnection. The
addressing formulas in this document would work equally well with one input
and one output signal, and could be applied to that case. If, however, the
input and output data signals are different widths, and bit steering is not
enabled throughout, then this could result in different addressing for reads
and writes. IP-XACT does not, at present, contain sufficient information to
fully define the addressing on bus interfaces with multiple input or output
signals.

6.14.1.2 Simplifying assumptions
To simplify the following description it is assumed that all multi-bit signals are
described with left ≤ right. If a signal has right < left then left and
right can be swapped.

6.14.2 Breaking down the path

The path an address block to a master component (which may be a processor or
some other device that generates bus accesses) accessing that address block may
be broken down into a number of steps. If there are no bridges between the master
component and the address block are:

1. Connection from the address block to "just outside" the slave bus interface
2. Connection from "just outside" the slave bus interface to "just outside" the

mirrored slave bus interface.
3. Connection through a channel from "just outside" the mirrored slave bus

interface to "just outside" the mirrored master bus interface
4. Connection from "just outside" the mirrored master bus interface to "just

outside" the master bus interface.
5. Connection from "just outside" the master bus interface to master

component's address space.

If there is no channel then steps 2, 3, and 4, are replaced by:

6. Connection from "just outside" the slave bus interface to "just outside" the
master bus interface

Bridges replace step 5 with:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 113 of 146

7. Connection across a bridge from "just outside" the master bus to “just
outside” the slave bus interface.

The whole sequence is then repeated from step 2:

The figure below illustrates all these steps

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 114 of 146

Bus infrastructure
component

Master component

Master bus
interface

Address space

Channel

Mirrored master
bus interface

Mirrored slave
bus interface

Bridge
component

Slave bus
interface

Master bus
 interface

Slave
component

Slave bus
interface

Address
space

Memory
Map

Subspace
map

Bridge

Memory
Map

Address
block

1

2

3

5

4

6

7

Figure 32- Connection Steps

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 115 of 146

6.14.3 Connection from "just outside" bus interface A to "just
outside" bus interface B.

In the steps that connect two bus interfaces (i.e. steps 2, 4, and 6), whether slave to
master, slave to mirrored-slave or mirrored-master to master, addresses, and bit
visibility, are modified in a consistent way:

1. If the data signal (i.e. signal with isData set) is connected, with the same
widths, at the two ends then addresses and bit visibility are unchanged.

1.1. This is true whatever left and right values are used in the signal map in
bus interface definition.

2. If the data signal has different widths at the two ends, then it is defined to be
the highest numbered bits within the signal that are lost from the data at the
narrow end of the connection (or added, with default signal bit values if
defined)

2.1. This is true whatever left and right values are used in the signal map in
bus interface definition.

2.2. The effect of this is that, for bits that are transmitted between the two
ends:

2.2.1. The bit number relative within the signal is unchanged
2.2.2. The bus word address (i.e. bit_address ÷ width) is unchanged.

2.3. Mathematically a bit is only transmitted between the two ends if:
2.3.1. bit_address(wide_end) mod width(wide_end) <

width(narrow_end)
2.4. For bits that are transmitted between the two ends the addressing

formula is:
2.4.1. bit_address(narrow_end) = (bit_address(wide_end)

÷ width(wide_end)) * bit_address(narrow_end) +
(bit_address(wide_end) mod width(wide_end))

This is illustrated in the following diagram:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 116 of 146

Bus Interface A

Bus Interface B

Data Signal

Data Signal

Left (B)

Left (A)

Right (B)

Right (A)

Figure 33 - Connection across Two Bus Interfaces

6.14.4 Connection from an address block to “just outside” the
associated slave bus interface

This step (step 1) converts the bit address from a relative bit address within the
address block to a bus address. How this is done depends on whether the bus
interface has bitSteering set.

1. With bitSteering
1.1. All bits in the address block are visible “just outside” the associated

slave bus interface, as consecutive bits (unless the address block is
within a parallel bank).

1.2. The bit address on the bus is:
1.2.1. relative_bit_address_in_address_block

address_block.baseAddress*memory_map.bitsInLau +
address_block.bitOffset

2. Without bitSteering:
2.1. The address block is seen as a series of rows each

address_block.width wide; the bits within each row are numbered
from 0 to address_block.width – 1.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 117 of 146

2.2. If the data signal has a range from left to right in its component
signal description then it connects to bit columns 0 to right-left+1
inclusive of the address block.

2.3. The baseAddress and bitOffset of the address block are translated
into a row number, and bit number within the row, of the first bit in the
address block.

2.4. This can be expressed by the following formulas:
2.4.1. bit_address_in_memory_map =

relative_bit_address_in_address_block +
address_block.baseAddress*memory_map.bitsInLau +
address_block.bitOffset

2.4.2. row_in_memory_map = bit_address_in_memory_map ÷
address_block.width

2.4.3. bit_pos_in_row =
bit_address_in_memory_map mod address_block.width

2.4.4. A bit is visible on the bus if
bit_pos_in_row ≤ right – left + 1

2.4.5. On the bus the bit address is:
row_in_memory_map*(right-left+1) + bit_pos_in_row

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 118 of 146

The following diagram illustrates this:

Memory Map

width

.

.

.

b
i
t

Bus interface

Address Block

Data Signal

left right

left

right

Visible at bus
interface

bitOffset

Relative_

bit_address_

in_address

block

R
ow

 in
 M

em
or

y
M

ap

B
as

e
A

dd
re

ss

Figure 34 - Bus Interface to Address Block Connection

Note: A consequence of this definition is that the conversion of the base address into
a row is dependent on the width of the address block. This can give some non-
intuitive results. For example with a byte addressable memory map (i.e. bitsInLau =

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 119 of 146

8) an address block that starts at 0, is 16 bits wide, and has a range of 0x2000 does
not overlap with an address block that starts at 0x1000, and is 8 bits wide. This is
because the first block contains 0x2000 * 8/16 = 0x1000 rows, and the second block
starts at row 0x1000*8/8 = 0x1000.

3. Parallel banks
3.1. If the address block is within a parallel bank, then, whether or not bit

steering is enabled, relative_bit_address_in_address_block
should be replaced by relative_bit_address_in_bank in the
above calculations. Also, address_block.width should be replaced
by bank_width. If the address block containing the location is the ith
element of n then this can be calculated as follows:

3.1.1. ∑
−

=

=
1n

0j

ent(j))width(elembank_width

3.1.2. ∑
−

=

=
1i

0j

ent(j))width(elemoffsetblock_bit_

3.1.3.
ess_block)width(addr

s_block_in_addresit_addressrelative_b
bit_row

÷

=

3.1.4.
ock.widthaddress_bl

mod s_block_in_addresit_addressrelative_b
bit_offset=

3.1.5. offsetblock_bit_
bit_offsetbank_width*bit_row
_in_bankit_addressrelative_b

++
=

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 120 of 146

The following diagram illustrates this:

B
it_

ro
w

Figure 35 - Bank Address Example

6.14.5 Connection through a channel from "just outside" the
mirrored slave bus interface to "just outside" the mirrored
master bus interface

This step (step 3) converts between the addressing on the two sides of a channel.
How this is done depends on whether bit steering is enabled on either of the mirrored
bus interfaces. With bit steering set on either or both bus interfaces the visibility of
bits is only modified by the range of any remap element in the mirrored slave, and the
addressing of bits is only modified by any remap base address in the mirrored slave.
If bit steering is not set on either interface then, in addition, the component signal
left and right values are used to describe the range of bit lanes on the bus that
connect to each component. For example, if a component has an 8 bit wide bus
interface, and is connected to a 32 bit wide bus, then left = 0 and right = 7
means that it is connected to the 1st byte lane, whereas left = 8 and right = 15
indicates that it is connected to the 2nd byte lane.

