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Abstract—Monitoring air quality in smart campuses
is essential for safeguarding the health of the academic
community, as air pollution in university environments can lead
to respiratory and cardiac issues. While the Internet of Things
(IoT) offers a suitable solution for monitoring and notifying
about air quality in smart campuses, it is of paramount
importance that these notifications occur in real-time to ensure
information reaches users with minimal latency. This paper
presents an architecture for collecting, storing, and notifying
about atmospheric pollutants in a smart campus and analyzes
the use of Real-Time Operating Systems (RTOS) for managing
the system. The evaluation focuses on IoT technologies,
represented by the end node, gateway, and cloud server. The
experimental results show that using RTOS reduces the average
transmission interval by 37.5% and achieves higher transmission
and reception throughput compared to non-real-time operating
systems. For instance, in a monitored location, the transmission
and reception throughput reached approximately 178.23 and
164.18 with RTOS, compared to 110.97 and 99.41 without
RTOS, respectively.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9391

Index Terms—IoT, Smart Campus, Air Quality, RTOS.

I. INTRODUCTION

IR pollution is a major issue for society. Every day, a

large amount of atmospheric pollutants is released into
the air, severely affecting human health. The concentration of
atmospheric pollutants has been steadily increasing due to the
expansion of human activities [1]. In Brazil, issue is further
exacerbated by the high incidence of forest fires [2].

Technologies based on the Internet of Things (IoT) have
being employed to design tools for air quality monitoring
and notify users about pollution levels, and assist in taking
action against pollution sources [3]. IoT consists of sensors
and computing systems that make objects smarter and provide
services to society [4], such as air quality monitoring.

A Smart campus is an IoT application that integrates
these technologies into university campus life, eading to the
application of intelligent features across various academic
services [5]. Smart Campuses enable universities to combine
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advanced technologies with infrastructure to provide better
service, support decision-making, and promote sustainability.
[6].

In Smart Campus scenarios, air quality monitoring is es-
sential since air pollution within a university environment can
lead to health issues for the academic community, including
respiratory and cardiac problems [7]. These effects can be
particularly severe for elderly individuals or those predisposed
to respiratory diseases [8]. In addition, many university labo-
ratories conduct experiments with chemicals pose health risks.
Continuous exposure to toxic gases, such as Carbon Monox-
ide, (CO), can cause adverse health effects [9]. Therefore, IoT
technologies can be used to monitor and provide alerts about
poor air quality within a university campus.

When toxic gases are involved, promptly notifying univer-
sity campus users is crucial, as they cannot discern whether the
air quality is safe, is crucial. In this context, [10] presents an
air quality monitoring architecture that informs users about the
Air Quality Index (AQI). This architecture consists of low-cost
IoT devices, the LoRaWAN (Long Range Wide Area Network)
protocol, gateway infrastructure, the FIWARE middleware
platform, and an EndNode with ESP32-LoRa. However, the
EndNode used to capture and transfer data in real time had
limitations regarding air quality monitoring. It adopts the same
core of the ESP32-LoRa for managing the data capture and
transmission. This sequential processing causes the ESP32 to
pause the data transmission while capturing air quality data,
resulting in delays in user notifications and failing to meet
strict deadlines.

In this context, this paper presents the use of FreeR-
TOS in the air quality monitoring architecture developed in
[10]. FreeRTOS is a free real-time operating system (RTOS)
compatible with the ESP32 microcontroller, supporting LoRa
communication and integrated with the development environ-
ment. RTOSs are operating systems designed to ensure the
completion of specific tasks within defined time constraints
[11]. Threrefore, an RTOS relies not only on the logical
outcomes of computations but also on their timely execution
[12]. This capability enables sensor data to be captured and
transmitted within predefined intervals, improving response
times in IoT applications.

