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Gender recognition is one of fundamental face analysis tasks. Most of the existing studies have focused on
face images acquired under controlled conditions. However, real-world applications require gender clas-
sification on real-life faces, which is much more challenging due to significant appearance variations in
unconstrained scenarios. In this paper, we investigate gender recognition on real-life faces using the
recently built database, the Labeled Faces in the Wild (LFW). Local Binary Patterns (LBP) is employed
to describe faces, and Adaboost is used to select the discriminative LBP features. We obtain the perfor-
mance of 94.81% by applying Support Vector Machine (SVM) with the boosted LBP features. The public
database used in this study makes future benchmark and evaluation possible.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Gender recognition is a fundamental task for human beings, as
many social functions critically depend on the correct gender
perception. Automatic gender classification has many important
applications, for example, intelligent user interface, visual surveil-
lance, collecting demographic statistics for marketing, etc. Human
faces provide important visual information for gender perception.
Gender classification from face images has received much research
interest in the last two decades.

In the early 1990s various neural network techniques were
employed to recognize gender by frontal faces (Golomb et al.,
1991; Brunelli and Poggio, 1992), for example, Golomb et al.
(1991) trained a fully connected two-layer neural network, SEX-
NET, which achieves the recognition accuracy of 91.9% on 90 face
images. Recent years have witnessed many advances (Yang et al.,
2006); we summarize recent studies in Table 1. Moghaddam and
Yang (2002) used raw image pixels with nonlinear SVMs for gender
classification on thumbnail faces (12 � 21 pixels); their experi-
ments on the FERET database (1,755 faces) demonstrated SVMs
are superior to other classifiers, achieving the accuracy of 96.6%.
In BenAbdelkader and Griffin (2005), local region matching and
holistic features were exploited with Linear Discriminant Analysis
(LDA) and SVM for gender recognition. On the 12,964 frontal faces
from multiple databases (including FERET and PIE), local region-
based SVM achieved the performance of 94.2%. Lapedriza et al.
(2006) compared facial features from internal zone (eyes, nose,
and mouth) and external zone (hair, chin, and ears). Their experi-
ments on the FRGC database show that the external face zone con-
tributes useful information for gender classification. Baluja and
Rowley (2007) introduced an efficient gender recognition system
ll rights reserved.
by boosting pixel comparisons in face images. On the FERET data-
base, their approach matches SVM with 500 comparison opera-
tions on 20 � 20 pixel images. Mäkinen and Raisamo (2008)
systematically evaluated different face alignment and gender
recognition methods on the FERET database. More recently face
appearance and motion cues are combined for gender recognition
in videos (Hadid and Pietikäinen, 2009).

A common problem of the above studies is that face images
acquired under controlled conditions (e.g., the FERET database)
are considered, which usually are frontal, occlusion-free, with
clean background, consistent lighting, and limited facial expres-
sions. However, in real-world applications, gender classification
needs to be performed on real-life face images captured in uncon-
strained scenarios; see Fig. 1 for examples of real-life faces. As can
be observed, there are significant appearance variations on real-life
faces, which include facial expressions, illumination changes, head
pose variations, occlusion or make-up, poor image quality, and so
on. Therefore, gender recognition in real-life faces is much more
challenging compared to the case for faces captured in constrained
environments. Few studies in the literature have addressed this
problem. Shakhnarovich et al. (2002) made an early attempt by
collecting over 3,500 face images from the web. On this difficult
data set, using Harr-like features, they obtained the performance
of 79.0% (Adaboost) and 75.5% (SVM). Recently Gao and Ai (2009)
adopted the probabilistic boosting tree with Harr-like features,
and obtained the accuracy of 95.51% on 10,100 real-life faces. How-
ever, the data sets used in these studies are not public available;
therefore, it is difficult for benchmark in research community.
Kumar et al. (2008, 2009) recently investigated face verification
on real-world images, where many binary ‘‘attribute’’ classifiers
(including gender) were trained. They reported the performance
of 81.22% on gender classification; however, as they mainly
focused on face verification, they did not fully study gender
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Table 1
Overview of recent studies on gender classification from face images.

