CORBA Commom Object Request Broker Architecture

Carlos Ferraz

cagf@cin.ufpe.br

Tópicos

- O Modelo OMA
- A estrutura do ORB

Objetos Distribuídos (1/3)

- Características das aplicações atuais
 - * Complexas
 - Multiliguagens
- Características dos ambientes atuais
 - Distribuídos
 - Heterogêneos

Objetos Distribuídos (2/3)

- Particionar e distribuir dados e funções é uma tarefa bastante difícil
 - O Paradigma de Orientação a Objetos trata desse problema
- Também é bastante difícil produzir aplicações complexas em ambiente de rede
 - ❖ Os Sistemas Distribuídos abstraem as características da rede → transparências

Objetos Distribuídos (3/3)

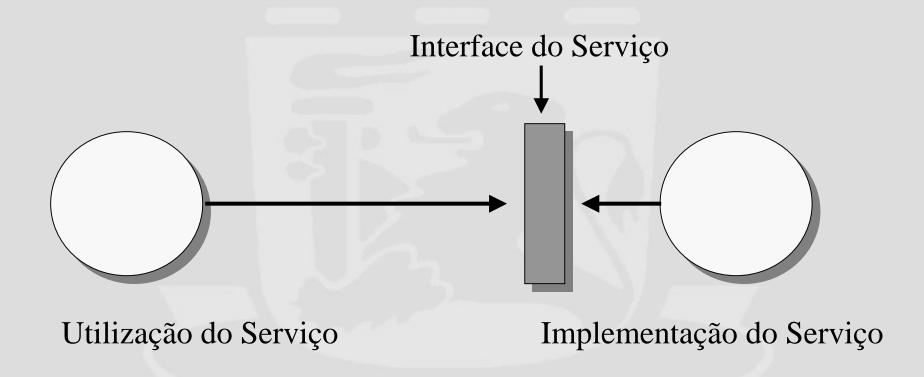
Orientação a Objetos + Sistemas Distribuídos

Objetos Distribuídos

Centro de Informática UNESTRIBUÍDOS DISTRIBUÍDOS

CORBA

- □ Common Object Request Broker Architecture
 - Padrão para desenvolvimento de aplicações distribuídas para sistemas heterogêneos usando orientação a objetos
- OMG: Object Management Group (http://www.omg.org)
 - Consórcio de empresas responsável pela proposição e manutenção do padrão CORBA
 - Criado em 1989

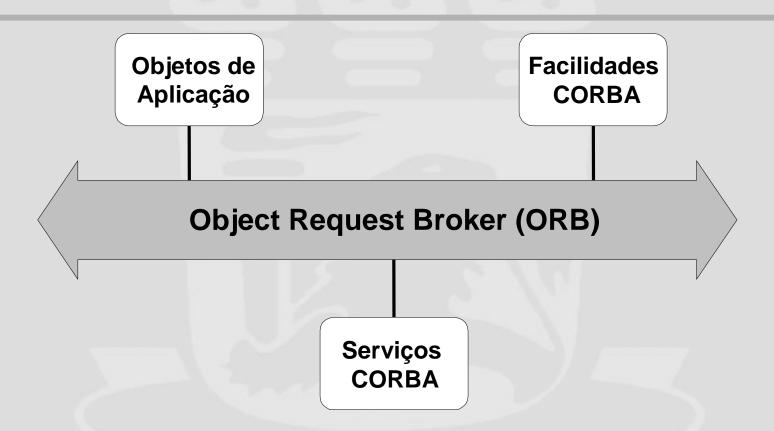

Centro de Informática UN FREDE DISTRIBUIDOS

CORBA

- Objetivos dos padrões OMG
 - Permitir especificação de serviços separados da implementação
 - Interfaces de Objetos
 - Implementação de Interfaces
 - Projetar componentes que se descubram e interoperem através de um "barramento" de objetos

