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Abstract

In Ultra-Reliable Low Latency Communications (URLLC), balancing trade-offs
between energy consumption, service availability, and strict reliability and latency
requirements is a significant challenge, especially in Unmanned Aerial Vehicle
(UAV)-enabled Multi-access Edge Computing (MEC) environments. The con-
straints imposed by the size, weight, and power limitations of UAVs further
complicate this task. This study addresses optimizing resource allocation in such
environments to meet URLLC demands while minimizing power consumption
and maximizing service availability. We explore the virtualization layer of the
Network Function Virtualization (NFV)-MEC architecture, incorporating node
availability and power consumption alongside conflicting URLLC reliability and
latency demands. We introduce an energy-aware model based on Continuous-time
Markov Chain (CTMC) with an embedded virtual resource scaling scheme for
Dynamic Resource Allocation (DRA). To solve the optimization problem related
to MEC-enabled UAV node dimensioning, we propose a Genetic Algorithms
(GA)-based solution. Our results demonstrate that the proposed GA-based
approach achieves a superior balance, with up to a 44% reduction in power con-
sumption compared to the First Fit with maximum resources strategy, while also
improving service availability and meeting URLLC requirements. This work pro-
vides a comprehensive analysis of key virtualization parameters and their impact
on critical services within a single NFV-MEC over a UAV node, offering a robust
framework for future 6G network applications.
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1 Introduction

The shift towards Multi-access Edge Computing (MEC) combined with Network Func-
tion Virtualization (NFV) and advancements in Unmanned Aerial Vehicles (UAVs) is
considered a promising strategy for integrating the non-terrestrial component of the
Sixth-Generation of Cellular Networks (6G) [1] as this integration holds potential to
provide connectivity, computing resources, data, applications, and network functions
closer to users, thereby extending the limits of terrestrial networks. MEC facilitates
deploying core network functions and applications in close proximity to User Equip-
ment (UE), reducing complexities associated with multiple network components [2].
NFV, on the other hand, is a carrier-driven initiative for virtualizing network func-
tions (e.g., firewall, Domain Name System, Network Address Translation, and Access
and Mobility Management Function) using virtual machines (VMs), which virtualize
an entire machine down to the hardware layers, and/or containers on standard servers
instead of proprietary single-purpose network devices [3].

Concurrently, UAVs offer unique advantages over regular ground nodes. UAVs can
move dynamically in three-dimensional space, providing flexible and adaptive position-
ing to optimize coverage, reduce latency, and avoid obstacles or interference. UAVs can
also be rapidly deployed or repositioned as needed, making them ideal for temporary,
urgent, or evolving scenarios such as disaster recovery, large events, or changing envi-
ronments. Moreover, UAVs often have a better line-of-sight, resulting in potentially
higher data rates, lower latency, and improved reliability [4] which is desirable for the
emerging 6G networks, which is categorized into use cases, including Ultra-reliable
and Low-Latency Communication (URLLC), with stringent service requirements such
as 1-millisecond (ms) system latency and 99.999% reliability [5, 6].

Typical core NFs that can be hosted on UAVs include Control plane functions
e.g., Access and Mobility Function (AMF), Session Management Function (SMF), and
Network Exposure Function (NEF). The UAV-MEC platform could be implemented
as an Application Function (AF) and the MEC data plane acting as a particular
implementation of a 5G User Plane Function (UPF) that forwards the traffic to MEC
applications. For instance, AFs can include video analytics for surveillance, augmented
reality (AR) applications for enhanced user experiences, and real-time data processing
for IoT devices [7].

However, since UAVs face significant constraints in terms of size, weight, and power,
which impact their computational and communication capabilities, the proper resource
and energy management of these devices is crucial, especially when URLLC services
are considered. While significant efforts have focused on MEC-enabled UAVs, partic-
ularly UAV trajectory, communication, and energy optimization, limited attention is
given to the impact of the computing subsystem on MEC-UAV node performance and
their services [8]. This is paramount important when virtualization is employed as it
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introduces practical considerations that may make unfeasible the support of services
with strict latency and reliability requirements such as URLLCs. For instance, the vir-
tualization layer is expected to handle VNF loading and faults without breaking the
stringent URLLC requirements. Thus, besides under and over-provisioning issues that
may respectively cause severe Service Level Agreement (SLA) violations and increased
power consumption, another concern is the URLLC sensibility towards extra delays
that can be caused by unexpected faults such as hardware/software failures and even
resource boot and setup or reduced computational power.

In this respect, containers, which are software unities comprising source-code,
libraries and dependencies and offer portable, isolated environments for running appli-
cations, prove to be cost-effective and exhibit lower startup overhead, making them
suitable for supporting Virtualized Network Functions (VNFs) scaling for URLLC
services [9]. However, their developmental stage compared to VMs may impact ser-
vice reliability. On the other hand, VM resource instantiation, failure recovery, and
computational power degradation of parallel VMs on the same physical node are over-
looked factors that can break the URLLC requirements. Thus, proper UAV-MEC
node dimensioning and resource allocation for supporting critical applications is chal-
lenging, considering the burden and strengths of the virtualization layer with hybrid
technologies and UAVs with constraints in terms of computing resources and energy.

This paper extends our previous work [10] that addresses the resource allocation
problem in MEC nodes. However, the current study proposes an energy-aware frame-
work based on Continuous-time Markov Chain (CTMC) with an embedded virtual
resource scaling scheme for Dynamic Resource Allocation (DRA). The framework ana-
lyzes how virtualization parameters impact critical services in a single MEC-enabled
UAV node and proposes a Genetic Algorithms (GA)-based solution to simultaneously
minimize power consumption and maximize node availability, considering reliability
and latency constraints for critical applications like URLLC. The main contributions
include:

• Jointly studying a hybrid VM-containerized onboard infrastructure: The integration
of both VMs with strong isolation properties and the flexibility of containers, aiming
to optimize the benefits of both technologies.

• Considering commonly neglected assumptions: We address often overlooked factors
such as virtual resource setup delays, failures, and computational power degradation
of parallel VMs on the same physical node. These play a critical role in impacting
communication constraints.

• Addressing critical metrics for URLLC applications: We emphasize crucial metrics
for URLLC applications, such as reliability and response times, providing a more
holistic performance evaluation.

• Tracking specific to the MEC-UAV environment, including: availability and power
consumption, offering a comprehensive perspective on the performance of the
proposed framework in real-world scenarios.

• Proposing a Genetic Algorithms (GA)-based solution to simultaneously minimize
power consumption and maximize node availability in a MEC-enabled UAV node.
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Regarding the GA-based solution, various optimization methods have been applied
to solve the resource allocation problem in MEC environments. Heuristic algorithms,
such as GA and particle swarm optimization (PSO), provide flexible solutions but
often yield approximate results with a high overhead [11]. Moreover, Convex optimiza-
tion methods, such as those using Lagrangian duality, guarantee global optimality
under certain conditions but may struggle with scalability in complex and dynamic
environments [12]. Other options relate to Deep learning approaches, particularly deep
reinforcement learning (DRL), which excel in handling high-dimensional state spaces
and learning optimal policies over time but require substantial computational resources
[13]. The focus of this work, however, is not on the optimization method itself but on
the development of a robust mathematical model for MEC resource allocation and the
formulation of the corresponding optimization problem.

