
Mobile Transaction Supports for DBMS:An OverviewPatricia Serrano-Alvarado�, Claudia Roncancio, Michel AdibaLSR-IMAG LaboratoryBP 72, 38402 St-Martin d'H�eres, Francee-mail: Firstname.Lastname@imag.frAbstractIn recent years data management in mobile environments has generated a great interest. Several proposals con-cerning mobile transactions have been done, however, it is very di�cult to have an overview of all these approaches.In this paper we analyze and compare some proposals, we focus on the e�ect of mobile transactions on the ACIDproperties and on the execution model. In addition, we analyze approaches that deal particularly with the mobilenature of mobile hosts; in these proposals the ACID properties are not compromised because transactions are exe-cuted at multidatabase systems on the wired network. Based on our analysis, we introduce our ongoing research:the de�nition, design and implementation of a Mobile Transaction Service.Keywords: Mobile transactions, databases, mobility, atomicity, consistency, isolation, durability, commit pro-cessing1. IntroductionDistributed information systems are evolving in several directions which generate new challenges. Advances incomputer and network technologies have made mobile computing a reality but generate new kinds of problems[10], due, for instance, to the mobile nature of mobile clients and to frequent disconnections.Data management in mobile environments is gaining a great attention today with the emergence of mobilecomputing environments. To that extent, database system architecture should be revisited [17]. Concerningarising data management problems, solutions in distinct areas have been proposed [32] [18] [25]. The notion of�Supported by the CONACyT scholarship program of the Mexican Government1



transaction has also been revisited and several models have been introduced. These works indicate how currenttransaction technologies are not suitable for mobile information systems and propose di�erent extensions whichare di�cult to compare [4].In this paper we propose a deep analysis and comparison of previous mobile transaction proposals. The literatureon the subject is important and some attempts to analyze proposed models have been made [11][19]. However, wethink that it is necessary to make an extensive analytical comparison of these models. Additionally, we identifyrelevant issues that in
uence the construction of a Mobile Transaction Service (MTS). Thus, the last part of thepaper concerns our ongoing research which is the de�nition, design and implementation of a MTS.We are considering a mobile computing environment with a network consisting of stationary and mobile hosts(SH, MH). Shared data are distributed over several database servers executing on SH. Mobile hosts could be ofdi�erent nature ranging from PDA to personal computers. Each MH acts as a client and initiates queries/updatesconsidered as transaction operations. Here, we make no speci�c hypothesis about the database model (relational,object) or the DBMS type which are used. We consider only that the database deals with a collection of shareddata and transactions operate on them. An MH changes its location and network connections while transactionsare being processed. While in motion, an MH retains its network connections through the support of SH which actas Base Stations (BS). Both MH and BS may have storage capabilities and DBMS modules for running operationson behalf of a given transaction. However, MH are assumed to have limited storage capacity (cached data) andpower (battery life).Informally, a transaction is a set of operations that translate a database from a consistent state into anotherconsistent state. Transaction managers o�er ACID properties by implementing commit protocols, obtaining se-rializable executions, controlling visibility of non-committed transactions, supporting recovery, etc. Although,very often ACID properties are not appropriate and several models relaxing these properties have been proposed[22][21][26].In the context of mobile computing, there exist several interpretations of mobile transactions. For us, a mobiletransaction is a transaction where at least one mobile host takes part in its execution. In any case, the participationof an MH introduces dimensions inherent to mobility such as: movement, disconnections and variations on thequality of the communication. As we will see in the following, transaction managers (TM) supporting mobiletransactions have to adapt their functionalities to deal with these dimensions.In the scope of this paper we will focus on systems with a client-server architecture where clients are MH havingstockage/processing capacities and where the server is on the wired network. The server provides resources andtransaction management. We consider the system in a connected mode if the MH and the server are connected;otherwise it is in a disconnected mode. Whenever we use the term \local", as in local transactions and localprocessing, we refer to MH. 2



Section 2 presents a survey of analyzed proposals and their execution models. In section 3, the in
uence ofmobile transactions on ACID properties is analyzed and compared. Proposals that deal particularly with mobilityand disconnection are analyzed in section 4. Section 5, discusses issues on the de�nition of a Mobile TransactionService, our ongoing research. Finally, section 6 concludes the paper.2. Mobile transaction surveyIn this section we begin our analysis by introducing each analyzed model with a brief overview. In section 2.2 weanalyze and compare their respective execution model; we also identify their transaction types and their principalcharacteristics.
2.1. Proposals surveyClustering proposal [23] [24] assumes a fully distributed system and is designed to maintain database consistency.The database is dynamically divided into clusters, each one groups together semantically related or closely locateddata. A cluster may be distributed on several strongly connected hosts. When an MH is disconnected it becomesa cluster by itself. For every object two copies are maintained, one of them (strict version) must be globallyconsistent, and the other (weak version) can tolerate some degree of inconsistency but must be locally consistent.MT are either strict or weak. Weak transactions access only weak versions whereas strict ones access strict versions.Two-tier replication [16] considers both transaction and replication approaches for mobile environments whereMH are occasionally connected. A master version for each data and several replicated versions (copies) exist. Twotypes of transactions are supported: base and tentative transactions. Base transactions are executed accessingmaster versions (lazy-master replication scheme) whereas tentative transactions are executed accessing tentativeversions (local copies). Tentative transactions may perform updates on the MH in a disconnected mode. Whenthe connection is established the tentative transactions are re-executed as base transactions.Pro-motion [30][29] is a mobile transaction processing system that supports disconnected mode. Compacts areintroduced to allow local executions on MH. Necessary information to manage the compact is encapsulated init. To improve autonomy and to increase concurrency, object semantics are used in the construction of compactswhenever possible. Compacts are the basic unit of caching and control.Reporting [4] analyzes nested transactions [22] and open-nested transactions (such as sagas [21], split transac-tions [26] and multitransactions [27]) showing their limitations for mobile environments. [4] considers a mobiledatabase environment as a special multidatabase system with speci�c requirements, where transactions on MH3



