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A Polynomial Neural Network Approach for the
Outdated CQI Feedback Problem in 5G Networks

Peterson Yoshioka, José dos Santos, Marcos Falcão, Andson Balieiro, Elton Alves, and Siba Narayan Swain. .

Abstract— Accurately reporting a Channel Quality Indica-
tor (CQI) value that denotes the current channel condition
is fundamental for 5G networks. However, the time elapsed
between the channel condition measurement and its effective use
by the base station may render the CQI obsolete, negatively
affecting the user equipment (UE) communication. This paper
proposes a Polynomial Neural Network solution that considers
the Signal-to-Interference plus Noise Ratio (SINR) and user
context to estimate the updated SINR for translation into a
CQI value. It is based on a self-organizing algorithm (the
Group Method of Data Handling - GMDH) that combines the
concepts of black-box modeling, connectionism, and induction for
computer-based mathematical modeling of multi-variable systems
and automatically optimizes its structure with minimal analyst
intervention. The results show that our solution presents a high
level of accuracy and performance similar to the ideal one, with
an absolute difference of only 0.001 in both throughput and
spectral efficiency metrics, demonstrating its feasibility to address
the outdated CQI feedback problem.

Keywords— Outdated CQI Feedback Problem, 5G Networks,
GMDH, Polynomial Neural Network

I. INTRODUCTION

The Fifth Generation (5G) of Wireless Communications is
being employed to support a variety of services, including
autonomous vehicles, ultra-high definition video streaming,
and the Internet of Things (IoT) and provide high throughput
(e.g. dozen of Gbps), ultra-low latency (e.g. order of few
milliseconds), high reliability (e.g. order of 99.99999%), low
energy consumption, and high connection density [1]. Nev-
ertheless, challenges arise in maintaining a high quality of
service during wireless communications due to events such
as signal reflection, diffraction, user mobility, and interference
from other sources.

To address this issue, 5G base stations (gNodeB) employ
the Adaptive and Modulation Coding (AMC) technique. It
adjusts the modulation and coding schemes (MCS) used for
transmission based on the channel quality indicator (CQI)
reported by the UE. The CQI aims to reflect the downlink
channel condition and assist the gNodeB in making decision
regarding MCS and radio resources for communication. Thus,
it indirectly affects the achieved throughput, block error rate
(BLER), and spectral efficiency. Therefore, accurately report-
ing a CQI value that denotes the current channel condition
is of paramount importance for 5G network link adaptation.
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However, the time elapsed between the channel condition
measurement and its effective use by the gNodeB, which
involves tasks such as CQI computation and transmission, may
render the CQI obsolete, not reflecting the current channel
quality [2][3] and possibly degrading the UE communication
(e.g. throughput reduction).

Solutions addressing the outdated CQI feedback problem
have been proposed in the literature [2] [3] [4] [5], which are
based on CQI or Signal-to-Noise Ratio (SNR) prediction via
techniques such as linear extrapolation [5], Long Short Term
Memory (LSTM) Neural Networks [3] [4], or linear estimation
with stochastic approximation [2]. However, these approaches
often overlook the impact of user context, such as position and
distance to the Base Station (BS), on the perceived channel
condition. They typically consider CQI or SNR for estimating
future values, and some are implemented at the gNodeB side
[3] [4], potentially overloading it, especially in scenarios with
high user density.

In contrast, our paper proposes a Group Method of Data
Handling (GMDH) solution that considers not only the CQI or
SINR but also user context, incorporating factors like position
and distance to the base station to estimate the updated SINR
for translation into a CQI value. GMDH is a self-organizing
algorithm that combines the concepts of black-box modeling,
connectionism, and induction for computer-based mathemati-
cal modeling of multi-variable systems [6]. It is a Polynomial
Neural Network that automatically optimizes its structure with
minimal analyst intervention. We evaluated our solution by
using data from 5G simulator [7] in terms of prediction
accuracy, spectral efficiency, and throughput, comparing it to
an ideal SINR predictor, i.e., one with perfect prediction,
zero error. The results show that our solution demonstrates
a high level of accuracy and performance similar to an ideal
one. There is only a minimal absolute difference of 0.001 in
both throughput and spectral efficiency metrics, highlighting
its feasibility to deal with the outdated CQI feedback problem.
The remainder of this paper is organized as follows. Section
II discusses some works. The outdated CQI feedback problem
and the proposed GMDH-based solution proposed is presented
in Section III. Results and Analysis are conducted in Section
IV. Section V concludes this work.

