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Abstract—5G and Beyond 5G Networks apply Adaptive Mod-
ulation and Coding to adjust the downlink modulation order and
coding rate according to the channel condition, reported by the
user equipment. However, the delay incurred in this feedback
process may make the channel quality indicator (CQI) outdated
and cause severe degradation in the user communication. This
paper proposes a machine learning-based approach to deal with
the outdated CQI problem. It takes into account the UE context,
current signal-to-interference-plus-noise ratio (SINR), and the
delay length to compute the updated SINR to be translated into
a CQI value. Our proposal acts as a multi-variable function
and runs at the UE side, neither requiring any modifications in
the signalling between the 5G base station (gNB) and the UE
nor overcharging the gNB. Results in terms of mean squared
error (MSE) by using 5G network simulation data show its high
accuracy and feasibility to be adopted in 5G networks.

Index Terms—CQI Feedback Delay, 5G Networks, Machine
Learning

I. INTRODUCTION

The fifth generation of mobile communication (5G) and
beyond 5G (B5G) comprise different service categories such
as enhanced mobile broadband (eMBB), massive machine-type
communication (mMTC) and ultra-reliable and low latency
communication (URLLC), which present distinct requirements
in terms of latency, connection density, reliability and through-
put [1]. Since that the mobile communication experiences un-
predictable channel variations due to events such as reflection,
diffraction, signal scattering and user mobility, 5G New Radio
applies Adaptive Modulation and Coding (AMC) to adjust the
downlink modulation order and coding rate and thus achieving
high throughput/spectral efficiency, keeping the target block
error rate (BLER) under control [2].

The AMC is based on the Channel State Information (CSI)
reported by the user, in which the Channel Quality Indicator
(CQI) is one of the key parameters. CQI is a 4-bit value [3]
that aims at reflecting the current channel conditions. Based
on the CSI report, the 5G base station (gNB) schedules radio
resources to the user equipment(UE), aiming to provide a
certain level of the Quality of Service (QoS), compensate
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the channel impairments, and reduce multiple re-transmissions.
Therefore, CQI plays a key role in the 5G and B5G radio
systems.

Inaccurate CQI may result in imbalanced distribution of radio
resources among the UEs and unsuitable modulation and coding
scheme (MCS), which may degrade the UE performance [4].
For instance, if the a high CQI value is reported, but the real
channel condition is poor, the gNB chooses a higher order MCS
to be applied in the communication, which leads to a higher
block error ratio (BLER) and excessive retransmissions. On the
other hand, when a low CQI value is erroneously reported, the
data rate and spectral efficiency are impaired because a lower
order MCS is selected.

Traditional approaches have adopted the measured signal-
to-interference-plus-noise ratio (SINR) of a reference signal
sent by gNB to infer the channel quality, translating it into
a CQI number [5]. In addition to how the channel condition
is estimated, the delay incurred by the CQI feedback process
also may lead to an inaccurate CQI, an outdated value, because
the channel condition may change between the UE reporting
and the feedback reception by the gNB, not reflecting the
current channel quality. Moreover, for high mobility users, these
changes are more evident and need to be considered in the CQI
computation.

In this respect, this paper proposes a machine learning-based
approach to deal with the outdated CQI problem, in which a
Multilayer Perceptron (MLP) artificial neural network (ANN)
takes into account the UE context (velocity, direction and
position), current SINR, and the delay length to compute the
updated SINR to be translated into a CQI value. Our proposal
acts as a multi-variable function and runs at the UE side, neither
requiring any modifications in the signalling between gNB and
UE nor overcharging the gNB. Its accuracy is evaluated in terms
of mean squared error (MSE) by using 5G network simulation
data and the results show its feasibility.

This paper is organized as follows. Section II presents works
that address issues related to the CQI feedback process. Section
III describes the proposed ANN-based scheme for dealing
with the outdated CQI problem and presents accuracy results.
Section IV concludes this paper and outlines future directions.