are considered as a set of subtransactions. They propose an open-nested transaction model that supports atomic,non-compensatable transactions and two additional types: reporting and co-transactions [3][6]. While in execution,transactions can share their partial results and partially maintain the state of a mobile subtransaction (executedon the MH) on an BS.Semantics-based [5] focuses on the use of object semantics information to improve the MH autonomy in dis-connected mode. This contribution concentrates on object fragmentation as a solution to concurrent operationsand to limitations of MH storage capacity. This approach uses objects organization and application semantics tosplit large and complex data into smaller manageable fragments of the same type. Each fragment can be cachedindependently and manipulated asynchronously. Fragmentable objects can be aggregate items, sets, stacks andqueues.Prewrite [20] tries to increase data availability on MH by introducing a prewrite operation in addition to standardwrites. A prewrite makes data value visible at precommit before the commit of the mobile transaction. Permanentupdates on the database are performed later by the write operation at commitment. Two variants of data aremaintained: prewrite and write. Prewrite variant re
ects future data state but may be structurally slightly di�erentfrom the corresponding write value e.g., in an object of type document the prewrite is an abstract and the writeis the complete document.KT [11] (Kangaroo Transactions) proposes a mobile transaction model that focuses on the MH movement duringthe execution of transactions. Mobile transactions are generated at MH and are entirely executed at a Multi-database System (MDBS) on the wired network. KT proposes to implement a Data Access Agent (DAA) on topof existing Global Transaction Managers (GTM). This agent will be placed at all BS and will manage mobiletransactions and the movement of MH.MDSTPM [31] (Multidatabase Transaction Processing Manager architecture) proposes a framework to supporttransaction submissions fromMH in a multidatabase environment. The contribution concerning MH disconnectionsis the implementation of the Message and Queuing Facility (MQF) that manages the message interchange betweenMH and the wired multidatabase system. An MDSTPM is assumed at each host (MH/SH) on top of existing localDBMS. Local processing is the responsibility of the local DBMS. The MDSTPM coordinates the execution of globaltransactions, it generates scheduling and coordinates commitments.
2.2. Execution modelIn Clustering, strict transactions are executed when hosts are strongly connected and weak transactions whenMH are disconnected. Two kinds of operations are introduced weak reads and weak writes. Strict transactions4



Proposal Transactiontype MT re-quest Execution at MH Execution at wired networkClustering Strict and weaktransactions MH Weak transactions andlocal commit in discon-nected mode. Partici-pation in the executionof strict transactions inconnected mode Strict transactions and commitof weak transactions (synchro-nization, permanents updates)Two-tier replication Base and tenta-tive transactions MH Tentative transactionsin disconnected mode.Participation in the ex-ecution of base trans-actions in connectedmode Base transactionsPromotion Long-livednested-splittransactions MH The compact agent ex-ecutes entirely the MTand makes local com-mit The compact manager is incharge of compact construc-tion, commit of locally commit-ted transactions (synchroniza-tion, permanents updates)Reporting Open-nestedtransactions withatomic, non-compensatable,reporting andco-transactions MH/SH Subtransactions andeven global transac-tions Global transactions and sub-transactionsSemantics-based Long-lived trans-actions MH MT and local commit In answer to MH requests, ob-jects fragmentation (split) ismade by the database serverand also updates reintegration(merge)Prewrite Long-lived(nested, split)transactions MH MT and local commit Lock management and commitof locally committed transactions(write operations)KT Open-nested andsplit transactions MH Coordination and execution ofthe entire transactionMDSTPM Multitransactionsand local trans-actions MH Local transactions Coordination and execution ofmultitransactions
Table 1. Summary of execution models5



