Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration

Antonia Bertolino
antonia.bertolino@isti.cnr.it
ISTI - CNR
Pisa, Italy

Roberto Pietrantuono
roberto.pietrantuono@unina.it
Universita di Napoli Federico II

Napoli, Italy

ABSTRACT

In Continuous Integration (CI), regression testing is constrained
by the time between commits. This demands for careful selection
and/or prioritization of test cases within test suites too large to be
run entirely. To this aim, some Machine Learning (ML) techniques
have been proposed, as an alternative to deterministic approaches.
Two broad strategies for ML-based prioritization are learning-to-
rank and what we call ranking-to-learn (i.e., reinforcement learning).
Various ML algorithms can be applied in each strategy. In this paper
we introduce ten of such algorithms for adoption in CI practices,
and perform a comprehensive study comparing them against each
other using subjects from the Apache Commons project. We analyze
the influence of several features of the code under test and of the
test process. The results allow to draw criteria to support testers in
selecting and tuning the technique that best fits their context.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging.

KEYWORDS

regression testing, test selection, test prioritization, continuous
integration, machine learning

ACM Reference Format:

Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietran-
tuono, and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn:
Strategies for Regression Testing in Continuous Integration. In 42nd Inter-
national Conference on Software Engineering (ICSE °20), May 23-29, 2020,
Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3377811.3380369

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05....$15.00
https://doi.org/10.1145/3377811.3380369

Antonio Guerriero
antonio.guerriero@unina.it
Universita di Napoli Federico II
Napoli, Italy

Breno Miranda
bafm@cin.ufpe.br
Federal University of Pernambuco
Recife, Brazil

Stefano Russo
stefano.russo@unina.it
Universita di Napoli Federico II
Napoli, Italy

1 INTRODUCTION

Continuous Integration (CI) is widely practiced in the software
industry [21, 23] for its benefits in terms of release time and produc-
tivity [29]. Due to the frequent commits to the shared codebase, the
cost of continuously performing regression testing escalates [22].

Regression testing has been investigated for decades [36]. How-
ever, most techniques for reducing its cost in traditional develop-
ment cannot be applied at the scale of modern CI practices [5].
Scalability issues are due not only to the size of codebases and test
suites, but also to the dynamicity of such environments [22]. To
address the needs of regression testing in the context of CI, re-
searchers actively chase lightweight and effective test selection and
prioritization (TS&P) techniques.

An ideal TS&P technique for CI should be able to quickly identify
a relevant subset of test cases that can safely and timely detect any
potential regression introduced by the latest committed changes.
Solutions are investigated along two main directions: heuristics
to trade off precision and effort [5, 7, 34], and fully automated
approaches leveraging Machine Learning (ML) algorithms [1, 28].
This paper features a TS&P approach that first picks a subset of test
cases using a coarse-grained static selection approach as the one
proposed in [34], and then prioritizes them through ML.

Prioritization is basically a ranking problem and naturally lends
itself to be formulated as a learning task. In fact, several authors
have investigated the use of ML for prioritization in CI, as we discuss
in the next section. However, we still lack criteria for choosing the
most appropriate technique to be applied in a certain situation. In
this paper, we address the gap by experimentally evaluating ten ML
algorithms which may be adopted for TS&P in CI, and analyzing
the influence of features of the code under test (CUT) and of the
test process. Nine of the ten ML algorithms have never been used
before for test prioritization.

We consider two different learning strategies. Learning-to-rank
(LTR) encompasses mainly supervised algorithms, proved useful
in information retrieval and natural language processing [18]. In
software engineering, LTR was successfully applied to defect pre-
diction, to rank modules based on their defectiveness [35]. In test
prioritization, LTR can be used to rank test targets (e.g., test cases or
test classes) based on a testing objective (e.g., the chance of exposing
failures). Being usually formulated as a supervised learning problem,
LTR requires prior training. When the operating context differs

https://doi.org/10.1145/3377811.3380369
https://doi.org/10.1145/3377811.3380369
https://doi.org/10.1145/3377811.3380369

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

from the training one, the model may no longer be representative
and may loose its prediction ability. This indeed may happen in CI.

An alternative strategy, suited in dynamic contexts, is reinforce-
ment learning (RL). RL foresees an artificial agent that learns from
the environment by observing its state and selects a proper action,
either from a learned policy or by random exploration of possible
actions. As a result of the action, the agent receives feedback in
form of rewards; the goal is to take actions that maximize the re-
ward. The agent is usually implemented with (shallow or deep)
neural networks, mapping state-action pairs to rewards. We denote
RL algorithms applied to ranking as ranking-to-learn, as opposed to
learning-ro-rank, since they leverage the ranking at each step to im-
prove the model’s predictive ability. We foresee a potential benefit
in using RTL for test prioritization in CI, due to its natural ability
to adapt to changes in the test suites — with removed and newly
added tests at every CI cycle - and to changes in the CI process.

In summary, the original contributions of this paper are:

e We present ways to formulate TS&P as a ML problem;

e We conduct the first experimental study comparing perfor-
mance of LTR and RTL test prioritization algorithms in CI;

e We identify and study features of the CUT and of the CI pro-
cess, which may affect the effectiveness of algorithms;

o We draw criteria for applying ML techniques to the TS&P prob-
lem in CI environments, thus supporting testers in selecting
and tuning the strategy that best fits their context.

The paper is organized as follows. Section 2 surveys related work.
Section 3 presents our TS&P techniques. Section 4 describes the
experimental evaluation, and Section 5 presents the results. Threats
to validity and guidelines are discussed in Section 6. Section 7
provides concluding remarks.

2 RELATED WORK

Research on TS&P in CI environments is today very active. A recent
study analyzes change commits of almost one thousand Github
projects, to understand the needs of regression test selection [34].
Various techniques have been proposed to efficiently identify those
test cases that exercise the changed code [7, 13]. Machine Learning
has been proposed for this purpose, too: Pang et al. [25] demonstrate
that simple unsupervised learning algorithms such as k-means,
based on coverage information, can be used with good results.
However, at large scale it may be infeasible to collect coverage
information [5]: in contrast, static approaches use program analysis
to identify the code parts potentially affected by a change. Legunsen
et al. [16] observed that class-level techniques may be as effective
as dynamic ones. Following their conclusions, this work adopts a
static approach to test selection at class-level (see Section 3).

Test suite prioritization techniques are reviewed by Khatibsyarb-
ini et al. [12], who classify 69 primary studies between 1999 and
2016. They find that the three most used prioritization techniques
are search-based (25%), coverage-based (18%), and fault-based (10%).
The survey includes the work by Thomas et al. [30] using topic
modeling (a text mining method) for similarity-based test prioriti-
zation, yet it does not identify an explicit class of ML prioritization
techniques. Indeed, those more closely related to our work - i.e.,
[1, 28], discussed below - appeared only later.! The survey missed

IReference [1] is dated November 2016, probably too late to appear in [12].

Bertolino, Guerriero, Miranda, Pietrantuono, Russo

though a 2006 work by Tonella et al. [32], who apply the Case-Based
Ranking algorithm to rank tests according to coverage, complexity
metrics and historical data; when the ordering between two test
cases cannot be decided, the user is asked to manually rank them.

Targeting CI environments, we opt for the analysis of fully au-
tomated ML techniques. These draw increasing interest today in
many domains [26], including several software engineering tasks,
as early surveyed by Zhang and Tsai in 2003 [37]. Use of ML in
software testing is the focus of a recent mapping study by Durelli
et al. [4], who noted a surge of research in this topic in the very last
years. They identify four primary studies that use ML for test prior-
itization: in addition to the one by Tonella et al. already discussed
[32], they are [1, 17, 28].

Lenz et al. [17] propose a ML strategy, which leverages test-
related information to support various tasks, including test pri-
oritization: they first use clustering of data derived by executing
some example test cases to obtain groups of functionally related
test cases; these clusters are then used to train a ML classifier.

Busjaeger and Xie [1] claim to be the first to reduce the problem
of test prioritization to that of LTR: their model learns from a
training set made up by past changes and by the tests observed for
each of them; tests are binary labelled (pass/fail). A feature vector
is created for each change/tests pair. Their model, experimented on
a real-world dataset, includes five features: coverage data, test-file
path similarity and test content similarity, failure history, and test
age. The approach, based on a listwise LTR algorithm (see Section
3.2.1), showed significantly better results than existing heuristics
relying on single features. We experiment a different listwise LTR
algorithm, never used before, and compare it to other strategies.