Details:

1. With bitSteering:
1.1. bit_address(mirrored_master) =

bit_address(mirrored_slave) +
mirrored_slave.baseAddress.remapAddress *
slave.memory_map.bitsInLau

1.1.1. Note that the remap address is measured in units of the slave’s
least addressable unit.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 121 of 146

1.1.2. If there is no remap address for the current remap state then it
defaults to 0.

1.2. A bit is visible at the mirrored master if
bit_address(mirrored_slave) ≤
mirrored_slave.base_address.range *
slave.memory_map.bitsInLau

1.2.1. If there is no base address the range is treated as infinite.
2. Without bitSteering:

2.1. rebased_bit_address = bit_address(mirrored_slave) +
mirrored_slave.baseAddress.remapAddress *
slave.memory_map.bitsInLau

2.2. mslave_row = rebased_bit_address ÷ (
right(mirrored_slave) - left(mirrored_slave) + 1)

2.3. mslave_bit_offset = (rebased_bit_address mod (
right(mirrored_slave) - left(mirrored_slave) + 1)) +
left(mirrored_slave)

2.4. A bit is visible just outside the mirrored master if:
2.4.1. bit_address(mirrored_slave) ≤

mirrored_slave.base_address.range *
slave.memory_map.bitsInLau

2.4.2. and left(mirrored_master) ≤ mslave_bit_offset ≤
right(mirrored_master)

2.5. If a bit is visible its bit address just outside the mirrored master is:
bit_address(mirrored_master) = mslave_row * (
right(mirrored_master) – left(mirrored_master) + 1) +
mslave_bit_offset – left(mirrored_master)

6.14.6 Connection from "just outside" the master bus interface to
master component's address space

This step (step 5) converts from the master component’s addressing to the bus
addressing at the master bus interface. If the bus interface supports bit steering then
the bit address is simply offset by the bus interface’s base address. If it does not
then, in addition the data signal’s component left and right values describe how the
bit lanes of the signal map onto the bit lanes of the bit lanes of the master
component’s address space.

In detail:

1. With bitSteering:
1.1. bit_address(address_space) =

bit_address(outside_master) +
master.addressSpaceRef.baseAddress *
master.addressSpaceRef->bitsInLau +
master.addressSpaceRef.bitOffset

1.1.1. Both the base address and the bit offset default to 0.
1.2. A bit is visible at the mirrored master if

bit_address(outside_master) ≤ master.addressSpaceRef-
>range * master.addressSpaceRef->bitsInLau

1.2.1. If there is no base address the range is treated as infinite.
2. Without bitSteering:

2.1. master_row = bit_address(outside_master) ÷ (
right(master) - left(master) + 1)

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 122 of 146

2.2. master_bit_offset = (bit_address(outside_master) mod
(right(master) - left(master) + 1)) + left(master)

2.3. A bit is visible to the master component if:
2.3.1. bit_address(outside_master) ≤

master.addressSpaceRef->range *
master.addressSpaceRef->bitsInLau

2.3.2. and master_bit_offset ≤ master.addressSpaceRef
-> width.

2.4. If a bit is visible:
relative_bit_address = master_row *
(master.addressSpaceRef -> width) + mslave_bit_offset

2.5. bit_address(address_space) = relative_bit_address +
master.addressSpaceRef.baseAddress *
master.addressSpaceRef->bitsInLau +
master.addressSpaceRef.bitOffset

The bit address will normally be seen by the master component as an address in
units of bitsInLau and a bit offset. These values are:

3. address(address_space) = bit_address(address_space) ÷
master.addressSpaceRef->bitsInLau

4. offset(address_space) = bit_address(address_space) mod
master.addressSpaceRef->bitsInLau

6.14.7 Connection across a bridge from "just outside" the master
bus to “just outside” the slave bus interface.

In a connection across a bridge (step 7) the address is modified by the base address
of the master and, for opaque bridges, by the base address and bit offset of the
subspace map. A bridge always connects the full-connected width of the master bus
interface to the full-connected width of the slave bus interface, whether or not the
ports support bit steering.

1. An address is visible on just outside the slave bus interface if
bit_address(bridge_master) <
bridge_master.addressSpaceRef->range *
bridge_master.addressSpaceRef->bitsInLau

2. The address at the slave can be calculated as:
bit_address(bridge_slave) =
bit_address(bridge_master) +
bridge_master.addressSpaceRef.baseAddress *
bridge_master.addressSpaceRef->bitsInLau +
bridge_master.addressSpaceRef.bitOffset +
subspace_map.baseAddress *
bridge_slave.memoryMapRef->bitsInLau +
subspace_map.bitOffset

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 123 of 146

7 BACKWARD COMPATIBILITY
Some IP-XACT 1.2 changes are not backward compatible with IP-XACT 1.1. These
are documented in the IP-XACT 1.2 release notes. As part of the IP-XACT 1.2
deliverables, XSLT transforms are supplied that transforms IP-XACT 1.1 XML to IP-
XACT 1.2 XML. Design Environments that are compliant with IP-XACT 1.2 are
expected to incorporate these transforms or equivalent to be able to automatically
read and process IP-XACT 1.1 XML. This provides forward compatablity, such that
deliverables for 1.1 will be able to be used in 1.2 Design Enviroments. Note that the
LGI (Loose Generator Interface) is not expected to be supported beyond 1.2.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 124 of 146

8 VERIFICATION SUPPORT IN IP-XACT
IP-XACT v1.2 introduces extensions to IP-XACT v1.1 for verification. These
extensions document and support test bench creation for a design. The main
features that will be highlighted in this chapter (some of them already presented in
previous sections and thus summarized here, in context):

Monitor bus interface type and interconnection of verification IP with monitor bus
interfaces,

White box interface, documenting probing or driving points within a component or
design, and

Sequence files, data level verification IP.

For verification components (VIP), a new bus interface type called “Monitor” was
introduced in IP-XACT v1.2 and presented in Chapter 4.9.1.3. As well, that chapter
presented the update to the IP-XACT schema for specification of interconnections in
a design involving monitor bus interfaces on a VIP and regular bus interfaces on
design IP components. The white box interface (WBI) was introduced in Chapter
4.6.2. The WBI does not reflect a physical interface on an IP component; rather, the
WBI specifies internal points in the IP to be probed or driven by verification tools
and/or test benches that can do so. The interconnection syntax of whitebox ports at
the boundary of the test bench is design environment dependant. Design
Environments must export and import the XML in standard form to identify whitebox
interface points and connect whitebox interfaces to the testbench environment. The
specification of sequence files, providing data for verification IP and tools in test
benches, is introduced in this chapter.

8.1 Monitor Bus Interface & Interconnection
IP-XACT v1.2 extends the bus interface definition with the monitor type. A
verification IP is defined as a component but, when connected to an IP component in
a design, it must not appear as a component that is an active part of that design.
When making interconnections between a monitor bus interface on a VIP and any
active interface on a component IP, the capacity of the active bus interface (i.e.,
count of masters or slaves) is not impacted, since the VIP is neither a master nor a
slave component.

Some of the following repeats material (with slight modifications) from Chapter 4.9
from more general discussions of bus interfaces and component interconnections.

8.1.1 Monitor interfaces
A monitor interface is an interface used in verification that that is neither an active
master, slave nor system interface. This allows specialized (or non-standard)
connections to a bus that will not count as a connected interface. Monitor interfaces
are used to connect verification IP used to monitor an interface of type master, slave
or system and do not count as a connected interface in the design environment. A
monitor interface is identified by the monitor tag in the interface definition, with an
attribute to specify the type of active interface being monitored (master, slave,
system).

A monitor interface is declared in the component XML as shown in the example
below, repeated from Chapter 4.9.2.5, for monitoring a master bus interface:

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 125 of 146

master_1

slave_1

monitor_1

A B

C

Figure 36 - Interconnection with a Monitor

<spirit:component>
 …
 <spirit:name>MyMonitor<spirit:name>
 …
 <spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>C</spirit:name>
 <spirit:monitor spirit:interfaceType="master" />
 </spirit:busInterface>
 </spirit:busInterfaces>
</spirit:component>

In the complete component definition for a VIP component, there will be a signalMap
(associating logical to physical pins) defined within the bus interface section,
following the declaration of the monitor type. All of the physical pin signals on the
VIP are inputs for bus interfaces defined as the monitor type.

8.1.2 Monitor Interface connection
With a monitor interface it is possible to have multiple connections between an
interface of a design IP and an interface of verification IP. If we consider the figure
above, this figure represents the connection between a master interface (A) on
Master_1 and a slave interface (B) on Slave_1. The monitor (Monitor_1) is used to
check, e.g., the bus protocol. Monitor_1 has a monitor interface (C).