Separação de Conceitos

O Modelo de Referência OMA *Object Management Architecture*


Centro de Informática UNESTRIBUÍDOS DISTRIBUÍDOS

O Modelo de Referência OMA

- Visão do OMG de como deve ser a arquitetura básica de um sistema distribuído
- Dois modelos:
 - Modelo de Objetos
 - Define conceitos tradicionais de orientação a objetos (objetos, herança, interface etc)
 - Modelo de Referência
 - Relaciona serviços de um sistema distribuído passíveis de serem padronizados e, posteriormente, implementados por diferentes empresas

O Modelo de Referência OMA

Object Management Architecture

Centro de Informática UN FREDE DISTRIBUIDOS

O Modelo de Referência OMA

- Serviços CORBA: serviços para manipulação de objetos
 - Exemplo: criação de objetos, serviço de nomes, segurança, persistência, etc
- Objetos de Aplicação: serviços específicos de uma determinada aplicação
 - Não são objeto de padronização

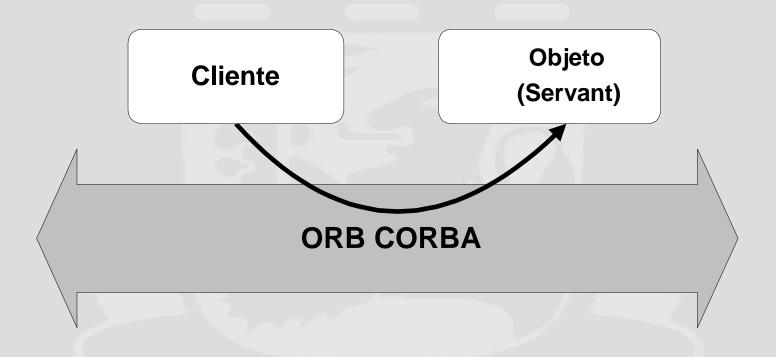
Centro de Informática UNE PRESENTAS DISTRIBUIDOS

O Modelo de Referência OMA

- Facilidades CORBA: serviços para aplicações
 - * Facilidades Horizontais: Genéricas para diversas aplicações
 - Exemplo: Interface de Usuário, Gerenciamento de Tarefas, etc.
 - Facilidades Verticais: Específicas de uma área de conhecimento
 - Exemplo: telecomunicações, financeira, indústria etc.

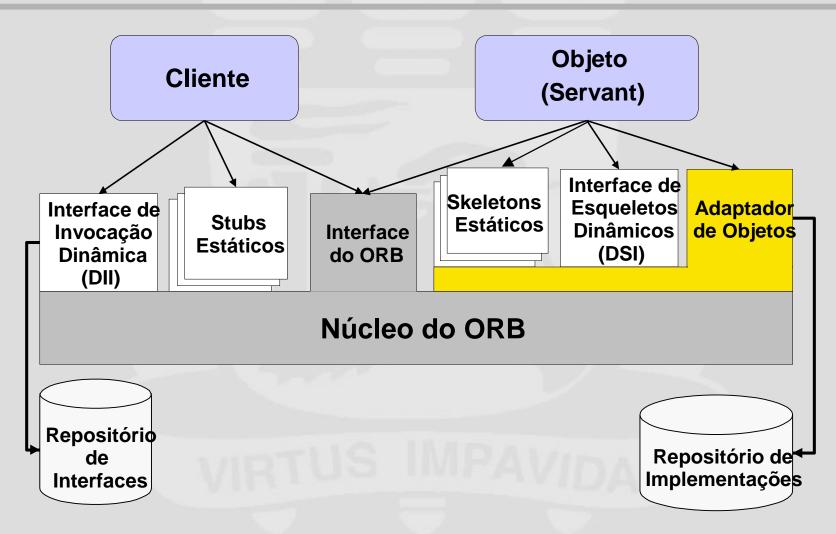
ORB: Object Request Broker

- Conceito central da arquitetura OMA
- "Barramento lógico de software" que controla toda a comunicação entre os componentes da arquitetura
 - * Facilitador da comunicação entre objetos distribuídos