II. RELATED WORK

Solutions based on prediction have been proposed for the
oudated CQI feedback problem in the literature. For instance,
in [2], the authors analyze different techniques such as Linear,
Linear with Stochastic Approximation (LSA), Kalman Filters,
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and Discrete Cosine Transform (DCT) Sequences to predict
the CQI, with LSA outperforming the others in terms of the
complexity-performance tradeoff. In [5], the authors use previ-
ous signal-to-noise ratio (SNR) values and linear extrapolation
to predict future SNR. However, the proposal does not work
properly in scenario with moderate or high speed users.

On the other hand, in [4], a Long Short Term Memory
(LSTM) Neural Network proposed to predict the CQI and
online retraining is employed to achieve high accuracy even in
dynamic scenarios. For predicting CQI, [3] proposes a deep
recurrent neural networks (DRNNs) approach based on the
time-series of previous CQI values. The authors emphasize
that the solution is designed for Unmanned Aerial Vehicle
(UAV) control information based on Ultra-reliable and Low
Latency communication (URLLC), but do not consider the
device context aspects such as device position to estimate
the future CQI. These three approaches ([3], [4], and [5])
are single-type input forecasters, but differ in terms of the
prediction technique. [3] employs Long Short Term With
Memory (LSTM) and Gated Recurrent Unit (GRU) layer.
Furthermore, [3] and [4] predict the CQI and operate at the
base station, while [5] focuses on the SNR and it is embedded
into the user device.

In our previous paper [8], we tackled the outdated CQI
feedback problem by proposing a Multi-Layer Perceptron
(MLP) Neural solution. The solution considers the UE mobil-
ity context (e.g. position, velocity, and movement direction),
delay length, and the SINR to predict the updated SINR. In
contrast, in the present paper, we adopts GMDH for predicting
the updated SINR, mapping it into a CQI value. The selection
of inputs for GMDH is guided by Pearson’s and Spearman’s
coefficients to avoid unnecessary overhead or complexity.
Unlike the MLP, which requires significant information about
the neural network topology (e.g., number of hidden layers,
neurons, and their activation function), subjectively defined by
the analyst or determined through testing as in [8], the GMDH
automatically optimizes its structure. Additionally, beyond
evaluating the accuracy of the GMDH solution, we consider
its impact on spectral efficiency and throughput, comparing it
to an ideal predictor, which has zero error.

III. PROPOSAL

A. The Channel Quality Indicator (CQI)

The channel quality in 5G networks varies across cells due
to factors such as position (proximity to the antenna), inter-
ference from other sources, signal reflection and diffraction,
and user mobility. To respond to these changes and provide the
best possible communication service to users, 5G base stations
employ link adaptation (LA), where modulation and coding
schemes (MCS) and the amount of resources are adjusted
based on the channel quality [4]. For instance, in channels with
good quality, higher-order MCS may be applied to achieve
higher throughput and spectral efficiency. On the other hand,
lower-order MCS are most suitable for handling poor channels
and avoiding frequent retransmissions.

