
A Coloured Petri Net Model for Hybrid NFV-MEC
Systems Supporting URLLC

Caio Souza, Marcos Falcão, Andson Balieiro
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Abstract—Integrating Multi-Access Edge Computing (MEC)
and Network Function Virtualization (NFV) favors URLLC, but
introduces challenges in resource allocation due to the reduced
dimension of NFV-MEC nodes, the overhead caused by virtu-
alization, the use of heterogeneous virtualization technologies,
and potential failures during service processing. These factors
require careful consideration in resource dimensioning/allocation
to ensure that URLLC requirements are met without incurring
excessive power consumption due to overprovisioning. This paper
proposes a Coloured Petri Net (CPN)-based model for dynamic
resource allocation in NFV-MEC systems supporting URLLC
services. The proposed model represents a hybrid NFV-MEC
system, accounting for virtualization overhead, failure costs, ser-
vice buffering, and dynamic resource scaling based on demand.
It also accommodates system features with diverse behaviors
and provides analysis of the system’s availability, latency, and
power consumption. Results showed that for high arrival rates,
improving the container service rate has a greater impact than
adding VMs. The benefits of a higher container setup rate on
response time become noticeable when VM capacity is exceeded.

Index Terms—Hybrid NFV-MEC, URLLC, Coloured Petri
Nets, Dynamic Resource Allocation

I. INTRODUCTION

Integrating Multi-Access Edge Computing (MEC) and Net-
work Function Virtualization (NFV) is essential for supporting
Ultra Reliable and Low Latency Communications (URLLC)
[1], as it enables hosting virtualized network functions (VNFs)
and applications closer to the end users, thereby reducing
response times and supporting dynamic resource allocation by
instantiating VNFs based on system demand [2].

In the past, NFV has traditionally been implemented over
VMs, but containers have gained attention due to their lower
computational resource consumption and reduced instantiation
overhead [3], which makes them well-suited for dynamic
resource allocation. However, by sharing a single kernel, con-
tainers may face additional security risks compared to VMs,
which offer better isolation [4]. Nonetheless, containers can
complement VMs in hybrid NFV-MEC systems, leveraging
the strong isolation provided by VMs and the flexibility of
containers. For instance, VMs, with their higher setup times
that could violate URLLC requirements, can remain continu-
ously active to handle regular demands while containers are
dynamically scaled to address variable demands.

Although the NFV-MEC integration favors URLLC, it also
presents challenges [5]. For instance, the reduced dimen-
sion of NFV-MEC nodes constrains their service capacity,

potentially resulting in the forwarding of URLLC service
requests to neighboring nodes or the central cloud [6], which
introduces uncertainty regarding latency. Moreover, the over-
head associated with virtualization, such as NFV setup time
and performance degradation, and potential failures during
service processing, requires careful consideration in resource
dimensioning/allocation to ensure that URLLC requirements
are met without incurring excessive power consumption due
to overprovisioning.

Resource allocation in NFV-MEC systems has garnered
attention in the literature. However, some studies overlook
key factors that impact URLLC services, such as the over-
head introduced by virtualization, by assuming instantaneous
VNF provisioning times [7], presupposing fault-free cloud
environments [8], or disregarding repair delays [7], [9]. In
addition, many works focus on a single virtualization tech-
nology, either VMs [9]–[11] or containers [12]–[15], thereby
missing the potential benefits of their integration in hybrid
NFV-MEC systems supporting URLLC. Furthermore, several
studies are based on formalisms tied to specific probability
distributions (e.g., exponential) to model URLLC services or
system behaviors [5], [13], [14], [16].

By addressing these gaps, this paper proposes a Coloured
Petri Net (CPN)-based model for dynamic resource allo-
cation in NFV-MEC systems supporting URLLC services.
The proposed model represents a hybrid NFV-MEC system,
accounting for virtualization overhead, failure costs, service
buffering, and dynamic resource scaling based on demand
while accommodating diverse behaviors for the system fea-
tures, and providing analysis of the system’s availability,
latency, and power consumption. Results showed that at high
arrival rates, improving the container service rate has a greater
impact than adding VMs. The benefits of a higher container
setup rate on response time become noticeable when VM
capacity is exceeded. Moreover, adding processing resources
increases energy consumption, with VMs contributing more
at low workloads and containers scaling energy use at higher
workloads. Our model may assist in the proper dimensioning
and configuration of NFV-MEC systems to support URLLC.

The remainder of this paper is organized as follows. Section
II reviews the related works. Section III describes the NFV-
MEC system under consideration and presents the proposed
CPN-based model. Section IV analyzes the result obtained
by extensive discrete-event simulations. Finally, Section V



concludes this paper and highlights potential future directions.

