
Estimating Properties of Flow Statistics using Bootstrap 
 

Stenio F. L. Fernandes, Tatiene Correia, Carlos A. Kamienski, Djamel F. H. Sadok 
{sflf, tatiene, cak, jamel}@cin.ufpe.br 

Computer Science Center, Federal University of Pernambuco 
CP 7851, Cidade Universitaria, Recife, PE, Brazil, 50732-970 

 
Ahmed Karmouch (karmouch@site.uottawa.ca) 

School of Information Technology and Engineering (SITE), University of Ottawa  
161 Louis Pasteur, P.O. Box 450, Stn A,  

Ottawa, Ontario, Canada, K1N 6N5  
 

Abstract 

Traffic measurement has been gaining increasing attention 
of the network community in the last years, due to its 
application in a variety of important areas, such as traffic 
engineering and network planning. Much effort has been 
devoted to passive flow measurement since collecting 
packet-level information in high speed links makes this 
process extremely complex and expensive. There are some 
techniques for dealing with flow statistics in current 
commercial routers and associated measurement 
infrastructure. However, even though flow-level information 
is more compact than packet-level information, transmitting 
and storing it would still impose a significant burden on the 
operation of a typical Internet Service Provider (ISP). In this 
paper, we advocate that only a small portion of the flow 
records need to be preserved for further processing. We 
propose the use of the Bootstrap resampling technique for 
deriving statistical properties from a previously pre-
processed sampled set of flows. Our results show that only 
10% or less of the original sampled statistics is necessary in 
order for Bootstrap to reconstruct the main characteristics of 
the original raw flow records. 
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1. Introduction 
Monitoring backbone network traffic is a mandatory task to 
manage today's complex Internet Service Providers (ISP) 
infrastructure. Particularly, computer networking 
researchers have made great efforts to make the systemic 
nature of the Internet more comprehensible, based on 
passive and active measurements. Hence, network 
measurements are essential for appraising systems 
performance, identifying and locating problems in high-
speed links [11]. Further, measurement information has 
been widely used by ISPs for short-term monitoring [9], 
long-term traffic engineering and provisioning [10], and 
accounting [1].  

In order to obtain such information, today's routers 
offer tools such as NetFlow [5] that provides flow level 
information about traffic. The main obstacle with the flow 
measurement approach is its lack of scalability with link 

speed [3][7]. Therefore, packet-sampling techniques are 
progressively being used in routers to export statistics of a 
fraction of the network traffic [4]. One difficulty that arises 
is how to recover statistics of the original traffic from such 
partial sampled data through some reliable procedure. 
Moreover, due to the huge amount of data produced by flow 
measurement, it is necessary for routers to control the usage 
of processing resources, network capacity used to transfer 
data to collectors, and processing and storage costs at the 
collectors. Likewise, collecting IP packet headers will give 
rise to an immense amount of data.  

This paper analyses the possibility to derive statistical 
properties of the original traffic stream from the packet 
sampled flow statistics, using a resampling technique called 
Bootstrap [13]. The Bootstrap method follows the plug-in 
principle, which states that given a parameter of interest θ 
depending on CDF F, estimate it by replacing F by its 
empirical counterpart obtained from the observed data. 

We found such methodology very appealing and we 
think it could be applied to a number of circumstances. For 
instance, Bootstrap estimates could be accurately inferred 
from light and heavy tailed distribution functions. This 
opens the doors to the possibility of performing a smooth 
sampling technique and also achieving a high level of 
accuracy of the Bootstrap estimates related to the original 
traffic characteristics. Therefore, considering a variety of 
network traffic profiles, it seemed promising to look at 
alternative procedures to reduce the volume of the sampled 
network traffic data.  

Using Bootstrap analysis to characterize the 
statistical properties of data has lately become a useful and 
widespread tool in a number of research fields[15][16][17] 
[18]. For instance, Buvat and Riddel [15] proposed the 
nonparametric bootstrap method to characterize the 
statistical properties of computed tomography images. 
White and Racine [16] investigated the use of bootstrap 
methods for inference using artificial neural networks 
applied to predictive accuracy in foreign exchange rates. 
Recently, Lei and Smith [17] presented some results on an 
empirical analysis of the reliability of nonparametric 
bootstrap method in assessing the accuracy of sample 
statistics in the context of software metrics. Liu et al. [18] 
proposed the use of Bootstrap method in order to predict 
fine time-scale behavior of network traffic from coarse 
time-scale aggregate measurements. Therefore, as far as we 



know, research works related to applying bootstrap in the 
computer network field have not been well explored. 

The paper is organized as follows. Section 2 presents 
related work. Section 3 develops the basic theory of the 
Bootstrap methodology. The next section (Section 4) shows 
our validation results based on real network traffic. Finally 
we draw some conclusions and present suggestions for 
future work in Section 5. 