The channel condition is reported by the UE to the gN-
odeB in a Channel State Information (CSI) report, which

comprises three main components, a Channel Quality Indicator
(CQI), Precoding Matrix Index (PMI), and Rank Indicator
(RI). Among these, the CQI holds particular significance for
link adaptation as it indirectly defines UE communication
performance, influencing factors such as data rate and error
block rate. The UE determines the CQI based on the reference
signal received from the gNodeB, with values ranging from 0
to 15. A higher score indicates better channel quality. Based
on the CQI, the gNode selects the best modulation and coding
schemes along with determining the amount of resources for
transmission in order to maximize the spectral efficiency, while
targeting a certain block error rate (BLER)[9], for example.

In this respect, it is crucial that the CQI accurately reflects
the current channel quality for a proper LA. However, the
delay incurred by tasks performed between the reference signal
reception at the UE and the MCS selection by the gNodeB
may render the CQI obsolete or outdated. For instance, upon
receiving the reference signal, the UE dedicates time to process
measurements (e.g. computing the SINR) and translate them
into a CQI value. Subsequently, the UE sends the CQI to the
gNodeB, introducing delays associated with UL transmission
scheduling, transmission itself, and signal propagation. Once
the CQI reaches the gNodeB, the MCS selection adds an ad-
ditional delay to this sequence of events[3]. These cumulative
overheads contribute may make the CQI obsolete.

B. The Group Method of Data Handling (GMHD)

The group method of data handling (GMDH) was first
introduced by Ivakhnenko for detecting nonlinear systems [6].
It is a self-organizing algorithm that combines the black-
box, connectionism and induction concepts for the computer-
based mathematical modeling of multi-variable systems via
Polynomial Neural Networks. In this way, it automatically sets
its parameters and optimizes its structure with minimal analyst
intervention [10] Figure 1 illustrates the basic multilayer
GMDH structure with n inputs and one output, organized into
three parts: input, which comprises input neurons, one for each
input variable; intermediate, with layers of neurons, in which
neurons of a layer receive inputs of selected neurons from the
previous layer; and the output layer.

Output LayerInput Layer Intermediate Layers

Selected node (neuron)

Fig. 1: The basic multilayer GMDH structure

Let X = x1i, x2i, x3i, . . . , xni be the input vector composed
of n variables and yi = f(x1i, x2i, x3i, . . . , xni) its respective
desired mapping value for the sample i of a dataset with
M observations for each variable, i.e, i = 1, 2, 3, ...M . The
GMDH is trained to predict the desired outputs, offering
estimations y∗i = f∗(x1i, x2i, x3i, . . . , xni), where it aims
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minimizing the difference between yi and y∗i for all i, as shown
in Eq.1.

Minimize
∑
i=0

M(yi − y∗i )
2 (1)

In the Ivakhnenko model [6], each neuron output is ob-
tained via second order polynomial functions with two inputs
(zs, zt), as shown in Eq. 2. The least-squares method (LSM) is
employed to adjust their coefficients and thus minimizing the
mean squared error (MSE) between the output neuron and the
desired one. To prevent overfitting, GMDH randomly selects
a percentage (e.g., 70%) of the total data for training, leaving
the remaining data for validation, in which the former is used
to adjust the coefficients. Moreover, the neurons of each layer
undergo a selection process to determine which ones will be
considered in the next layer, eliminating weaker combinations
in favor of stronger ones. The selection may be done by
comparing the fitting errors in the validation stage for each
neuron with a threshold (penalty parameter)[10]. Applying
this process across the layers, GMDH automatically defines
the neurons will compose the final model, creating a complex
model by combining simple structures.

a0 + a1zs + a2zt + a3zszt + a4z
2
s + a5z

2
t (2)

C. Data and Input Variables

To train the GMDH model and estimate the updated SINR,
mapping it into a CQI value, we adopted data generated via
mmWave simulator [7]. Simulations were conducted with eight
different UE initial positions, spanning values for x, y, and z
coordinates from 20 to 100. Each simulation lasted 30 seconds,
resulting in a total of 23,975 collected samples. Throughout the
simulation, we collected data on the UE’s velocity, position (x,
y, and z coordinates), angle, distance to the closest base station,
movement direction, and SINR (in dB). These variables were
considered as possible inputs for estimating the SINR at instant
t+ τ , where τ denotes the delay length (feedback delay) and
t the current time. This work defined τ as the time elapsed
between two consecutive collected samples, but it also allows
for consideration of other values.