The remainder of this paper is organized as follows. Section 2 discusses the con-
tributions to the MEC-enabled UAV context, which encompasses resource allocation
problems and adopted performance metrics. Moreover, Section 3 describes the sys-
tem model, assumptions, and the proposed framework with its performance metrics.
Model validation is in Section 4, while Section 5 outlines the UAV node dimensioning
problem formulation, with numerical results in Section 6. Section 7 summarizes the
contribution and discusses future directions.

2 Related Work

Existing research on UAV networks can be broadly categorized into two areas: MEC-
enabled UAVs and UAV relay networks. Research on MEC-enabled UAVs primarily
focuses on UAV location deployment, path planning, and power optimization. For
instance, Safwat et al. [14] propose a 3D placement algorithm designed to maxi-
mize network coverage by optimizing UAV deployment, considering power and height
constraints. Zhao et al. [15] address the UAV’s limited energy by optimizing both
transmission power and trajectory to enhance transmission efficiency. Additionally,
Cai et al. [16] focus on Quality of Service (QoS) for URLLC, designing a strategy to
meet URLLC requirements by maximizing transmission data rates and expanding the
coverage range of the gNB.

For the Sixth Generation of Mobile Networks (6G), Artificial Intelligence (AI)
and Machine Learning (ML) techniques are put forward as key enablers to provide
intelligence and automation to the networks at different layers [17]. In this respect,
integrating MEC-enabled UAVs with Federated Learning (FL) offers an alterna-
tive for deploying ML models that handle vast amounts of data. With MEC-UAVs,
ML submodels can be trained separately, and only their parameters are transmit-
ted to a central controller. However, due to energy and computing constraints of
the MEC-UAVs, efforts have been made to extend their operational time. Solutions
include adopting harvesting devices along with resource allocation and UAV place-
ment optimization [18] or transmission power optimization via communication time
and bandwidth allocation, power control, and UAV placememt [19]. Additionally, pri-
vacy challenges arise in FL regarding the model parameter transmission. For instance,
authors in [20] propose covert communication to address eavesdroppers that imple-
ment inversion and differential attacks. Their solution conceals the existence of the
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legal link by introducing uncertainty to the received signal of eavesdroppers, although
it may disrupt the reception of legitimate users. Other approaches leverage blockchain
[21] or encryption techniques [22] to ensure FL security.

UAV-relay networks demonstrably enhance network throughput, as seen in recent
studies. However, less attention has been given to the impact of deploying MEC servers
directly on UAVs. For instance, Costanzo et al. [23] introduce a dynamic strategy
for computation allocation, optimizing altitude to minimize UAV energy consumption
while satisfying latency constraints. Yang et al. [24] propose a MEC-enabled net-
work over multiple UAVs, focusing on minimizing power consumption and utilizing
UAVs as backhaul and core network equipment. Bekkouche et al. explore [25] various
UAV roles, concentrating on their performance as edge clouds hosting Aerial Control
System (ACS) functions in the proposed testbed, considering both travel plans and
computational usage to reduce energy consumption.

Another body of existing works focuses solely on MEC-related computational
resource issues, which encompasses: resource placement, scheduling, node dimension-
ing, and DRA. Edge node dimensioning problems are usually related to the decision
on the computational resource characteristics based on a given traffic load, e.g., the
total number of servers, processing capacity, and storage. Emara et al. [26] propose an
analytical model based on queuing theory to optimize the number of virtual resources
to maximize the task execution capacity using the first fit strategy to solve it. Using a
similar approach, Kherraf et al. [27] jointly solve 1) a MEC dimensioning sub-problem,
2) an application placement sub-problem, and 3) a workload assignment sub-problem.

Despite substantial focus on latency, energy consumption, and security in UAV-
assisted networks, computing failure resilience, virtualization overhead, and resource
availability have been relatively overlooked, despite their crucial role in resource dimen-
sioning and allocation. To address this gap, we introduce a framework that assists
service providers to optimize the dimensions of a single MEC-enabled UAV node. The
goal is to maximize node availability, minimize power consumption, and simultane-
ously meet reliability and latency constraints. Our proposed framework complements
existing solutions put forth by prior authors, offering a comprehensive approach to
address these multifaceted challenges.

3 SystemModel

This section describes the analytical scaling framework and adopted performance met-
rics, considering a single isolated MEC-enabled UAV node, where requests originated
from UEs are processed by onboard VNFs, which can be scaled up (down) to cope
with intensive (mild) periods.

3.1 Computing Model

In the context of 6G networks, UAV-enabled MEC environments are envisioned to
support critical applications, such as disaster recovery, remote healthcare, and intelli-
gent transportation systems. These applications demand high reliability, low latency,
and efficient resource management. For instance, in a disaster recovery scenario, UAVs
equipped with MEC capabilities can provide rapid deployment of communication
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infrastructure, supporting real-time video streaming for situational awareness and
coordination. These scenarios present key challenges including:

• Dynamic Resource Management: Highly dynamic environments where resource
demands can vary rapidly based on application and user density.

• Energy Efficiency: UAVs have limited battery life, necessitating efficient power
management strategies to prolong operational time.

• URLLC: Ensuring seamless and dependable service delivery.

To address these challenges, the proposed framework leverages the strengths of
both microkernel-based VMs and containers within the MEC architecture. Each
onboard VNF runs equally and independently on either a VM or a container, shar-
ing a common physical machine [28]. VMs execute uninterruptedly while containers
are scaled upon demand, providing flexibility and efficient resource utilization. Also, a
centralized control unit determines the request admission, only activating container-
ized VNFs when all VM-hosted VNFs are busy. The containerized VNF activation
comprises initializing the kernel image and launching the specified function, which
is interpreted as a single transition interval (setup time), during which power and
resources are consumed but no service is processed.

Fig. 1 illustrates the failure and repair model diagram for VNFs. The diagram
shows the normal operational state, failure detection, and subsequent repair processes.
It highlights the transition states and the time intervals associated with setup and
repair, which are crucial for maintaining the system’s reliability and availability.
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Fig. 1: Failure & Repair model diagram

To account for the VM overhead (CPU), the parallel-operating VMs influence each
other, leading to a degraded computational power [29]. For the case of a single VM
deployment, the task’s execution rate is µ services/unit time, however, to account for
the VM overhead, the task’s execution rate (µV ) was modeled considering the total
number of VMs, where d is the computation degradation factor. One can observe that
µV (given by Eq. 1) is a monotone decreasing function of d.
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µV =
µ

(d+ 1)(n−1)
(1)

Containers, on the other hand, are designed to be lightweight with minimal over-
head compared to traditional VMs. Their impact is generally lower due to their use of
shared operating system kernels and minimal resource isolation mechanisms. Hence, in
this work, we assume that the performance overhead of containers can be considered
negligible [9, 30, 31].

Differently from VMs, active containerized VNFs may suffer failures during opera-
tion, which implies either a service migration to an available VM/container or a repair
(triggering a new setup period), with progress being lost only in the latter case. In
general, repair times will depend on the type of failure; for instance, a software com-
ponent crash can be quickly fixed by the host in a few microseconds [32], while other
failures may take a few milliseconds to reboot the device and VNF (e.g., 10-50ms
for lightweight unikernels). Since the model exclusively deals with critical flows, only
the worst-case scenario is considered. Lastly, as soon as a VNF finishes processing
and there are no remaining requests, the VNF instance can either be powered down
together with the host container or remain active if hosted by a VM. The shutdown
delay is ignored for being significantly smaller than the setup (repair) durations [33].