ORB: Object Request Broker

- Objetivo:
 - Transparência de localização
 - Transparência de acesso
 - Independência de sistema operacional e linguagem
- CORBA: padrão de ORB
 - Não é um produto, e sim uma especificação


ORB: Object Request Broker

Anatomia de um ORB CORBA

Centro de Informática UN FOR PER DISTRIBUIDOS

- Cliente
 - Acesso a objetos e operações
 - Transparência de implementação dos objetos acessados
- Objeto
 - ❖ É uma instância de uma Interface IDL
 - * É definido por uma object reference
 - Utiliza o conceito de ObjectId para associar um objeto com suas implementações (servants)
- Servant
 - Implementa as operações das interfaces IDL

Centro de Informática UNESTRIBUIDOS DISTRIBUIDOS

- Núcleo do ORB
 - Representação básica de objetos e comunicação
 - Lida com referências a objetos
 - Implementação específica
- Interface do ORB
 - Conjunto de operações para a manipulação de informações do ORB

Centro de Informática UNESTEINAS DISTRIBUIDOS

ORB CORBA

■ Lado Cliente

- Repositório de Interfaces
 - Repositório de Descrições de Interfaces utilizado para a realização de invocações dinâmicas
- ❖ Interface de Invocação Dinâmica (DII)
 - Conjunto de operações utilizadas para a criação de invocações dinâmicas
- Stubs Estáticos
 - Stubs para invocações estáticas

Centro de Informática UNESTRIBUIDOS DISTRIBUIDOS

- Lado Servidor (Servant)
 - * Repositório de Implementações
 - Armazenamento de meta-dados sobre implementações de objetos
 - Esqueletos Estáticos
 - Stubs utilizados para invocações estáticas
 - Interface de Esqueletos Dinâmicos (DSI)
 - Conjunto de operações para a manipulação de invocações dinâmicas
 - Adaptador de Objetos
 - Módulo responsável pelo controle de execução dos servants

Linguagem de Definição de Interfaces

IDL

- Principal componente do padrão CORBA
- A neutralidade de IDL define a heterogeneidade de CORBA
- Linguagem para definir a interface de um objeto remoto
 - Especifica a assinatura (cabeçalho) das operações que serão implementadas por um objeto remoto

- ☐ Linguagem declarativa (sem código)
 - Tipos pré-definidos: long, short, float, double, char, boolean, enum;
 - Tipos estruturados: struct, union, string, sequence;
 - Tratamento de exceções (exception);
 - Modos de passagem de parâmetros: in, out e inout;
- Idéia Básica: especificar serviços em uma linguagem neutra

■ Exemplo:

```
typedef sequence<string> extrato;
struct Data {
    short dia, mes, ano;
interface conta {
   float obterSaldo ();
   extrato obterExtrato (in Data inicio, in Data
 fim);
};
```


- Compiladores de IDL geram automaticamente:
 - stubs (clientes)
 - esqueletos (servidores)
 - Diversos outros objetos de suporte
- Independência de linguagem:
 - Compiladores IDL implementam geração de código para C, C++, Smalltalk, Ada, COBOL, Java, etc
 - CORBA especifica como deve ser o mapeamento (binding) de IDL para cada linguagem

Centro de Informática DISTRIBUIDOS

Implementações CORBA

- Produtos que implementam o padrão CORBA:
 - Visibroker (http://www.inprise.com)
 - Orbix (http://www.iona.com)
 - omniORB (http://www.uk.research.att.com/omniORB)
 - Java IDL (http://java.sun.com/j2se/1.4/docs/guide/idl/index.html)

• •

Projeto

- Proposta: 15 de janeiro de 2004
- ☐ Grupos: 3 5 pessoas
- Documento: 1 2 páginas
- http://www.cin.ufpe.br/~cagf/sdgrad/projeto.htm
- Enviar proposta por e-mail para cagf@cin.ufpe.br