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A novel approach for edge detection based on the theory of universal gravity
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Abstract

This paper presents a new, simple and effective low-level processing edge detection algorithm based on the law of universal gravity. The
algorithm assumes that each image pixel is a celestial body with a mass represented by its grayscale intensity. Accordingly, each celestial body
exerts forces onto its neighboring pixels and in return receives forces from the neighboring pixels. These forces can be calculated by the law of
universal gravity. The vector sums of all gravitational forces along, respectively, the horizontal and the vertical directions are used to compute
the magnitude and the direction of signal variations. Edges are characterized by high magnitude of gravitational forces along a particular
direction and can therefore be detected. The proposed algorithm was tested and compared with conventional methods such as Sobel, LOG, and
Canny using several standard images, with and without the contamination of Gaussian white noise and salt & pepper noise. Results show that
the proposed edge detector is more robust under noisy conditions. Furthermore, the edge detector can be tuned to work at any desired scale.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Edges correspond to sharp variations of image intensity and
convey vitally important information in an image. Detection of
edges is therefore a key issue in image processing, computer
vision, and pattern recognition. A variety of algorithms exist
for edge characterization and detection such as the statistical
methods [1–5], the difference methods [6–8], and curve fitting
[9–13].

As the complexity of image edge detection, every algorithm
has its advantages and disadvantages. For example, Smith and
Brady [14] proposed a new approach for low-level feature
extraction—SUSAN operator. It works on the principle of
“Univalue Segments” and tries to provide robust signatures
for each edge point. However, the characteristics (e.g., size)
of this “Smallest Univalue Segment Assimilating Nucleus”
are strongly influenced by the presence of edges and corners.
On the other hand, noise contamination is always a problem
and edge detection in noisy environment can be treated as an
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optimal linear filter design problem [15–19]. Canny [16]
described what has since become one of the most widely used
edge finding algorithms. The first step taken is the definition
of criteria which an edge detector must satisfy. Based on these
Canny defined an optimal filter, which can be efficiently
approximated by the first derivative of Gaussian function in
the 1-D case. Canny’s filter was further extended to recursive
filters [20], which provide a more efficient way for image noise
filtering and edge detection.

In the last decade, there have been renewed interests in the
wavelet theory, and applications in filtering, classification, and
compression [21]. Wavelet and its associated multi-resolution
analysis have also been applied for the characterization of
image intensity variations. Mallat et al. [22] presented their
wavelet domain multi-scale edge detection approaches. In their
researches, the edges are classified as the singularity points
that can be detected as the local maxima of gradient moduli
or the zero-crossings of wavelet coefficients. In Ref. [23], the
zero-crossings of M-band wavelet coefficients are located and
viewed as the edges. These multi-scale edge detection
approaches have made a significant improvement for the image
edge detection. More recently, a new approach based on the
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discrete singular convolution (DSC) edge detection algorithm
has been proposed [24]. However, up to now, it is still a chal-
lenge issue to develop robust edge detection algorithm. In this
paper, a new edge detection algorithm is presented.

The method is based on the law of universal gravity. Every
image point may be assumed as a celestial body, which has re-
lationships with other neighboring image points. The proposed
edge detector algorithm includes three steps. At first, the grav-
itational forces of a pixel exert on every other pixels around
it are computed using the law of universal gravity. Secondly,
the vector sum of all gravitational forces is calculated. At last,
the magnitude and direction of the vector are used to detect
image edges. Experiments indicate that the new approach is
effective for edge detection especially under noisy conditions.

The rest of the paper is organized as the following: the law
of universal gravity is briefly reviewed in Section 2. Then,
the algorithm of the proposed edge detector is presented in
Section 3. Furthermore, applications of the presented algorithm
are given in Section 4. The performance is illustrated using a
number of real images. Both noise free and noisy contaminated
images are used for the experiments. Finally, conclusions are
presented in Section 5.

2. Background on the law of universal gravity

Between any two objects that have mass, there exist attractive
gravitational forces acting on each object separately. The two
forces have the same magnitude with opposite directions as
illustrated in Fig. 1.