We applied FreeRTOS on the ESP32-LoRa and analyze
its impact on EndNode transmission time and data reception
by the cloud service, comparing it to the non-RTOS version.
We also evaluated data transmission and reception rates. The
main contribution of this work is the development of a hard
real-time system for air quality monitoring in smart campus
scenarios. Unlike air quality monitoring systems that rely
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TABLE 1
COMPARATIVE TABLE OF RELATED WORKS
Solution Purpose IoT Comunication = RTOS  Performance
[7] Air quality monitoring Not applicable X X
[13] Air quality monitoring ESP8266 Wifi v X
[14] Smart chicken poultry system Arduino Mega-Wifi v v
[15] Real-time fire alarm project Not applicable v v
[16] Health data monitoring system Gateway Bluetooth X X
[17] Noise and air pollution monitoring Arduino-Wifi X X
[19] Indoor air quality monitoring Gateway Zigbee X v
[18] Real-time monitoring of IoT devices Gateway LoRaWAN X v
Proposal Indoor and outdoor air quality monitoring = ESP32-LoRaWAN v v

on sequential processing in end nodes, RTOS programming
within a LoRaWAN communication architecture enables effi-
cient taks management for capturing and transmitting sensor
data, resulting in improved performance.

This work is organized as follows. Related works are
discussed in Section II. Section III presents the adopted
methodology. Section IV analyzes the obtained results. Fi-
nally, Section V concludes this paper and points out future
directions.

II. RELATED WORK

Several studies have involved IoT for air quality monitoring
and RTOS. For instance, [13] presents an IoT-based air quality
system that measures CO2 levels, air humidity, and the heat.
The authors employ FreeRTOS on an Arduino Nano to manage
related to sensor data transmission and visualization. Data
are trasmitted to a web server using the secure HTTP POST
protocol via the ESP8266 Wi-Fi module.

An IoT and RTOS-based monitoring system for poultry
farms is presented in [14]. The proposed system uses three
sensors: one to measure ammonia levels, another for carbon
dioxide, and a third for humidity and temperature. FreeRTOS
is implemented on the Arduino Mega, and sensor data are
transmitted to the internet via a Wi-Fi interface. In contrast,
[15] proposes a real-time alarm system for detecting forest
fires using FreeRTOS on an Arduino Nano. The authors eval-
uate the proposed RTOS in terms of latency, jitter, and worst-
case response time. However, their study does not incorporate
IoT concepts, such as communication between devices and the
cloud. On the other hand.

Some studies perform real-time monitoring using IoT with-
out employing any RTOS for task management. For instance,
[16] proposes a real-time and multi-scenario health data
monitoring system. The authors use the Message Queuing
Telemetry Transport (MQTT) protocol for communication
with a gateway via Bluetooth. In [7], a solution for real-time
air quality monitoring in urban environments is presented.
It does not adopt any communication protocol between the
network’s hardware, relying solely on a wireless connection
and the Intel Edison Board platform.

In [17], in turn, proposes a system that utilizes sensors to
detect noise levels and concentrations of harmful gases, such
as sulfur dioxide and carbon dioxide. The collected data is
transmitted to an Arduino microcontroller and subsequently

sent to a cloud environment, where it can be accessed remotely.
Alerts are issued to authorities when pollution levels exceed
predefined limits. The system is designed to be low-cost,
efficient, and user-friendly, enabling continuous monitoring
and prompt actions to mitigate pollution.

Since IoT applications generally exhibit different communi-
cation patterns, the authors in [18] evaluate LoRa communica-
tion as a real-time monitoring solution for IoT devices at the
Federal University of Campinas in Brazil. Their results demon-
strate that, within a smart campus environment, LoRa commu-
nication provides reliable real-time communication with IoT
devices.

As observed, several studies that adopt RTOS and IoT, but
with different communication technologies [13], [14], [15].
Others perform real-time monitoring but without employing
any task management mechanisms [16], [7], [17], [18]. Ad-
ditionally, some focus on smart campuses with LoRaWAN
communication, but without evaluating the programming of
IoT devices for real-time task execution [19]. In this respect,
this work fills these gaps by presenting an air quality monitor-
ing architecture for smart campuses designed to operate in real
time with FreeRTOS, supporting both indoors and outdoors en-
vironments. To the best of our knowledge, no previous works
in the literature combines and evaluates IoT devices with long-
range communication (ESP32 and LoRaWAN) and FreeRTOS
applied in air quality monitoring architecture tailored for smart
campus scenarios. Table I summarizes the main differences of
this proposal from related works.

III. METHODOLOGY

This work employed an exploratory research, as it evaluated
an RTOS in an already developed architecture. Additionally,
a quantitative research was conducted to collect sensor data
and perform a comparative performance analysis of the RTOS
implementation. Descriptive statistics were used to guide the
process of data collection, organization, analysis, and interpre-
tation.

