
An Aerial Base Station Assignment Algorithm for 5G
Networks

Renata K. G. dos Reis 1,2, Maria G. L. Damasceno1,2,
Jussif J. A. Arnez1, Caio B. B. de Souza1,2, Andson M. Balieiro2

1 Sidia Institute of Science and Technology
Manaus – AM – Brazil
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Abstract. Due to network capacity and coverage demands of existing 5G and
Beyond 5G networks, Aerial Base Stations (ABS) based on Unmanned Aerial
Vehicles (UAV) have been highlighted as a key strategy to expand terrestrial
networks and assist mobile users. Nevertheless, ABS based on UAV (UAV-BS)
are resource-constrained compared to terrestrial base stations, implying that
resource management procedures are required to ensure efficient UAV-BS oper-
ation. In this respect, this work proposes a clustering-based user assignment
solution for users to UAV-based ABS, employing a reallocation approach to
avoid connection denial and evaluate the average number of allocated users
and throughput.

1. Introduction
Aerial Base Stations (ABS) using Unmanned Aerial Vehicles (UAVs) are an important
solution for increasing the capacity and coverage of 5G and Beyond 5G networks. They
help meet the growing need for mobile data and applications, especially during events
like sports games and concerts. ABS can also provide communication during disasters or
emergencies. Additionally, ABS can create line-of-sight (LOS) connections, improving
the Quality of Service (QoS) for users on the ground [Kimura and Ogura 2021]. This helps
solve the problem of limited coverage from traditional base stations. However, deploying
UAV-based ABS comes with challenges. These UAVs have fewer resources than regular
base stations, meaning they cover smaller areas and have shorter battery life. Therefore,
more UAVs are needed to serve the same area, which requires careful energy manage-
ment. Moreover, the flexibility and mobility of UAVs make it challenging to assign users
to them. This assignment must change continuously based on user movements, demand,
and environmental factors [Cheng et al. 2019]. Multiple approaches have been studied for
user-to-UAV-based ABS (Aerial Base Station) assignments. For instance, in [Ozturk et al.
2020], the authors rank available UAVs based on their received Signal to Interference plus
Noise Ratio (SINR) to select the best one. The work in [Mirzaeinia et al. 2020] focuses
on UAV placement by considering user positions and required traffic through a weighted
K-means clustering method. Additionally, [Kalantari et al. 2017] proposes a particle
swarm optimization algorithm for user association and bandwidth allocation, while [Silva
and Cardoso 2023] presents a UAV allocation strategy to improve connectivity for dy-
namically distributed users. However, these studies often overlook scenarios where users



rejected by one UAV-BS can be redirected to others. Clustering techniques have also been
employed in terrestrial BS environments, such as in [Zaw et al. 2017], which formulates
a joint user clustering and power allocation strategy for Non-Orthogonal Multiple Access
(NOMA) in 5G systems, and [Bouras et al. 2021], which introduces a Machine Learning
(ML)-based resource allocation mechanism. In contrast to terrestrial networks that con-
sider priority levels and available resources, user association in UAV-ABS environments
is complicated by factors like UAV movement and limited energy. This paper proposes
a clustering-based solution for user-to-UAV ABS assignments, incorporating a realloca-
tion approach to avoid connection denials. Our results show that our method successfully
allocated 99.5% of users, compared to 90.0% for the baseline, while also achieving an
average throughput of 4.68 Gbps versus 3.77 Gbps for the baseline.

2. Key Concepts

2.1. Non-Terrestrial Network (NTN)

Base stations are classified as Terrestrial Networks (TN), while aerial networks composed
of satellites, UAVs, drones, etc., are called Non-Terrestrial Networks (NTN). They com-
pose a 3-dimensional (3D) Network, providing connectivity and wireless services glob-
ally. Fig. 1 shows an overview of a 3D Network with three main aerial network lay-
ers: Low Altitude Platform (LAP), High Altitude Platform (HAP), and Low Earth Orbit
(LEO). LAP includes drones, surveillance aircraft, and atmospheric balloons. On the
other hand, HAP refers to high-altitude airplanes, and the LEO layer is commonly used
for low-orbit satellites [Iqbal et al. 2023]. UAVs are often associated with the concept
of MEC (Multi-Access Edge Computing), which is the ability to perform computation
and storage close to the network’s edge [Ei et al. 2022]. With MEC, UAVs in 5G net-
works can perform computational tasks locally at the network’s edge, resulting in faster
and more efficient response times. Besides computational resources, UAVs can provide
radio resources to terrestrial User Equipments (UEs). Acting as flying base stations, they
increase the connection quality between a network remote node and a given terrestrial
cellular base station [Amponis et al. 2022].

