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In this paper, an improved Hough transform (HT) method is proposed to robustly detect line segments in
images with complicated backgrounds. The work focuses on detecting line segments of distinct lengths,
totally independent of prior knowledge of the original image. Based on the characteristics of accumula-
tion distribution obtained by conventional HT, a local operator is implemented to enhance the difference
between the accumulation peaks caused by line segments and noise. Through analysis of the effect of the
operator, a global threshold is obtained in the histogram of the enhanced accumulator to detect peaks.
Experimental results are provided to demonstrate the efficiency and robustness of the proposed method.
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1. Introduction

Straight lines are frequently adopted as a geometric element in
high level image processing or object detection. Detecting line seg-
ments is a fundamental issue in image processing. Some methods
have been proposed, e.g. chain code (Lu et al., 2005), hidden Mar-
kov model based methods (Zheng et al., 2005), knowledge based
methods (Li et al., 2008), PCA (Liu et al., 2003), Bayesian methods
(Bonci et al., 2005), wavelet (Chien and Li, 1997), Ridgelet trans-
form method (Hou et al., 2003) and subspace (Aghajan and Kailath,
1995).

Compared with other methods, Hough transform (HT) is recog-
nized as a powerful tool to extract parameterized curves (Hough,
1962). Its major advantages include dealing with noise, degrada-
tion and partial disconnection and ease of realization. Many im-
proved HT methods have been proposed to extract straight lines,
circles, ellipses and natural shapes. Usually, a HT method consists
of the following phases: voting, peaks localization, determining
the actual parameters and verification.

The voting process has been well investigated and various vot-
ing patterns have been adopted to accelerate the accumulation
and/or highlight the peaks, e.g. probabilistic HT (Kiryati et al.,
1991; Shaked et al., 1996), randomized HT (Xu et al., 1990; Xu
and Oja, 1993), sampling HT (Ser and Siu, 1992), heteroscedastic
HT (Kiryati and Bruckstein, 2000), progressive probabilistic HT
(Matas et al., 2000) etc. A smooth kernel and iterative optimization
ll rights reserved.
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algorithm is proposed to determine the line parameters with better
accuracy (Palmer et al., 1997).

Taxonomically, there are two major peak localization methods:
local and global. The former takes the maxima in each N � N neigh-
borhood over the whole accumulator array, where the choice of N
is a critical task. For the latter, choosing the global threshold is also
a critical task. For many methods, some prior knowledge is needed
to determine the threshold.

Some work focuses on determining the line’s complete geomet-
ric description through analysis of the spread of votes around a
peak in the accumulator array (Atiquzzaman and Akhtar, 1995)
or using an intuitive weighting scheme based on likelihood ratio
test statistics (Yang et al., 1997). However, before extracting the
complete information, thresholds still need to be specified by prior
knowledge to determine whether there are some lines.

During voting, the accumulator array can be extended to pro-
vide more information. Utilizing both HT parameters and image
spaces, a boundary recorder is proposed to improve efficiency
and to detect line thickness (Song and Lyu, 2005). The effect is
demonstrated with large-size engineering drawings of degraded
quality.

Background information is also considered to improve detection
(Yang et al., 1997; Cha et al., 2006; Soffer and Kiryati, 1998). Since
constructing a universal model of all backgrounds is extremely dif-
ficult, some assumptions e.g. a Gaussian or a Poisson distribution
are adopted. The results show the improvements of noisy images.

The voting patterns around peaks in the accumulator array have
also been analyzed to remove the contribution of background,
including noises, artifacts and natural objects (Furukawa and
Shinagawa, 2003). A ‘butterfly’ pattern is adopted and distin-
guished from the background by evaluating the cross-correlation.
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Fig. 1. The mesh surface and contour of an ideal butterfly. (a) The mesh surface of
the butterfly. (b) The contour of the butterfly, its upper ridge, lower ridge, average
normal direction and average tangent direction at its peak.
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A similar model is also adopted in Leavers and Boyce (1987)) using
the Radon transform and detection is performed via a convolution
mask. Parameters still have to be specified and also have obvious
influence on the total performance.

