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Addressing the CQI Feedback Delay in 5G/6G Networks via Machine
Learning and Evolutionary Computing

Andson Balieiro*, Kelvin Dias, and Paulo Guarda.

Abstract: 5G Networks apply adaptive modulation and coding according to the channel condition reported by the

user in order to keep the mobile communication quality. However, the delay incurred by the feedback may make the

channel quality indicator (CQI) obsolete. This paper addresses this issue by proposing two approaches, one based

on machine learning and another on evolutionary computing, which consider the user context, signal-to-interference-

plus-noise ratio (SINR) besides the delay length to estimate the updated SINR to be mapped into a CQI value. Our

proposals are designed to run at the UE side, neither requiring any change in the signalling between the base station

(gNB) and UE nor overloading the gNB. They are evaluated in terms of mean squared error by adopting 5G network

simulation data and the results show their high accuracy and feasibility to be employed in 5G/6G systems.
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1 Introduction

The fifth and sixth generations of mobile networks
(5G/6G) are designed to support applications that
demand different levels of latency, connection
density, reliability, and throughput [1]. However,
the unpredictability and dynamism of the wireless
environment (e.g. user mobility and signal reflection)
make the process of holding the mobile communication
quality challenging. In this respect, 5G networks apply
Adaptive Modulation and Coding (AMC) to dynamically
select the downlink modulation order and coding rate,
targeting high throughput and spectral efficiency but
keeping the block error rate (BLER) under control
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[2]. The AMC is based on the Channel Quality
Indicator (CQI), a 4-bit value [3] reported by the user
equipment (UE) that aims at expressing the current
channel condition. By using this feedback, the 5G base
station (gNB) allocates the resources and defines the
modulation and coding schemes to be used by the UE.

Having a CQI value that faithfully reflects the
channel quality is paramount important for 5G
communications since that an inaccurate CQI may
result in imbalanced resource distribution and unsuitable
modulation and coding scheme (MCS), degrading
the UE communication [4]. An overestimated
(underestimated) CQI leads to selection of a higher
(lower) order MCS by the gNB, which may cause higher
BLERs and excessive retransmissions (reduction in data
rate and spectral efficiency)

Besides the way how the channel quality is estimated
(e.g. via measurement of the signal-to-interference-plus-
noise ratio of a reference signal sent by gNB [5]), the
delay incurred by the CQI feedback may also make
the CQI inaccurate since that variations in the channel
quality may take place between the transmission and
reception of the CQI, especially in scenarios with high
mobility users.
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This paper extends our previous one [6] by designing
two approaches to address the CQI feedback delay, one
based on machine learning and another on evolutionary
computing. Different from solutions presented in the
literature, which only adopt a single input (SINR, SNR
or CQI) to predict its future value, our proposals consider
the UE context (expressed in term of velocity, direction
and position) and delay length besides the SINR to
estimate the updated SINR to be mapped into a CQI
value. They acts as regressive models, functions that
map five input variables into an output (updated SINR),
whereas the previous schemes are basically time-series
forecasters that get data samples equally spaced in time.
In addition, our solutions are designed to run at the
UE side, neither requiring any change in the signalling
between gNB and UE nor overcharging the base station.
The proposed approaches are evaluated in terms of MSE,
by using 5G network simulation data, and the results
show their high accuracy and feasibility to be adopted in
5G/6G networks.

This paper is organized as follows. Section 2 presents
works that deal with the CQI feedback process. Section
3 describes the proposed solutions for the CQI feedback
delay problem, which are evaluated in Section 4. Section
5 concludes this paper and outlines future directions.

2 Related Work

The CQI is an important indicator used by the 5G base
station to define the MCS and the amount of radio
resources to be considered in the downlink. In this
aspect, it is imperative that its value expresses the current
channel quality, but there are three important issues that
emerge in the feedback process and make it challenging,
which are: (i) the CQI accuracy, i.e., how the channel
quality is gotten and translated into a channel quality
indicator; (ii) the obsolete CQI value, which may be
a consequence of changes in the wireless environment
during the reporting time (feedback delay); (iii) the CQI
feedback overhead, an excessive signalling in the uplink,
caused by too frequent reports (e.g in scenarios with
high user density).