Lachman et al. [15] apply the LTR SVM-Rank algorithm to black-
box prioritization starting from test cases and failure reports in
natural language (NL). They derive a dictionary of terms from the
test cases and collect further metadata based on history and require-
ments. The evaluation shows that ML prioritization outperforms
previously available manual approaches by experts. As we target
CI environments, we do not consider tests and requirements in NL.

Spieker et al. [28] observe that existing prioritization techniques
using historical information cannot properly account for changes
in the testing context: on the one side, test cases can be removed
from or added to the test suite; on the other, the testing focus could
vary based on external factors. Therefore they propose RETECS, the
first TS&P approach using RL with a shallow neural network agent.
As a lightweight approach, it uses only failure history information.
The evaluation on a real-world data set shows that performance
comparable to deterministic approaches can be achieved after a
learning stage of about 60 CI cycles, without training. We perform
a more comprehensive analysis of RL algorithms, including multi-
layer perceptron and random forest, besides a shallow network.

Finally, Elbaum et al. [5] propose a history-based TS&P strategy
for CI, customized to the pre- and post-submit stages of the Google
CI process, whereas our study does not assume any specific process.

3 APPROACH

In CI practices, testing is a time-constrained problem, typically
dealt with by proper test selection and/or prioritization algorithms.
The goal of the former is to select only those tests exercising the

Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration

'_Test Prioritization

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Selected

1

1
(Incremental) Infer changed classes E
Dependency and depending

1

1

1

:

: T
(& ana|ysis (2 testtargets :
1

1

1

1

1

!

Code
Repository

2
L, Dependency |
graph

Priori-

Extract code change
(3) and test metrics
N

tests

Ranked
test list

Features n
__4

ML Model

Execute
tests

Figure 1: Overview of the test selection and prioritization process

code directly or indirectly affected by changes. The latter reorders
the entire test suite so that tests with higher priority are run first.
Selection alone may be insufficient if time between commits is so
short that not all selected tests can be run, or when the goal is to
avoid running many non-failing tests. Prioritization without selec-
tion may be unsatisfactory too, as it might act on non-relevant tests.
Clearly, they can be combined, by selecting a subset of tests, then
prioritizing them [22], or by prioritizing the suite, then selecting
tests, e.g., by a temporal threshold excluding the lowest priority
ones [28]. A process made up by a lightweight coarse-grained selec-
tion followed by ML-based prioritization is proposed here (Fig. 1).

3.1 Test selection

We adopt a conservative criterion for test selection, based on static
class-level dependency analysis. Static techniques are preferred over
dynamic ones since the latter are often impractical in CI environ-
ments due to runtime overhead. Lightweight dynamic techniques,
like in [7], could be applied, but their reliance on runtime collection
of dependencies is a hurdle in CI contexts, as it is time-consuming
and, for programs with non-determinism, the result may be unsafe
since collected dependencies may not cover all possible traces [16].
Class-level is preferred to method-level selection, as it is faster and
cheaper, and even safer [16][34]. We exclude coverage-based test
selection (and prioritization as well), which in CI may be expensive
(due to the costs of instrumentation, recording and maintaining
coverage data per release) and inaccurate (the quick cycles and code
changes make coverage data imprecise and obsolete) [5][8][9][34].

In the first CI cycle, we build the class-level dependency graph;?
at next commits, we consider the changed classes and update it
accordingly (Step 1 in Fig. 1). By querying the graph, we obtain
(Step 2) all the classes that transitively depend on the changed
classes, along with the associated test classes, which are our test
targets. These are then prioritized.

3.2 Test prioritization

The test targets prioritization criteria are fault detection and exe-
cution time. Several ways of combining these two criteria can be
envisaged, depending on the testing objective. As usual in test pri-
oritization, fault detection is assumed here as the primary criterion:
the optimal ranking list is the one that orders all failing test targets
first and non-failing targets after; within each of these two sublists,
targets with shorter execution time are ranked first.

The features used to predict the ranking (derived in Step 3)
are listed in Table 1.2 The first three rows are code metrics of the

2We use SCITools Understand 2.0 (http://scitools.com).

Table 1: Code and test metrics

Type Metrics Description
Program AvgLine, AvgLineBlank, AvgLineCode, AvgLineComment, Count- Metrics related to
size DeclFunction, CountLine, CountLineBlank, CountLineCode, the amount of lines
CountLineCodeDecl, CountLineCodeExe, CountLineComment, of code, declara-
CountSemicolon, CountStmt, CountStmtDecl, CountStmtExe, tions, statements,
RatioCommentToCode and files
McCabe’s AvgCyclomatic, AvgCyclomaticModified, AvgCyclomaticStrict, Metrics related to
cyclomatic AvgEssential, MaxCyclomatic, MaxCyclomaticModified, MaxCy- the control flow
complexity clomaticStrict, MaxEssential, MaxNesting, SumCyclomatic, Sum- graph of functions
CyclomaticModified, SumCyclomaticStrict, SumEssential and methods
Object- CountDeclClass, CountDeclClassMethod, CountDeclClassVari- Metrics based on
oriented able, CountDeclExecutableUnit, — CountDecllnstanceMethod, object-oriented
metrics CountDeclInstanceVariable, ~ CountDeclMethod, =~ CountDecl- constructs
MethodDefault, CountDecIMethodPrivate, CountDecIMethodPro-
tected, CountDeclMethodPublic
Test his- Number of failed tests in the current commit, Number of failed Metrics based on
tory tests per test class n commits before the current one (n=1 to 4), the history of tests

Total execution time of all the tests of the test class, Last time the

execution

test class was run

class(es) under test. The last row refers to test metrics: test execution
time and failure history of the test target up to the previous four
commits.® Specifically, we compute the difference between the
metrics’ values of two consecutive commits. This study analyzes
the following LTR and RTL strategies (for adoption in Step 4).

3.2.1 LTR. Training is done on a number of observations W, de-
pending on the amount of history available; the resulting model
is used to prioritize tests for next commits. The model needs to be
re-trained from time to time: this is preferred to online learning
when training is expensive (e.g., for a large codebase). The LTR
strategy can use pointwise, pairwise or listwise algorithms [18].
Pointwise LTR. The ranking problem is transformed into classifi-
cation, regression, or ordinal classification, and solved with respec-
tive existing methods. The training data are typically supervised
learning data; given a sample (a test target), the algorithm predicts
the class label, real number or grade label for the three cases. For
example, in classification problems the score can be the probability
of a test belonging to a class (e.g., high-priority and low-priority,
in a binary formulation); in regression and ordinal classification
problems, a function of the testing objective yielding a real priority
number or a grade. The loss function in learning is pointwise in
the sense that it is defined on a single object (feature vector).
Pairwise LTR. Ranking is transformed into a classification or
regression problem, where a sample is a pair of test targets: a model
can tell which test target has higher score than the other in a pair.

3 A too long history may not make sense in CI, as code changes and test outcomes
generally change over time. The choice of 4 previous commits was first made in [28].

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

The goal is to minimize the average number of inversions in ranking,
due to unordered pairs.

Listwise LTR. The problem is addressed in an intuitive way, as
ranking lists are taken directly as samples in both learning and
prediction. The approach trains a model able to assign scores to
feature vectors and rank them accordingly. The goal is to minimize
the difference between the predicted and the actual ranking lists.

In classification-based pointwise LTR, we consider four classes
derived from the two above-mentioned prioritization criteria (fault
detection and execution time), which are (in decreasing priority):
Class 3: At least one failure is detected running the test target, and
the execution time of the test target is shorter than a threshold (com-
puted as the median of execution times on the last W samples);
Class 2: At least one failure is detected running the test target, and
its execution time is longer than the threshold;

Class 1: No failure is detected running the test target, and its exe-
cution time is shorter than the threshold;

Class 0: No failure is detected running the test target, and the
execution time of the test target is longer than the threshold.

In regression problems, the relevance of test targets needs to be
defined for the LTR algorithm to assign a score R; to the i-th target.
With the objective of prioritizing the failing tests first and, then,
the shortest ones, the relevance function is defined as:

Ri=Fi(l+e)+ (1-F)e li=F+e i (1)

where F; = 1 if the test target fails at least once, 0 otherwise, and T;
is the execution time of the target. This ensures that a higher score is
given to failing and shorter test targets compared to the others (i.e.,
failing/longer, non-failing/shorter and non-failing/longer having
progressively lower scores).