A novel method is proposed to detect line segments in images
with complicated backgrounds. The objective is to robustly detect
line segments of distinct length based on as little prior knowledge
as possible. The butterfly pattern is also considered. The major dif-
ference between our method and above mentioned methods is as
follows. Instead of identifying the total butterfly, its geometric
characteristics are considered; then a local operator is imple-
mented to enhance the butterfly’s peak. As a consequence, it is
more feasible to determine a global threshold to distinguish lines
with noise. Since no information with respect to the butterfly is re-
quired, there is no demand of prior knowledge about the original
image.

The rest of this article is organized as follows. Next section de-
scribes the local enhancing operator, section 3 explains how to
determine the global threshold to locate peaks, the experimental
results are provided in section 4, and finally, the conclusion is
given.

2. The local operator enhancing ideal peaks

2.1. The accumulator array dimension

A line’s equation is expressed by Duda and Hart (1972):

q ¼ x cos hþ y sin h: ð1Þ

Essentially, a line segment in a digital image is a set of pixels.
According to Eq. (1), each pixel is projected to a sine curve in the
parameter space. In rest of this article, a ‘point’ in the image and
the accumulator is called a pixel and a unit, respectively. The image
and accumulator frame are defined in Duda and Hart (1972).
Depending on the number of rows and columns in the original im-
age, nr and nc, the parameters q and h vary inside ranges of
½�nr ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

r þ n2
c

p
Þ and [0,p), respectively.

To distinguish radial and angular differences caused by one pix-
el, the accumulator resolution is chosen as dq = 1 and

dh ¼ arctan 1
maxðnr ;ncÞ

� �
, then the accumulator’s size is determined

by the original image’s size. For simplicity, they are set as integer
powers of 2, the actual dimension are:

nq ¼ 2f log
qmax�qmin
2ð Þ; ð2Þ

nh ¼ 2
f log

hmax�hmin
dh

2

� �
; ð3Þ

where the function f(�) rounds the argument to the nearest integer
towards zero.

2.2. Accumulation distribution model of line segment

Before implementing a HT method, firstly the edge pixels in an
image should be extracted. Among them, except those belonging to
the lines, other pixels act as background clutter or noise. The mesh
surface of an accumulator obtained by conventional HT is shown in
Fig. 3(a). In the first glance, two peaks can be easily recognized,
which correspond to two line segments in the original image, see
Fig. 5(b). From the aspect of amplitude, the lowest peak is similar
with other parts. The expected peaks still can be identified by
our eyes because they are ‘isolated’. This motivates us to identify
peaks by ‘isolating’ characteristics.

The accumulation distribution corresponding to an ideal line
segment can be described by a butterfly model (Furukawa and
Shinagawa, 2003; Leavers and Boyce, 1987), see Fig. 1(a), whose
location and orientation are denoted by four parameters: hp and
qp refer to the peak’s position, /1 and /2 refer to the upper and
lower ridge angles, i.e. indicate the total butterfly’s orientation,
see Fig. 1(b). Angles /1 and /2 are determined by the pixel distri-
butions of the line segment, and vary inside the range of ð� p

2 ;
p
2�.

Without loss of generality, assuming that /1 > /2. The angle be-
tween a butterfly’s upper and lower ridges, which intersect at
the peak, is /1 � /2. This quantity varies monotonically with
respect to the distance between the two endpoints of the line seg-
ment. The proposed algorithm is based on this characteristic.