Study Data set Approach Result (%)

Data Real-Life Public Feature Classifier

2002(Moghaddam and Yang, 2002) 1,755 No Yes Raw pixels SVM 96.62
2002(Shakhnarovich et al., 2002) 3,500 Yes No Haar-like features Adaboost 79.0
2005(BenAbdelkader and Griffin, 2005) 12,964 No Yes Local-region matching SVM 94.2
2006(Lapedriza et al., 2006) 5,326 No Yes Fragment-based Boosting 91.72

filter banks
2007(Baluja and Rowley, 2007) 2,409 No Yes Pixel comparisons Adaboost 94.3
2008(Mäkinen and Raisamo, 2008) 500 No Yes Raw pixels SVM 86.54
2009(Hadid and Pietikäinen, 2009) 4,000 videos No Yes LBP features SVM 91.0
2009(Gao and Ai, 2009) 10,100 Yes No Haar-like features Probabilistic 95.51

Boosting tree
Our work 7,443 Yes Yes Boosted LBP features SVM 94.81
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recognition on real-life faces. In this paper, we use a recently built
public database, the Labeled Faces in the Wild (LFW) (Huang et al.,
2007), to investigate gender classification on real-world face
images. The public database used in this study enables future
benchmark and evaluation.

Similar to other face analysis tasks, deriving an effective facial
representation from original face images is a vital step for success-
ful gender classification. If inadequate features are used, even the
best classifier could fail to achieve accurate recognition. As an effi-
cient non-parametric method summarizing the local structure of
an image, Local Binary Patterns (LBP) has been exploited for face
analysis (Ahonen et al., 2004). For example, in Sun et al. (2006),
Lian and Lu (2007), LBP was exploited for gender recognition on
Fig. 1. Examples of real-life faces (from the LFW data
face images acquired under controlled conditions. In the existing
work, LBP histograms are extracted from local facial regions as
the region-level description, where the n-bin histogram is utilized
as a whole. However, not all bins in the LBP histogram are neces-
sary to contain useful information for facial representation. In this
paper, we propose to learn discriminative LBP-Histogram (LBPH)
bins for gender classification. Our experiments illustrate that the
selected LBPH bins provide a compact facial representation, reduc-
ing feature length greatly, while producing better recognition per-
formance. By adopting SVM with the selected LBPH bins, we obtain
the recognition performance of 94.81% on the LFW database.

The paper is structured as follows. Section 2 describes local bin-
ary patterns. In Section 3, learning LBPH bin using Adaboost is
base). (top 2 rows) Female; (bottom 2 rows) Male.



Fig. 2. A face image is divided into sub-regions from which LBP histograms are
extracted and concatenated into a single, spatially enhanced feature histogram.
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discussed. Section 4 presents our extensive experiments. Finally
Section 5 concludes the paper.
2. Local binary patterns

The original LBP operator (Ojala et al., 2002) labels the pixels of
an image by thresholding a 3 � 3 neighborhood of each pixel with
the center value and considering the results as a binary number.
Formally, given a pixel at (xc,yc), the resulting LBP can be expressed
in the decimal form as

LBPðxc; ycÞ ¼
X7

n¼0

sðin � icÞ2n ð1Þ

where n runs over the 8 neighbors of the central pixel, ic and in are
the gray-level values of the central pixel and the surrounding pixel,
and s(x) is 1 if x P 0 and 0 otherwise.

