Analysis of insecure configurations in Chrome Web Store
extensions: Impact on user security and privacy

José R. S. Silva, Luiz H. B. A. Silva, Vitoria B. A. Silva, Maria Gabriela Lima Damasceno,
Caio B. de Souza, Andson Balieiro

!Centro de Informatica (CIn), Universidade Federal de Pernambuco (UFPE),
50670-901 — Recife — PE, Brasil

{jrss, lhbas,vbas2, mgld, cbbs, amb4}@cin.ufpe.br

Abstract. Browser extensions, popular for enhancing functionality, pose risks
to user privacy and security. This study analyzes insecure configurations in
Chrome Web Store extensions, assessing their functional justification. Auditing
287 extensions revealed that many employ excessive permissions or unnecessary
access to sensitive data without clear justification. Findings show that risky
practices persist even in widely used tools, highlighting flaws in app stores’
verification processes. The research provides empirical evidence of these issues
and advocates for stricter policies for developers, platforms, and regulators to
balance functionality and security in the ecosystem.

1. Introduction

The increasing adoption of the Internet for everyday activities such as communication
and financial transactions has driven the use of browser extensions, which offer addi-
tional functionality such as ad blocking, password management, and protection against
cyber threats [Eriksson et al. 2022]. Studies show that the majority of modern browser
users have at least one extension installed, highlighting its importance in enhancing the
browsing experience [Johnson et al. |. For example, the most popular browser for per-
sonal computers, with 66% of the market, has almost 125,000 extensions, totaling over
1.6 billion active users [Hsu et al. 2024].

Despite their benefits, browser extensions can also introduce significant risks to
users’ privacy and/or security. Such tools can incorporate vulnerabilities and malicious
behaviors, such as injecting unwanted code or leaking sensitive information, compromis-
ing users’ data [Sam and Jenifer 2023][Carlini et al. 2012][Eriksson et al. 2022]. One of
the main factors contributing to these risks is the permissions model adopted by browsers
such as Google Chrome and Mozilla Firefox. In these environments, extensions request
permissions to access system resources or interact with web pages. However, many ex-
tensions request excessive permissions, such as the use of generic permissions of the type
///*, which allow unrestricted access to any page, without a clear functional justifica-
tion [Johnson et al.]. Furthermore, users tend to trust extensions, granting permissions
without fully understanding their implications, which increases the potential for abuse
[Senapati et al. 2024].

Different studies have been conducted on the security risks and vulnerabilities of
browser extensions. For example, analyzing 133,365 extensions available in the Google
Chrome Web Store (CWS), [Eriksson et al. 2022] identifies three main types of attacks on

extensions (password theft, traffic redirection and cross-extension attacks) and suggests
countermeasures that range from the concrete declaration of permission for the desired
action (e.g. screenshot) and the adoption of new versions of the extensions’ manifest
file, indicating how they will handle user requests. [Picazo-Sanchez et al. 2022] uses ma-
chine learning and the download pattern of extensions in the CWS to identify malicious
and suspicious extensions. The study by [Nguyen 2018] analyzes 50 Chrome extensions,
identifying critical vulnerabilities such as privilege escalation and flaws in content scripts.
Although the authors offer a valuable contribution, their analysis was conducted under
the paradigm of Manifest V2 - a model whose security policies have been radically re-
formulated in the current Manifest V3. Furthermore, similar to [Eriksson et al. 2022] and
[Picazo-Sanchez et al. 2022], [Nguyen 2018]’s investigation did not include a compre-
hensive assessment of permissions or essential configurations such as the Content Secu-
rity Policy (CSP). These limitations, together with the restricted sample (50 extensions),
reduce the generalizability of the results and highlight the urgent need for further studies.