II. RELATED WORK

The integration of MEC and NFV has been essential for
reducing latency and improving flexibility in 5G networks,
enabling URLLC services. However, resource limitations at
the edge may lead to competition among users, causing service
quality degradation or even violating the critical requirements
of URLLC. In this context, resource allocation in NFV-MEC
systems has been widely addressed in the literature. For
instance, [17] proposes a quantum approximate optimization
algorithm (QAOA) for dynamic resource allocation. The au-
thors apply a generative adversarial network to predict future
demands in various regions and use QAOA to pre-allocate
edge server resources based on these predictions. Similarly,
[18] employs a long short-term memory (LSTM) neural net-
work to predict user demands within a given range. Based
on these predictions, the authors dynamically pre-allocate
resources from available MEC servers to meet the latency
requirements of mobile users by using dynamic programming.

An algorithm to minimize the system’s overall energy-
time cost by jointly optimizing task offloading and resource
allocation in MEC systems is proposed in [19]. The authors
formulate a mixed-integer non-linear programming (MINLP)
problem, considering interdependencies among tasks within
the context of digital twin-aided edge computing for URLLC.
Similarly, [7] proposes a subgraph isomorphism-based re-
source allocation solution for end-to-end slicing targeting
URLLC. In [9], the VNF placement problem for URLLC
is formulated as an optimization problem with two conflict-
ing objectives: minimizing latency and maximizing service
availability. The authors propose a solution based on Ge-
netic Algorithms. Meanwhile, [10] presents a model based
on continuous-time Markov chains and stochastic geometry
to jointly characterize the communication and computation
performance of a dependable MEC-enabled wireless system.
The model is used to evaluate the influence of various system
parameters on performance and determine the optimal number
of virtual resources to maximize task execution capacity. The
authors in [20] model and analyze the end-to-end service delay
of Service Function Chaining in SDN/NFV architectures by
using network calculus. The availability and sensitivity of a
containerized IP Multimedia Subsystem for 5G networks are
assessed in [21]. The authors use Reliability Block Diagrams
for model system interconnections and Stochastic Reward
Networks to analyze the system behavior under failure and
repair.

Although many studies present important results and pro-
vide valuable insights into resource allocation in MEC en-
vironments, most overlook key factors that impact URLLC
services. Some disregard the overhead introduced by virtual-
ization in NFV-MEC systems, assuming instantaneous VNF
provisioning times [7]. Others preuppose fault-free cloud
environments [8] [17] [18], or neglect repair delays [7] [9].
In addition, several works focus on a single virtualization
technology, either VMs [9] [10] [11] or containers [13] [12]

[14] [15], thereby missing the potential benefits of their
integration for URLLC support. Moreover, some studies over-
look the use of NFV integrated with MEC [17] [18] while
others do not specifically target URLLC support [10] [17]
[18]. Furthermore, some studies, despite incorporating many
of these features, rely on formalisms constrained to specific
probability distributions (e.g., exponential) to model URLLC
services or system behaviors [5] [16] [13] [14].

III. SYSTEM MODEL

We consider an NFV-MEC node that leverages VNFs to pro-
cess URLLC service requests originating from UEs and routed
through the RAN. The VNFs operate equally and indepen-
dently on single microkernel-based VMs [22] or containers,
both sharing a common physical machine (PM). While VMs
execute uninterrupted, containers are scaled upon demand by
an admission control unit, which only activates containerized
VNFs when all VM-hosted ones are busy. The containerized
VNF activation includes the kernel image initialization and the
specified function instantiation, which is interpreted as setup
time, during which power and resources are consumed, but no
service processing occurs. Multiple VMs operating in parallel
on the same physical node influence each other, leading to
a degraded computational power [23]. The node may admit
service requests until its maximum capacity is reached and
includes a limited buffer to hold requests awaiting service
processing.

Active containerized VNFs may experience failures during
service processing, necessitating either a service migration to
an available VM/container or a repair, which triggers a new
setup period. In both cases, service processing is restarted.
If no available container/VM exists, the URLLC service is
placed back in the buffer, having a higher service priority
than new URLLC services. Once an operational VNF com-
pletes processing and no additional requests remain, the VNF
instance can either be powered down together with the host
container or remain active if hosted by a VM. The shutdown
delay is considered negligible compared to the significantly
longer setup or repair durations [24]. As containers and
VMs exhibit different virtualization overheads, mainly when
multiple instances coexist on the same physical node, their task
processing rates differ even when executing the same VNF.