Figure 1. A 3-Dimensional-Network with a 3-layer NTN

2.2. K-Means

The clustering technique initially associates users with the nearest base station. Clustering
is the process of grouping similar data into disjoint clusters. Among various clustering



models, K-Means is a well-known clustering approach in which a number of clusters is
predefined, and centroid points are randomly selected. Then, an iterative process begins
associating each data point with its nearest centroid based on the Euclidean distance of
all data elements. Upon completion of this step, the mean values for each cluster are
evaluated, and a new centroid is determined. This process repeats until convergence is
achieved [Unnati R. Raval 2016]. The motivation for using K-Means to assign proposed
aerial base stations lies in the algorithm’s efficiency in managing large data sets. This
capability is essential in a scenario with a significant number of UEs in 5G mobile net-
works [Mirzaeinia et al. 2020]. By pre-defining the number of clusters corresponding to
UAVs, K-Means allows for a quick and straightforward initialization, making it suitable
for real-time applications where fast decision-making is required.

3. System Model

We consider a multi-UAV-based network comprising q UEs and n UAV-based ABS,
denoted as UAV, placed in a given geographical area. At each time slot, UE i, with
i = (1, 2, ..., q), requests radio resources from UAV for downlink communication with
data rate DRi and its localization on the ground is given by a 2-dimensional coordinate
(xi, yi). The UAV j, with j = (1, 2, ..., n), manages Rj resource blocks, and it may assign
Ri resource blocks (RBs) out of Rj RBs to the UE i according to the user‘s demand. The
UAV j position is also given by (Xj, Yj, Zj) coordinates, which is fixed within the time
slot (resource allocation). The system considers LoS communications and the free-space
propagation model between UAVs and UEs.Thus, the path loss Pi,j in dB of a UAV j
communicating with a UE i by using a carrier frequency f in Hz is given by Eq. 1, where
d is the Euclidian distance in meters between UAV j and UE i [Ozturk et al. 2020]. Also,
gt and gr are transmission and reception gains, respectively.

Pi,j = 20 ∗ log(d) + 20 ∗ log(f)− 147.55− gt − gr (1)

Considering the UE i assigned to the UAV j requiring a data rate DRi for com-
munication, the minimal number of RBs to be allocated to the UE i by the UAV j to meet
this demand is gotten by Eq. 2, where DRRB is the data rate achieved using one RB,
computed by Eq. 3, with BRB denoting the RB bandwidth in Hz.

Ri,j =

⌈
DRi

DRRB

⌉
≤ Rj (2)

DRRB = BRB ∗ log2(1 + SINR) (3)

The Algorithm 1 shows how the proposed solution performs the UE-UAV assign-
ment. UAVs correspond to centroids and UE to elements in the clustering context. Each
UE requests resources from its cluster centroid (UAV). If it is rejected, the UE requests
resources from the nearest UAV with available resources. The algorithm takes the fol-
lowing input parameters: the number of UAVs (n uav), the number of UEs (n ue), the
carrier frequency (f ), the RB bandwidth (BRB), the available RBs for each UAV (Rj), the
SINR (sinr), and the user data rate requirement (DRi). The K-means model is applied
to group users into clusters according to the UE’s location, see Fig. 2. Next, the path loss



Algorithm 1 Coverage and Resource Based User Allocation
input : n uav, n ue, h uav, sinr, range dr, f , BRB , Rj

Create UAV-BS user list using K-Means algorithm
Calculate path loss Pi,j in Eq. 1
Organize UE list by path loss value
Calculate the number of preferred Ri in Eq. 2
while All UEs are not allocated or rejected by all UAV do

for UE i in UAV j Uplink list do
if Rj >= Ri then

Rj = Rj −Ri

Update UAV resource available list
break

end
else

Find nearest UAV j to UE i
if New UAV Rj >= Ri then

New UAV Rj =New UAV Rj −Ri

Update UAV resource available list
break

end
continue

end
if UE Rejected by all nearest UAV then

break
end

end
end

Pi,j is calculated following Eq. 1. The Pi,j determines the order in which the cluster UAV
responds to resource allocation requests, from the UE with the lowest to the highest Pi,j .