3.2.2 RTL. Training is done online, namely when the agent up-
dates its knowledge about state-action-reward. The reward is im-
plemented as in the classification-based pointwise approach, i.e.,
with four classes. Here, the states are the test targets to prioritize.
The policy is a function from states to actions, which initially is a
loose approximation of the optimal policy, and is then refined over
time by the gained experience. An action is the assignment of a
priority to a test target by using the policy, preferring the actions
rewarding more. Several approximators of the policy can be used,;
neural networks are the commonly used ones [33].

In our formulation, the approximator receives a state as input,
and outputs a probability vector of class membership (for the four
classes). The probability is used as priority score to rank tests at-
tributed to the same class. To train the agent, a mechanism called
experience replay is exploited [19]: the past experience of the agent
(in terms of state, action, reward, next state) is stored separately
in order to have the opportunity to reprocess it later and use for
learning in different ways. In an online setting as ours, the replay
memory keeps the experience information of the last N time steps,
with N constrained by the limited memory capacity. When the
capacity is reached, oldest experiences get replaced first. Training
exploits a batch of experience, which can be sampled in many ways:
we sample it randomly, giving the newer observations higher prob-

ability of selection than the older ones; given the i-th observation
1/i
N1

(the bigger the older), the selection probability is: p; =

Bertolino, Guerriero, Miranda, Pietrantuono, Russo

Table 2: Algorithms

Strategy Class Algorithm

LTR Pointwise
LTR Pointwise Random Forest (RF)

LTR Pairwise LambdaMART (L-MART)
LTR Pairwise MART

K-Nearest Neighbor (KNN)

LTR Pairwise RankBoost
LTR Pairwise RankNet
LTR Listwise Coordinate ASCENT (CA)

RTL Reinforcement Learning Shallow Network (RL)
RTL Reinforcement Learning Multilayer Perceptron (RL-MLP)
RTL Reinforcement Learning Random Forest (RL-RF)

We consider three RTL variants, where the agent is: i) a shallow
network, as the one used in the Spieker’s model [28], but preceded by
the test selection described in Section 3.1 and with a different reward
(classification-based); ii) a multilayer perceptron; iii) a classification
algorithm (namely, Random Forest).

4 EVALUATION

4.1 Algorithms

This work evaluates the ten algorithms listed in Table 2. They can
be further classified into ensemble and non-ensemble algorithms: the
former category includes: RF, RL-RF, RankBoost, MART, L-MART;
the others are non-ensemble. The Weka? and Knime® tools were
used for pointwise algorithms, and the RankLib library® for pairwise
and listwise algorithms. The number of samples used for training,
initially set to 2,000, is subject to sensitivity analysis. For supporting
the independent verification and replication, we make available
the Python implementation for the RTL strategy, the code for test
selection (for Java and the Maven build system), the algorithms’
settings as well as additional results not included here for the sake
of space.”

4.2 Experimental factors

We investigate what factors make some ML algorithms behave
better than others for test prioritization in a CI context. We focus
on characteristics of the code under test and of the CI process.
As for the former, we consider: i) the variability of the code/test
metrics; ii) the failure proneness of the code, which causes more or
less balanced datasets; iii) the code/test metrics that can be used
as features for training and improving prediction. As for the latter,
we consider: i) the inter-commit time, which determines the time
available for performing TS&P; ii) the cycle size (i.e., size of the
sample, or number of tests, per commit), which affects the length of
the history available for learning.

4.3 Research Questions

The study addresses the following research questions:

4https://www.cs.waikato.ac.nz/ml/weka/.
Shttps://www.knime.com/knime-software.
Shttps://sourceforge.net/p/lemur/wiki/RankLib/.
"https://github.com/icse20/RT-CI

https://github.com/icse20/RT-CI

Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration

e RQ1. How do the selected algorithms perform in a CI context
in terms of prioritization effectiveness and cost?
- RQ1.1 Which algorithm performs better?
- RQ1.2 Which of the four strategies (RTL; pointwise, pairwise
and listwise LTR) performs better?
- RQ1.3 Which category performs better between non-ensemble
and ensemble algorithms?
e RQ2: What is the influence of code characteristics?
- RQ2.1: What is the influence of CUT variability?
- RQ2.2: What is the influence of the code failure proneness?
- RQ2.3: How many and which features are important?
e RQ3: What is the influence of CI process characteristics?
- RQ3.1: What is the influence of the inter-commit time?
— RQ3.2: What is the influence of the cycle size?

4.4 Subjects

We ran experiments on six Java subjects from the open-source
Apache Commons project, which use Maven as build system.?
They have been selected based on their size (>10KLoC), number
of latest “working” commits’ (>100), and mean number of test
targets per commit (>5). All the selected projects come equipped
with the developer’s test suite. Table 3 lists the subjects and their
characteristics.

Table 3: Subjects

Subject SHA #Commits KLoC #Targets #Tests
Codec 5a9c79f 614 14.8 39 403
Compress 66338dd 627 345 94 475
Imaging 9c5dc5b 376 40.3 79 90
Io 9¢08f8 387 286 95 1014

Lang ce0c082 521 77.8 163 3899
Math 71fd124 111 186.7 497 4864

N.B.: SHA, KLoC, #Targets, and #Tests refer to the first commit.

4.5 Evaluation metrics

To evaluate the ranking in an algorithm-independent way (e.g., RL-
based and LTR; classification- and regression-based), we leverage
the Fault Percentile Average (FPA) used in the LTR task for software
defect prediction [35]. We define the Rank Percentile Average (RPA)
to adapt the FPA to the prioritization problem: it is used to compute
how much a predicted ranking is close to the actual ranking. The
metric can evaluate a ranking independently of the specific testing
criteria (e.g., fault detection). Let us assume that priority scores
are increasing integers, from 1 to k, with k being the number of
test targets to prioritize — a higher score means higher priority.
Let us denote with r; = i the actual (true) ranking score of test
target i (e.g., R = {5,4,3,2, 1}, for k = 5 targets), and their sum with
r=ri+ra+---+rr =k(k+1)/2 (r = 15 in the example). The
prediction task produces a permutation of R (e.g., R’ = {5, 2, 3,4, 1},
8https://commons.apache.org.

9“Working” means not requiring deprecated libraries or old software versions
(e.g., old Java, Maven) to build successfully.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

with the second and fourth elements swapped). The following ratio
represents the “proportion” of the actual ranking scores “contained”
in the top m predicted test targets with respect to r:

k k

1 1
; Z ri = m Z ri. (2)

i=k—-m+1 i=k—-m+1

For instance, for the top 2 elements of the predicted ranking R’, the
proportion is 7 over 15. The actual ranking R scores 9 over 15. RPA
is defined as the average of this proportion over the k elements:

k ko vk .
_ Zm=1 Do T

1 k 1
RPA—er ri=
m=1

©)
i=k—m+1 K2k +1)/2

The higher the RPA, the better. The maximum value, RPAy, is
reached when the predicted ranking is equal to the actual one (r;=i
in the summation). With few manipulations, it can be shown that:

SRk iy (k —i+1)
k2(k +1) @)
which is less than 1. We normalize RPA, so that NRPA € [0, 1],
computing the Normalized-Rank-Percentile-Average:
RPA
RPAp

For our example, the predicted ranking R’ has RPA = 51/75 =
0.68, RPA=55/75=0.73, and NRPA=0.68/0.73= 0.93. The (N)RPA
metric has an intuitive interpretation, representing the average of
“how much” of the optimal-ranking scores is “contained” in the
top-m predicted-ranking’s objects. Moreover, the metric is more
accurate than the Spearman’s correlation coefficient on partial lists.
For instance: consider an optimal ranking of 10 tests (r; = 10... 1),
and a partial ranking evaluation of the first three tests; assume we
have: predicted ranking 1 = 10, 2, 9 and predicted ranking 2 = 10, 8,
9 (optimal ranking=10, 9, 8): the Spearman correlation coefficient is
0.5 in both cases, as it considers only the rank (3, 1, 2 in both cases),
while RPA considers also the magnitude (selecting number 2 rather
than 8 as second test) and gives, respectively, 0.07 and 0.1.