Two interconnections are used to enable this:

• Master_1(A) Slave_1(B) – a standard interconnection
• Master_1(A) Monitor_1(C) – a monitor interconnection

A sample of the interconnection section (in design.xml) for the figure above is given
below:

<spirit:interconnections>
 <spirit:interconnection>
 <spirit:activeInterface
 spirit:componentRef="Master_1"
 spirit:busRef="A" />
 <spirit:activeInterface>
 spirit:componentRef="Slave_1"
 spirit:busRef="B" />
 </spirit:interconnection>
 <spirit:monitorInterconnection>
 <spirit:activeInterface

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 126 of 146

 spirit:component1Ref="Master_1"
 spirit:busInterface1Ref="A" />
 <spirit:monitorInterface
 spirit:componentRef="Monitor_1"
 spirit:busRef="C" />
 </spirit:interconnection>
</spirit:interconnections>

The presence of the monitor, C, does not count against the number of slaves present
on the master interface. This is important where capacity limits are specified by a
maxSlaves value in the bus definition used for these bus interfaces.

8.2 White Box Interface
Verification IP such as monitors will have pseudo-physical bus interfaces to connect
with bus interface signals under test while not being an actual part of the design but
as part of a test bench. Other verification tools may require access to component IP
in a design, at a level deeper than the interfaces defined for the component. This
can be seen in situations where internal registers or flags must be monitored, or
internal nodes are driven with particular signals. IP-XACT v1.2 defines a new, non-
physical interface type for verification under these requirements.

Internal elements of a component can be accessed in the DE by other components,
in particular verification components, through whitebox interfaces. These are listed in
the <spirit: whiteboxElements> section of the component. Each whitebox element
has a name, a direction, and a string description.

Example: A status flag that is not visible at the interface of a component, but may be
needed for debug, or for probing by a testbench component or an assertion.

<spirit:whiteboxElements>
 <spirit:whiteboxElement>
 <spirit:name>Name</spirit:name>
 <spirit:whiteboxType>register</spirit:whiteboxType>
 <spirit:driveable>false</spirit:driveable>
 <spirit:description>
 error in most recent transfer
 </spirit:description>
 </spirit:whiteboxElement>
 </spirit:whiteboxElements>

Connections to whitebox elements are not specified in the IP-XACT design file. The
whiteboxElement section informs the DE what internal elements are accessible, and
the DE itself has to make any connections. The details of how the whitebox element
is implemented, and the path to it, are contained in the <spirit: view> section of
<spirit: model>. The same whitebox element may be implemented differently in
different views.

8.3 Describing Verification Sequences
Verification sequences are a means of defining a stream of input data to be driven
into a design under test. This information may be represented in a number of diverse
ways and may be at many different levels of abstraction. Some of the more common
ones are listed below.

• Print on change data stream to be applied to a pin set, such as VCD
• List of READ/WRITE actions to be applied by a bus functional model (BFM)

(dependant on BFM design)

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 127 of 146

• C program to be run on an embedded processor
• Constraints on random data items
• Hierarchical tree of constrained random sequences
• ….. many others

The IP-XACT schema is capable representing these sequences such that they can
be:

• Identified and listed for user selection
• Associated with the design IP that they may be designed for
• Associated with the Verification IP that is required to ‘play’ them

It is assumed that all sequences either resided within a single file or are split across
multiple files. In addition a single file may contain multiple sequences.

8.3.1 Representing the sequence
The Sequence should be represented using the ‘filesets’ schema element under a
component definition, and each fileset should be used to represent a logical set of
sequences that should be grouped together. Within the fileset the following fields
should be used:

• spirit:file : This is a list of files in which the sequence is contained; within the
file element the following fields are relevant.

• spirit:logicalName: May be used to describe a logical name for the set of
sequences

• spirit:exportedName: Define all of the names of the sequences defined in this
file. Where subtyping is used this may be represented in the exported name
i.e. “BIG ERROR usb_init_sequence”

• spirit:swFunction: If the fileset contains parameterizable sequences then the
parameterization is defined using swFunction, each parameterizable
sequence contained in the fileset should have its own swFunction definition.
Within the swFunction the following elements are relevant

• spirit:entryPoint: This is used to represent the name of the sequence to be
parameterized, as defined in spirit:file spirit:exportedName.

• spirit:argument: This is a list of the parameters that may be applied to the
sequence.

8.3.2 Associating the sequence with Design IP
If a sequence is associated with a specific Design IP, then it should be physically
located within the filesets of the design IP’s component definition.

8.3.3 Associating the sequence with Verification IP
If a sequence is a general purpose sequence that is applicable to many design
IPs, and it is delivered with the Verification IP, then it may be defined in the fileset
associated with the Verification IP.

Sequences that are delivered with the Design IP and are located in the design
IP’s component declaration also need to be associated with the Verification IP
that is required to play it. This is achieved by using a tight generator associated
with the verification IP that will search the design database for all sequences and
identify ones that it is capable of playing. It will do this identification by
interrogating the spirit:file spirit:exportedName field to see if the defined
sequence is of a type it can play.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 128 of 146

9 APPENDIX: USE CASE EXAMPLES
This section intends to give some modeling guidelines based on the IP-XACT
platform example (Leon, Amba) to help write a Design Environment and IP-XACT IP
models/libraries. When not applicable, some simple examples will be given to
illustrate a specific point.

9.1 Packaging of a component

9.1.1 Introduction
In this section we will describe how to package in IP-XACT XML the Leon UART IP
from the RTL point of view. It will mainly show the usage of the following elements:

• busInterfaces
• memoryMaps
• model
• choices
• fileSets
• componentConstraintSets
• otherClockDrivers

In order to specify:

• The IP signals list
• The bus interfaces list
• The memory map
• The connections between the IP signals and the interfaces signals
• The different views on which the design environment can work on
• The hardware parameters mapping VHDL generics
• The VHDL source files list
• The timing constraints

9.1.2 Describing the bus interfaces
For the UART IP, we mainly want to describe:

1. The different busses connecting the IP

2. Since it is a slave, the reference to the memory map of that slave

3. The connection between the IP signals and the interfaces signals

The Uart is connected to an AMBA APB bus and an external bus getting the serial
data. Only the first one has an interface and is listed as busInterface inside the XML:

<spirit:busInterfaces>
 <spirit:busInterface>
 <spirit:name>ambaAPB</spirit:name>
 …
 </spirit:busInterface>
</spirit:busInterfaces>

For the external bus, its pins are being set as exportable in order to be able to
connect them at top level (see below in section 9.1.4 to see how this is done).

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 129 of 146

How the Amba APB bus interface is specified will be examined next. The first thing
specified is the bus definition defined with its VLNV. The bus definition for the APB
bus is coming from the ARM:

<spirit:busType
 spirit:vendor="amba.com"
 spirit:library="AMBA2"
 spirit:name="APB"
 spirit:version="r0p0"/>

In the slave section, we specify a reference to the memory map of this slave
interface:

<spirit:slave>
 <spirit:memoryMapRef spirit:memoryMapRef="ambaAPB" />
</spirit:slave>

Finally, we have to specify how the connections are made between UART signals
and APB bus signals. On the IP side, we have the following APB signals:

psel : in Std_ULogic;
penable : in Std_ULogic;
paddr : in Std_Logic_Vector(31 downto 0);
pwrite : in Std_Ulogic;
pwdata : in Std_Logic_Vector(31 downto 0);
prdata : out Std_Logic_Vector(31 downto 0);

In XML, the bus signal name is specified using the busSignalName element while the
component signal name is specified using the componentSignalName element. The
connection is then specified as:

<spirit:busInterface>
…
 <spirit:signalMap>
 <spirit:signalName>
 <spirit:componentSignalName>psel</spirit:componentSignalName>
 <spirit:busSignalName>PSELx</spirit:busSignalName>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:componentSignalName>penable</spirit:componentSignalName>
 <spirit:busSignalName>PENABLE</spirit:busSignalName>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:componentSignalName>paddr</spirit:componentSignalName>
 <spirit:busSignalName>PADDR</spirit:busSignalName>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:componentSignalName>pwrite</spirit:componentSignalName>
 <spirit:busSignalName>PWRITE</spirit:busSignalName>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:componentSignalName>pwdata</spirit:componentSignalName>
 <spirit:busSignalName>PWDATA</spirit:busSignalName>
 </spirit:signalName>
 <spirit:signalName>
 <spirit:componentSignalName>prdata</spirit:componentSignalName>
 <spirit:busSignalName>PRDATA</spirit:busSignalName>
 </spirit:signalName>
 </spirit:signalMap>
</spirit:busInterface>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 130 of 146

The full description of the busInterfaces element can be found in section 9.1.9.
All the bus interfaces are described together with a full description of all the registers.