2.3. The local operator

To describe the ‘isolating’ characteristics, the difference of accu-
mulation values between adjacent units is considered. For an ideal
butterfly, such differences between its peak and any unit outside
the butterfly should be the same, since outside the butterfly, any
unit has zero accumulation, see Fig. 1(a). In presence of noise, usu-
ally this is not valid. A more conservative result is that from a peak,
the accumulation should descend more rapidly along a direction
outside the butterfly than a direction inside the butterfly. At a unit,
given all curves passing through it, the unit’s average normal direc-
tion is defined as the average of all the curves’ normal directions.
Similarly, the unit’s average tangent direction is defined too. Obvi-
ously, at a butterfly’s peak, the average normal and average tan-
gent directions should be mutually perpendicular and located
outside and inside the butterfly, respectively, see Fig. 1(b).
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Suppose the accumulation value at a butterfly’s peak is q, it
means that there are q sine curves passing through. Take the lth
curve (1 6 l 6 q) as an instance, whose corresponding image pixel’s
coordinates are denoted by (xl,yl). Given Eq. (1), this curve’s slope
rate at the peak (hp,qp), i.e. the derivative of q with respect to h,
can be expressed as:

kl ¼
dq
dh
¼ �xl sin hp þ yl cos hp l ¼ 1; . . . ; q: ð4Þ

According to the definition of a continuous curve’s normal and tan-
gent directions, they should be mutually perpendicular, and their
slope rates’ product should equal to �1. Then the curve’s normal
direction’s slope rate at the peak (hp,qp) is:

nl ¼
1

xl sin hp � yl cos hp
l ¼ 1; . . . ; q: ð5Þ

In the accumulator, it corresponds to an angle wl relative to the h
axis (anticlockwise):

wl ¼ arctanðnlÞ l ¼ 1; . . . ; q: ð6Þ

Finally, the angle corresponding to the average normal direction is
given by:

�w ¼ 1
q

Xq

l¼1

wl: ð7Þ

For any unit, the angle corresponding to its average normal
direction can be calculated by Eqs. (5)–(7). Then the difference of
accumulation value between itself and adjacent units are projected
to its average normal direction and summed together. Such quan-
tity is adopted to describe how prominent a unit is relative to its
neighbors. To keep those quantities, a new matrix R, with the same
size of the original accumulator, is built. An element of the original
and new matrices is denoted by zij and rij, respectively. In the ori-
ginal accumulator, a unit’s 8-neighborhood is defined, see Fig. 2.
Inside this neighborhood, units are denoted by one letter subscript,
e.g. instead of zij, z5 is adopted to refer to the central unit. For each
neighbor, there is a constant angle bi depicting its orientation rel-
ative to the central unit, i.e. the angle rotated from h axis to a seg-
ment connecting the central unit and this neighbor, anticlockwise.
The values from b1 to b9 (except b5) are 3p

4 ;
p
2 ;

p
4 ; p; 0; 5p

4 ;
3p
2 and

7p
4 , respectively. Then an angle ci is defined as the deviation be-
tween angle bi and the angle �w, calculated by following pseudo
codes:
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Fig. 2. The definition of an 8-neighborhood in accumulator. The dashed lines
represent the neighbors’ orientation relative to the central unit, and the dashdot
line represents the central unit’s average normal direction.
Algorithm 1. The process of computing ci

1: ci ¼ jbi � �wj;
2: if ci > 2p then
3: ci = ci � 2p
4: end if
5: if ci > p then
6: ci = 2p � ci

7: end if
8: if ci > p/2 then
9: ci = p � ci

10: end if

To calculate the sum, the weight for each neighbor is chosen as
cos(ci), i.e. to project the difference between the central unit and its
neighbors onto the central unit’s average normal direction. As a
consequence, the unit in matrix R has a value:

r5 ¼
X9

i¼1

ðz5 � ziÞ cos ci: ð8Þ

From an expected peak, the drop close to its average normal direc-
tion is treated with a larger weight, in contrast, the drop close to its
average tangent direction is treated with a smaller weight. Eq. (8)
realizes a one to one mapping from matrix Z to matrix R, in other
words, acts as an operator. Applying Eq. (8) to all units in the origi-
nal accumulator, the matrix R will be obtained. Note, for the units
on the accumulator’s boundaries, some terms in the right side of
Eq. (8), will be ignored. The effect of the operator to an accumulator
corresponding to Fig. 5(b) is shown in Fig. 3. It can be seen that,
after implementing the operator, two peaks become more
prominent.

