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ABSTRACT 
 
The use of synthetic self-similar traffic in computer 
networks simulation is of vital importance for the 
capturing and reproducing of actual Internet data traffic 
behavior. A commonly used technique for generating self-
similar traffic is achieved by aggregating On/Off sources 
where the active (On) and idle (Off) periods exhibit heavy 
tailed distributions. This work analyzes the balance 
between accuracy and computational efficiency in 
generating self-similar traffic and presents important 
results that can be useful to parameterize existing heavy 
tailed distributions such as Pareto, Weibull and 
Lognormal in a simulation analysis. Our results were 
obtained through the simulation of various scenarios and 
were evaluated by estimating the Hurst (H) parameter, 
which measures the self-similarity level, using several 
methods. 
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1. INTRODUCTION 
 
Recently, researchers identified some evidences of self-
similar (or fractal) behavior in computer network traffic, 
as well as its severe implications in network performance 
[3][10][17][19][20]. Delving into the scaling phenomena, 
the fractal behavior could be labeled into three 
classification, that is when time scales go to infinity (self-
similarity), go to zero (multi-fractality) and occurring 
over a limited range of timescales (pseudo self-
similarity)[5]. Under such condition and relevant time-
scales, router’s queue could work at a high level of 
occupancy, mainly due to presence of burst traffic in 
several time-scales leading to a higher end-to-end delay 
and packet losses. As consequence, this phenomenon 
could yield a low level utilization of the communication 
links. Therefore, an in-depth understanding of the self-
similar nature in network traffic and the identification of 
its characteristics or implications in different scenarios 
and network topologies are vital for carrying out network 
management activities, keeping QoS assurances in 

suitable levels, making traffic engineering work and 
designing networks efficiently. 
 Considering a simulation environment, the 
performance evaluation of network protocols and 
mechanisms under proper conditions is significant for 
obtaining reliable results [8]. The selection of 
representative scenarios in computer networks must 
include the exploitation of fractal traffic.  
There are some well-known analytical methods for the 
generation of synthetic self-similar traffic. However, due 
to the complexity of a physical interpretation, an 
alternative construction, closer to real traffic models in 
computer networks, is based on the aggregation and 
superposition of On/Off [1] sources, which activity and/or 
inactivity periods follow a heavy tailed probability 
distribution function (PDF). 

There are related studies concerning the 
aggregation of heavy tailed sources and self-similar 
traffic. Some of them present results and analysis of 
traffic measurement in real networks [20], whereas others 
focus on purely statistic perspectives [7][11]. However, 
there are some drawbacks associated to the deployment of 
this technique in network simulation procedures. In [9] 
Roughan, Yates and Veitch alert about the time-scale of 
interest and the number of samples…. Additionally, there 
is no wide and effective self-similar traffic evaluation that 
could be confidently used to customize and parameterize 
simulation scenarios. This paper analyses the trade-off 
between accuracy and computational efficiency on the 
generation of fractal traffic. The precision is determined 
by evaluating the error between a target Hurst parameter 
(usually used to measure the self-similarity level) and its 
actually estimated value from the traffic sample collected 
during a simulation experiment. The computational 
efficiency is related to the processing time needed to 
obtain a previous chosen precision. We present some 
results obtained from a simulation-based study where 
several distinct scenarios were evaluated in a number of 
experiments. The evaluation includes Lognormal, Weibull 
and Pareto PDF including several form parameters used to 
characterize the heavy tail behavior of the On/Off sources. 
In spite of Pareto PDF is frequently used to generate 
heavy tailed traffic, our results show that Weibull and 
Lognormal PDF require a smaller quantity of 
simultaneous sources in order to obtain the same precision 



as Pareto. In general, the results are significant in view of 
the fact that there is no need to inflate the aggregation of 
such sources since this decision could lead to 
unacceptable higher simulation processing times. 
 An important feature on the generation of self-
similar traffic is associated to the relation between the 
form (shape) parameter of the heavy tailed PDF and the 
Hurst parameter H. For instance, for the Pareto PDF, 
analytical and empirical procedures show the relation 

H23 −=α  [3], where α is its form parameter. 
 This paper is organized as follows. Section 2 
presents fundamental theory about the self-similar 
phenomenon and its implications in network performance 
and it also describes some techniques to estimate its level. 
Some methods for generating synthetic self-similar traffic 
are presented in section 3. Section 4 describes the 
simulation environment and scenarios and section 5 
presents the simulation results and comments. Finally, in 
section 6 we have concluding remarks and further 
discussion for future works. 
 