Different studies have proposed solutions for these
issues, such as in [7], which addresses the obsolete
CQI problem by using linear extrapolation to predict the

signal-to-noise ratio (SNR) based on previous values.
This is a low complexity scheme that fails when
employed in scenario with moderate or high speed users.
By addressing the same issue, [8] uses a Long Short
Term Memory (LSTM) Neural Network to predict the
CQI and considers online retraining to keep the high
accuracy of the schemes even in dynamic scenarios.
Similar to [7], [8] is a single input type forecaster, but
presents two differences: it predicts the CQI and runs at
the base station.

The CQI accuracy issue is addressed in [5], [4],
and [9]. The first work proposes a scheme that
considers the SNR and the maximum multipath delay
spread of instantaneous channel state to precisely
compute the channel quality indicator under fading
channels. The second paper adopts three machine
learning (ML) techniques (stochastic gradient descent,
MLP, and support vector machine) to predict the SNR
in environments with different user speeds and channel
models besides considering the SNR and CQI as inputs.
The last one in turn designs a CQI mapping scheme
that balances the energy efficiency (EE) and spectral
efficiency (SE) while keeping the block error rate under
control. By employing this proposal, the operators may
set their priorities via weight adjustments for SE and EE.
In addition to the tackled problem, [9][4] differ from our
work as they are developed to run on the base station
and do not adopt the user equipment speed as an input
to define the SNR or CQI.

The CQI feedback overhead is addressed via spatial
correlation of wireless channels in [10] [11], where
the authors use Gaussian Process Regression (GPR) to
estimate the CQI for some users based on the selected
ones. To improve the scheme performance, [10] adjusts
the model by considering the user density and prediction
accuracy. Different from our approaches, [10] [11]
are limited to scenarios with static users and strongly
dependent on the user density, not working well in
low one cases. In [2], the subband level and aperiodic
feedback is used to reduce the CQI feedback overhead.
The authors propose a GPR-based scheme to estimate
the CQI and thus compensate for the feedback reduction,
evaluating it in scenario with moving users, but without
considering the user speed as an input to the scheme.
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Table 1 Approaches for CQI feedback related problems.

Paper Proposal CQI problem Technique Goal(s) Side Inputs Output
[2] A packet loss and CQI prediction

approach
Feedback
overhead

Gaussian Process
Regression

To minimize the packet loss
and limit the CQI signalling
overhead

BS CQI and packet
loss

CQI and
packet loss

[4] A ML-based approach to predict SNR Innaccuracy Machine Learning
(SVR, MLP, SGD)

To provide a more accurate
channel quality estimation

BS CQI and SNR SNR

[5] A multipath delay spread-aware CQI
scheme for LTE system

Innaccuracy Empirical SNR/Delay -
CQI mapping based on
simulation data

To achieve more precise
CQIs under fading channels

UE SNR and
Multipath Delay
Spread

CQI

[7] A linear extrapolation-based scheme
to predict SNR and map it into a CQI
value

Feedback
delay

Linear Extrapolation To improve the network
throughput

UE SNR SNR and
derived CQI

[8] An LSTM-based CQI prediction
method and an online training module
in ns-3

Feedback
delay

LSTM Artificial
Neural Network

To improve the CQI
prediction accuracy

BS CQI CQI

[9] A CQI mapping algorithm that
considers the Spectral Efficiency x
Energy Efficiency tradeoff

Estimation The VIKOR ranking
method and weighted
sum

To balance SS and SE in the
MCS selection

BS CQI and weights
for EE, SE and
coding rate

CQI

[10] A SNR prediction scheme based on the
SNR reported by spatially correlated
UEs.

Feedback
overhead

Gaussian Process
Regression

To reduce the CQI feedback
overhead and improve the
prediction quality

BS SNR and spatial
correlation ofusers

SNR and
CQI

[11] A SIR prediction scheme that uses SIR
from spatial correlated users

Feedback
overhead

Gaussian Process
Regression

To reduce the CQI signaling
overhead

BS SIR and spatial
correlation from
a set of users

SIR

[12] A CQI feedback scheme for UAV
multicast system

Feedback
overhead

Minimum function and
fixed channel for CQI
feeback per group

To reduce the signalling
overhead and increase the
spectral efficiency

BS CQI CQI

[13] A CQI report scheme for URLLC Estimation The worst-case
estimation

To accurately estimate and
report the the worst-case
SINR conditions

UE SIRN CQI

[24] An ANN-based selector and a Dense
ANN-based for users/subbands
selection and CQI estimation