To select the proper input variables for the GMDH model,
we computed the Pearson and Spearman correlation coeffi-
cients. These coefficients evaluate the influence of each input
variable at instant t on the SINR at instant t + τ (target
output) and are presented in Table I. The criterion for selection
was set as having both correlation coefficients higher than 0.5
(absolute value), resulting in choosing the UE position (x,y,z),
distance between UE and the BS, and SINR as input variables.

TABLE I: Pearson and Spearman correlation coefficients
Input Variable Pearson Spearman Selected Variable
SINR 0.97 0.96 ✓
Velocity 0.01 0.01 -
Angle (µ) - 0.16 - 0.16 -
Direction(v) 0.04 0.004 -
Position (x,y,z) - 0.61 - 0,585 ✓
Distance to BS - 0.90 - 0.92 ✓

The first two variables can be obtained through the Global
Positioning System (GPS), commonly embedded in current

mobile devices, or by using alternative methods such as
databases of geo-tagged Wi-Fi hotspots, sensor-based tech-
nologies (e.g., cameras), Wifi signal-based localization, In-
door Positioning Services (IPS), as well as their combination
[11].The current SINR may be measured by the UE based on
the reference signal received from the gNodeB. It is worth
noticing that the SINR is commom factor used to derive the
CQI to be reported, but other factors can also be considered
in this CQI mapping, such as those used in [12].

D. Analysis Metrics

To evaluate our proposal, we considered Spectral Efficiency
and Throughput, along with two accuracy metrics: Mean
Squared Error (MSE) and R-Square score.

a) Spectral Efficiency (SE):: Electromagnetic spectrum
is a natural and scarce resource that requires an efficient
use. Thus, spectral efficiency is a measure used in wireless
communications to quantify efficiency of the use of the radio
frequency spectrum or bandwidth. It is typically given in
bit/s/Hz and defined as the ratio between the data rate and
channel bandwidth. It can be obtained via Eq. 3, which
considers the linear SINR and the Block Error Rate (BLER).

SE = log2(1 +
SINR

−ln(5BLER)/1.5
) (3)

b) Throughput:: measured in bits per second (bps),
throughput denotes the amount of data transmitted in given
period of time. It can be computed by considering the slot
duration, based on the 5G numerology µ, and the number of
bits per slot. The latter is determined by taking into account
the downlink channel overhead (OHdw) and the transport
block size (TBS), as denoted in Eq. 4. The TBS is defined
according to the MCS selected by the BS for use in downlink
communication.

Th =
bitsslot

slotduration
=

(1−OHdw) ∗ TBS

(1/2µ)103
(4)

To compute the TBS [13], the first step involves determining
the number of resource elements (REs) allocated for the
physical downlink shared channel (PDSCH) within the slot
(NRE) using Eq. 5. It considers the number of REs allocated
for PDSCH within a physical resource block (PRB), denoted
as N ′

RE , and the number of PRBs allocated to the UE (nPRB).
The expression for N ′

RE is given by Eq. 6, where NSC

represents the number of sub-carriers per PRB (12 in 5G
networks), Nsymb is the number of symbols of the PDSHC
allocation within the slot (which may be 12 for extended cyclic
prefix or 14 for normal cyclic prefix), NDRMS denoted the
amount of REs per PRB for demodulation reference signals
(DMRS), and the OHPDSCH is the PDSHC overhead, which
can assume 0, 6, 12, or 18. In this work, we set it as 0.

