
Online Adaptation of Computer Games Agents: A Reinforcement
Learning Approach

GUSTAVO DANZI DE ANDRADE

HUGO PIMENTEL SANTANA

ANDRÉ WILSON BROTTO FURTADO
ANDRÉ ROBERTO GOUVEIA DO AMARAL LEITÃO

GEBER LISBOA RAMALHO

Universidade Federal de Pernambuco (UFPE) – Centro de Informática (CIn)
Av. Prof. Luís Freire, s/n, Cidade Universitária, CEP 50740-540 – Recife/PE/Brazil

{gda,hps,awbf,argal,glr}@cin.ufpe.br

__

Abstract
Designing the behavior of non-player characters that challenges the human
player adequately is both a key feature and a big concern in computer games
development. This work presents a reinforcement learning (RL) based technique
to build intelligent agents that automatically control the game difficulty level,
adapting it to the human player’s skills in order to improve the gameplay. The
technique is applied to a fighting game, Knock’em, to provide empirical
validation of the approach.
Key-words:
Reinforcement learning, user adaptation, intelligent agents, fighting computer
games.

 1 Introduction
The quality of a computer game is

influenced by different concepts, such as its
graphical interface, background history, input
interface, and, particularly, non-player
characters (NPCs) artificial intelligence [17].
In particular, an entertaining opponent should
neither be invincible nor easily defeatable. It
should behave roughly at the same human
player level, challenging him and increasing
the gameplay.

A traditional way to develop artificially
intelligent agents is to use pre-programmed
scripts, in which fixed rules are defined during
the development of the game, representing
agent behavior. A typical rule in a fighting
game would state “punch opponent if he is
reachable, chase him, otherwise”. As game
complexity increases, this technique results in
a lot of rules, which are error-prone.
Moreover, the resulting agent does not adapt to
user skills, acting similarly against beginning
or experienced players, as well as repeating the
same old tactics even after a long term
experience. This way, human players can
easily defeat computer opponents by always
exploiting faults in such foreseeable agent
behavior. Although it is still possible for a
game to offer static difficulty levels, players

must choose it at its beginning, remaining tied
to this level until the end. Clearly, this
traditional approach harms the gameplay.

Designing non-player characters behavior
involves two distinct, yet inter-related,
problems: building the agent initial
intelligence, and providing mechanisms for
online adaptation to the human player
behavior. While scripts have shown to be
impracticable to deal with complex knowledge
as well as dynamic adaptation, machine
learning is a natural way to address these
problems. In fact, this is a traditional approach
to design learning and adaptive systems [18].

Some commercial games already use
machine learning [1]. The techniques range
from fuzzy logic systems [2] to multilayer
perceptron neural networks [3]. However,
although reinforcement learning is quite
popular in academic AI, it’s still uncommon at
game AI community.

This paper presents a novel approach to
the construction, evolution and adaptation of
intelligent agents in computer games. We
combine reinforcement learning (RL) and
challenge functions in an original way to
explore RL properties that are overseen by
conventional RL applications. Challenge
functions map a game state into a value which

specifies how easy the game is perceived by
human users. Based in this value, the game
difficulty level can be increased or decreased,
by choosing more or less adequate actions,
respectively. This approach provides agents
that are able to challenge very experienced
human players, but still adapt its behavior to
novice users. In order to evaluate the
approach, we applied it to Knock’em [14], a
real time fighting game we have developed
with a simple Artificial Intelligence (AI).

Next Section revises previous user
adaptation work into computer games. Section
3 summarizes reinforcement learning concepts
and its applications in games. Section 4
describes our original approach to address the
problem. Section 5 presents Knock’em and
how the previous section concepts were
applied in the game. Section 6 shows the
experimental results, and Section 7 concludes
and provides future directions to the work.

2 User Adaptation in Computer Games
The task of building adaptive agents in

computers games is addressed in some recent
works.

Some techniques have been proposed to
model human opponent behavior. Opponent
modeling is useful to discover how to defeat
him. Developers have been using genetic
classifier systems [11], decision trees [12], and
dynamic scripting [13]. These works apply
machine learning techniques aiming to create
players that can beat all possible opponents.

Other works are more concerned with
developing mechanisms to dynamically adapt
game level to user skills. Hunicke and
Chapman [19] control the game environment
in order to increase or decrease the difficulty.
For example, if the game turns to be too much
difficult, the player gets more weapons,
recover life points faster or face fewer
opponents. As this approach does not change
opponent behavior, it turns to become quite
artificial and predictable to human players.