Thus, this section describes the architecture of the proposed
air quality monitoring system, highlighting the comparison
between [oT devices with and without RTOS. Additionally,
the hardware and software components, the use of RTOS, and
the evaluation scenario of the proposal are presented.
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Fig. 1. Proposed air quality monitoring architecture with EndNodes, Gateway and Cloud Platform.

A. Proposed Architecture

Fig. 1 presents the air quality monitoring architecture,
comprising three parts: (1) EndNodes (ESP32 Lora with and
without RTOS), (2) Dragino gateway, and (3) Cloud platform.

The first part encompasses the ESP32 microcontroller with
LoRaWAN communication support. LoRa is a technology
designed for low power consumption, low data transfer rates,
and long-range communication, making it suitable for IoT
applications [18]. Our proposal evaluates the performance of
the ESP32 LoRa programmed with RTOS compared to the
ESP32 LoRa without RTOS, using the FreeRTOS library for
LoRaWAN communication on the ESP32. MQ131 and MQ135
sensors were attached to the EndNodes, with the collected
data transmitted (TX) to the Dragino gateway, which then
forwards it to the final destination (RX), the cloud platform
(IBM Cloud), for user notification. In this context, it is crucial
to evaluate the transmission and reception throughput of this
communication, considering a real-time air quality monitoring
system.

The second part comprises a Dragino DLOS8N gateway,
which receives the data transmitted by the EndNode. This
connection with the EndNode is facilitated by the ChirpStack
on the Dragino gateway, enabling the support for building a
LoRaWAN network server.

The third part consists of the cloud platform infrastructure,
comprising the proxy integration module and the IBM Cloud
database. The integration proxy enables that data coming from
the gateway to to be processed and stored in the IBM Cloud
service. The IBM Cloud hosts information about the endNode
locations, as well as the data sent by the sensors related to
pollutants and performance metrics. Finally, the user, through
a mobile application, can view the air quality index on the
university campus.

B. Circuit Simulation

Fig. 2 shows the electronic connection scheme of the
EndNode with the MQ131 and MQ135 sensors, micro SD
memory card module, and the LoRaWAN connection to the
Dragino DLOS8N gateway. The EndNode corresponds to the
ESP32 LoRa 868/915 MHz with an OLED display and a 6 dBi
antenna, featuring LoRa communication, an integrated OLED
display, a Dual-Core microcontroller with a frequency of up
to 240 MHz, and 32 MB of flash memory

MQ13 1Sensor

microSD1
MQ135 Sensor

LoRaWAN

fritzing

Fig. 2. EndNote electronic circuit with MQ131 and MQ135 sensors,
SD card and connection to the gateway.

The MQ131 sensor measures ozone (O3) gas concentration,
while the MQ135 sensor can detect concentrations of ammonia
(NH3), carbon dioxide (CO2), benzene (C6HG6), nitric oxide
(NO), smoke, and alcohol. These sensors were chosen for
being low-cost and compatible with the ESP32-LoRa. The
micro SD memory card is used to store sensor data and the
timestamps of TX transmissions to the cloud service, and the
date and time of the gas concentration measurements. A 5-
second interval was set for the EndNode to collect data from
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the MQ131 and MQ135 sensors. In this context, the literature
does not define strict time deadlines for such tasks. Therefore,
the chosen interval is considered a low delay for a real-
time IoT scenario involving the EndNode, Gateway, and cloud
service connection. Additionally, it represents a time interval
that the ESP32-LoRa antenna power can reliably sustain. In
the IBM Cloud service, the RX data, including date and time,
are stored.

The synchronization and time update of the EndNode were
carried out using the Network Time Protocol (NTP). NTP
connects the EndNode to an external server, synchronizing
its clock with the local time configuration. This setup allows
both the ESP32 LoRa with RTOS and the ESP32 LoRa without
RTOS to maintain synchronized connections with the Dragino
DLOSS8N, enabling performance evaluations at comparable
time instances.

The communication between the EndNode and the Dragino
DLOS8N gateway via LoRaWAN consists of two main stages:
(1) the first stage involves pairing the EndNode with the
gateway through pairing preparation, request preparation, the
pairing request, and the response to the request; (2) the second
stage occurs after successful pairing and consists of detecting
the sensors and enabling full data transmission from the
EndNode to the gateway.