To investigate differences in the performance of algorithms in
time-constrained scenarios, we consider the cases in which not
all the selected test targets can be run at each cycle, e.g., because
the inter-commit time is short compared to the tests execution
time. We adopted the same constraints used in previous work [3]
investigating the effect of time-constraints on regression testing,
ie. 25%, 50% and 75% of the number of selected test targets. In such
cases, the RPA metric makes no sense: sublists of the optimal and
the predicted rankings generally do not contain the same tests, and
cannot be compared.

Considering the two prioritization criteria (fault detection and
test execution time), at each commit we compute: the difference
between the predicted total tests execution time (for the predicted
ranking) and the optimal total tests execution time (for the optimal
ranking); the difference between the predicted number of failing tests
(for the predicted ranking) and the optimal number of failing tests
(for the optimal ranking), with reference to the 25%, 50% and 75%
lists. The larger these differences, the worse the predicted ranking.
It should be noted that, as fault detection metric, we discard the
well-known APFD, as it considers cumulative fault detection over
time and is not appropriate in CI where the focus is on obtaining

RPAy = 1—

NRPA =

©)

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

feedback on individual test cases rather than on a whole test suite
[5]. Additionally, in CI, changes in each release are very limited
with respect to the codebase, which makes the number of faults
per release very small (as in our dataset), compared to traditional
processes [9]. This would lead to undetermined APFD values.

To quantify the cost, we compute in each cycle: the time for test
selection, the time for prioritization (made up of training time and
ranking time) and the time for the execution of the selected tests.
Their sum is referred to as end-to-end time. The above metrics are
computed at every commit, when tests are prioritized. Algorithms
are run 30 times on each subject.

5 RESULTS

Table 4 shows the results of test selection. The first two rows report
the total number of selected targets (test classes) and total number of
tests of the selected targets across all the commits, and their average
per commit. Rows 3 and 4 list the total number and percentage of
failing targets and tests over selected ones.! The last two rows
report the sum of the times for test selection (including time to
check for changes upon a commit, to update the dependency graph
and to extract the test classes) and for execution of all selected
tests. The list of selected test targets at each commit, along with
their execution time, the number and percentage of failed tests per
target, and the metrics per target (cf. with Table 1) correspond to an
instance for the ML-based prioritization algorithm, completed by
the actual (during training) or predicted (in prioritization) ranking.

Table 4: Results of test selection

Subjects: Codec Compress Imaging Io Lang Math

Selected 3,167 10,724 4,883 5,299 11,228 3,926
targets Av.: 516 Av.:17.10 Av.: 12.98 Av.: 13.69 Av.: 21.55 Av.: 35.37

Selected 46,364 90,493 20,086 96,619 389,404 49,533
tests Av.: 14.79 Av.: 144.32 Av.: 53.42 Av.: 249.66 Av.: 747.41 Av.: 446.24

Failing 3 21 2 13 6 8
targets 0.0947% 0.1958% 0.0409% 0.2453% 0.0534% 0.2037%

Failing 3 32 2 16 16 9
tests 0.0064% 0.0353% 0.0099% 0.0165% 0.0041% 0.0181%

Total sel. 1,096 2,284 2,106 1,117 2,910 1,050
time (s) Av.:1.78 Av.:3.64 Av.:5.60 Av.:288 Av:5.58 Av.: 946
Total exec. 941 1,810 2,739 8,506 1,367 1,116

time (s) Av.:1.53 Av.: 289 Av.:7.28 Av:21.98 Av.:2.62 Av.:10.06

5.1 RQ1: Prioritization Effectiveness and Cost

5.1.1 RQI.1: Algorithms comparison. The RPA values and rank-
ing times per algorithm are computed after prioritization at each
commit. We consider the averages over commits of these values,
obtaining 180 observations (6 subjects x 30 repetitions): these are
shown in the boxplots in Fig. 2. The boxplots per subject are avail-
able in the supplemental material.”

Fig. 3 reports the total training times per algorithm, in logarith-
mic scale, averaged over subjects and repetitions. RTL algorithms
take much longer, since training is repeated at each commit. How-
ever, RTL can rank test cases since the beginning: the time to first
prioritization - TTFP - is null, whereas LTR must wait for training
to finish (TTFP equals the training time). The test selection and

19Note the small number of failing tests for all subjects, causing highly unbalanced
datasets. Sensitivity of algorithms to this aspect is assessed in Section 5.2.2.

Bertolino, Guerriero, Miranda, Pietrantuono, Russo

= T €1 +
0.95 = - -~ 50 |
- ! 4
OF egl . &l 2=
0.90 -| g | w0
D ; == - - +
[.
0.85 -| 4 EE 30 g
! Lol 20 4 - i
0.80 1o Q =
| ==
o | 10 — R
075 1 i 0 L =—_0 8 0 o .o
T T T T T T T T T T T T T T T T T T T T
Z L ke E B 8 < <4 0 W Z L E E B 3 < 4 0 W
X x o x J o X xx o x J o
g g ¥8z° s 3 £ T8z ° s 3
3 =23 o= 3 =2 3 ooz
3 3 4 5 R 2
14 14
(a) RPA per commit (b) Ranking time (ms) per commit

Figure 2: Average RPA and ranking time per algorithm

Il Trai

me
I Ranking Time
(0]
g
B 404l
o 10’
(s}
|
7
£
© 10°F
£
IS

o
=)

S X A A & & Y o R X
@ < @\g @\g Q’oo (@ oo N nyb
™ Q@o\“ & Sl

Figure 3: Average training and ranking times per algorithm

execution times (Table 4) plus the algorithm-dependent training
and ranking times for prioritization make the end-to-end time.

We run one-way analysis of variance (ANOVA) considering the
algorithm as factor and RPA and ranking time as response variables.
The levels are grouped in order to show the differences as formu-
lated in RQ1.1 to RQ1.3. To choose the statistical test for ANOVA,
we checked the data for normality and for homoscedasticity by
means of, respectively, the Shapiro-Wilk test and the Levene’s test:
the two null hypotheses of data coming from a normal distribution
and of variances being homogeneous are both rejected at p-value
<2.2E-16, which is the minimum value of the R statistical tool that
we used. Therefore, we conducted a non-parametric ANOVA by
means of the Friedman test, which is robust to non-normality and
heteroscedasticity, with the Iman and Davemport extension [11].11
The test detects if at least one factor’s level significantly differs
from another. We then run a post hoc test to detect what levels are
different, by using the Shaffer’s static method, a powerful method
for all pairwise comparison exceeding nine algorithms [2].

The test confirms, for the RPA and the ranking time (p-value
<2.2E-16 in both cases), that there is at least one significant differ-
ence among the algorithms. Fig. 4a and Fig. 4b report the pairwise
comparison results by the ranking plot, an adaptation of the Ne-
menyi’s test critical difference plot working with other tests [2]:
algorithms with no significant difference are grouped together us-
ing a bold horizontal line — the more distant two algorithms are
(the distance being the average ranking), the smaller the p-value
for the null hypothesis of equal performance.

1The Iman and Davemport extension is a popular choice to improve the too
conservative Friedman’s statistic, suited to compare more than five algorithms [6].

Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration

1 2 3 4 5 6 7 8 9
MART‘ FTT— RankNet
L-MART ————— KNN
RF L RL
RL-RF —cA
RankBoost — RL-MLP

(a) RPA: the leftmost one has biggest RPA

1 2 3 4 5 6 7 8 9 10
KNN —] RL-MLP
RL-RF RL
RF ——M88 ™ RankNet
MART —mMm ™ RankBoos
L-MART L—ca

(b) Ranking Time: the leftmost has longest time

Figure 4: Pairwise comparison of algorithms

The algorithms performing better in terms of RPA are MART and
its extension LambdaMART, followed by RF, RL-RF and RankBoost
(with no significant differences). Their commonality is to be based
on (decision or regression) trees, while most of others are based on
neural networks (RankNet, RL-MLP, RL). The worst group includes
RL-MLP, CA and RL, although their average RPA values are above
0.8. As for ranking time, KNN requires much longer, followed by
RL-RF and RL. The best one is by far CA.

Summarizing: MART and L-MART have the best RPA and mediu-
m-level ranking and training times; CA performs poorer but is better
for ranking time with a medium-level training time. KNN requires
less training time than others LTR, but it takes long for ranking, not
justifiably paid off by the RPA. RL algorithms require high training
times, being online learning schemes; RL-RF has high ranking times,
but good RPA. RL and RL-MLP have better times but poorer RPA.

