
A CPN-based Model for Resource Allocation in
Multi-Access Edge Computing Supporting URLLC

Caio Souza, Renata dos Reis, Maria Lima Damasceno, Marcos Falcão, Andson Balieiro
Centro de Informática (CIn), Universidade Federal de Pernambuco (UFPE), Recife, Brazil

{cbbs, rkgr, mgld, mrmf, amb4}@cin.ufpe.br

Abstract—Although the integration of Multi-Access Edge Com-
puting (MEC) and Network Function Virtualization (NFV) paves
the way for supporting URLCC services in 5G and beyond
5G networks, it raises some practical issues such as limited
resources of edge nodes, overhead caused by virtualization, and
failures during service processing, which may lead to URLLC
requirement violations. By incorporating these features, this work
proposes a Coloured Petri Net (CPN)-based model to address the
dynamic resource allocation for URLLC services in NFV-MEC-
based 5G Networks. Additionally, to mitigate the virtualization
overhead, a resource pre-initialization strategy is employed in
consonance with service buffering and resource scaling on de-
mand. Results showed that resource pre-initialization has positive
impacts on overall system performance without significantly
affecting power consumption, achieving similar gains to those
achieved by setup rate improvements.

Index Terms—MEC, URLLC, Coloured Petri Nets, NFV,
Dynamic Resource Allocation

I. INTRODUCTION

Ultra Reliable and Low Latency Communications (URLLC)
is a challenging 5G Network service that requires strict low
latency (e.g., a few milliseconds) and ultra reliability. The
integration of Multi-Access Edge Computing (MEC) and
Network Function Virtualization (NFV) paves the way for
supporting URLCC services in 5G and beyond 5G networks
[1] as it enables hosting virtualized network functions (VNFs)
and applications closer to the end users, reducing the service
latency, facilitating dynamic resource allocation by aligning
the network capacity with demand fluctuations, and enabling
user services to be processed at the network edge [2].

Although this combination favors URLLC support, employ-
ing MEC and NFV technologies raises some practical issues
that need to be considered in the resource allocation in NFV-
MEC systems for supporting URLLC [3]. For instance, the
likely resource limitation of edge nodes restricts their service
capacity and consequently their availability, which may lead
to the forwarding of URLLC service requests to neighboring
NFV-MEC nodes or the central cloud [4], introducing uncer-
tainty towards latency. The overhead incurred by virtualization
may also affect URLLC services. For example, the deployment
of virtualized network functions (VNFs) onto containers or
virtual machines (VMs) requires time to set up the VNF,
adding an extra delay to URLLC latency. Additionally, failures
during service processing may impair URLLC as they lead to
VNF resets, increasing the response time.

Multiple works have addressed resource allocation in NFV-
MEC nodes. However, the majority overlooks the overhead
caused by virtualization, assuming instantaneous provisioning
times [5], consider a fault-free environment [6], or disregard
the repair delay [5] [7], which may affect URLLC services.
Additionally, some works are based on formalisms tied to spe-
cific probability distributions (e.g., exponential) to represent
the URLLC service behavior [3] [8] [9].

This paper addresses the dynamic resource allocation for
URLLC in NFV-MEC-Based 5G Networks considering the
overhead caused by virtualization and failure events during
service processing. Additionally, to mitigate the virtualization
overhead, a resource pre-initialization strategy, which instan-
tiates containerized VNFs in advance, is employed in conso-
nance with service buffering and resource scaling on demand.
By incorporating these features, we propose a Coloured Petri
Net (CPN)-based model to analyze the dynamic resource allo-
cation for URLLC services in NFV-MEC systems, regarding
availability, response time, and power consumption. Results
show that resource pre-initialization has positive impacts on
overall system performance without significantly affecting
power consumption, achieving similar gains to those achieved
by setup rate improvements. The latter not only improves
response time but also reduces power consumption. Our model
offers flexibility to analyze URLLC services and system
features with different behaviors and may assist the network
operator in properly dimensioning and configuring NFV-MEC
systems for supporting URLLC. The remainder of this paper
is organized as follows. Section II describes the CPN-based
model for a single node NFV-MEC, assuming a virtual envi-
ronment featured with containers (VNFs) that process URLLC
requests. Section III presents the result analysis obtained
by extensive discrete-event simulations. Finally, Section IV
concludes this paper and highlights future directions.

