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________________________________________________________________________________________ 

Abstract 
Designing the behavior of non-player characters that challenges the human 
player adequately is both a key feature and a big concern in computer games 
development. This work presents a reinforcement learning (RL) based technique 
to build intelligent agents that automatically control the game difficulty level, 
adapting it to the human player’s skills in order to improve the gameplay. The 
technique is applied to a fighting game, Knock’em, to provide empirical 
validation of the approach. 
Key-words: 
Reinforcement learning, user adaptation, intelligent agents, fighting computer 
games. 
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 1 Introduction 
The quality of a computer game is 

influenced by different concepts, such as its 
graphical interface, background history, input 
interface, and, particularly, non-player 
characters (NPCs) artificial intelligence [17]. 
In particular, an entertaining opponent should 
neither be invincible nor easily defeatable. It 
should behave roughly at the same human 
player level, challenging him and increasing 
the gameplay. 

A traditional way to develop artificially 
intelligent agents is to use pre-programmed 
scripts, in which fixed rules are defined during 
the development of the game, representing 
agent behavior. A typical rule in a fighting 
game would state “punch opponent if he is 
reachable, chase him, otherwise”. As game 
complexity increases, this technique results in 
a lot of rules, which are error-prone. 
Moreover, the resulting agent does not adapt to 
user skills, acting similarly against beginning 
or experienced players, as well as repeating the 
same old tactics even after a long term 
experience. This way, human players can 
easily defeat computer opponents by always 
exploiting faults in such foreseeable agent 
behavior. Although it is still possible for a 
game to offer static difficulty levels, players 

must choose it at its beginning, remaining tied 
to this level until the end. Clearly, this 
traditional approach harms the gameplay. 

Designing non-player characters behavior 
involves two distinct, yet inter-related, 
problems: building the agent initial 
intelligence, and providing mechanisms for 
online adaptation to the human player 
behavior. While scripts have shown to be 
impracticable to deal with complex knowledge 
as well as dynamic adaptation, machine 
learning is a natural way to address these 
problems. In fact, this is a traditional approach 
to design learning and adaptive systems [18]. 

Some commercial games already use 
machine learning [1]. The techniques range 
from fuzzy logic systems [2] to multilayer 
perceptron neural networks [3]. However, 
although reinforcement learning is quite 
popular in academic AI, it’s still uncommon at 
game AI community. 

This paper presents a novel approach to 
the construction, evolution and adaptation of 
intelligent agents in computer games. We 
combine reinforcement learning (RL) and 
challenge functions in an original way to 
explore RL properties that are overseen by 
conventional RL applications. Challenge 
functions map a game state into a value which 



 
specifies how easy the game is perceived by 
human users. Based in this value, the game 
difficulty level can be increased or decreased, 
by choosing more or less adequate actions, 
respectively. This approach provides agents 
that are able to challenge very experienced 
human players, but still adapt its behavior to 
novice users. In order to evaluate the 
approach, we applied it to Knock’em [14], a 
real time fighting game we have developed 
with a simple Artificial Intelligence (AI). 

Next Section revises previous user 
adaptation work into computer games. Section 
3 summarizes reinforcement learning concepts 
and its applications in games. Section 4 
describes our original approach to address the 
problem. Section 5 presents Knock’em and 
how the previous section concepts were 
applied in the game. Section 6 shows the 
experimental results, and Section 7 concludes 
and provides future directions to the work. 

2 User Adaptation in Computer Games 
The task of building adaptive agents in 

computers games is addressed in some recent 
works. 

Some techniques have been proposed to 
model human opponent behavior. Opponent 
modeling is useful to discover how to defeat 
him. Developers have been using genetic 
classifier systems [11], decision trees [12], and 
dynamic scripting [13]. These works apply 
machine learning techniques aiming to create 
players that can beat all possible opponents. 

Other works are more concerned with 
developing mechanisms to dynamically adapt 
game level to user skills. Hunicke and 
Chapman [19] control the game environment 
in order to increase or decrease the difficulty. 
For example, if the game turns to be too much 
difficult, the player gets more weapons, 
recover life points faster or face fewer 
opponents. As this approach does not change 
opponent behavior, it turns to become quite 
artificial and predictable to human players. 

Demasi and Cruz [10] explore the concept 
of challenge function with genetic algorithms 
to achieve user adaptation. They build agents 
intelligence through genetic algorithms, 
keeping alive agents that best fit game 
difficulty. 

This is an innovative, indeed. However, it 
suffers from some problems. Aiming to speed 
up the learning process, this approach uses 
some pre-defined models (agents with good 
genetic features) to guide the evolution. As so, 
agent learning is bounded by the best pre-
defined model, beyond which learning 

becomes quite uncontrollable, harming the 
technique application for very skilled users or 
users with uncommon behavior. Furthermore, 
this approach does not keep agent history, but 
only the current best fit to human player. If the 
human change from a newbie player to an 
experienced one, the agent will have to 
gradually evolve again toward a good 
generation, requiring human users to play a lot 
of games against easy agents. 