5.1.2 RQ1.2: Strategies comparison. We compare the four strate-
gies (RTL, LTR pointwise, LTR pairwise, LTR listwise), grouping the
results of the respective algorithms. As the groups have an unequal
number of algorithms, we run the Skillings-Mack test, an adapta-
tion of the Friedman’s statistic able of dealing with unbalanced
designs [27]. The p-value is <2.2E-16 for both RPA and time. Fig.
5 and Fig. 6 show the boxplots and the ranking plots, respectively.
In terms of RPA, the strategies differ significantly from each other,
with pairwise algorithms being the best ones. In terms of ranking
time, pointwise are the worst (because of KNN) and the listwise
method (CA) is the best; RL and pairwise are comparable. Point-
wise and pairwise LTR exhibit both higher RPA than RL methods:
hence, online learning (by RL) does not necessarily ensure better
performance than static methods, as seen in the analysis of single
algorithms. This may depend on other features related to the code
variability, as investigated in the next RQs.

5.1.3 RQ1.3: Categories comparison. We compare non-ensemble vs
ensemble algorithms. The Mann-Whitney-Wilcoxon test is suited in
this two-levels case. Again, the statistical test reports a significant
difference, both in terms of RPA and prioritization time (p-value
<2.2E-16 for both) — the averages RPA are 0.927 and 0.869 for

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

60

0.95 4
50 -

E o
30

20

0.90

0.85

0.80

10 +
0.75 4

Listwise

%
o | D{

Listwise },“““
RL +

Pointwise
Pointwise -

H[H
I F“m#
-

(a) RPA per commit (b) Ranking time per commit (ms)

Figure 5: Average performance of the four strategies

1 2 3 4 1 2 3 4
L L L Il L I I Il

Pairwise J RL Pointwise RL

Pointwise

Listwise Pairwise ————————— b Listwise

(a) RPA (b) Ranking time

Figure 6: Pairwise comparison of the four strategies

ensemble and non-ensemble learning, respectively, and the average
times are 7.206 ms and 10.376 ms. Thus, ensemble methods have
both higher RPA and shorter ranking times. Looking at Fig. 3, they
also have shorter training times.

5.2 RQ2: Influence of code under test

5.2.1 RQ2.1: CUT variability. Fig. 7 reports the RPA across the
cycles (each RPA value is the average over 30 repetitions) for each
subject/algorithm. For readability, the commits with one test class
(that always gives RPA=1) are removed from the plots (hence less
commits are shown than the actual ones) and the average RPA at
each 5 commits is reported. The top subplot for each subject shows
the RTL algorithms, the bottom one the LTR ones: in fact, while
the latter ones require a training phase during which no prediction
is carried out, the former ones do not require training and give
predictions sooner, being based on reinforcement learning. The
performance of learning algorithms depend on the representative-
ness of the learnt model: in highly variable CI scenarios (when the
code changes a lot, and failure proneness and/or test execution time
change too), ML predictive performance may be poor. Looking at
the plots in Figure 7, the performance are quite stable, but some
algorithms, like RL-RF and KNN, exhibit trends in some scenarios.
It is interesting to investigate if and to what extent the trends are
related to code variability. We proceed as follows.

We first run, for each subject’s dataset, the Principal Component
Analysis (PCA) over the features, so as to remove their first-order
inter-correlation, and select a number of PCs necessary to keep the
95% of the original variance (for the 6 subjects, the number of PCs
was: 18, 16, 18, 17, 17, 15). Then, we combine the PCs in one time
series to have a synthetic indicator of the trend, capturing the vari-
ability of the code metrics: to this aim, we exploit the Hotelling’s
multivariate control charts [10]. Multivariate control charts are
used to monitor two or more interrelated process variables in order
to detect shifts in the mean or the relationship between several
interrelated variables [24]. A Hotelling chart computes a statistic,

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

1
09

N W\NAWW\I\Q/N\AJ \/\/\/ V\A/W

07 7RLMLP7RL RRI

09+
o
208 /\NNA/WW\/W/J

0.6
0

50 100 150 200 250 300 350 400

o7 \—HF ——KNN

MART —— RankNet
L

Bertolino, Guerriero, Miranda, Pietrantuono, Russo

—RL MLP ——RL

06 \ 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Cycle

RankBoost CA LambdaMART |
N N N T 0.6 L[—RF — KN MART —— RankNet —— RankBoost CA LambdaMART ||
250 275 300 325 350 ars 400 100 150 200 250 300 350 400 450 500
Cycle Cycle
(a) Subject: commons-codec (b) Subject: commons-compress
1 T T 1
09 -

R VT p— RRF

Tost W&\/\ AN

07— RL-| MLP — RL RRF
I

06 1 I I I I |
0 25 50 75 100 125 150 175 200 225

Cycle

06 I I I
0 25 50 75 100 125 150 175 200 225

Cycle

0.7 07+ - .
Jl—RF —KNN MART —— RankNet —— RankBoost —— CA —— LambdaMART | [—FRF — K “MART — RankNet . RankBoost GA — LambdaMART |
06 T i i | 06 LI
100 125 150 175 200 225 100 125 150 175 200 225
Cycle Cycle
(c) Subject: commons-imaging (d) Subject: commons-io
1 1 .
09+ 09l m
=08 N
z %87 g o8 M -
R —py - p— RRF
06 I L L L I |
0 60 75
- e —
06 =—RF —— KN MART —— RankNet RankBoost CA —— LambdaMART ‘ 06 [——RF —KNN MART —— RankNet —— R cA —L RT|
’ 100 150 200 250 300 350 ’ 30 45 60 75
Cycle Cycle

(e) Subject: commons-lang

(f) Subject: commons-math

Figure 7: Average RPA plots across cycles

named T2, that combines the information from the dispersion and
the mean of several related variables. It can be used in a one-phase
setting (i.e., by using the same data that is being plotted on the
control chart to characterize the normal behavior) or two-phase
setting (i.e., using part of the data to characterize the normal behav-
ior and the other part to be checked for deviations); our aim falls
in the one-phase setting. Given the selected k PCs, the statistic for
observation i is:

T? = (i - Y)'s™'(Yi - Y) (6)
where Y; is the vector of k measurements for observation i, Y is the
vector of sample means of the k variables, S~ is the inverse of the
sample covariance matrix, which provides information regarding
the relationship between different variables. Plots of T? are omitted
for lack of space, but they are made available separately.”

Using the T? time series as metrics variability indicator and the
RPA time series as performance indicator, we finally compute the
transfer entropy (TE) between T? and RPA, namely the amount of
directed transfer of information between the two time series. Differ-
ently from correlation, TE informs us about causality — it actually
generalizes the Granger causality test — computing how much in-
formation about the transition between two consecutive steps of
the RPA time series can be found in the past state of T2, How “far”
the past is depends on the user-defined delay between the two time
series d. We compute the TE under 10 different delays, d = 1 to
d = 10 and using the Kraskov-Stogbauer-Grassberge (KSG) TE esti-
mator [14]. To capture any possible causality relations, we consider,
beside the average, the maximum of the TE values over the d values,
so as to identify the condition under which the T? affects more RPA.
Table 5 reports the maximum TE per algorithm and subject over the
10 delays. The last column summarizes which algorithm has been

Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration

Table 5: Transfer entropy

Subjects: Codec Compress Imaging Io Lang Math All

MaxyTE MaxyTE MaxyTE Maxy TE Max gy TE Maxy TE Avg(Maxy)

KNN 0.0267 0.0302 0.0397 0.0297 0.0379 0.1018 0.0443

RF 0.0360 0.0319 0.0419 0.0230 0.0129 0.1256 0.0452
L-MART 0.0256 0.0308 0.0302 0.0430 0.0382 0.0804 0.0414
MART 0.0341 0.0229 0.0157 0.0325 0.0158 0.0854 0.0344
RankNet 0.0274 0.0304 0.0499 0.0486 0.0216 0.0766 0.0424
RankBoost 0.0533 0.0151 0.0298 0.0355 0.0350 0.0682 0.0395
CA 0.0540 0.0267 0.0577 0.0590 0.0380 0.0783 0.0523

RL 0.0336 0.0179 0.0428 0.0037 0.0177 0.0615 0.0295
RL-MLP 0.0373 0.0239 0.0313 0.0091 0.0317 0.0510 0.0307
RL-RF 0.0191 0.0119 0.0182 0.0256 0.0259 0.0891 0.0316

more sensitive to the variation of the T? time series; the ranking is
as follows: CA, RE, KNN, RankNet, LambdaMART, RankBoost, MART,
RL-RFE, RL-MLP, RL: all LTR approaches are more affected by the T2
code variability indicator, while all RL-based algorithms are more
robust to variations, likely because of their online-learning nature.
This suggests that in highly variable contexts, with intense metrics’
changes, RL-based approaches can be preferred, to avoid having to
re-train a static LTR algorithm too often. In contrast, static contexts
can stress the good performances of LTRs.