II. RELATED WORK

Since the CQI indicator is a key-element used by the gNB to
select the most suitable MCS and the amount of radio resources
to be used in the gNB-UE link, the value reported by the UE
has to reflect the current channel condition. However, the CQI
feedback process raises three main issues: (1) the accuracy of
the CQI computation/estimation,i.e., how the channel condition
is measured and mapped into a CQI value; (2) the CQI feedback
delay, which may result in a outdated CQI value due to the
changes in the channel condition during the CQI transmission
time (from the UE to the gNB); (3) the CQI feedback overhead,
an excessive signalling in the uplink that takes place when
a short interval between the report is adopted, specially in
scenarios with high user density (e.g. crowded events).

Different approaches have been proposed to address these
issues. For instance, in [6] the authors deal with the CQI
feedback delay by predicting the signal-to-noise ratio (SNR)
via linear extrapolation. So, the UE predicts the future SNR
based on the previous ones that are selected based on the user
speed, with the result being mapped into a CQI value. Although
the scheme presents low complexity, it does not work when the
user is moving at moderate or high speed. [7] also addresses
the feedback delay, but proposes a Long Short Term Memory
(LSTM) Neural Network-based CQI prediction scheme with
online retraining to achieve high prediction accuracy even in
dynamic environments. Both proposals ( [6] and [7]) act as
time-series forecasters with a single input type, but [7] differs
from [6] by predicting the CQI directly and running at the BS.

By addressing the CQI computation accuracy, the authors
in [5] claim that factors such as the UE mobility impact on
the signal quality as it reflects on the multipath delay spread
size, i.e., a larger spread leads to a larger transmission delay
and a worse channel quality. Consequently, they propose a
CQI scheme that jointly considers SNR and the maximum
multipath delay spread of instantaneous channel state to achieve
a precise CQI under fading channels. In [8], the authors propose
a CQI mapping algorithm that considers the Spectral Efficiency
(SE) and Energy Efficiency (EE) tradeoff while keeping the
BLER under control and define weights for SE and EE that
may reflect the operator priorities or react to the network
conditions. In [4] a machine learning (ML)-based framework to
predict the SNR considering the UE under different speeds and
channel models is presented. Three ML techniques are studied
(stochastic gradient descent, multilayer perceptron and support
vector machine) that take the SNR and CQI values as inputs.
Besides the issue addressed, [8] [4] differ from our proposal
as they are designed to run on the BS and do not consider the
UE velocity to compute the CQI or SNR, just for selecting the
prediction model to be applied in [4].

To reduce the CQI feedback overhead via spatial correla-
tion of wireless channels, [9] [10] propose Gaussian Process
Regression-based prediction that selects an appropriate number
of CQI reports (SNRs) from some UEs to estimate the CQI for
the remaining ones. The estimator accuracy and the user density
are used to adjust an offset parameter in [9] and thus improv-

ing the prediction. Different from our proposal, [9] [10] are
limited to static environments (no moving users) and strongly
dependent on the number of users, not working properly in low
user density scenarios. In [2], the signaling overhead is reduced
by combining subband level report (i.e., the user reports a
CQI for a group of resource blocks) and aperiodic feedback
(i.e., gNB instructs each UE on when reporting). Moreover, the
authors apply Gaussian process regression to predict the CQI
and compensate for the CQI feedback reduction, adjusting the
prediction window according to the packet loss. The proposal
is evaluated in scenarios with moving users, however, the UE
speed is not an input to the predictor.

In [11], the authors propose a CQI mechanism for multicast
unmanned aerial vehicle (UAV) systems in which the BS
determines the suitable MCS for UAVs in the same multicast
group based on their CQI feedback. The mechanism provides a
fixed CQI channel per group regardless of the amount of UAVs.
Although the proposal aims at reducing the overhead signalling,
no metric was analyzed to quantify it. Moreover, the authors
do not take into account the high mobility of the UAVs, even
though it may change the UAV position and channel quality
perceived between the CQI feedback and the MCS selection,
making the proposal unsuitable for UAV systems. In [12], the
CQI feedback overhead is reduced by estimating the CQI of
some users via CQI values reported by others. The approach
comprises two neural networks (NN) running on the BS: an
NN-based binary classifier for selecting the UEs and subbands
(SBs) to be used to estimate the CQI; a dense NN estimator
for predicting the CQI of non-selected users.