2. Related Work 
There are a number of recent works related to the problem 
of packet sampling and recovering statistics of the original 
traffic from sampled data. Some of them focus only on the 
problem of sampling inside routers whereas others are more 
interested in resource utilization and analysis in a 
measurement infrastructure [1][3][7][14].  

Estan and Varghese [7] proposed two scalable 
algorithms for identifying large flows named “sample and 
hold” and multistage filters. They found out such algorithms 
to be highly efficient because they would take a constant 
number of memory references per packet and use a small 
amount of memory.  

In [3] Duffield et al. presented approaches to 
accurately infer the distributions of flow lengths in the 
original Internet traffic based on the flow statistics formed 
from sampled packet streams. Their main contribution is 
inferring flow numbers and lengths of the original traffic 
that escaped thinning process completely. They reasoned 
that as only sampled flow statistics are available some 
statistical inference is needed to fully determine the flow 
characteristics of the original unsampled traffic. Also, in [1] 
Duffield et al. replaced uniform sampling with size 
dependent sampling. Hence, this approach allows 
controlling the rate at which samples are produced.  

Similarly, in [2] Duffield et al. determined resource 
usage, for both construction and transmission of flow 
statistics, and showed how it depends on the flow’s 
characteristics. Afterward they recovered some detailed 
statistical properties of the original packet stream from the 
packet sampled flow statistics. 

Traffic Analysis Platform (TAP) was proposed in 
[8] to support detailed information on network resource 
usage, such as the relative volumes of traffic using different 
protocols, traffic matrices or the aggregate statistics of 
packet and byte volumes and durations of user sessions. 
TAP relies on a distributed infrastructure and on the use of 
sampling and aggregation at different measurement 
locations. 

3. Bootstrap 
Consider a single homogeneous sample of data, denoted by 

nyy ,...,1 . Let the sample data be outcomes of Independent 
and Identically Distributed (IID) random variables nYY ,...,1  
whose Probability Density Function (PDF) and Cumulative 
Distribution Function (CDF) we shall denote by f  and F , 
respectively. The sample is used to make inferences about a 

population characteristic, generically denoted by θ , using a 
statistic T  whose value is t .  

Figure 1 is a schematic diagram of the bootstrap 
method as it applies to one-sample problems [13].  On the 
left frame, an unknown distribution F has generated the 
observed data ),,( 21 nyyyy K= . We have calculated a 
statistic of interest from y , )(ˆ ys=θ , and wish to know 
something about s'θ̂  statistical behavior (e.g., its standard 
error )ˆ(θFse ). On the right frame, the empirical distribution 
gives bootstrap samples ),,,( **
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Figure 1 - A schematic diagram of the bootstrap: 

one-sample problem. 

The Bootstrap methodology suggests that if we 
presume that the sample ),,( 21 nyyyy K=  itself 
represents the underlying distribution we could resample 
from y several times (i.e., the number of bootstrap replicas, 
nb) and compute the statistic *θ̂  for each of these 
resamples. Hence, we get a bootstrap distribution of *θ̂ , and 
for which a confidence interval for θ̂ could be derived. 
Some authors argue that Bootstrap works fine for the simple 
reason that, if you have no knowledge about the samples, 
the data itself will be the best possible approximation of the 
underlying probability distribution from which they came. 

There are two types of Bootstrap techniques: 
parametric and nonparametric procedures. When we have a 
particular probability distribution model, with parameters 
that fully determine f , such a model is termed parametric 
Otherwise, the statistical analysis is nonparametric, and it 
relies only on the fact that the random variables jY  are IID 
[12].  

We present now one example to reveal the power of 
the Bootstrap method. We utilized one dataset with 10,000 
samples generated from a Weibull PDF. The ‘dataset 1’ 
were deterministically sampled, drawing 1 to N samples (N 
= 1000, 100, 10). The resulting sampled data will have 
sample lengths of size n  = 10, 100 and 1000. Figure 2 
presents the Quantile-Plots from the ‘dataset 1’ (nb= 500). 
One should notice that even considering the length of the 
sampled data as low as 1% of the original data size, the 



technique could precisely mimic the original quartiles for 
the Weibull distribution. 
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Figure 2 - Quantile-Plot – ‘dataset 1’ 

4. Results 
In this section we present a numerical evaluation of 

the Bootstrap technique tackling some flow level statistics. 
The passive measurements (raw data) used to illustrate the 
Bootstrap methodology came from NLANR [6]. We pre-
processed such traces to get some metrics, namely the flow 
lengths (in seconds) and volume (in bytes). 