C. RTOS Implementation

The development of the RTOS on the ESP32 LoRa was car-
ried out using the Arduino LMIC Library ("MCCI LoRaWAN
LMIC Library”). This library is designed to operate in the
Arduino environment, allowing the use of SX1272, SX1276
transceivers, and various RFM9x compatible transceiver mod-
ules for data transmission. Fig. 3 synthesizes the tasks created
for the scheduler to manage the core, with the tasks represent-
ing those executed in this work. The scheduler is responsible
for defining when and for how long the programs will have
access to the core.

Scheduler

I T

LoRaWAN Send

Task Task Sensors

Fig. 3. LoRaWAN Send Task and Task Sensors task scheduling
process with cores 0 and 1 of ESP32 LoRa with RTOS.

The Task Sensors is responsible for detecting data from
the MQ131 and MQ135 sensors. Once detected, the data is
stored in a queue for recording in the EndNode’s memory.
Concurrently, the LoRaWAN Send Task performs several
functions: initializing the SPI (Serial Peripheral Interface)
communication pins, writing the gateway keys to the device
memory, and attempting to initiate the communication session.
It then verifies the chip frequency, activates the sub-bands,
configures the spreading factor, and adjusts the antenna gain.
Once the communication configuration is complete, it sends
the transmission and schedules the next one. Additionally, the
Send Task retrieves the data from the queue, formats it for
storage, and transmits it.

FreeRTOS was employed using a preemptive algorithm
based on task priorities to determine the execution or-
der. Table II presents the task priorities adopted in this
study, task_sensors and task_send_LoRaWAN. The
task_sensors task is assigned a higher priority (72”)
because it detects sensor data and stores it in a queue for
transmission via LoRaWAN communication. in contrast, the
task_send_LoRaWAN task has a lower priority (’1”), as
it retrieves data from the queue only after the data has been
successfully stored.

TABLE 11
TASK PRIORITIES
Priority Task Remarks
2 task_sensors Data collection from sensors
1 task_send_LoRaWAN LoRaWAN Communication

The tasks were created using the xTaskCreate function,
which also initializes the task scheduler. Task priority schedul-
ing is handled automatically by the scheduler, determining
which core will execute each task based on their assigned
priorities. The two tasks are configured as follows: the first
task, with a priority of 1 (the lowest priority), is allocated a
stack size of 4,096 words, representing the maximum stack
capacity. The second task, with a priority of 2 (the highest
priority), is also assigned a stack size of 4,096 words.

xTaskCreate (task_send_LoRaWan,
”LoraWan_task”,
STACK_SIZE L.ORAWAN,
NULL,
PRIO_LORAWAN,
NULL);

xTaskCreate (task_sensors ,
”Sensores_task”,
STACK_SIZE_SENSORES,
NULL,

PRIO_SENSORES,
NULL);

D. Evaluation Scenario

The scenario adopted in this study is shown in Fig. 4,
which corresponds to Campus II of the Federal University
of Southern and Southeastern of Para which has an area of
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52,031.90 m2. Given that LoRaWAN technology provides wide
communication coverage, the EndNodes were positioned at
three different locations relative to the gateway. In block 1, the
EndNodes were placed 145 meters from the gateway. In block
6 and the warehouse, they were positioned 135 meters and 30
meters away from the gateway, respectively. These locations
correspond to the experiments for data collection.

Fig. 4. Evaluation scenario of the proposal with the locations of the
EndNodes and IBM Cloud.

Efforts were made to ensure that the devices were equidis-
tant from the gateway and synchronized using the NTP pro-
tocol. This approach aimed to facilitate a fair comparative
evaluation under identical conditions regarding distance and
data traffic. In the test scenario, there was no vegetation
obstructing the line of sight between the gateway and block
6, or between the gateway and the warehouse. Conversely, the
line of sight between the gateway and block 1 was partially
obstructed by an area of vegetation, which could potentially
interfere with the LoRa communication signal.

IV. RESULTS AND DISCUSSIONS

This section presents the evaluation results, focusing on the
data transmission (TX) by the EndNodes and data reception
(RX) on the cloud service. The analysis includes TX and RX
throughput, TX and RX time intervals, and the TX and RX
time gains. All tests were conducted with a 5-second interval
for data capture by the EndNodes. To perform a comparative
evaluation between the ESP32 LoRa and ESP32 LoRa with
RTOS approaches, three experiments were conducted based on
the scenario depicted in Fig. 4. The experiments are described
as follow:

1) Block 1:Starts on 12/24/2024 at 4:11:02 PM and ends

on 12/26/2024 at 10:46:33 AM.