II. SYSTEM MODEL

We consider an NFV-MEC node consisting of c containers
(VNFs), with N pre-initialized (n < c), and a maximum
capacity of k simultaneous URLLC services. Since containers
are more agile, lightweight, and resilient than VMs, they have
been standardized as the replacement of VMs to accommodate
network services in NFV [10]. An arriving URLLC service is
admitted to the system if the maximum capacity k has not
been exceeded. An available and active container is assigned

to process the admitted service and an inactive one is turned
on to ensure N is available and active in the system, i.e.,
pre-initialized. Setting a container (VNF) up incurs a time
overhead to make it ready to process services (active). If all
containers are busy processing services, the admitted services
are placed in a finite buffer that supports up to q services, with
q = k−c.

During service processing, failures may occur. In this case,
the container (VNF) is restarted and the service is assigned
to an available container. If no available container exists, the
URLLC service is placed back in the buffer, having higher ser-
vice priority than new URLLC services. In both cases, service
processing is restarted. Figure 1 illustrates the NFV-MEC node
dynamics, where URLLC service requests originating from
UEs are processed by the RAN, passed to the MEC node,
and are handled by containerized VNFs, which are scaled
accordingly. Overheads due to container (VNF) instantiation
and failures during processing are considered, as they may
cause violations of the URLLC requirements. Additionally, a
pre-initialization strategy is employed to mitigate these effects.

Fig. 1. Resource Allocation in a NFV-MEC node supporting URLLC

To analyze the NFV-MEC system supporting URLLC, we
designed a CPN-based model that incorporates features such
as admission control, service queue (buffer), failure events
during service processing, repair time/setup time, dynamic
resource allocation, and container (VNF) pre-initialization.
Different from the Continuous Time Markov Chain (CMTC)
and Stochastic Petri Nets approach, our model allows the ser-
vice arrival, service processing, failure, and setup/repair events
to follow different probability distributions or behaviors, not
limited to exponential or Poisson ones. This flexibility enables
better representation of different URLLC applications.

CPN is a formalism capable of modeling and analyzing
concurrent systems. It adopts a visual representation in which
places are represented by circles, transitions by rectangles, and
arcs by directed arrows. An arc always connects a place to a
transition or a transition to a place. The places denote the
system status and may contain a set of tokens. Colors are
associated with the places, denoting their data types. Thus,
all tokens of a place must have the same token color, which
may be simple (i.e., integer type) or complex as tuples of
other colors. The transitions represent events that may cause
a system state change by manipulating tokens according to
their firing rules. The distribution of tokens in the places
determines whether the conditions for transition triggering
have been met. The arcs describe the relationship between
places and transitions and determine the state change when an
event occurs. Arc inscriptions work as functions that define

the number of tokens transferred between states [11]. Fig. 2
shows the designed CPN-based model, which comprises 58
arcs, and 12 colors (data types). For better clarity, we divided
the model into three parts: Service Arrival (Section II-A),
Container Management (Section II-B), and Service Processing
and Failure (Section II-C). The following text adopts a bold
font for tokens, an italic for functions and variables, and a
bold and italic for transitions and places in the text.