3.2 Analytical Model

The system comprises a single MEC-enabled UAV with a maximum capacity of K
services that are served by up to n VMs and c containers, with K ≥ n + c, which
implies a queue (q) that is limited to K − (n + c) services. Service requests follow a
Poisson process with rate λ (requests/ms) and server capacities of one service with
an exponentially distributed service rate of µC for containerized VNFs, whereas for
VMs, µV is given by Eq. 1. Control applications are likely to fit a regularly spaced
packet trace (isochronous), i.e., a superposition of deterministically spaced and spo-
radic packet streams, where each contributes to a portion of the overall traffic, which
might be modeled as a Poisson [34].

Container setup/repair times and failures are also exponentially distributed with
rates α and γ, respectively. A regular first come first served queue was assumed for
new requests with prioritization for retrial. We assume a standalone deployment and
the system is modeled as an M/M/n+c/K queue (Fig. 2) with setup time and failure.
The feasible state space is given by Ω = (i, j, k) | 0 ≤ i ≤ n, 0 ≤ j ≤ c, and 0 ≤ k ≤ K,
with i+j ≤ k and i, j, n, c, k,K ∈ Z+. Each state (i,j,k) denotes the number of services
allocated to VMs (i), containers (j) and the total number of services in the system (k),
respectively. Furthermore, the steady-state probabilities π(i, j, k) are extracted from
the solution of a linear system formed by the normalization condition (Eq. 2) and
balance equations (Eqs. 3-16) depicted in Table 2. Please consider (i, j, k) ∈ Ω in all
equations to follow. Table 1 summarizes the symbols adopted in the model description.

n∑
i=0

c∑
j=0

K∑
k=i+j

π(i, j, k) (2)
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Table 1: Summary of symbols used in the model description

Symbol Meaning

d Degradation factor
µV Service rate for VMs
µC Service rate for containers
λ User arrival rate
γ Failure rate for containers
α Setup/repair rate for containers
K Maximum number of user in the system (system capacity)
n Number of VMs in the system
c Number of containers in the system
(i, j, k) System state
i Number of services allocated to VMs
j Number of services allocated to containers
k Total number of services in the system
q Queue (buffer) size
A Availability
R Reliability
C Power Consumption
T Response Time

The single state where there are no services is represented by Eq. 3. Expression 4
covers the states where all services are running on VM-hosted VNFs, i.e., no containers
are required. Next, Eqs. 5 and 6 are similar to Eq. 4, however, in the first there are
services in the buffer for containers to setup while in the latter there are no containers
to be turned on.

λπ(0,0,0) = µcπ(0,1,1) + µcπ(1,0,1) (3)

(λ+ iµv)π(i,0,i) = λπ(i−1,0,i−1) +min(i+ 1, n)µvπ(min(i+1,n),0,i+1)

+γπ(i−1,1,i) + µcπ(i,1,i+1)

(4)

[(λ+ nµv) +min(k − n, c)α]π(n,0,k) = λπ(n,0,k−1) + nµvπ(n,0,k+1) + γπ(n,1,k) (5)

[nµv +min(K − n, c)α]π(n,0,K) = λπ(n,0,K−1) + γπ(n,1,K) (6)

The leftmost diagonal states of Fig. 2 denote the system with no busy VM and
some containers running services and are described by Eq. 7, while Eq. 8 refers to the
system states with all VM-hosted VNFs idle and all the containers busy. In the top-left
states (Eq. 9), all containers are occupied but some VMs are idle. In Eq. 10, all VMs
and Containers (CTs) are busy and there are no services in the buffer. Given by Eq.
11, the top-right states are those where all VMs and CTs are Busy and some services
waiting in the buffer. Similar to the previous set, Eq. 12 refers to the top-rightmost
part, where all VM-hosted and containerized VNFs are busy and the system is full.
The left-most states are covered by Eq. 13, where all VMs are running services and
the system is full, but some containers are still scaling up. The set of states where the
number of services is larger than that of both active VMs and Containers, i.e., the
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buffer is holding some services is described by Eq. 14. Furthermore, at the frontier,
Eq. 15 refers to the states where all VMs and part of the containers are serving, but no
services are buffered. Lastly, the states where both VMs and containers are partially
occupied and the buffer is empty is located at the left intermediate part of Fig. 2,
and its respective equation is 16. The full equation set is summarized in Table 2 and
colored according to the states represented in Fig. 2.

[(µc + γ)j + λ]π(0,j,j) = µvπ(1,j,j+1) + (j + 1)µcπ(0,j+1,j+1) (7)

[(µc + γ)c+ λ]π(0,c,c) = µvπ(1,c,c+1) (8)

[(µc + γ)c+ iµv + λ]π(i,c,c+i) = λπ(i−1,c,c+i−1) + (i+ 1)µvπ(i+1,c,c+i+1) (9)

[(µc+γ)c+nµv+λ]π(n,c,n+c) = λπ(n−1,c,n+c−1)+(nµv+cµc)π(n,c,n+c+1)+απ(n,c−1,n+c)

(10)

[(µc + γ)c+ nµv + λ]π(n,c,k) = λπ(n,c,k−1) + (nµv + cµc)π(n,c,k+1) + απ(n,c−1,k) (11)

[(µc + γ)c+ nµv]π(n,c,K) = λπ(n,c,K−1) + απ(n,c−1,K) (12)

[(µc + γ)j + nµv +min(K − n− j, c− j)α]π(n,j,K) = λπ(n,j,K−1) + (j + 1)γπ(n,j+1,K)

+min(K − n− j − 1, c− j − 1)απ(n,j−1,K)

(13)

[(µc + γ)j + nµv + λ+min(k − n− j, c− j)α]π(n,j,k) = λπ(n,j,k−1)

+(j + 1)γπ(n,j+1,k) +min(k − n− j − 1, c− j − 1)απ(n,j−1,k)

(14)

[(µc + γ)j + nµv + λ]π(n,j,k) = λπ(n−1,j,k−1)

+(j + 1)γπ(n−1,j+1,k) + (j + 1)µcπ(n,j+1,k+1) + (nµv + jµc)π(n,j,k+1) + απ(n,j−1,k)

(15)

[(µc + γ)j + iµv + λ]π(i,j,k) = λπ(i−1,j,k−1) + (i+ 1)µvπ(i+1,j,k+1)

+(j + 1)γπ(i−1,j+1,k) + (j + 1)µcπ(i,j+1,k+1)

(16)

3.3 Performance Metrics

In MEC-enabled networks, task execution at the MEC server is strongly tied to
resource availability, failure resilience and response time, while power management is
crucial for UAV equipment. In this section, we consider the steady-state analysis of
the CTMC under study, followed by the derivation of the system’s Availability (A),
Reliability (R), Power Consumption (C) and Response Time (T ).
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Table 2: Balance Equation Summary

Eq.
State(s)
(i, j, k)

Condition(s) Description

(3) (0, 0, 0) n/a Empty system.

(4) (i, 0, i) (0 ≤ i ≤ n) All services are running on VMs.

(5) (n, 0, k) (n + 1 ≤ k ≤ K − 1)
All VMs are busy and no CT is

yet active.

(6) (n, 0, K) (n/a)
Similar to (4), but the system is

full.

(7) (0, j, j) (1 ≤ j ≤ c − 1)
No busy VM and some CTs

running services.