contain standard reads and writes (strict operations), whereas weak transactions contain weak operations. Whenreconnection is possible (or when application consistency requires it) a synchronization process, executed on thedatabase server, allows the database to be globally consistent.Two-tier replication uses two types of atomic transactions (base and tentative) that di�er in the version of datathey access. After a disconnected execution, the BS will re-execute tentative transactions as base transactions toreach global consistency. This re-execution is the way to make local updates persistent.Both, Clustering and Two-tier replication require a transaction manager on the MH to provide local transactionexecution, concurrency control, log management and recovery.Pro-motion uses nested-split transactions [4] [27] as its infrastructure. It considers the entire mobile systemas one extremely large long-lived transaction executed on the server. Resources needed to create compacts areobtained by this transaction through usual database operations. Compacts construction is responsability for thecompact manager at the database server. The management of compacts is performed by a compact manager, acompact agent at the MH and a mobility manager at the BS. The compact manager will act as a front-end for thedatabase server and appears to be an ordinary database client executing a single, large long-lived transaction. Oneach MH, the compact agent is responsible for cache management as well as for transaction processing, concurrencycontrol, logging and recovery. The mobility manager is in charge of transmissions between agents. MH transactionsare executed locally even in connected mode. A synchronization process is executed by the compact agent and thecompact manager at reconnection. This process checks compacts modi�ed by locally committed transactions. Ifthe compacts preserve global consistency, then a global commit is performed.In Reporting, a mobile transaction is structured as a set of transactions, some of which are executed on the MH.They consider that limitations on MHmake necessary the use of SH e.g., to store part of the state of the computationor to perform part of the computation. Open-nested transactions with subtransactions of the following four typesare proposed: atomic transactions have standard abort and commit properties. Non-compensatable transactionsat commit time delegate to their parent all operations they have invoked. Reporting transactions report to anothertransaction some of their results at any point during execution. A report can be considered as a delegation ofstate between transactions. Co-transactions are reporting transactions where control is passed from the reportingtransaction to the one that receives the report. Co-transactions are suspended at the time of delegation and theyresume their execution when they receive a report.In Semantics-based, mobile transactions are invoked at the MH, and for the database server point of view theyare long-lived because of communication delays. No assumptions are made about the transaction structure. MHfragment request includes two parameters: selection criteria and consistency conditions. The selection criteria6



indicates data to be cached on the MH and the required fragment size. The consistency conditions specify con-straints to preserve consistency on the entire data. Data fragmentation executed on the sever allows �ne-grainconcurrency control. Exclusive master copies of fragments are given to the MH and transactions can be entirelyexecuted on it. A reconciliation process is executed by the server when reconnection occurs. This model may beused with di�erent transaction types.In Prewrite, the main idea is to divide the transaction execution between the MH and the database server. TheTM on the MH executes the transaction, but permanent updates are made at the database server by a data manager(DM). Prewrite ensures that, by delegating the responsibility of write at the database, transaction processing isreduced on the MH. Three operations (prereads, prewrites and precommit) that will be executed by the TM areproposed. Ordinary reads and permanent writes are made by the DM. The BS has logging capacities and maintainsclose relationship with the DM. The transaction execution is divided in two parts, �rst, the TM requests to theBS necessary locks. The BS acquires locks from the DM. When the TM �nishes the transaction by a local commit(precommit), prewrites are sent to the BS. In the second part, the DM makes prewrites permanent and commitsthe mobile transaction. This model considers that mobile transactions are long-lived and implementation can bemade with nested and split transactions.In KT, preserving the ACID properties is the responsibility for each DBMS. The transaction model is builtusing concepts of open-nested [14] and split transactions [26]. The mobile transaction execution (actually a globaltransaction) is coordinated by the BS to which the MH is currently assigned. When one MH hops from a cell toanother (consequently from BS to BS) the coordination of the mobile transaction also moves. This mobility iscaptured by splitting the original transaction into two transactions (called Joeys transactions, there exist one Joeytransaction per BS). The split only concerns the coordination of the transaction. Thus, if the MH hops from BS-1to BS-2, BS-1 will just coordinate the operations that were executed during the stay of the MH in the BS-1 cell.In MDSTPM, as in KT, the manner ACID properties are enforced depends on each DBMS at each site. EachMDSTPM is responsible for coordinating its global transactions. For MH, because of disconnections, a SH co-ordinator is designated in advance. Therefore, once a MH submits a global transaction, it may disconnects andperforms some other tasks without having to wait for the mobile transaction to commit. The coordinator host willmanage the mobile transaction on behalf of the MH.All proposals but Reporting assume that mobile transactions are requested from MH. In Reporting, transactionscan be requested by any host.In table 1 we summarize all the execution models and their principal characteristics. We recall that localtransactions are transactions executed at MH. MT makes reference to mobile transactions. Whenever there is an7



