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Abstract—In the context of Ultra-reliable Low Latency Com-
munications (URLLC), the concepts of Multi-access Edge Com-
puting (MEC), Network Function Virtualization (NFV), and
Unmanned Aerial Vehicle (UAV) emerge as complementary
paradigms that shall offer fine-grained on-demand distributed
resources closer to the User Equipment (UE) and strong Line-of-
Sight (LoS) paths between UAV and ground transmission nodes.
However, compromise between onboard computation resource
allocation and the URLLC requirements becomes challenging
since UAVs are limited due to their size, weight, and power,
and the virtualization adds extra overhead, which imposes a
burden on the conventional Network Functions (NFs). This work
proposes a NFV-MEC over UAV model based on Continuous-
time Markov Chain (CTMC), with an embedded virtual resource
scaling scheme for dynamic resource allocation (DRA). It also
extensively analyzes the NFV-MEC architecture’s virtualization
layer, including node availability and power consumption, be-
sides the URLLC conflicting reliability and latency metrics.
The designed model allows analyzing how the main underlying
virtualization parameters impact the critical services in a single
NFV-MEC over a UAV node, assisting the network operator in
proper node dimensioning and configuration.

Index Terms—UAV, MEC, URLLC,NFV,CMTC

I. INTRODUCTION

The architectural movement toward Multi-access Edge
Computing (MEC) enables the deployment of core network
functions and cloud applications closer to the User Equipment
(UE). It avoids the burden imposed by multiple network com-
ponents, equipment, and protocols that build the path between
regular application servers and UE [1]. MEC generally allows
UEs to offload the tasks to MEC servers at the network
edge, benefiting both operator and UEs by reducing end-
to-end service latency and increasing service capacity. The
computation infrastructure in the edge is similar to that of
data centers but on a smaller scale, which can be efficiently
orchestrated by Network Function Virtualization (NFV) [2].

To meet the demands of device density, position, and
service types, a highly decentralized edge node infrastructure
becomes necessary [3]. This implies a high deployment cost
often associated with physical location expenses, hardware,
software, and energy consumption [4]. Compared to fixed
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MEC infrastructure, MEC-enabled Unmanned Aerial Vehicles
(UAVs) yield an efficient and flexible solution to meet the
dynamic demands of ultra-dense networks [5]. Owing to the
mobility, UAVs enable edge servers closer to UEs, establish-
ing Line-of-Sight (LoS), which assures the best connectivity
conditions towards and consequently higher transmission rates
and reliability [6]. On the other hand, the main challenges rely
on the limited resource and battery life, which leads to the
importance of efficient resource dimensioning and allocation.

Recently, a great effort has been dedicated to the field
of MEC-enabled UAVs, especially on trajectory and energy
optimization [7], [8]. However, little has been discussed about
the impact of the computing subsystem [9] on MEC-UAV node
dimensioning and applications, primarily when virtualization
is used to provide computing resources since it brings critical
practical points to be considered. For instance, containers are
cost-effective for resource utilization, and present lower startup
overhead [10], being suitable to support VNF scaling for
URLLC services. However, they are still not mature compared
to VMs, which may affect the service reliability and avail-
ability. In addition, studies that address resource allocation in
terrestrial MEC nodes ignore the time overhead for virtual
resource instantiation and failure recovery or computational
power degradation of parallel VMs on the same physical
node. Besides, they do not consider metrics such as reliability,
availability, power consumption, and response time [11]–[13].

This paper proposes a NFV-MEC over an UAV model based
on Continuous-time Markov Chain (CTMC), with an em-
bedded virtual resource scaling scheme for dynamic resource
allocation (DRA). It allows analyzing how the main underlying
virtualization parameters impact the critical services in an
NFV-MEC over a UAV node and thus assisting the network
operator in the proper node dimensioning and configuration
for URLLC, considering not only the latency and reliability
but also power consumption and availability. The remainder
of this paper is organized as follows. Section II presents
related studies. Section III describes the system model, basic
assumptions, proposed model, and derived performance met-
rics. Model validation and extensive analysis are presented in
Section IV. Finally, Section V concludes this work.