2) Warehouse: Starts on 12/19/2024 at 10:14:04 AM and

ends on 12/21/2024 at 05:23:48 AM

3) Block 6: Starts on 12/23/2024 at 2:47:02 PM and ends

on 12/24/2024 at 3:24:14 PM.

Table III displays the number of samples obtained (with
and without RTOS) for TX and RX rates in the evaluation
scenario. Notably, the use of RTOS resulted in a higher TX
rate and, consequently, a higher RX rate. This reinforces that,
with RTOS, the EndNode is better equipped to meet data
transmission deadlines, thereby reducing delays in the TX
rate. Table IV presents the success and loss percentages for
TX and RX rates. The adoption of RTOS led to a higher
success rate and a lower loss rate in the TX and RX processes,
demonstrating that the scheduling of the task_sensors
and task_send_LoRaWan tasks enhances the efficiency
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Fig. 5. RX (upper part) and TX (lower part) throughput obtained in
the evaluation scenarios.

of communication process between the EndNode and the
gateway.

Fig. 5 illustrates the RX throughput (upper part) and
TX throughput (lower part) of the EndNodes, with a 95%
confidence interval represented by vertical error bars. These
throughputs represent the number of bits transmitted or re-
ceived over the total duration of the experiments. The results
demonstrate that employing FreeRTOS enables faster TX data
transmission across all three environments. Similarly, RX
throughput is also higher when using FreeRTOS. These find-
ings findings confirm that the integration of RTOS facilitates
a greater volume of data transmission and reception within a
given time interval.

Fig. 6 presents the results for the time intervals between
RX receptions (upper part) and TX transmissions (lower part)
across the three environments, with a 95% confidence level.
These intervals represent the time elapsed between two succes-
sive RX receptions or TX transmissions. The results demon-
strate that, in all three locations, the use of RTOS resulted
in shorter TX intervals. In Block 1, Warehouse, and Block
6, the TX intervals were approximately 5 seconds, aligning
with the time required for the EndNode to capture sensor data.
Conversely, without RTOS, longer TX intervals were observed
in all environments, with values close to 8 s. Similarly, for RX,
RTOS led to shorter intervals between receptions. In contrast,
the absence of RTOS led to significantly longer RX intervals
across all experiments.

Fig. 7 illustrates the time gain achieved for RX (top)
and TX intervals (bottom) when RTOS is applied, based on
measurements taken in the warehouse. The results indicate that
the use of RTOS significantly reduces the time intervals for
both TX and RX. Specifically, an average time gain of 3.78 s
was observed for RX, while the average gain for TX was 2.98
S.

Tables V and VI provide a comparative summary of the
arithmetic mean and error margins for RX and TX through-
puts, as well as for RX and TX time intervals across all
evaluated locations, both with and without the use of RTOS.
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TABLE III
SUMMARY OF THE NUMBER OF SAMPLES IN EXPERIMENTS

Number of Samples

RX TX
Location With RTOS  Without RTOS With RTOS  Without RTOS
Block 1 27,037 15,882 30,477 19,069
Warehouse 27,480 16,230 30,839 19,299
Block 6 14,583 8,700 16,935 10,612
Total 69,100 40,812 78,251 48,980
TABLE IV

MEASURING SUCCESS AND FAILURE IN EXPERIMENTS

Loss Rate (%)

Success Rate (%)

Location With RTOS  Without RTOS  With RTOS  Without RTOS
Block 1 11.287 16.712 88.712 83.287

Warehouse 10.892 15.902 89.107 84.097
Block 6 13.888 18.017 86.111 81.982
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obtained between without RTOS and with RTOS.

These results reinforce the superior performance of the pro-
posed approach when utilizing RTOS.

For RX and TX throughput, higher averages were achieved
with the use of RTOS. The highest RX average was observed
at the Warehouse, likely due to its proximity to the gateway.
Meanwhile, the RX throughput averages at Block 1 and
Block 6 were 164.18 £ 2.55 and 143.33 £ 3.01, respectively,
reflecting their comparable distances from the gateway. The
TX throughput averages using RTOS remained consistent
across all three locations, demonstrating uniformity in data
transmission performance.