(8) (0, c, c) (n/a) CTs running all services.

(9) (i, c, c + i) (1 ≤ i ≤ n − 1)
VMs partially busy and all CTs

running services.

(10) (n, c, n+c) (n/a)
All CTs and VMs are serving;

queue is empty.

(11) (n, c, k) (n + c + 1 ≤ k ≤ K − 1)
Similar to (9), but with waiting

services.

(12) (n, c,K) (n/a)
All VMs and CTs are serving

and the system is full.

(13) (n, j,K) (1 ≤ j ≤ c − 1)
Full system with busy VMs and
CTs either serving or scaling up.

(14) (n, j, k)
(1 ≤ j ≤ c − 1) and

(n + j + 1 ≤ k ≤ K − 1)
All VMs and CTs are serving
and the queue is not empty.

(15) (n, j, n+j) (1 ≤ j ≤ c − 1)
All VMs and part of the CTs

are serving.

(16) (i, j, i + j)
(1 ≤ i ≤ n − 1) and

(1 ≤ j ≤ c − 1)
VMs and CTs are partially

occupied and the queue is empty.

3.3.1 Availability (A)

In our framework, Availability is the system’s ability to offer the minimum amount of
functional and accessible VNFs. In particular, a VNF instance is considered available
if at least one of its constituents (VM-hosted or containerized) remains accessible. In
brief, the MEC-enabled UAV node Availability (A) is obtained by the probability sum
of all states except those representing full capacity, as shown in Eq. 17.

A = 1−
n∑

i=0

c∑
j=0

πi,j,K (17)

3.3.2 Reliability (R)

The designed framework also evaluates the Reliability (R) being given by Eq. 18, which
combines the admitted flow, obtained by multiplying the arrival rate by the system‘s
availability (A), with the effective failure rate in the entire node, i.e., it denotes the
probability that a service is served without experiencing failures while being processed
by MEC VNFs.
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R = 1− γ

λA

c∑
j=1

j

[
n∑

i=0

K∑
k=1

πi,j,k

]
(18)

3.3.3 Power Consumption (C)

The computational power consumption is an important component of the opera-
tional costs and must be considered by the service provider for resource planning to
address cost-performance trade-offs. In our framework, the power consumption (C)
Eq. 24 describes the total power consumption by summing the power consumption for
each state (idle, setup, and busy) across both VMs and containers. Each term in the
equation represents the product of the mean number of resources in a particular state
and the corresponding power consumption for that state.

Moreover, the mean number of active VMs and CTs in each state (idle or busy) is
described in Eqs. 19-23. Eq. 19 calculates the mean number of idle VMs by considering
the differences between the total number of VMs and the number of active VMs across
all states. This provides an estimate of how many VMs are idle on average. The same
rationale applies to the remaining equations. In addition, the notation used to denote
the energy consumption of each technology and state is summarized in Table 3.

VM idle =

n∑
i=0

(n− i)

[
c∑

j=0

K∑
k=0

πi,j,k

]
(19)

VM busy =

n∑
i=0

i

[
c∑

j=0

K∑
k=0

πi,j,k

]
(20)

CT idle =

c∑
j=0

(c− j)

n∑
i=0

πi,j,k, with k = i+ j,

+

c∑
j=0

n∑
i=0

K∑
k=i+j+1

(c− j −min(k − i− j, c− j))πi,j,k

(21)

CT setup =

c∑
j=0

K∑
k=n+j+1

min(k − n− j, c− j)πn,j,k. (22)
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CT busy =

c∑
j=1

j

 n∑
i=0

K∑
k=j+i

πi,j,k

 . (23)

C = PVM
idle VM idle + PVM

busy VM busy

+PCT
idle CT idle + PCT

setupCT setup + PCT
busy CT busy

(24)

3.3.4 Response Time (T)

We define the Response Time (T ) of a VNF that processes the service as the inter-
val between the service arrival on the edge node and its processing time, including
the containerized VNF setup restart times if these events are triggered. The Mean
Response Time is obtained by calculating the mean number of services in the system
and the mean number of accepted services, as shown in Eq. 25.

T =
1

λA

K∑
k=0

k

[
n∑

i=0

c∑
j=0

πi,j,k

]
(25)

4 Validation and Analysis

The scenario of interest is composed of one semi-static MEC-enabled UAV which able
to increase its coverage area. Intuitively, the higher the altitude, the larger is the
coverage offered by the platform and the lower is the chance of shadowing effects, thus
the service arrival rate may increase or decrease accordingly [23]. The analytical results
were validated against discrete-event simulations (Figs. 3-5), where the lines denote
the analytical and the markers represent simulation results. With regards to the main
parameters, we have followed a subset of the 3GPP Release 16 (TR 38.824), in which
the service rates µ and µC are 1 (1 service/ms), whereas µV is calculated in Eq. 1 .

The discrete-event simulator is designed to emulate the system’s operation based on
a sequence of events in time. Unlike real-time simulations, discrete-event simulations
only update the system state at specific event times, providing simplicity and flexibility
in modeling dynamic systems. This approach allows detailed tracking of resource usage
by each request.

Each scenario simultaneously evaluates the impact of a pair of parameters: Fig.
3 Multiple VM Amounts (n) and Overhead Degradation Factor (d), Fig. 4 multiple
container amounts (c) and failure rates (γ), and Fig. 5 multiple buffer sizes (q) and
container setup rates (α), with the service arrivals ranging from 1 up to 100 request-
s/ms. In addition, unless otherwise stated the baseline values for failure (γ) and setup
rates (α) were 0.001 and 1 unit/ms, respectively, which is in accordance with [33]. In
terms of power consumption for VMs and containers for different operation states, we
adopted the values from the network intensive experiment in [9], which is summarized
in Table 3. The remaining parameters can be found in Table 4.
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Table 3: Notation and Power Consumption Values

Virtualization State Status Symbol Value

VM-hosted Idle ON PV M
idle 20W

VM-hosted Busy ON PV M
busy 25W

Containerized Idle SLEEP PCT
idle 4W

Containerized Setup ON PCT
setup 8W

Containerized Busy ON PCT
busy 23W

Table 4: Experiment Sets

Section Parameters n c q d γ α

4.1 n, d 10, 30, 50 40 10 10−2, 10−1 10−3 1

4.2 c, γ 10 40, 60, 80 10 10−2 10−3, 10−2 1

4.3 q, α 10 40 10, 30, 50 10−2 10−3 10−1, 1

4.1 Multiple VMs (n) and Overhead Degradation Factor (d)
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Fig. 3: Multiple VMs (n) and Overhead Degradation Factor (d)
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This scenario simultaneously evaluates the impact of Multiple VM Amounts (n)
with 10, 30 and 50 units and the Overhead Degradation Factor (d) of 0.1 and 0.01.
The remaining parameters are fixed according to the first line in Table 4.1.

4.1.1 Availability and Reliability

Figures 3a and 3b illustrate the impact of increasing the number of VMs and the
overhead degradation factor on system availability and reliability, respectively. Both
graphs are strictly descending, which is expected since, for all scenarios, the arrival rate
ranges from 0 to 100 arrivals per unit time, rapidly surpassing the system’s capacity.
Given the three options for VM amounts and two for the degradation factor, this
results in six curves representing different configurations.