9.1.3 Describing the Memory Map
The available registers and their offset are specified in the following table.

Offset Register Name

0x0 Data Register

0x4 Status Register

0x8 Control Register

0xC Scalar Register

Table 2 : Leon Uart register map

This memory map can be described in xml as:
<spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>ambaAPB</spirit:name>
 <spirit:addressBlock>
 …
 <spirit:register>
 <spirit:name>data</spirit:name>

 <spirit:addressOffset>0x0</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:description>
Data read/write register
</spirit:description>
 </spirit:register>
 <spirit:register>
 <spirit:name>status</spirit:name>

 <spirit:addressOffset>0x4</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-only</spirit:access>
 <spirit:description>
Status register
</spirit:description>
 </spirit:register>
 <spirit:register>
 <spirit:name>control</spirit:name>

 <spirit:addressOffset>0x8</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:description>
Control Register
</spirit:description>
 </spirit:register>
 <spirit:register>
 <spirit:name>scalerReload</spirit:name>

 <spirit:addressOffset>0xc</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:description>
Scaler Reload Register
</spirit:description>
 </spirit:register>
 </spirit:addressBlock>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 131 of 146

 </spirit:memoryMap>
</spirit:memoryMaps>

Furthermore, each register can be divided in each of its field. For example, the scalar
reload register is divided into two fields:

RESERVED Scaler Reload Value
31 12 11 0

In the XML, the register element for the reload register is updated to reflect the
different fields as follow:

<spirit:register>
 <spirit:name>scalerReload</spirit:name>
 <spirit:addressOffset>0xc</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:field>
 <spirit:name>scalerReloadValue</spirit:name>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:bitWidth>12</spirit:bitWidth>
 <spirit:access>read-write</spirit:access>
 <spirit:description>Scaler reload value</spirit:description>
 </spirit:field>
 <spirit:field>
 <spirit:name>reserved</spirit:name>
 <spirit:bitOffset>12</spirit:bitOffset>
 <spirit:bitWidth>21</spirit:bitWidth>
 <spirit:access>read-write</spirit:access>
 <spirit:description>Reserved</spirit:description>
 </spirit:field>
 <spirit:description>Scaler Reload register</spirit:description>
</spirit:register>

9.1.4 Describing the hardware model
The hardware model is quite simple in the case of the Leon IP components since the
only provided files are the VHDL source. The main elements we want to describe are:

1. The views a design environment (DE) can work on

2. The signals list

3. The hardware parameters mapping VHDL generics

Since the only provided files are the VHDL sources, we only define one view
referencing the fileset containing these VHDL source files. Four environment
identifiers are also defined to specify to the DE that three simulators can be used to
simulate the VHDL: Mentor ModelSim, Cadence NcSim and Synopsys VCS, and one
tool to synthesize the IP: Synopsys DesignCompiler:

<spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>
<spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifier>
<spirit:envIdentifier>:vcs.synopsys.com:</spirit:envIdentifier>
<spirit:envIdentifier>designcompiler.synopsys.com</spirit:envIdeentifier>

Furthermore, we define the model name to specify the top level entity and
architecture to be used in a configuration file:

<spirit:modelName>leon2_Uart(struct)</spirit:modelName>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 132 of 146

Using this parameter, the VHDL configuration looks like:
for uart_1 : leon2_Uart
 use entity leon2_uart.leon2_Uart(struct)
end for;

Finally, we define two references. The first one specifies the files that are used inside
the view:

<spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>

The second one specifies the timing constraints valid for this view:
<spirit:constraintSetRef>normal</spirit:constraintSetRef>

The complete views element looks like:
<spirit:views>
 <spirit:view>
 <spirit:name>vhdlsource</spirit:name>
 <spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>
 <spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifier>
 <spirit:envIdentifier>:vcs.synopsys.com:</spirit:envIdentifier>

<spirit:envIdentifier>:designcompiler.synopsys.com:</spirit:envIdentifier
>
 <spirit:language>vhdl</spirit:language>
 <spirit:modelName>leon2_Uart(struct)</spirit:modelName>
 <spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>
 <spirit:constraintSetRef>normal</spirit:constraintSetRef>
 </spirit:view>
</spirit:views>

From the signals side, the VHDL entity of the uart gives us the list of signals:
entity leon2_Uart is
 generic (EXTBAUD : boolean);
 port (
 rst : in std_logic;
 clk : in clk_type;
 psel : in Std_Ulogic;
 penable : in Std_Ulogic;
 paddr : in Std_Logic_Vector(31 downto 0);
 pwrite : in Std_Ulogic;
 pwdata : in Std_Logic_Vector(31 downto 0);
 prdata : out Std_Logic_Vector(31 downto 0);
 rxd : in std_logic;
 ctsn : in std_logic;
 scaler : in std_logic_vector(7 downto 0);
 rxen : out std_logic;
 txen : out std_logic;
 flow : out std_logic;
 irq : out std_logic;
 rtsn : out std_logic;
 txd : out std_logic);
end leon2_Uart;

In XML, this list of signals is included in the signals element (see paragraph 9.1.9
for the complete list):

<spirit:signals>
 <spirit:signal>
 <spirit:name>clk</spirit:name>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 133 of 146

 <spirit:direction>in</spirit:direction>
 <spirit:clockDriver spirit:clockName="clk">
 <spirit:clockPeriod spirit:id="ClockPeriod" spirit:prompt="Clock
Pulse Period:" spirit:resolve="user">8</spirit:clockPeriod>
<spirit:clockPulseOffset spirit:id="ClockPulseOffset"
spirit:prompt="Clock Pulse Offset:"
spirit:resolve="user">4</spirit:clockPulseOffset>
 <spirit:clockPulseValue spirit:id="ClockPulseValue"
spirit:prompt="Clock Pulse Value:"
spirit:resolve="user">1</spirit:clockPulseValue>
<spirit:clockPulseDuration spirit:id="ClockPulseDuration"
spirit:prompt="Clock Pulse Duration:"
spirit:resolve="user">4</spirit:clockPulseDuration>
 </spirit:clockDriver>
 <spirit:export spirit:configGroups="export" spirit:id="sig_clk"
 spirit:prompt="clk">false</spirit:export>
 </spirit:signal>

 <spirit:signal>
 <spirit:name>rst</spirit:name>
 <spirit:direction>in</spirit:direction>
 <spirit:export spirit:configGroups="export" spirit:id="sig_rst"
 spirit:prompt="rst">false</spirit:export>
 <spirit:signalConstraintSets>
 <spirit:signalConstraints>
 <spirit:timingConstraint spirit:clockName="virtual_clk">
 <spirit:percentOfPeriod>50</spirit:percentOfPeriod>
 </spirit:timingConstraint>
 </spirit:signalConstraints>
 </spirit:signalConstraintSets>
 </spirit:signal>
 …
 <spirit:signal>
 <spirit:name>ctsn</spirit:name>
 <spirit:direction>in</spirit:direction>
 <spirit:defaultValue>
 <spirit:value spirit:format="long"
 spirit:id="sigdefVal_ctsn">0</spirit:value>
 </spirit:defaultValue>
 <spirit:export spirit:configGroups="export"
 spirit:format="bool"
 spirit:id="sig_ctsn" spirit:prompt="ctsn"
 spirit:resolve="user">false</spirit:export>
 <spirit:signalConstraintSets>
 <spirit:signalConstraints>
 <spirit:timingConstraint spirit:clockName="virtual_clk">

 <spirit:percentOfPeriod>75</spirit:percentOfPeriod>
 </spirit:timingConstraint>
 </spirit:signalConstraints>
 </spirit:signalConstraintSets>
 </spirit:signal>
</spirit:signals>

The defaultValue element specified for a signal in a component contains two
subelements value and strength. The component specification of a default value,
for a signal, can override the default value specified in a bus definition. In either case
the default value is only used when no other signal is connected to this signal by the
design. The value and strength elements work together to produce the results
shown in the table below.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 134 of 146

Table 3 Value and strength signal decoding

value↓\strength→ strong (default) weak

0 Forced to 0 Weakly pulled low

1 Forced to 1 Weakly pulled high

Unspecified (default) Forced to unknown Tristate

As mentioned before, the user if needed can export the external bus. This is specified
in the signal list by putting the attribute spirit:resolve="user" in the export
element of each exportable signal.