Ojala et al. (2002) later made two extensions of the original
operator. Firstly, the operator was extended to use neighborhood
of different sizes, to capture dominant features at different scales.
Using circular neighborhoods and bilinearly interpolating the pixel
values allow any radius and number of pixels in the neighborhood.
The notation (P,R) denotes a neighborhood of P equally spaced
sampling points on a circle of radius of R. Secondly, they proposed
to use a small subset of the 2P patterns, produced by the operator
LBP(P,R), to describe the texture of images. These patterns, called
uniform patterns, contain at most two bitwise transitions from 0
to 1 or vice versa when considered as a circular binary string. For
example, 00000000, 001110000 and 11100001 are uniform pat-
terns. It was observed that most of the texture information was
contained in the uniform patterns. Labeling the patterns which
have more than 2 transitions with a single label yields an LBP oper-
ator, denoted LBP(P,R,u2), which produces much less patterns
without losing too much information.

After labeling an image with a LBP operator, a histogram of the
labeled image can be used as texture descriptor. Each face image
can be seen as a composition of micro-patterns which can be effec-
tively described by LBP. In the existing studies (Ahonen et al.,
2004), to consider the shape information, face images are divided
into non-overlapping sub-regions (as shown in Fig. 2); the LBP his-
tograms extracted from sub-regions are concatenated into a single,
Fig. 3. Example images th
spatially enhanced feature histogram The extracted feature histo-
gram describes the local texture and global shape of face images.

The limitations of the above LBP-based facial representation are
that dividing the face into a grid of sub-regions is somewhat arbi-
trary, as sub-regions are not necessary well aligned with facial fea-
tures, and that the resulting facial representation suffers from fixed
size and position of sub-regions. In Zhang et al. (2004), Sun et al.
(2006), Adaboost was used to learn the discriminative sub-regions
(in term of LBP histogram) from a large pool of sub-regions gener-
ated by shifting and scaling a sub-window over face images. In
these studies, the Chi square distance between corresponding
LBP histograms of the sample image and the template is used to
construct the weak classifier.

3. Learning LBP-histogram bins

In the existing work, the LBP histograms are always extracted
from local regions, and used as a whole for the regional description.
However, not all bins in the LBP histogram are discriminative for
facial representation. Here we propose to learn discriminative
LBP-Histogram (LBPH) bins for better gender classification.

Adaboost (Freund and Schapire, 1997; Schapire and Singer,
1999) provides a simple yet effective approach for stagewise learn-
ing of a nonlinear classification function. Here we adopt Adaboost
to learn the discriminative LBPH bins. Adaboost learns a small
number of weak classifiers whose performance is just better than
random guessing, and boosts them iteratively into a strong classi-
fier of higher accuracy. The process of Adaboost maintains a distri-
bution on the training samples. At each iteration, a weak classifier
which minimizes the weighted error rate is selected, and the distri-
bution is updated to increase the weights of the misclassified
samples and reduce the importance of the others. Similar to Viola
and Jones (2001), the weak classifier hj(x) consists of a feature fj

which corresponds to a single LBPH bin, a threshold hj and a parity
pj indicating the direction of the inequality sign:

hjðxÞ ¼
1 if pjfjðxÞ 6 pjhj

0 otherwise

�
ð2Þ
4. Experiments

We conduct experiments on the LFW database (Huang et al.,
2007). LFW is a database for studying the problem of uncon-
strained face recognition, which contains 13,233 color face photo-
graphs of 5,749 subjects collected from the web. All the faces were
detected by the Viola-Jones face detector (Viola and Jones, 2004),
and the images were centered using detected faces and scaled to
the size of 250 � 250 pixels. We manually labeled the ground truth
regarding gender for each face. The faces that are not (near) frontal,
as well as those for which it is difficult to establish the ground
truth, were not considered (see Fig. 3 for some examples). In our
experiments, we chose 7,443 face images (2,943 females and
4,500 males); see Fig. 1 for some examples. All experimental
results were obtained using the 5-fold cross-validation. We
partitioned the data set into five subsets of similar size, keeping
at are not considered.