Demasi and Cruz [10] explore the concept
of challenge function with genetic algorithms
to achieve user adaptation. They build agents
intelligence through genetic algorithms,
keeping alive agents that best fit game
difficulty.

This is an innovative, indeed. However, it
suffers from some problems. Aiming to speed
up the learning process, this approach uses
some pre-defined models (agents with good
genetic features) to guide the evolution. As so,
agent learning is bounded by the best pre-
defined model, beyond which learning

becomes quite uncontrollable, harming the
technique application for very skilled users or
users with uncommon behavior. Furthermore,
this approach does not keep agent history, but
only the current best fit to human player. If the
human change from a newbie player to an
experienced one, the agent will have to
gradually evolve again toward a good
generation, requiring human users to play a lot
of games against easy agents.

Our approach to address user adaptation
of computer game agents uses reinforcement
learning as machine learning technique, and
explores some of its properties in an
innovative way.

3 Reinforcement Learning in Games
Reinforcement learning (RL) creates

agent’s intelligence based only in its
interaction with the environment. In contrast to
supervised learning, it does not use examples
of desired behavior, but only a reward signal
that indicates how good (or bad) an action was
in a given context.

3.1 The RL Framework
RL is often characterized as a problem of

“learning what to do (how to map situations
into actions) so as to maximize a numerical
reward signal” [16]. Formally, in the
reinforcement learning framework, we have an
agent that sequentially makes decisions in an
environment. At each step, the agent percepts
the current state s from a finite set S, and
chooses an action a from a finite set A, leading
to a new state s’. The information encoded in s
should summarize all present and past relevant
sensations. Each state-action pair (s,a) has a
reward signal R(s,a) feedback to the agent
when action a is executed at state s. Implicitly,
this reward signal must determine the agent
objective, as it is the only feedback to guide
the desired behavior.

The main goal is to maximize a long-term
performance criterion, called return, which
represents the expected value of future
rewards. The agent then tries to learn an
optimal policy π* which maximizes the
expected return. A policy is a function π(s)→a
that maps state perceptions into actions. We
can define the action-value function, Qπ(s,a),
as the expected return when starting from state
s, performing action a, and then following π
thereafter. If the agent can learn the optimal
action-value function Q*(s,a), an optimal
policy can be constructed greedily: for each
state s, the best action a is the one that
maximizes Q.

As previously stated, reinforcement

learning is a learning problem. One traditional
algorithm for solving it is Q-Learning [16]. It
consists in iteratively computing the Q values
for state-action pairs, using the following
update rule:

)],()'(.[),(),(asQsVrasQasQ −++← γα

in which V(s’) = maxa Q(s’,a), α is the
learning rate and γ is a discount factor that
gives more importance to near rewards,
differing it from results of far executed
actions.

The Q-Learning algorithm can be easily
implemented through dynamic programming,
using a bidimensional matrix, called Q-Table,
representing the Q function. Table values are
updated accordingly to the previous rule.

It is guaranteed that this algorithm
converges to the optimal Q function in the
limit, under the standard stochastic
approximation conditions. It is worth noticing
that no prior knowledge about the process
dynamics is necessary.

The feature of not using specific domain
knowledge, combined with the fact that a
teacher is not necessary, make reinforcement
learning naturally applicable at complex and
diverse domains, such as computer games.

3.2 Previous Work
A traditional successful reinforcement

learning application is Tesauro Backgammon
player [4], which reached first class players
level using little backgammon specific
knowledge. Other successful RL players are
Samuel checkers [5] and a Go player that
performs better than traditional computer Go
players [6]. However, these RL players act in
turn-based games, in which the environment
do not change while the agent is choosing his
action. In real time games, the time processing
requirements are a new problem to be
addressed.

A particular domain commonly used to
test new artificial intelligence techniques is
Robocup [7], in which reinforcement learning
was combined with methods to increase
learning speed [8] and reduce problem
complexity [9]. These techniques are also
easily applicable into games domain.

4 The proposed approach
Our approach to develop intelligent

adaptive agents combines Q-Learning with a
challenge function, as proposed by Demasi
and Cruz [10], and explores some properties of

the learned policy. Given an state s, Q-
Learning estimates Q(s,a), the quality of
executing action a at state s. Standard Q-
Learning applications use the best Q value to
determine the action to be executed. In the
computer games domain, it means keeping the
agent acting as eficient as possible. As this is
not our objective, we allow the agent to choose
any possible action, accordingly to the
challenge function.