Regarding the time interval between TX and RX, the use
of RTOS confirmed that the average TX time values were
close to 5 seconds in all three locations. Without RTOS, the
worst time was recorded in the Warehouse, where the average
transmission time was 8.05 &£ 0.005 seconds. The RX time
was also showed improvement with RTOS, where the averages
were consistent across locations. In contrast, without RTOS,
the worst RX time was recorded in Block 6, with an average
of 9.73 £ 0.068.

The results demonstrated that employing RTOS on the
EndNode-LoRa significantly improved performance in the air
quality monitoring evaluation scenario on the university cam-
pus compared to the EndNode-LoRa without RTOS. Without
FreeRTOS, the ESP32 LoRa processes data capture and trans-
mission tasks solely on core 0, leading to task interruptions as
one task is paused to accommodate another. In contrast, with
FreeRTOS, the capture and transmission tasks operate without
interruptions, as they are allocated to separate cores of the
ESP32 LoRa based on their assigned priorities.

V. CONCLUSION

This work presented the use and performance evaluation of
RTOS in an air quality monitoring architecture across three
different locations on a university campus. The ESP32 LoRa
was sequentially programmed to capture and transmit sensor
data, while the ESP32 LoRa with RTOS was programmed with
the same functions as the ESP32 LoRa, but using FreeRTOS
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TABLE V
SUMMARY OF RESULTS CORRESPONDING TO DATA THROUGHPUT

Metric corresponding to data throughput

Mean for RX Mean for TX
Location With RTOS Without RTOS With RTOS Without RTOS
Block 1 164.18 4+ 2.55 99.41 £+ 1.41 178.23 +2.53 110.97 &+ 1.57
Warehouse  164.91 4+ 0.63 99.61 £+ 0.40 176.85 +0.11 110.48 4+ 0.06
Block 6 143.33 4+ 3.01 98.13 +1.86 176.76 4 3.36 110.00 4+ 2.11
TABLE VI

SUMMARY OF RESULTS CORRESPONDING TO TIME INTERVAL

Metric corresponding to time interval

Mean for RX Mean for TX
Location With RTOS Without RTOS With RTOS Without RTOS
Block 1 6.13 £0.53 9.63 £+ 0.04 5.03 £ 0.002 8.00 £ 0.003
Warehouse 5.73+0.16 9.65 +0.11 5.03 £ 0.003 8.05 £ 0.005
Block 6 5.84 £+ 0.006 9.73 £ 0.068 5.03 £ 0.003 8.00 £ 0.004

The results showed that employing RTOS in an IoT appli-
cation with LoRaWAN communication presented advantages
compared to using a traditional EndNode. Creating two tasks
in the RTOS, one for capturing and another for sending,
allows the ESP32 LoRa to send a task while performing a
new capture stored in a queue. On the other hand, without
RTOS, when initiating a data sending instruction, the ESP32
LoRa interrupts all other functions while sending. Thus, after
completion, a new capture and send instruction is initiated,
resulting in longer TX and RX times. In this regard, with the
use of FreeRTOS, a higher data throughput of TX and RX was
obtained, the highest RX and TX throughput values occurred
in the Warehouse, with 164.91 4+ 0.63 and 176.85 &+ 0.11,
respectively. On the other hand, without RTOS, the RX and
TX values were 99.6140.40 and 110.48£0.006, respectively,
resulting in a data loss of 15.902%.

In terms of TX and RX time improvements, better com-
pliance with the transmission time criterion was observed.
The average TX rate in all experiments was approximately
5.03 s using RTOS. Without RTOS, the average TX rates
were close to 8s, highlighting an improvement of 2.98s with
RTOS. enhanced compliance with time deadlines is crucial for
air quality monitoring within a smart campus environment,
particularly when timely notifications to users are essential.
Additionally, it was observed that the presence of vegetation
did not affect the performance of the proposed system.

In general, the use of RTOS in the proposed air quality mon-
itoring architecture successfully met the 5-second timeframe
adopted in this study. This is important because enables timely
alerts during critical moments when air pollution levels may
pose a risk. Furthermore, with the use of RTOS, the highest
success rates were achieved in the TX and RX processes, with
the highest rate recorded in the Warehouse, reaching 89.107%.

This work presented the following scientific implications
regarding the use of RTOS in an air quality monitoring archi-
tecture utilizing LoORaWAN communication: improved TX and
RX data throughput, better assurance of meeting transmission
times between TX and, consequently, RX reception, and more
favorable success and data loss rates due to task management.