To analyze the hybrid NFV-MEC system supporting
URLLC, we designed a CPN-based model using CPN Tools
[25]. This model integrates key system dynamics, including
admission control, service queue (buffer), failure occurrences
during service processing, repair/setup time, and dynamic
resource allocation. Our model admits expressing the service
arrival, service processing, failure, and setup/repair events via
different probability distributions or functions, not limited to
the exponential ones used in Continuous Time Markov Chain
(CMTC) and Stochastic Petri Nets approaches, for example.

The CPNs provide a suitable structure for modeling and
simulating concurrent and distributed systems with asyn-
chronous and synchronous communication [26]. This structure
employs a visual representation comprising places (circles),



transitions (rectangles), and arcs (directed arrows) to model
concurrent systems. Places represent the system’s state and
may contain sets of tokens, with each token assigned a color
indicating its data type. All tokens within a place share the
same color, which can be simple (e.g., integers) or complex
(e.g., composed of other colors). Transitions represent events
that can alter the system’s state by manipulating tokens based
on defined firing rules. Arcs illustrate the relationships between
places and transitions, specifying how the state changes when
events occur. Arc inscriptions act as functions that define the
number and type of tokens transferred between states [26].
The distribution of tokens across places determines whether
the conditions for triggering transitions are satisfied.

Fig. 1 illustrates the designed CPN-based model, which
comprises 123 arcs, 35 places, 32 transitions, and 17 colors
(data types). It is divided into five parts: Service Arrival
(Section III-A), VM Service and Management (Section III-B),
Container Setup and Service Allocation (Section III-C), Con-
tainer Service and Failure (Section III-D), and Fast Allocation
and Shutdown of Containers (Section III-E). The following
description adopts a bold font for tokens, an italic font
for functions and variables, and a bold and italic font for
transitions and places.

A. Service Arrival

Fig. 1 (highlighted in red) illustrates the model segment
for URLLC service arrivals in the NFV-MEC node. Incoming
requests are modeled through the Customer Arrival transition.
When this transition fires, it removes a C token from the
Customers place and deposits it into the Entry Place place,
indicating the arrival of a new request. Another C token is
returned to the Customers after a time interval defined by
the function InterArrivalTime(), which characterizes the time
between successive URLLC arrivals. This interval can follow
probability distributions or functions representing the URLLC
service being analyzed. Additionally, a C token is added to
the Print place to count the number of requests that have
arrived. When the number of tokens in Print reaches the value
of StopCriterion, the simulation concludes by triggering the
End of Simulation transition.

The admission of new requests is determined by the number
of resources (R tokens) in the Unavailable Resources and
Available Resources places, which represent the resources
currently in use and those available for allocation, respectively.
When Unavailable Resources contains systemSize tokens,
indicating that the system is at full capacity, a C token in
Entry Place triggers the Rejection transition, which removes a
C token from Entry Place and adds it to Blocked Customers,
meaning that the service request was rejected. On the other
hand, tokens in Available Resources and Entry Place trigger
the Customer Admission transition, representing a service
admission. This transition consumes a token from these places
and inserts a token ((U,t)) into Admission Queue. This token
denotes a service request along with its admission time, as
obtained by the ModelTime() function. In addition, a R token is
placed in Unavailable Resources. The total number of tokens

in Unavailable Resources and Available Resources always
equals the total system capacity.

B. VM Service and Management

Fig. 1 highlights in blue the segment model for VM
Management and Service Provision. Once admitted into the
Admission Queue place, service requests can be handled
by containers or VMs. The VMs are provisioned during
system initialization and remain active throughout the sys-
tem’s operation. This provisioning is triggered by the Cre-
ate VM transition, which consumes tokens from countVM
and numVMsSim. These places are initialized with one and
numVMs tokens, respectively, where numVMs represents the
total number of VMs in the NFV-MEC system, and each token
assumes the value 1. When Create VM fires, it inserts a VM
token (B(C,i)) into the Idle VMs place, where i represents the
VM identifier. This place models the pool of VMs available
for service processing. Additionally, the Create VM transition
places a new token with a value of i+1 in countVM. Together,
countVM and Create VM function as an identifier generator
for the VMs.

Tokens in Idle VMs and Admission Queue trigger the
Service Beginning in VM transition. It removes tokens from
both places and inserts a E(C,t,i) token into the Working VMs
place, meaning that the service request that arrived at time t
is being processed by VM i. A resource token (R) is also
added to the Busy VMs place to keep track of the number of
VMs currently in use. Finally, a temporized token E(C,t,i) is
generated in Servicing by VM after an interval time defined
by the VMServiceTime() function. This function models the
service processing time within VMs and can be described
using probability distributions or functions.