Given this scenario, this work investigates potentially insecure configurations in
Chrome Web Store extensions, analyzing aspects such as sensitive permissions, man-
ifest version, and content security policy (CSP). An experimentation methodology is
adopted, which combines empirical analysis of extensions with configuration auditing,
to classify extensions as vulnerable when they present inadequate practices. The re-
sults indicate that a significant number of extensions use insecure configurations without
plausible justification, reinforcing the need for improvements in the review processes of
official browser stores. The study contributes to the literature by highlighting the im-
portance of a careful review of configurations and permissions, aiming to protect users
and guide regulators and developers in the implementation of more robust security poli-
cies [Sam and Jenifer 2023][Kim and Lee 2023]. This study can support the creation of
stricter guidelines, ensuring greater protection for users of browser extensions.

The remainder of this paper is organized as follows. Section 2 presents some
related studies. The methodology adopted in this study is described in Section 3. Results
and analyses are addressed in Section 4. Finally, Section 5 concludes this paper and points
out future research directions.

2. Related Work

Different studies have been conducted on the security risks and vulnerabilities of browser
extensions. For example, the authors in [Eriksson et al. 2022] analyze 133365 extensions
available in the Google Chrome Web Store (CWS) and identify three main types of attacks
on extensions: password theft, traffic redirection, and cross-extension attacks. They sug-
gest countermeasures such as specifically declaring permission for the desired action (e.g.,
screenshot capture, captureVisibleTab), adopting a new version of the extension manifest
file that indicates how the extensions will handle user requests, and making it mandatory
to define the externally connectable key (externally_connectable key) or adopting secure
mode by default, respectively. [Picazo-Sanchez et al. 2022] combines machine learning,
security analysis, and the pattern of the number of extension downloads in the CWS to
identify malicious and suspicious extensions. The authors analyze the extension down-
load history for 6 months, comprising 1212 active extensions, finding 135 groups and
identifying 61 of them with at least 80% malicious extensions. Additionally, they show
that when combined with code similarity analysis, this identification is improved.

Although the analysis of insecure configurations in browser extensions
[Allauddin and Lokhande 2024] and the use of excessive permissions and bad develop-
ment practices is little explored in the literature, these aspects can create attack scenarios.
In this sense, the study [Kim and Lee 2023] presents an analysis of vulnerabilities in the
extension architecture of modern browsers. The authors identify 59 vulnerabilities in 40
extensions, highlighting how failure to correctly implement the principle of least privi-
lege can allow privilege escalation attacks, such as the execution of malicious scripts and
the theft of sensitive data. To combat these weaknesses, the study proposes FISTBUMP,
an extension architecture that, through process isolation and the use of the DOMProxy
mechanism, protects content scripts by executing them in an environment isolated from
the rendering processes. This approach mitigates identified risks and preserves compat-
ibility with existing extensions, contributing to the advancement of security defenses in
web environments.

Aimed at preventing attacks, the work of Sam and Jenifer [Sam and Jenifer 2023]
proposes a framework that integrates static and dynamic analysis techniques to perform
a continuous evaluation of installed extensions, enabling the real-time detection of mali-
cious behaviors and vulnerabilities, such as XSS, CSRF, and other threats. The study de-
tails the implementation of a monitoring system and emphasizes safe development guide-
lines, highlighting the importance of educating users to adopt safer browsing practices.
The experimental results demonstrate the effectiveness of the proposed method, contribut-
ing to improving online security by offering practical tools to identify and mitigate risks
associated with extensions.

In their study, [Johnson et al. | helps us understand the impact of permissions on
security by analyzing the weaknesses present in Google Chrome extensions. The authors
show how different attack vectors, such as the use of background tabs, exploitation of
iframes for stealth operations and the falsification of user data, can be used to access and
manipulate sensitive information. They show that, even with the restrictions imposed by
component isolation and privilege separation, extensions can pose a significant security
risk, especially when used maliciously.

Although the cited works address important aspects such as the detection of mali-
cious extensions through machine learning, behavior analysis, excessive permissions, and
vulnerabilities in the architecture of extensions, few studies systematically investigate the
vulnerabilities created by configurations present in extensions published in the Chrome
Web Store. Unlike these approaches, this work focuses on the empirical analysis of con-
figurations such as the use of sensitive permissions, outdated manifest versions, and per-
missive content security policies (CSP), proposing a detailed audit to classify potentially
vulnerable extensions based on inappropriate practices. This perspective complements
previous efforts by exploring a dimension that is still little studied, but essential for the
security of the extension ecosystem.