Fig. 4. The pre-processing process on face images. (left) original image; (middle) aligned image; (right) cropped face.
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Fig. 5. Classification performance of the boosted strong classifiers, as a function of the number of feature selected: LBP(8,2,u2) vs LBP(8,2).
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Fig. 6. The percentage of uniform patterns in the selected LBP (8,2) patterns for gender classification.
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the same ratio between female and male. The images of a particu-
lar subject appear only in one subset. As illustrated in Fig. 4, all
images were aligned with commercial face alignment software
(Wolf et al., 2009); the grayscale faces of 127 � 91 pixels were
cropped from aligned images for use.
4.1. Experiments: limited sub-regions

In Ahonen et al. (2004), face images were divided into 42 sub-
regions, and the 59-label LBP(8,2,u2) operator was adopted to ex-
tract LBP features. We started our experiments with this parameter
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Fig. 7. The distribution of the top 500 LBPH bins selected.
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Fig. 8. Spatial distribution of the selected LBPH bins (an example face image divided in sub-regions is shown in the right side for illustration).
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setting; thus each face image was described by a LBP histogram of
2,478 (42 � 59) bins. We adopted Adaboost to learn discriminative
LBPH bins and boost a strong classifier. We plot in Fig. 5 the recog-
nition performance of the boosted strong classifier as a function of
the number of features selected. With the 500 selected LBPH bins,
the boosted strong classifier achieves the recognition rate of 90.7%.

Uniform patterns – It was observed that most of the texture
information was contained in the uniform patterns (Ojala et al.,
2002), so uniform patterns was widely used to reduce the length
of LBP histograms. Here we verify the validity of uniform patterns
with machine learning. By using the LBP(8,2) operator, we repre-
sent each face image by a LBP histogram of 10,752 (42 � 256) bins,
and then adopt Adaboost to learn the discriminative LBPH bins. We
plot in Fig. 5 the recognition performance of the boosted strong
classifier. We can see that the strong classifier of LBP(8,2) performs
similarly to that of LBP(8,2,u2), which illustrates that the non-uni-
form patterns do not provide additional discriminative information
for gender classification. To further verify this, we have a closer
look at the learned LBPH bins of LBP(8,2), and show the percentage
of uniform patterns in Fig. 6. It is observed that most of patterns
selected are uniform patterns, e.g., 97.2% for the top 50 selected
features. Therefore, we experimentally verify that most of discrim-
inative information for gender classification is contained in the
uniform patterns.

Featuredistribution – We plot in Fig. 7 the distribution of the top
500 selected features among the 59 labels of LBP(8,2,u2). As can be
observed, the selected features come from all the 59 labels, but
some labels have more contributions to discriminative features.
Fig. 8 shows the spatial distribution of the top 500 features
selected. It is observed that, for gender classification, discrimina-
tive LBPH bins features mainly distribute in the regions around/
above eyes.

Multi-scale LBP – By varying the sampling radius R, LBP of differ-
ent resolutions can be obtained. We also investigate multiscale LBP
for gender classification. We applied the LBP(8,R,u2) (R = 1, . . . ,8)
to extract multiscale LBP features, resulting a LBP histogram of
19,824 (42 � 59 � 8) bins for each face image. We then run Ada-
boost to learn discriminative LBPH bins from the multiscale feature
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Fig. 9. Gender recognition performance of the boosted strong classifiers, as a function of the number of feature selected: LBP(8,2,u2) vs LBP(8,multiscale,u2).
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pool. We plot in Fig. 9 the recognition performance of the boosted
strong classifier. As can be observed, the strong classifier of multi-
scale LBP(8,R,u2) (R = 1, . . . ,8) produces consistently better perfor-
mance than that of single scale LBP(8,2,u2), providing the
recognition rate of 92.6% with the 500 selected LBPH bins. Thus
the multiscale LBP brings more discriminative information for gen-
der classification. Fig. 10 shows the scale distribution of the
selected LBPH bins, and we can see that discriminative LBPH bins
distribute at all scales, especially scales R = 1, 2, 3, 4, 8. Our exper-
imental results suggest that the multiscale LBP features bring more
discriminative information for gender recognition. This reinforces
the observation in facial expression recognition experiments (Shan
and Gritti, 2008).
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Fig. 10. Scale distribution of the selected LBPH bins.
4.2. Experiments: More sub-regions