empty cell in the table that means that we have not enough information to �ll it.3. Analysis of ACID propertiesWe consider that it is essential to know how mobile transactions deal with the ACID properties and how they areexecuted. In 3.1, 3.2, 3.3 and 3.4 we compare the models and identify common points regarding ACID properties.In this part of the analysis KT and MDSTPM are not included because they do not propose new solutions withrespect to ACID properties. These proposals (analyzed in section 4) are oriented toward managing movement anddisconnection properties. They assume that transactions will be executed by MDBS on the wired network.
3.1. AtomicityExcept for Reporting and Semantics-based, transaction validation is done in two steps. The �rst one is realizedon MH (local commit) and the second one (commit) at the BS/Database server. Clustering, Two-tier replication,Pro-motion and Prewrite execute local commit, each one with speci�c characteristics:� Clustering and Two-tier replication make local commit only in disconnected mode using special transactiontypes. In connected mode an atomic commit protocol is used (e.g., two phase commit) and it includesparticipation of several clusters/hosts.� Pro-motion and Prewrite do not di�erentiate connected and disconnected mode. Local commit is performedusing an atomic commit protocol.At the second step of the validation process, locally committed transactions execute commit to make updatespermanent on the database server. Transaction commitment can involve reconciliation mechanisms or transactionsre-execution.� Reconciliation in Clustering is made syntactically where weak transactions are aborted or rolled back if theirweak writes con
ict with strict transactions.� In Two-tier replication, if base transactions (when they are the re-execution of tentative transactions) fail, evenby taking into account the acceptance criteria (attached to each tentative transaction), then the tentativetransactions are aborted.� In Pro-motion, compacts involved in locally committed transactions are checked. If some compacts are nomore valid, then mobile transactions are aborted and a contingency procedure (attached to each local commit)is executed to obtain semantic atomicity.� In Prewrite, neither reconciliation nor re-execution are made. By the transaction processing algorithm andlocking protocol, Prewrite ensures that locally committed transactions will commit at the database server.8



The approach is di�erent in Reporting where each subtransaction is atomic but this does not prove the atomicityof the global mobile transaction. Except fornon-compensatable subtransactions, compensatable transactions can beassociated to subtransactions so (semantic) atomicity is guaranteed. In Non-compensatable transactions, reportingand co-transaction delegation does not a�ect atomicity because it does not require the invoking transaction of anoperation to be the transaction who either commits or aborts the operation. A transaction is quasi atomic if alloperations that it is responsible for are committed or none at all.In Semantics-based, transactions are considered long-lived. As MH are responsible of local transaction commitit would be possible to support atomic or not atomic transactions.Conceptually, Semantics-based, Pro-motion, Prewrite and Reporting consider transactions as long-lived ones. Ifthese transactions are executed on multidatabase systems, global atomicity depends on the autonomy of eachdatabase system [2]. If some DBMS cannot participate in a global atomic commit protocol, then atomicity is hardto be guaranteed.Cascading aborts may occur in Clustering, Two-tier replication and Pro-motion. Nevertheless, local committedtransactions modify local data, consequently, only aborts of local transactions are provoked. In addition, theseaborts concern only weak and tentative transactions because local results are exclusively available for these typesof transactions.Table 2 shows the validation process of compared proposals. We underline the fact that generally mobile trans-actions make validation in two steps, where local commit is done at MH and commit is done at the BS/Databaseserver.
3.2. ConsistencyClustering and Two-tier replication maintain consistency of replicated data with two versions. Both versions arelocated on the MH, one of them (weak/tentative) is used to support data evolution in disconnected mode. Thesecond one (strict/master) must always be consistent but sometimes it will contain old versions (in disconnectedmode). Consistency in strict/master versions is preserved using one-copy serializability methods e.g., quorumconsensus, master copy. Some particularities are:� In Clustering, semantic information is used to specify the degree of inconsistency for weak versions. Thisdegree may be bounded limiting the number of local commits, the number of transactions that can operateon inconsistent copies, the number of copies that can diverge, etc. There exist also a function h that controlsthis degree by projecting strict operations on weak versions. Full consistency is achieved by merging di�erentcopies of the same data located at di�erent clusters (reconciliation).� In Two-tier replication, tentative data versions are discarded at reconnection since they are completely re-freshed from master versions. 9



Validation processProposal First step at MH Second step at BS/DB serverClustering Disconnected mode: local commit ofweak transactions. Connected mode:2PC for strict transactions Commit involves syntactic reconcilia-tion with abortion and rollback in so-lution con
ictTwo-tier replication Disconnected mode: local commit oftentative transactions. Connectedmode: atomic commit protocol for basetransactions Tentative transactions are re-executedtaking into account their acceptancecriterionPromotion local commit of all local transactions A synchronization process checks com-pacts involved in local transactions. Incase of con
icts, local transactions areaborted and contingency proceduresare executedPrewrite local commit of all local transactions Local updates are made permanents bythe write operationsSemantics-based local commit Updates reintegration (merge). Asfragments are exclusive copies and theyhave attached consistency conditionsthere not exist con
icts in reintegra-tion.Reporting All subtransactions are atomic and they are able to commit independently ofthe parent transaction. Except for non-compensatable subtransactions, in caseof abortion compensating transactions can be associated to subtransactions
Table 2. Summary of validation processIt seems to us that weak/tentative transactions have drawbacks with respect to strict/base transactions, in theresynchronization process (reconciliation in Clustering and re-execution in Two-tier replication).Pro-motion and Semantics-based exploit semantic information to construct compacts and fragments:� For Pro-motion the compact represents an agreement between the database server and the MH. The compactmanager and the database server encapsulate in compacts: data, type speci�c methods, state information,consistency rules, and obligations. If the compact agent and compact manager respect all these conditions,the use of compacts will not a�ect database consistency. The compact designer can determine correctnesscriteria and concurrency control methods per compact.� In Semantics-based, to preserve consistency, objects must carefully support split (to make fragments) andmerge (to reconciliate fragments) operations. Another restriction to preserve consistency is to provide con-sistency conditions (supplied by applications) on the entire object. These conditions include allowable oper-ations, constraints of their input values and conditions on the object state.In Reporting, new ways to achieve consistency are not proposed, but subtransactions can be related to compen-sating transactions (except for non-compensatable) in order to maintain semantic consistency in case of abortions.10