Table 1 and Table 2 present the first and second-
order statistics and their respective biases for three sample 
lengths considered (n = 15, 145, 1447, which correspond to 
0.1%, 1% and 10% of the original trace, respectively). 
These sample lengths are the result of deterministic 
sampling performed in the pre-processed traces. The 
original sample dataset comprised approximately 15000 
individual (flow-level metrics) records. We also kept the 
number bootstrap replications (500 and 1000) for both 
‘duration’ and ‘volume’ datasets. 

Table 1 - Descriptive measurements for the ‘time’ 
dataset; n = 15, 145, 1447 and 1000,500=nb . Original 
Mean (for Duration=35.06s; for Volume=0.14MBytes) 

Per-flow 
Duration (s) 

Per-flow  
Volume (MBytes) 

# of 
Bootstrap 
Replicas 

Sample 
Length 

Mean Bias Mean Bias 
15 28.74 -6.32 0.01 -0.13 

145 36.11 1.05 0.20 0.06 500 
1447 35.23 0.16 0.15 0.01 
15 29.99 -5.07 0.01 -0.13 

145 36.17 1.11 0.22 0.07 1000 
1447 35.24 0.18 0.14 0.00 

 

Table 2 - Descriptive measurements for ‘volume’ 
dataset; n = 15, 145, 1447 and 1000,500=nb . Original 
Variance (for Duration =1.23e3; for Volume=2.23e12) 

Per-flow 
Duration Per-flow Volume # of 

Bootstra
p 

Replicas 

Sample 
Length Variance 

(x1e3) Bias Variance 
(x1e10) 

Bias 
(x1e10)

15 1.17 -614 1.73 -223 

145 1.23 -
4.17 

167 -56.3 500 

1447 1.23 2.35 131 -92.7 

15 1.22 -
17.1 

0.0816 -223 

145 1.22 -
6.42 

173 -49.9 1000 

1447 1.23 2.01 132 -91.0 

In our experiments, we observed similar behavior to 
the simulation of section 2. Recall that the mean value for 
per-flow metrics presented in Table 1 refers to the average 
of flow duration and sizes. We could draw several 
conclusions from the results. First, if we focus on bias, we 
could state that increasing the sample length implies in 
diminishing the value of this metric for both datasets 
‘duration’ and ‘volume’. For instance, considering nb = 
1000 and n = 145, the bias is 1.11. If we augment the 
sample length to n = 1447, then the bias decreases to only 
0.18. Second, as far as bootstrap replications are concerned, 
we observed that as nb increases from 500 to 1000, the 
results get better in most cases. For instance, for nb = 500 
and n = 15, the bias for the variance is –614. Increasing 
twice the number of bootstrap replications, it reaches only 
2.35, as shown in Table 2. 

Original

n = 15
n = 145
n = 1447

Original

n = 15
n = 145
n = 1447

 
Figure 3 - Empirical Cumulative Distribution 

Function -  ‘duration’. 
Figure 3 and Figure 4 present the ECDF from the 

‘duration’ (in seconds) and volume datasets, respectively. 
We set the number of Bootstrap replications (nb) to 500. 



One should observe that even with the length of the sampled 
data as low as 1% of the original data size, the Bootstrap 
technique could precisely mimic the original raw pre-
processed data. Furthermore, if we gather records through 1 
in 10 sampling from the original data the resulting ECDF 
remains indistinguishable.  
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Figure 4 - Empirical Cumulative Distribution 
Function - Volume. 

5. Concluding Remarks 
Motivated by the concerns of network operators in 

large ISP backbones that point out to an ever increasing 
huge amount of data produced by the passive measurement 
infrastructure, this paper undertake the problem of reducing 
such data volume without missing crucial statistical 
properties. We relied on the Nonparametric Bootstrap 
technique, which is a resampling procedure. Due to its 
flexibility, we propose Bootstrap to be used as a technique 
to reduce data volume either in routers or in a post-
processing element.  

On applying the methodology in real network traffic 
measurements, this paper showed that one could use 
Bootstrap to infer some general characteristics of the 
network traffic distribution. This paper points out that after 
executing a short pre-processing in the raw data and 
extracting some metrics from traces (e.g., flow size and 
duration), it is necessary to store (in case of Data 
Warehouse) or transmit  (in case of routers) only 10% of the 
original sampled statistics, in order for Bootstrap to 
reconstruct its main properties. Our results showed that we 
could precisely recover the ECDF. 

There are several possibilities for future advances. In 
particular, we would like to analyze the combination of the 
Bootstrap methodology with the size dependent sampling 
[3] or inverted sampling [4] techniques. We also wish to 
verify the computational overhead on deploying Bootstrap 
in a passive measurement infrastructure. 
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