According to Newton’s law of universal gravitation [25],
every object in the Universe attracts every other object with
a force directed along the line of centers for the two objects
that is proportional to the product of their masses and inversely
proportional to the square of the separation between the two
objects. Newton’s law of universal gravitation can be written as
a vector equation to account for the direction of the gravitational
force as well as its magnitude. As illustrated in Fig. 1, the
formulation states:

�f1,2 = Gm1m2r̂2,1

‖�r2,1‖2
= Gm1m2�r2,1

‖�r2,1‖3
, (1)

where �f1,2 is the force on object 1 due to object 2, G is the
gravitational constant, m1 and m2 are the masses of the objects
1 and 2, respectively, �r1 and �r2 are the vector positions of the
two objects, respectively, r2,1=‖�r2−�r1‖ is the distance between
objects 1 and 2, r̂2,1 = �r2 − �r1/‖�r2 − �r1‖is the unit vector from
object 2 to 1.

r
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→
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Fig. 1. Newton’s law of universal gravitation.

Likewise, the vector gravitational force exerted by object 1
on object 2 takes the form

�f2,1 = − �f1,2. (2)

3. Gravity edge detector

3.1. Illustration of the method

To construct an edge detector, we assume that every image
point is a celestial body, which has some relationship with
other image points within its neighborhood through gravita-
tional forces. For points beyond a pre-specified range, we
assume all gravitational forces are zero. For each image point,
the magnitude and the direction of the vector sum of all grav-
itational forces the point exerts on its neighborhood conveys
the vitally important information about an edge structure in-
cluding the magnitude and the direction. The idea is inspired
by USAN [14] concept which was introduced by Smith and
Brady for feature extraction.

There are a number of definitions of an edge, each being
applicable in various specific circumstances. One of the most
common and most general definitions is the ideal step edge
[26]. For notational simplicity we only describe the detection
algorithm for vertically orientated edges under ideal step edge
condition. The algorithm can be easily extended to horizontal
and diagonal orientations. Edge structures in 90◦ directions are
depicted in Fig. 2. Here we assume that the gray value of white
pixels is I1, and that of black pixels I2, I2 > I1. F1 represents
the gravitational force between two white pixels per unit dis-
tance, F2 between a white and a black, and F3 between black
and black, F3 > F2 > F1 according to Eq. (1). The magnitude
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Fig. 2. Basic edge structures oriented in 90◦ directions.
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of the gravitational force of the center pixel exerts on each
other pixel within its neighborhood is illustrated in Fig. 2, the
arrow indicates the gravitational force direction, here a= 1

2 , for
simplification, we only consider 3 × 3 neighborhood of four
points, of which points 1 and 4 are latent edge points whereas
points 2 and 3 are non-edge points.

As can be seen from Fig. 2, all image points have four dou-
ble gravitational forces. For point 1, we first compute the mag-
nitude sum of gravitational forces in both x and y directions,
respectively,

Fx =
(
aF 2 ∗

√
2

2 + F1 + aF 1 ∗
√

2
2

)

−
(
aF 2 ∗

√
2

2 + F1 + aF 1 ∗
√

2
2

)
= 0,

Fy =
(
aF 2 ∗

√
2

2 + F2 + aF 2 ∗
√

2
2

)

−
(
aF 1 ∗

√
2

2 + F1 + aF 1 ∗
√

2
2

)

=
(√

2
2 + 1

)
∗ (F2 − F1).

Then we calculate the magnitude and the direction of the
vector sum of point 1 exerts on its neighborhood:

F 1 =
√

(Fx)
2 + (Fy)

2 =
(√

2
2 + 1

)
(F2 − F1),

�1 = arctan(Fx/Fy) = 0.

Using exactly the same method, we obtain the response of
points 2–4:

F 2 = F 3 = 0,

�2 = �3 = arctan(Fx/Fy) = �

2
,

F 4 = (
√

2
2 + 1)(F3 − F2),

�4 = arctan(Fx/Fy) = 0.

According to the above, the response F is 0 for non-edge
points such as points 2 and 3, but for latent edge points such
as points 1 and 4, F is greater than 0. In general, F 1 �= F 4,
we assume F 4 > F 1 > 0 = F 2 = F 3. Theoretically, we can set
an appropriate threshold, for example F, and let F 4 > F > F 1.
A pixel location is declared an edge location if the value of
response exceeds the threshold, here point 4 is labeled as edge
point. Performing the same steps at each image point an edge
map is then created (e.g., line 4 is labeled as edge). The edge-
direction information is given by �.

When using the Sobel or Prewitt operators in Fig. 2, the
pixels of Column 3 with point 1 and Column 4 with point 4 have
the same response and are both labeled as edge. Therefore, our
method is superior to Sobel and Prewitt operators according
to the criteria “only one response to a single edge” which was
described by Canny [16].