NRE = min(156, N ′
RE) ∗ nPRB (5)

N ′
RE = NSC ∗Nsymb −NDRMS −OHPDSCH (6)

Subsequently, the unquantized intermediate variable (Ninfo)
is given by Eq. 7, where R represents the code rate, Qm

denotes the modulation order, and v signifies the number of
layers. Following this, Ninfo undergoes analysis to define how
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the quantized intermediate number of information bits (N ′
info)

should be computed and used to derive the TBS. If it is less
than or equal to 3840 then N ′

info is given by Eq. 8 and Table
5.1.3.2-1 (given in [13]) is referenced to find the closest TBS
that is not less than N ′

info. Otherwise, N ′
info is gotten via Eq.

9 and the TBS is given by Eq. 10, where C is given by Eq.11.

Ninfo = NRE ∗R ∗Qm ∗ v (7)

N ′
info = max

(
24, 2n

⌊
Ninfo

2max(3,⌊log2(Ninfo)⌋−6)

⌋)
(8)

N ′
info = max

(
3840, 2n ∗ round

(
Ninfo − 24

2(⌊log2(Ninfo−24)⌋−5)

))
(9)

TBS = 8 ∗ C
⌈
N ′

info + 24

8C

⌉
− 24 (10)

C =


⌈
N ′

info+24

3816

⌉
, R ≤ 1/4⌈

N ′
info+24

8424

⌉
, R > 1/4 and N ′

info > 8424

1, otherwise.

(11)

c) Model Accuracy:: we have adopted the Mean Squared
Error (MSE) and R-Squared (R2) metrics to assess the accu-
racy of the GMDH model and select the best configuration
for our approach. The MSE is defined in Eq. 12 and measures
the average squared difference between the predicted values
(ŷi) and the target ones (yi). The R2, given in Eq. 13, denotes
the model’s ability (in percentage) to explain or predict the
relationship between the dependent and independent variables.
A higher R2 value indicates a better fit of the model to the
data, demonstrating its ability to explain the dataset.

MSE =

∑n
i=1(yi − ŷi)

2

n
(12)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)
(13)

IV. RESULTS

To train and evaluate the GMDH model, the data was
organized into two sets, training and test, with each one
comprising 70% and 30% of the collected samples (23975),
respectively. Since the input variables present different scales,
we normalized them between 0 and 1 by using minmax
operation. In the next section (IV-A), we present the accuracy
results obtained by different GMDH configurations in the
training and test stages as well as the criteria adopted to select
the best setting to compose our GMDH approach. Section
IV-B compares the defined GMDH model to an optimal
SINR predictor in terms of throughput and spectral efficiency,
where it is considered that the optimal solution predicts all
values perfectly, i.e, its MSE is zero. The aim is to show the
performance proximity between our solution and the ideal one.

A. Model Configuration and Accuracy

To define the best GMDH configuration to be adopted
in our scheme, we conducted several tests, varying differ-
ent parameters, including the criteria for selecting the best
nodes/neurons (BN) and computing the errors of the layers
(EC), reference function (RF), and penalty parameter (PP).
For neuron selection, we considered the following options: (1)

validate, where neurons are compared based on a validation
error; (2) bias, where the neurons are compared considering
a bias error; (3) validate-bias, adopting a combined criterion
of (1) and (2); and (4) bias retraining, where neurons are first
compared regarding a bias error and then retrained on the total
data set. For the computation of EC, two approaches were
evaluated. In the fist, the error layer is defined as the topmost
best neuron error (top), while in the second, it is the average
of the selected best neurons errors (average). In terms of RF,
besides the quadratic function, defined in Eq. 2, the linear (Eq.
14) function and its variation (Eq. 15), and the cubic one, a
full third-degree polynomial (Eq. 16), were analyzed. For the
PP, six values were tested, raging from 0.001 to 2.0. For all
configurations, the maximum number of layers, the minimum
bandwidth, and the threshold for training stop (ϵ) were set
to 10, 5, and 0.001, respectively. The ϵ is compared to the
relative layer training error. Table II summarizes the GMDH
parameters and their values.