A. Service Arrival

Fig. 2 (red part) depicts the model segment that describes
the arrival of URLLC services in the NFV-MEC node. The
transition Customer Arrival denotes a URLLC service arrival.
This transition is enabled when there is any token in the place
Customers. Upon triggering, it consumes a token U from Cus-
tomers and inserts a token U in Entry Place and places another
token back in Customers. A token U represents a URLLC
service. However, the place Customers only receives a token
after a time interval that describes the time elapses between
two successive URLLC arrivals. This time may be defined
by a probability distribution or function that characterizes the
URLLC application to be analyzed. In our model, it is denoted
by the function InterArrivalTime(). It is worth observing that
the place Customers is marked with a token U. To allow
computing the service response time, the token U is associated
with its arrival time in Entry Place. This time is obtained via
function ModelTime().

The service admission control in the system is based on
the amount of resources (R tokens) in the places Unavailable
Resources and Available Resources, which denote the number
of resources already in use and available for assignments,
respectively. For instance, MaxRes R tokens in Unavailable
Resources means that all resources are being used, which
implies that new arriving services are not admitted into the
system. Thus, a token from Entry Place is moved to Blocked
Customers by firing the transition Rejection, representing that
a new service was not accepted into the system. The variable
MaxRes indicates the system capacity, i.e., the maximum num-
ber of simultaneous services in the system, being processed
or waiting in the buffer to be processed.

On the other hand, tokens in Available Resources and Entry
Place fire the transition Customer Admission, representing a
service admission into the NFV-MEC system. This transition
consumes a token from these places and inserts a token that
denotes a service request ((U,t)) into Admission Queue and a
resource token R into Unavailable Resources and Start. This
last token may lead to a container reset, which is addressed
by the ContainerManagement module (see Section II-B).

In our model, the places Unavailable Resources and Avail-
able Resources are complementary, where the sum of their
tokens equals MaxRes. Thus, a service admission removes
a resource token from Available Resources and adds one
to Unavailable Resources, while the opposite occurs when
a service concludes. The places Available Resources and
Unavailable Resources are initialized with MaxRes and zero
tokens, respectively.

Fig. 2. CPN-Based Model for NFV-MEC Supporting URLLC

B. Container Management

Fig. 2 highlights in green color the segment model for
Container Management. The admission of a service (user),
represented by the triggering of the transition Customer Ad-
mission, places a resource token in Start, which initializes
a new container to maintain the number of pre-initialized
containers according to the system configuration since one
container will be assigned to process the new service. Thus,
since there are turned-off containers, i.e, tokens in OFF
Containers, a container initialization is modeled by firing
the transition Setup Beginning, which inserts a token (C,
i) in Setting up1 after the container setup time. This time
represents the overhead of all operations required to make the
container ready to process the service and it may be modeled
by using probability distributions or functions, for example. In
our model, this time is defined by the function SetupTime(). To
avoid model inconsistencies when there are no OFF containers,
i.e, tokens in OFF Containers, the transition Reset is fired and
consumes tokens from Start.

The off-container generation is conducted by the transition
Create, with tokens in CONT2 and nCTNOff . These places
are initialized with one and offContainers tokens, respectively,
all assuming the value 1, where offContainers is the total
number of containers in the system regardless of those that
must be kept turned on in advance. The firing of Create
consumes a token from nCTNOff and CONT2, associates
an identifier i to the token (C,i), and inserts it in the place
OFFContainers. This last place models the pool of containers
available for initialization. The transition Create also puts
a new token with value i+1 in CONT2. Thus, CONT2 and

Create implement a counter.
A token (container) in Setting up1 enables the transition

Setup Complete. Upon triggering, it places a container token
(C,i) in Ready Container. This place represents the set of
containers ready and available for service processing. It is
initialized with the number of pre-initialized containers con-
figured for the system. As Ready Container is a pool of ready
containers, containers that end their service processing may be
positioned in this place. Thus, Ready Container also receives
tokens generated by the transitions Service Termination in
CTN and Setup Termination. These transitions release a
container after a service conclusion and reset it when a failure
occurs, respectively.