3. Methodology

This study aims to investigate vulnerabilities present in web extensions that may allow a
legitimate user, when using an apparently secure extension, to be targeted by attacks due
to flaws in the extension itself. To achieve this objective, the research was structured in
four main steps, as illustrated in Fig. 1, described below.

,———

Collection and Data

. Data Collection and Storage: Collects and stores data on available extensions
from the Chrome Web Store to build a comprehensive dataset of the extensions
and their declared metadata.

. Filtering, Risk Classification, and Choosing Settings: Filters the dataset to fo-
cus on high-impact extensions based on user count, establishes a preliminary risk
model, and uses this classification to select the specific configurations for in-depth
analysis.

. Detailed Manual Settings Usage Checks: Conducts detailed manual checks
on the selected configurations, providing a qualitative assessment to establish a
framework for judging if a permission is justified by an extension’s core function-
ality.

. Automated Static Permission Analysis: Performs a static analysis of the ex-
tensions code to complement the manual approach, automatically identifying re-
quested permissions that are unused.

. Automated Statistics Collections: Aggregates the findings from all previous
stages through the automated collection of statistics, providing a final quantita-
tive overview of the study’s results.

Filtering, Risk Automated Static Analysis of Permissions

Manifest Data
(.json)

(-xIsx)

Figure 1. Methodology Flow

' Storage . . Classification, and | ' '
H , 1 Configuration Selection | i H
: Voo : : S——
i r H H ! , Download Static Code Pemission '
' a % ! ' ' ' CRX Analysis Usage Data '
| e | ' Filtered Data : ' (-json) '
! Chrome Web Store E E (ison) : ' H
E Web Scraping E E Data E Phase 3

! (Selenium + bs4) ' ' Classification ' FTTTTmTmmmsmmsm--es

' ' I ' i Detailed Manual

: ‘ i ‘ ' Checks of !

: l ‘ E T ‘ ! Configuration

: Lo Do Usage : Phase 5

| R : - ; e f
E Download E : _ E E E ! Automated Collection of E
: CRX | : Data filter | ! Manual Code : ! Statistical Data :
: : ! : L analysis ' H !
i l ! ! ' : (CRXViwer) i : !
: _ N B GRS CEE LN ! . | Statistical Data | __|!
H Collection of H ' H T Collection .
H Information ! ! H : !
: from ' ! - ‘ ' :
H Manifest.json ! ' Extensions H i !
' ' . Analize Data ' L
: ‘

For the purpose of this study, a requested permission was defined as unjustified
(also referred to as inappropriate or excessive) if it met one or both of the following
evidence-based criteria:

1. Functional Non-Essentiality: The permission was determined to be non-
essential for the extension’s core functionality. This was established through a
comparative analysis where alternative, popular extensions in the same category
delivered the same primary benefit without requiring said permission, as detailed
in our manual analysis framework (Section 3.3).

2. Unused Declaration: The permission was declared in the manifest. json
file but our automated static analysis pipeline (Section 3.4) found no correspond-
ing API calls within the extension’s JavaScript source code, indicating it was re-
quested but not used.

This two-pronged definition provides a systematic and replicable basis for iden-
tifying over-privileged extensions, grounding the concept of ’inappropriate use’ in both
functional context and code-level evidence.

3.1. Data Collection and Storage

Browser extensions are typically stored in vendor-managed repositories, where extension
developers make them available for distribution. The Chrome Web Store (CWS) is the
Chrome browser repository, managed by Google [Eriksson et al. 2022], and served as
the source for our data collection. The goal was to analyze up to 1,500 most relevant
extensions by the number of downloads in each of the 18 categories defined by the CWS,
totaling 23,363 extensions.