2. SELF-SIMILARITY 
The main concept related to self-similarity or general 
fractal behavior consists of the phenomenon of preserving 
the major characteristics of an entity in nature when 
observed in distinct time or space scales [2]. Particularly, 
in the case of stochastic objects such as the time series 
(e.g., computers network traffic), the self-similar behavior 
exhibits the same structural properties in several time 
scales. Without a suitable strong statistical approach, one 
should now assume if a realization of a stochastic process 
is aggregated in distinct time scales and keep its most 
important statistical properties (e.g., first- and second 
order moments), it is considered a fractal process. 
 
2.1 SELF-SIMILAR PROCESS 

Let be ( )tX  a strict-sense stationary time series, with 

mean µ , variance 2σ  and autocorrelation function ( )τρ . 

Additionally, let ( )tX m  be a new time series obtained 
from ( )tX , through averaging it in non-overlapping 
blocks of size m. In other words, the aggregated series has 
the form ( ) ( )( )tmmtmmtm

m XXXmtX +++= +−+−
− L21

1  

and ( )τρm  is the autocorrelation function. The process 

( )tX  is considered self-similar if ( ) ( )τρτρ =m  for any 
K,3,2,1=m . In particular, if the autocorrelation function 

has the form ( ) ( ) ∞→→ ττττρ β ,L , where ( )τL  is 
slowly varying at infinity, one could say that it is a self-
similar process with a Hurst parameter H. The relation 
between the Hurst parameter and the decaying rate of 
autocorrelation function β  is 2/1 β−=H . This kind of 
process exhibits Long-Range Dependence (LRD), which 
implies the autocorrelation function is not limited, that is 

( )∑ ∞→
τ

τρ . Another important property is related to 

the variance of the aggregated series that has a slow 
decrease as the aggregation level increases. Such 
characteristic could be used to estimate the self-similar 
level of a stochastic process. There are evidences that the 
LRD feature is firmly associated to heavy tailed behavior 
of the generating process. Additionally, the superposition 
of several independent heavy tailed sources yields self-
similarity [20]. We give more details in section 3. 
 
2.2 SELF-SIMILAR TRAFFIC AND 
NETWORK PERFORMANCE 

Several empirical and analytical studies show evidences 
related to the phenomenon of self-similar in computer 
network traffic [3][14][17][20]. Some approaches show 
that aspects such as file sizes in Web servers and file 
transfer times under HTTP, cause unfavorable impact in 
network performance. Such characteristics yield traffic 
bursts in several time scales, which make it difficult the 
determination of efficient algorithms of congestion 
control, admission control and traffic prediction [18]. For 
instance, in the presence of LRD traffic, increasing queue 
lengths do not produce fewer packets loss rates [6], as 
would be expected for traffic with short-range 
dependence. Besides, performance is seriously affected 
due to the high concentration of congestion periods and 
significant increase in queue delays [14]. Therefore, the 
traditional traffic source models, such as Poisson and 
Exponential PDF, which superposition does not exhibits 
self-similarity, must be replaced for more accurate models 
in order to obtain reliable simulation results [3]. For this 
reason, usual performance metrics, such as throughput, 
delay, jitter, packets loss and queue lengths, must be 
evaluated taking into account these evidences as a support 
for obtaining coherent results. 
 