Containers are turned off only when the number of ready
and available containers for service processing exceeds the
number of containers configured in the system to stay on
in advance (pre-initialized), denoted as n. This policy is
incorporated into our model by using the place Aux3. It
receives tokens consumed by the same input transitions as
the place Ready Container, except for the transition Turning
it OFF. Thus, the places Aux3 e Ready Container present
the same amount of tokens. The transition Turning it OFF
consumes a container token (C,i) from Ready Container and
n+1 tokens from Aux3, denoted by variable AuxCtnPreSetup.
This transition inserts a container token (C, i) in offContainers
and places n tokens back to the place Aux3, turning the
exceeding containers off.

The service requests that are waiting in the buffer, repre-
sented by tokens in Admission Queue are assigned to ready
containers for service processing, which are modeled by tokens
in Ready Container, where each container is identified by its

identifier (ID). This allocation is represented by the transition
CTN Allocation, which consumes a token from these two
places and also from Aux3 and inserts an allocation token
(F,t,i) in the place Aux1.

C. Service Processing and Failure

Fig. 2 (green part) highlights the segment that models the
service processing and eventual failure occurrences during
the processing. When an allocation token (F,t,i) is placed in
Aux1, the transition Tag Insertion is enabled. It adds a failure
marking j to the allocation token, which assumes the value of
the token consumed from CONT, used as a counter. Since a
container may process different services throughout the NFV-
MEC operation, this failure marking allows identifying during
which service attendance the failure happened. The token with
the failure marking (F,t,i,j) is placed in Aux2 and an allocation
token with the same failure identifier (C,t,i,j) is inserted into
Service Allocation. The token in Aux2 fires the transition
Defining Time to Failure, consuming a token from Aux2 and
adding a temporized token in Breakdown. The time associated
to the last token denotes the time between two successive
failures and it may be modeled via probability distributions
or functions that characterize the possibility of failure occur-
rences during the service processing. In our model, we express
it via function FailureTime().

Simultaneously with the token placed in Aux2, a token
(C,t,i,j) is inserted into Service Allocation, which enables the
transition Service Beginning. Upon triggering, this transition
denotes that the service attendance has started, positioning a
token (C,t,i,j) in Working Containers and a temporized token
in Servicing by Container, which models the service process-
ing time and may be described by distribution probabilities or
functions. In our model, the function ServiceTime() defines
this time. The place Working Containers models the pool
of containers that are processing services and, consequently,
susceptible to failures. Thus, tokens in Working Containers
enable the transition that represents the failure occurrence
(Breakdown of Containers) as well as the transition that
indicates the successful service conclusion (Service Termina-
tion in CTN), but only one is fired and it depends on when
the tokens will be available in Breakdown and Servicing by
Container.

If the token is available in Servicing by Container first, the
transition Service Termination in CTN is fired, denoting a
service conclusion. It consumes tokens (C,t,i,j) from Servicing
by Container and Working Containers and places resource
tokens R in Aux3, Available Resources, and Ready Con-
tainers. Otherwise, the transition Breakdown of Containers
is triggered, consuming allocation (C,t,i,j) and failure tokens
(F,t,i,j) from Working Containers and Breakdown, respec-
tively, and placing the service request back to the service
queue, by inserting a token into Admission Queue. In addition,
Breakdown of Containers generates an immediate failure to-
ken (F,t,i,j) in Service Failure and a temporized one in Setting
up to denote the container reset (recovery from failure). The
reset time may be similar to the container setup time. So,

in Fig. 2, this time is also denoted by SetupTime(). In this
respect, the place Setting up models the pool of containers that
face failures during service processing and are being restarted.
Moreover, a token (F,t,i,j) available in Setting up fires the
transition Setup Termination, representing that the container
reset process concluded and it is ready for service processing.
This transition places a token (C,i) in Ready Container.