In addition to the main addressed problem, other charac-
teristics (e.g. input types, output, technique and goal) may be
pointed to clarify the differences between our work and those
previously discussed, as summarized in Table I. For instance,
our proposal is designed to run on the UE, not requiring any
change in the signalling protocol or gNB. Moreover, it takes
multiple input types (e.g. UE position, speed and movement
direction, delay time and current SINR) to estimate the updated
SINR to be translated into a CQI value. In this respect, the ANN
is adopted as a multi-variable function instead of a time-series
predictor as the previous approaches usually do.

III. PROPOSED SCHEME AND RESULTS

In new radio (NR) system, the CQI is an important schedul-
ing information sent by the user to the gNB to express the
current channel condition. It is used by the scheduler at medium
access layer to allocate resource blocks (RBs), define the MCS
and the Transport Block Size (TBS) to be adopted in the
downlink channel, and, thus determining how much data will
be transmitted at each time slot [7]. In this respect, to perform
a proper resource scheduling to the user, it is imperative that
the CQI value accurately expresses the channel quality at time
that the gNB makes the decision. However, the delay incurred
by the CQI transmission, i.e., the time elapsed between the
sending by the user and the reception at the gNB, may make
the CQI to be outdated.



TABLE I
APPROACHES FOR CQI FEEDBACK RELATED PROBLEMS.

Paper Proposal CQI prob-
lem

Technique Goal(s) Side Inputs Output

[2] A packet loss and CQI predic-
tion approach that assigns per-
sonalized prediction windows
to the users.

Feedback
overhead

Gaussian Process
Regression

To minimize the
packet loss and limit
the CQI signalling
overhead

BS CQI and
packet loss

CQI and
packet
loss

[4] A ML-based approach to pre-
dict SNR

Innaccuracy Machine Learning
(SVR, MLP, SGD)

To provide a more ac-
curate channel quality
estimation

BS CQI and SNR SNR

[5] A multipath delay spread-
aware CQI scheme for LTE
system

Innaccuracy Empirical
SNR/Delay - CQI
mapping based on
simulation data

To achieve more pre-
cise CQI under fading
channels

UE SNR and
Multipath
Delay Spread

CQI

[6] A linear extrapolation-based
scheme to predict SNR and
map it into a CQI value

Feedback
delay

Linear Extrapola-
tion

To improve the net-
work throughput

UE SNR SNR and
derived
CQI

[7] An LSTM-based CQI predic-
tion method and an online
training module in ns-3

Feedback
delay

LSTM Artificial
Neural Network

To improve the CQI
prediction accuracy

BS CQI CQI

[8] A CQI mapping algorithm that
considers the Spectral Effi-
ciency x Energy Efficiency
tradeoff

Estimation The VIKOR rank-
ing method and
weighted sum

To balance SS and SE
in the MCS selection

BS CQI and
weights for
EE, SE and
coding rate

CQI

[9] A SNR prediction scheme
based on the SNR reported by
spatially correlated UEs.

Feedback
overhead

Gaussian Process
Regression

To reduce the CQI
feedback overhead and
improve the prediction
quality

BS SNR and
spatial
correlation of
users

SNR and
CQI

[10]
A SIR prediction scheme that
uses SIR from spatial corre-
lated users

Feedback
overhead

Gaussian Process
Regression

To reduce the CQI sig-
naling overhead

BS SIR and
spatial
correlation
from a set of
users

SIR

[11]
A CQI feedback scheme for
UAV multicast system

Feedback
overhead

Minimun functon
and fixed channel
for CQI feeback
per group

To reduce the sig-
nalling overhead and
increase the spectral
efficiency

BS CQI CQI

[12]
A CQI report scheme for en-
hancing the URLLC

Estimation The worst-case es-
timation

To accurately estimate
and report the the
worst-case SINR con-
ditions

UE SIRN CQI

[17]
An ANN-based selector and
a Dense ANN-based for
users/subbands selection and
CQI estimation