Proposal Underlying concepts Use of semantic informationClustering 2 versions of data: strict (one-copy se-rializability), weak (degrees of inconsis-tency, data evolution in disconnectedmode) De�nition of the function h and degreesof inconsistencyTwo-tier replication 2 versions of data: master (one-copy se-rializability), tentative (local data evo-lution in disconnected mode) Acceptance criteriaPromotion Compacts including type speci�c meth-ods, consistency rules and obligations Compacts construction and contin-gency proceduresReporting Multitransaction approach Delegation, compensating transactionsSemantics-based Objects fragmentation (consistencyconditions and split/merge operations) FragmentationPrewrite Serializability is based on the local com-mit order of mobile transactions De�nition of data variants(prewrite/write)
Table 3. Summary of consistency propertiesPrewrite assures that the transaction processing algorithm along with the lock-based protocol, produce onlyserializable histories. This serializability is based on the local commit order of mobile transactions.It is important to notice that semantic information of objects is essential to guarantee consistency in mobileapplications. All analyzed models exploit objects semantics in di�erent ways. Clustering de�nes degrees of incon-sistency based on the application semantics. Two-tier replication manages an acceptance criteria between tentativeand base transactions. Pro-motion uses semantic information to construct compacts and Semantics-based to splitobjects. Reporting makes delegation based on semantic requirements, and Prewrite de�nes semantically identicaldata variants (prewrite/write objects).Table 3 summarizes the main concepts used to preserve consistency. It is also emphasized the importance ofsemantic information to o�er more 
exibility in consistency support.The next issue, isolation, is strongly related to consistency because the execution of a transaction in isolationpreserves database consistency.

3.3. IsolationIsolation is not strictly enforced by all proposals, some of them allow visibility of intermediate transaction results.Clustering, Two-tier replication, Pro-motion and Semantics-based give visibility of local committed results tolocal transactions on the same MH. On the other hand, Prewrite at local commit makes the results public to allhosts. In Reporting, visibility is permitted in atomic, reporting and co-transactions but not in non-compensatabletransactions. An atomic transaction can commit its execution even before the commit of its parent, and itsmodi�cations to the database become visible for others transactions. In reporting and co-transactions the objectiveis precisely to allow visibility of partial results while in execution.11



Proposal Visibility Concurrency controlprotocolClustering local committed transaction results are visible to lo-cal weak transactions on the same MH 2PL, 4 con
ict tables andnew lock types are pro-posedTwo-tier replication local committed transaction results are visible to lo-cal tentative transactions on the same MH Locking mechanismsPromotion local committed transaction results are visible to lo-cal transactions on the same MH 2PLReporting with subtransactions atomic, reporting and co-transactions visibility is allowed before the commitof the global transactionSemantics-based local committed transactions results are visible to lo-cal transactions on the same MH 2PL to control access tolocally cached fragmentsPrewrite local committed transactions results are visible to allhosts 2PL extended, one con
icttable and new lock typesare proposed
Table 4. Summary of isolation aspectsTaking Pro-motion and Reporting as open-nested transactions, global isolation is not respected since subtransac-tions are not executed isolately. After the synchronization process, Pro-motion splits its long-lived transaction. Alloperations that have been successfully synchronized form a separate transaction that is committed on the databaseserver. Results of this split (committed) transaction will be visible for all the database environment.To manage isolation (restraint visibility) Clustering and Prewrite propose new con
ict solution tables.� Clustering uses strict two phase locking and proposes four lock types that correspond to weak and strictoperations (WR, WW, SR, SW). Four con
ict tables for lock compatibility are proposed. The projectingfunction h utilizes con
ict tables to re
ect strict operations on weak versions depending on the applicationconsistency requirements. For example, strict consistency requires translating a strict write on an object intostrict writes on all its copies (strict and weak ones). Consequently, a SW lock is non compatible with anyother lock. Weak transactions release their locks at local commit and strict transactions at commit.� As Clustering, Prewrite uses a two phase locking protocol and the con
ict operation table includes prereadand prewrite operations (PR, PW, R, W). As prewrite and preread locks are managed at TM level and readand write locks at DM level, there exist no con
ict between prewrite/preread and write/read locks. To makeprewrites permanent the prewrite lock must be converted into a write lock so that the DM can write andcommit the mobile transaction. Preread locks are released at local commit time whereas prewrite/write/readlocks at commit time.In our opinion, Prewrite approach is interesting in applications using objects that can have two variants(write/prewrite value) as design objects (the prewrite represents a model of the design) or document objects.In these object types, prewrites are di�erent from writes and availability is improved with two variations of the12