D. Performance Metrics

Placing services closer to the users can reduce latency and
enable URLLC. However, the likely resource limitation of
edge nodes restricts their service capacity and consequently its
availability.Thus, analyzing the MEC-NFV node availability
is imperative. In our model, availability (A) is the system’s
ability to accept a new URLLC service request, which depends
on the amount of available resources. It is the ratio between
the number of admitted services (triggering of Customer Ad-
mission) and the number of arrived service requests (triggering
of CustomerArrival).

Response time assumes a crucial role in URLLC appli-
cations as these services have strict latency requirements.
It is defined as the interval between the service admission
at the MEC-NFV node and its conclusion, including any
configuration/restarting overhead. The response time of the
service i is computed by subtracting the timestamps of the
occurrences of Customer Admission and Service Termination.
The average response time (T) is given considering the number
of admitted services (#CustomerAdmission).

The power consumption (P) is an important component
of the operational costs. It is given by summing the power
consumption of the containers in idle, setup, and busy states,
denoted as Pidle,Psetup, Psetup, and Pbusy , respectively. These
components are computed using Eqs. 1, 2, 3 from [10], where
x represents the number of containers in the respective state.
The numbers of containers in idle and busy states are denoted
by the number of tokens in Ready Container and working
Containers, respectively. The sum of tokens present in Setting
Up 1 and Setting Up expresses the number of containers in
the setup state.

Pidle = 110 + 0.0501x (1)

Psetup = 112 + 0.455x− 0.00224x2 (2)

Pbusy = 110 + 7.23x (3)

III. RESULT ANALYSIS

Results from our CPN-based model (markers) were vali-
dated against our previous CTMC-based model (lines) [9].
Thus, the functions InterArrivalTime(), SetupTime(), Failure-
Time, and ServiceTime() were set as exponential distributions.
Additionally, results considering Gaussian distributions are
also presented to show the model’s flexibility. We consider two
scenarios, each evaluating the influence of a pair of parame-
ters: container setup rate (α) and resource pre-initialization
(N) in Section III-A. These parameters may denote hardware
and software improvements for reducing the time to make net-
work functions ready for processing services, and the number
of containers (VNFs) maintained in an idle state; service (µ)

and failure rates (γ) in Section III-B, which may represent a
system with different reliability levels and enhancements in
service request process speed, respectively.

For both scenarios, we considered different URLLC loads,
varying the arrival rate (λ) from 5 to 30 requests/ms. The main
parameters were set following a subset of the 3GPP Release 16
[12] and unless stated otherwise, the baseline values for γ and
α were set to 0.001 and 1 unit/ms, respectively, in accordance
with [13]. Thus, the rates for exponential distributions or mean
(inverse of the rate) for Gaussian ones were set according to
Table I, with the Gaussian ones adopting variance equals 1.
The following results represent the average of each metric,
considering 10 simulation instances, with 2700000 steps and
a confidence interval of 95%.

TABLE I
SCENARIO SETS

Sec. λ α γ µ N C k
III-A 5-30 0.5, 1 10−3 1 2,4,6 15 25
III-B 5-30 1 10−2, 10−3 1,2,4 2 15 25

A. Effects of the resource pre-initialization and setup rate
Figs. 3a and 3b show that availability decreases with the

increment of the URLCC load. However, it is only slightly
affected by variations in α (setup rate) and N (number of
pre-initialized resources), with all configurations exhibiting
similar behaviors and the curves predominantly overlapping.
Notably, in Fig. 3a, configurations with higher N and α values
show a small superiority when λ equals 15, the total number
of containers, when exponential distributions are considered.
These results are somewhat expected since the amount of
resources in the NFV-MEC node is kept the same for all
configurations. We can also notice a similar performance
between the configurations (α = 0.5, N = 4) and (α = 1,
N = 2), as well as (α = 0.5, N = 6) and (α = 1, N =
4), which indicates that a lower setup rate can be mitigated
by container pre-initialization. Increasing N by 2 provides
availability similar to that obtained by incrementing the setup
rate by 0.5 for points where the container states (VNFs) vary
more often (α from 10 to 20).