When no VMs are available to process requests (i.e., no
tokens in Idle VMs), a container can be initialized to handle
the request queued in the Admission Queue. During the
container initialization process, the request waits in the Initial-
ization Buffer place. However, if a VM becomes available (a
token is added to Idle VMs after a service conclusion) while
the request is still in the initialization buffer, the request is
immediately assigned to the VM for processing. This scenario
represents the second scenario of service handled by VMs.
Processing begins by triggering the Service Beginning in VM
C2 transition. This transition consumes a token from Idle VMs
and generates tokens in the Working VMs, Busy VMs, and
Servicing by VM places, while consuming the request token
from the Initialization Buffer.

Once the temporized token E(C,t,i) is available in Servicing
by VM, the Service Termination in VM transition fires,
generating a D(c,t,i) token in the Ended Services place. This
token indicates the conclusion of service processing by VMs in
both scenarios. Subsequently, the D(C,t,i) token is consumed
by the ResponseTimeCalc transition to compute the service
response time. Moreover, the Service Termination in VM
transition also adds a token to Idle VMs, indicating that a VM
is now available to process requests, and a resource token to
Available Resources, enabling the admission of a new request



Fig. 1. The CPN-Based Model for Hybrid NFV-MEC Supporting URLLC.

into the system. Additionally, other tokens are consumed by
the Service Termination in VM transition, including tokens
from Working VMs, Busy VMs, and Unavailable Resources.
This last one prevents new requests from being rejected.

To account for CPU overhead caused by concurrently op-
erating VMs, we use Eq. 1 to define the effective VM service
rate (µ∗

VM ). This rate considers the nominal service rate (µVM

services/unit), the number of parallel VMs, and a computation
degradation factor (d). The resulting effective rate is then
passed as input to the VMServiceTime() function.

µVM∗ =
µVM

(d+ 1)(n−1)
(1)

C. Container Setup and Service Allocation

The green segment in Fig. 1 models Container Setup and
Service Allocation in the NFV-MEC node. The containers
are created in inactive state firing the Create CTN transition,
which consumes a token from numCTNsSim and another from
countCTN. These places are initialized with numCTNs tokens
with value 1 and one token valuing numCTNs+1, respectively,
representing the number of containers dimensioned to the
NFV-MEC system and the initial identifier for containers.
When fired, Create CTN inserts a B(C,i) token into OFF
Containers place, with i being the container identifier and a
new token with a value of i+1 into countCTN.

When no available VMs are present in Idle VMs to process
a service request, a container from the OFF Containers
place can be instantiated to handle the requests. This process
is modeled by triggering the Setup Beginning transition,
which requires no tokens in the ON Containers place. Upon

firing, this transition removes a request token from Admission
Queue and a token from OFF Containers, representing the
container being initialized to handle the request. Additionally,
it checks (consumes and places back) the numVMs R tokens
in the Busy VMs place, ensuring that all VMs are busy.
The Setup Beginning transition generates a B(C,i) token in
AuxT2, indicating that the container i is being initialized, and
a token U(C,t) in Initialization Buffer, which denotes that the
request was placed in the buffer. During the container setup,
the request may be processed by another resource (either an
instantiated VM or container) that becomes available in the
meantime. In this case, to optimize computational resources,
the container under initialization must be turned off, as there
are no other requests waiting for processing. To do so, our
model defined an identifier for each container initialization
by triggering the TagInsertion2 transition, which consumes a
token from AuxT2 and another token valuing j from CONT2.

The firing of TagInsertion2 generates a D(c,i,j) token in
SetupCTN2, indicating that the container i has initiated the
setup process j. After a delay defined by SetupTime(), a cor-
responding token is placed in SetupCTN. If, during setup, no
requests remain or a VM becomes available, the CTNRemove1
and CTNRemove2 transitions cancel the setup, removing the
D(c,i,j) token and returning B(C,i) to the OFF Containers
place. The completion of the container setup is modeled by
the initialization token D(c,i,j) and its corresponding pair i
and j in the SetupCTN and SetupCTN2 places, respectively.
These tokens trigger the SetupEnding transition, which adds
a container token B(C,i) to the ReadyContainer place. To
prevent the accumulation of tokens from canceled container



setups in SetupCTN, the CTNRemove1 and CTNRemove2
transitions generate a D(c,i,j) token in To be removed. This to-
ken, along with its corresponding D(c,i,j) token in SetupCTN,
is subsequently cleared by the clearTrash transition.