5.22 RQ2.2: Code failure proneness. We created an artificial dataset
from our original one, by injection of failing test case outcomes. In
each commit, a changed class is selected randomly, along with its
dependent classes. We considered the corresponding test classes,
and altered the outcome of their tests form pass to fail with a given
probability p (we used p = 0.15). The so-produced dataset is more
balanced, with percentages of 6-7% of failing test targets (Table 6).
Results are plotted in Fig. 8.

Table 6: Scenario with error injection

Subjects: Codec Compress Imaging Io

Failing target 388 652 165 363 785 283
atling targets o 8o%] [6.08%] [3.38%] [6.85%] [6.99%] [7.20%]

Lang Math

Failine test 3,186 3,244 846 4,404 14396 1,740
aling tests 112 25%]) [3.58%] [4.21%] [4.55%] [3.69%] [3.51%]

1.0- -
==]
g e on’
0.8~ a Original ..
B3 injected
& & @

R I
S

8

Figure 8: Comparison on failure proneness: RPA

<
&
& & ¥

The Wilcoxon signed ranked test is run on each pair (Table 7).
Only 2 out of 10 algorithms turn out to be not affected by a greater
number of failing tests. Those affected are, in decreasing order of

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 7: Statistical analysis: scenario with error injection.
Difference between averages (Inj: Injection scenario; Orig:
original scenario, with no injection) and p-value for the null
hypothesis Hy; the RPA of the two scenarios is the same

Algorithm RL-MLP RL RL-RF RF kNN

Avg(Inj)-Avg(Orig) 1.25e-3 3.39%e-3 1.86e-2 1.73e-2 1.21e-2
p-value 9.46e-3 2.14e-7 1.67e-11 1.67e-11 1.42e-11

Algorithm MART RankNet RankBoost CA L-MART

Avg(Inj)-Avg(Orig) 5.30e-3 -1.87e-3 1.92-2 4.69e-3 -2-52e-2
p-value 2.02e-8 5.2le-1 1.42e-11 2.17e-1 1.73e-11

confidence: LambdaMART, RF, RL-RF, RankBoost, KNN, MART, RL,
RL-MLP. These are the three RTL algorithms and the LTR ones
using ensemble learning, except KNN. As for RQ1.3, they perform
generally better, but are more sensitive to the dataset balancing.
Non-ensemble LTR algorithms (RankNet and CA) are less sensitive.

5.2.3 RQ2.3: Feature selection. When building a model, redundant
or irrelevant features increase computational costs and can result
in poor predictive performance. To identify the most important
features in a CI context we used an unsupervised feature selection
approach called Principal Feature Analysis (PFA) [20]. Basically,
PFA exploits the structure of the principal components of the orig-
inal feature set to select a subset that keeps most of the essential
information. One advantage of PFA over other feature selection
techniques is that it operates independently of any learning algo-
rithm as it depends only on the original feature set.

Our implementation of PFA decides how many features should
be selected by traditional PCA [31] to identify the principal com-
ponents required to keep at least 90% of the cumulative explained
variance. For all our subjects, 10 features were selected out of the
original 50; hence, 20% of the features suffice to keep 90% of the
original data variance. One feature among those listed in Table 1
was selected for all the subjects, which is AvgEssential —a cyclo-
matic complexity metric obtained after iteratively replacing all well
structured control structures with single statements to account
for any branches into or out of a loop or decision; other six size-
related features were selected for at least 4 of our 6 subjects: AvgCy-
clomatic, CountDeclFunction, CountDeclMethodDefault, CountLine,
CountLineComment, and CountDeclMethod. Overall, the selection
was balanced across the different attributes types and features from
the program size, cyclomatic complexity, and object-oriented groups
were selected 38%, 33%, and 28% of the time, respectively.

5.3 RQ3: CI process characteristics

5.3.1 RQ3.1: Inter-commit time. RQ1 investigated algorithms’ per-
formance regardless of the time available to execute test cases. If
time limits do not allow to run all selected tests, the tester might be
interested in analyzing the algorithms’ performance under various
time constraints. Based on a previous work studying regression
testing under different time constraints [3], we consider scenarios
in which 25%, 50% and 75% of the number of selected tests can be
run at each cycle, and assess the impact on ranking effectiveness.
In large-scale systems, practitioners could look for more aggressive
reductions; deeper exploration of this aspect is left to future work.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 8: Differences between predicted and optimal rankin-
gs in tests execution times (s) and number of failing tests
(best values per columns are in bold, worst values in italics)

Time-constrained scenarios
Algorithms 25% 50% 75%

Time Failures | Time Failures | Time Failures

KNN | 0.5527 -2.0000 | 1.6622 -2.0000 | 4.8707 -1.3333

RF | 09352 -2.6333 | 2.5995 -1.9333 | 4.4247 -1.0500
L-MART | 0.2452 -3.1333 | 0.9877 -2.8000 | 2.4506 -1.7833
MART | 0.0164 -2.4000 | 0.0386 -1.6667 | 0.0193 -1.6667
RankBoost | 1.7471 -1.3333 | 2.5321 -1.1667 | 3.2461 -1.1667
RankNet | 1.0548 -1.7333 | 2.4865 -1.3333 | 2.9609 -1.1167
CA | 25024 -2.9600 | 35722 -2.0500 | 4.1488 -1.7500

RL | 1.8893 -5.2167 | 3.4928 -3.6000 | 4.8379 -2.2167
RL-MLP | 1.7781 -5.4500 | 3.4982 -3.9833 | 4.8348 -1.9667
RL-RF | 0.5796 -7.2000 | 2.2932 -4.5333 | 5.1311 -2.3500

As discussed in Section 4.5, the RPA metric makes no sense in
this case: Table 8 reports the differences between the predicted and
optimal rankings, in terms of tests execution time (average over all
subjects and commits) and total number of failing tests (average over
all subjects). The former is always > 0, the latter always < 0: they
are zero when the predicted ranking is equal to the optimal ranking
in the top 25/50/75% list of tests. The bigger their absolute values,
the worse the performance of the algorithm. Data per subject are
made available separately.’

Whenever results are in line with the RPA (RQ1), e.g., L-MART
and MART on test execution times or RankBoost on number of
failures that are close to the optimal one, it means that mis-ranked
tests had low impact (e.g., because their execution times or number
of failures is not much different than those of the optimal rank-
ing’s tests). When results are not in line with RPA, e.g., RL-RF and
RankNet on failures, then either the algorithm performs well for
one prioritization criterion and bad for the other and/or the tests
that were mis-ranked, even by a small amount, had a high impact.

Clearly, short inter-commit time may influence the choice of the
algorithm to adopt more than the RPA metric.

5.3.2 RQ3.2: History length. We investigate whether and to what
extent the amount of history used for learning impacts performance
of the algorithms. For LTR, this history is used just once at the
beginning for training; for RTL, the history is in a sliding window
(the memory) used to update the learning process online. Fig. 9
shows the average RPA and training time over all the commits and
projects vs four values of training sample size.

The RPA is quite insensitive with respect to a training sample size
bigger than 500 observations, for all the algorithms. The average
good performance of LTR even with smaller training sets mitigates
the drawback of not having predictions during the training process.
Contrarily, the training time expectedly increases remarkably with
training sample size (the graph is in logarithmic scale): the RTL
algorithms are severely affected, followed by pairwise and listwise,
and finally, the least affected ones, the pointwise algorithms.