Since the CWS does not provide a public Application Programming Interface
(API), a web scraping methodology was adopted [Vila et al. 2017]. The data gathering
process was performed in two main stages.

In the first stage, a script using the Selenium Python framework navigated
through the CWS category pages. The Beautiful Soup (bs4) library then parsed the
loaded HTML to extract a single piece of information for each listed extension: its unique
extension ID.

In the second stage, the script iterated through the collected IDs to acquire the core
data. For each ID, the corresponding . crx file was downloaded directly from Google’s
update services. Concurrently, Selenium accessed the specific details page of each ex-
tension to scrape its user count. After the download, the contents of the . crx file were
analyzed locally to extract the manifest . json file, which defines its permissions and
security policies. All collected data—the information from the manifest. json, the
extension ID, and the user count—was then aggregated and stored in a single . json file
for subsequent analysis.

The collected records contained attributes essential for analysis, some of the most
relevant among them are:

* manifest_version: Version of the manifest, indicating the structure and se-
curity policies applied.

* permissions: List of permissions requested by the extension, including, for
example, access to storage and, in some cases, cookie manipulation.

* host_permissions: Permissions associated with access to specific domains.
Allows the extension to access certain URLs or websites, which can be an attack
vector if the extension has excessive permissions.

* content_scripts: Scripts JavaScript that the extension injects into web
pages. These scripts have access to the content of the pages and can manipu-
late the DOM. They can be used maliciously if the extension is vulnerable, such
as in Cross-Site Scripting (XSS) attacks.

* content_security policy: Security policy that defines where resources
can be loaded from, such as scripts, images, and other content. Helps prevent
malicious code execution by restricting the origin of resources loaded by the ex-
tension.

* externally_connectable: Setting that determines which external origins
can communicate with the extension. This can allow external websites to interact
with the extension and, if misconfigured, can be exploited to perform attacks such
as Cross-Site Request Forgery (CSRF).

* storage: Defines the extension’s use of storage, such as data saved locally in
the browser. This can include user preferences or temporary data. If not properly
secured, it can be exploited to store sensitive data such as credentials or browsing
information.

3.2. Filtering, Risk Classification and Choosing Settings

After collecting the data, an automated Python script was developed to filter the extensions
stored in the . json file. This made it possible to apply filters based on a minimum
number of downloads and the values of the manifest . json fields, using the AND logic
to combine the selected criteria. This approach ensured efficient and targeted filtering for
the analysis of potentially vulnerable extensions.

Since the Chrome Web Store has a very high number of extensions, a filter was
applied that considered only those with the number of downloads equal to or greater than
500,000, resulting in 287 extensions. This criterion was adopted to prioritize extensions
of greater relevance, since widely used extensions tend to have a greater impact on users’
security and privacy.

A script was developed to classify the risk of the analyzed extensions. This clas-
sification was based on a careful analysis of several factors, including the requested per-
missions, the version of manifest. json, and other critical aspects such as security
policies, content scripts, and external communication settings. The goal was to catego-
rize the extensions into three risk levels: high, medium, and low, as described below:

* High Risk:

— Extensions that request excessive permissions, such as access to
<all_urls>, cookies, tabs, webRequest, or debugger, with-
out a clear justification for their functionality.

— Use of content_scripts that inject scripts into web pages without
proper sanitization, which can facilitate Cross-Site Scripting (XSS) at-
tacks.

— Insecure externally_connectable configurations, which allow
communication with untrusted external sources.

— Missing or misconfigured content_security policy, allowing
loading of resources from insecure sources.

— Usingmanifest_version 2 (older and less secure) instead of version
3, which introduces stricter security policies.

* Medium Risk:

— Extensions that request moderate permissions, such as activeTab,
storage, or notifications, but can still pose risks when miscon-
figured.

— Use of content_scripts with limited access to specific pages, but
without full input sanitization.

- content_security_policy settings that allow unsafe-inline
or unsafe-eval, increasing the attack surface.

— Use of host_permissions to access specific domains, but without
clear justification for needing access to those domains.