Our approach to address user adaptation 
of computer game agents uses reinforcement 
learning as machine learning technique, and 
explores some of its properties in an 
innovative way. 

3 Reinforcement Learning in Games 
Reinforcement learning (RL) creates 

agent’s intelligence based only in its 
interaction with the environment. In contrast to 
supervised learning, it does not use examples 
of desired behavior, but only a reward signal 
that indicates how good (or bad) an action was 
in a given context. 

3.1 The RL Framework 
RL is often characterized as a problem of 

“learning what to do (how to map situations 
into actions) so as to maximize a numerical 
reward signal” [16]. Formally, in the 
reinforcement learning framework, we have an 
agent that sequentially makes decisions in an 
environment. At each step, the agent percepts 
the current state s from a finite set S, and 
chooses an action a from a finite set A, leading 
to a new state s’. The information encoded in s 
should summarize all present and past relevant 
sensations. Each state-action pair (s,a) has a 
reward signal R(s,a) feedback to the agent 
when action a is executed at state s. Implicitly, 
this reward signal must determine the agent 
objective, as it is the only feedback to guide 
the desired behavior. 

The main goal is to maximize a long-term 
performance criterion, called return, which 
represents the expected value of future 
rewards. The agent then tries to learn an 
optimal policy π* which maximizes the 
expected return. A policy is a function π(s)→a 
that maps state perceptions into actions. We 
can define the action-value function, Qπ(s,a), 
as the expected return when starting from state 
s, performing action a, and then following π 
thereafter. If the agent can learn the optimal 
action-value function Q*(s,a), an optimal 
policy can be constructed greedily: for each 
state s, the best action a is the one that 
maximizes Q. 



 
As previously stated, reinforcement 

learning is a learning problem. One traditional 
algorithm for solving it is Q-Learning [16]. It 
consists in iteratively computing the Q values 
for state-action pairs, using the following 
update rule: 
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in which V(s’) = maxa Q(s’,a), α is the 
learning rate and γ is a discount factor that 
gives more importance to near rewards, 
differing it from results of far executed 
actions. 

The Q-Learning algorithm can be easily 
implemented through dynamic programming, 
using a bidimensional matrix, called Q-Table, 
representing the Q function. Table values are 
updated accordingly to the previous rule. 

It is guaranteed that this algorithm 
converges to the optimal Q function in the 
limit, under the standard stochastic 
approximation conditions. It is worth noticing 
that no prior knowledge about the process 
dynamics is necessary. 

The feature of not using specific domain 
knowledge, combined with the fact that a 
teacher is not necessary, make reinforcement 
learning naturally applicable at complex and 
diverse domains, such as computer games. 

3.2 Previous Work 
A traditional successful reinforcement 

learning application is Tesauro Backgammon 
player [4], which reached first class players 
level using little backgammon specific 
knowledge. Other successful RL players are 
Samuel checkers [5] and a Go player that 
performs better than traditional computer Go 
players [6]. However, these RL players act in 
turn-based games, in which the environment 
do not change while the agent is choosing his 
action. In real time games, the time processing 
requirements are a new problem to be 
addressed. 

A particular domain commonly used to 
test new artificial intelligence techniques is 
Robocup [7], in which reinforcement learning 
was combined with methods to increase 
learning speed [8] and reduce problem 
complexity [9]. These techniques are also 
easily applicable into games domain. 

4 The proposed approach 
Our approach to develop intelligent 

adaptive agents combines Q-Learning with a 
challenge function, as proposed by Demasi 
and Cruz [10], and explores some properties of 

the learned policy. Given an state s, Q-
Learning estimates Q(s,a), the quality of 
executing action a at state s. Standard Q-
Learning applications use the best Q value to 
determine the action to be executed. In the 
computer games domain, it means keeping the 
agent acting as eficient as possible. As this is 
not our objective, we allow the agent to choose 
any possible action, accordingly to the 
challenge function.  

In principle, as any RL-based agent, the 
agent chooses the best actions for each 
situation and keeps learning the player 
behavior in order to improve its performance. 
However, according to the value of the 
challenge function, i.e. the difficult the player 
is facing, the agent can choose better or worse 
actions. For a given situation, if the game level 
is too hard, the agent does not choose the best 
action in the Q-Table. Instead, it chooses the 
second best one, the third, and so on, until its 
performance is as good as the player’s. 
Similarly, if the game level becomes too easy, 
it starts to choose actions one level above. 
Figure 1 shows a possible configuration for an 
agent acting in its second best level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: An agent acting at the second level. 
 
