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This letter proposes an adaptive sensing period optimization scheme for 

Cognitive Radio Networks based on a multi-objective genetic algorithm 

(GA) formulation. Our proposal aims at maximizing the spectrum 

opportunities as well as minimizing the incurred sensing overhead. The 

simulation results show that the proposed scheme outperforms the non-

optimized proposals by up to 90%. It can also obtain similar or superior 

performance to compared schemes described in the literature, while 

keeping the sensing overhead within a target value.  

 

Introduction: Spectrum sensing is a fundamental capability for 

cognitive radio networks (CRNs) to identify spectrum opportunities [1], 

i.e., available frequency bands (or channels) for operation by secondary 

users (SU) while avoiding interference to primary users (PU), who  

share their spectrum. The discovery of spectrum opportunities comes at 

the expense of sensing overhead. The sensing overhead corresponds to 

the time during which the SU must stop data transmissions in order to 

measure channel’s availability. High sensing overhead may compromise 

the spectral efficiency as the radio is used most of the time for detecting 

PUs, instead of transmitting data.  However, using less frequent sensing 

may result in interference to PU, due to the delay in the immediate 

detection of the PU reappearance. 

Thus, it is of paramount importance to optimize the sensing period, 

which determines the frequency that the sensing happens, for each 

channel, in order to maximize the number of spectrum opportunities 

with a minimum incurred sensing overhead. In this letter, we propose an 

adaptive sensing period scheme based on a genetic algorithm (GA) [2] 

formulation. The proposed scheme ensures that the sensing overhead is 

always below a user defined upper bound. 

Previous work has applied GA-based solutions to CRNs [3][4], but 

none has used  GAs to optimize the sensing periods. Despite the well-

known GA large convergence time, solutions to reduce this time have 

been proposed [5]. In our work, we assume that GA could be adopted at 

the first stage of the cognitive cycle during the initialization phase, 

before the radio becomes fully functional. In addition, the GA could 

also be used to update the sensing periods during normal operation, as a 

background task, according to dynamic nature of the spectrum.   

 

Channel Model: We assume a SU senses a channel during a sensing 

time in order to determine its availability for use. The sensing period of 

the channel i will be represented by x i . Any idle channel discovered 

by the periodic sensing becomes a new spectrum opportunity to be 

utilized by the SU. As in [1][6], we adopt the ON-OFF model 

(illustrated in Fig. 1) to represent the PU behavior in the context of 

MAC layer sensing. Thus, the SU can transmit opportunistically while 

the channel is in the OFF state, i.e., no PU is currently transmitting. The 

duration of the ON and OFF periods for each channel i  is given by 

exponential distributions with means 1/ TON

i  and1/ TOFF

i , respectively.  

Let ( )iS t be the state of channel i , ON (1) or OFF (0), at time t ; the 

sensing process consists of channel sampling at regular time intervals. 

In order to determine the optimal set of sensing periods for the 

channels, our proposal uses instantaneous sensing samples as input to 

the GA.   

 

 

 

Fig. 1 ON-OFF Model with Sensing Time and Sensing Period concepts  

 

GA and Problem Formulation:  GA is a search algorithm based on the 

principles of Darwinian survival of the fittest in the natural evolution. It 

relies upon evolving a set of solutions, represented by the so-called 

chromosomes, over a period of time. Eventually, through the GA 

operators (selection, crossover, and mutation) a good solution will be 

found by combining different possible solutions [5]. In the proposed 

GA formulation, each individual or chromosome j , represented by 

1 2 3[ , , ,..., ],j

NX x x x x is formed by N parcels as depicted in Fig 

2, where 1,2,3..,j L , N and L are the number of channels and 

population size, respectively. Thus, each parcel i , with binary encoding, 

represents the sensing period for the channel (Ch) i . 

 

 

 

   

 

Fig. 2 Chromosome structure  

We used Pareto strategy to evaluate the solutions to the problem (i.e., 

the individuals) during the evolution process, since the determination of 

the set of sensing periods is a multi-objective problem. Thus, the 

optimization is based on the concept of dominance [2]. In our approach, 

the dominance evaluation function is based on the number of discovered 

opportunities (Op), as defined in Eq. (1). Moreover, the individual’s 

evaluation takes in account the incurred sensing overhead (Ov), which 

is given by Eq. 2.                              
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where ( )i iS x h is the state of the channel i  at the time instant 
ix h , with 

h  varying from 1 to .M M is the total number of samples of the 

channel i  with sensing period ;ix st  is the sensing time. 