Finally, the entity of the UART includes a generic to specify how the baud rate is
generated: either internally with an internal clock divider register or externally. This
has to be specified by the user in order to generate the correct generic map. The
generic is specified in the XML thanks to the modelParameter element:

<spirit:modelParameter spirit:choiceRef="EXTBAUDChoice"
 spirit:choiceStyle="combo"
 spirit:configGroups="requiredConfig"
 spirit:dataType="boolean"
 spirit:format="choice"
 spirit:id="EXTBAUD"
 spirit:name="EXTBAUD"
 spirit:prompt="Set baud rate externally:"
 spirit:resolve="user">false</spirit:modelParameter>

If the value specified by the user is true, it will appear in the generic map when the
component is instantiated:

uart_1 : leon2_Uart
 generic map (
 EXTBAUD => true
)

The full description of the model element can be found in paragraph 6.1.7.

9.1.5 Describing the configuration choices
In the UART IP, the choices element will give the different choices for the hardware
parameters. In the modelParameter element we described in the previous paragraph,
there is an attribute spirit:choiceRef="EXTBAUDChoice" referencing the choice id
specified in this section (EXTBAUDChoice). Since the hardware parameter is a boolean,
there are only two choices:

<spirit:choices>
 <spirit:choice>
 <spirit:name>EXTBAUDChoice</spirit:name>
 <spirit:enumeration spirit:text="false">false</spirit:enumeration>
 <spirit:enumeration spirit:text="true">true</spirit:enumeration>
 </spirit:choice>
</spirit:choices>

9.1.6 Describing the file sets
The source code of the IP is provided as a set of VHDL file. Several files are common
to all Leon IP components and have been placed in a common directory in the library

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 135 of 146

root directory (the relative path from the xml file is ../../common). The description of
the UART (uart.vhd) itself is placed in a directory, hdlsrc, under the directory
containing the XML description of the IP. A wrapper was also added around the IP
description in order to unbundle the AMBA signals that were packaged as records
(leon2_Uart.vhd). The directory structure for the UART is the following:

 Common
 Uart

 |-1.00
 |-uart.xml
 |- hdlsrc
 |- leon2_Uart.vhd
 |- uart.vhd

 The compilation order of all the files, including the common one, is the following:
− ../../common/target.vhd
− ../../common/device.vhd
− ../../common/config.vhd
− ../../common/sparcv8.vhd
− ../../common/iface.vhd
− ../../common/amba.vhd
− ../../common/ambacomp.vhd
− ../../common/macro.vhd
− ../../common/tech_generic.vhd
− ../../common/tech_atc25.vhd
− ../../common/tech_atc35.vhd
− ../../common/tech_fs90.vhd
− ../../common/tech_umc18.vhd
− ../../common/tech_virtex.vhd
− ../../common/tech_tsmc25.vhd
− ../../common/tech_proasic.vhd
− ../../common/tech_axcel.vhd
− ../../common/multlib.vhd
− ../../common/tech_map.vhd
− hdlsrc/uart.vhd
− hdlsrc/leon2_Uart.vhd

The directory structure and the compilation order is reflected inside the XML file since
all the file inside a fileSet have to be placed in the same order as the
compilation order:

<spirit:fileSet spirit:fileSetId="fs-vhdlSource">
 <spirit:file>
 <spirit:name>../../common/target.vhd</spirit:name>
 <spirit:fileType>vhdlSource</spirit:fileType>
 </spirit:file>
 <spirit:file>
 <spirit:name>../../common/device.vhd</spirit:name>
 <spirit:fileType>vhdlSource</spirit:fileType>
 </spirit:file>
 …
 <spirit:file>
 <spirit:name>hdlsrc/uart.vhd</spirit:name>
 <spirit:fileType>vhdlSource</spirit:fileType>
 </spirit:file>
 <spirit:file>
 <spirit:name>hdlsrc/leon2_Uart.vhd</spirit:name>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 136 of 146

 <spirit:fileType>vhdlSource</spirit:fileType>
 <spirit:logicalName>leon2_uart</spirit:logicalName>
 </spirit:file>
 </spirit:fileSet>

Each fileset has a fileSetId attribute in order to be able to reference them inside
the model. In the case of the UART, only one fileset is available i.e. the VHDL
source code.

9.1.7 Description of timing constraints
The UART only contains one set of timing constraints reference inside the view:

<spirit:componentConstraintSets>
 <spirit:componentConstraints spirit:constraintSetId="normal">
 <spirit:designRuleConstraints>
 <spirit:maxCap>0.4</spirit:maxCap>
 <spirit:maxTransition>
 <spirit:riseDelay spirit:units="ps">700</spirit:riseDelay>
 <spirit:fallDelay spirit:units="ps">700</spirit:fallDelay>
 </spirit:maxTransition>
 <spirit:maxFanout>2</spirit:maxFanout>
 </spirit:designRuleConstraints>
 </spirit:componentConstraints>
</spirit:componentConstraintSets>

For more explanations regarding timing constraints, see section 9.2.

9.1.8 Other Clock Drivers
 All signal timing constraints are related to a virtual clock that is specified inside the
following section (period is 8 ns, going from 0 to 1 after 4 ns and staying high for 4
ns):

<spirit:otherClockDrivers>
 <spirit:clockDriver spirit:clockName="virtual_clock">
 <spirit:clockPeriod spirit:id="VirtualClockPeriod"
 spirit:prompt="Virtual Clock Period:"
 spirit:resolve="user">8</spirit:clockPeriod>
 <spirit:clockPulseOffset spirit:id="VirtualClockPulseOffset"
 spirit:prompt="Virtual Clock Pulse Offset:"
 spirit:resolve="user">4</spirit:clockPulseOffset>
 <spirit:clockPulseValue spirit:id="VirtualClockPulseValue"
 spirit:prompt="Virtual Clock Pulse Value:"
 spirit:resolve="user">1</spirit:clockPulseValue>
 <spirit:clockPulseDuration
 spirit:id="VirtualClockPulseDuration"
 spirit:prompt="Virtual Clock Pulse Duration:"
 spirit:resolve="user">4</spirit:clockPulseDuration>
 </spirit:clockDriver>
</spirit:otherClockDrivers>

9.1.9 Example Source Code
The complete source code of this example is packaged within the uart.xml Leon IP.
Several other examples of component packaging are provided within the Leon IPs:

• Ahbbus.xml: example of an AHB bus fabric packaging with 2 masters and 2
slaves

• Ahbstat.xml: ahb bus status registers packaging

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 137 of 146

• Apbbus.xml: example of an APB bus fabric with 4 slaves
• Apbmst.xml: AHB/APB bridge
• Dma.xml: direct memory access controller
• Irqcrtl.xml: interrupt controller
• Leon2Proc.xml: packaging example of one configuration of the Leon2

processor
• Timers.xml: packaging of 2 timers and 1 watchdog

9.2 Implementation Constraints
This constraint schema is not intended to model all possible constraints. It is
specifically targeted at the domain of reusable intellectual property (IP) components.
As such, the constraints that are supported are limited to those that can be specified
in a technology portable fashion and which can be reasonably specified with little
knowledge of the target environment. There are four types of constraints that can be
specified, as described below. Constraints can be defined in either the component or
bus definition. Constraints in the component override those defined in the bus
definition.

9.2.1 Timing Constraints
A timing constraint defines an external timing requirement that must be honored for a
component to function properly. This constraint applies to top-level ports on a
component and indicates how much time is required for paths through the top-level
port, external to the component. Each constraint is relative to a particular clock and
the constraints can be different for rising and falling edge transitions at the top-level
port. References clocks must exist within the component definition. They can be
defined via the clockDriver element of a signal, or using the otherClocks element
within the component. Example timing constraints are shown below.