3.2. Generation of the edge operator

The entire algorithm of edge detection can be implemented
as follows:

(1) For each image point g(i, j), we consider a m×n neigh-
borhood � with pixels xk,l ∈ � & (k, l) �= (i, j). For each
point, the gravitational force of the point exerts on its neigh-
boring pixels is computed using Eq. (1):

�fi,j ;k,l = Gmi,jmk,l�r
‖�r‖3

, (3)

where �fi,j ;k,l is the gravity g(k, l) exerts on g(i, j), mi,j , mk,l

are the gray values of the pixel g(i, j) and g(k, l), �r is the
vector from g(k, l) to g(i, j), and

‖�r‖ =
√

(k − i)2 + (l − j)2. (4)

(2) Considering an image as 2D signals, in practical com-
puting, we compute the gravitational forces in both x and y
directions:

f x
i,j ;k,l = �fi,j ;k,l sin � = Gmi,jmk,l�r

‖�r‖3

k − i

�r
= Gmi,jmk,l(k − i)

‖�r‖3
,

f
y

i,j ;k,l
= �fi,j ;k,l cos � = Gmi,jmk,l�r

‖�r‖3

l − j

�r
= Gmi,jmk,l(l − j)

‖�r‖3
. (5)

And the vector �fi,j ;k,l can be calculated using the following
formula:

�fi,j ;k,l = f x
i,j ;k,l x̂ + f

y

i,j ;k,l
ŷ. (6)

The vector sum of all gravitational forces which the neigh-
borhoods exert on g(i, j) is expressed as

�Fi,j =
∑ �fi,j ;k,l = Fxx̂ + Fyŷ

(k, l) ∈ � & (k, l) �= (i, j), (7)

where

Fx =
∑

f x
i,j ;k,l (k, l) ∈ � & (k, l) �= (i, j),

Fy =
∑

f
y

i,j ;k,l
(k, l) ∈ � & (k, l) �= (i, j). (8)

(3) The edge strength response of point g(i, j) is produced
by the magnitude of the vector �Fi,j , its edge direction is given
by the direction of �Fi,j :

‖ �F‖ =
√

(Fx)
2 + (Fy)

2,

� = arctan(Fx/Fy), (9)

where ‖ �F‖ is the magnitude of the vector sum �Fi,j , � is the
direction of the vector sum �Fi,j .

(4) Set an appropriate threshold to produce an edge map.
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In fact, the effect of the algorithm is equal to a convolution
mask to approximate the first derivative of the image brightness
function. To illustrate this, substituting Eqs. (4) and (5) in Eq.
(8) yields

Fx =
∑

f x
i,j ;k,l = Gmi,j

∑ mk,l(k − i)(√
(i − k)2 + (j − l)2

)3

(k, l) ∈ � & (k, l) �= (i, j),

Fy =
∑

f
y

i,j ;k,l
= Gmi,j

∑ mk,l(l − j)(√
(i − k)2 + (j − l)2

)3

(k, l) ∈ � & (k, l) �= (i, j), (10)

Eq. (10) is a local computation, set the location g(i, j) as
the original of the coordinate system, so

(i, j) = (0, 0)

and(
k = −

⌊m

2

⌋
, . . . , . . .

⌊m

2

⌋
; l = −

⌊n

2

⌋
, . . . 0, . . .

⌊n

2

⌋)
.

For convenience we replace Gmi,j with a constant C since it is
constant in the convolving process. Eq. (10) can be simplified
to

Fx =
∑

f x
i,j ;k,l = C

∑ mk,lk

(
√

k2 + l2)3

(k, l) ∈ � & (k, l) �= (0, 0),

Fy =
∑

f
y

i,j ;k,l
= C

∑ mk,ll

(
√

k2 + l2)3

(k, l) ∈ � & (k, l) �= (0, 0). (11)

Eq. (11) equals to a convolving procedure.
Conventional operators, such as Prewitt and Sobel operators,

are sensitivity to noise and tend to generate spurious edges.
The effect caused by noise may be filtered out if more neigh-
boring points are considered by the operator. Experimental re-
sults demonstrate that for noisy images an edge operator with
a larger mask may provide a better edge result.