Feedback
overhead

Artificial Neural
Networks

To reduce the CQI
feedback signalling
overhead

BS CQI of
selected sub-
bands/users

CQI

Our
Pro-
posal

A ML-based approach with
multiple inputs for CQI feed-
back delay

Feedback
delay

MLP Artificial
Neural Network

To accurately estimate
the SINR considering
the cqi feedback delay

UE UE velocity,
movement
direction
and position,
delay length
and SINR

SINR

To deal with the CQI delay problem, we design a machine
learning-based approach that considers the UE context (e.g.
position, velocity and movement direction) and the measured
SINR at instant t and the delay length (τ ) to compute the
updated SINR, i.e, its value at the instant t+τ , which is mapped
into a CQI value to be reported by the user. This mapping may
be done as usual, by using the CQI table mapping received
from the gNB, or adopting schemes such as those proposed in
[4] [12] [13]. Our system is flexible enough to admit different
mapping ways. Moreover, it runs on the UE, not requiring any
change in the signalling protocol or in the BS. Fig. 1 illustrates
our proposal.

The UE context may be obtained via position systems such
as the Global Positioning System (GPS), which is commonly
embedded in the mobile devices, and the SINR is measured
based on the reference signal sent by the gNB. For SINR

estimation, we adopt a multilayer perceptron (MLP) artificial
neural network (ANN) consisting of a 5-neurons input layer,
with each one representing an input feature (UE velocity,
movement direction and position, SINR or delay length); an 1-
neuron output layer, which refers to the updated SINR, i.e., the
SINR at the instant t+τ . The number of hidden layers, neurons
in the hidden layers as well as the other ANN hyper-parameters
(e.g. activation function and learning rate) are described in
Section III-A.

A. ANN Topology and Accuracy Results

To define the ANN configuration to be adopted in our
scheme, several tests were conducted with different Multilayer
Perceptron ANNs [14] varying parameters such as the number
of hidden layers (NHL), number of hidden layer neurons
(NHLN), activation function of hidden layer neurons (AFHL),



Fig. 1. Proposed scheme

and learning rate (LR). All tested ANNs used five neurons in the
input layer (NILN) and one neuron in the output layer (NOLN)
with linear activation function (OLAF). The backpropagation
learning algorithm [14] was chosen to train the ANNs. Table II
summarizes the parameters and analyzed values and indicates
that the sigmoid (Eq.1) and hyperbolic tangent (Eq. 2) functions
were evaluated as functions for hidden layer neurons.

Logisg(x) =
1

1 + e−x
(1)

Tansig(x) =
2

1 + e−2x
− 1 (2)

The number of neurons in the hidden layer strongly influ-
ences the ANN learning process and performance. Using too
few hidden neurons would result in an ANN that is unable to
learn the data structure. On the other hand, so many hidden
neurons would dramatically increase the ANN complexity and
its learning time, without yielding any significant improvement
in the performance [14]. The number of hidden layers also
impacts on the ANN’s efficiency and time complexity. When
the number of hidden layers does not match the problem com-
plexity, the overfitting or underfitting conditions may take place.
In the former, the ANN with a large number of hidden layers
loses its generalization ability over the data to be tested. In the
latter, the problem complexity is underestimated by adopting an
ANN with insufficient hidden layers, which produces inefficient
results [15]. Thus, six and three different values for the number
of hidden neurons and number of hidden layers were analyzed,
as shown in Table II.

Additionally, since the learning rate also impacts on the ANN
training (e.g. a very low (high) LR can make the learning
process too slow (cause large oscillations) [14], three LR values
were considered. We combined all the values shown in Table
II and analyzed 144 ANN configurations. To choose the ANN
to compose our scheme, we adopted the criteria (3) and (4),
and took into account the ANN complexity. The MSEref

represents the reference (desired) mean squared error (MSE),
the MSEtrain and MSEvalid refer to the MSE achieved by the
ANN in the training and validation stages, respectively. These
criteria aim at selecting the ANN that not only learns the data
characteristics in the training stage but also provides a great

generalization capacity when faces new data. In our approach,
we considered the MSEref equals 0.01 (1%).