N and α present more impact on the response time, as
shown in Figs. 3c and 3d, because their improvements reduce
the time that a service waits for a container (VNF) to be ready
for processing. As a result, URLLC services may experience
shorter response times. This effect is noticeable for λ up
to 20, when container initialization occurs more frequently.
In Fig.3c, we can observe similar performance between the
configurations (α = 0.5, N = 4) and (α = 1, N = 2), as
well as (α = 0.5, N = 6) and (α = 1, N = 4). For higher
URLLC loads, the response time is not affected by α, because
the containers stay active, processing services continuously for
longer periods. For Gaussian distributions (Fig. 3d), variations
on the response time are more evident when λ exceeds the
system’s processing capacity, where configurations with higher
N values achieve lower response times and the setup rate
shows less influence.

For power consumption, Figs. 5a and 5b show that there
is no significant difference between the configurations, even

those with higher N values. This suggests that maintaining
many pre-initialized containers is a good strategy, as it lowers
the response time while only slightly increasing the power
consumption, as indicated by the low increase rate shown in
Eq. 1. However, this approach may cause excessive memory
consumption, which could impose restrictions on the number
of containers kept in an idle state, in addition to increasing
the power spent without processing services.
B. Effects of the URLLC service rate and failure rate

Figs. 4a and 4b illustrate the significant impact of the service
rate on availability, whereas the failure rate (γ) has a relatively
minor impact. For instance, when λ equals 20, improving µ
from 1 to 2 boosts availability by around 61%, from 0.59 to
0.96. Conversely, for the same load and considering µ equals
1, increasing the container (VNF) reliability by a factor of
10 (from 0.01 to 0.001) results in a gain of only 0.86%, with
availability increasing from 0.5939 to 0.599. This suggests that
investing in service processing improvements (e.g., advanced
processing techniques) may be more beneficial than focusing
solely on system reliability.

Enhancing processing efficiency also significantly impacts
response times, as shown in Figs. 4c and 4d. For instance,
doubling the service rate from 1 to 2 enables the NFV-MEC
system to support URLLC applications such as robotics and
telepresence, which demand a maximum response time of only
1 ms [1], even at higher arrival rates. Naturally, a higher failure
rate increases the number of services redirected to the service
queue, thus increasing the response time. Despite this, the
differences in response times are small because resource pre-
initialization can mitigate this effect by ensuring that services
redirected to the queue are served more quickly.

Figs. 6a and 6b show that a higher service rate leads to lower
power consumption, especially under low URLLC loads. This
occurs because, at a higher URLLC service rate, fewer con-
tainers remain in the processing state, which is the state with
the greatest impact on the system’s consumption. However,
the curves tend to converge as the URLLC load increases,
reaching a point where the containers are continuously active
and no longer turned off or idle. Additionally, there is a small
variation in power consumption concerning the failure rate,
where higher failure rates result in lower P . This decrease
is not necessarily beneficial, as it stems from the container
setup process (which consumes less energy) and leads to power
being consumed without carrying out services.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This work proposed a CPN-based model for virtual resource
allocation in MEC-NFV systems. The model incorporated
practical factors such as failures during processing and setup
(repair) times, since they can incur significant impacts on the
URLLC, and employed resource pre-initialization to mitigate
their effects. Results showed that resource pre-initialization
has positive impacts on overall system performance without
significantly affecting power consumption, achieving similar
gains to those achieved by setup rate improvements. Results
showed that resource pre-initialization has positive impacts

(a) Availability (Exponential) (b) Availability (Gaussian) (c) Response Time (Exponential) (d) Response Time (Gaussian)

Fig. 3. Effects of the container setup rate (α) and resource pre-initialization (N)

(a) Availability (Exponential) (b) Availability (Gaussian) (c) Response Time (Exponential) (d) Response Time (Gaussian)

Fig. 4. Effects of the service rate (µ) and failure rate (γ)

(a) Exponential (b) Gaussian

Fig. 5. Effects of α and N values on energy consumption

(a) Exponential (b) Gaussian

Fig. 6. Effetcs of µ and γ values on energy consumption

on overall system performance without significantly affecting
power consumption, achieving similar gains to those achieved
by setup rate improvements. The latter not only improves
response time but also reduces power consumption. In brief,
the proposed model serves as a valuable tool for comprehend-
ing the operational dynamics of MEC-NFV nodes, thereby
assisting network operators in properly dimensioning and
configuring these systems.