In principle, as any RL-based agent, the
agent chooses the best actions for each
situation and keeps learning the player
behavior in order to improve its performance.
However, according to the value of the
challenge function, i.e. the difficult the player
is facing, the agent can choose better or worse
actions. For a given situation, if the game level
is too hard, the agent does not choose the best
action in the Q-Table. Instead, it chooses the
second best one, the third, and so on, until its
performance is as good as the player’s.
Similarly, if the game level becomes too easy,
it starts to choose actions one level above.
Figure 1 shows a possible configuration for an
agent acting in its second best level.

Figure 1: An agent acting at the second level.

This approach means to use the order

relation naturally defined in a given state by
each action’s Q-value, which is automatically
built during the learning process. As these
values estimate the individual quality of each
possible action, it turns out to be possible to
control the agent’s total quality, i.e. its game
playing level.

It is important to notice that this technique
changes only the action choice procedure,
while the learning process, which means the

updates at the Q values, is the same as
standard Q-Learning applications.

Our approach apparently has a drawback.
Since machine learning techniques require
thousands of training iterations to achieve
good performance, it could not be possible to
learn a competitive behavior in real time. To
deal with this, we use an offline learning
phase, where a general initial behavior is
learned by the agent. Moreover, to keep the
learning speed at online phase as fast as
possible, we use strategies to reduce the
problem complexity.

The problem complexity is directly related
to states and actions space size. Reducing
states space size can be done by discretizing
continuous variables and coding abstract
characteristics. The first strategy means not
only to transform real values at the nearest
integer, but to code values that are
representative to agent perception. In a first
person shooter game, for example, the
opponent distance can be coded simply as
inside or outside the gun reach area (supposing
the shot damage is not influenced by the
distance), so the state space size is reduced
preserving the agent’s perception quality. The
second strategy is to code environment
abstract features. For a soccer player agent
learning to dribble opponent, it would not
mean to code players directions (right and
left), but their relative directions (matching
and opposite), so the agent needs only to learn
to move at opponent opposite direction (learns
one state-action pair), and not specifically
going left when opponent goes right, and vice-
versa (two state-action pairs).

Reducing actions space size can be done
by coding full moves [9]. Moves are sequences
of atomic actions with a common objective.
For a soccer player, the action retrieve the ball
would be the composition of the following
atomic actions: change agent direction, run to
the opponent, and catch the ball.

A special design feature of a
reinforcement learning agent is the quality of
reward signals. As this is the way to guide
agent objectives, a natural design decision for
computer games is to give positive rewards
when the agent wins the game and negative
ones otherwise. Although this approach
correctly represents agent objectives, it
excessively delays the learning process,
demanding several iterations until the impact
of first actions at game final result are learned
by the agent. An alternative approach would
give rewards as soon as possible, based in
performance measurements for a running

game (won and lost pieces, life difference or
shooting accuracy, for example).

5 Case Study
As a case study, the concepts stated at

previous chapters were implemented in
Knock’em [14], a real time fighting game
where two fighters are faced into an enclosure
for bullfighting. This class of games is
represented by successful commercial series,
like Capcom Street Fighter and Midway
Mortal Kombat [15]. Figure 2 shows a
screenshot of the game.

Figure 2: Knock’em screenshot.

The main objective of the game is to beat
the opponent. A fight ends when the life points
of some player (initially, 100 points) are turn
to zero, or after one minute of fighting. The
winner is the fighter which has the higher
remaining life. The environment is a
bidimensional arena in which horizontal
moves are free and vertical moves are possible
through jumps. The possible attack actions are
to punch (strong or fast), to kick (strong or
fast), and to launch fireballs. Punches and
kicks can also be deferred in the air, during a
jump. The defensive actions are blocking or
crouching. While crouching, it is also possible
for a fighter to punch and kick the opponent.
The fighter “mana”, which is reduced after a
magic attack, is continuously refilled during
time at a fixed rate.

The fighters artificial intelligence is
implemented as a reinforcement learning task.
As so, it is necessary to code the agents
perceptions, possible actions and reward
signal. The state representation (agent
perceptions) is represented by the following
tuple:

S = (Sagent, Sopponent, D, Magent, Mopponent, F)

Sagent stands for the agent state (stopped,
jumping, or crouching). Sopponent stands for
opponent state (stopped, jumping, crouching,
attacking, jumping attack, crouching attack,
and blocking). D represents opponent distance
(near, medium distance and far away). M
stands for agent or opponent mana (sufficient
or insufficient to launch one fireball). Finally,
F stands for enemies’ fireballs configuration
(near, medium distance, far away, and non
existence).