* Low Risk:

— Extensions that request only the minimum permissions necessary for their
functionality, such as alarms or idle.

— Use of manifest_version 3, which offers greater security and con-
trol over permissions and policies.

— Robust content _security policy settings, restricting resource
loading to trusted sources and avoiding unsafe-inline and
unsafe-eval.

— Absence of content_scripts or safe use of these scripts, with ade-
quate sanitization of inputs and outputs.

— Restrictive externally_connectable settings, allowing communi-
cation only with trusted sources.

The classification obtained in step 2 helped in deciding which criteria (configura-
tions) of the extensions would be used to evaluate them in step 3. The choice was based on
a cost-benefit, where the cost was the difficulty and time to evaluate a certain configura-
tion or permission, and the benefit was the level of risk of this configuration or permission,
with the aim of prioritizing the greatest risk according to the risk classification. Therefore,
the chosen configurations were:

* manifest_version (MV): This setting, the manifest version of a web extension,
determines its permissions, scripts, and behaviors. Outdated versions may lack
newer security protections, such as the remote scripts blocking introduced in
Google Chrome Manifest V3, making extensions vulnerable to attacks, includ-
ing malicious code execution and abuse of excessive permissions. Currently, the
latest version is Manifest V3. There is no technical justification for maintaining
older versions, as this may expose users to previously documented vulnerabilities.

 content_security_policy (CSP): This setting, the content security policy (CSP),
defines which external content sources are allowed to load on a web page, re-
stricting the execution of unauthorized scripts, styles, and other elements. During
the analysis, overly permissive CSPs were identified, including those that allow
JavaScript to be executed inline and the use of the eval command. These settings
are especially critical as they can facilitate Cross-Site Scripting (XSS) attacks.
Any extension that contained the following directives in the CSP was classified as
vulnerable: unsafe-inline; unsafe-eval; wasm-unsafe-eval. There is no plausible
technical justification for these settings, as there are safer alternatives for handling
JavaScript code that do not cause any functional drawbacks.

 content _scripts (CS): This setting defines the domains into which the extension
can inject JavaScript code. scripts injection can be exploited by malicious ex-
tensions or by legitimate extensions that have vulnerabilities, allowing malicious
code to be executed on the pages visited by the user. Extensions that configure
content_scripts in a permissive manner, without justifiable need, have been clas-
sified as insecure.

¢ identity (ID): This permission allows the extension to provide authentication
functionality via OAuth, using the user’s Google account. However, some ex-
tensions may request this permission unnecessarily, collecting data without any
real need.

* identity.email (IDM): This permission grants access to the user’s email address.
Many extensions use it inappropriately, without this functionality being essential
for their operation, representing a risk to privacy.

¢ externally_connectable (EC): This configuration allows web pages to communi-
cate directly with the extension through APIs. If the extension’s API has vulner-
abilities, a malicious website could exploit this functionality to perform inappro-
priate actions in the user’s browser.

* history (HI): This permission grants access to the user’s browsing history, which
may compromise their privacy by exposing behavior patterns and personal prefer-
ences.

* cookies (CO): This permission allows the extension to read and manipulate
browser cookies, not limited to the extension’s own cookies. This function-
ality can be exploited to track and collect data about user behavior, posing
a risk to their privacy. Many extensions request this permission without real
need, aiming to obtain valuable information that can be commercially exploited
[Somé 2019][Malgieri and Custers 2017].

3.3. Manual Analysis of Permission Justification

Following the risk classification, a qualitative analysis was performed by the authors on
the 287 filtered extensions. The objective of this manual stage was to establish and apply
a systematic framework for judging whether the high-risk configurations and permissions,
identified in Section 3.2, were functionally justified. To ensure objectivity, the following
operational definitions and procedures were used:

1. Defining ”Essential” and ”Functioning”: A permission or configuration was
considered essential only if it was indispensable for delivering the extension’s
core advertised functionality. To test this, we employed a comparative analysis
approach. For a given extension, we identified other popular extensions within
the same functional category (e.g., ad blockers, note-taking apps). If a significant
number of market-leading alternatives could provide the same core function with-
out a specific permission, that permission was flagged as potentially non-essential.
An extension was considered “functioning” if it successfully delivered its primary
promised benefit.