The effect of the operator depends on the accumulation distri-
bution and three phenomena may take place: (1) At peaks caused
by lines, the value r is much more than z. The enhancement in-
creases with the butterfly decreasing in angular range (i.e.
/1 � /2). (2) For some units near the peak, although value z is high
also, r becomes smaller or even negative, because the descent from
the peak contributes a negative value to the sum. Because of above
two effects, a desired peak becomes more ‘isolated’. (3) For most
peaks caused by noise, which located close to each other, the accu-
mulation distribution satisfies the butterfly mode poorly, the aver-
age normal direction acts with less effect. The operator’s effect will
be demonstrated by statistical analysis on simulation data.

2.4. Simulation on synthesized images

First, the effect is verified with images involving only an ideal
line segment. The magnification, i.e. the ratio of the modified accu-
mulation peak to the original accumulation peak is considered. In
addition, two windows are defined, the sizes of which are 3 � 3
and 5 � 5, respectively, and both centered at the peak. The sum
of accumulation inside these windows (except the center) is calcu-
lated both before and after implementing the operator. Then the
ratio of the transformed sum to the original sum is obtained, see
Fig. 4. It can be seen that in spite of the line length, the magnifica-
tion with respect to the peak is approximately constant, the mag-
nification with respect to the window sums varies with the line
length, and always smaller than the peak magnification. In some
cases, it is even negative, so the ideal peaks become more
prominent.

Then a series of 18 images containing noise are tested. To sim-
ulate the effect of edge extraction, noise pixels are not uniformly
distributed throughout the image, but in three sub-regions, see
Fig. 5(a). In each image, noise pixels appear with a certain probabil-
ity. There are altogether 18 noise levels, which respectively



Fig. 3. The effect implementing the operator to an accumulator array. (a) The mesh
surface of the accumulator before implementing. (b) The mesh surface of the
accumulator after implementing.
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Fig. 5. Two sample images. (a) An image contains only noise pixels, which appear
with probability of 3%. (b) An image contains lines and noise pixels, which appear
with probability of 18%.
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correspond to probabilities vary from 3% to 20% with intervals of
one percent. Magnification at all local peaks in the original accu-
mulator are considered. In Fig. 6, two instances are demonstrated.
For all the noise levels, the average and variance of the magnifica-
tion at all peaks are drawn in Fig. 7(a). The average magnification
decreases monotonically, and despite the noise level, the variance
of the magnification is approximately constant. With a low noise
level, the magnification is similar with line segment, since the
peaks are located far away from each other. In other words, the
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line and noise at worst situation, probability = 20%.
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Fig. 8. The histogram of accumulator, the noise level in the original image is 15%.
(a) The histogram before enhancing. (b) The histogram formed by all positive values
after enhancing.
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butterfly pattern is satisfied to some extent. With the noise level
increasing, peaks will distribute closer to each other and the but-
terfly pattern is less satisfied. As a consequence, magnification will
decrease. Since the transformed accumulation is the product of the
original accumulation and the magnification, the accumulation dif-
ference between ideal line segments and noise will be amplified
over all noise levels.
Afterwards, two line segments are added to the image series,
see Fig. 5(b). The ratio between the accumulations corresponding
to the short segment and maximum noise is drawn in Fig. 7(b).
Obviously, the ratio decreases with the increasing noise level, both
before and after enhancing, the enhancement can be observed as
the deviation between the two curves. Special attention is paid
to the worst case, i.e. the noise pixel appears with probability of
20%. Before enhancement, the accumulation corresponding to the
short line segment almost equals to the maximum accumulation
caused by noise. 20 sample images are generated under this
assumption, and the proposed operator is applied to each image,
see Fig. 7(c). It can be found that, after enhancement, although
for most images the ratio between line segment and maximum
noise fluctuates from 1.5 to 2.1, for some case (sample No.14),
the operator does not work. Such situation can be considered as
the critical point of the proposed method’s effectiveness. This is
easy to understand, since in such situation, the number of noise
pixels is equal to or greater than the expected line length.
3. Peak location