II. RELATED WORK

Previous studies proposed different solutions for using UAV
as network infrastructure. In [7], the authors address the
energy consumption minimization on both UE and UAV while
optimizing the horizontal trajectory of the vehicle. In [8], a
communication and computation allocation strategy is pro-
posed to select the ideal altitude and minimize the UAV energy
consumption under latency constraints. [14] adopts UAVs as
backhaul and core network (CN) equipments and proposes
MEC-enabled networks over multiple UAVs to minimize the
power consumption. More recently, [15] explored UAVs acting
as radio, CN, and edge clouds (ECs) but its testbed focused
on the analysis of UAVs as ECs hosting aerial control system
functions in which both the travel plan and computational us-
age were considered to reduce energy consumption. Although
they bring important outcomes, these studies just focus on the
latency or energy consumption minimization, neither covering
reliability or availability issues nor considering virtualization
overheads that may impact the URLLC.

Other works have focused solely on MEC-related com-
putational resource issues, encompassing problems such as
resource placement, scheduling, node dimensioning, and Dy-
namic Resource Allocation (DRA) [16]. For instance, the
authors in [17] design a greedy-based search algorithm to find
the minimum number of MEC servers considering delay and
workload budget. In [18], a model based on queuing theory
was proposed with an optimization problem to identify the
number of virtual resources to maximize the task execution
capacity using the first fit strategy to solve it. Even addressing
different problems in MEC environment, previous works ne-
glect virtualization overheads (e.g., resource setup time, failure
recovery, and performance degradation of multiple VMs on
the same physical node) that may cause violation of URLLC
constraints or energy budget of the UAV.

While there has been significant attention paid to latency
and energy consumption aspects of MEC-enabled UAVs based
on trajectory optimization, computing infrastructure resilience,
virtualization overhead, and resource availability have received
far less attention even though these are of paramount impor-
tance for resource dimensioning/allocation, especially consid-
ering critical applications. Motivated by this gap, we propose
a CMTC model that allows a service provider to properly
dimension a MEC-enabled UAV node under availability, power
consumption, reliability and latency perspectives, offering a
complementary solution to those previous works. Besides,
extensive analysis is carried out considering the 3GPP standard
for URLLC when selecting parameter values to explore. In
our work, two practical computational concepts play a crucial
role: (1) virtualization technology and (2) on-demand resource
activation (scaling). With regards to the first, although NFV
has traditionally been implemented over VMs, it is widely
accepted that containers are the most cost-effective solution in
terms of physical resource utilization, besides having smaller
instantiation overheads [10], which impacts the latter, espe-
cially to support VNF scaling. However, they are still not

mature compared to VMs, i.e., there are multiple security risks
involved in containerization since they share a single kernel,
which may affect both availability and reliability [21].

III. SYSTEM MODEL

A. Computing Model

Each on-board VNF runs equally and independently on a
single microkernel-based VM [22] or container that shares a
common physical machine (PM), with VMs executing unin-
terrupted while containers are scaled upon demand. A central
control unit determines request admission, only activating
containerized VNFs when all VM-hosted ones are busy. The
containerized VNF activation comprises two phases: initial-
izing the kernel image and launching the specified function,
which is interpreted as setup time, during which power and
resources are consumed but no service is processed.

Following [23], we have considered that the parallel-
operating VMs can deteriorate each other’s processing time.
On the other hand, the container’s average performance is
generally superior than the VM’s and comparable to that of
the PM with regards to multiple features. Thus, for the case
of a single VM deployment, the task’s execution rate is µ
services/time unit, however, to account for the VM overhead,
the task’s execution rate is modeled taking the total number of
VMs (see (1)), where d is the computation degradation factor.
This results in µV M being a monotone decreasing function of
d, whereas the µC is constant since the container performance
overhead is negligible.

µV M =
µ

(1 + d)(n−1)
(1)

Active containerized VNFs may suffer failures during atten-
dance, which implies either a service migration to an available
VM/container or a repair (triggering a new setup period), with
progress being lost only in the latter case. In general, repair
times will depend on the failure type; for instance, a software
component crash can be quickly fixed by the host in a few
microseconds, while others may take a few milliseconds to
reboot device and VNF. Since the model deals with critical
flows, only the worst-case scenario is considered. Lastly, as
soon as an operative VNF finishes processing and there are no
remaining requests, the VNF instance can either be powered
down together with the host container or remain active if
hosted by a VM. The shutdown delay is ignored for being
significantly smaller than the setup (repair) magnitudes [24].
Fig. 1 summarizes the above process.