In practice, the C can be set to other value to act at some
special circumstances instead of only being defined as the gray
level of the center pixel of the mask. The parameters, m and
n, can take different values. In this paper, we say mask = x.
means m=n= x. For example, let C = 1, taking the mask size
equal to 3, we obtain two 3 × 3 masks for calculating the first
derivatives in the x and y directions, respectively:
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The parameter C can also take other values to achieve more
effective results. We have found that C can convey the re-
gional information around g(i, j) and makes the algorithm

more efficient under salt & pepper noise conditions when C =
sig(g(i, j)). Here sig(g(i, j)) is a sigmoid function which is
inspired by Etienne [27].

4. Experimental results

To demonstrate the efficiency of the proposed approach, we
carried out computer experiments on gray-level images. We
selected a few standard images which are either natural or
human-made (Fig. 3). The Lena and the Couple images are both
figure image. The Singapore airport image is a natural and
non-textured image and the square is a synthetic image. The
settings of these images vary from in-door scenes to out-door
views. The resolution of all images is 8-bit per pixel. The square
image is of the size of 256 × 256 pixels, the Singapore airport
is of 719 × 905, the rest two images are of 512 × 512.

Most edge detection techniques utilize a post processing
thresholding immediately after feature extraction to thin and
extend edge contours. There are many well-established thresh-
olding methods [28,29] and edge thinning techniques. In the
present work, the edge detection consists of two steps: edge
magnitude calculation and threshold. For magnitude result, we
first get the contrast stretched image with brightness ranging
from 0 to 255 by linear stretch method, then utilizes Otsu [30]
method to generate a threshold. The procedure described here
is also applied for the implementation of other standard edge
detectors, which are used for comparison in the present study.

In the rest of this section, we conduct two groups of com-
puter experiments to test the proposed approach. Group one
is designed to investigate the performance of the present
algorithm on the edge detection of real images, including clean
and noise images. Group two is designed to objectively com-
pare the performances of different edge detectors by using a

Fig. 3. A collection of sample images, where the square is of the size of
256 × 256, the Singapore airport is of 719 × 905, the rest are of 512 × 512.
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Fig. 4. Edge maps of the Lena image: (a) the present detector with mask = 3, C = 1 (b) the Sobel detector, and (c) the LOG detector.

Fig. 5. Edge maps of the Lena image: (a) the present detector with mask = 3, C = sig(g(i, j)), (b) the Sobel detector, and (c) the Canny detector.

computer generated image. They are, respectively, described in
the following three subsections. A brief discussion is given in
the last subsection.

4.1. Edge detection of clean images

It is well-known that both the Sobel and LOG detectors are
the most commonly used edge operators as first and second or-
der detection, respectively. For Lena image two edge maps ob-
tained by the two detectors are shown in Fig. 4(b) and (c). An
edge map obtained by the new detector is shown in Fig. 4(a)
with parameters mask = 3, and C = 1. Apparently, the stan-
dard Sobel detector and gravity detector yield similar results.
This is due to the fact that the Gravity detector uses the similar
convolution mask as the Sobel to approximate the first deriva-
tive of the image brightness function. The edge map of LOG
is slightly thinner, but it produces undesirable noise.

It is noted that none of the above-mentioned three edge de-
tectors resolves some structures of the Lena image such as the
nose feature. To illustrate the potential of the Gravity detec-
tor, we also conduct two tests by using Gravity with different
parameters. The Gravity parameters are chosen as mask = 3,
C = sig(g(i, j)). sig(g(i, j)) is the sigmoid function which has
the form

sig(g(i, j)) = 1

1 + e�(g(i,j)−ḡ(i,j))
, (12)

where ḡ(i, j) is the average intensity in the considered neigh-
borhood at point g(i, j) and � is the standard deviation in the
neighborhood at the same point.

These results are depicted in Fig. 5, along with those ob-
tained by Sobel and Canny detectors. Overall, the Canny detec-
tor produces smoother and thinner edges. However, it is clear
that most of the edge structures are well preserved by the new
detector. Although the edges by the present detector are slightly
thicker than those of the Canny detector, its performance is still
competitive with it, considering the Canny detector has a thin-
ning stage of additional edge. In contrast, it is noted that the
Gravity method detects more edge features (as the white
ellipse indicated) than the Sobel operator. Furthermore, the
edges detected by gravity operator are thinner than those of
Sobel. Therefore, the gravity detector is more efficient than
the Sobel detector for edge detection of these images.