Bertolino, Guerriero, Miranda, Pietrantuono, Russo

-©-KNN -G RF L-MART -&-MART ——RankBoost
RankNet -+ CA -+ RL —+RL-MLP RL-RF
T T T T

G i
0.95

0.85F +
+ +
+
0.8 | ‘ ‘
500 1000 1500 2000
Training sample size

108
<@
5 e e
o 10
o
—
! 4l
m 10 . :
L § e S i ——
g w0
S _—--®
= //7/4
c l__-e-
c 102’07/7/_/,/4)» 1
o
=

,
10 500 1000 1500 2000 500 1000 1500
Training sample size
Figure 9: Sensitivity of RPA and training time to training

sample size

6 DISCUSSION
6.1 Threats to validity

Threats to construct validity may descend from the adopted evalu-
ation metrics (Section 4.5). We used a new metric, RPA, to assess
the algorithms’ performance: with a different metric, RQ1 might
have received different answers. The same threat may affect the
cost-related analyses. Indeed, there do not exist other studies com-
paring (heterogeneous) ML techniques for test prioritization, so we
could not rely on established metrics for a fair comparison. Another
threat might be due to our identification of characteristics of CUT
(RQ2) or CI process (RQ3): if our experimental design does not prop-
erly capture the relevant features or their influence on regression
testing performance, our answers to RQ2 and RQ3 might not be
valid. To mitigate these risks, other studies should be conducted.

As for threats to internal validity, one risk may derive from in-
appropriate settings of the tools we used for the ML algorithms
(Section 4.1). Different settings or also different choices for the val-
ues of parameters of the experiment might have produced different
results. To control this threat, we performed sensitivity analyses
to our feature selection choices; however, due to the complexity
of our assessments, we cannot exclude that some decisions in the
experiment design might have biased our comparisons, by impact-
ing differently the algorithms. Another threat concerns our study
about failure proneness, in which we artificially injected failing test
outcomes. Real faults in production might produce different effects:
however this is a procedure commonly used for reliability studies
and we opted for this as we did not have real faults.

As for threats to external validity, our experiments were run on
only six Java subjects from the Apache library. Although these six
projects are very active, have a large contributors’ base and a long
history, they might not be representative of industrial practice. They

Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 9: ML-based prioritization requirements vs decision variables. The ranks are from 1st (best) to 10th (worst)

Prioritization Ranki . . Robustness Robustness Time-constrained

. anking Training Online Robustness to Robustness to . . -
effectiveness time time code variabilit 4failing tests O training to training effectiveness (50%)
(RPA) y g size (RPA) size (time) (time, failures)
Pointwise and qth 1t No gth, oth 1t gth and 1t and gnd
Pairwise 15t 3th znd No 4th’ Sth, Gth, 7th Sth, 7th, 9th, loth 3rd 2nd ISt, 15t
Listwise qth 1 34 No 10t 2nd qth 3td gth 31
RTL 3rd an 4th Yes lth, 2nd, 3rd 3rd’ 4th) 8th 1th 4th 3rd) 4th
Non-ensemble an an znd Can be 1th’ 3rd, 4th, 9th’ loth 1th, znd, 3rd’ 4th) 6th an lth znd) an
Ensemble lth lth lth Can be 2nd’ Sth’ 6th’ 8th 5th) 7th’ Sth’ 9rh ’10th lth an lth’ lth
KNN 7th 10th 1th No gth 6th 4th 1th 3rd gth
RF Srd gth znd No 9th 9th 5th 3rd 7th’ 4th
L-MART and cth 3¢ No oth 10t 10 2nd and 7th
MART 1th 7th Sth No 4th Sth 6th 4th lth, 3rd
RankBoost sth 2nd 4 No sth 7th gth 5th oth, 1th
RankNet 6th 3ud 7 No 7th 1th 7th 7th 5th, gnd
CA gth 1th 6th No 10th ond gth 6th 10th’ 6th
RL gth 4th 9th Yes 3rd 4th lth 9th 8th, gth
RL-MLP 10 sth 10" Yes and 31 3td 10 oth gth
RL-RF 4th 9th Sth Yes 1th Sth an Sth 4th)10th

are also not enough representative for generalizing our conclusions
to programs developed with other languages or processes (not open
source). To control this threat, more studies should be conducted.
Hopefully, the fact that we explain in detail our experimental set-
tings and make available code and data for replication, will support
other researchers in performing replication studies over different
subjects and contexts, even using different ML algorithms.

6.2 Guidelines

Results led us to draw the following suggestions for applying Ma-
chine Learning algorithms to regression testing in CI:

o A valuable approach under short inter-commit times is to run
a ML prioritization algorithm after selection, so that it acts on
a small problem size and on test cases relevant for that com-
mit. An incremental static selection approach like the one we
experimented appears suited for the time requirements of CL

e The testing criteria should be identified first, along with their
relative weight within the ranking function: they determine what
the optimal ranking is. If a coarse-grain ranking is enough, then
classification algorithms may work well; otherwise, regression
approaches better manage fine-grain ranking problems. Most of
the experimented algorithms can work with both formulations.

e The ML algorithm’s input consists of the features more likely
related to the identified testing criteria. We targeted feature se-
lection in an algorithm-independent way (unsupervised), first
defining relevant features and then choosing the algorithm based
on other requirements — this simplifies the problem. An alterna-
tive is to run feature selection for each potential algorithm being
considered, so as to infer the best features for each of them: this,
although more precise, can be much more time-consuming.

o In the plethora of ML algorithms to choose from, a suggestion
is to first decide the learning strategy and, possibly, the category
(ensemble or non-esemble), and then opt for the specific algo-
rithm. The choice depends on the requirements for prioritization,
in terms of desired ranking effectiveness and efficiency (RQ1),

tolerable sensitivity to code features (RQ2), and on the CI process
features (RQ3). They are strongly dependent on the CI context.

Table 9 reports the non-exhaustive list of requirements we have
investigated in this article along with the “values” of the decision
variables (algorithm, strategy, category) ranked from best to worst
according to the reported results. The lowest part of Table 9 suffices
to drive the choice among the algorithms we investigated; for other
algorithms, the first and second parts may be used. The choice of
the strategy/algorithm depends on the relative importance given
to the requirements in the specific CI context.

A final suggestion concerns the tuning of algorithm parameters.
In this study, we adopted default parameter values for fair compari-
son, but (as hinted already in validity threats) performance can vary
significantly depending on tuning. This is especially true for the
individual algorithms, while the choice of the strategy or category
is less affected. A tuning step with any existing methods (e.g., grid
or randomized search) may be in order.

7 CONCLUSIONS

Continuous Integration practices in large industrial settings pose
specific requirements on test selection and prioritization for regres-
sion testing, due to the frequent commits, with short inter-commit
times and few changes with respect to the codebase size.

This study has presented a comprehensive evaluation of ten
machine learning algorithms for test prioritization after selection
in CIL Based on the results of controlled experiments with open
source subjects — including an analysis of features of the code under
test and of the test process influencing algorithms’ performance -
guidelines have been devised for testers to select and tune the ML
algorithms best fitting their needs.

ACKNOWLEDGMENTS

This work has been partially supported by the PRIN 2015 project
“GAUSS" funded by MIUR, and partially supported by INES 2.0,
FACEPE grants PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17,
CAPES grant 88887.136410/2017-00, and CNPq grant 465614/2014-0.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

REFERENCES

(1]

(6

=

[7

[

[10

[11]

[12

[13

[14

[15

[16]

[17]

Benjamin Busjaeger and Tao Xie. 2016. Learning for Test Prioritization: An
Industrial Case Study. In 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE). ACM, New York, NY, 975-980. https:
//doi.org/10.1145/2950290.2983954

Borja Calvo and Guzman Santafe. 2015. scmamp: Statistical Comparison of
Multiple Algorithms in Multiple Problems. The R Journal 8, 1 (2015), 248-256.
Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. 2008. An
empirical study of the effect of time constraints on the cost-benefits of regression
testing. In 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, 71-82. https://doi.org/10.1145/1453101.1453113
Vinicius H. S. Durelli, Rafael S. Durelli, Simone S. Borges, Andre T. Endo,
Marcelo M. Eler, Diego R. C. Dias, and Marcelo P. Guimarées. 2019. Machine Learn-
ing Applied to Software Testing: A Systematic Mapping Study. IEEE Transactions
on Reliability 68, 3 (2019), 1189-1212. https://doi.org/10.1109/TR.2019.2892517
Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments. In
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE). ACM, New York, NY, 235-245. https://doi.org/10.1145/2635868.2635910
Salvador Garcia, Alberto Fernandez, Julian Luengo, and Francisco Herrera.
2010. Advanced nonparametric tests for multiple comparisons in the de-
sign of experiments in computational intelligence and data mining: Experi-
mental analysis of power. Information Sciences 180, 10 (2010), 2044 — 2064.
https://doi.org/10.1016/].ins.2009.12.010