Feedback
overhead

Artificial Neural
Networks

To reduce the CQI feedback
signalling overhead

BS CQI of selected
subbands/users

CQI

This
work

ML and EC-based approaches with
multiple inputs for CQI feedback delay

Feedback
delay

MLP and RBF
Artificial Neural
Networks and Genetic
Algorithms

To accurately estimate the
SINR considering the cqi
feedback delay

UE UE velocity,
movement
direction and
position, delay
length and SINR

SINR

The authors in [12] propose a strategy for multicast
unmanned aerial vehicle (UAV) systems in which the
base station determines the modulation and coding
schemes for UAVs in the same group based on their
CQI feedbacks. Although the proposal is focused on
UAVs, it does not consider their high mobility, which
may impact on their positions and, consequently, lead
to an obsolete CQI to be used in the MCS selection,
making the scheme unsuitable for UAV systems. In
[13], the feedback overhead is addressed by estimating
the channel quality indicator of some users via CQI
values reported by others. To do so, the authors use two
neural networks (NN) running on the base station, one
for selecting the users and subbands to be used in the
CQI estimation and another for estimating the CQI.

Table 1 points out the main characteristics of the
previous works and compare them to the proposed one,
clarifying their differences.

3 Proposed Approaches

The channel quality indicator is a key-element used
by the user to report the channel condition to the
base station in 5G networks. The medium access
layer scheduler adopts the CQI to allocate resources,
determine the modulation and coding schemes along
with the Transport Block Size to be employed in the
downlink and, consequently, defining the amount of
data that will be transmitted at each time slot [8]. In
this regard, having a CQI that faithfully denotes the
channel quality when the base station makes decisions
is fundamental. Notwithstanding, the the delay incurred
by the CQI transmission may become its value obsolete.

To tackle this issue, we develop two approaches, one
based on machine learning and another on evolutionary
computing. Both consider the user context expressed in
terms of position, velocity and movement direction, the
SINR measured at instant t and also the delay length (τ )
to estimate the SINR at the moment t + τ (updated),
which is then mapped into a CQI value. There are
different alternatives for the SINR-CQI mapping (e.g.
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via mapping table received from the base station or using
schemes such as [4][13][14]) and our approaches support
these different ways, not demanding any change in the
gNB or signalling protocol, besides being planned to run
on the user equipment. Fig. 1 illustrates the approaches,
which are described in Sections 3.1 and 3.2.

The current SINR is measured regarding the reference
signal sent by the base station. The UE context in
turn may be obtained via Global Positioning System
since it is commonly embedded in the current mobile
devices and, thus, it could be a natural solution. However,
there are other alternatives to get the UE context such
as databases of geo-tagged Wi-Fi hotspots, sensor-
based technologies (e.g. cameras), Wifi signal-based
localization, Indoor Positioning Services (IPS) as well
as their combinations [15]. These systems differ from
each other in terms of position accuracy, adopted
environment (outdoor and indoor), orientation mode
(UE-based or network/server–based), measurement time,
energy consumption, and privacy level, which need to be
considered in the selection of the most suitable one based
on constraints such as accuracy threshold, energy budget,
and desired privacy level. For instance, considering the
energy consumption and privacy, the GPS consumes
more energy than Wifi or cell network-based solutions
[16], but as it runs the localization directly on the UE
with no location-sensitive information received or sent
from/to the base station or external server, such as in IPS,
it may offer better level of privacy to the user.

Fig. 1 Proposed schemes

3.1 Machine Learning-based Approach

For SINR estimation (see Fig. 1), we analyze
two types of feedforward artificial neural networks
(ANNs): multilayer perceptron (MLP) and radial basis
function (RBF), which are widely used for regression
and classification problems and able to build non-linear
mappings. We conducted several tests with different
ANN configurations by varying the key-parameters
of each network type and evaluated them in order to
define the best one by considering the ANN complexity
in addition to the the criteria (1) and (2), which
intend to point out the ANN that is able to learn
the data characteristics used in the training stage and
generalize them when fed with new data. The MSEref

denotes the desired mean squared error (MSE), which
was considered as 0.01 in this paper; MSEtrain and
MSEvalid mean the MSE got by the ANN in the
training and validation phases, respectively.

(MSEtrain and MSEvalid) ≤ MSEref (1)

Minimize |MSEtrain −MSEvalid| (2)

3.1.1 MLP Topology

The Multi-layer Perceptrons (MLP) are neural
networks with one or more hidden layers that adopt
non-linear function neurons[17]. They have been widely
used in diverse problems in 5G networks such as channel
estimation in massive MIMO systems [18], throughput
prediction [19] as well as in CQI-related issues [6] [4].