4.2. Noisy images

To investigate the performance of the new algorithm under
noisy environment, we consider a number of low grade images.
We first compare the proposed detector with the Sobel and
Canny detector for salt & pepper noise. The noise intensity is
0.1, which denotes significant degradation of image quality as
show in Fig. 6.

For noisy Lena image, three edge maps obtained by these
detectors are shown in Fig. 7: (a) the present detector with
mask = 3, C = 1; (b) the Sobel detector; (c) the Canny detec-
tor. Obviously, the contrast of the Canny edge image is poor
and contains much small and spurious contour. For compar-
ison, much sharper edge images are successfully attained by
the new detector as shown in Fig. 7(a). The better performance
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Fig. 6. A noisy Lena and Couple image corrupted with salt & pepper noise with intensity = 0.1.

Fig. 7. Edge maps of the Lena image corrupted with additive salt & pepper noise (intensity = 0.1): (a) is obtained using the present detector with parameters
mask = 3, C = 1; (b) and (c) are obtained using the Sobel and Canny detector, respectively.
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Fig. 8. The vertical mask of expanded Prewitt detector.

of the present detector in the presence of severe noise is also
perceivable compared with Fig. 7(b), with much of the noise
pulses removed and the edge map is more clear.

Now we expand the mask size to 5. The compared detectors
are Prewitt and LOG detectors with the same mask size. Fig. 8
illustrates the vertical mask of expanded Prewitt detector [31].
Four edge maps of Couple image are show in Fig. 9. (a) and
(b) are obtained using the present detector with parameters (a)
mask =5, C =1; (b) mask =5, C = sig(g(i, j)); (c) and (d) are
obtained using the Prewitt and LOG detector with mask = 5,
respectively. The better performance of the present detector
in the presence of salt & pepper noise is clearly perceivable,
compared to Fig.9(c), much of the noise pulses is removed and
edge map is more lucid in Fig. 9(a).

This example also illustrates the effects of adjusting the pa-
rameters on the resultant edge map. Some of the fine edge struc-
tures are missing and the edges are slightly thicker in Fig. 9(c).
Comparatively, the edges in Fig. 9(b) are thinner and most of
the fine edges with relatively lower contrast are detected. Com-
pared with Fig. 9(d), the edge map of Fig. 9(b) is also clearer.
Hence, increasing mask size has a significant effect on the re-
duction of noise influence, and the parameter of C=sig(g(i, j))

results in thinner edges under salt & pepper noise conditions.
Results on the Singapore airport image corrupted with Gaus-

sian noise (mean=0, intensity=0.1) and random noise is show
in Fig. 10. Fig. 11 shows the resulting edge images detected
from noisy environment, obtained by the present detector (Row
1), the expanded Prewitt detector (Row 2), the LOG detector
(Row 3), and the Canny detector (Row 4). For all detectors, the
mask size of Column 1 is 5 and the Column 2 is 7, respectively.

As can be seen from these edge maps, the impact of noise
on these detectors is clearly visible: the LOG detector is in-
effective under such noise conditions. In contrast, sharp edge
images are successfully attained by using the proposed detec-
tor. There is a little visual difference between those obtained
by the present detector and the expanded Prewitt detector, but
with the mask expanding, the proposed algorithm detects more
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Fig. 9. Edge maps of the Couple image corrupted with additive salt & pepper noise (intensity = 0.1): (a) and (b) are obtained using the present detector with
parameters (a) C = 1, mask = 5 and (b), mask = 5; C = sig(g(i, j)); (c) and (d) are obtained using the expanded Prewitt and LOG detector, respectively, with
mask = 5.

Fig. 10. A noisy Singapore airport image corrupted with Gaussian noise
(mean = 0, intensity = 0.1) and random noise.

edges efficiently: when the mask size is expanded to 7, the
proposed detector can detect more edges, including some fine
structural edges (for instance the right bottom corner).

As mentioned in the introduction, the Canny detector [16]
was formulated as an optimization problem for being used un-
der noise environment. It is demonstrated in Refs. [32,33] that a
smooth parameter �= 1.5 is nearly optimal in association with
a 5 × 5 mask. The resulting edge images are included in Row
4 of Fig. 11 for comparison. Understandably, with the mask
expanding, the Canny operator can detect narrower edges. On
the contrary, the proposed detector (Row 1) can detect wider
edges therefore fine edges may be detected. It is demonstrated
that the new detector with a larger mask may provide a wider
edge map under such condition compared with others.