Once the token B(C,i) is placed in ReadyContainer and
a request token is present in Initialization Buffer, the CNT
Allocation transition fires, assigning the container to process
the request. In addition to consuming tokens from the previous
places, this transition verifies the presence of numVMs R
tokens in Busy VMs, ensuring that container allocation occurs
only when all VMs are occupied. Furthermore, it places a
token E(F,t,i) in Aux1, where t represents the request’s arrival
time in the system, and i identifies the container.

The initialized container can process another admitted re-
quest in Admission Queue if the request that triggered its
initialization has already been attended. This behavior is
modeled by the CNT AllocationC2 transition, which functions
similarly to CNT Allocation, but consumes the request token
from Admission Queue instead of Initialization Buffer. This
transition fires only when there are no tokens in ON Contain-
ers, indicating the absence of ready containers for processing.

D. Container Service and Failure

Fig. 1 (in purple) models the service processing in contain-
ers and eventual failure occurrences during processing. When a
token is placed in Aux1, the TagInsertion transition is enabled
and combines the token with a failure token valued j from
CONT, generating a token H(F,t,i,j) in Aux2 and a service
token H(C,t,i,j) in Service Allocation, where j identifies the
container i in failure events. Since a container may handle
different services throughout the NFV-MEC operation, this
failure marking allows for identifying the specific service
instance during which the failure occurred. The CONT is
initialized with an integer token equal to 1, which increments
by 1 upon firing of TagInsertion.

The Defining Time to Failure transition models potential
failures during service processing. It consumes a token from
Aux2 and generates a temporized token H(F,t,i,j) in Break-
down, with the failure time determined by the FailureTime()
function. This function may follow probability distributions
that characterize the interval between successive failures.
Meanwhile, the service processing is initiated by firing the
transition Service Beginning in CTN, which generates a
temporized token H(C,t,i,j) in Servicing by Container after a
time interval determined by the function CTNServiceTime(),
characterizing the container service time, and a token D(c,i,j)
in Working Containers.

If the service time token appears in Servicing by Con-
tainer before the failure token in Breakdown, the Service
Termination in CTN transition fires, signaling the conclusion
of the service. This transition removes the token H(C,t,i,j)
from Servicing by Container, the token D(c,i,j) from Work-
ing Containers, indicating that the container is no longer
occupied, and also a token R from Unavailable Resources,
enabling the admission of another service request into the
system. In addition, this transition adds a R token in Available

Resources, a D(c,i,j) token in ON Containers, representing
that the container i is ready to process another service, and
a request token D(c,t,i) to Ended Services for subsequent
computation of the total service response time through the
firing of ResponseTimeCalc.

On the other hand, if the failure token H(F,t,i,j) becomes
available in Breakdown while the service is being processed,
the Breakdown of Containers transition triggers, indicating a
failure occurrence. This transition consumes the H(F,t,i,j) and
D(c,i,j) tokens and returns the service request token U(C,t) to
the Admission Queue place, preserving the original request’s
arrival time t. Simultaneously, the failed container undergoes
reinitialization by generating a temporized token D(F,i,j) in
Setting up, with a time interval defined by the function
SetupTime(), simulating the container setup time. Once the
token appears in D(F,i,j), the Setup Termination transition
fires, placing a container token in Ready Container, denoting
that the container is ready to resume service processing. To
ensure the proper handling of failed services and avoid the
accumulation of unused tokens in Servicing by Container,
the Breakdown of Containers transition generates tokens
H(F,t,i,j) in Service Failure, which enable the Rejection due
to Failure transition to remove the correct service tokens
H(C,t,i,j) from Servicing by Container.

E. Fast Allocation and Shutdown of Containers

The final model segment (orange in Fig. 1) represents the
NFV-MEC node’s Fast Container Allocation and Shutdown
processes. When service processing is completed, the con-
tainer is made available in ON Containers to handle other
requests from Admission Queue and Initialization Buffer
through the Fast CTN Allocation and Fast CTN Allocation
C2 transitions, respectively. However, these transitions only
fire in the presence of (numVMs) R tokens in Busy VMs,
representing that all VMs are occupied. The failure times
of containers allocated by these transitions continue to be
counted, as determined by their prior initializations.