<spirit:timingConstraint spirit:clockName="clk1">
 <spirit:percentOfPeriod>50</spirit:percentOfPeriod>
</spirit:timingConstraint>
<spirit:timingConstraint spirit:clockName="clk2"
 spirit:clockEdge="fall" spirit:delayType="max">
 <spirit:percentOfPeriod>25</spirit:percentOfPeriod>
</spirit:timingConstraint>
<spirit:timingConstraint spirit:clockName="clk3">
 <spirit:delay spirit:units="ps">300</spirit:delay>
</spirit:timingConstraint>

9.2.2 External Load/Drive Constraints
These constraints are available to provide a description of what is connected
externally to a top-level port of the component. Specification of these constraints
allows for more accurate timing analysis within the component as a stand-alone
entity. Drive constraints can be specified on input ports only, and load constraints on
output ports only.

A drive constraint can be used to specify the type of cell that will be driving the input
port or to specify an explicit drive strength (resistance) associated with the input port.
The specification of a driving cell can be done in a technology portable way by
specifying either a cell class or function, and corresponding cell strength. A load
constraint can be used to specify the type of cell or cells that will be acting as a load
on an output port. The load specification can be defined as a user specified number

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 138 of 146

of cells of a particular type, or as an explicit capacitance value. Example constraints
are shown below.

<spirit:driveConstraint>
 <spirit:cellSpecification>
 <spirit:cellFunction
 spirit:cellStrength="low">nand2</spirit:cellFunction>
 </spirit:cellSpecification>
</spirit:driveConstraint>
<spirit:driveConstraint>
 <spirit:resistance
 spirit:units="kohm">1000</spirit:resistance>
</spirit:driveConstraint>
<spirit:loadConstraint>
 <spirit:cellSpecification>
 <spirit:cellClass
 spirit:cellStrength="high">sequential</spirit:cellClass>
 </spirit:cellSpecification>
 <spirit:count>3</spirit:count>
</spirit:loadConstraint>

9.2.3 Point to Point Timing Requirements
These constraints are available to define exceptions to the standard timing
requirements of a component. They are available to indicate false paths, multi-cycle
paths, and special point-to-point timing requirements. Each of these constraints is
defined using a path specifier and some additional information that is specific to the
constraint type. A path specifier is a list of path start points, path end points, and path
through points that define the path or paths to which the constraint applies. If a
particular path specification point might match more than one design element, an
attribute can be added to indicate the expected object type (clock, port, pin, cell).
Example constraints are shown below.

<spirit:falsePath>
 <spirit:pathSpecifier>
 <spirit:from>data1</spirit:from>
 </spirit:pathSpecifier>
</spirit:falsePath>

<spirit:falsePath>
 <spirit:pathSpecifier>
 <spirit:from spirit:pathElement="clock">clk1</spirit:from>
 <spirit:to>clk2</spirit:to>
 </spirit:pathSpecifier>
</spirit:falsePath>

<spirit:falsePath>
 <spirit:pathSpecifier>
 <spirit:from>Ain</spirit:from>
 <spirit:through>U1/Z</spirit:through>
 <spirit:through>U1/U2/Out</spirit:through>
 <spirit:to>Bout</spirit:to>
 </spirit:pathSpecifier>
</spirit:falsePath>

<spirit:multiCyclePath>
 <spirit:pathSpecifier>
 <spirit:from>data2</spirit:from>
 <spirit:to>some_output</spirit:to>
 </spirit:pathSpecifier>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 139 of 146

 <spirit:cycles>2</spirit:cycles>
</spirit:multiCyclePath>

<spirit:timedPath>
 <spirit:pathSpecifier>
 <spirit:to>Xout</spirit:to>
 </spirit:pathSpecifier>
 </spirit:pathSpecifier>
 <spirit:delay spirit:units="ps">500</spirit:delay>
</spirit:timedPath>

9.2.4 Design Rule Constraints
These constraints are available for specifying technology constraints that must be
honored for proper circuit operation. These constraints can be specified on individual
top-level ports or at the component level, implying that they are applicable across the
entire design. Constraints are available for specifying minimum and maximum
capacitance requirements, minimum and maximum signal transition times, and
maximum fan-out requirements. Constraints specified on a specific top-level port
override those specified for the component, if they are more restrictive. Example
constraints are shown below.

<spirit:designRuleConstraints>
 <spirit:maxFanout>4</spirit:maxFanout>
</spirit:designRuleConstraints>

<spirit:designRuleConstraints>
 <spirit:minCap>4</spirit:minCap>
 <spirit:maxCap spirit:units="ff">12</spirit:maxCap>
</spirit:designRuleConstraints>

9.3 Loose Generator Dump
The loose generator interface generates an input file for the generator describing the
different instances contained in a design, the location of the dumped DOM XML file
and the selected instances on which the generator will work. In this section, we will
show on a simple design, the content of the generator input file. It will mainly show
the usage of the following elements:

• designFile
• busDefinitionFiles
• componentDefinitionFiles
• selectedInstances

The design contains two levels of hierarchy. The top level contains the following
instances:

• dummy_AHB_master_1
• dummy_APB_master_1
• irqctrl_2
• uart_3
• uart_4
• a Subcomponent_1
• while Subcomponent_1 contains:
• dummy_AHB_master_1

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 140 of 146

• dummy_APB_master_1
• irqctrl_1
• timers_1
• uart_1
• uart_2
• Both levels contain the following busses:
• AHB
• APB
• Interrupt
• SingleInterruptBus

There are several ways to place the dumped xml files in directories. In this example,
the directory structure follows the design hierarchy:

 DOM
 |- <top_level_name>.xml

 |- busdef
 | |- <bus1>.xml
 | |- <bus2>.xml
 | |- ...
 |- component
 |- <component_instance1>.xml
 |- <component_instance2>.xml
 |- <component_instance3>.xml
 |- ...
 |- <component_instance2>
 |- <subcomponent_instance1>.xml
 |- <subcomponent_instance2>.xml

 |- ...
This structure is being reflected in the generator input xml file in the
LooseGeneratorDump directory in the Examples_Documentation_V1.1 tar file.

As specified inside selectedInstances element, the generator will work on uart_3
and irqctrl_2 instances.

9.4 Generator example
In this section, we will show a simple example of a generator using the input xml file
described in the previous section. This generator takes the input file and generates
an html file containing the documentation of the selected instances using an XSLT
transform. There is no way back to the design environment.

The first part of the XSLT transform looks for the selected instances and, each time,
place the instance in a variable called SelectedInstance:

<xsl:template match="/">
 <html>
 <body>
 <BODY BGCOLOR="#ffffff"></BODY>
 <xsl:for-each
select="spirit:looseGeneratorInvocation/spirit:selectedInstances/spirit:s
electedInstance">
 <xsl:variable name="SelectedInstance">
 <xsl:value-of select="."/>
 </xsl:variable>
…
 </xsl:for-each>

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 141 of 146

 </body>
 </html>
</xsl:template>

For each instance, the XSLT transform looks for the instance xml file path to get the
data to be processed and displayed in html; the component name is placed inside the
ComponentAttribute variable:

<xsl:template match="/">
 <html>
 <body>
 <BODY BGCOLOR="#ffffff"></BODY>
 <xsl:for-each
select="spirit:looseGeneratorInvocation/spirit:selectedInstances/spirit:s
electedInstance">
 <xsl:variable name="SelectedInstance">
 <xsl:value-of select="."/>
 </xsl:variable>
 <xsl:for-each
select="/spirit:looseGeneratorInvocation/spirit:componentDefinitionFiles/
spirit:componentDefinitionFile">
 <xsl:variable name="ComponentAttribute">
 <xsl:value-of select="@spirit:instanceRef"/>
 </xsl:variable>
…
 </xsl:for-each>
 </xsl:for-each>
 </body>
 </html>
</xsl:template>

If ComponentAttribute matches SelectedInstance, the html documentation
for that instance is generated. The complete xslt transform is located in the examples
tar file.