4.3. Edge detection of a synthetic image

To validate the Gravity detector further, we present an
alternative evaluation in this subsection. Edge detection sys-
tems could be compared in many ways. For example, image
gradients may be compared visually [33], where an edge image
is evaluated by a group of people and the average score may
serve as an index of quality. For synthetic images, where the
exact location of edges is known, Abdou and Pratt [34] pro-
posed a figure of merit to objectively evaluate the performance
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Fig. 11. Edge maps of the Singapore airport corrupted with Gaussian noise (mean = 0, intensity = 0.1) and random noise: (Row 1) the present detector;
(Row 2) the expanded Prewitt detector; (Row 3) the LOG detector, and (Row 4) the Canny detector. The mask size of Column 1 is 5 and Column 2 is 7.

of edge detectors. Their figure of merit is defined as

F = 1

max(Nl, ND)

ND∑
i=1

1

1 + �d2
i

, (13)

where di is the distance between a pixel declared as edge point
and the nearest ideal edge pixel, � is a scaling constant set to 1

9
as in Pratt’s work. Nl and ND are the numbers of ideal and de-
tected edge pixels, respectively. It is common practice to eval-
uate the performance of an edge detector for synthetic images
by introducing noise in the images. F is an index to measure

the accuracy of edge localizations. A larger value corresponds
to better performance, with 1 being a perfect result.

Performance comparison is based on a synthetic square im-
age as shown in Fig. 3. The figure of merit F for each of the
methods studied is calculated with respect to different power
of the added Gaussian white noise, and the results are shown in
Table 1. Here Gravity.1 with mask = 3, C = 1; Gravity.2 with
mask = 5, C = sig(g(i, j)); Sobel with mask = 3; LOG and
Canny are both with mask = 5, as Section 4.2. When the noise
level is 0, the F values are close to 1 and the performances of all
the tested detectors are very satisfactory. With the increase of
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Table 1
The statistic of the merit F for different edge detectors

Power of
noise

Detector

Gravity.1 Gravity.2 Sobel LOG Canny

0 0.8375 0.9054 0.8342 0.9054 0.9341
0.05 0.8412 0.9366 0.8301 0.1776 0.2778
0.1 0.8101 0.8608 0.7059 0.1774 0.2219
0.15 0.6006 0.6438 0.3947 0.1768 0.3194
0.2 0.3987 0.4710 0.2706 0.1763 0.2945
0.25 0.288 0.3810 0.2341 0.1753 0.2940

the noise level, the F values decrease. In contrast, the proposed
detectors achieve large F values over the domain of interest,
suggesting their superiority over the other three detectors.

5. Discussions

In the presence of noise, the direct application of the differ-
entiation operation in edge detection will encounter difficulties,
as illustrated by the preceding experiments. The differentiation
operation is sensitive to noise and the problem is mathemati-
cally ill-posed. To offset the effect of noise, a direct approach
is to remove noise before the differentiation, usually by con-
volving the raw input image with a Gaussian function, which
leads to the well-known LOG detector [8]. This problem
can also be solved by using regularization techniques devel-
oped for dealing with mathematically ill-posed problems [35].
Poggio et al. [36] proved that the varying formulation of
Tikhonov regularization leads to a Gaussian-like convolution
filter. In the present work, the impact caused by noise would
be reduced by using a larger mask. What’s more, with the
mask expanding, larger edges can be detected.

On the other hand, the algorithm has an extra parameter C,
which can be tuned to act at certain special circumstances. Ex-
periments in Section 4.1 indicated that when C = sig(g(i, i)),
more detailed edges can be detected under salt & pepper noise
condition. Considering the combined use of mask scale and C,
the Gravity algorithm is a potential method for more compli-
cated tasks.

6. Conclusions

A new algorithm which is efficient for edge detection based
on the law of universal gravity is proposed. The performance
of the proposed algorithm is compared with many other exist-
ing methods, including the Sobel, LOG, and Canny detectors.
Experiments on a variety of images have shown that the
algorithm is consistent and reliable even when image quality
is significantly degraded by noise, especially salt & pepper
noise. The algorithm requires two parameters. A series of edge
operators with various sizes of masks are obtained from m,
n. By considering a larger neighborhood, the effect of noise
on edges is reduced. With the same size mask, the proposed
detector is more effective than others. The combined use of
the parameter C makes the present algorithm efficient for edge

detection in a variety of practical situations, especially in salt
& pepper noise conditions.
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