If there is at least one VM available for processing (i.e., the
Idle VMs place is not empty), the container in ON Containers
is deactivated via the Turning it OFF transition, which verifies
the existence of B(C,i) tokens in Idle VMs, consumes a
token D(c,i,j) from ON Containers, and generates a container
token B(C,i) in OFF Containers. This transition also places a
token in Aux3 to enable the clearTrash2 transition, thereby
preventing the accumulation of unused tokens (deactivated
containers) in Breakdown. Similarly, if Admission Queue and
Initialization Buffer are empty, the containers in ON Contain-
ers are turned off by the Turning it OFF C2 transition, which
does not require checking of tokens in Idle VMs. If a token
container becomes available in Ready Container and either a
token exists in Idle VMs or no requests are waiting service
processing, the Turning it OFF C3 and Turning it OFF C4
transitions deactivate the container, functioning similar to the
Turning it OFF C2 and Turning it OFF, respectively, but
not generating tokens in Aux3, as failure times have not yet
been assigned to these containers.



F. Performance Metrics

In NFV-MEC networks, service processing at the MEC
server is highly dependent on resource availability and re-
sponse time, while efficient power management is crucial for
optimizing network operational costs [27]. Thus, availability
analysis is essential in NFV-MEC systems, resource con-
straints can limit service capacity and introduce uncertainties
in latency. Here, availability (A) is defined as the ratio of
admitted services (triggering Customer Admission) to the total
number of service requests received (triggering Customer Ar-
rival), reflecting the system’s capability to accommodate new
URLLC service requests. Response time is critical for URLLC
services due to their stringent requirements. In our model,
it is calculated as the difference between the firing times of
Service Termination and Customer Admission, encompassing
all events from service admission to service conclusion (e.g.,
processing delay, queuing delay, VNF instantiation delay, and
VNF recovery delay).

Power consumption (P ) is a crucial component of the NFV-
MEC node’s operational costs. In the proposed model, it is
calculated by Eq. 2, which sums the power consumption (W)
of containers in idle, setup, and busy states, denoted as PCNT

idle ,
PCNT
setup , and PCNT

busy , respectively, and the power consumption
(W) of VMs in idle (PVM

idle ) and busy (PVM
busy) states. These

components are computed using Eqs. 3, 4, 5 from [28] for
containers, where x represents the number of containers in
the respective state. Similarly, 7 and 6 compute Pvidle and
Pbusy , respectively, where y denotes the number of VMs in
the corresponding state.

The number of containers in idle and busy states is rep-
resented by the number of tokens in Ready Container and
Working Containers, respectively. The sum of tokens present
in Setting Up 1 and Setting Up indicates the number of
containers in the setup state. Similarly, the number of tokens
in Idle VMs and Busy VMs corresponds to the number of
VMs in idle and busy states, respectively.

P = PCNT
idle + PcCNT

busy + PcCNT
setup + PVM

idle + PVM
busy (2)

PCNT
idle = 110 + 0.0501x (3)

PCNT
setup = 112 + 0.455x− 0.00224x2 (4)

PCNT
busy = 110 + 7.23x (5)

PVM
idle = 110 + 0.2505y (6)

PVM
busy = 110 + 7.858y (7)

IV. RESULT ANALYSIS

Results from our CPN-based model (markers) were vali-
dated against our previous CTMC-based model (lines) [16].
Thus, the functions InterArrivalTime(), SetupTime(), Failure-
Time, VMServiceTime(), and CTNServiceTime() were set as
exponential distributions. Due to page limitations, only ex-
ponential distributions are used in this paper; however, our
model is flexible and can accommodate other behaviors for
the features. We consider three scenarios, each evaluating the

influence of a pair of parameters on the system performance:
number of containers (c) and number of VMs (n) in Section
IV-A, which denote the size of the NFV-MEC system; VM and
container service rates, (µVM ) and (µCNT ), in Section IV-B,
which may represent enhancements in service request process
speed by VMs and containers, respectively; container setup
rate (α) and number of VMs in Section IV-C, where the former
denotes hardware and software improvements for reducing
the time to make network functions ready for processing
services. For all scenarios, we considered different URLLC
loads, varying the arrival rate (λ) from 5 to 30 requests/ms.
Unless stated otherwise, the baseline values for the failure rate
(γ) and α were set to 0.001 and 1 unit/ms, respectively, in
accordance with [24]. The arrival rate values in our scenarios
were based on 3GPP Release 16 (TR 38.824) [29] URLLC
use cases and adapted to reflect varying user loads at the
node level. Thus, the rates for exponential distributions were
set according to Table I. The following results represent the
average of each metric, considering 10 simulation instances,
with 2700000 steps and a confidence interval of 95%.

A. Varying the Amount of VMs and Containers

This section examines the effect of varying the number
of containers and virtual machines (VMs) on system per-
formance. Fig. 2a illustrates that increasing the processing
resources leads to enhanced system availability, as expected.
At lower request rates, all configurations exhibit overlapping
curves with availability near 100%. However, as the request
rate approaches the system’s capacity, significant differences
in availability emerge between configurations.