In order to define the most suitable MLP topology
for dealing with the CQI feedback delay, we analyzed
different MLP ANNs, by testing parameters such as the
number of hidden layers (NHL), neurons in the hidden
layer (NHLN) and their activation functions (AFHL) as
well as the learning rate (LR). The sigmoid (Eq. 3) and
hyperbolic tangent (Eq. 4) functions were the options
for NHLN. In all cases, the input layer was set with five
neurons, which are associated to the input variables, and
the output layer was defined with one linear activation
function (OLAF)-based neuron, which denotes the SINR
at the moment t+ τ . Moreover, the MLP ANNs were
trained by using the backpropagation learning algorithm
[17]. Table 2 presents the parameters and tested values.
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Logisg(x) =
1

1 + e−x
(3)

Tansig(x) =
2

1 + e−2x
− 1 (4)

The number of neurons in the hidden layer impacts
on the neural network performance. By adopting so few
hidden neurons would result in a neural network without
the capacity to learn the data structure. In contrast,
too many hidden neurons would severely increase the
neural network complexity and its learning time, without
improving the performance significantly. [17]. Similarly,
the ANN’s efficiency and complexity is also impacted
by the number of hidden layers, where conditions of
overfitting or underfitting may emerge as a consequence
of adopting too many or few hidden layers in the ANN,
not following the problem complexity, and, thus, causing
generalization loss over new data or inefficient results
[20]. On these points, we tested six and three values for
NHLN and NHL, respectively, which are listed in Table
2.

Table 2 Tested MLP ANN hyper-parameters and values

Hyper-parameters Values
Number of hidden layers (NHL) 1; 2; 3

Number of hidden layer neurons (NHLN) 5;10;15;20;25;30

Activation function of hidden layer neuron (AFHL) Tansig; Logsig

Learning rate (LR) 0.01; 0.045; 0.1

Fig. 2 presents the average results for all 144 MLP
configurations, computed by considering 30 executions.
Almost all configurations met the criterion (1). The
configuration #48, which comprises NHL=1, NHLN =
35 neurons, sigmoid AFHL, and LR = 0.2, obtained
the lowest MSEtrain (0.003217), but its MSEvalid =

0.005 made its error difference (0.001782) bigger than
the configuration #38, which got 0.0004008, 0.004127
and 0.004528 for error difference, MSEtrain and
MSEvalid, respectively.

The configuration #91 got the best performance
with regard to criterion (2), error difference equals
0.0003183, but being more complex (double hidden
layer with 30 neurons) and achieving a MSEtrain slight
higher than the configuration #38. With this in mind, we
adopted the configuration #38 in our MLP-based scheme,

which is summarized in Table 3. The data used in this
evaluation is described in Section 4.

Table 3 Selected MLP configuration

Parameter Value
Number of input layer neurons(NILN) 5

Number of hidden layers (NHL) 1

Number of hidden layer neurons (NHLN) 25

Activation function of hidden layer neurons Sigmoid (Eq. 3)

Number of output layer neurons (NOLN) 1

Activation function of output layer neuron Linear

Learning rate (LR) 0.1
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Fig. 2 Results for different MLP Configurations.

3.1.2 RBF Topology

The RBF ANNs are compose of input, hidden, and
output layers. The first connects the neural networks
to the environment. Each neuron in the hidden layer
represents a center (cluster) for the input space and
adopts a radial basis activation function, such as the
Gaussian one, in which its output is given by the
euclidean distance between the center and the input data.
Each activation function requires two parameters: center
and width. The outputs of the hidden layer are combined
linearly by the second layer neurons [21].

Similarly to the MLPs, we also analyzed different
RBF configurations, varying two important parameters,
the spread factor (SF) and the maximum number of
neurons in the hidden layer in order to define the proper
configuration for the CQI feedback delay problem.
The spread factor controls the width of the activation
function, i.e., the response area in the input space
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associated to each hidden layer neuron. Table 4
summarizes the values tested.