The algorithm assumes that the UE is aware of the distance and resources avail-
able in the nearest UAV, creating the distance and UAV available resource lists. Given
the UE data rate requirement, the number of RBs Ri required to fulfill its application is
computed by Eq. 2. Therefore, following the order, UE requests Ri RBs from the UAV
(e.g., UAV j). If there are enough resources, the UE is assigned to the UAV, and the
quantity of available resources is determined. Rj is updated. Otherwise, a new UAV is
selected based on the UE’s position, considering centroid-based distance and available
resources. If the new UAV has enough RBs, then Ri RBs are allocated to the UE, and the
UAV resource availability is updated. The algorithm continues the assignment attempt in
resource unavailability, considering other UAVs.

Our solution (Algorithm 1) assigns users to UAVs based on their proximity and
radio resource availability, besides the path loss, adopting a redirection approach when
a UAV does not accept a UE due to insufficient resources. For comparison, we consider
a coverage-based user allocation scheme described in Algorithm 2. It also adopts the
K-Means algorithm to associate UEs with UAVs. Similarly, each UE i is expected to re-
quest Ri RBs from its UAV j, where the allocation is performed when there are enough
available RBs (Rj). Otherwise, the UE is rejected by the UAV, and it should refrain from
making further requests. To analyze the proposed algorithm that assigns users to UAV-
based UABs in 5G networks based on the distance and availability of resources, we adopt
Python and K-Means libraries. Simulation parameters are presented in Table 1. We con-
sidered fixed UAV heights and UAVs positioned in the air following a grid format, as
shown in Fig. 2, which denotes the UAVs and users’ 3D locations as triangles and circles,
respectively. The UEs and UAVs are randomly distributed in the grid area, and the SINR



Figure 2. Network Scenario

perceived by the UEs and their data rate requirements are uniformly distributed within the
intervals [10, 25]dB and [1Kbps, 10Mbps], respectively. Using fixed UAV positions and
uniform user distribution simplifies initial analyses by reducing complexity and allow-
ing us to focus on fundamental algorithmic performance without the added variability of
dynamic mobility patterns. These assumptions facilitate an easier understanding of core
mechanisms but acknowledge their limitations in representing real-world scenarios where
UAVs and users exhibit more complex behaviors.

This approach provides a foundation for further refinement and extension to in-
corporate dynamic factors like mobility and non-uniform user distribution. In addition,
we assume a flat propagation channel, where the frequency response is constant over the
bandwidth of interest, an RB with 180 KHz wide in frequency, and a time slot duration
of 0.5 milliseconds (msec), similar to [Kooshki et al. 2023]. We compare the proposed
solution to the Algorithm 2 regarding the number of accepted and rejected users and the
number of redirected users successfully allocated and aggregated throughput. The first
two metrics assess the solutions’ efficiency in handling user requests, indicating the capa-
bility to maximize the admission of user requests, ensuring their service quality require-
ments. The third metric evaluates the schemes’ ability to manage and reallocate users not
served immediately, reducing the service request denials. The last one measures the total
throughput achieved by all attended users.

Table 1. Simulation Parameters

Parameter Value

Channel Bandwidth 100 MHz
SINR 10 dB - 25dB
Number of Users 200
Number of UAVs 10
Transmission Frequency 28GHz
Tx Gain 11 dBi
Rx Gain 21 dBi
Requested Data Rate 1Kbps-10Mbps
UAV Height 100m
Number of RBs per UAV 275
RB Bandwidth RBRB 180KHz



Algorithm 2 Coverage-Based User Allocation
input : n uav bs, n ue, h uav, range dr, BRB , Rj