These attributes were chosen because of
their impact in fighter performance. The agent
possible states represent the ones in which the
agent can effectively make decisions (i.e.
change its state). The opponent state is
important to perceive his attacks (which the
agent must defend) and for detecting situations
where he is vulnerable. Opponent distance is
relevant to percept the difference between
punches executed far away from those when
the opponent is in a reachable distance. Mana
is important to know if the agent (or the
opponent) can launch fireballs anytime or
should wait for mana refilling. Fireballs
configuration aims to inform how the agent
must act (defend or deviate) regarding the
magic attacks.

The agents’ possible actions are the ones
possible to all fighters: punching and kicking
(strong or fast), coming close, running away,
jumping, jumping to close, jumping to escape,
launching fireball, blocking, crouching and
keep stopped.

The reinforcement signal is based in the
difference of life caused by the action (life
taken out from opponent minus life lost by the
agent). As a result, the agent reward is always
in the range [-100, 100]. Negative rewards
mean bad performance, because the agent lost
more life than was taken from the opponent,
while positive rewards are the desired agent
objective. This measure is representative of the
agent objective because a fight winner is
determined by its ending life points.

Finally, the challenge function used is
based in the reinforcement signal. As positive
rewards indicate the agent is winning and
negative ones indicate that it is losing, we
expect that rewards near zero indicate that the
two fighters are acting in the same level.
Therefore, we empirically stated the following
challenge function:

6 Experimental Results
To evaluate the effectiveness of our

approach, we implemented the developed
concepts in Knock’em.

In all experiments some parameters were
fixed. The learning rate was fixed in 50% and
the reward discount rate in 90%. Although the
game has different fighters with different
attributes (skills and limitations), the
experiments were fixed to only one of them.

Before being evaluated, the reinforcement
learning agents were trained against a random
fighter during 500 fights. We compared the
performance of three distinct agents: a
traditional state-machine (script-based agent),
a traditional reinforcement learning (playing as
best as possible), and the adaptive agent
(implementing the proposed approach).

The evaluation scenario consists of a
series of fights against different opponents,
simulating the diversity of human players
strategies: a state-machine (static behavior), a
random (unforeseeable behavior) and a
traditional RL agent (intelligent and with
learning skill). Each agent being evaluated
plays 30 fights against each opponent. The
performance measurement is based in the final
life difference in each fight. Positive values
represent that the evaluated agent wins, and
negative ones that the agent loses. These
values are graphically displayed beyond.

Figure 3: State-machine agent’s performance

Figure 3 shows the state-machine (SM)

agent performance against each of the others
agents. The positive values of the red points
show that the agent beats almost always a
random opponent. The blue points show that
two state-machine fighters have a similar
performance while fighting against each other.
The negative yellow points show that the RL
agent almost always beats the state-machine,
and the life difference increases as it learns to
deal with the static state-machine behavior.

Figure 4 shows the traditional RL agent
performance. Analyzing as above, we can
conclude that the RL agent beats quite easy the

�
�

�
�

�

>
−<

=
otherwisemedium

agentrifdifficult

agentrifeasy

agentf

,
10)(,

10)(,
)(

State-Machine against other agents

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

State-Machin Random RL-Agent

state-machine and the random players.
However, as random players do not have a
foreseeable behavior, the RL agent fights
better against state-machine opponents,
learning a policy that maximizes the result
against the SM strategy.

Figure 4: Traditional RL agent’s performance

Figure 5: Adaptive RL agent’s performance

Figure 5 show the adaptive RL agent

performance. Although this agent has the same
capabilities as traditional RL, because their
learning algorithms are the same, the adaptive
mechanism forces him to act at the same
opponent level. As a result, the agent
performance varies between wins and losses,
independently of opponent’s skills. The
average performance of the agent shows that
most of the fights end with a small difference
of life, meaning that both fighters had similar
performance. Table 1 shows the average life
difference for each agent.

Table 1: Average life difference
 State-Mach. Trad. RL Adaptive RL

SM -0,50 44,10 -8,57

Random 30,76 30,67 -0,67

RL -34,16 -3,36 -7,10

These results indicate the effectiveness of

our approach. Although the adaptive agent
could easily beat their opponents, the difficulty

level is adapted so it acts nearly the opponent,
interleaving wins and loses.

7 Conclusions
This work presented an original approach

to construct agents that dynamically adapt
their behavior in order to keep the game in a
difficulty level adequate to the current user
skills. The developed technique combines
reinforcement learning [16] with challenge
functions [14], and uses RL properties to
define an order relation into the quality of the
agent possible actions. The approach was
successfully applied to a real time fighting
game.