Global threshold is adopted to locate accumulation peaks. In
real images, the ratio between pixel numbers of a line segment
and background clutter is influenced by some aspects, e.g. from
where the image was taken, or whether part of the line segment
is overlapped by other things, etc. To achieve better robustness,
it is necessary to find a way to determine the threshold valid for
different images.
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The accumulation histograms before and after enhancing for a
sample images are drawn in Fig. 8. After enhancing, only positive
values are considered to form the histogram, since negative part
is useless to determine the threshold, because a peak can not occur
with a negative value. Some phenomena can be observed: (1) Be-
fore enhancing, the histogram looks like a normal Probability Den-
sity Function (PDF), after enhancing, it looks like a negative
exponential PDF. (2) After enhancing, the difference between the
histogram shapes is reduced. (3) Before enhancing, when there is
Fig. 11. Experiments results
more image noise, the more rightwards the maximum value is
located and the wider the peak. (4) After enhancing, the ‘flat’ area,
corresponding to high accumulation value, becomes wider. This
coincides with the analysis of the simulation result.

The threshold can be determined by analyzing the histogram
shape. Intuitively, the boundary between the ‘steep’ and ‘flat’ parts
in the original histogram could act as the threshold. Since the ori-
ginal histogram looks like a normal PDF, Gaussian distribution
function (Amari and Nagaoka, 2000) is adopted for fitting. l is
of the proposed method.



Fig. 12. The ground truth lines and extracted result of a sample image. (a) The
original image and expected line segments chosen manually. (b) The extracted
edges by Canny operator and the detected lines by the proposed method.

Table 1
The number of detected lines in sample images.

Figure Methods

RHT PHT SHT PCA Ridgelet BF Ours

Fig. 11(a) 3.5 4.2 4 3 4 4 6
Fig. 11(b) 8.3 7.5 14 7 11 19 14
Fig. 11(c) 10.3 12.2 13 8 9 14 16
Fig. 11(d) 2.8 2.9 3 4 3 7 4
Fig. 12 15.3 18.8 19 24 19 39 22
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chosen as the accumulation corresponding to the maximum prob-
ability density, l + r corresponding to the maximum probability
density times 0.6065. A fitting sample is shown in Fig. 9, where
l + 3r is quite close to the boundary between the ‘steep’ and ‘flat’
parts. The effect of adopting this threshold directly on many
images is poor, either false-positive or false-negative appears of-
ten, especially with strong noise. To realize the benefit of the oper-
ator, a threshold can be determined in the histogram of the
enhanced accumulator. Given an accumulation value in the origi-
nal histogram, there should be a corresponding value in the en-
hanced histogram. In Fig. 7(a), it can be seen that the
magnification about noise varies with respect to the noise level,
so choosing a suitable magnification will be helpful to achieve a
better solution. Considering the 3rd observation with respect to
histogram, the mapping between maximum probability density’s
location and the noise level is drawn in Fig. 10.
Some intermediate variables are defined for clarity of presenta-
tion. xp is the accumulation corresponding to the maximum prob-
ability density in the original histogram, x1 can be any
accumulation in the original histogram, in this case it corresponds
to l + 3r, n is the image noise level, m is the magnification factor
for noise depending on the noise level, p is the ratio between mag-
nification for line segment and noise, and x2 is the accumulation
(threshold) in the enhanced histogram. Given xp and x1, the task
is determining x2. n, m and p act as intermediate variables. The
relationship between variables can be expressed as:

n ¼ f ðxpÞ; ð9Þ

m ¼ gðnÞ; ð10Þ

x2 ¼ p �m � x1: ð11Þ

The functions f(�) and g(�) can be fitted from Figs. 10 and 7(a),
respectively. To treat the worst cases, the magnification is increased
by a variance, which is a constant, see Fig. 7(a). p is chosen as 1.5,
the minimum valid value in Fig. 7(c). For all the sample images,
the obtained x2 is located inside the ‘flat’ part of the enhanced
histogram.