B. Analytical Model

The system comprises a single MEC-enabled UAV compris-
ing a maximum capacity of K services that are served by up
to n VMs and c containers, with K ≥ n + c, which implies
a queue (q) that is limited to K − (n + c) services. Service
requests follow a Poisson process with rate λ (requests/ms)
and server capacities of one service with an exponentially
distributed service rate of µC for containerized VNFs, whereas
for VMs, µV M is given by (1). Control applications are likely



Fig. 1. Failure & Repair model diagram

to fit a regularly spaced packet trace (isochronous), i.e., a
superposition of deterministically spaced and sporadic packet
streams, where each contributes to a portion of the overall
traffic, which might be modeled as a Poisson [26].

Container setup/repair times and failures are also exponen-
tially distributed with rates α and γ, respectively. A regular
first come first served queue was assumed for new requests
with prioritization for retrial. We assume a standalone de-
ployment and the system is modeled as an M/M/n+c/K queue
(Fig. 2) with setup time and failure. The feasible state space
is given by Ω = (i, j, k) | 0 ≤ i ≤ n, 0 ≤ j ≤ c, and
0 ≤ k ≤ K, with i + j ≤ k and i, j, n, c, k,K ∈ Z+.
Each state (i,j,k) denotes the number of services allocated
to VMs (i), containers (j) and the total number of services
in the system (k), respectively. Furthermore, the steady-state
probabilities π(i, j) are extracted from the solution of a linear
system formed by the normalization condition (2) and balance
equations of all states of the model. States with the same color
in Fig. 2 follow the same type of balance equation (omitted
due to the paper size limit). Please consider (i, j, k) ∈ Ω in
all equations to follow.

n∑
i=0

c∑
j=0

K∑
k=i+j

π(i, j, k) (2)

C. Performance Metrics

In MEC-enabled networks, task execution at the MEC server
is strongly tied to resource availability, failure resilience and
response time [20], while power management is crucial for
UAV equipment. In this respect, we consider the steady-
state analysis of the CTMC under study, followed by the
derivation of the system’s Availability (A), Reliability (R),
Power Consumption (C) and Response Time (T ).

1) Availability (A): In our work, Availability is the sys-
tem’s ability to offer the minimum amount of functional and
accessible VNFs. In particular, a VNF instance is considered
available if at least one of its constituents (VM-hosted or
containerized) remains accessible. In brief, the MEC-enabled
UAV node Availability (A) (3) is obtained by the probability
sum of all states except those representing full capacity.

A = 1−
n∑

i=0

c∑
j=0

πi,j,K (3)

2) Reliability (R): The designed model also evaluates the
Reliability (R) being given by (4), which combines the admit-
ted flow λ*A with the effective failure rate in the entire node,
i.e., it denotes the probability that a service is served without
experiencing failures while being processed by MEC VNFs.

R = 1− γ

λ ∗A

c∑
j=1

j

[
n∑

i=0

K∑
k=1

πi,j,k

]
(4)

3) Power Consumption (C): The computational power con-
sumption is an important component of the operational costs
and must be considered by the service provider for resource
planning to address cost-performance trade off, mainly in UAV
nodes, which are battery-oriented devices. In our framework,
power consumption (C) is formed from the combination of the
mean number of virtual resources and energy consumption val-
ues (P ) for each virtualization technology (VM and Container)
and operating states (Idle, Setup and Busy), as shown in (10).
The mean number of VMs and containers (CT) in each state
is described in (5)-(9). Since VMs are constantly powered, no
equation for its setup state is described. The notation used to
express the energy consumption of each technology and state
are summarized in Table I.