In terms of availability (Fig. 3a), the best configuration is the top curve marked
with the cross, which corresponds to the configuration with the highest number of
VMs (50) and the lowest degradation factor (0.01). In this experiment, the degra-
dation factor had a greater impact on availability than the number of VMs. This is
because the degradation factor directly affects the service rate of each VM; a lower
degradation factor means that the VMs can handle more requests, reducing the need
for frequent container activation and thereby maintaining higher availability. This is
further evidenced by the fact that the top three curves all have a degradation factor of
d = 0.01. Additionally, the bottom three configurations, all with a degradation factor
of d = 0.1, exhibit very similar performance, despite having three and five times the
amount of VMs (n = 30 and n = 50) compared to the baseline configuration that has
ten VMs (n = 10).

Moreover, still regarding Fig. 3a, the magnitude of the differences in availability
between each curve is much larger, often differing by whole percentage points (e.g.,
1% to 10%), whereas the differences in reliability (Fig. 3b) are much smaller, typically
differing by only a few ten-thousandths of a percent (e.g., 0.0001%). The primary
reason for the significant differences in availability is the degradation factor’s impact on
the VMs’ service rates, which affects how often the system needs to activate containers
to handle the load.

While the reliability differences are small, they indicate that the system’s failure
rates are low across all configurations. However, even small reductions in the effective
service rate due to higher degradation can lead to significant decreases in availability
because the system must rely more on containers, which are more prone to failure.
Although the difference in reliability is much smaller, it remains significant for URLLC
applications where high reliability is key [7].

4.1.2 Power Consumption and Response Time

In Fig. 3c, both the number of VMs (n) and the overhead degradation factor (d)
significantly impact power consumption, but in different ways. Since VMs are not
dynamically scalable, an increase in n naturally leads to higher overall power con-
sumption, regardless of the network load (λ). This is because more VMs mean more
active resources consuming power.

The overhead degradation factor (d), on the other hand, primarily affects non-
saturated systems and particularly impacts configurations with higher VM values (30
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and 50). For a network load of 100 requests per unit time (λ = 100), the curves with
the same number of VMs overlap, indicating a saturated system where all resources
are processing services. However, each pair of curves has different throughput due to
varying d values. For instance, the power consumption difference between configura-
tions with 30 VMs and a degradation factor of 0.01 (n = 30, d = 0.01) and 30 VMs
and a degradation factor of 0.1 (n = 30, d = 0.1) shows a maximum gap of 500W at
λ = 35. Similarly, the difference for configurations with 50 VMs and a degradation
factor of 0.01 (n = 50, d = 0.01) and 50 VMs and a degradation factor of 0.1 (n = 50,
d = 0.1) is approximately 600W at the same reference point. These differences are
significant since each pair has the same number of VMs, highlighting the impact of
the degradation factor on power consumption.

Another notable observation in Fig. 3c is the similar performance of the curves
for configurations with 30 VMs and a degradation factor of 0.1 (n = 30, d = 0.1)
and 50 VMs and a degradation factor of 0.01 (n = 50, d = 0.01) in the interval from
λ = 20 to λ = 50. Despite the first having almost half of the VM resources, their
power consumption is similar. This indicates that the impact of the degradation factor
is amplified by the number of VMs; higher degradation values result in lower overall
service rates, causing VMs to remain in Busy mode for longer periods and forcing the
system to activate containers more frequently.

Unlike power consumption, changes in the number of VMs have very little impact
on the response time (Fig. 3d) compared to the results of the curves with different
degradation factors. This indicates that the positive effects of increasing the number
of VMs can be mitigated by higher degradation factors. Generally, there are mul-
tiple nuances involving each parameter, service load, and performance metrics that
might conflict, highlighting the importance of an adequate dimensioning process. For
instance, comparing the two curves with 50 VMs, the response time almost doubles
when the degradation factor increases from 0.01 to 0.1 (n = 50, d = 0.01 to d = 0.1).
Additionally, considering availability and reliability, the curve with 50 VMs and a
degradation factor of 0.01 (n = 50, d = 0.01) had the best performance. However, for
power consumption, it was one of the worst-performing configurations.

4.2 Multiple Containers (c) and Failure Rates (γ)

A larger γ signifies smaller intervals between successive containerized VNF failures.
Unlike the setup rate (α), this parameter enhances the system’s performance as it
decreases. Hence, γ was varied by factors of 10 and 100. Additionally, containers are
not susceptible to significant overhead issues, and there is no correlation between the
number of containers and their individual service rates. For this resource type, failures
are isolated events. In this scenario, we reduced and fixed the total number of VMs
(n = 10) to underscore the impact of the number of containers (c) and the their
failure rate (γ). For small λ < 10, most services are processed in VMs, which does not
significantly influence the results.
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Fig. 4: Multiple Container Amounts (c) and Failure Rates (γ)

4.2.1 Availability, Power Consumption and Response Time

It was observed that the failure rate (γ) values exert minimal influence on the Avail-
ability (Fig. 4a), Power Consumption (Fig. 4c), and Response Time (Fig. 4d) within
the considered ranges. This does not imply that γ has no impact on these metrics;
rather, for a significant impact, γ must be at least of the same order of magnitude as
the setup rate (α), causing containers to fail more frequently and rapidly degrading
system capacity. Conversely, the number of containers (c) had a substantial impact
on these metrics, especially for high arrival rates (λ → 100), where the maximum
differences in each figure were recorded.

In Fig. 4d, the Response Time shows a spike at λ = 10, corresponding to the fixed
maximum number of VMs (n = 10). From this point on, containers are activated,
explaining the sudden spike due to setup time and the subsequent drop when these
resources become available to process incoming services. Finally, within each pair of
curves, there is a slight increase in Response Time at different λ values, explained by
resource limits and further queue activation, which do not involve a processing unit.

4.2.2 Reliability

Regarding the Reliability (Fig. 4b), the failure rate (γ) remains a critical component
and significantly affects the curves. This can be observed as the three top curves share
the same failure rate (γ) of 0.001, maintaining reliability above 99.9% for all arrival

17



rate values. Conversely, the number of containers (c) has minimal influence. This is
because reliability is primarily determined by the probability of service interruption
due to failures, which is directly influenced by the failure rate (γ). Since each con-
tainer operates independently, the addition of more containers (c) does not significantly
reduce the probability of failure of individual containers. The system’s reliability is
thus more sensitive to the failure rate (γ) than to the number of containers available,
because even with a large number of containers, frequent failures (high γ) would still
cause significant interruptions.

4.3 Multiple Queue Sizes (q) and Container Setup Rates (α)
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Fig. 5: Multiple Queue Sizes (q) and Container Setup Rates (α)

Larger setup rates (α) and queue spaces (q) mean smaller container setup delays
because higher setup rates (α) indicate that containers can be set up faster, leading
to more VNF instances becoming available per unit time. Similarly, greater buffer
capacity (q) means that more incoming service requests can be stored, preventing
immediate drops or failures when the system is under high load. The results could have
been amplified for larger queue spaces (q) or for a higher ratio between setup rate (α)
and failure rate (γ). However, to maintain the same total amount of resources as in
previous experiments, we opted for q = 10, 30, and 50. Most configurations performed
similarly for the Availability (Fig. 5a), except for the curves with buffer space of ten

18



units (q = 10). This is because a smaller buffer capacity means that the system is more
likely to drop incoming requests when it is under load, leading to lower availability.
In fact, Availability, Power Consumption (Fig. 5c), and Response Time (Fig. 5d) are
likely to increase as q → +∞. This is because larger buffer capacities allow the system
to handle more requests, thus increasing availability and response time. However,
larger buffers also mean that more requests are waiting to be processed, which can
lead to higher power consumption due to the increased workload. On the other hand,
the Reliability (Fig. 5b) is barely affected by the increase in the buffer space (q). This
is because reliability is solely dependent on the failure rate (γ) of the containers. Even
with a larger buffer, if the containers are failing at the same rate, the overall reliability
will not significantly change.