\same object". Otherwise, using simple objects prewrites are identical to writes and the algorithm behaves asusing relaxed two phase locking.Since in Pro-motion the compact designer can determine correctness criteria and concurrency control methodsper compact, they propose to use a ten level scale. Levels are characterized based upon the degrees of isolationde�ned in the ANSI SQL standard as extended in [1]. Level 9 represents a serial execution of transactions andlevel 8 a serializable execution. Each succeeding level represents a lesser degree of isolation. At level 0 there isno guarantee about isolation. Because the arbitrary use of isolation levels can lead to inconsistencies, Pro-motionproposes simple rules:1. Transactions impose a minimal level for write and read operations.2. Each operation is associated to a level.3. None of the write operation level is lower than the write level of the transaction.4. None of the read operation level is lower than the read level of the transaction.5. The lowest level of any read operation is greater than or equal to the highest level required by any writeoperation.In Semantics-based, to ensure serializability, local transactions have access to cached fragments by conventionalconcurrency control protocols e.g. two phase locking.In table 4, we remark the importance of visibility at local commit. Having local data availability conducesto some kind of autonomy, consequently, local process at MH will not be blocked when disconnection occurs.Moreover, the table makes evident that two phase locking (2PL) is the concurrency control protocol most utilizedby the analyzed works.
3.4. DurabilityClustering, Two-tier replication and Pro-motion cannot guarantee durability before commit. Pro-motion withcompacts can give some guarantees of durability, but they may exist conditions that could not be respectedbecause of disconnections e.g., there is a deadline (in the compact) that could not be reached, consequently,durability is hard to obtain in the synchronization process. In Reporting, subtransactions are durable if the parenttransaction commits. Semantics-based and Prewrite models guarantee durability since local commit. The �rst onereduces fragments availability because it can hold fragments by an unde�ned period of time. The second one usesmany message exchanges to get locks from the BS. In the Prewrite algorithm, if a mobile transaction makes a localcommit, it is sure to commit, Prewrite does not permit a local committed transaction to abort.13



Proposal Durability guarantees DrawbacksClustering Yes, after commit (resynchro-nization) Locally committed transactions can be rolledback due to resynchronization con
ictsTwo-tier replication Yes, after commit (re-execution) Locally committed transactions can be rolledback due to resynchronization con
icts duringre-executionPromotion Yes, after commit (resynchro-nization) Locally committed transactions can be rolledback due to resynchronization con
ictsReporting Yes, if the parent transac-tion commits, subtransactionsare durableSemantics-based Yes, after local commit Reduction of fragments availability atdatabase serverPrewrite Yes, after local commit Many message exchanges between MH and BS
Table 5. Summary of durability propertyNote that logging issues are not discussed here. It seems that in the proposals we have analyzed these issuesare not clearly studied, but we are currently investigating these aspects.Table 5 shows the moment when durability is insured and some drawbacks.4. Movement and disconnection analysisIn this section we are concentrated on movement and disconnection issues. Previous analyzed proposals do notgive details about management of MH mobility. Only Pro-motion includes in its architecture a mobility managerthat is in charge of communication between the MH and the database server; but there is no details about itsfunctioning. Therefore, in this section we propose a complementary analysis for section3.As we mentioned before, in KT and MDSTPM the ACID properties are not a�ected by mobility because trans-action execution is the responsibility for DBMS located at SH. Although, as transactions are requested from MH,mobility and disconnection must be managed.In KT, to support MH mobility and disconnection, the Data Access Agent (DAA) tracks MH movement bymaintaining a linked list of all the BS that have been coordinators of the mobile transaction. This list will beused in case of cascading aborts. There exist also structures (transaction status table and local log) that storeinformation of mobile transactions like: global transaction ID, status (active, commit, abort), Joey transaction ID,subtransactions that are included in the Joey transaction, compensating transactions (if they exist), etc.MDSTPM The principal idea of Message and Queuing Facility (MQF) is an asynchronous message interchange,where messages are of types: Request, Acknowledgment, and Information. With MQF the MH can submit globaltransactions and switch to disconnected mode. In MH and coordinator hosts there exist tables and logs that record14