These findings highlight the importance of critical real-time
applications for air quality monitoring in smart campuses,
especially when aiming for a shorter detection and reaction
time from the sensors, as well as greater accuracy in the data
received.

Future directions include analyzing other communication
protocols between the EndNode and the gateway, such as
the ZigBee protocol, evaluation of scenarios with varying
distances and vegetation, which may impact the performance
of the RTOS in the proposed air quality monitoring. Moreover,
investigating the time until the air quality index notification is
another interesting point. A comparison of FreeRTOS with
other available RTOS options an evaluation of hardware re-
source usage with an RTOS are also important areas for future
exploration.

REFERENCES

[1] H. Mokrani et al., “Air quality monitoring using iot: A survey” in IEEE
International Conference on Smart Internet of Things (SmartloT). IEEE,
2019, pp. 127-134. doi: 10.1109/SmartloT.2019.00028.

[2] R. dos Anjos Gomes, R. B. de Lima, T. do Vale Brsil, ”” Impact of the
fires in the amazon with the incidence of cases of respiratory problems
in the population” in Revista Foco, vol. 17, n. 12, pp. 1-19, 2024. doi:
https://doi.org/10.54751/revistafoco.v17n12-004.

[3] S. Kumar and A. Jasuja, "Air quality monitoring system based on
IoT using Raspberry Pi” in International conference on computing,
communication and automation (ICCCA). IEEE, 2017. p. 1341-1346.
doi: 10.1109/CCAA.2017.8230005.

[4] M. H. A. Abdelsamea, M. Zorkany and N. Abdelkader, "Real Time
Operating Systems for the Internet of Things, Vision, Architecture and
Research Directions” in World Symposium on Computer Applications
& Research (WSCAR). IEEE, 2016, pp. 72-77. doi: 10.1109/WS-

CAR.2016.21.
[5] N. Min-Allah and S. Alrashed, ”Smart campus—A
sketch”,  Sustain. Cities Soc., vol. 59,p. 102231, 2020. doi:

https://doi.org/10.1016/j.scs.2020.102231.

[6] M. Liu and L. Li, "The construction of smart campus in universities and
the practical innovation of student work™ in Proceedings of the st Inter-
national Conference on Information Management and Management Sci-
ence, 2018, pp. 154-157. doi: https://doi.org/10.1145/3277139.3278307.

[71 T. Kumar and A. Doss, “AIRO: Development of an Intelli-
gent JoT-based Air Quality Monitoring Solution for Urban Ar-
eas”,Procedia Computer Science, vol. 218, pp. 262-273, 2023. doi:
https://doi.org/10.1016/j.procs.2023.01.008.



ALVES et al.: FREERTOS APPLICATION IN A REAL-TIME AIR QUALITY MONITORING ARCHITECTURE FOR SMART CAMPUS 273

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

M. Simoni, S. Baldacci, S. Maio, S. Cerrai, G. Sarno and G. Viegi,
”Adverse effects of outdoor pollution in the elderly”, Journal of tho-
racic disease, 2015, vol. 7, no. 1, pp.34. doi: 10.3978/j.issn.2072-
1439.2014.12.10.

F. Fatemi, A. Dehdashti and M. Jannati, “Implementation of Chemical
Health, Safety, and Environmental Risk Assessment in Laboratories:
A Case-Series Study”, Journal of Occupational Hygiene Engineering,
2018, vol. 5, no. 2 p. 20-27, 2018. doi:10.3389/fpubh.2022.898826.

N. Cunha et al.” Arquitetura de Monitoramento de Qualidade de Ar
baseada no LoraWAN e FIWARE em um Campus Universitdrio”, in
Anais do XV Workshop de Computacdo Aplicada a Gestdo do Meio
Ambiente e Recursos Naturais, Brasilia/DF, 2024, pp. 169-178, doi:
https://doi.org/10.5753/wcama.2024.3038.

B. S. N. Reddy et al. ”A Comprehensive Review on Functional Analysis
of Real-Time Operating Systems”, in 3rd International Conference
on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE,
2023. p. 1098-1102. doi: 10.1109/ICIMIA60377.2023.10426594.

P. Hambarde, R. Varma and S. Jha, “The survey of real time operating
system: RTOS” in International Conference on Electronic Systems,
Signal Processing and Computing Technologies. IEEE, 2014. pp. 34-
39. doi: 10.1109/ICESC.2014.15.