4.3.1 Availability and Reliability

Regarding variations in setup rate (α), the differences in Availability (Fig. 5a) from
the curves with queue space of ten units (q = 10) were significant, similar to the
results for different queue spaces (q). This was somewhat expected since higher setup
rate (α) means more available containers per unit time, thereby increasing availability.
On the other hand, the reliability results (Fig. 5b) were not significantly affected by
either parameter. We believe that the ratio between setup rate (α) and failure rate
(γ) contributed to this result; if failure rate (γ) were higher, different setup rate (α)
values might result in significant differences in reliability, with the curves for higher
setup rate (α) more likely to present lower reliability. Although the difference is small,
the configuration with queue space of ten units (q = 10) and setup rate (α = 0.1) was
the most reliable since fewer containers are serving per unit time, resulting in fewer
failures.

4.3.2 Response Time

With respect to the Response Time (Fig. 5d), two configuration groups overlap until
the arrival rate (λ) reaches 20 and 40 units. Then, the groups split and form three pairs
of curves, each with the same queue size (q), crossing each other for multiple arrival
rate (λ) values. The reason for such behavior is related to the resource availability
empowered by higher setup rate (α) and the use of queues to store service surplus.
Therefore, configurations with higher setup rate (α) and lower queue size (q) are likely
to respond much faster. For arrival rates (λ → +∞), the setup rate (α) becomes
irrelevant since the containers are continuously processing services, only resetting in
case of failure. On the other hand, higher queue size (q) values allow the system to store
more services without actually processing them, resulting in higher response times.

4.4 Result Summary

A discrete-event simulator was used to validate the proposed model under varying
conditions (light, moderate, and heavy workloads). The following parameters were
used to configure the simulation scenarios:

• Network Load (λ): The arrival rate of service requests, ranging from light to
heavy loads, to assess system performance under different traffic conditions.
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• Number of VMs (n) and Containers (c): To evaluate the impact of varying
resource quantities on system performance.

• Overhead Degradation Factor (d): To model the performance degradation of
VMs due to overhead.

• Failure Rates (γ): The rate at which containers experience failures during
operation.

• Service Rates (µV and µC): The processing rates of VMs and containers.

The validation results show the significance of considering various factors in the sys-
tem’s design and resource planning to achieve optimal performance. Additionally, the
results emphasize the challenge of managing opposing performance metrics, as slight
parameter modifications can positively impact one metric while negatively affecting
others. The following lines describe a summary of our findings:

• Availability: Increasing the number of VMs and containers generally improves
availability and reliability. However, higher overhead degradation factors can reduce
system availability, necessitating more frequent container activation and higher
failure rates.

• Reliability: The system’s reliability remained consistently high across light to mod-
erate workload conditions. However, a noticeable drop was observed under heavy
workloads, suggesting that the system’s ability to maintain uninterrupted service is
challenged by higher demands.

• Power Consumption: Power consumption is closely linked to system availability.
Configurations with higher availability tend to consume more power due to the
increased number of active resources.

• Response Time: The response time increases with higher failure rates and setup
delays, affecting the system’s ability to meet URLLC requirements.

These findings underscore the need to identify the optimal or suboptimal set of
parameters that enable the system to achieve reasonable performance in terms of
URLLC while balancing the trade-offs between the performance metrics. Therefore,
in the next section, we present the proposed optimization approach, which lever-
ages Genetic Algorithms (GA) to dynamically adjust resource allocation parameters,
ensuring the system maintains optimal performance under varying conditions.

5 Problem Formulation and Proposed Scheme

This section describes the MEC-enabled UAV node dimensioning as a multiobjective
problem, which takes into account the objectives discussed in the previous section.
Moreover, it proposes a scheme based on Genetic Algorithms (GA) to solve the
problem, detailing its structure, parameters, and operation.

5.1 Optimization Problem

Different objectives must be considered for proper MEC-enabled UAV resource dimen-
sioning, which may be formulated as an optimization problem as follows in Eq. 26.
Given a service demand characterized by the arrival (λ) and service rates when running
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on virtual machines and containers (µn and µc, respectively) and the containerized
VNF setup and failure rates (α and γ, respectively), determining the most appropriate
node dimension in terms of the number of virtual machines, containers and buffer size
(x∗ = [x1

∗, x2
∗, x3

∗] ∈ X) that maximizes the system’s availability (A) and minimizes
power consumption (C) while also satisfying reliability (R) and response time (T)
constraints (Rmin, Tmax). X means the feasible solutions for the problem, xi

1, x
i
2, x

i
3

denote the number of VMs, CTs and buffer size that compose the solution xi, which
are defined within [Iminj Imaxj ], with j = 1, 2, 3, respectively.

Focusing on a specific objective may deteriorate others or violate constraints, which
in the context of URLLC, could result in a lack of support for some applications. For
instance, the main requirement for the remote surgery scenario is the communication
latency. To mitigate such an effect, we propose an evolutionary scheme based on genetic
algorithms (GA) that copes with the given conflicting objectives and constraints that
uses an adjusted dominance concept.

Maximize A(x) and Minimize C(x)

Subject to R(x) ≥ Rmin,

T (x) ≤ Tmax,

xi ∈ X,xi
j ∈ Z+,

with j = 1, 2, 3 and xi
j ∈ [Iminj Imaxj ]

(26)

GA has been widely adopted for solving wireless network optimization problems
[35] and multiple solutions to reduce its convergence time have been proposed [36]. In
this work, we assume that the GA is adopted for the dimensioning phase, i.e., before
proper operation.

5.2 Chromosome Structure and Fitness Function

The GA relies on evolving a solution set given through the combination of several
possible sets through its operators: selection, crossover and mutation. In this work,
the GA handles multiple MEC-enabled UAV node configurations simultaneously in
each interaction.

The individualX (chromosome) represents the maximum number of VMs, CTs and
buffer size for the solution xi, i.e., xi

1, x
i
2, x

i
3 ∈ Z+. The possible node configurations

evolve as different generations and produce more appropriate solutions represented
by the set of resources. In this respect, each individual from the current population
xi is compared to the entire population in terms of all four performance metrics:
Availability (A), Reliability (R), Power Consumption (C), and Response Time (T).

To address this problem, a fitness function based on the concept of dominance
was adopted. This function evaluates each individual by comparing it to the rest of
the population using four performance metrics: Availability (A), Reliability (R), Cost
(C), and Time (T). Equations 28-31 describe the number of individuals dominated
for each metric. In addition to the points scored in these comparisons, an individual’s
fitness is increased by another constant ωr and/or ωt ∈ R+ if the Reliability (R) and
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Response Time (T) exceed predefined thresholds (Rmin and Tmax, respectively), as
specified in Equations 32 and 33. For the population size considered in the subsequent
experiments, we set ωr = 1 and ωt = 1. The resulting fitness function, described in
Equation 27, aggregates all these components.