Create UAV user list using K-Means algorithm
Calculate the number of preferred Ri in Eq. 2

for UE i in UAV j Uplink list do
if Rj >= Ri then

Rj = Rj −Ri

Update UAV resource available list
break

end
else

Reject UE i
end

end

4. Simulation Results

Fig. 3 presents a comparative analysis of two distinct approaches: ”Proposed Solution”
and ”Baseline Solution.” This visual representation provides insight into each approach’s
performance, allowing for a comprehensive understanding of their respective strengths
and weaknesses. The proposed solution exhibits a higher number of allocated users com-
pared to the baseline solution. In contrast, the baseline solution has fewer allocated users.
Notably, the proposed solution also features a larger proportion of reallocated users. The
results are shown for accepted, rejected users, and reallocated users achieved by our pro-
posal (Algorithm 1) and the baseline one (Algorithm 2), considering 10 executions. The
green bar represents the users allocated to the UAV (their cluster), while the blue bar
denotes users redirected to another UAV and successfully allocated. The red bar means
rejected users due to insufficient resources. It is noted that almost all rejected users were
reallocated to another UAV when our solution (Algorithm 1) is applied. On average,
our solution successfully allocated around 99.5% users, while the baseline one achieved
90.0% of allocated users and 10% of rejected users.

Fig. 4 shows the average throughput and allocated users per UAV achieved by
the solutions. The x-axis represents the UAV ID, 10 in total, while the double y-axis
displays the average throughput in Mbps and the average allocated users. It is observed
that the solutions present similar throughput and number of allocated users for UAVs
from 0 to 4. This is attributed to the small number of users requesting resources in these
clusters, resulting in no necessity to reallocate users to obtain radio resources from other
UAVs. However, as we move towards larger clusters (UAVs 5-9), significant differences
emerge between the two solutions. Algorithm 2 struggles to assign users and shows lower
throughput compared to our solution (Algorithm 1). The number of allocated users per
UAV is also depicted in the figure. Our proposed solution (Algorithm 1) consistently
demonstrates a higher number of allocated users compared to Algorithm 2 , especially
for larger clusters (UAVs 5-9), the proposed scheme has the highest average throughput,
reaching 6.79 Gbps, 11.53 Gbps, 8.87 Gbps, 4.11 Gbps, and 12.33 Gbps, respectively.
Hence, our solution (Algorithm 1) shows superior performance compared to Algorithm
2 in both user acceptance and throughput for larger clusters. Based on the analysis pre-
sented, we can conclude that our proposed solution (Algorithm 1) outperforms the base-
line approach (Algorithm 2) in both user acceptance and throughput for larger clusters.
The results suggest that our algorithm is more efficient in allocating users to UAVs, re-
sulting in higher average throughput values.



Figure 3. Algorithm’s comparison

Figure 4. Average throughput and allocated users comparison per UAV-BS

5. Conclusion
Aerial Base Stations (ABS) utilizing Unmanned Aerial Vehicles (UAV) offer a promis-
ing approach for enhancing capacity and coverage in 5G and 6G networks. However,
these systems introduce several challenges, including dynamic mobility patterns, energy
constraints, and communication limitations, which complicate the assignment of users to
UAVs when compared to terrestrial environments. This paper presents a clustering-based
solution for user-to-UAV assignment, complemented by a reallocation strategy to pre-
vent connection denials. Our findings indicate substantial improvements: the proposed
method successfully allocated 99.5% of users, whereas the baseline achieved only 90%.
Furthermore, our solution enhanced the average data rate by 910 Mbps, resulting in an av-
erage throughput of 4.68 Gbps, compared to the baseline’s 3.77 Gbps. While these results
are encouraging, it is important to acknowledge certain limitations. The current study
assumes fixed UAV positions and a uniform distribution of users, which, although sim-
plifying initial analyses, may not accurately represent real-world scenarios where users
and UAVs exhibit dynamic behaviors. Factors such as energy constraints, communication
limitations, and dynamic mobility patterns will need to be addressed in future work. Sub-
sequent research will focus on developing advanced positioning algorithms to improve
coverage, optimizing resource allocation for fewer UAVs, and incorporating trajectory
optimization techniques to enhance overall network efficiency. These enhancements aim
to provide a more comprehensive solution that more closely aligns with practical deploy-
ment scenarios.
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