the overall state of the MH as well as information on global transactions (Message Queue, Transactions Queue,Global Log, Global Transaction Table, Site Status Table). At any moment, the MH can request information aboutits global transactions.Both approaches are very similar, they propose to add a layer in existing multidatabase architectures to managetransactions requested by MH. The main di�erence is that in MDSTPM the coordination of the mobile transactionexecution is centralized, that means that the SH coordinator is �xed in advance and it will not change during thetransaction execution. Unlike MDSTPM, in KT, the coordination is distributed along all the BS that the MH visit.Hence we note that KT deals with the mobile nature of MH, not only with respect to disconnections. Distributedcoordination reduces communication cost during execution, however, in case of cascading aborts communicationis highly incremented. In contrast, with a centralized coordination as in MDSTPM, cascading aborts will be easerand cheaper, however, in case of high mobility, communication will be expensive.To manage global transactions MDSTPM implements strict two phase locking for concurrency control and twophase commit for atomic commitment. We consider that if MDSTPM contemplates transaction execution at MH,these two mechanisms are not suitable because they lead to many message exchanges (MH with coordinator) andto unde�ned locking time of data (because of disconnections).In [13] it can be found a good analysis about the impact of mobility on transactions requested from MH andexecuted at DBMS on the wired network. They analyzed three possible approaches for transaction coordination:(1) �xed at the MH, (2) �xed at a centralized site, (3) moving from BS to BS. In other respects, [12] proposes amobile transaction de�nition dedicated to Location Dependent Data (LDD). They analyzed the impact of mobilityon LDD and their e�ect on the ACID properties.5. Towards a Mobile Transaction ServiceThe NODS project (Network Open Database Services) aims at de�ning an open, adaptable architecture thatcan be extended and customized on a per-application basis [7]. Our approach is characterized by a service orientedview of database functionality [9]. All DBMS and related tasks are unbundled into services (e.g. a persistenceservice) and applications use services as needed. In the design of services, particular attention is payed on theiradaptability.The Mobile Transaction Service (MTS), we are working on, provides support to mobile transactions and willcooperate with other services such as the replication, persistence [15] and event services [8] [28]. This sectiondiscusses some important issues about the MTS de�nition.Overall functionalities As we have seen in previous sections, mobile transaction support includes standard TMfunctions, extra functions and particular implementations.15



The most important and new feature the MTS must support is mobility management. This includes MHmovements and disconnections.Concerning function implementation, we have already identi�ed two important points that has to be modi�edbecause of mobility: transaction validation process and consistency management. We consider that it is crucialto perform transaction validation in two steps that corresponds to local commit and commit introduced in 3.1.Disconnections make consistency management more complicated. It is necessary to adopt particular concurrencycontrol protocols and synchronization process to o�er some kind of serializability.Transaction Processing Scenarios Considering the context introduced in section 1, the execution of mobiletransactions may be performed in accordance with one of the following scenarios:1. Mobile transaction is entirely executed on the database server.2. Mobile transaction processing is distributed between the MH and the database server.3. Mobile transaction is executed on the MH.Each one of these execution strategies has special characteristics and demands particular capabilities. In (1),it is necessary the MTS provides mobility management (utilizing some techniques like in KT or MDSTPM). Thatexecution can be \traditional" but the MTS should be aware of MH position and connectivity state to deliverresults.In (2), besides mobility management, MTS must be able to perform distributed executions where participantscould not communicate during executions. In this scenario, a two steps validation process would be appropriated.Further, consistency must be guaranteed with special concurrency control protocols and synchronization methods.In (3), MTS should ensure global consistency comprising MH updates. The MH has some freedom to managethe data locally but updates have to be incorporated in the database server. As in (2), concurrency control andsynchronization methods must be adapted.Consistency and Durability We emphasize the importance of avoiding application blocking at MH in discon-nected mode. To achieve this goal, local availability of consistent objects is necessary. As we have noticed, semanticapproaches are well adapted to manage consistency in mobile context. Moreover, local commit is necessary to ob-tain visibility of transaction results that are not already committed at the database server (in disconnected mode).Another important property to consider is durability of mobile transactions. Frequently, at resynchronization time,local committed mobile transactions have lower priority than non-mobile transactions, for mobile applications thisis a great disadvantage. It is important to remark, that due to all changes introduced by mobility, also logging hasto be adapted. Logging increases in importance because in addition to recovery purposes it is utilized to performsynchronization processes. 16



Transaction model In our opinion, the support of one single transaction type is not enough for mobile environ-ments. Di�erent transaction types are needed depending on the execution strategy. For example we could use for(1) 
at transactions, for (2) open-nested transactions and for (3) long-lived transactions. Open-nested transactionsby their structure can support some kind of local commit (allowing data evolution, application blocking is reduced)and parallel processing (when execution is distributed between the MH and the MTS). Long-lived transactions aread-hoc for the third execution strategy because of unde�ned disconnection time. The long-live transaction couldbe a simple transaction or an open-nested one.Architecture The analyzed models showed that BS can be a signi�cant support for the MTS. Besides establishingconnection with MH, the BS can have server capabilities as logging, data caching, resynchronization process,concurrency control mechanisms, etc. Delegating functionalities to the BS allows the MTS to save communicationcosts and to improve response time because the MH is closer to the BS than to the MTS. Consequently, for theMTS we will consider a three-tier architecture as client/agent/server, where the client is the MH, the agent is onthe BS and the server on the MTS. This architecture and the speci�cation of a prototype environment are part ofour future work.6. ConclusionsIn this paper we analyzed di�erent proposals that deal with mobile transactions. We organized our analysis inthree parts, in the �rst one, we examined and compared the execution models. In the second part, we discussedthe way ACID properties are preserved, pointing out common features and proposing summary tables. In the lastpart, we considered proposals oriented to MH movement and disconnection issues. In these proposals the ACIDproperties are not compromised because the transaction execution is made at MDBS on the wired network. Inaddition, we discussed the design of a Mobile Transaction Service which is the subject of our ongoing research.References[1] H. Berenson, P. Bernstein, and J. Gray et al. A Critique of ANSI SQL Isolation Levels. SIGMOD (ACMSpecial Interest Group on Management of Data), 2(24):1{10, May 1995.[2] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of Multidatabase Transaction Management.In VLDB, October 1992.[3] P. K. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about Extended Transactions. PhDthesis, Departament of Computer and Information Science, University of Massachusetts, Amherst, September1991. 17