Fitness(Xi) =
∑
M

DM (Xi) +
∑
S

BS(X
i),

with M being A,R,C, and T,

B assuming R and T,

i, j ∈ Z+and i, j ≤ L,

where L is number of individuals

(27)

DA(X
i) =

L∑
i ̸=j,j=1

{
1 , if A(Xi) ≥ A(Xj)
0 , otherwise

(28)

DR(X
i) =

L∑
i ̸=j,j=1

{
1 , if R(Xi) ≥ R(Xj)
0 , otherwise

(29)

DC(X
i) =

L∑
i ̸=j,j=1

{
1 , if C(Xi) ≤ C(Xj)
0 , otherwise

(30)

DT (X
i) =

L∑
i ̸=j,j=1

{
1 , if T (Xi) ≤ T (Xj)
0 , otherwise

(31)

BR(X
i) =

{
ωr , if R(Xi) ≥ Rmin

0 , otherwise
(32)

BT (X
i) =

{
ωt , if T (Xi) ≤ Tmin

0 , otherwise
(33)

5.3 GA Operators and Parameters

We adopted the classical GA operators, i.e., the roulette wheel for selection and uni-
form operator for the crossover, hence, the highest fitness individuals are more likely to
move to the next generation while creating new individuals from the crossover process,
while a bit mutation operator was also employed.

Multiple tests were conducted to define the crossover (Pc) and mutation (Pm)
probabilities. Five values within the intervals [0.2, 1] and [0.01, 0.09] were tested for Pc

and Pm, respectively (Table 5). The test scenario was composed of up to 50 VMs, 50
Containers and 50 Buffer positions, with the remaining parameters being described in
Table 7) and λ was fixed to a mid range value of 50. For each test case, five simulation
instances were performed. The highest average fitness value for the last generation’s
population was selected for each test case (Fig. 6). The best performance was obtained
by test case 16, in which Pc and Pm assumed 0.8 and 0.01, respectively. Thus, these
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Table 5: Crossover and Mutation Probabilities

Parameters Value

Crossover probability (Pc) 0.2/0.4/0.6/0.8/1
Mutation probability (Pm) 0.01/0.03/0.05/0.07/0.09

Table 6: Selected GA Parameters

Parameters Value

Generations (G) 100
Population size (L) 50
Crossover probability (Pc) 0.8
Mutation probability (Pm) 0.01

values were applied in the next section together with the population size (L) and
number of generations (G), which were set to 50 and 100, respectively (Table 6).
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Fig. 6: Test Cases for Pc and Pm

5.4 GA Scheme Execution Flow

Given a maximum estimated service load (requests/ms) and resource limits for VMs,
Containers and Buffer size, an initial set of candidate solutions is randomly generated
(first population). Then, the individuals are evaluated using the dominance-based fit-
ness function (Eq. 27), which takes four performance metrics, besides an additional
score for each threshold that it overcomes. Moreover, the operators: selection, crossover
and mutation are applied in this order, generating an entirely new population. In addi-
tion, to ensure that the best individual will not be lost during the selection process, we
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have also employed elitism, i.e., the most fit individual is guaranteed in the next gen-
eration without undergoing mutation. Finally, the process repeats until the maximum
number of generations (G) is reached (stop criterion). Then, the best individual is
chosen as the final solution, which represents the most suitable resource configuration
(maximum number of VMs, Containers and Buffer size). The GA scheme execution
flow is depicted in Fig. 7.

Generate First Population 
(VMs, CTs, Buffer)

Dominance-Based Fitness

NO

YES

Stop Criteria: 
Generation Limit

Service Demand: ?, ?n, ?c, ?, ?;

Selection: 
Roulette 
Wheel

Crossover: 
Uniform

Bit Mutation

New 
Population

Best Individual: Resource Configuration 
(VMmax, CTmax, Buffermax)

ElistismAvailability Reliability

Power Consumption Response Time

Fig. 7: GA Scheme Execution Flow

With regards to the overhead introduced by the use of GAs, this strategy is
more suitable in the planning or dimensioning phases [37] [38] [39]. GAs can calcu-
late optimal parameters in a separate computational structure or in advance, prior
to the UAV-MEC system’s actual operation. This allows the optimization to be con-
ducted offline, avoiding real-time computational load on the UAVs. Additionally,
pre-calculated parameter sets can be prepared for reference, enabling the system
to adapt dynamically by switching to the corresponding set if operational parame-
ters change during the mission. This approach eliminates the need for real-time GA
execution, significantly reducing computational overhead while ensuring the system
maintains performance. In addition, solutions to reduce GA time convergence have
been proposed in the literature [36]. Thus, while GAs introduce overhead, these strate-
gies harness optimization benefits without compromising the operational efficiency of
resource-constrained UAVs.

6 Evaluation

The following lines describe the evaluation scenarios, convergence time of the proposed
GA scheme and its results compared to three other approaches that are based on
the first-fit strategy. The evaluation scenarios share the same parameter values such
as service, failure and setup rates, as well as the same resource limits, but differ in
terms of request loads, being characterized as Low, Mid and High. The goal is to
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assess the proposed scheme and the other strategies under different request rates. IN
addition, the same power consumption values as in Table 3 were adopted and the
remaining parameters are summarized in Table 7. The following subsection details the
GA convergence results. For each point, 30 instances were performed and the average
results are presented considering a 95 confidence level, which was obtained by the
Bootstrap method, with ‘resample’ size and the number of (re)samplings equal to 30
and 1000, respectively. No bars were drawn due to a small difference between the
upper and lower bounds.

6.1 GA Convergence

The GA convergence was examined with regard to the population’s average fitness. To
this end, an intermediate load fixed value λ = 50 was selected. We extended the GA’s
evolution process by adopting 150 generations to verify if the average fitness would
significantly change after 50 generations (see Fig. 8). It was observed that the average
fitness increases sharply in the first 25 generations as the GA explores the search
space. In the next 75 generations (from the 25th approximately up to the 100th), the
average fitness also rises but in a much longer slope, which indicates that the GA is
refining already existing solutions. Lastly, from generation 100 onwards, the average
fitness seems to become stable, with no significant changes taking place, denoting that
the individuals from these populations have similar fitness values.
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Fig. 8: GA Convergence Test

6.2 Evaluation Scenarios

The evaluation takes multiple network loads (λ) segmented in Low, Mid and High as
follows. The request arrival rate of each channel was defined within the interval 10
to 30 for the low load, 40 to 60 for intermediate (mid) load and 80 to 120 for high
range. For each of those load ranges, a total of 10 values of λ are drawn and thus, the
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Table 7: Scheme Evaluation Parameters

Parameters Value

VMs Range [1,50]
CTs Range [1,50]
Buffer Sizes [10,20,30,40,50]
VM/CT Service rates 1
Overhead Degrad. Factor 0.01
Container Failure Rate 0.001
Container Setup Rate 0.1
λ (Low Range) [10,30]
λ (Mid Range) [40,60]
λ (High Range) [80,120]
Reliability Threshold 0.9995
Response Time Threshold 5 ms

experiment is repeated 10 times. Then, the mean values for each performance metric
(A,R,C and T) in each of these scenarios are calculated.