The generator itself is a simple shell script launching an xslt processor (for example,
here the Apache Xalan Java processor in a UNIX style shell environment):

java -jar <Xalan install dir>/xalan.jar -IN \
looseGeneratorInput.xml -XSL ComponentDoc.xsl -OUT \
GeneratorDoc.htm

Where:

• LooseGeneratorInupt.xml is the generator input file described in section 9.3.
• ComponentDoc.xsl is the XSLT transform is described in this section.
• GeneratorDoc.htm is the HTML documentation

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 142 of 146

10 APPENDIX: DEFINITIONS AND NOTATION

10.1 Definitions
Term Meaning

AHB AMBA high speed bus

AMBA Open specification on-chip backbone for interconnecting IP blocks

API Application Programmers Interface. A method for accessing design and
meta data in a procedural way involving a programming language and
database for the purposes of adding value to existing and future design
flows.

Architectural Rules Generic rules that define how subsystems relate to platforms that relate to
components of system design

ASIC Application Specific Integrated Circuit

Bus Collection of signals used to connect blocks connected to it involving both
hardware and software protocols

Bus Bridge An interface which connects 2 bus systems with different characteristics (i.e.
bus type, bus speed)

Bus Interface The interface of an IP to a bus

Channel A special IP-XACT object that can be used to describe multi-point
connections between regular components, which may require some
interface adaptation.

Component Configured IP stored in a design database

Configuration Manager Object which creates and manages top-level meta-description of SoC
design. Includes ability to annotate SoC schema with details of a specific
SoC design including: IP versions, IP views, IP configuration, IP
connectivity, IP constraints. Manages launch of IP generators and tool plug-
ins, and meta-data updates occurring as a consequence of a launch.
Manages update and retrieval of relevant IP meta-data from the IP
repository. Driven by user through DE graphical users interface.

CSS Cascading Style Sheets (CSS) used to style HTML & XML documents
http://www.w3.org/Style/CSS

DE Design Environment

Design Database Working store for both meta-data and component info that helps create and
verify systems and subsystems

Design Environment The co-ordination of a set of tools and IP, or expressions of that IP (e.g.,
models) such that the system-design and implementation flows of a SoC re-
use centric development flow is efficiently enabled. Co-ordination is
managed through creation and maintenance of a meta-data description of
the SoC

http://www.w3.org/Style/CSS

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 143 of 146

Term Meaning

DOM The Document Object Model is a platform- and language-neutral interface
that will allow programs and scripts to dynamically access and update the
content, structure and style of documents. The document can be further
processed and the results of that processing can be incorporated back into
the presented page

EDA Electronic Design Automation

EOS Embedded Operating System

External Components Components that do not end up on the SoC but are needed for total system
verification

Generator Combines component meta-data with architectural rules to provide a
consistent system description that uses an API to generate specific design
views or configurations for the purposes of supporting a number of design
styles

Generator API This API interfaces the generators and tool plug-ins to the configuration
environment, allowing the execution of these scripts and code-elements
against the SoC meta-description. The API enables the registration of new
generators / plug-ins, export of SoC meta-data and update of that data
following generator or plug-in execution, and handling of generator / plug-in
error conditions which relate to the meta-data description

HDL Hardware Description Language

IP Intellectual property which is utilized in the context of a SoC design or design
flow. Includes: specifications; design models; design implementation
description; verification coordinators, stimulus generators, checkers and
assertion / constraint descriptions; soft design objects (such as embedded
software and real-time operating systems); design and verification flow
information and scripts

IP Generators Tools which create specific IP based upon SoC meta-data details entered
into the configuration manager. Interfaces to IP repository for placing and
retrieval of IP. Annotates completion details (e.g., generated IP or failure of
generation of IP) back into configuration manager

IP Integrator Integrator of configured IP and subsystems

IP Platform Architect Creator of platform based architectures

IP Provider Creator and supplier of IP

IP Repository Database of IP

LAU Least Addressable Unit of memory,

Legacy IP IP that has no specific IP-XACT meta-data view

LGI Loose Generator Interface

Master Interface The bus interface that initiates a transaction (like a read or write) on a bus.

Memory Map Organization of memory elements as seen from a Master interface.

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 144 of 146

Term Meaning

Meta Data A tool interpretable way of describing the: design-history, locality, object
association, configuration options, constraints against, and integration
requirements of an IP object

Meta IP Meta-data description of an IP object

Mirror Interface Has the same (or similar) signals to its related direct bus interface, but the
signal directions are reversed. So a signal that is an input on a direct bus
interface would be an output in the matching mirror interface.

Monitor Interface Is an interface used in verification that is neither a master, slave nor system
interface.

Opaque Bridge A bus interconnect that may modify the address.

Platform Architectural (sub)system framework

Platform Consumer User/group who builds a SoC based on a particular platform

Platform Provider User/group that develops and delivers platforms to platform consumers

Platform Rules Rules that define how components interface to a specific platform

PMD Platform Meta Data defines the configurable parameters at the Design level

RTL Register Transfer Level design

Schema XML schemas provide a means for defining the structure, content and
semantics of XML documents
http://www.w3.org/XML/Schema

Schema API This API allows the configuration manager to query the XML IP meta-data.
Queries may be for the existence of IP, the structure of IP, or features
offered by that IP such as configurability and interface protocol support. This
API is also used for the import and export of meta-data when an IP block is
extracted from, or imported back into, the IP management system

Semantic Rules Additional rules to be applied to an XML description that cannot be
expressed in the schema. Typically these are rules between elements in one
of multiple XML files.

Slave Interface The bus interface that terminates/consumes a transaction initiated by a
master interface.

SLD System Level Design

SoC System on Chip

Style Sheets Style sheets describe how documents are presented on screens, in print
http://www.w3.org/Style

SubSystem A configured or unconfigured set of connected components that have
dependencies on other IP

System A configured set of connected components

System Interface Is an interface that is neither a master nor slave interface, and allows
specialized (or non-standard) connections to a bus.

http://www.w3.org/XML/Schema
http://www.w3.org/Style

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 145 of 146

Term Meaning

TGI Tight Generator Interface

Tool Plug-Ins Tools which integrate IP based upon SoC meta-data details, and which prep
IP for animation (e.g., simulation, emulation), optimization (e.g., synthesis)
and verification (e.g., regression-suite generation). Annotates completion
details (e.g., integrated SoC IP or failure of integration) back into
configuration manager

Transparent Bridge A bus interconnect that does not modify the address

Use Model A process method of working with a tool

User Interface Methods of interacting between a tool and its user.

Validation Proving the correctness of construction of a set of components

Verification Proving the behavior of a set of connected components

View An implementation of a component. A component may have multiple views,
each with it’s own function in the design flow.

VIP Verification IP, components included in a design for verification purposes.

VLNV Each IP-XACT object is assigned a unique VLNV (Vendor Library Name
Version) that is defined in the header of each XML file.

VSIA Virtual Socket Interface Alliance

WBI White Box Interface, internal points in the IP to be probed or driven by
verification tools and/or test benches

XML Extensible Markup Language (XML) is a simple, very flexible text format
derived from SGML (ISO 8879)
http://www.w3.org/XML

Xpath An expression language used by XSLT to access or refer to parts of an XML
document
http://www.w3.org/TR/xpath

XSL XSL is a language for expressing style-sheets. XSL can be used to
transform XML data into HTML/CSS documents
http://www.w3.org/Style/XSL

XSLT A language for transforming XML documents into other XML documents
http://www.w3.org/TR/xslt

3MD 3 levels of meta-data refers to a hierarchy of meta-data used to support
platform-based SoC architectures. The lowest level defines IP parameters
and constraints and is known as the IP-level. The second level is known as
the platform-level that can be used to further constrain and capture platform
rules for all SoC derivatives, and the third level is the chip level. for the
purposes of system, production and verification tests needed to be captured
for re-use and reproducibility. This 3-level hierarchy of data is known as the:
3md methodology

http://www.iso.ch/cate/d16387.html
http://www.w3.org/XML
http://www.w3.org/TR/xpath
http://www.w3.org/Style/XSL
http://www.w3.org/TR/xslt

For
System description

© Copyright The SPIRIT Consortium 2006.
All rights reserved.