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In 2015 International Symposium
on Software Testing and Analysis (ISSTA). ACM, New York, NY, 211-222. https:
//doi.org/10.1145/2771783.2771784

Alireza Haghighatkhah, Mika Mantyld, Markku Oivo, and Pasi Kuvaja. 2018. Test
prioritization in continuous integration environments. Journal of Systems and
Software 146 (2018), 80 — 98. https://doi.org/10.1016/j.jss.2018.08.061

H. Hemmati, Z. Fang, and M. V. Mantyla. 2015. Prioritizing Manual Test Cases in
Traditional and Rapid Release Environments. In IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 10. https://doi.org/
10.1109/ICST.2015.7102602

H. Hotelling. 1947. Multivariate quality control. In Techniques of Statistical
Analysis, Wallis W.A. Eisenhart C., Hastay M. (Ed.). McGraw-Hill, New York
(1947), 111-184

Ronald L. Iman and James M. Davenport. 1980. Approximations of the critical
region of the fbietkan statistic. Communications in Statistics - Theory and Methods
9, 6 (1980), 571-595. https://doi.org/10.1080/03610928008827904

Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N.A. Jawawi, and Rooster
Tumeng. 2018. Test case prioritization approaches in regression testing: A sys-
tematic literature review. Information and Software Technology 93 (2018), 74-93.
https://doi.org/10.1016/j.infsof.2017.08.014

Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Séder, Agneta Nilsson, and
Magnus Castell. 2015. Supporting Continuous Integration by Code-churn Based
Test Selection. In IEEE/ACM 2nd International Workshop on Rapid Continuous
Software Engineering (RCoSE). IEEE, 19-25. https://doi.org/10.1109/RCoSE.2015.
11

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. 2004. Estimating
mutual information. Phys. Rev. E 69 (2004), 066138. Issue 6. https://doi.org/10.
1103/PhysRevE.69.066138

Remo Lachmann, Sandro Schulze, Manuel Nieke, Christoph Seidl, and Ina Schae-
fer. 2016. System-level test case prioritization using machine learning. In 15th IEEE
International Conference on Machine Learning and Applications. IEEE, 361-368.
Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE). ACM, New York, NY, 583-594.
https://doi.org/10.1145/2950290.2950361

Alexandre R. Lenz, Aurora Pozo, and Silvia R. Vergilio. 2013. Linking software
testing results with a machine learning approach. Engineering Applications of
Artificial Intelligence 26, 5 (2013), 1631-1640. https://doi.org/10.1016/j.engappai.

oy
&

[19

[20

[21]

[22]

[23

[24

[25

[26

[27

S
&,

[29

[30

[31

@
&,

[33

(34

[35

Bertolino, Guerriero, Miranda, Pietrantuono, Russo

2013.01.008

Hang Li. 2011. Learning to Rank for Information Retrieval and Natural Language
Processing. Morgan & Claypool, San Rafael, CA.

Long-JiLin. 1992. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning 8, 3 (01 May 1992), 293-321. https:
//doi.org/10.1007/BF00992699

Yijuan Lu, Ira Cohen, Xiang Sean Zhou, and Qi Tian. 2007. Feature selection using
principal feature analysis. In 15th ACM International Conference on Multimedia
(MM). ACM, New York, NY, 301-304. https://doi.org/10.1145/1291233.1291297
Mike McGarr, Dianne Marsh, and the Developer Productivity team. 2017.
Towards true continuous integration: distributed repositories and depen-
dencies. https://medium.com/netflix-techblog/towards-true-continuous-

integration- distributed- repositories-and-dependencies-2a2e3108c051
Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-

borski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In
IEEE/ACM 39th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). IEEE, 233-242.

Ade Miller. 2008. A Hundred Days of Continuous Integration. In Agile 2008
Conference. IEEE, 289-293. https://doi.org/10.1109/Agile.2008.8

Douglas C. Montgomery. 1997. Introduction to statistical quality control (3 ed.).
Wiley, New York, NY.

Y. Pang, X. Xue, and A. S. Namin. 2013. Identifying Effective Test Cases through
K-Means Clustering for Enhancing Regression Testing. In 12th International
Conference on Machine Learning and Applications. IEEE, 78-83. https://doi.org/
10.1109/ICMLA.2013.109

Naren Ramakrishnan. 2009. The Pervasiveness of Data Mining asnd Machine
Learning. Computer 42, 8 (Aug 2009), 28-29. https://doi.org/10.1109/MC.2009.268
John H. Skillings and Gregory A. Mack. 1981. On the Use of a Friedman-Type
Statistic in Balanced and Unbalanced Block Designs. Technometrics 23, 2 (1981),
171-177. http://www.jstor.org/stable/1268034

Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, New York, NY, 12-22. https:
//doi.org/10.1145/3092703.3092709

Daniel Stahl and Jan Bosch. 2013. Experienced benefits of continuous integra-
tion in industry software product development: A case study. In 12th IASTED
International Conference on Software Engineering. ACTA Press, Calgary, 736-743.
Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan, and Dorothea Blostein.
2014. Static Test Case Prioritization Using Topic Models. Empirical Software
Engineering 19, 1 (2014), 182-212. https://doi.org/10.1007/s10664-012-9219-7
Michael E Tipping and Christopher M Bishop. 1999. Probabilistic principal
component analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 61, 3 (1999), 611-622.

Paolo Tonella, Paolo Avesani, and Angelo Susi. 2006. Using the Case-Based
Ranking Methodology for Test Case Prioritization. In 22nd IEEE International
Conference on Software Maintenance (ICSM). IEEE, 10. https://doi.org/10.1109/
ICSM.2006.74

Hado Philip van Hasselt. 2012. Reinforcement Learning in Continuous State and
Action Spaces. In Reinforcement Learning. Adaptation, Learning, and Optimization,
M. Wiering and M. van Otterlo (Eds.), Vol. 12. Springer, Berlin, Heidelberg, 207-
251. https://doi.org/10.1007/978-3-642-27645-3_7

Ting Wang and Tingting Yu. 2018. A Study of Regression Test Selection in Con-
tinuous Integration Environments. In 29th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 135-143. https://doi.org/10.1109/ISSRE.
2018.00024

X. Yang, K. Tang, and X. Yao. 2015. A Learning-to-Rank Approach to Software
Defect Prediction. IEEE Transactions on Reliability 64, 1 (2015), 234-246. https:
//doi.org/10.1109/TR.2014.2370891

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Reliability 22, 2
(2012), 67-120. https://doi.org/10.1002/stvr.430

Du Zhang and Jeffrey J.P. Tsai. 2003. Machine Learning and Software Engineer-
ing. Software Quality Journal 11, 2 (2003), 87-119. https://doi.org/10.1023/A:
1023760326768

https://doi.org/10.1145/2950290.2983954
https://doi.org/10.1145/2950290.2983954
https://doi.org/10.1145/1453101.1453113
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1016/j.jss.2018.08.061
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1080/03610928008827904
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1109/RCoSE.2015.11
https://doi.org/10.1109/RCoSE.2015.11
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1016/j.engappai.2013.01.008
https://doi.org/10.1016/j.engappai.2013.01.008
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi.org/10.1145/1291233.1291297
https://medium.com/netflix-techblog/towards-true-continuous-integration-distributed-repositories-and-dependencies-2a2e3108c051
https://medium.com/netflix-techblog/towards-true-continuous-integration-distributed-repositories-and-dependencies-2a2e3108c051
https://doi.org/10.1109/Agile.2008.8
https://doi.org/10.1109/ICMLA.2013.109
https://doi.org/10.1109/ICMLA.2013.109
https://doi.org/10.1109/MC.2009.268
http://www.jstor.org/stable/1268034
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1007/s10664-012-9219-7
https://doi.org/10.1109/ICSM.2006.74
https://doi.org/10.1109/ICSM.2006.74
https://doi.org/10.1007/978-3-642-27645-3_7
https://doi.org/10.1109/ISSRE.2018.00024
https://doi.org/10.1109/ISSRE.2018.00024
https://doi.org/10.1109/TR.2014.2370891
https://doi.org/10.1109/TR.2014.2370891
https://doi.org/10.1002/stvr.430
https://doi.org/10.1023/A:1023760326768
https://doi.org/10.1023/A:1023760326768