VM idle =

n∑
i=0

(n− i)

 c∑
j=0

K∑
k=0

πi,j,k

 (5)

VM busy =

n∑
i=0

i

 c∑
j=0

K∑
k=0

πi,j,k

 (6)

CT idle =

c∑
j=0

(c− j)

n∑
i=0

πi,j,k, with k = i+ j

+

c∑
j=0

n∑
i=0

K∑
k=i+j+1

(c− j −min(k − i− j, c− j))πi,j,k

(7)

CT setup =

c∑
j=0

K∑
k=n+j+1

min(k − n− j, c− j)πn,j,k. (8)

CT busy =

c∑
j=1

j

 n∑
i=0

K∑
k=j+i

πi,j,k

 . (9)

C = PVM
idle VM idle + PVM

busy VM busy

+PCT
idle CT idle + PCT

setupCT setup + PCT
busy CT busy

(10)



Fig. 2. Space state diagram

4) Response Time (T): We define the Response Time (T )
of a VNF that processes the service as the interval between
the service arrival on the edge node and its processing time,
including the containerized VNF setup restart times if these
events are triggered. The Mean Response Time is obtained by
calculating the mean number of services in the system and the
mean number of accepted services (11).

T =
1

λ ∗A

K∑
k=0

k

 n∑
i=0

c∑
j=0

πi,j,k

 (11)

IV. VALIDATION AND ANALYSIS

The scenario of interest is composed of one semi-static
MEC-enabled UAV which able to increase its coverage area.
Intuitively, the higher the altitude, the larger is the coverage
offered by the platform and the lower is the chance of
shadowing effects, thus the service arrival rate may increase or
decrease accordingly [8]. The analytical results were validated
against discrete-event simulations (Figs. 3-4), where the lines
denote the analytical and the markers represent simulation
results. For the main parameters, we have followed a subset of
the 3GPP Release 16 (TR 38.824), in which the service rates
µ and µC are 1 (1 service/ms), whereas µV M is given by (1).

Each scenario simultaneously evaluates the impact of a pair
of parameters: Fig. 3 Multiple VM Amounts (n) and Overhead
Degradation Factor (d) and Fig. 4 multiple container amounts
(c) and failure rates (γ), with the service arrivals ranging from
1 up to 100 requests/ms, setup rate (α) and queue size equal
to 1 unit/ms [24] and 10, respectively. In addition, unless
otherwise stated the baseline values for failure (γ) was 0.001
[24]. In terms of power consumption for VMs and containers

for different operation states, we adopted the values from the
network intensive experiment in [10], which is summarized in
Table I. The remaining parameters can be found in Table II.

TABLE I
NOTATION AND POWER CONSUMPTION VALUES

Virtualization State Status Symbol Value
VM-hosted Idle ON PV M

idle 20W
VM-hosted Busy ON PV M

busy 25W
Containerized Idle SLEEP PCT

idle 4W
Containerized Setup ON PCT

setup 8W
Containerized Busy ON PCT

busy 23W

A. Multiple VMs (n) and Overhead Degradation Factor (d)

In Figs. 3a-3b both Availability and Reliability have similar
configuration disposal, however with large magnitude. In Fig.
3a, the combined increase of n and d implies a less available
system due to a lower VM service rate. This also means that
containers are likely to be more required, meaning that failures
happen more often, leading to a less reliable system (Fig. 3b).
Comparing the Availability for configurations ((n = 10), (n =
30)) and ((n = 30), (n = 50)) that share d = 0.01, the absolute
difference is 11.5% and 9.1%, respectively, whereas in Fig. 3b
the difference among the Reliability from the same curves is
much smaller in absolute terms, which would only be relevant
for specific services such as URLLC [25].

In Fig. 3c, both the maximum number of VMs (n) and over-
head degradation factor (d) greatly impacted power consump-
tion, but in different ways. Since VMs are not dynamically
scalable, it was expected that the increase in n would also
increase overall power consumption, regardless of λ. On the
other hand, the overhead degradation factor (d) clearly impacts



(a) Availability (b) Reliability (c) Power Consumption (d) Response Time

Fig. 3. Multiple VMs (n) and Overhead Degradation Factor (d)