The remaining parameters are kept the same for each scenario allowing the evalua-
tion of the system under different levels of stress conditions. The adopted parameters
are as follows: container setup and failure rates α and γ are fixed 0.1 and 0.001,
whereas the container service rate is fixed to 1. However, since the adoption of the
degradation factor d = 0.01, the VM service rate is defined in Eq. 2, considering the
baseline rate µ = 1. Hence, its final value depends on the adopted number of VMs,
which is varied between 1 and 50 with step of 1 unit. The same range and step are
applied to the containers, while the buffer size varies between 10 and 50 with a step
of 10. Thus, the size of the search state space if given by 5(502) = 12, 500 possible
resource configurations. These parameters are summarized in Table 7. Please assume
that the power consumption constants are the same as in Table 3.

In addition to these different scenarios, we analyzed the effectiveness of our scheme
by comparing it to schemes based on the first-fit strategy, similar to [26]. The First-
Fit scheme (denoted as FF) tests each configuration possibility, i.e., tries out every
possible configuration set from 1 VM, 1 CT and 10 buffer spaces up to 50 VMs, 50
CTs and 50 buffer spaces. The first tuple that overcomes the predefined reliability
(Rmin) and response time (Tmax) limits is considered the final answer. Please note
that no restrictions were defined for the Availability nor the Power Consumption.

The First Fit strategy was segmented in two alternatives, which differ in terms
of the exploration order of the available state space. While the FFmin searches for
the appropriate configuration departing from the minimum established values, i.e.,
VM = 1, CT = 1 and buffer size = 10, upgrading first the VMs, second the CTs
and last the buffer dimension, the FFmax tries the opposite, i.e., starts the search
from the maximum configuration values, i.e., VM = 50, CT = 50 and buffer size
= 50, downgrading first the buffer variable, then the containers and only then the
VM amounts. Although both may reach the same answer if only one matches the
constraints, FFmin most likely results in configurations with a smaller number of
resources, while FFmax should respond with more resources.
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6.3 Numerical Results

(a) Availability (b) Reliability

(c) Power Consumption (d) Response Time

Fig. 9: Optimization Strategy Comparison

Considering the Availability (Fig. 9a), it was noted great discrepancy among sce-
narios (Low, Medium and High loads) and adopted schemes (FFmin, FFmax and GA).
The first reason for such a great gap between their results is the lack of the inferior
bound for this metric. For instance, the FFmin, is free to select any given resource
configuration as long as it produces at least the predefined reliability (Rmin) and
response time (Tmax). Hence, this scheme resulted in poor availability values (under
provisioning) for each scenario (14.98%, 5.96% and 2.98%, respectively). The same
applies to the FFmax, except that it first handles large resource configurations, which
will often result in over provisioned configurations, i.e, availability of 99.99%, 99.99%
and 66.81%, respectively for low, medium and high loads. On the other hand, the GA
scheme has a more balanced approach due to the design of its fitness function (27),
achieving a similar result to the FFmax in the first scenario (low load), but dropping
to 87.42% and 56.85% in the medium and high load scenarios, resulting in a difference
of 12.58% and 9.96%, respectively. This difference was somehow expected since maxi-
mizing the Availability directly impacts conflicting metrics (e.g., power consumption),
which should be minimized. Thus, the GA suggested least available configurations so
as to balance off these other performance metrics.

With respect to the Reliability defined in Eq. 18, Fig. 9b shows that the FFmin

outperforms both FFmax and the GA. Again, these results reflect the GA’s balanced
approach, which is similar to the FFmin in the low load scenario, whereas sits closer
to the FFmax on the remaining metrics. The FFmin scheme is far superior in both low
and medium scenarios since it activates the minimum container amounts, thus very
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few failures occur. Contrarily, the FFmax will usually respond with a higher number
of containers, which is likely to result in more failures. Lastly, the high load scenario
presents the least significant difference among the schemes, although there were great
discrepancies in the Availability in the previous experiment (Fig. 9a). In other words,
it means that each scheme opted for very different resource configurations, yet, since
the Reliability is dependent on the amount of failure-prone containers and that the
high load practically forces container activation, the failure probability among each
scheme is likely to converge to the adopted inferior bound of 0.9995. However, this does
not mean that schemes converge in the total number of containers since the Reliability
only takes into account the accepted requests, not the overall arrival rate.

With regards to the scenario of MEC-enabled UAVs, the power consumption metric
is by far the most interesting. Indeed, this evaluation (Fig. 9c) is closely related to
the availability (Fig. 9a), and in most cases, the schemes will share similarities among
both experiments. For instance, the least available scheme (FFmin) is also the one
that consumes less energy, whereas FFmax is the opposite, being the largest consumer.
However, the GA, which shares a similar availability to the FFmax in the low load
scenario and differs 9.96% from that same scheme in the high load case, differs 44% and
19% in terms of power consumption for the same low and high scenarios, respectively.
The reason for the large gap relies on the fact that FFmax stops at the first resource
configuration that meets the Reliability and Response Time thresholds, thus, large
resource amounts are suggested, while the GA tries multiple possibilities not only with
respect to those limits but also minimizing power consumption.

The following lines are related to the Response Time metric (Fig. 9d). First, it was
noted that the FFmin scheme responds with the highest delays, surpassing 4ms in each
scenario, reaching 4.59ms in the high load case, which is close to the adopted superior
bound of 5ms. This denotes its design that most often will select configurations with a
higher number of VMs, which in turn, is the main cause for higher Response Times due
to its associated degradation factor d. On the contrary, both FFmax and GA respond
with much faster response times, under 2ms in most cases. However, please note that
the GA overcomes the FFmax in every scenario, with large differences of 24%, 42% and
21% for the low, medium and high load scenarios, respectively. Again, we believe that
two factors are key: (1) the availability (Fig. 9a) and (2) the distribution of requests
to each resource type. In the first case, the fact that the GA allows less requests to
be processed in the medium and high load scenarios compared to the FFmax, with
differences of 12.58% and 9.96%, respectively, allows gains in terms of response time
of 42% and 21%, compared to the FFmax. On the latter, for the low load scenario,
although both schemes share similar availability (close to 100%), The GA probably
selects configurations with relatively more containers than VMs, which significantly
decreases the overall response time (24%).

7 Conclusions and Future Directions

In this work, we proposed a CTMC-based framework for the virtualization layer of a
MEC node, specifically designed to address the resource allocation challenges in UAV-
enabled MEC environments while meeting the stringent requirements of URLLC. Our
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study explored a hybrid VM-containerized infrastructure, integrating the strong iso-
lation properties of VMs with the flexibility of containers to optimize their combined
benefits while aslo considering often overlooked factors such as virtual resource setup
delays, failures, and computational power degradation of VMs on the same physical
node, highlighting their critical impact on communication constraints. By emphasiz-
ing key metrics for URLLC applications, such as reliability and response times, we
provided a holistic performance evaluation that also included availability and power
consumption specific to the MEC-UAV environment, offering a comprehensive and
holistic perspective on the framework’s performance. Besides the framework and its
analysis, we formulated a multi-objective problem related to MEC-enabled UAVs’
static resource dimensioning, adopting a GA-based approach to solve it, resulting in
balanced resource configurations that leverage the above-mentioned metrics. For future
directions, the proposed multi-objective problem can be adapted to other bio-inspired
or machine learning approaches and compared to state-of-the-art algorithms. Addi-
tionally, we plan to extend the framework by incorporating other network subparts
(e.g., RAN), as well as trajectory and coverage characteristics commonly explored in
UAV literature, which may impact multiple performance metrics such as the UAV
mechanical consumption due to node mobility.
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