Since this work’s experiments were
restricted to computer agents, a future work is
to extend the experiments to human users.
Since the main objective is to create intelligent
agents that enhance the gameplay, it is
necessary to check whether the agents are
really entertaining for humans. Therefore, we
intend to perform experiments in the future
involving human players.

Another direction for future work is
testing different offline learning strategies. As
online learning is an expensive process, it is
important that the initial agents are sufficiently
skilled to deal with a broader range of users.

8 References

1. Woodcock, S. The Game AI Page: Building

Artificial Intelligence into Games,
http://www.gameai.com (04/01/2004)

2. Demasi, P., Cruz, A. Aprendizado de Regras

Nebulosas em Tempo Real para Jogos Eletrônicos.
II Workshop Brasileiro de Jogos e Entretenimento
Digital, 2003.

3. Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.

Improving Opponent Intelligence through Machine
Learning. Proceedings of the Fourteenth Belgium-
Netherlands Conference on Artificial Intelligence
(eds. Hendrik Blockeel and Marc Denecker), pp.
299-306. 2002.

4. Tesauro, G. TD-Gammon, a self-teaching

backgammon program, achieves master-level play.
Neural Computation, 6(2): 215-219, 1994.

5. Samuel, A. Some studies in machine learning using

the game of checkers. II-Recent progress. IBM
Journal on Research and Development, 11:601-617,
1967.

Traditional RL against other agents

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

State-Machin Random RL-Agent

Adaptive RL against other agents

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

State-Machin Random RL-Agent

6. Abramson, M., Wechsler, H. Competitive
Reinforcement Learning for Combinatorial
Problems. Int. Joint Conference on Neural Net-
works, Washington, DC, 2001.

7. Robocup. RoboCup Official Site,
http://www.robocup.org/ (01/04/2004).

8. Vasilyev, A., Kapishnikov, A., Sukov, A. Quick
Online Adaptation with Reinforcement of Simulated
Soccer Agents. RoboCup'2003 International
Symposium. In press, 2003.

9. Riedmiller, M., Merke, A., Meier, D., Hoffmann,
A., Sinner, A., Thate, O., Ehrmann, R. Karlsruhe
Brainstormers – A Reinforcement Learning
approach to robotic soccer. RoboCup-00: Robot
Soccer World Cup IV, LNCS, Springer.

10. Demasi, P. Estratégias Adaptativas e Evolutivas em
Tempo Real para Jogos Eletrônicos. Rio de
Janeiro. Dissertação de Mestrado. UFRJ/IM/NCE,
2003.

11. Meyer, C., Ganascia, J-G, Zucker, J-D. Learning
Strategies in Games by Anticipation. Proceedings
of the fifteenth International Joint Conference on
Artificial Intelligence, IJCAI'97. Morgan Kaufman
Editor, 1997.

12. Ramon, J., Jacobs, N., Blockeel, H. Opponent
modeling by analyzing play. Third International
Conference on Computers Games (CG’02),
Workshop on Agents in Computer Games, 2002.

13. Spronck, P., Sprinkhuizen-Kuyper, I., Postma, E.
Online Adaptation of Computer Game Opponent
AI. Proceedings of the 15th Belgium-Netherlands
Conference on Artificial Intel-ligence, pp. 291-298.
University of Nijmegen, 2003.

14. Andrade, F., Andrade, G., Leitão, A., Furtado, A.,
Ramalho, G. Knock'em: Um Estudo de Caso de
Processa-mento Gráfico e Inteligência Artificial
para Jogos de Luta. II Workshop Brasileiro de
Jogos e Entretenimento Digital, 2003.

15. Klov, Killer List of Videogames. Coin-Op Museum.
http://www.klov.com/ (03/04/2004).

16. Sutton, R., Barto A. Reinforcement Learning: An
Introduction. Cambridge, MA. 1998.

17. Spronck, P., Sprinkhuizen-Kuyper, I., Postma, Eric.
Online Adaptation of Game Opponent AI in
Simulation and in Practice. Proceedings of the 4th
International Conference on Intelligent Games and
Simulation (GAME-ON 2003), pp. 93-100.
EUROSIS, Belgium, 2003.

18. Mitchell, T. Machine Learning. McGraw Hill,

1997.

19. HUNICKE, Robin, CHAPMAN, Vernell. AI for

Dynamic Difficulty Adjustment in Games.
Challenges in Game Artificial Intelliigence, AAAI
Workshop. AAAI Press 2004.