TABLE II
EXPERIMENT SETS

Section Parameters n c d γ
IV - A n, d 10,30,50 40 10−2,10−1 10−3

IV - B c, γ 10 40,60,80 10−2 10−3,10−2

the non-saturated system, and particularly in this scenario, has
only impacted configurations with higher n values (30 and 50)
respectively. For λ → 100, the curves with the same n over-
lap, which evinces a saturated system, i.e., all resources are
processing services, although each pair of curves has different
throughput due to the different values for d. With respect to
the differences in power consumption, there is a maximum gap
of 500W between the two curves with n = 30 and d = 0.01,
and n = 30 and d = 0.1, respectively, at λ = 35, whereas
the maximum difference in power consumption between the
curves with n = 50 and d = 0.01, and n = 50 and d = 0.1,
respectively, is approximately 600W at the same reference
point. This difference is quite significant since each of them
has the same VM amount. Another particularity is observed
when comparing the curves with n = 30 and d = 0.1, and
n = 50 and d = 0.01 for λ = 20 50, which had similar
performance, although the former has 20 fewer VMs than the
latter when considering the total number of resources. In brief,
in addition to accounting for the fact that the impact of d is
potentiated by n, higher d values also make the overall service
rate lower, leaving the VMs in Busy mode for longer periods,
besides forcing the system to activate containers more often.

Unlike power consumption, changes in n have very little
impact on the response time (Fig. 3d) compared to the results
of the curves with different values of d. This indicates that the
positive effects of increasing n can be mitigated depending on
the value of d. In general, there are multiple nuances involving
each parameter, service load, and performance metrics that
might conflict, highlighting the relevance of an adequate
dimensioning process. For instance, the response time almost
doubles when comparing the two curves with n = 50.
Moreover, considering availability and reliability, the curve
with n = 50 and d = 0.01 had the best performance, whereas
for power consumption, it was one of the worst.

B. Multiple Containers (c) and Failure Rates (γ)

A larger γ means smaller intervals between successive
containerized VNF failures. In contrast to α, this parameter
improves the system as it gets smaller. Thus, γ was enhanced

by factors of 10 and 100. In addition, containers are not prone
to significant overhead issues, besides, there is no correlation
between the container amount and its individual service rate.
For this resource type, failures are isolated events. In this
scenario, we have reduced and fixed the total amount of VMs
(n = 10) to highlight the impact of c and γ. Thus, for small
λ < 10 most services are processed in VMs, not having a
notable influence on the results.

It was found that γ values have little influence on Availabil-
ity (Fig. 4a), Power Consumption (Fig. 4c), and even Response
Time (Fig. 4d) within the assumed ranges. This does not
mean that the parameter has no impact on these metrics, but
rather that γ would need to be at least of the same order
as α in order to have a significant effect on the system’s
capacity due to more frequent container failures. In contrast,
the container amount c had a significant impact on all three
metrics, particularly for high values of λ where the maximum
differences were observed. As for Reliability (Fig. 4b), the
failure rate γ remains one of its key components and hence
significantly impacts the curves, while c has little impact.
In addition, compared to Reliability, the maximum absolute
difference between curves is much higher (0.007).

In Fig. 4d, the Response Time spikes for λ = 10, which
corresponds to the fixed maximum amount of VMs (n = 10).
From this point on, the containers are turned on, which
explains the sudden spike due to the setup time and, moreover,
the sudden drop when part of these resources are available and
processing incoming services. Lastly, in each pair of curves,
there is a slight increase in the Response Time at different
λ, which is explained by the resource limit and further queue
activation, which is not a processing unit. Compared to the
Response Time in Fig. 3d, it is noticeable that the maximum
difference between curves is much less significant (0.1 ms).

V. CONCLUSION

Wireless communication networks are transitioning from
pure communication to service enablers in multiple verticals,
composing a system that dynamically adapts to the evolving
landscape. For instance, the edge node requires not only high
availability and reliability, but also low-latency for autonomous
decision making, while also coping with resource constraints.
This work analyzed the impact of virtualization layer param-
eters on URLLC applications in the context of UAV-Enabled
Multi-access Edge Computing. In this respect, a dynamic re-
source provisioning scheme was created considering practical
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Fig. 4. Multiple Container Amounts (c) and Failure Rates (γ)

assumptions such as resource failures, setup/repair periods,
and processing overhead. Hence, it allows a network operator
to configure and dimension the node taking into account clas-
sic URLLC performance metrics (Availability, Reliability, and
Response Time), and the power consumption (for UAV nodes),
while also admitting customization, such as the VM/container
interference assumptions. As a future direction, other network
segments (e.g., RAN) and the UAV trajectory can be incorpo-
rated in order to perform joint parameter optimization (e.g.,
transmit powers) and computation resources (such as CPU
cycles) to find the most favorable compromise between energy
consumption, latency, and performance.
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