2.3 ESTIMATION TECHNIQUES OF 
SELF-SIMILAR PROCESSES 
As we have shown before, the Hurst parameter determines 
the self-similarity level of a time series. If H is in the [0.5, 
1] range, there is a clear indication of the presence of self-
similar behavior. In addition, H values closer to the unity 
point out a high self-similarity level. There are a number 
of methods to estimate the H parameter, which could be 
classified in heuristic and by inference ones. Heuristic 
methods are mainly useful as simple diagnostic tools and 
the best-known one is the analysis of the rescaled range 
R/S statistic. Other techniques include the log-log 
correlogram, the log-log plot of the variance of the 
aggregated processes versus the aggregation level, least 
squares regression in the spectral domain and inference by 
maximum likelihood estimation in the time and spectral 
domain (Whittle’s estimator) [2]. 
 In order to exemplify some self-similarity level 
estimation methods, we briefly describe the R/S statistic 
and the variance techniques. The R/S statistic is related to 
the H parameter by ( ) ( )[ ] HcnnSnRE ≈/ , when ∞→n  
and c  is constant and independent of n . It is easy to 



notice that ( ) ( )[ ]( ) ( ) ( )cnHnSnRE loglog/ log +≅ . This 
equation has the form bxay += and consequently H 

could be estimated by linear regression, where bH ˆˆ = . 
Using the variance approach, the relation between the 
logarithm of the variance of the aggregated process ( )mX  
and the block size m  has the form 

( )( ) ., ∞→≈ − mamXVar m β  As a result, 
( )( )[ ] ( ) ( )amXVar m logloglog +−≈ β  and H could also be 

estimated by linear regression that determines the 
negative slope β  with Ĥ22ˆ −=β . 
 
3 SELF-SIMILAR TRAFFIC 
GENERATION 
Due to the importance of the fractal behavior in a number 
of areas (e.g., economy, telecommunications), several 
formal analytical models have been proposed which most 
of them are useful for generating such sequences. Some of 
them rely on Fractional Autoregressive Integrated Moving 
Average (FARIMA) processes [11], Fractional Gaussian 
Noise (FGN) and Wavelets [7]. However, using these 
approaches lead to difficulties to get some physical 
meaning for network engineers and computer scientists.  
In order to address this issue, an alternative proposal that 
has a meaning to real network is based on the aggregation 
and superposition of Renewal Rewards Process (On/Off) 
[16], which activity (On) and inactivity (Off) periods 
follow a heavy tailed PDF. This approach could allow an 
immediate use of widespread network simulation tools, 
such as Network Simulator 2 – ns2 or the software family 
from OPNET [13] since there is no need to extend their 
libraries to support such analytical models. Although we 
are aware that the use of Fractional Brownian Motion 
(FBM) models [2] is a powerful tool to generate fractal 
traces with a high level of accuracy, we did not take into 
account its use since the main goal of this work is to 
handle network simulation tools without extend their 
built-in function libraries. 
 The M/Pareto process, also known as Poisson 
Pareto Burst Process – PPBP [1], is an excellent model 
that could be used for precise self-similar traffic 
generation. At the same time, it maintains the 
understanding of the physical process existing in local or 
wide area networks. The M/Pareto is a process composed 
of a number of overlapping bursts. Bursts arrive following 
a Poisson Process with rate λ  and have a Pareto 
distributed duration. Increasing λ  may be considered an 
increase in the level of activity of individual sources or in 
the number of sources. Each burst has a constant rate r 
and its length has the form 

( ) ( ) δδα ≥=−=> − xxxFxXPr ,1 , with 
0,21 ><< δα , where δ  is the scale parameter. It’s 

easy to verify that mean amount of work arriving in the 
PPBP model is ( ) ( )1/ −= αδαλµ r . It also is 
asymptotically self-similar with H parameter 

( ) 2/3 α−=H , where α  is the form parameter of the 
Pareto PDF.  