(MSEtrain ≤MSEref ) and (MSEvalid ≤MSEref ) (3)

Minimize |MSEtrain −MSEvalid| (4)

TABLE II
TESTED ANN HYPER-PARAMETERS AND VALUES

Hyper-parameters Values
Number of hidden layers (NHL) 1; 2; 3
Number of hidden layer neurons (NHLN) 5;10;15;20;25;30
Activation function of hidden layer neuron (AFHL) Tansig; Logsig
Learning rate (LR) 0.01; 0.045; 0.1

The data used to analyze the ANNs were generated by the
5G/mmwave ns-3 simulation framework [16]. A 5G network
was simulated with the UE speed, movement direction and
position varying during the simulations, leading to different
CQI and SINR values. An amount of 2633 samples was
collected, being 70% and 30% considered for ANN training
and validation, respectively.

Fig. 2 presents the average results for all ANN configura-
tions, obtained by executing 30 times each. Almost all configu-
rations satisfied the criterion 3. The configuration #48 (1 hidden
layer with 35 neurons, sigmoid AFHL and LR equals 0.2)
achieved the lowest error training (0.003217), but its validation
error (0.005) led to a bigger error difference (0.001782) than
the configuration #38, which got 0.0004008, 0.004127 and
0.004528 for error difference, training and validation errors,
respectively. The best configuration in terms of criterion 4
was the #91, with difference value equals 0.0003183, but at
a cost of higher complexity (2 hidden layers with 30 neurons
each) and a slight higher training error (0.00474) compared
to the configuration #38, which comprises 1 hidden layer
with 25 neurons, sigmoid activation function and learning rate
equals 0.1. In this respect, we selected the configuration #38
to compose our scheme, which is summarized in Table III.

TABLE III
SELECTED ANN CONFIGURATION

Parameter Value
Number of input layer neurons(NILN) 5
Number of hidden layers (NHL) 1
Number of hidden layer neurons (NHLN) 25
Activation function of hidden layer neurons Sigmoid (Eq. 1)
Number of output layer neurons (NOLN) 1
Activation function of output layer neuron Linear
Learning rate (LR) 0.1

B. Estimated versus Real SINR

Fig. 3 shows the SINR estimated by our scheme in compar-
ison to the real (target) value. In general, our scheme follows
the real data behavior, with few peaks that cause mismatch’s



Fig. 2. Results for different ANN configurations.

but without leading to a high MSE (as seen in Fig. 2). It shows
the feasibility of our scheme to be adopted to overcome the
CQI delay feedback. It is worth mentioning that, as shown in
Fig. 1, the estimated SINR is quantized into a CQI value. This
process may consider diverse factors such as spectral efficiency
and error block rate (BLER) [13], energy efficiency and specral
efficieny tradeoff [8] or application requirements [12], and it
is not the concern of this paper. Moreover, when the CQI
quantization is based on SINR intervals, the difference between
the target and ANN values may not lead a CQI error.

Fig. 3. SINR estimated by the ANN-based Scheme in comparison to the Target
value .

IV. CONCLUSION

This paper proposed a machine learning-based approach
to address the CQI feedback delay problem. We considered
multiple input variables (UE context, SINR and delay length) to
accurately estimate the SINR and run several tests to select the
best ANN configuration. The results showed a high accuracy
of our scheme, which implies that it may assist a proper MCS
selection by the gNB. Although not addressing, our proposal
supports online ANN re-training [7] in response to the changes

in the wireless channel, where the processing load may be
offloaded to the network edge nodes (e.g. multiple access edge
computing nodes), not overcharging the UE. Future directions
include analyzing the proposed solution when embedded in a
simulator or testbed and combine it with different CQI mapping
schemes in scenarios with different 5G service types.
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