Table 4 RBF hyper-parameters and values

Hyper-parameters Values
Spread Factor (SF) 0.1;0.5;0.7;0.8;0.9;1;1.5;2;5;10

Maximum number of hidden neurons (MN) 200; 500; 700; 800; 1000

Fig. 3 presents the average MSE obtained by the
RBF configurations in the training stage, considering
30 executions. All configurations achieved MSEtrain

lower than the reference one (0.1), being the lowest
value got by the configuration 4. However, only the
configurations 1 and 5 were able to meet the criterion
(1), i.e., getting both MSEtrain and MSEvalid lower
than 0.1, being the criterion (1) better satisfied by the
configuration 1, which achieved a absolute difference
between the errors equals 0.00625 instead of 0.01851,
got by the RBF 4. Besides that, the fist configuration
also presented less complexity, with SF = 0.1 and
MN = 200.
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Fig. 3 MSE for different RBF Configurations

3.2 Evolutionary Computing -Based Approach

Besides the machine learning-based approach, we also
propose a Genetic Algorithm (GA)-based solution for the
CQI feedback delay problem. It comprises a set of base
functions (e.g. linear and exponential) to map the input
values (e.g. UE context, measured SINR, and delay) into
an output one, the updated SINR, and employs the GA to
define the most suitable coefficient values for the SINR
estimation model, as shown in Fig.1.

This GA-based proposal admits different types of
functions (e.g. linear, non-linear and their combinations),
without the cost/need of linearizing the models, which
differs from works that are based on the Ordinary Least
Squares method. This flexibility allows that each input
variable (or a subset of them) may be handled by the
function that best describes its relationship with the
output (updated SINR). In this paper, we instantiate
our proposal by adopting a linear model to compute
the updated SINR (SNIR∗), which is given in Eq. 5,
where vi and ai represents the input variable i and its
coefficient, respectively.

(a0+a1v1+a2v2+a3v3+...+anvn) = SINR∗ (5)

3.2.1 Chromosome Structure and Fitness Function

GA is a search algorithm based on the natural selection
principles that employs genetic operators (e.g. selection,
crossover, and mutation) to evolve candidate solutions,
represented by the so-called chromosomes, toward the
optimal one. In this process, GA eventually finds good
solutions by combining different chromosomes [22].

In our scheme, the individual or chromosome is
represented by a sequence of coefficient values, where
each position (gene) refers to a model coefficient to be
defined. Fig. 4 illustrates the chromosome structure for
a model that presents k coefficients.

To evaluate the individuals (solutions), we defined
the fitness function given in Eq. 6, in which MSE is
the mean squared error between the real SINR and that
one computed by the model considering the coefficients
given by the GA individual (SINR∗) and S is a scale
factor. In this work, we adopted S = 1000.

Fig. 4 Chromosome structure.

fitness(.) =
S

1 +MSE
(6)

3.2.2 Genetic Operators and Parameters

We adopted the roulette wheel as the selection operator
for choosing individuals for the crossover process based



7

on their fitness values, i.e., the higher fitness value, the
higher probability of being selected. An arithmetic
operator was employed for the crossover operation,
which combines linearly the genetic material from parent
chromosomes to create new ones (offsprings) and is
expressed in Eq. 7, where Pi and Pj are two parent
chromosomes and α is a number uniformly distributed
between 0 and 1. In order to avoid the premature
convergence to local optima, we used uniform mutation,
in which each gene (coefficient ai) may have its value
modified according to the Eq. 8, where a∗

i is the gene
value before the mutation process and β is a value
uniformly distributed in a given interval.

Fi = αPi + (1− α)Pj (7)

ai = a∗
i + β (8)

Since that the frequency of crossover and mutation
operations has great impact on the GA performance,
multiple tests have been conducted to define their
occurrence probabilities (pc and pm, respectively) in
our GA-based scheme. In this way, 64 test cases
obtained by the combination of values for the crossover
and mutation probabilities (see Table 5) were analyzed
and we selected the values that provided the highest
average fitness for the last generation’s population after
5 simulation instances to set our GA. Fig.5 presents
the results, in which the test case 37 displayed the
best performance for the GA, having crossover and
mutation probabilities equal to 0.5 and 0.3, respectively.
In addition to these parameters, the population size and
number of generations were defined as being equal to
100 and 200, respectively.
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Fig. 5 Test case results for GA with Linear Model.

Table 5 Tested Crossover and Mutation Probabilities

Pc 0.1/0.2/0.3/0.4/0.5/0.6/0.7/0.8

Pm 0.01/0.03/0.05/0.1/0.3/0.5/0.6/0.7

3.2.3 GA Flow Execution

The execution flow of our GA-based scheme is shown
in Fig. 6. Given a SINR model with coefficients to be
determined, the initial population is randomly generated
so as to provide candidate solutions (coefficient values).
After that, the individuals are evaluated via fitness
function (see Eq. 6) that is based on the MSE.
Thereupon, the individuals are submitted for selection,
together with the crossover and mutation operators,
and moreover, an elitist strategy is employed to ensure
the best fitness individuals will not be lost during
the selection process. Finally, a new generation of
candidates will be created and the stop criterion, which
is determined by the number of generations (G), is
evaluated. If it is not satisfied, the process repeats
from the fitness evaluation stage. Otherwise, the best
individual is chosen as the final solution. This represents
the coefficients to be adopted in the SINR model.