4. SIMULATION CONFIGURATIONS 
The analysis of self-similarity undertaken in this paper 
involves the simulation of aggregation of On/Off traffic 
sources, traffic measurement and estimation of the Hurst 
parameter. As the simulation platform, we used the 
Network Simulator 2 (ns-2) [12] Different scenarios were 
simulated, varying the number of sources into the 
aggregation, the heavy tailed distribution, and its shape 
parameter, that defines the tail size. 
Figure 1 depicts the topology used in our simulations. It 
consists of a variable number of traffic sources (S1, S2… 
Sn), connected to a router that in turn is connected to a 
destination node D1. All links were configured with a 
fixed capacity of 10 Mbps. In spite of its simplicity, this 
topology is able to yield self-similar traffic at the 
destination node D1, thus making it possible to 
significantly decrease the time required for running the 
simulation (compared to a more complex scenario). 
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Figure 1 – Simulation topology 

The numbers of traffic sources used in different 
scenarios were 1, 2, 5, 10, 20, 50, 100 and 1000, since one 
goal of this paper is to quantify the number required for 
an accurate self-similar traffic generation. Source average 
aggregate rate was set to 4 Mbps. During the activity 
periods (On), each source sends data at a rate of n/4  
Mbps, where n  is the number of simultaneous sources. 
On and Off average duration times were both set to 50ms, 
according to the Pareto, Weibull and Lognormal 
distributions, thus yielding an average rate of nr /2=  for 
each source. 

This model is frequently used for generating self-
similar traffic, and it is comparable to the M/Pareto 
model. In our On/Off model, the number of sources is 
fixed for each scenario, while each source sends several 
bursts with random duration. On the other hand, the 
M/Pareto model uses a random number of sources (a 
Poisson process), but each source generates only a single 
burst with random duration. As an illustration, for the 
Pareto distribution (also used in the M/Pareto model) the 
average traffic level generated by this process is nr=µ . 
In this case, the α  parameter is implicitly used in the 
computation of r . 

For each simulated scenario, 1 million traffic 
samples were collected at the destination node D1. Each 
sample corresponds to the average throughput during the 
sampling period of 100ms. For each set of 1 million 



traffic samples, the Hurst parameter was estimated 
through the R/S and variance methods (section 2.3). Some 
results (precisely identified) presented in section 5 were 
obtained through the execution of 30 replications for each 
scenario (Monte Carlo’s simulation). In such cases, results 
represent the mean of the 30 replications and also 99% 
asymptotic confidence intervals were calculated. The 
estimation methods were implemented in the R system  
(version 1.6.1) [15] that is a free-software famous for its 
accuracy and efficiency. 

5. SIMULATION RESULTS 
This section presents results obtained from simulation 
experiments and Hurst parameter estimation performed in 
this study. One goal was to quantify the exact number of 
superposed sources required for yielding self-similar 
traffic with controlled accuracy and variation, for the 
Pareto, Weibull and Lognormal distributions. Another 
goal was to perform an exploratory study with the 
Weibull and Lognormal distributions concerning the 
generation of self-similar traffic, so that to characterize a 
relation of its shape parameter with the Hurst parameter 
estimated from the traffic samples. These distributions are 
frequently pointed out as having heavy tails, but so far we 
failed to find a reference with a scenario configuration 
and experiment results. 

In general, it is basically believed that the 
aggregation of traffic generated by a large number of 
superposed sources produces self-similar traffic. An 
important question here is to determine the required 
number of sources wherefrom trustworthy results can be 
obtained. The larger the number of sources, the higher the 
accuracy is, since this behavior is asymptotic. However, it 
also implies a higher processing time for running the 
simulation. Therefore, knowing which number of sources 
is sufficient is an important information for researchers, 
because complex simulations (with many replications) 
can easily consume hours, days, weeks or months of the 
processing time of machines with very reasonable 
capacity.  

4.1 PARETO DISTRIBUTION 
Figure 2 shows the experiment results for the Pareto 
distribution. Pareto has a heavy tail when its shape 
parameter is between 1 and 2. For this study, we used the 
values 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7 corresponding to 
the target (intended) Hurst parameters of 0.95, 0.9, 0.85, 
0.8, 0.75, 0.7 e 0.65, respectively. It is commonly 
accepted that from 0.7, traffic could cause some harm to 
the performance of a network [17]. As a general result, 
data show that the known relation H23−=α  holds for 
the experiments we performed. For all values of the target 
H, the estimated H stabilizes from 10 sources, incurring in 
a maximum error of 7.5 %, which is coherent with [7]. 