IP-XACT version of 1.2 Users Guide page 146 of 146

10.2 Notations
The following notations are used in this document:

Component

Component with
channel

Component with
transactor

Component with
bridge

Component with
channel, bridge and transactor

Component with
Direct interface

Component with
Master interface

Component with
Slave interface

Component with
Mirrored Master interface

Component with
Mirrored Slave interface

10.3 Last Page of Dcument

	1.1 Purpose of this Document
	1.2 Access and license to material in document
	1.3 Statement of use of Spirit Consortium Specifications
	1.4 Targeted audience and prerequisites
	1.5 Contributors
	1.6 Creation process
	1.7 References
	1.8 Organization of this document
	2 INTRODUCTION TO IP-XACT
	2.1 Goals and Vision
	2.1.1 Consortium goals
	2.1.2 Architectural Goals
	2.1.2.1 IP-XACT v1.2
	2.1.2.2 IP-XACT with ESL Extensions v1.4

	2.2 IP-XACT Design Environment
	2.2.1 SoC Design Tool
	2.2.2 Design Intellectual Property
	2.2.3 Generators and Configurators
	2.2.3.1 Configurators
	2.2.3.2 Generators

	2.2.4 IP-XACT Interfaces
	2.2.4.1 Loose Generator Interface (LGI):
	2.2.4.2 Tight Generator Interface (TGI):

	2.3 IP-XACT-Enabled Implementations
	2.3.1 Design Environment Provider
	2.3.2 Point-tool Provider
	2.3.3 IP provider
	2.3.4 Generator Provider
	2.3.5 Support of other standards

	3 IP-XACT INTEROPERABILITY USE MODELS
	3.1 Roles and responsibilities
	3.1.1 The component IP Provider
	3.1.2 The SoC Design IP Provider
	3.1.3 The SoC Design IP Consumer
	3.1.4 The Design Tool Supplier

	3.2 IP-XACT IP Exchange Flows
	3.2.1 Component or SoC design IP provider use model
	3.2.2 Generator / configurator provider use model
	3.2.3 SoC Design-tool provider use model

	4 IP-XACT SCHEMA
	4.1 IP-XACT objects
	4.1.1 Definitions
	4.1.2 Objects interactions
	4.1.3 VLNV

	4.2 IP-XACT schema overview
	4.2.1 Design schema
	4.2.2 PMD schema
	4.2.3 Component schema
	4.2.4 Bus definition schema
	4.2.5 Generators schemas

	4.3 IP-XACT design model
	4.4 SPIRIT configuration
	4.5 SPIRIT platform meta data (pmd) model [Depricated]
	4.5.1 XSL Stylesheet

	4.6 SPIRIT component model
	4.6.1 Component interfaces
	4.6.2 Whitebox interfaces
	4.6.3 Component choices
	4.6.4 Component Address space
	4.6.4.1 Endianness
	4.6.4.2 Local Memory map

	4.6.5 Component Memory Map
	4.6.5.1 spirit:containsToken
	4.6.5.2 spirit:decode
	4.6.5.3 spirit:pow
	4.6.5.4 spirit:log

	4.6.6 Memory bank
	4.6.7 Register description
	4.6.7.1 Bitfields
	4.6.7.2 Register dependencies
	4.6.7.3 Example register definition

	4.6.8 Component HW Models
	4.6.8.1 HW model view
	4.6.8.2 HW model signals
	4.6.8.3 HW model parameters

	4.6.9 Component Implementation Constraints
	4.6.10 Component Files

	4.7 Hierarchy represented by a design file
	4.8 IP-XACT bus definition
	4.9 IP-XACT Bus and interconnect model
	4.9.1 Bus interface
	4.9.1.1 Direct interfaces
	4.9.1.2 Mirrored interfaces
	4.9.1.3 Monitor interfaces

	4.9.2 Interfaces connection
	4.9.2.1 Connection rules
	4.9.2.2 Direct Master to Direct Slave interface connection
	4.9.2.3 Direct Master Interface to Mirrored Master interface connection
	4.9.2.4 Mirrored slave Interface to direct slave interface connection
	4.9.2.5 Monitor Interface connection

	4.9.3 Bus internal representation
	4.9.3.1 Channel
	4.9.3.2 Channel internal connection
	4.9.3.3 Bridge
	4.9.3.4 Bridge internal connection
	4.9.3.5 Multi-Layer busses modelling

	4.9.4 Memory Map
	4.9.4.1 Memory map in channel
	4.9.4.2 Memory map in transparent bridge
	4.9.4.3 Memory map in opaque bridge

	4.9.5 Remapping
	4.9.5.1 Defining conditional states
	4.9.5.2 Defining remap addresses
	4.9.5.3 Linking remap States to Memory Map
	4.9.5.4 Slave interface Remapping
	4.9.5.5 Mirror slave interface Remapping
	4.9.5.6 Example of memory remapping with a channel
	4.9.5.7 Example of memory remapping with a bus bridge

	4.9.6 Signal Connections
	4.9.6.1 signalMap between component physical signal and busInterface logical signal
	4.9.6.2 Connection between vector signals of two busInterfaces
	4.9.6.3 Connection of Ad-hoc signals

	4.9.7 Clock and Reset Handling
	4.9.7.1 Clock Outside a Bus Interface
	4.9.7.2 Clock in Dedicated Bus Interface
	4.9.7.3 Clock in Regular Bus Interface

	4.9.8 Bus interface parameter declaration
	4.9.9 Bus interface parameter
	4.10.1 The difference between an external bus and an internal/digital interface
	4.10.1.1 Example: Ethernet Interfaces:
	4.10.1.2 Example: I2C Bus

	4.10.2 Location of reference BusDefs
	4.10.2.1 Reference BusDef template

	5.1 Generator registration
	5.2 Tight Integration
	5.3 Loose Integration
	5.3.1 Definition
	5.3.2 Typical DE flow
	5.3.2.1 Design environment flow
	5.3.2.2 Generator flow
	5.3.2.3 Generator input files
	5.3.2.4 Generator changes
	5.3.2.5 Rules for interpreting changes
	5.3.2.6 Error handling
	5.3.2.7 Generator environment
	5.3.2.8 Shared responsibilities

	5.3.3 Configurators

	5.4 Generator chain
	5.4.1 Generator Naming Convention
	5.4.2 Phase Numbers

	6 IP-XACT SEMANTIC RULES
	6.1 Cross References and VLNVs
	6.2 Interconnections
	6.3 Channels and bridges
	6.4 Monitor interfaces and interconnections
	6.5 Configurable elements
	6.6 Signals
	6.7 Registers
	6.8 Memory maps
	6.9 Addressing
	6.10 Hierarchy
	6.11 Hierarchy and Memory maps
	6.12 Rules requiring external knowledge
	6.13 PMD Files
	6.14 Addressing formulas
	6.14.1 Overview
	6.14.1.1 Scope of addressing formulas in IP-XACT 1.2
	6.14.1.2 Simplifying assumptions

	6.14.2 Breaking down the path
	6.14.3 Connection from "just outside" bus interface A to "just outside" bus interface B.
	6.14.4 Connection from an address block to “just outside” the associated slave bus interface
	6.14.5 Connection through a channel from "just outside" the mirrored slave bus interface to "just outside" the mirrored master bus interface
	6.14.6 Connection from "just outside" the master bus interface to master component's address space
	6.14.7 Connection across a bridge from "just outside" the master bus to “just outside” the slave bus interface.

	7 BACKWARD COMPATIBILITY
	8 VERIFICATION SUPPORT IN IP-XACT
	8.1 Monitor Bus Interface & Interconnection
	8.1.1 Monitor interfaces
	8.1.2 Monitor Interface connection

	8.2 White Box Interface
	8.3 Describing Verification Sequences
	8.3.1 Representing the sequence
	8.3.2 Associating the sequence with Design IP
	8.3.3 Associating the sequence with Verification IP

	9 APPENDIX: USE CASE EXAMPLES
	9.1 Packaging of a component
	9.1.1 Introduction
	9.1.2 Describing the bus interfaces
	9.1.3 Describing the Memory Map
	9.1.4 Describing the hardware model
	9.1.5 Describing the configuration choices
	9.1.6 Describing the file sets
	9.1.7 Description of timing constraints
	9.1.8 Other Clock Drivers
	9.1.9 Example Source Code

	9.2 Implementation Constraints
	9.2.1 Timing Constraints
	9.2.2 External Load/Drive Constraints
	9.2.3 Point to Point Timing Requirements
	9.2.4 Design Rule Constraints

	9.3 Loose Generator Dump
	9.4 Generator example

	10 APPENDIX: DEFINITIONS AND NOTATION
	10.1 Definitions
	10.2 Notations
	10.3 Last Page of Dcument

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