Fig. 6 GA Execution Flow.

4 Results

This section presents the results got by our approaches.
First, they are analyzed in terms of MSE obtained in the
training and validation stages. After that, a comparison
between the SINR real (target) to that one defined by
each proposed approach is conducted. The evaluation
used data generated by the 5G/mmwave ns-3 simulation
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framework [23], considering a 5G network where the
UE speed, movement direction and position were varied
during the simulations in order to produce different
CQI and SINR values. 2633 samples were collected,
being 70% and 30% used for training and validation,
respectively.

Fig. 7 compares the approaches in terms of MSE
achieved in the validation and training stages. We noted
that the GA-based scheme presents the best performance
in the both phases, achieving MSE values equal to
0.003915 and 0.004109, respectively. Besides that,
GA also achieved a similar performance in both stages,
which denotes it was able to properly define the linear
model coefficients by using the training data, but not
being addicted to them.

The MLP-based scheme also got a great performance,
with MSEtrain and MSEvalid assuming 0.004127 and
0.004528, respectively, denoting that the MLP-based
scheme not only learned the data characteristics in the
training phase, but also provided a great generalization
capacity when faced the validation data. This close
performance in both stages achieved by these two
approaches was not followed by the RBF-based one
in the same order (10−4). Although it had gotten
the lowest MSEtrain, i.e., 0.002627, its MSEvalid

assumed a value equals 0.008878, denoting a difference
between them in the scale of 10−3 and showing a slightly
performance reduction in its generalization capacity.

Fig. 7 MSE values achieved by the approaches.

Figs. 8-10 compares the real SINR value (desired) to
that one estimated by the schemes. In general, for all
schemes, the curves presented similar behaviors with
some points of mismatches between real and estimated

values, but without causing high MSEs (as shown in
Fig. 7).The results show that our proposed approaches
are feasible to overcome the CQI feedback delay, either
the machine learning-based schemes or the evolutionary
computing one.

Since our proposal is designed to be hosted at the
UE, which has limited energy and processing capacities,
it is worth mentioning that the main processing load
(the neural network training or execution of genetic
algorithms to determine the model coefficients) may
be handled out of the UE, in a cloud or MEC (Multi-
Access Edge Computing) server, for example. Once the
model has already been defined (trained neural network
or GA-based one), it may be embedded into device via
sums and products. In this way, the processing load to
compute the updated SINR is greatly reduced, being
now predominant that one related to the UE context
acquisition, in which different solutions may be adopted,
as discussed in Section 3.

In addition, although the mapping of updated SINR
into CQI value is not the focus of this paper, we point
that different aspects may be considered in this process,
such as spectral efficiency (SE) and BLER [14], SE and
energy efficiency tradeoff [9] or application requirements
[13]. Furthermore, when the SINR-CQI translation is
based on intervals, the distance between the real and the
value computed via proposed approaches may not cause
a CQI error.
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Fig. 8 Comparison between SINR via MLP-based Scheme
and real value.

5 Conclusion

This paper proposed two approaches to deal with the



9

100 200 300 400 500 600 700
Validation Data

0

0.5

1

1.5

N
o

rm
al

iz
ed

 S
IN

R

RBF-base Scheme
Real (Target)
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Fig. 10 Comparison between SINR via GA-based Scheme
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CQI feedback delay, one based on machine learning
and another on evolutionary computing. We took into
account the user context, measured SINR, and delay
length to faithfully estimate the SINR and conducted
extensive tests to define the best configuration for
each proposed scheme. All approaches presented
high accuracy values, which indicate they are able
to estimate the channel quality and thus assisting the
correct MCS selects by the base station. Although not
discussed, our approaches support online re-training
[8] in response to the wireless environment changes.
Future works include embedding the proposed schemes
in a simulator or testbed and combine them with
different CQI mapping mechanisms in 5G networks
with heterogeneous services. In addition, comparing
our approaches to those ones presented in the literature
regarding aspects such as complexity and performance
(e.g. CQI accuracy, energy consumption, spectral

efficiency, and BER) under different mobility scenarios
is a work to be conducted.
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