2. Gauging ”’Benefit” and ’Proportionality”’: The benefit was defined as the core
functionality offered to the user. The proportionality of a permission was then
evaluated by weighing this benefit against the privacy risk posed by the per-
mission (as classified in Section 3.2). For example, a high-risk permission like

history (access to Browse history) was considered disproportionate for an ex-
tension whose primary benefit was merely changing a website’s color scheme, as
the risk to user privacy far outweighed the offered functionality.

3. Defining ”’Insecure Setting” and ”’Safer Approach’: An insecure setting refers
directly to the configurations identified as high or medium risk in Section 3.2.
This includes, but is not limited to, the use of Manifest V2, a Content Security
Policy (CSP) containing directives like unsafe-inline or unsafe-eval,
or overly broad host permissions. A safer approach is the corresponding modern
best practice, such as migrating to Manifest V3 or refactoring code to eliminate the
need for insecure directives. A “functional impairment” was considered to have
occurred only if adopting the safer alternative demonstrably broke the extension’s
core functionality, which was verified during our comparative analysis.

This manual analysis provided the qualitative context necessary to interpret the
results of the large-scale automated analysis that followed, ensuring that claims of “inap-
propriate use” were grounded in both functional and security-based evidence.

3.4. Automated Static Permission Analysis

To identify excessive permissions, we implemented a static analysis pipeline through
scripts in Python comprising four main components:

1. Download and Extraction (script:):
* Obtaining the .crx files of the extensions selected in the filtering step,
using their unique IDs.
» Extraction of JavaScript files for analysis, preserving the original project
structure.

2. Pattern Detection: We have developed three complementary strategies to identify
permission usage:
* Canonical Standards: Regular expressions based on the Chrome API,
such as direct access via chrome . <permission> and bracket syntax
like chrome [’ permission’]

* Dynamic Calls: Indirect access detection via:
API = ’'tabs’;
chrome [API] .query (...);

e Script Injection: Identification of indirect uses such as activeTab
through: chrome.scripting.executeScript (...)

3. Empirical Validation:
To ensure the accuracy of the static analysis, we manually sampled 20% of the
extensions (57 out of 287) with a dual purpose: to calibrate the initial patterns
and to identify extreme cases (false negatives/positives). From these cases, we
iteratively refined the search patterns in the static code analysis.

4. Consolidation: Generate structured JSON reports and integrate with manifest
data for cross-analysis.

3.5. Automated Statistics Collections

In this last stage of the methodology, some scripts were created in Python, with the ob-
jective of automatically collecting various information about the use of configurations of
the 287 extensions. The main objective was to verify which permissions were being re-
quested from the user without being used in the extension code, that is, permissions that
were being requested without being used by the extension. This reveals a lack of care in
handling user privacy, in addition to the fact that future updates of the extensions could
make some subsequent use of these permissions.

4. Results
4.1. Data Visualization

Table 1 shows the number of occurrences of inappropriate configurations by category.

Table 1. Number of settings classified as inappropriate by setting category

Configuration/Permission Inappropriate | Total
content_scripts permissive 14 67
cookies 39 50
content_security_policy permissive 28 28
manifest_version 17 17
identity 9 14
identity.email 4 5
history 1 3
externally_connectable permissive 1 1

Table 2 shows the number of extensions by risk category, considering the 287
extensions analyzed. This categorization was based on the risk classification performed
in the second stage of the methodology of this work. The difference is that only the con-

figurations selected in the second stage of the methodology will be considered to perform
the risk classification.

Table 2. Number of extensions by risk category (limited)

Risk level | Number of extensions
High 64

Medium 17
Low 206

Table 3 reveals a ranking of the permissions requested in the 287 extensions ana-
lyzed, while Table 4 shows the same ranking considering only the extensions that contain
some inappropriate configuration.