This approach means to use the order 

relation naturally defined in a given state by 
each action’s Q-value, which is automatically 
built during the learning process. As these 
values estimate the individual quality of each 
possible action, it turns out to be possible to 
control the agent’s total quality, i.e. its game 
playing level. 

It is important to notice that this technique 
changes only the action choice procedure, 
while the learning process, which means the 



 
updates at the Q values, is the same as 
standard Q-Learning applications. 

Our approach apparently has a drawback. 
Since machine learning techniques require 
thousands of training iterations to achieve 
good performance, it could not be possible to 
learn a competitive behavior in real time. To 
deal with this, we use an offline learning 
phase, where a general initial behavior is 
learned by the agent. Moreover, to keep the 
learning speed at online phase as fast as 
possible, we use strategies to reduce the 
problem complexity. 

The problem complexity is directly related 
to states and actions space size. Reducing 
states space size can be done by discretizing 
continuous variables and coding abstract 
characteristics. The first strategy means not 
only to transform real values at the nearest 
integer, but to code values that are 
representative to agent perception. In a first 
person shooter game, for example, the 
opponent distance can be coded simply as 
inside or outside the gun reach area (supposing 
the shot damage is not influenced by the 
distance), so the state space size is reduced 
preserving the agent’s perception quality. The 
second strategy is to code environment 
abstract features. For a soccer player agent 
learning to dribble opponent, it would not 
mean to code players directions (right and 
left), but their relative directions (matching 
and opposite), so the agent needs only to learn 
to move at opponent opposite direction (learns 
one state-action pair), and not specifically 
going left when opponent goes right, and vice-
versa (two state-action pairs). 

Reducing actions space size can be done 
by coding full moves [9]. Moves are sequences 
of atomic actions with a common objective. 
For a soccer player, the action retrieve the ball 
would be the composition of the following 
atomic actions: change agent direction, run to 
the opponent, and catch the ball. 

A special design feature of a 
reinforcement learning agent is the quality of 
reward signals. As this is the way to guide 
agent objectives, a natural design decision for 
computer games is to give positive rewards 
when the agent wins the game and negative 
ones otherwise. Although this approach 
correctly represents agent objectives, it 
excessively delays the learning process, 
demanding several iterations until the impact 
of first actions at game final result are learned 
by the agent. An alternative approach would 
give rewards as soon as possible, based in 
performance measurements for a running 

game (won and lost pieces, life difference or 
shooting accuracy, for example). 

5 Case Study 
As a case study, the concepts stated at 

previous chapters were implemented in 
Knock’em [14], a real time fighting game 
where two fighters are faced into an enclosure 
for bullfighting. This class of games is 
represented by successful commercial series, 
like Capcom Street Fighter and Midway 
Mortal Kombat [15]. Figure 2 shows a 
screenshot of the game. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Knock’em screenshot. 
 

The main objective of the game is to beat 
the opponent. A fight ends when the life points 
of some player (initially, 100 points) are turn 
to zero, or after one minute of fighting. The 
winner is the fighter which has the higher 
remaining life. The environment is a 
bidimensional arena in which horizontal 
moves are free and vertical moves are possible 
through jumps. The possible attack actions are 
to punch (strong or fast), to kick (strong or 
fast), and to launch fireballs. Punches and 
kicks can also be deferred in the air, during a 
jump. The defensive actions are blocking or 
crouching. While crouching, it is also possible 
for a fighter to punch and kick the opponent. 
The fighter “mana”, which is reduced after a 
magic attack, is continuously refilled during 
time at a fixed rate. 

The fighters artificial intelligence is 
implemented as a reinforcement learning task. 
As so, it is necessary to code the agents 
perceptions, possible actions and reward 
signal. The state representation (agent 
perceptions) is represented by the following 
tuple: 

S = (Sagent, Sopponent, D, Magent, Mopponent, F) 
 



 
Sagent stands for the agent state (stopped, 
jumping, or crouching). Sopponent stands for 
opponent state (stopped, jumping, crouching, 
attacking, jumping attack, crouching attack, 
and blocking). D represents opponent distance 
(near, medium distance and far away). M 
stands for agent or opponent mana (sufficient 
or insufficient to launch one fireball). Finally, 
F stands for enemies’ fireballs configuration 
(near, medium distance, far away, and non 
existence). 

These attributes were chosen because of 
their impact in fighter performance. The agent 
possible states represent the ones in which the 
agent can effectively make decisions (i.e. 
change its state). The opponent state is 
important to perceive his attacks (which the 
agent must defend) and for detecting situations 
where he is vulnerable. Opponent distance is 
relevant to percept the difference between 
punches executed far away from those when 
the opponent is in a reachable distance. Mana 
is important to know if the agent (or the 
opponent) can launch fireballs anytime or 
should wait for mana refilling. Fireballs 
configuration aims to inform how the agent 
must act (defend or deviate) regarding the 
magic attacks. 