REFERENCES

[1] M. U. A. Siddiqui et.al., “URLLC in Beyond 5G and 6G Networks:
An Interference Management Perspective,” in IEEE Access, vol. 11, pp.
54639-54663, 2023.

[2] M. Setayesh, S. Bahrami and V. W. S. Wong, “Resource Slicing for
eMBB and URLLC Services in Radio Access Network Using Hierarchi-
cal Deep Learning,” in IEEE Transactions on Wireless Communications,
vol. 21, no. 11, pp. 8950-8966, Nov. 2022.

[3] M. Falcao, C. B, Souza, A. Balieiro, A. et al., ”An analytical framework
for URLLC in hybrid MEC environments”, The Journal of Supercom-
puting, 78, 2245–2264, 2022, doi: 10.1007/s11227-021-03945-8.

[4] I. Sarrigiannis et. al., ”Online VNF Lifecycle Management in an MEC-
Enabled 5G IoT Architecture,” in IEEE Internet of Things Journal, vol.
7, no. 5, pp. 4183-4194, May 2020, doi: 10.1109/JIOT.2019.2944695.

[5] Z. Tong, T. Zhang, Y. Zhu and R. Huang, “Communication and Compu-
tation Resource Allocation for End-to-End Slicing in Mobile Networks,”
2020 IEEE/CIC International Conference on Communications in China
(ICCC), Chongqing, China, 2020, pp. 1286-1291.

[6] W. Li and S. Jin, “Performance Evaluation and Optimization of a
Task Offloading Strategy on the Mobile Edge Computing with Edge
Heterogeneity,” The Journal of Supercomputing, vol. 77, no. 11, pp.
12486-12507, Nov. 2021.

[7] L. Yala, P. A. Frangoudis and A. Ksentini, ”Latency and Availability
Driven VNF Placement in a MEC-NFV Environment,” 2018 IEEE
Global Communications Conference, 2018, pp. 1-7.

[8] M. Falcão at. al., ”Dynamic Resource Allocation for URLLC in UAV-
Enabled Multi-access Edge Computing,” 2023 Joint European Conf. on
Networks and Comm. & 6G Summit, 2023, pp. 293-298.

[9] C. Souza et.al., ”Modelling and Analysis of 5G Networks Based on
MEC-NFV for URLLC Services,” in IEEE Latin America Transactions,
vol. 19, no. 10, pp. 1745-1753, 2021.

[10] K. Nguyen, F. Simonovski, F. Loh, T. Hoßfeld and N. H. Thanh,
”Investigation of Container Network Function Deployment Costs in the
Edge Cloud,” 2024 27th Conference on Innovation in Clouds, Internet
and Networks (ICIN), Paris, France, 2024, pp. 9-16.

[11] A. Shahidinejad, M. Ghobaei-Arani, L. Esmaeili, Leila, ”An elastic
controller using Colored Petri Nets in cloud computing environment”,
Cluster Computing, pp. 1-27, 2019, doi: 10.1007/s10586-019-02972-8.

[12] 3GPP. System architecture for the 5g system (5gs). White Paper, 2020.
[13] K. Kaur et.al., “Container-as-a-Service at the Edge: Trade-off between

Energy Efficiency and Service Availability at Fog Nano Data Centers,”
in IEEE Wireless Comm., vol. 24, no. 3, pp. 48-56, June 2017.