Note, in above description, n represents the noise level in
Fig. 5(a), i.e. the noise pixels are distributed only in three sub-re-
gions. Simulation result shows that there are similar mappings be-
tween peak location in the histogram and noise level, while noise
distributes in different ways. Here, n acts as a general purpose var-
iable reflecting noise level.

It is also possible to directly fit the enhanced histogram by a
negative exponential function, and then determine the threshold
by choosing a suitable probability density. The major difficulty is
that as already mentioned the flat part of the enhanced histogram
is quite wide. It’s easy to generate either a false-positive or false-
negative by an inappropriate threshold. We think the major reason
is the information with respect to the image noise is not consid-
ered. In Eqs. (9)–(11), information about noise is implicitly in-
volved, based on such information, the threshold is obtained. As
a consequence, better performance is achieved.
4. The experimental results

The effect of the proposed method is verified with real images,
five samples are shown in Figs. 11 and 12. The Canny operator is
adopted to extract boundaries. In sub-figures Fig. 11(a–c), all
ground truth lines are drawn in red, while in Fig. 11(d), ground
truth lines are drawn in white. In Fig. 12, the ground truth lines
determined by us manually are marked in the original image. In
contrast, the detection results are marked in the extracted
boundaries.

Some other methods were also tested, which are randomized
HT (running for ten times, then the average results were taken),
probabilistic HT (running for ten times, then the average results
were taken), sampling HT (with window of size 5 � 5), PCA meth-
od, Ridgelet method and the butterfly based method (BF for short)



Table 2
The number of false-positive (FP) and false-negative (FN) caused by different methods.

Figure RHT PHT SHT PCA Ridgelet BF Ours

FP FN FP FN FP FN FP FN FP FN FP FN FP FN

Fig. 11(a) 0 2.5 0 1.8 0 2 0 0 0 2 0 2 0 0
Fig. 11(b) 0 5.7 0 6.5 0 0 0 0 0 3 5 0 0 0
Fig. 11(c) 0 5.7 0 3.8 0 3 0 0 0 5 0 2 0 0
Fig. 11(d) 0 1.2 0 1.1 0 1 0 0 0 1 3 0 0 0
Fig. 12 0 16.7 0 13.2 0 13 0 8 0 13 8 0 0 10
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in Furukawa and Shinagawa (2003). The number of detected lines
is listed in Table 1, the number of false-positives and false-nega-
tives are listed in Table 2. The proposed method gives a good per-
formance on detection correctness. For the PCA method,
essentially, it detects the center line of line strips. Except
Fig. 11(d) and Fig. 12, the number extracted by PCA method is half
of our results, since the proposed method extract both boundaries
of a line strip, the PCA’s result is still recognized as correct.

In Fig. 12, there are 32 ground truth lines, for our method, the
number of false-negatives is 10, i.e. 10 lines are missed, mainly,
it is due to two reasons. First, some short line segments are ig-
nored, e.g. the chimney’s edges, second, while some lines are close
to each other, e.g. at the eaves close to the right boundary of the
image, some of them is missed because their corresponding peaks
are too close to be distinguished from each other. This is a task to
be solved in future work.

For Fig. 12, either PCA or BF method gives better performance.
To achieve this effect, much time and effort is consumed tuning
the parameters, especially when there is more than one parameter.
For our method, no parameters are needed to be tuned, that is its
major advantage compared to most existing methods.

The radial and angular accuracy of the extracted lines are also
compared, as there is no correct answer, such work is done manu-
ally and all the methods give similar accuracy.

5. The conclusion

In this article, an improved Hough transform method to detect
line segments is proposed, which makes two major contributions:
a local operator in the parameter space is defined to enhance the
difference between accumulation peaks caused by real line seg-
ments and noise. Global threshold in the enhanced accumulation
array is obtained by analyzing the shape of original accumulator
histogram and the enhancing effect for line segments and noise.

The experimental results show that the proposed method is
quite effective and robust to extract lines in spite of noise and par-
tial disconnection without any prior knowledge.

Compared to other methods, there is no parameter tuning
needed to adapt to different images. A time-consuming task is
avoided and the method can be implemented more autonomously
and the effect is less influenced.
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