During the evaluation process, the fitness value for each individual 

j is defined by computing the number of individuals dominated by j in 

the population, ( ),jDN X as described in (3), where  (  ) means 

dominance (non-dominance). Moreover, an evaluation is carried out to 

determine whether this particular individual has an overhead rate equal 

or less than a user-defined threshold ( )ovTh , as defined in (4). Where 

( )j

ov X  is equal to zero if the individual j  has an overhead rate greater 

than 
ovTh  and equal to one otherwise. 
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Thus, the fitness value of each individual j is given by (5).   

( ) ( ) ( )j j j

ovfitness X X DN X                                       (5) 

Hence, the optimization problem of spectrum sensing period can be 

formulated as: 
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Genetic Operators and Evaluations: For the selection operator, we 

adopted the roulette wheel [2]. We used the uniform operator for 

crossover operation, with crossover rate equals to 0.8. The bit one was 

the mutation operator adopted, with mutation rate equals to 0.01. The 

number of generation, configured as 300, was the stop criterion for the 

GA. The resolution used to represent the individual and the population 

size were set to 1010 and 100, respectively. 

We adopted three simulation instances that differ in terms of the 

number of channels (3, 6, and 9 channels) in the evaluation. We 

analyzed  the effectiveness of our scheme by comparing it with the 

method based on fixed and unique sensing period for all channels [6], as 

well as with the adaptive method proposed in [1], namely Kim. The 

sensing and simulation time were set to 20ms and 100s, respectively. 

The values 1/ TON

i and 1/ OFF

i are uniformly distributed in [0.5 5.5], as 

in [6]. The results are presented with 95% confidence level. 

Our GA scheme adopts three versions with different values of upper 

limit for the tolerable user-defined sensing overhead. Thus, the versions 
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denoted as GA10, GA20 and GA40, aim at maximizing the number of 

opportunities conditioned to sensing overheads lower than or equal to 

10%, 20%, and 40%, respectively. The sensing periods in the two 

instances of the fixed method, Fixed 1 and Fixed 2, are set to 0.5s and 

1.0s, respectively.  Fig. 3 shows the mean number of transmission 

opportunities achieved by the schemes. We note that all versions of our 

scheme outperform the Fixed 1, Fixed 2 and Kim methods.  

GA10 improves the spectrum opportunities, on average, by 21.54% 

and 28.07% for 3 and 9 channels, respectively, and has a similar sensing 

overhead to the Kim method. It should be noted that as the number of 

channels increases, e.g. to 9 channels, the number of opportunities also 

increases for GA20, which achieves 64.68% and 79.88% more 

opportunities than Kim and Fixed 1 methods, respectively. The best 

performance was obtained by GA40, which significantly enhanced the 

number of opportunities by 82.5% and 94.98%, compared with the Kim 

and Fixed 2 methods, when 9 channels are considered. 

 
Fig. 3 Average number of transmission opportunities discovered 

Fig. 4 shows the average interference time to the PU obtained with 

each scheme. The GA versions achieved the best performance for all the 

number of channels. The reduction of the interference time for GA10 

was, on average, 8.34% and 26.9%, with respect to the Kim method in 

scenarios with 3 and 9 channels, respectively. By using the GA20 

scheme, the reduction in the interference time was equal to 52.21% and 

76.14%, respectively, when compared with the Kim method and the 

Fixed1 scheme, in the instance of 9 channels. Finally, the GA40 

achieved the smallest interference time of all the simulated cases. 

 
Fig. 4 Interference time   

The superiority of our schemes when compared to the fixed ones is 

due to the sensing period to be adapted according the channel usage 

pattern. When compared to Kim approach, our strategy is based on an 

evolutionary process that uses sensing samples to obtain an optimal 

sensing scheme for the operation. At the same time, the Kim method in 

[1] adjusts the sensing period on the basis of estimating the average 

channel behavior, which may not involve significant variations. 

Furthermore, to determine the sensing period, our approach, through the 

overhead threshold, indirectly considers the interference caused to the 

undetected PU, which is overlooked in the other related works. 

 

Conclusion: In this letter we have shown that GA can significantly 

optimize the spectrum sensing period in CRNs. Our proposal 

outperforms the non-optimized schemes by up to 90% and it obtained 

superior performance when compared to a related adaptive proposal, 

with the advantage that it enables users to specify the permitted sensing 

overhead that can reflect the interference level tolerated by PU.   
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