For instance, the configuration with 40 containers and 50
VMs (orange curve) demonstrates a 36% higher availability
compared to the configuration with 30 containers and 10 VMs
(dark blue curve) when the request rate reaches its peak at 80
requests/ms. Interestingly, the type of resource also influences
availability differently. Comparing the light green curve (40
containers and 30 VMs, totaling 70 resources) to the red curve
(30 containers and 50 VMs, totaling 80 resources), the system
with more containers achieves a 2% higher availability despite
having 10 fewer resources when the request rate reaches 70
requests/ms. This underscores the trade-offs between resource
types and system performance under different workloads.

In terms of energy consumption, Fig. 2b reveals that while
adding processing resources improves performance, it also
increases energy consumption. At low workloads, energy
consumption primarily correlates with the number of VMs,
with an observed increase of 27 W for every 20 additional
VMs. Conversely, adding containers under low-load conditions
has a negligible impact on energy consumption, as requests are
initially handled by pre-activated VMs. Containers are only
activated when the workload exceeds VM processing capacity,
and their near-zero energy consumption in idle states ensures
minimal impact on overall consumption during low demand.

Under high workloads, however, both resource types remain
active, driving higher energy consumption. Systems with more
VMs exhibit lower consumption variations, as containers are



TABLE I
SCENARIO SETS

Section Parameters n c q d γ α µV M µCTN

IV-A c, n 10, 30, 50 30, 40 10 10−2 10−3 1 1 1
IV-B µV M , µCTN 10 40 10 10−2 10−3 1 1, 2 0.5, 1, 2
IV-C α, n 10, 30, 50 40 10 10−2 10−3 10−1, 1 1 1

(a) Availability. (b) Energy consumption. (c) Response Time.

Fig. 2. Effects of varying the amount of VMs (n) and Containers (c).

less frequently activated, leaving VMs to handle the majority
of requests. In contrast, configurations with fewer VMs re-
quire earlier activation of containers, increasing overall energy
consumption. For example, configurations with 10 VMs (light
and dark blue curves) show a 17% higher energy consumption
compared to configurations with 50 VMs (red and orange
curves) when 10 additional containers are introduced at a
request rate of 80 requests/ms.

Regarding the response time, Fig. 2c shows that at low
request rates, service requests are predominantly handled
by VMs. Configurations with more VMs experience longer
response times due to the overhead of managing operating
systems within each VM. For example, increasing from 30
VMs (light and dark green curves) to 50 VMs (orange and red
curves) leads to a 22.5% increase in average response time
when the arrival rate is 10 requests/ms. As the request rate
rises, more containers are activated, leading to faster request
processing due to the reduced overhead associated with con-
tainers. This dynamic reduces the system’s average response
time. However, near maximum capacity (80 requests/ms),
response times rise slightly, especially in configurations with
fewer resources, where higher queue lengths contribute to the
observed delay.

B. Varying the VM and Container Service Rates

This scenario investigates the influence of varying service
rates for containers and virtual machines (VMs) on system
performance. As illustrated in Fig. 3a, the impact of increas-
ing the container service rate becomes apparent only when
the request arrival rate surpasses the processing capacity of
the 10 VMs deployed in the environment. Systems utilizing
containers with higher service rates demonstrate reduced sen-
sitivity to increased processing demands, resulting in improved
availability. For instance, when the request arrival rate reaches
50 requests/ms (approaching the system’s total processing

capacity), configurations with a VM service rate of 1 and
container service rates of 0.5 (blue) and 1 (green) exhibit a
33% difference in availability.

Conversely, enhancing the VM service rate leads to notable
improvements in availability as service demand intensifies.
Increasing the VM service rate from 1 to 2 yields an 18.5%
improvement in availability for configurations with a container
service rate of 0.5 (light and dark blue), particularly as the
arrival rate approaches 50 requests/ms. Interestingly, boosting
the VM service rate proves more effective than merely in-
creasing the number of VMs. For example, raising the VM
service rate from 1 to 2 in configurations with a container
service rate of 1 (light and dark green) achieves availability
gains comparable to increasing the number of VMs from 10
(light blue) to 30 (light green), as observed in IV-A when the
arrival rate reaches 80 requests/ms.

Fig. 3b shows that higher VM service rates (represented by
the orange, light green, and light blue curves) result in lower
energy consumption, particularly at lower request arrival rates
(e.g., 10 requests/ms). At these rates, VMs with higher service
rates spend less time in the high-energy processing state,
leading to energy savings of up to 55 W. As the request arrival
rate increases, this trend continues, especially in configurations
with lower container service rates. For example, at a request
rate of 20 requests/ms, systems with a container service rate of
0.5 (blue and light blue) and higher VM service rates exhibit
energy consumption differences of up to 107 W. However,
when the request arrival rate exceeds the MEC node’s service
capacity, the system’s resources remain in the processing state
continuously, causing energy consumption to converge toward
the maximum of 466 W.