Erro! A origem da referência não foi 
encontrada. presents information about simulation time, 

whose values represent the three distributions evaluated in 
this paper. The table shows simulation times for different 
number of sources as an increment of only one source and 
of the immediately previous number. The latter assumes 
greater importance for quantifying the computational cost 
involved in increasing the number of sources to the next 
level. 

It can be observed that from 50 sources on, for 
all shape parameters, there is no significant increase in the 
accuracy of the estimated Hurst parameter. It could be 
expected that from this number the processing time will 
start to become noticeable. A reasonable conclusion is 
that the computational cost associated to increasing the 
number of sources beyond 20 does not compensate the 
additional benefit in accuracy. Additionally, when the 
target Hurst parameter is enough high, e.g. starting from 
0.75, the simulation results suggest there is no need to 
parameterize the model with more than 5 sources. 

The largest interval was obtained for 10 sources. 
As an illustration, the mean for the 30 replications is 0.8, 
whereas the values of the estimated H are spread between 
0.72 and 0.88. These arguments corroborate the 
conclusion that 20 sources is an acceptable trade-off 
between accuracy and computational cost for the Pareto 
distribution. 
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Figure 2 – Pareto with several shape (α) parameters 

4.2 WEIBULL DISTRIBUTION 
Erro! A origem da referência não foi encontrada. 
presents the results obtained in our evaluation for the 
Weibull distribution, with the shape parameter α varying 
between 0.05 and 0.3. For α = 0.3, it can be observed that 
the estimated H parameter is around 0.57, indicating that 
the traffic presents a low self-similarity level. We also 
simulated scenarios with values of α between 0.3 and 1, 
but no significant variations in the estimated Hurst 



parameter were obtained. In other words, the Weibull 
distribution has a known L shape for α values between 0 
and 1, though only between 0 and 0.2 it is able to produce 
self-similar traffic, according to Erro! A origem da 
referência não foi encontrada.. 

Results obtained for the Weibull distribution were 
analogous to those obtained for Pareto, as far as the 
asymptotic convergence of the estimated Hurst parameter 
is concerned. The main difference between them lies is in 
the variation of the estimated H parameter for Weibull, 
represented by the narrower size of the confidence 
intervals, as shown in Figure 3. For the Weibull 
distribution both means of the Hurst parameter and 
confidence intervals presented a steady behavior. This 
fact indicates that from 10 superposed traffic On sources 
the generation of self-similar traffic has a considerable 
statistical reliability. 
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Figure 3 – Weibull with several shape (α) parameters 

4.3 LOGNORMAL DISTRIBUTION 
The results obtained for the Lognormal distribution are 
shown in Erro! A origem da referência não foi 
encontrada.. The experiments with the Lognormal 
distribution were performed varying the σ parameter (the 
standard deviation) between 1 and 5. Sometimes the 
standard deviation is called the shape parameter, because 
it determines the size of the distribution tail. When σ = 5, 
the Lognormal distribution presents a heavy tail, and 
consequently generating a high level of self-similarity in 
the aggregated traffic. 

The results presented in Erro! A origem da referência 
não foi encontrada. do no differ from those of the Pareto 
and Weibull distribution, showing that from 10 sources 
on, the means of the Hurst parameter present a steady 
behavior. Similarly to Weibull distribution, the estimates 

present low variability, which can be observed by the 
narrow confidence intervals in Figure 4. 
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Figure 4 – Lognormal with several shape (σ) parameters  