In the above experiments, only 42 equally divided sub-regions
were considered for feature selection. By shifting and scaling a
sub-window over face images, we can get many more sub-regions,
which potentially contain more complete and discriminative infor-
mation about face images. We shifted the sub-window with the
shifting step of 12 pixels vertically and 10 pixels horizontally.
The sub-window was scaled as 12, 18, or 24 pixels (height) and
10, 15, or 20 pixels (width) respectively. In total 725 sub-regions
were obtained. By using multiscale LBP(8,R,u2) (R = 1, . . . ,8), a his-
togram of 342,200 (725 � 59 � 8) bins was extracted from each
face image.

To improve computation efficiency, we adopted a coarse to fine
feature selection scheme: We first run Adaboost to select LBPH
bins from each single scale LBP(8,R,u2), then applied Adaboost to
the selected LBPH bins at different scales to obtain the final feature
selection results. We plot in Fig. 11 the recognition performance of
the boosted strong classifiers as a function of the number of fea-
tures selected. We can see that the boosted strong classifier of mul-
tiscale LBP provides better performance than that of each single
scale, achieving the recognition rate of 94.40%.

SVM Classification – We further adopted SVM (RBF kernel) to
perform gender classification using the selected LBPH bins, and ob-
tained the best recognition rate of 94.81%. As a baseline to compare
against, we also applied SVM with raw image pixels, which delivers
the best performance on face images acquired in controlled envi-
ronments (Moghaddam and Yang, 2002). For computational
simplicity, face images of 127 � 91 pixels were down-scaled to
64 � 46 pixels, thus each image represented by a vector of 2,944
dimensions. We summarize the results of SVM with raw pixels
and standard LBP features in Table 2. It is observed that, with the
raw pixel intensities, SVM can achieve the recognition rate of
91.27%. This is very promising, although it is inferior to 96.62% re-
ported in Moghaddam and Yang (2002) on the FERET database.
This indicates that the faces in the LFW database are not difficult
for gender classification given good face alignment. It is seen in
Table 2 that LBP features produce better performance than raw
image pixels. With the 500 selected LBPH bins, Adaboost achieves
better performance than SVM using the standard LBP (2,478 bins).
Overall the best performance of 94.81% is obtained by applying
SVM with the boosted LBP features.

Regarding support vectors, with raw pixels, the learned SVMs
utilized 51–53% of the total number of training samples (in each
trial of cross-validation, the number varies slightly), while SVMs
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Fig. 11. Classification performance of boosted strong classifiers, as a function of the number of feature selected.

Table 2
Experimental results of gender classification.

Approach Recognition rates (%)

Feature Dimension Classifier Female Male Overall

Raw pixels 2,944 SVM 86.89 94.13 91.27 ± 1.67
Standard LBP 2,478 SVM 89.78 95.73 93.38 ± 1.50
Boosted LBP 500 Adaboost 91.98 95.98 94.40 ± 0.86
Boosted LBP 500 SVM 92.02 96.64 94.81 ± 1.10
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with LBP features employ 58–61%. In contrast, for boosted LBP
based SVM, the numbers of support vectors were 40–44% of the
number of training samples. As observed in Table 2, the boosted
LBP features also produce smaller standard variation. We see in
Table 2 there is notable bias towards males in all experiments, as
observed in existing studies (Shakhnarovich et al., 2002). This
might be due to the unbalanced training data.

5. Conclusions

In this paper, we investigate gender classification on real-life
faces acquired in unconstrained conditions, a challenging but rela-
tively understudied problem. We learn discriminative LBP-Histo-
gram bins as compact facial representation for gender
classification. By adopting SVM with the selected LBPH bins, we
obtain the classification rate of 94.81% on the LFW database.
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