[4] P. K. Chrysanthis. Transaction Processing in a Mobile Computing Environment. In Workshop on Advancesin Parallel and Distributed Systems, pages 77{82. IEEE, October 1993.[5] P. K. Chrysanthis. Supporting Semantics Based Transaction Processing in Mobile Database Applications.14th IEEE Symp on Reliable Distributed Systems, September 1995.[6] P. K. Chrysanthis and K. Ramamritham. Synthesis of Extended Transaction Models Using ACTA. TechnicalReport 93-05, University of Pittisburg, 1993.[7] C. Collet. The NODS project : Networked Open Database Services. ECOOP, 2000.[8] C. Collet, G. Vargas-Solar, and H. Grazziotin-Ribeiro. Open Active Services for Data-Intensive DistributedApplications. In IDEAS, Yokahama-Japan, September 2000.[9] K. R. Ditrich and A. Geppert. Component Database Systems. Morgan Kaufmann Publishers, 2001.[10] M. H. Dunham and Abdelsalam Helal. Mobile Computing and Databases: Anything New? ACM SIGMODRecord, 4(4), December 1995.[11] M. H. Dunham and Abdelsalam Helal. A Mobile Transaction Model that Captures Both the Data and theMovement Behavior. ACM/Baltzer Journal on special topics in mobile networks and applications, 2:149{162,1997.[12] M. H. Dunham and Vijay Kumar. De�ning Location Data Dependency, Transaction Mobility and Commit-ment. Technical Report 98-CSE-01, Southern Methodist University, Dallas, February 1998.[13] M. H. Dunham and Vijay Kumar. Impact of Mobility on Transaction Management. In Proceedings of theinternational workshop on data engineering for wireless and mobile access, pages 14{21. SIGMOBILE, August1999.[14] A. K. Elmagarmid. Database Transaction Models for Advanced Applications. Morgan Kaufmann, 1992.[15] L. Garc��a-Ba~nuelos and C. Collet. Towards an Adaptable Persistence Service: The NODS Approach. TOOLS2001 Workshop on Object-Oriented Databases, March 2001.[16] J. N. Gray, P. Helland, P.O'Neil, and D. Shasha. The Dangers of Replication and a Solution. In Conferenceon Management of Data, pages 173{182, Canada, June 1996.[17] J. Jing, A.S. Helal, and A. Elmagarmid. Client-Server Computing in Mobile Environments. ACM ComputingSurveys, 31(2), 1999.[18] G. Jomier and A. Doucet, editors. Bases de Donn�ees. Hermes Science Publications, to appear on June 2001.18



[19] S. K. Madria. Transaction Models for Mobile Computing. 15th IEEE International Conference on DistributedComputing Systems, June 1995.[20] S. K. Madria and B. Bhargava. A Transaction Model for Improving Data Availability in Mobile Computing.Distributed and Parallel Databases, 2001.[21] H. Garcia Molina and K. Salem. SAGAS. ACM SIGMOD International Conference on Management of Data,pages 249{259, May 1987.[22] J. E. B. Moss. Nested Transactions: An approach to Reliable Computing. PhD thesis, MIT, April 1981.[23] E. Pitoura and B. Bhargava. Maintaining Consistency of Data in Mobile Distributed Environment. In 15thInt. Conference on Distributed Computer Systems, Vancouver Canada, May 1995.[24] E. Pitoura and B. Bhargava. Data Consistency in Intermittently Connected Distributed Systems. In Trans-actions on Knowledge and Data Engineering, Nov 1999.[25] E. Pitoura and G. Samaras. Data Management for Mobile Computing. Kluwer Academic Publishers, 1998.[26] C. Pu, G. Kaiser, and N.Hutchinson. Split Transactions for Open-Ended Activities. In Proceedings of theFourteeth International Conference on Very Large Databases, pages 26{37, September 1988.[27] K. Ramamritham and P. K. Chrysanthis. Advances in Concurrency Control and Transaction Processing.IEEE Computer Society Press, 1996.[28] G Vargas-Solar. Service d'Ev�enements Flexible Pour l'Int�egration d'Applications Bases de Donn�ees R�eparties.PhD thesis, Universit�e Joseph Fourier, December 2000.[29] G. D. Walborn and P. K. Chrysanthis. PRO-MOTION: Management of Mobile Transactions. In 11th ACMAnnual Symposium on Applied Computing, San Jose Ca, March 1997.[30] G. D. Walborn and P. K. Chrysanthis. Transaction Processing in PRO-MOTION. In 14th ACM AnnualSymposium on Applied Computing, San Antonio Tx, February 1999.[31] L. H. Yeo and A. Zaslavsky. Submission of transactions from mobile workstations in a cooperative multi-database processing environment. In Conference on Distributed Computing Systems, 1994.[32] T. �Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, Englewood Cli�s, NewJersey, 2nd edition, 1999. 19