The agents’ possible actions are the ones 
possible to all fighters: punching and kicking 
(strong or fast), coming close, running away, 
jumping, jumping to close, jumping to escape, 
launching fireball, blocking, crouching and 
keep stopped. 

The reinforcement signal is based in the 
difference of life caused by the action (life 
taken out from opponent minus life lost by the 
agent). As a result, the agent reward is always 
in the range [-100, 100]. Negative rewards 
mean bad performance, because the agent lost 
more life than was taken from the opponent, 
while positive rewards are the desired agent 
objective. This measure is representative of the 
agent objective because a fight winner is 
determined by its ending life points. 

Finally, the challenge function used is 
based in the reinforcement signal. As positive 
rewards indicate the agent is winning and 
negative ones indicate that it is losing, we 
expect that rewards near zero indicate that the 
two fighters are acting in the same level. 
Therefore, we empirically stated the following 
challenge function: 

 
 
 
 

6 Experimental Results 
To evaluate the effectiveness of our 

approach, we implemented the developed 
concepts in Knock’em. 

In all experiments some parameters were 
fixed. The learning rate was fixed in 50% and 
the reward discount rate in 90%. Although the 
game has different fighters with different 
attributes (skills and limitations), the 
experiments were fixed to only one of them. 

Before being evaluated, the reinforcement 
learning agents were trained against a random 
fighter during 500 fights. We compared the 
performance of three distinct agents: a 
traditional state-machine (script-based agent), 
a traditional reinforcement learning (playing as 
best as possible), and the adaptive agent 
(implementing the proposed approach). 

The evaluation scenario consists of a 
series of fights against different opponents, 
simulating the diversity of human players 
strategies: a state-machine (static behavior), a 
random (unforeseeable behavior) and a 
traditional RL agent (intelligent and with 
learning skill). Each agent being evaluated 
plays 30 fights against each opponent. The 
performance measurement is based in the final 
life difference in each fight. Positive values 
represent that the evaluated agent wins, and 
negative ones that the agent loses. These 
values are graphically displayed beyond. 

 
 
 
 
 
 
 
 

 
Figure 3: State-machine agent’s performance 

 
Figure 3 shows the state-machine (SM) 

agent performance against each of the others 
agents. The positive values of the red points 
show that the agent beats almost always a 
random opponent. The blue points show that 
two state-machine fighters have a similar 
performance while fighting against each other. 
The negative yellow points show that the RL 
agent almost always beats the state-machine, 
and the life difference increases as it learns to 
deal with the static state-machine behavior. 

Figure 4 shows the traditional RL agent 
performance. Analyzing as above, we can 
conclude that the RL agent beats quite easy the 
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state-machine and the random players. 
However, as random players do not have a 
foreseeable behavior, the RL agent fights 
better against state-machine opponents, 
learning a policy that maximizes the result 
against the SM strategy. 

 
 
 
 
 
 
 
 
 

Figure 4: Traditional RL agent’s performance 
 
 
 
 
 
 
 
 
 
 

Figure 5: Adaptive RL agent’s performance 
 
Figure 5 show the adaptive RL agent 

performance. Although this agent has the same 
capabilities as traditional RL, because their 
learning algorithms are the same, the adaptive 
mechanism forces him to act at the same 
opponent level. As a result, the agent 
performance varies between wins and losses, 
independently of opponent’s skills. The 
average performance of the agent shows that 
most of the fights end with a small difference 
of life, meaning that both fighters had similar 
performance. Table 1 shows the average life 
difference for each agent. 
 

Table 1: Average life difference 
 State-Mach. Trad. RL Adaptive RL 

SM -0,50 44,10 -8,57 

Random 30,76 30,67 -0,67 

RL -34,16 -3,36 -7,10 

 
These results indicate the effectiveness of 

our approach. Although the adaptive agent 
could easily beat their opponents, the difficulty 

level is adapted so it acts nearly the opponent, 
interleaving wins and loses. 

7 Conclusions 
This work presented an original approach 

to construct agents that dynamically adapt 
their behavior in order to keep the game in a 
difficulty level adequate to the current user 
skills. The developed technique combines 
reinforcement learning [16] with challenge 
functions [14], and uses RL properties to 
define an order relation into the quality of the 
agent possible actions. The approach was 
successfully applied to a real time fighting 
game.  

Since this work’s experiments were 
restricted to computer agents, a future work is 
to extend the experiments to human users. 
Since the main objective is to create intelligent 
agents that enhance the gameplay, it is 
necessary to check whether the agents are 
really entertaining for humans. Therefore, we 
intend to perform experiments in the future 
involving human players. 

Another direction for future work is 
testing different offline learning strategies. As 
online learning is an expensive process, it is 
important that the initial agents are sufficiently 
skilled to deal with a broader range of users. 
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