The results indicate that even among the most relevant extensions, there are prob-
lems with inappropriate configurations. Of the 287 extensions analyzed in step 3 of the
methodology, which considers only some specific configurations previously mentioned,
87 (~ 30.31% of the total) presented inappropriate configurations. This result indicates
that a significant portion of the extensions may be collecting unnecessary data from users

Table 3. Ranking of the 10 most requested permissions

Permission Number of requests
storage 246
scripting 130
tabs 114
activeTab 83
contextMenus 78
alarms 76
webRequest 76
unlimitedStorage 59
declarativeNetRequest 54
cookies 50

Table 4. Ranking of the 10 most requested permissions in extensions with inad-
equate configuration

Permission Number of requests
storage 78
cookies 41

tabs 41
scripting 38
alarms 35
webRequest 31
activeTab 28
contextMenus 28
unlimitedStorage 25
declarativeNetRequest 19

or exposing them to security risks, increasing vulnerability to possible cyberattacks, or
generating privacy issues.

Table 2 uses the risk classification algorithm created in step 2 of the methodol-
ogy, with the limitation of considering only the configurations selected in step 2 itself
(which were also used in step 3). This result revealed that problematic extensions are
generally high risk, most often due to the unjustified use of cookies, being present in
approximately 44.82% of extensions with inadequate configuration.The undue interest
in extensions in cookies is probably motivated by the commercial value that the infor-
mation contained in cookies has [Somé 2019][Malgieri and Custers 2017]. The analyses
revealed that permissions that can be used to collect user data, and consequently gen-
erate a financial return, were very present. For example, it was observed that the per-
missions cookies, identity, identity.email and history, which have commercial value
[Somé 2019][Malgieri and Custers 2017] as they allow access to user information, were
problematically present in 50 (~ 57.47% of the total) of the 87 extensions with inappro-
priate configuration. Furthermore, it is possible to identify a relationship between the use
of the cookies permission and the probability of an extension containing some inappro-
priate configuration, for example, when comparing the tables 3 and 4, it is possible to see
that the cookies permission becomes much more present if we consider only the exten-

sions with inappropriate configuration, when compared to the total number of extensions
analyzed, while the remaining configurations remain in similar positions in the ranking of
both tables.

In Table 1, it is possible to verify that there are some configurations that were
classified as inappropriate in all uses, some of them had this result because the occasions
of real need were very rare [Perrotta and Hao 2017][Google Chrome Developers 2023b],
while others, such as the use of outdated versions of the manifest, com-
pletely lack justification in any case. These findings highlight the urgent
need to implement automatic filtering mechanisms, both in the Chrome Web
Store and at the user’s browser level, to block extensions with certain types
of configurations, since some of these configurations are never recommended
[Google Chrome Developers 2023a][Pantelaios and Kapravelos 2024].

Another observation arising from the results is that 36.84% of the 287 extensions
analyzed request at least one permission that is not used by the extension, indicating
a practice of excessively requesting permissions without functional justification. This
problem is also evident when we observe that 29 requested permissions were not used in
any of the extensions studied, and that the chance of an extension requesting a permission
and not using it is 31.13%. These findings demonstrate the lack of strict control over
permission requests, which can pose significant risks. Extensions can be updated later,
and previously granted permissions, but not initially used, could be activated for malicious
purposes without requiring new user authorization.

5. Conclusion

This article addressed the issue of security risks and vulnerabilities in web browser exten-
sions. In it, a methodology was developed for analyzing browser extensions and applied
considering the extensions available in the Chrome Web Store in order to identify the use
of configurations that may compromise user security and/or privacy. The results revealed
that approximately 30% of the analyzed extensions had at least one inappropriate configu-
ration, which could cause harm to user privacy and/or security. These results demonstrate
that, even in widely used extensions, negligent development practices or lack of oversight
in official stores can expose users to significant risks. The results highlight the need for
two main actions: prioritizing security in the development cycle and rigorous review by
official extension stores. In addition to providing support for security professionals and
developers, this work contributes to the literature by mapping a problem that is still little
explored. This lack of specific research on insecure configurations in extensions rein-
forces the relevance of this analysis and serves as a basis for future investigations, such
as the creation of automated auditing tools or the expansion of the study to other stores,
such as Firefox Add-ons. A future research direction is the investigation of cyberattacks
that can exploit the insecure configurations identified in this study and the analysis of the
performance of these attacks through the configurations.