B. Septian, M. Misbahuddin and F. Arkan, “Freertos based air
quality monitoring system using secure internet of things”, Jurnal
Teknik Informatika (JUTIF), vol. 3, n. 1, p. 147-153, 2022. doi:
https://doi.org/10.20884/1.jutif.2022.3.1.172.

T. S. Gunawan, M. F. Sabar, H. Nasir, M. Kartiwi and S. M. A. Mo-
takabber, "Development of smart chicken poultry farm using RTOS on
Arduino” in [EEE International Conference on Smart Instrumentation,
Measurement and Application (ICSIMA). IEEE, 2019, pp. 1-5. doi:
10.1109/ICSIMA47653.2019.9057310.

L. D. O. Turci, “Real-Time Operating System FreeRTOS Application
for Fire Alarm Project in Reduced Scale,” International Journal of
Computing and Digital Systems, 2017, vol. 6, no. 4, pp. 198-204. doi:
http://dx.doi.org/10.12785/1JCDS/060405.

H. Wang, J. Huo, J. Hu and T. Wang, “Research on Real-time
Monitoring System of Multiscenario Health Data Based on Inter-
net of Things” in 3rd International Conference on Digital Soci-
ety and Intelligent Systems (DSInS). IEEE, 2023, pp. 332-336. doi:
10.1109/DSInS60115.2023.10455560.

Janeera, D. A., et al. "Smart embedded framework using arduino and
IoT for real-time noise and air pollution monitoring and alert system.”
2021 International conference on artificial intelligence and smart systems
(ICAIS). IEEE, 2021. doi: 10.1109/ICAIS50930.2021.9396041.

L. F. Ugarte, M. C. Garcia, E. O. Rocheti and E. L. Jr, "LoRa
communication as a solution for real-time monitoring of IoT devices
at UNICAMP” in International Conference on Smart Energy Sys-
tems and Technologies (SEST). IEEE, 2019, pp. 1-6. doi: 10.1109/S-
EST.2019.8849100.

Benammar, Mohieddine, et al. ”A modular IoT platform for real-
time indoor air quality monitoring.” Sensors 18.2 (2018): 581. doi:
https://doi.org/10.3390/s18020581.

Noedson Silva was born in Brazil. He is an under-
graduate student at the Federal University of South-
ern and Southeastern Pard. His interests include:
internet of things and embedded systems.

Elton Alves was born in Brazil. He holds a degree in
Computer Engineering from the Federal University
of Para and a PhD in Electrical Engineering (Energy
Systems) from the Federal University of Pard. He
is currently an adjunct professor at the Federal Uni-
versity of Southern and Southeastern Pard. His areas
of interest include: Artificial Intelligence, Machine
Learning, Embedded Systems and Atmospheric Dis-

l : ' charges.
' \ \ Ay

Warley Junior was born in Brazil. He received
his Ph.D. in Computer Science from the Federal
University of Pernambuco, Recife-Brazil, in 2018.
He is currently an adjunct professor at the Federal
University of Southern and Southeastern Para. His
current research interests are: Software Defined Net-
works, Mobile Edge Computing, Fog Computing,
Mobile Cloud Computing, and Machine Learning.

Alife Moraes was born in Brazil. He is an un-
dergraduate student at the Federal University of
Southern and Southeastern Pard. His interests in-
clude programming and software development, with
a focus on creating practical applications using tech-
nologies such as Python, JavaScript, and various
frameworks for web and graphical user interface
(GUI) development.

Nandson Silva was born in Brazil. He is an under-
graduate student at the Federal University of South-
ern and Southeastern Pard. His interests include:
machine learning and backend development.

Andson Balieiro was born in Brazil. He received
his Ph.D. in Computer Science in 2015 from the
Federal University of Pernambuco (UFPE), Brazil.
He is currently a professor at the Center for In-
formatics (CIn) of UFPE. He has worked on R&D
projects funded by companies (e.g., Morotola Mobil-
ity and Ericsson) and government institutions (e.g.,
National Council for Scientific and Technological
Development-CNPQ). He won the FET Best Paper
award at the 31st Wireless and Optical Communi-
cations Conference (WOCC). His research interests
include ultra-reliable and low-latency communications, 5G/6G networks and
their key enablers such as cognitive radio, network slicing, network function
virtualization, multiple-access edge computing and software-defined network-
ing, as well as machine learning applications.