a0 + a1zs + a2zt (14)

a0 + a1zs + a2zt + a3zszt (15)

a0 + a1zs + a2zt + a3zszt + a4z
2
s + a5z

2
t + (16)

a6z
3
s + a7z

2
szt + a8zsz

2
t + a9z

3
t

(MSEtrain,MSEvalid) ≤ MSEref (17)

Minimize |MSEtrain −MSEvalid| (18)

TABLE II: Tested GMDH Parameters
Parameter Value
Best Nodes (BN) validate, bias, validate-bias,

bias retraining
Errors of the Layers (EC) top, average
Reference Function (FF) Eqs. 2, 14, 15, 16
Penalty Parameter (PP) 0.001, 0.01, 0.1, 0.5, 1.0, 2.0
Maximum Number of Layers 10
Minimum Bandwidth 5
Stop Criterion for Training (ϵ) 0.001

To select the configuration to compose our GMDH scheme,
we adopted the criteria defined in Eqs. 17 and 18, considering a
MSEref equals 0.001, and took into account the configuration
with the lowest average MSE and highest R2. Fig. 2 presents
the average MSEs achieved by all configurations in the training
and test stages as well as the absolute difference between them
in 30 rounds (repetitions). It is noted that the criterion denoted
in Eq. 17 was met by all configurations, with the configurations
between 96 and 143 presenting the lowest values and the
119 one the smallest absolute difference. Although these
configurations have achieved similar results, the 108, 109, 114,
115, and 116 ones presented lower average MSE and higher
R2 score (Fig. 3), being the 114 the best configuration in
terms of criterion defined in Eq. 18. Thus, the configuration
114 was selected to compose our scheme and its parameters
are highlighted in Table II by using a bold font.

Fig. 4 shows the SINR estimated by the GMDH scheme
(selected configuration) in comparison to the target value for
one execution. The GMDH often follows the target behavior,
denoting that it learned the structure of the dataset and is
able to deal with the CQI delay feedback problem. Since the
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GMDH presented a low MSE (see Fig. 2) and the estimated
SINR is quantized into a CQI value via a process based on
SINR intervals, the small difference between the target and
GMDH output may not lead a CQI error.
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Fig. 2: MSE for Different GMDH Configurations
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Fig. 4: SINR estimated by GMDH vs target value

B. Throughput and Spectral Efficiency

Fig. 5 presents the results in terms of average spectral
efficiency and throughput considering 30 executions and the
parameters summarized in Table III. In comparison to the
ideal predictor, it is noted that our proposed solution offers
similar spectral efficiency and throughput values, presenting
an absolute difference of only 0.001 in both metrics, which
reinforces the feasibility of our scheme to address the outdated
CQI feedback problem in 5G networks.

V. CONCLUSION

This work proposed a Polynomial Neural Network solution
for the outdated CQI feedback problem in 5G Networks. We
utilized the Pearson and Spearman coefficients to carefully
select the appropriate inputs for feeding into the GMDH,
thus avoiding unnecessary overhead. Various spaces of GMDH
configurations were considered, allowing the GMDH to auto-
matically optimize its structure and thus selecting the best one.
Besides the high level of accuracy, the results showed that
our solution exhibited performance similar to the ideal one,
with an absolute difference of only 0.001 in both throughput

and spectral efficiency metrics, demonstrating its feasibility
in addressing the outdated CQI feedback problem. Future
works include the design of a hybrid approach, considering
different machine learning techniques as reference functions,
and exploration of different values for prediction window size.

TABLE III: Parameters for TBS and Throughput Computation
Parameter Value
Downlink Overhead (OHdw) 0.18
Number of Allocated PRBs (nPRB) 1
Numerology (µ) 3
Number of Layers (v) 1
Number of Subcarriers (NSC ) 12
Number of Symbols per slot (Nsymb) 14
PDCH overhead (OHPDSCH ) 0
NDRMS 0
Target BLER 0.00005

Fig. 5: Spectral Efficiency ( bit/s/Hz) and Throughput (Mbps)
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