6. SIMULATION TIME 
 

As informações coletadas de tempo de execução 
para as três distribuições estudadas são 
apresentadas na Figura 5. Para cada distribuição, 
foram agrupadas as amostras para todos os 
valores do parâmetro de forma para um 
determinado número de fontes. Isto resultou em 
número de amostras de tempos de simulação de 
210 para cada ponto apresentado no gráfico. 
Pode-se observar que ocorreu para as três 
distribuições um aumento acentuado do tempo 
simulação de 100 para 1000 fontes sobrepostas, 
atingindo quase 2 horas para Pareto. Juntamente 
com as conclusões das seções 5.1, 5.2 e 5.3 
esses resultados confirmam que um número 
pequeno de fontes (que varia de acordo com a 
distribuição e o nível de auto-similaridade 
pretendido) é, em geral, suficiente para atingir o 
objetivo desejado nas simulações realizadas. 
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A variação nos tempos de simulação entre 
os diversos números de fontes é mais bem 
explicada pelo Table 1. A tabela mostra os 
tempos de simulação como um incremento em 
relação ao caso com apenas uma fonte e em 
relação ao número de fontes imediatamente 
anterior. Essa última informação é importante 
para quantificar o custo computacional 
envolvido em aumentar o número de fontes para 
o próximo patamar. 

Foi observado um incremento considerável para 
passar de 1 para 2 (entre 29,4 e 31,5 %) e depois 
para 5 fontes (entre 21,1 e 24,4 %). Entre 5 e 50 
fontes, a diferença não é significativa (entre –
1,4 e 5,8 %). A passagem de 50 para 100 fontes 
volta a gerar aumentos significativos (entre 13 e 
14 %). Finalmente, aumentar de 100 para 1000 
fontes produz um aumento enorme no tempo de 
simulação (entre 79,3 e 324,9 %). 

Table 1 – Variation of the simulation time 

Number of sources Increase (in %) 
related to: 1 2 5 10 20 50 100 1000

1 source - 31 59 63 69 67 90 707 
Pareto 

Last - 31 21 3 4 -1 14 325 

1 source - 32 62 70 81 94 121 296 
Weibull 

Last - 32 23 5 7 7 14 79 

1 source - 29 61 69 79 87 111 349 Log 
normal Last - 29 24 5 6 4 13 112 

 

 

 

 
 

7. CONCLUSION 
Generating synthetic self-similar traffic through the 
aggregation of superposed sources is of great importance 
for undertaking simulation in the computer network area. 
Unlike other known analytical methods, the superposition 
of On/Off traffic source has an explicit physic 
interpretation, since sources represent entities from the 
real world. The explanation for this method is the well-
known relation between heavy-tailed burst times, long-
range dependence a self-similarity. Another advantage of 
using superposed sources is the simplicity of generating 
self-similar traffic in network simulators that do not offer 
any built-in analytical generator, e.g., the ns-2 simulator 
that we used in our evaluations. 

This paper shows a broad analysis of the 
parameterization employed for generating self-similar 
traffic with the Pareto, Weibull and Lognormal 
distributions. These three distributions were selected due 
to their ability to be parameterized in such a way to 
present heavy tails. They are frequently used for 
characterizing the existence of heavy tailed distributions 
in the Internet. Pareto is more common, but Weibull and 
Lognormal also can be used for generating self-similar 
traffic, with the additional benefit of requiring a smaller 
number of superposed sources. Our results revealed that, 
for the evaluated scenarios, the best trade-off between 
accurate estimation of the Hurst parameter and efficient 
utilization of computational resources is around 20 Pareto 
and 10 Weibull (and Lognormal) On/Off sources. 

Furthermore, this paper also provides values for 
the shape parameters whereto the Weibull and Lognormal 
distributions yield self-similar traffic. We found out 
preliminary empirical relations between the shape 
parameter (standard deviation, for Lognormal) and the 
estimated Hurst parameter. These relations can be used 
for defining target Hurst parameters in simulations that 
use the referred distributions. 

The motivation for this evaluation came up by 
the practical necessity of the authors in generating self-
similar traffic for their research. Consequently, they can 
be used in other related work. As future work, we intend 
to find out analytical relations between the shape 
parameters of the Weibull and Lognormal and the Hurst 
parameter (such relation there exists for Pareto). In 
addition, we are working on a tractable and flexible 
heavy-tailed distribution able to model a variety of 
aspects of the self-similar traffic. 
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