Regarding the response time in Fig. 3c, higher VM service
rates consistently reduce response times across all configu-
rations. This effect is particularly pronounced at lower re-
quest arrival rates. For instance, in configurations with lower



(a) Availability. (b) Energy consumption. (c) Response Time.

Fig. 3. Effects of varying the VM (µV M ) and Container (µCTN ) Service Rates.

container service rates (light and dark blue), increasing the
VM service rate from 1 to 2 reduces response time by 53%
when the request arrival rate reaches 20 requests/ms. At higher
arrival rates, a higher container service rate becomes more
critical for minimizing response times, particularly when the
system’s VM processing capacity is exceeded. This is evident
in configurations with a VM service rate of 2 and container
service rates of 0.5 and 2 (light blue and red). This analysis
highlights the importance of balancing VM and container
service rates to optimize system performance, particularly in
environments with high request arrival rates.

C. Varying the Container Setup Rate and Number of VMs

This section evaluates the influence of different container
setup rates associated with different numbers of VMs on the
MEC node. Fig. 4a illustrates that a higher container setup
rate leads to higher system availability, as it makes containers
available for service more quickly, reducing the number of
users waiting in the queue. This can be observed in all
configurations of the number of VMs observed, where, for
example, at the point where the request arrival rate reaches
70/ms, all configurations with setup rates of 1 and 0.1 showed
availability differences of 10%. In addition, improvements
in the number of VMs mainly imply a delay in the drop
in availability in relation to the growth in the number of
requests/ms, in which for configurations with only 10 VMs
available, availability begins to decrease with 20 requests/ms,
while for scenarios with 50 VMs, availability remains close to
100% up to 40 requests/ms.

Regarding energy consumption, in Fig. 4b the experiment
shows that the better availability caused by the higher setup
rate for containers also brings with it an increase in energy
consumption. This can be seen when we analyze the arrival
rates at which the curves of the configurations with the highest
setup rate begin to differ from the curves with the lowest setup
rate for configurations with the same number of VMs; these
points coincide with the points at which availability begins to
differ for these same scenarios. On the other hand, the lower
energy consumption presented by the configurations with the
lowest setup rates does not necessarily represent a good sign,
since this reduction in consumption is due to the containers
spending less time in the processing phase and more time in

the setup phase, which has lower energy consumption, but does
not perform any service while energy is being consumed.

By examining the response time depicted in Fig. 4c, it is
clear that a higher container setup rate leads to a reduced
response time, as expected. This reduction in response time
can be observed mainly when the request arrival rate exceeds
the processing capacity of the VMs available in the system.
Therefore, for smaller numbers of VMs, this is evident closer
to the beginning of the curves due to the lower utilization
of VMs, which increases availability but suffers performance
degradation as their number increases in the system, as pre-
viously mentioned. By analyzing the graph, it is easy to infer
that the configurations with a configuration rate of 0.1, a
number of VMs equal to 10 and 30, and a configuration
rate equal to 1 with a number of VMs equal to 50 (dark
blue, dark green, and orange) are equivalent to each other for
arrival rates greater than 50. However, despite similar response
times (∼ 1.4 ms), these configurations differ significantly in
availability, as previously discussed.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This work presented a CPN-based model for dynamic
virtual resource allocation in MEC-NFV systems supporting
URLLC services. The model captures key aspects of a hybrid
NFV-MEC system, including virtualization overhead, failure
costs, service buffering, and dynamic resource scaling based
on demand. The results highlight that at high request arrival
rates, improving container service rates is more effective
than adding VMs, and higher setup rates significantly reduce
response time when VM capacity is exceeded. Additionally,
while increasing processing resources enhances performance,
it also leads to higher energy consumption. VMs contribute
more to energy usage at low workloads, whereas containers
offer more efficient scaling at higher workloads. Response
time is initially higher with more VMs due to OS overhead,
but improves under heavy loads as containers activate. In
summary, the proposed model provides valuable insights into
the operational dynamics of MEC-NFV nodes, helping net-
work operators optimize resource allocation. Using this model,
operators can ensure URLLC requirements are met without
excessive power consumption caused by overprovisioning.



(a) Availability. (b) Energy consumption. (c) Response Time.

Fig. 4. Effects of varying the the Container Setup Rate (α) and Number of VMs (n).
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