Acknowledgment

This study was funded by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Su-
perior - Brazil (CAPES) - Code 001 and by the UFPE/Propesqi via Edital No® 06/2024.

References

Allauddin, M. S. and Lokhande, P. S. (2024). Analyzing security risks in browser exten-
sion search tools: A literature review. SSRN Electronic Journal.

Carlini, N., Felt, A. P., and Wagner, D. (2012). An evaluation of the google chrome ex-
tension security architecture. In 21st USENIX Security Symposium (USENIX Security
12), pages 97-111.

Eriksson, B., Picazo-Sanchez, P., and Sabelfeld, A. (2022). Hardening the security anal-
ysis of browser extensions. In Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing, SAC *22, page 1694—1703, New York, NY, USA. Association for
Computing Machinery.

Google Chrome Developers (2023a). Manifest v3 migration guide. Acesso em: 10 jul.
2024.

Google Chrome Developers (2023b). Match patterns - chrome developers. Acesso em:
10 jul. 2024.

Hsu, S., Tran, M., and Fass, A. (2024). What is in the chrome web store? In Proceedings
of the 19th ACM Asia Conference on Computer and Communications Security, ASIA
CCS 24, page 785-798, New York, NY, USA. Association for Computing Machinery.

Johnson, C. A., Paramiswaran, S., and Mailewa, A. B. Discovering vulnerabilities in web
browser extensions contained by google chrome.

Kim, Y. M. and Lee, B. (2023). Extending a hand to attackers: browser privilege esca-
lation attacks via extensions. In 32nd usenix security symposium (usenix security 23),
pages 7055-7071.

Malgieri, G. and Custers, B. (2017). Pricing privacy — the right to know the value of your
personal data. Leiden Law School Legal Studies Research Paper Series.

Nguyen, C. O. Y. Z. R. (2018). Analysis of vulnerabilities of web browser extensions. In
2018 International Conference on Computational Science and Computational Intelli-
gence (CSCI), pages 116-119. IEEE.

Pantelaios, N. and Kapravelos, A. (2024). Manifest v3 unveiled: Navigating the new era
of browser extensions. ArXiv, abs/2404.08310.

Perrotta, R. and Hao, F. (2017). Botnet in the browser: Understanding threats caused by
malicious browser extensions. IEEE Security Privacy, 16:66-81.

Picazo-Sanchez, P., Eriksson, B., and Sabelfeld, A. (2022). No signal left to chance:
Driving browser extension analysis by download patterns. In Proceedings of the 38th
Annual Computer Security Applications Conference, ACSAC *22, page 896-910, New
York, NY, USA. Association for Computing Machinery.

Sam, J. and Jenifer, J. A. (2023). Mitigating the security risks of browser extensions.
In 2023 International Conference on Sustainable Computing and Smart Systems (IC-
SCSS), pages 1460-1465. IEEE.

Senapati, B., Naeem, A. B., Khan, T. A., Golder, S. S., Das, S., Mondal, S., Mishra,
L. N., and Patra, S. (2024). A study on web user’s attitude and knowledge towards
data security and privacy issues of web browser extensions. In 2024 4th International

Conference on Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME), pages 1-8. IEEE.

Somé, D. F. (2019). Empoweb: Empowering web applications with browser extensions.
2019 IEEE Symposium on Security and Privacy (SP), pages 227-245.

Vila, E., Novakova, G., and Todorova, D. (2017). Automation testing framework for web
applications with selenium webdriver: Opportunities and threats. In Proceedings of
the International Conference on Advances in Image Processing, pages 144—150.

